edexcel 쁯

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE Statistics

S2
(6684/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 6684_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

June 2016
 6684 Statistics S2
 Mark Scheme

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& \multicolumn{2}{|l|}{Scheme} \& Marks \\
\hline 2(a) \& \(0.05 n=3\) \& M1: using \(0.05 n\) \& M1 \\
\hline \& \(n=60\) \& \begin{tabular}{l}
A1: cao \\
NB: for 60 with no incorrect working award M1A1
\end{tabular} \& A1 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
(b) \\
(i)
\end{tabular}} \& \(R \sim \mathrm{~B}(20,0.05)\) \& B 1 : using or writing \(\mathrm{B}(20,0.05)\) in (i) or (ii) \& B1 \\
\hline \& \[
\begin{aligned}
\mathrm{P}(R=4) \& ={ }^{20} C_{4}(0.05)^{4}(0.95)^{16} \text { OR } \\
\mathrm{P}(R=4) \& =\mathrm{P}(R \leq 4)-\mathrm{P}(R \leq 3) \\
\& =0.9974-0.9841
\end{aligned}
\] \& M1 writing or using \(\mathrm{P}(R \leq 4)-\mathrm{P}(R \leq 3)\) or using \({ }^{20} C_{4}(p)^{4}(1-p)^{16}\) \& M1 \\
\hline \& \(=0.0133\) \& A1: awrt 0.0133 \& A1 \\
\hline \multirow[t]{2}{*}{(ii)} \& \[
\begin{aligned}
\mathrm{P}(R \geq 4) \& =1-\mathrm{P}(R \leq 3) \\
\& =1-0.9841
\end{aligned}
\] \& M1: writing or using \(1-\mathrm{P}(R \leq 3)\) \& M1 \\
\hline \& \(=0.0159\) \& A1: awrt 0.0159 \& A1 (5) \\
\hline \multirow[t]{6}{*}{(c)} \& \(\mathrm{H}_{0}: p=0.05 \quad \mathrm{H}_{1}: p>0.05\) \& B1: Both hypotheses correct and labelled \(\mathrm{H}_{0}\) and \(\mathrm{H}_{1}\), must use \(p\) or \(\pi\) Do not allow \(\mathrm{p}(x)\) \& B1 \\
\hline \& \(\mathrm{P}(R \geq 4)=1-\mathrm{P}(R \leq 3)\) \& \begin{tabular}{l}
M1: Writing or using \(\mathrm{B}(50,0.05)\) AND writing or using \(1-\mathrm{P}(R \leq 3)\) or \(\mathrm{P}(R \leq 3)=0.7604\) on its own or one of the following 4 statements leading to a CR. \(\mathrm{P}(R \geq 7)=0.0118\) \(\mathrm{P}(R \leq 6)=0.9882\) \\
\(\mathrm{P}(R \geq 8)=0.0032\)
\[
\mathrm{P}(R \leq 7)=0.9968
\] \\
May be implied by correct CR. Allow any letter
\end{tabular} \& M1 \\
\hline \& \(=0.2396 \quad\) CR \(R \geq 8\) \& A1: awrt 0.240 or 0.24 or \(R \geq 8\) oe Or 0.7604 \& A1 \\
\hline \& \begin{tabular}{l}
Insufficient evidence to reject \(\mathrm{H}_{0}\), Not Significant. Accept \(\mathrm{H}_{0}\). \\
4 does not lie in the Critical region.
\end{tabular} \& \begin{tabular}{l}
M1: dependent on the previous M being awarded. A correct statement - do not allow contradictory non contextual statements. Follow through their Probability/CR and \(H_{1}\). If no \(H_{1}\) seen then M0. \\
Ignore their comparison in all cases Then mentally compare their probability as follows: \\
For prob < 0.5 statement must be correct compared to 0.01 for 1 tail test and 0.005 for 2 tailed test. \\
For prob \(>0.5\) statement must be correct compared to 0.99 for 1 tail test and 0.995 for 2 tailed test. \\
NB:If there is no non-contextual statement given you may award the M1 for a correct contextual statement
\end{tabular} \& M1d \\
\hline \& No evidence to support Patrick's claim. Or no evidence that people in Reddman have a probability greater than \(5 \%\) of having red hair \& A1: cso fully correct solution and correct contextual statement containing the word Patrick if writing about the claim Or red hair if full context \& A1cso

(5)

\hline \& \& \& Total 12

\hline
\end{tabular}

Question Number	Scheme		Marks
3(a)	$\mathrm{f}(r)=\left\{\begin{array}{cc} \frac{1}{4} & 5 \leq r \leq 9 \\ 0 & \text { otherwise } \end{array}\right.$	B1: Allow $r<5$ and $\mathrm{r}>9$ instead of 0 otherwise Allow < instead of \leq signs. Any letter may be used - condone mixed letters Must have $\mathrm{f}(\mathrm{r})$ - condone $\mathrm{F}(\mathrm{r})$	$\begin{array}{rrr}\text { B1 } & \\ & \\ & \\ & \text { (1) }\end{array}$
(b)	$\begin{aligned} \mathrm{P}(7<R<10) & =2 \times \frac{1}{4} \\ & =\frac{1}{2} \end{aligned}$	B1: oe	B1 (1)
(c)	$\begin{aligned} & {\left[\mathrm{E}(A)=\mathrm{E}\left(\pi R^{2}\right)\right]} \\ & \mathrm{E}\left(R^{2}\right)=\operatorname{Var}(R)+[\mathrm{E}(R)]^{2} \text { or } \int_{5}^{9} \frac{r^{2}}{4} d r \end{aligned}$	M1: Using correct formula for $\mathrm{E}\left(R^{2}\right)$. This may be in any order or written in words	M1
	$\mathrm{E}(R)=7, \quad \operatorname{Var}(R)=\frac{4}{3} \quad$ or $\quad\left[\frac{r^{3}}{12}\right]_{5}^{9}$	B1: $\operatorname{Var}(R)=\frac{4}{3}$ or awrt 1.33 and $\mathrm{E}(R)=7$ or $\left[\frac{r^{3}}{12}\right]_{5}^{9}$. These may be implied by a correct answer	B1
	$=50 \frac{1}{3}$	A1: Allow awrt 50.3	A1
	$\mathrm{E}(A)=50 \frac{1}{3} \pi$ oe NB If both $\mathrm{E}(R)^{2}$ and $[\mathrm{E}(R)]^{2}$ are both worked A marks. The best they can get is M1 B1 A1A	A1: Allow exact multiple of π eg 50.3π or awrt 158 Do Not allow 50.3π t and neither is selected they lose the final	$\begin{array}{rrrr}\text { A1 } & \\ & \\ & \\ & \\ & \text { (4) }\end{array}$
			Total 6

Question Number		Scheme	Marks
Mark (a) and (b) together - allow a missing k throughout			
4(a)	$\mathrm{f}(x)=a k+2 b k x-3 k x^{2}$	M1: Attempting to differentiate $\mathrm{F}(x)$ at least one $x^{n} \rightarrow x^{n-1}$	M1
	$\left[\frac{\mathrm{df}(x)}{\mathrm{d} x}=\right] 2 k b-6 k x$	M1d: Attempting to differentiate $\mathrm{f}(x)$ at least one $x^{n} \rightarrow x^{n-1}$. Dependent on previous M mark being awarded. A1: Condone missing $\frac{\mathrm{df}(x)}{\mathrm{d} x}$	M1dA1
	$\begin{aligned} & 2 k b-6 k x=0 \\ & k(2 b-6 x)=0 \\ & 2 b-6 x=0 \\ & \hline \end{aligned}$	M1d: Putting $2^{\text {nd }}$ differential $=0$ Dependent on previous Method mark being awarded	M1d
	$2 b-6 \times \frac{8}{3}=0$	M1d: Subst $x=\frac{8}{3}$. Allow with k in. Dependent on previous Method mark being awarded	M1d
	$b=8 *$	A1: Answer given so must have been awarded all previous marks with no errors	A1 cso
Alternative method - completing the square			(6)
$-3 k\left(x^{2}-\frac{2 b x}{3}-\frac{a}{3}\right)$		M1: factorising by taking -3k out	M1
$-3 k\left(\left(x-\frac{b}{3}\right)^{2}-\left(\frac{b}{3}\right)^{2}-\frac{a}{3}\right)$ or quoting $\frac{-b}{2 a}$		M1: Attempting to complete the square dependent on previous M mark being awarded. $\left(x-\frac{b}{3}\right)^{2} \pm c$	M1d
	$-3 k\left(x-\frac{b}{3}\right)^{2}+\frac{b^{2} k}{3}+a k$	A1: Correct completed square form	A1
	Max at $x=\frac{b}{3}$	M1d: Selecting their $b / 3$ Dependent on previous Method mark being awarded	M1d
	$\frac{b}{3}=\frac{8}{3}$	M1: Putting their $\frac{b}{3}=\frac{8}{3}$. Dependent on previous Method mark being awarded	M1d
	$b=8 *$	A1: Answer given all steps must have shown all the required steps	A1 cso
(b)	$\begin{gathered} \mathrm{F}(2)=0 \mathrm{eg} \quad k(2 a+32-8)=0 \\ \text { Or } \quad k(2 a+4 b-8)=0 \mathrm{oe} \\ a=-12 \\ \mathrm{~F}(3)=1 \mathrm{eg} \quad k(-36+72-27)=1 \\ k(-36+9 b-27)=1 \mathrm{oe} \\ k=\frac{1}{9} \end{gathered}$	M1: Attempting to form an equation using $F(2)=0$, or $F(3)=1$ or $F(3)-F(2)=1$. Need to subst in the x value and equate A1: -12 - may be implied by $k=1 / 9$. Do not award if the M1 is not given M1: Forming an equation using two of $\mathrm{F}(2)=0$ or $\mathrm{F}(3)=1$ or $\mathrm{F}(3)-\mathrm{F}(2)=1$ A1: Allow equivalent fractions or awrt 0.111	M1 A1 M1 A1
NB If you see $k=1 / 9$ award full marks. You may award marks in part (b) for equations seen in (a)			(4)
SC if -b/2a quoted and not proved do not award the A marks. Max mark is M1M1A0M1M1A0			Total 10

Question Number	Scheme		Marks
5.	$\mathrm{N}(0.2 n, 0.16 n)$	B1: Mean $=0.2 n$ and $\operatorname{Var}=0.16 n$ oe this may be awarded if they appear in the standardisation as $0.2 n$ and either $0.16 n$ or $\sqrt{0.16 n}$	B1
	$\mathrm{P}\left(Z>\frac{55.5-0.2 n}{\sqrt{0.16 n}}\right)=0.0401$	M1: Using a continuity correction either 55.5 or 54.5	M1
	$\frac{55.5-0.2 n}{\sqrt{0.16 n}}=1.75$	B1: Using a $z=$ awrt ± 1.75 M1: Standardising using either 55.5, 54.5 or 55 and equal to a z value. Follow through their mean and variance. If they have not given the mean and Var earlier then they must be correct A1: A correct equation. May be awarded for $\frac{55.5-0.2 n}{\sqrt{0.16 n}}=1.75$ Condone use of an inequality sign rather than an equals sign	B1M1A1
	$0.2 n+0.7 \sqrt{n}-55.5=0$	M1d: This is dependent on the previous method mark being awarded. Using either the quadratic formula or completing the square or factorising or any correct method to solve their 3 term equation. If they write the formula down then allow a slip. If no formula written down then it must be correct for their equation. May be implied by correct answer or $\sqrt{n}=15$ or 342.25 NB you may award this mark if they use 54.5 for awrt 14.9, -18.4, 221 or 337 55 for awrt -18.4, 14.9,223 or -117 If the answer is not one of these then the method for solving their 3 term equation must be seen.	M1d
	$\sqrt{n}=15$	A1: Allow 15 or -18.5 do not need to see n or \sqrt{n}. Condone $n=15$ or $n=-18.5$	A1
	$n=225$	A1 : cao 225 do not need to see n or \sqrt{n}	A1 (8)
	Alternative method for last 3 marks $\begin{aligned} & (0.2 n-55.5)^{2}=(-0.7 \sqrt{n})^{2} \\ & 0.04 n^{2}-22.69 n+3080.25=0 \\ & n=225 \text { or } 1369 / 4 \\ & n=225 \end{aligned}$	M1 solving 3 term quadratic in n as above A1 either 225 or 1369/4 or 342.25 A1must select 225	Total 8

