Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE In Mechanics M4 (6680/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 6680_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Q	Scheme	Marks	Notes
1a	Position vectors after t hours: $\binom{-2+4 t}{1+2 t}$ and $\binom{5-t}{-2+3 t}$	M1	Use position vectors to find position of one ship relative to the other
	$\pm\binom{ 7-5 t}{-3+t}$	A1	
	$\begin{aligned} d^{2} & =(7-5 t)^{2}+(-3+t)^{2} \\ & =26 t^{2}-76 t+58 \end{aligned}$	M1	Correct method for magnitude
	Differentiate: $52 t-76=0$	DM1	or complete the square
	$t=\frac{76}{52}=1.46 \mathrm{hrs}, 13.28$	A1	
		(5)	
$\begin{aligned} & \text { 1a } \\ & \text { alt } \end{aligned}$	Position vectors after t hours: $\binom{-2+4 t}{1+2 t}$ and $\binom{5-t}{-2+3 t}$	M1	Use position vectors to find position of one ship relative to the other
	$\pm\binom{ 7-5 t}{-3+t}$	A1	
	At closest point: $\binom{5}{-1} \cdot\binom{7-5 t}{-3+t}=0$, $5(7-5 t)-(-3+t)=0$	M1	Scalar product of relative velocity and relative position
	$35-25 t+3-t=0$	DM1	Scalar product $=0$
	$t=\frac{38}{26}=1.46 \mathrm{hrs}, 13.28$	A1	
		(5)	
1a alt	Angle between initial positions of A and B and relative velocity $=\theta=\tan ^{-1}\left(\frac{3}{7}\right)-\tan ^{-1}\left(\frac{1}{5}\right)$		
	$=11.89^{\circ}$	M1A1	
	$d=\sqrt{58} \cos \theta$	M1	
	Time taken $=\frac{d}{\sqrt{26}}$	DM1	
	$t=1.46 \mathrm{hrs}$, 13.28	A1	
		(5)	

1b	$\begin{aligned} & \text { Distance } \leq 2: d^{2}=26 t^{2}-76 t+58 \leq 4, \\ & 26 t^{2}-76 t+54 \leq 0 \end{aligned}$	M1	(condone equality)
	Time interval: $2 \times \frac{\sqrt{76^{2}-4 \times 26 \times 54}}{52}\left(=2 \frac{\sqrt{160}}{52}\right)$	M1	Difference between roots
	$=0.487 \mathrm{hrs}(29 \mathrm{mins})$	A1	0.49 or better
		(3)	
1balt	$\begin{gathered} \frac{\sin \alpha}{\sqrt{58}}=\frac{\sin 11.89}{2} \Rightarrow \alpha=51.7^{\circ}, 128.3^{\circ} \\ d_{1}=8.695, d_{2}=6.214 \end{gathered}$	M1	Find at least one distance
	$t=\frac{d}{\sqrt{26}} \Rightarrow t_{1}=1.705, t_{2}=1.219$	M1	
	Interval $=0.486 \mathrm{hrs}(29 \mathrm{mins})$	A1	0.49 or better
		(3)	
		[8]	

2a	For A, component perpendicular to $\mathrm{loc}=5$	B1	
	For B, component perpendicular to loc $=3$	B1	
	$\frac{1}{2} m \times 25 \times \frac{85}{100}=\frac{1}{2} m\left(3^{3}+v^{2}\right)$	M1	Equation for kinetic energy of B For their " 3 "
	$\frac{85}{4}=9+v^{2}, v^{2}=\frac{49}{4}$	A1	
	$\begin{aligned} &-6 m+4 m=3 m w-m v \\ &(=3 m w-3.5 m) \end{aligned}$	M1	CLM parallel to loc. No missing/additional terms Condone sign error(s)
		A1ft	Correct unsimplified equation for CLM (with their values if substituted)
	$w=0.5$		
	Select correct root and state velocities:	DM1	
	$\mathbf{v}_{B}=(3 \mathbf{i}-3.5 \mathbf{j})\left(\mathrm{m} \mathrm{s}^{-1}\right)$	A1	One correct
	$\mathbf{v}_{A}=(5 \mathbf{i}+0.5 \mathbf{j})\left(\mathrm{m} \mathrm{s}^{-1}\right)$	A1	Both correct
		(9)	
2b	$v+w=e(2+4)$	M1	Impact law parallel to loc. Used the right way round. Condone sign error(s)
	$0.5+3.5=6 e$	A1ft	Correct unsimplified or with their values
	$e=\frac{2}{3}$	A1	
		(3)	
		[12]	

3a		M1	Differential equation in v and x No additional/missing terms. Condone sign error(s)
	$75 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=150-3 v^{2}$	A1	
	$\int \frac{75 v}{150-3 v^{2}} \mathrm{~d} v=\int 1 \mathrm{~d} x$	M1	Separate variables
	$x=\left[-\frac{25}{2} \ln \left(50-v^{2}\right)\right]_{0}^{v}$	DM1	Integrate and use limits
	$=-\frac{25}{2} \ln \left(\frac{50-v^{2}}{50}\right)$	A1	
	$-\frac{2 x}{25}=\ln \left(1-\frac{v^{2}}{50}\right), v^{2}=50\left(1-e^{\frac{-2 x}{25}}\right)$	DM1	Change the subject to v or v^{2}
	$v=\sqrt{50\left(1-e^{\frac{-2 x}{25}}\right)}$	A1	
		(7)	
$\begin{aligned} & \text { 3a } \\ & \text { alt } \end{aligned}$	$\frac{\mathrm{d} v^{2}}{\mathrm{~d} x}+\frac{2}{25} v^{2}=4$	M1A1	
	Integrating factor: $\mathrm{e}^{\frac{2}{25} x}$	M1	
	$\begin{aligned} & v^{2} \mathrm{e}^{\frac{2}{25} x}=\int 4 \mathrm{e}^{\frac{2}{25} x} \mathrm{~d} x=50 e^{\frac{2}{25} x}(+C) \\ & v=0, x=0 \Rightarrow C=-50 \end{aligned}$	M1A1	Integrate and use limits
	$v^{2}=50-50 e^{-\frac{2}{25} x}$	DM1	Change the subject to v or v^{2}
	$v=\sqrt{50\left(1-e^{\frac{-2 x}{25}}\right)}$	A1	
		(7)	

3b	$75 \frac{\mathrm{~d} v}{\mathrm{~d} t}=150-3 v^{2}$	M1	Differential equation in v and t No additional/missing terms. Condone sign error(s)
	$\int \frac{75}{150-3 v^{2}} \mathrm{~d} v=\int 1 \mathrm{~d} t$	M1	Separate variables and integrate
	$\begin{aligned} t & =\int \frac{25}{50-v^{2}} \mathrm{~d} v \\ & =\frac{25}{2 \sqrt{50}} \int \frac{1}{\sqrt{50}+v}+\frac{1}{\sqrt{50}-v} \mathrm{~d} v \end{aligned}$		
	$=\frac{25}{2 \sqrt{50}}(\ln (\sqrt{50}+v)-\ln (\sqrt{50}-v))$	A1	With or without constant of integration $\text { Or } \frac{25}{\sqrt{50}} \operatorname{arctanh} \frac{v}{\sqrt{50}}$
	$t=\frac{25}{2 \sqrt{50}} \ln \left(\frac{\sqrt{50}+v}{\sqrt{50}-v}\right)-\frac{25}{2 \sqrt{50}} \ln \left(\frac{\sqrt{50}}{\sqrt{50}}\right)$	DM1	Use limits 0 and v
	$=\frac{25}{2 \sqrt{50}} \ln \left(\frac{\sqrt{50}+v}{\sqrt{50}-v}\right)$	A1	$\left(=\frac{5 \sqrt{2}}{4} \ln \left(\frac{\sqrt{50}+v}{\sqrt{50}-v}\right)\right)$ or equivalent
		(5)	
		[12]	

4a			

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{c}\text { Alt4 } \\ \mathbf{b}\end{array} & \begin{array}{l}\text { Component of }-7 \mathbf{j} \text { perpendicular to the } \\ \text { plane }=\frac{1}{5}\binom{0}{-7} \cdot\binom{-3}{4}\end{array} & \mathrm{M} 1 \mathrm{~A} 1\end{array}\right]$.

Q	Scheme	Marks	Notes
$\begin{gathered} \text { Alt } \\ \text { 4b } \end{gathered}$	Parallel: $7 \sin \theta=\sqrt{37} \cos (\theta+\alpha)$ Perpendicular: $e 7 \cos \theta=\sqrt{37} \sin (\theta+\alpha)$	M1A1	Pair of equations
	$\begin{aligned} & 49 \sin ^{2} \theta=37 \cos ^{2}(\theta+\alpha) \\ & \Rightarrow \sin ^{2}(\theta+\alpha)=1-\frac{49}{37} \sin ^{2} \theta \end{aligned}$	M1	Square and substitute to eliminate $\theta+\alpha$
	$49 e^{2} \cos ^{2} \theta=37 \sin ^{2}(\theta+\alpha)=37-49 \sin ^{2} \theta$	A1	
	$e^{2}=\frac{37-49 \times \frac{9}{25}}{49 \times \frac{16}{25}}=\frac{121}{196}, e=\frac{11}{14}$	M1A1	Substitute for θ to obtain e.
		(6)	
		[8]	

Q	Scheme	Marks	Notes
5		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	One correct triangle Two triangles combined using their common w. (seen or implied)
	$12 \cos 30^{\circ}=x \cos 45^{\circ}$	M1	Horizontal components equal
	$x=12 \sqrt{\frac{3}{2}}(=6 \sqrt{6}=14.6 \ldots . .)$	A1	
	$w^{2}=12^{2}+x^{2}-2 \times 12 x \cos 45^{\circ}$	M1	Cosine rule
	$w=10.5\left(\mathrm{~km} \mathrm{~h}^{-1}\right)$	A1	
	EITHER: Sine Rule: $\begin{aligned} & \frac{\sin \theta}{x}=\frac{\sin 45^{\circ}}{w} \\ & \left(\frac{\sin \theta}{12}=\frac{\sin 60^{\circ}}{w}\right) \end{aligned}$	M1	
	$\theta=81.2^{\circ}$	A1	
	Direction 261°	A1	
	$\text { OR: } \quad \begin{aligned} & \\ & \\ & \\ & \leftrightarrow \end{aligned} w \cos \theta=12-12 \cos 30^{\circ}-12 \cos 30^{\circ} \theta=12 \cos$		
	$\Rightarrow \tan \theta=\frac{\cos 30^{\circ}}{1-\cos 30^{\circ}}$,	(M1)	
	$\theta=81.2^{\circ}$	(A1)	
	Direction 261°	(A1)	
		(9)	
5 alt	$\mathbf{w}=\binom{x \cos 45^{\circ}}{12-x \cos 45^{\circ}}$	B1	w expressed as a vector
	$\mathbf{w}=\binom{12 \cos 30^{\circ}}{-12 \sin 30^{\circ}+y}$	B1	Second expression of \mathbf{w} as a vector
	$12 \cos 30^{\circ}=x \cos 45^{\circ}$	M1	Horizontal components equal
	$x \cos 45^{\circ}=6 \sqrt{3}$	A1	Or $x=6 \sqrt{6}$
	$\|\mathbf{w}\|^{2}=3 \times 36+(12-6 \sqrt{3})^{2}$	M1	Use of Pythagoras
	$\|\mathbf{w}\|=10.5\left(\mathrm{~km} \mathrm{~h}^{-1}\right)$	A1	
	$\tan \theta=\frac{6 \sqrt{3}}{12-6 \sqrt{3}}$	M1	Correct method for direction of \mathbf{w}
	$\theta=81.2^{\circ}$	A1	
	Direction 261°	A1	
		(9)	
		[9]	

Q	Scheme	Marks	Notes
7a	Relative to the fixed point A, PE of mass at $\mathrm{C}=-3 m g \times 4 a \cos \theta$	B1	
	PE of rods $=-2 m g \times a \cos \theta-2 m g \times 3 a \cos \theta$	B1	
	Extension in the spring $=4 a \cos \theta-2 a$	B1	
	$\frac{7 m g(4 a \cos \theta-2 a)^{2}}{4 a}-20 m g a \cos \theta$	M1	Total PE
	$\begin{aligned} & \hline=7 m g a\left(4 \cos ^{2} \theta-4 \cos \theta+1\right) \\ &-20 m g a \cos \theta \end{aligned}$		
	$\begin{aligned} =28 m g a \cos ^{2} \theta & -48 m g a \cos \theta \\ & + \text { constant } \end{aligned}$	A1	*given answer*
		(5)	
7b	$\frac{\mathrm{d} V}{\mathrm{~d} \theta}=$	M1	Differentiate
	$=-56 m g a \cos \theta \sin \theta+48 m g a \sin \theta$	A1	
	$8 \sin \theta(-7 \cos \theta+6)=0$	M1	$\frac{\mathrm{d} V}{\mathrm{~d} \theta}=0$ and solve for θ
	$\Rightarrow \theta=\cos ^{-1} \frac{6}{7}\left(31^{\circ}, 0.54 \mathrm{r}\right)$	A1	
		(4)	
7c		M1	Differentiate to obtain second derivative
	$\begin{gathered} \frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=-56 m g a\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\ +48 m g a \cos \theta \end{gathered}$	A1	
	$=-56 m g a\left(2 \times \frac{36}{49}-1\right)+48 m g a \times \frac{6}{7}$	DM1	Find value of second derivative when $\theta=\cos ^{-1} \frac{6}{7}$ Dependent on preceding M1
	$=\frac{728}{49} m g a>0, \quad \text { stable }$	A1	(14.8...mga)
		(4)	
		[13]	

