

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCSE In Mathematics B (2MB01) Higher (Non-Calculator) Unit 2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2016 Publications Code 5MB2H_01_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

NOTES ON MARKING PRINCIPLES

- 1 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- 2 Mark schemes should be applied positively.
- 3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Note that in some cases a correct answer alone will not score marks unless supported by working; these situations are made clear in the mark scheme. Examiners should be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- 4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- **5** Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- **6** Mark schemes will award marks for the quality of written communication (QWC). The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labelling conventions.
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate.
 The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

7 With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.

If there is no answer on the answer line then check the working for an obvious answer.

Partial answers shown (usually indicated in the ms by brackets) can be awarded the method mark associated with it (implied).

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks; transcription errors may also gain some credit. Send any such responses to review for the Team Leader to consider.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

10 Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).

Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.

If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

11 Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

12 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

13 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5 - 4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

14 The detailed notes in the mark scheme, and in practice/training material for examiners, should be taken as precedents over the above notes.

Guidance on the use of codes within this mark scheme
M1 – method mark for appropriate method in the context of the question A1 – accuracy mark B1 – Working mark C1 – communication mark QWC – quality of written communication oe – or equivalent cao – correct answer only ft – follow through sc – special case dep – dependent (on a previous mark or conclusion) indep – independent isw – ignore subsequent working

PAP	ER: 5N	IB2H/01			
Ques	Question Working Answer Mark		Mark		
1			132	3	M1 for 0.15×520 (=78) or 0.15×360 (=54) or for $520 + 360$ (=880) M1 (dep) for "78" + "54" or for $0.15 \times$ "880" A1 cao
2			3	2	M1 for substitution eg $2^3 - 5$ or $8 - 5$ A1 cao
3	(a)		15	2	M1 for $\frac{10}{8}$ (= 1.2) A1 cao
	(b)		$3\frac{3}{4}$ and 4.4	3	B1 for 1 kg = 2.2 lbs M1 for $2\frac{1}{2} \times 1.5$ (= $3\frac{3}{4}$) oe, eg $2\frac{1}{2} \times \frac{12}{8}$ or $2\frac{1}{2} + 1\frac{1}{4}$ A1 for $3\frac{3}{4}$ and 4.4 oe (lbs.) OR B1 for 1 kg = 2.2 lbs M1 for "2.2" × 2 ÷ 2.5 × 8 oe A1 for 14(.08)

PAPE	R: 5MB2	2H/01			
Questi	ion W	Vorking	Answer	Mark	
4	or	ſ	Yes (supported)	4	M1 for attempt to divide corresponding sides eg $500 \div 50 (=10)$ or $250 \div 50 (=5)$ or $200 \div 50 (=4)$ M1 (dep) multiplying divisors eg "10" × "5" × "4" (=200) [consistent units] M1 for use of 3 containers eg "200" × 3 (=600) or use of 500 boxes eg $500 \div$ "200" (=2.5) C1 for yes and 600 (boxes) or 2.5 (containers) oe OR M1 for attempt to find the volume eg $500 \times 250 \times 200$ (=25 000 000) or $50 \times 50 \times 50$ (=125 000) M1 (dep) for dividing volumes [consistent units] eg "25 000 000" ÷ "125 000" (=200) or "125 000" × 500 (=62 500 000) M1 for use of 3 containers eg "25 000 000" × 3 (=75 000 000) or "200" × 3 (=600) or use of 500 boxes eg for "125 000" × 500 (= 62 500 000) and "25 000 000" × 3 (= 75 000 000) or $500 \div$ "200" (=2.5) C1 for yes and 600 (boxes) or 2.5 (containers) or 62 500 000 and 75 000 000 oe
5			<i>A</i> = 13 <i>x</i> + 8	3	M1 for $5(2x + 1)$ or $3(x + 1)$ or $5 \times 2x + 1 + 3 \times x + 1$ M1 for $5(2x + 1) + 3(x + 1)$ or $13x + 8$ oe A1 for $A = 13x + 8$ oe OR M1 for $8(x + 1)$ or $5x$ or $8 \times x + 1 + 5x$ M1 for $8(x + 1) + 5x$ or $13x + 8$ oe A1 for $A = 13x + 8$ oe OR M1 for $8(2x + 1)$ or $3x$ or $8 \times 2x + 1 - 3x$ M1 for $8(2x + 1) - 3x$ or $13x + 8$ oe A1 for $A = 13x + 8$ oe

PAPI	E R: 5 M	IB2H/01			
Ques	tion	Working	Answer	Mark	
6		Table of values x=-2 -1 0 1 2 3 y=-8 -5 -2 1 4 7 OR Using $y = mx + c$, gradient = 3, y intercept = -2	Line	3	 B3 for correct line between x = -2 and x = 3 OR B2 for a correct straight line segment through at least 3 of (-2,-8), (-1, -5), (0, -2), (1, 1), (2, 4), (3, 7) or for all of these plotted but not joined or for a line drawn with a positive gradient through (0, -2) and clear intention to use a gradient of 3 OR B1 for at least 2 correct points stated or plotted or for a line drawn with a positive gradient through (0, -2) or a line drawn with a positive gradient through (0, -2)
7		24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264, 288 36, 72, 108, 144, 180, 216, 252, 288	12 boxes of book marks 8 packs of dust covers	4	M1 attempts multiples of either 24 or 36 (at least 3 but condone errors if intention is clear) M1 attempts multiples of both 24 and 36 (at least 3 but condone errors if intention is clear) M1 (dep on M2) for a division of 250 or 288 by 24 or 36, or counts up "multiples" (implied if answers reversed) A1 for 12 boxes of book marks, 8 packs of dust covers (accept 15b, 10p), (18b, 12p), etc. SC B1 for 11b, 7p
8			88	4	M1 for $(APT =)$ 180 – (32 + 90) (=58) M1 for $(PTR =)$ "58" M1 for 360 – ("58" + 124 + 90) A1 cao OR (line XY drawn through Q parallel to AB) M1 for $(QRD =)$ 180 – 124 (=56) M1 for $(XQR =)$ "56" M1 for $(PQX =)$ 32 A1 cao

PAP	ER: 5M	IB2H/01			
Ques	tion	Working	Answer	Mark	
9			142	3	M1 for 3×7 (=21) or 3×5 (=15) or 5×7 (=35) M1 (dep on M1) for $2 \times (21' + 5' + 35')$ A1 cao
10	(a)		a^7	1	B1 cao
	(b)		b^{14}	1	B1 cao
	(c)		1	1	B1 cao
	(d)		$\frac{1}{4}$	1	B1 for $\frac{1}{4}$ oe
11	(a)		5.9×10^{-4}	1	B1 cao
	(b)		380 000	1	B1 cao
12	(a)	(2a+b)(x-y)		2	M1 for $2a(x - y)$ or $b(x - y)$ or $x(2a + b)$ or $y(2a + b)$ A1 for $(2a + b)(x - y)$ oe
	(b)		$2n^2 - 2n + 13$	3	B1 for $n^2 + 4n + 4$ or $n^2 - 6n + 9$ (need not be simplified) M1 (dep on B1) for ' $n^2 + 4n + 4$ ' + ' $n^2 - 6n + 9$ ' A1 cao
13			$11\frac{2}{3}$	3	M1 for writing as improper fractions eg $\frac{25}{3}$ or $\frac{7}{5}$ M1 (dep) for multiplying improper fractions eg $\frac{25 \times 7}{3 \times 5}$ (= $\frac{175}{15}$) or $\frac{5 \times 7}{3 \times 1}$ (= $\frac{35}{3}$) A1 cao

PAPER: 5	MB2H/01			
Question	Working	Answer	Mark	
Question 14	Working	Answer $\frac{2x+y}{2}$ (with reasons)	Mark 5	M1 for $(POS =) 360 - (90 + 90 + 2x)$ $(= 180 - 2x)$ ie using angles around <i>O</i> or $(QOR =) 360 - (90 + 90 + y)$ $(= 180 - y)$ M1 (dep) for $(POQ =) \frac{1}{2} [360 - ("POS" + "QOR")]$ A1 for $(POQ =) x + \frac{y}{2}$ oe C1 (dep M1 and supported) for circle theorem angle between <u>tangent</u> and <u>radius</u> is <u>90</u> C1 for full reasons and supported eg sum of <u>angles</u> in a <u>quadrilateral</u> is <u>360</u> and sum of <u>angles</u>
				at a point is <u>360</u> OR M1 for (<i>POA</i> =) 180 - 90 - x (= 90 - x) ie after having drawn line <i>AOC</i> or (<i>QOC</i> =) 180 - 90 - $\frac{y}{2}$ (= 90 - $\frac{y}{2}$) M1 (dep and supported) for (<i>POQ</i> =) 180 - " <i>POA</i> " - " <i>QOC</i> " A1 for (<i>POQ</i> =) $x + \frac{y}{2}$ oe C1 (dep M1 and supported) for circle theorem for angle between tangent and radius is <u>90</u> C1 for full reasons and supported eg sum of <u>angles</u> in a triangle is <u>180</u> and sum of <u>angles</u> on straight line is <u>180</u> OR M1 for (<i>ABC</i> or <i>ADC</i> =) $\frac{1}{2}$ (360 - 2x - y) ie using similar triangles M1 (dep)for (<i>POQ</i> =) 360 - 90 - 90 - " <i>ABC</i> " A1 for (<i>POQ</i> =) $x + \frac{y}{2}$ oe C1 (dep M1 and supported) for circle theorem for angle between tangent and radius is <u>90</u> C1 for full reasons and supported eg sum of <u>angles</u> in a <u>quadrilateral</u> is <u>360</u> and eg $\triangle ABC$ similar to $\triangle ADC$

PAPI	E R: 5 M	IB2H/01				
Ques	tion	Working Answer		Mark		
15			$y = -\frac{1}{2}x + \frac{17}{2}$	4	M1 for M = $\left(\frac{2+4}{2}, \frac{5+9}{2}\right)$ (= 3,7) M1 for gradient = $-\frac{1}{m}$ or $-\frac{1}{2}$ oe M1 (dep on 1 st M1) for substitution of $x = "3"$, $y = "7"$ into their equation A1 for $y = -\frac{1}{2}x + \frac{17}{2}$ oe	
16		$\frac{\sqrt{3}}{5} + \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ $= \frac{3\sqrt{3}}{15} + \frac{10\sqrt{3}}{15};$ $\frac{\sqrt{3}\sqrt{3} + 10}{3\sqrt{3}} = \frac{13\sqrt{3}}{5\sqrt{3}\sqrt{3}}$	$\frac{13}{15}$	3	M1 for rationalising a denominator M1 for finding same denominator (dep M1 or with $\sqrt{3}$) A1 oe Accept $\frac{13}{15}\sqrt{3}$	
17			$\frac{2x-1}{x-3}$	3	M1 for $(2x - 1)(x + 3)$ M1 for $(x - 3)(x + 3)$ A1 cao	

Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below: Angles: $\pm 5^{\circ}$ Measurements of length: ± 5 mm

PAPER: 5MB2	PAPER: 5MB2H_01					
Question	Modification	Notes				
Q4	Model provided for all candidates. Diagram enlarged and provided for MLP.	M1 for attempt to divide corresponding sides eg $500 \div 50$ (=10) or $250 \div 50$ (=5) or $200 \div 50$ (=4) M1 (dep) multiplying divisors eg "10" × "5" × "4" (=200) [consistent units] M1 for use of 3 containers eg "200" × 3 (=600) or use of 500 boxes eg $500 \div "200"$ (=2.5) C1 for yes and 600 (boxes) or 2.5 (containers) oe OR M1 for attempt to find the volume eg $500 \times 250 \times 200$ (=25 000 000) or $50 \times 50 \times 50$ (=125 000) M1 (dep) for dividing volumes [consistent units] eg "25 000 000" ÷ "125 000" (=200) or "125 000" × 500 (=62 500 000) M1 for use of 3 containers eg "25 000 000" × 3 (=75 000 000) or "200" × 3 (=600) or use of 500 boxes eg for "125 000" × 500 (= 62 500 000) and "25 000 000" × 3 (= 75 000 000) or 500 ÷ "200" (=2.5) C1 for yes and 600 (boxes) or 2.5 (containers) or 62 500 000 and 75 000 000 oe				

PAPER: 5MB	PAPER: 5MB2H_01					
Question	Modification	Notes				
Q5	Diagram enlarged. MLP only – <i>x</i> changed to <i>y</i> .	M1 for $5(2x + 1)$ or $3(x + 1)$ or $5 \times 2x + 1 + 3 \times x + 1$ M1 for $5(2x + 1) + 3(x + 1)$ or $13x + 8$ oe A1 for $A = 13x + 8$ oe OR M1 for $8(x + 1)$ or $5x$ or $8 \times x + 1 + 5x$ M1 for $8(x + 1) + 5x$ or $13x + 8$ oe A1 for $A = 13x + 8$ oe OR M1 for $8(2x + 1)$ or $3x$ or $8 \times 2x + 1 - 3x$ M1 for $8(2x + 1) - 3x$ or $13x + 8$ oe A1 for $A = 13x + 8$ oe				
Q6	Grid enlarged.	B3 for correct line between $x = -2$ and $x = 3$ OR B2 for a correct straight line segment through at least 3 of (-2,-8), (-1, -5), (0, -2), (1, 1), (2, 4), (3, 7) or for all of these plotted but not joined or for a line drawn with a positive gradient through $(0, -2)$ and clear intention to use a gradient of 3 OR B1 for at least 2 correct points stated or plotted or for a line drawn with a positive gradient through $(0, -2)$ or a line with gradient 3				

PAPER	PAPER: 5MB2H_01						
Question		Modification	Notes				
Q8		Diagram enlarged. Wording added 'Angle TPQ is a right angle. Angle PQR is marked x.'	M1 for $(APT =) 180 - (32 + 90) (=58)$ M1 for $(PTR =) "58"$ M1 for $360 - ("58" + 124 + 90)$ A1 cao OR (line XY drawn through Q parallel to AB) M1 for $(QRD =) 180 - 124 (=56)$ M1 for $(XQR =) "56"$ M1 for $(PQX =) 32$ A1 cao				
Q9		Model provided for all candidates. Diagram enlarged and provided for MLP.	M1 for 3×7 (=21) or 3×5 (=15) or 5×7 (=35) M1 (dep on M1) for $2 \times ('21' + '15' + '35')$ A1 cao				
Q10	(a)	MLP only $-a$ changed to y. Braille only $-a$ changed to m.	B1 cao				
	(b)	Braille only $-b$ changed to q .	B1 cao				
Q12	(a)	Braille only $-a$ changed to p , b changed to q 2ax - 2ay + bx - by changed to $2px - 2py + qx - qy$	M1 for $2a(x - y)$ or $b(x - y)$ or $x(2a + b)$ or $y(2a + b)$ A1 for $(2a + b)(x - y)$ oe				

PAPER: 5M	IB2H_01	
Question	Modification	Notes
Q14	Diagram enlarged. Dot added to centre.	M1 for $(POS =) 360 - (90 + 90 + 2x)$ (= 180 - 2x) ie using angles around <i>O</i> or $(QOR =) 360 - (90 + 90 + y)$ (= 180 - y) M1 (dep) for $(POQ =) \frac{1}{2} [360 - ("POS" + "QOR")]$ A1 for $(POQ =) x + \frac{y}{2}$ oe C1 (dep M1 and supported) for circle theorem angle between <u>tangent</u> and <u>radius</u> is 90 C1 for full reasons and supported eg sum of <u>angles</u> in a <u>quadrilateral</u> is <u>360</u> and sum of <u>angles</u> at a <u>point</u> is <u>360</u> OR M1 for $(POA=) 180 - 90 - x$ (= 90 - x) ie after having drawn line <i>AOC</i> or $(QOC=) 180 - 90 - \frac{y}{2}$ (= $90 - \frac{y}{2}$) M1 (dep and supported) for $(POQ =) 180 - "POA" - "QOC"$ A1 for $(POQ =) x + \frac{y}{2}$ oe C1 (dep M1 and supported) for circle theorem for angle between <u>tangent</u> and <u>radius</u> is <u>90</u> C1 for full reasons and supported eg sum of <u>angles</u> in a <u>triangle</u> is <u>180</u> and sum of <u>angles</u> on straight <u>line</u> is <u>180</u> OR M1 for $(ABC \text{ or } ADC =) \frac{1}{2} (360 - 2x - y)$ ie using similar triangles M1 (dep)for $(POQ =) 360 - 90 - 90 - "ABC"$ A1 for $(POQ =) x + \frac{y}{2}$ oe C1 (dep M1 and supported) for circle theorem for angle between <u>tangent</u> and <u>radius</u> is <u>90</u> C1 for full reasons and supported eg sum of <u>angles</u> in a <u>triangle</u> is <u>180</u> and sum of <u>angles</u> on straight <u>line</u> is <u>180</u> OR M1 for $(ABC \text{ or } ADC =) \frac{1}{2} (360 - 2x - y)$ ie using similar triangles M1 (dep)for $(POQ =) 360 - 90 - 90 - "ABC"$ A1 for $(POQ =) x + \frac{y}{2}$ oe C1 (dep M1 and supported) for circle theorem for angle between <u>tangent</u> and <u>radius</u> is <u>90</u> C1 for full reasons and supported eg sum of <u>angles</u> in a <u>quadrilateral</u> is <u>360</u> and eg ΔABC similar to ΔADC

PAPER	PAPER: 5MB2H_01						
Ques	tion	Modification	Notes				
Q15		Diagram enlarged. Crosses changed to filled in circles.	M1 for M = $\left(\frac{2+4}{2}, \frac{5+9}{2}\right)$ (= 3,7) M1 for gradient = $-\frac{1}{m}$ or $-\frac{1}{2}$ oe M1 (dep on 1 st M1) for substitution of x = "3", y = "7" into their equation A1 for $y = -\frac{1}{2}x + \frac{17}{2}$ oe				
Q16		MLP only $-a$ changed to p . Braille only $-a$ changed to m .	M1 for rationalising a denominator M1 for finding same denominator (dep M1 or with $\sqrt{3}$) A1 oe Accept $\frac{13}{15}\sqrt{3}$				

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL