GCSE MARKING SCHEME

SUMMER 2018

GCSE
MATHEMATICS - COMPONENT 2 (HIGHER TIER) C300UB0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

\begin{tabular}{|c|c|c|}
\hline Eduqas Summer 2018 C2 Higher Tier Update 130618 \& Mark \& Comment \\
\hline \begin{tabular}{l}
1*(a) Indicates or implies 'No' or 'Don't know' with a reason, e.g. \\
'No, not all scores are equally likely', 'Don't know, as not enough throws to tell', \\
'No as it shows fewer 2 s and 5 s ', "No, high numbers of 1 and 6", 'No, appears to be biased towards 1 and 6'
\end{tabular} \& E1 \& \begin{tabular}{l}
Accept, e.g. \\
'No, should have equal amounts for each number', \\
Allow, e.g. \\
'Don't know, dice are random so there could be variety in results', 'No, if fair all would be \(1 / 6\) '
\end{tabular} \\
\hline \[
1^{*}(\mathrm{~b}) \frac{11}{120}
\] \& B2 \& \[
\text { B1 for } 11 / \ldots \text { or } \frac{4+5+2}{40+40+40}
\] \\
\hline \begin{tabular}{l}
\[
1^{*}(\mathrm{c}) \frac{37}{120}(\times 480)
\] \\
148
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
(5)
\end{tabular} \& \begin{tabular}{l}
Accept \(\left.\frac{\text { 'their } 4+5+4+8+8+8 \prime}{\text { 'their } 40+40+40 '} \times 480\right)\) \\
CAO \\
A final answer of \(148 / 480\) is \(\mathrm{M} 1, \mathrm{~A} 0\)
\end{tabular} \\
\hline \(2^{*}(\mathrm{a}) \quad(\mathrm{a}-2)(\mathrm{a}+7)\) \& B2 \& B1 for (a ... 2)(a ... 7) \\
\hline \(2^{*}(\mathrm{~b}) \quad(\mathrm{b}+5)(\mathrm{b}-5)\) \& B1 \& CAO \\
\hline \[
\begin{array}{rlrl}
2^{*}(c) \& d / 5=12-2 \& \text { or } \& d / 5=10 \text { or } \\
d+2 \times 5=12 \times 5 \& \text { or } \& d+10 \& =60 \\
\& d \& =50
\end{array}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
(5)
\end{tabular} \& \begin{tabular}{l}
CAO. Accept embedded answers \\
Mark final answer \\
If no marks award SC1 for an answer of d \(=70\) from \(d / 5=12+2\)
\end{tabular} \\
\hline 3. \(7.7 \times 10^{7}\) AND \(2.2 \times 10^{8}\) \& B3

(3) \& | B2 for sight of either 7.7×10^{7} OR 2.2×10^{8}, or for sight of 77000000 AND 220000 000, or for sight of $7.704(4) \times 10^{7} \underline{\mathrm{~A} N D} 2.21(408) \times 10^{8}$ |
| :--- |
| B1 for sight of $\begin{aligned} & 0.515 \times 1.496 \times 10^{8}\left(=7.7044 \times 10^{7}\right), O R \\ & 1.48 \times 1.496 \times 10^{8} \quad\left(=2.21408 \times 10^{8}\right) \end{aligned}$ |

\hline | 4(a) Nickel ($1 / 6 \times 12=$) 2(\%) |
| :--- |
| Copper (100-12-1/612 =) 86(\%) |
| $43: 6: 1$ | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B2 }
\end{aligned}
$$

\] \& | Accept sight of 0.02 or $2 / 100$ |
| :--- |
| FT 'their $1 / 812$ ' |
| Accept sight of 0.86 or $86 / 100$ or equivalent |
| B1 for 86 : 12 : 2 or equivalent, or |
| B1 for 1:6:43 or in other incorrect order |
| FT 'their $1 / 612$ ' for B1 only unless equivalent stage(s) of simplification possible |

\hline | $\begin{gathered} 4^{*}(\mathrm{~b})(65+14+9) \times 27 \div 9(=88 \times 3) \\ 264(\mathrm{~kg}) \end{gathered}$ |
| :--- |
| Conclusion that it is not possible as $264>250$, e.g. 'No as 264 kg is greater than $1 / 4$ tonne' | \& | M1 |
| :--- |
| A1 |
| E1 |
| (7) | \& FT provided M1 awarded for an appropriate conclusion Do not accept $1 / 4$ tonne as any amount other than correctly giving 250 kg , however it is not essential to state this conversion

\hline
\end{tabular}

$5^{*}(\mathrm{a})$ Midpoints $10,30,50,70,90$ $1 \times 10+8 \times 30+9 \times 50+7 \times 70+6 \times 90$	B1	

8(a) (Volume of the carton) $6 \times 6 \times 20$ $720\left(\mathrm{~cm}^{3}\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow if a drop extra is included, up to a maximum of $10 \mathrm{~cm}^{3}$
(Volume in the bottle) $\pi \times 3.5^{2} \times 18.5$ 711.6 to $712.1\left(\mathrm{~cm}^{3}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
Conclusion stating or implying 'No', with a reason, e.g. 'No as $720>712$ ' OR	E1	FT for 'their volume of the carton' and 'their height in the milk bottle' provided at least M1, M1 previously awarded
'Yes', with a reason, e.g. 'Yes, as the milk will fill up past the height of 18.5 cm (beyond the cylindrical part of the bottle)'		Accept reasoning based on uncertainty
8(b)(i) Assumption stated, e.g. 'the bottle is in the shape of a cylinder (with height 18.5 cm), 'the measurements given are the internal measurements', 'no milk in the top of the carton', 'no milk in the neck of the bottle', 'assumed filled to the top'	E1	Do not accept 'measurements given were not accurate' Accept 'measurements were internal measurements'
8(b)(ii) Impact, e.g. 'all the milk may not fit into the bottle', 'the milk might overflow in the bottle', 'the milk might fill the neck of the bottle’	E1 (7)	Allow 'milk may or may not fit' provided this could reasonably be an impact following 'their assumption'
9*. $12 \times 10.48 \div 19.32(=6.509 \ldots \mathrm{~g})$ $12-6.5(\ldots)$ $5.49(06 \ldots \mathrm{~g}) \text { or } 5.5(\mathrm{~g})$	M2 M1 A1 (4)	M1 for $12 \div 19.32$ ($=0.6211 \ldots$. Accept 6.5(...)-12 FT 'their $12 \times 10.48 \div 19.32$ ' provided <12 CAO, allowing also a negative difference

\begin{tabular}{|c|c|c|}
\hline 10.
\[
\begin{aligned}
\& x \times 1 / 4+(x+2) \times 1 / 2+(x-4) \times 1 / 4 \text { or } \\
\& x \times 0.25+(x+2) \times 0.5+(x-4) \times 0.25
\end{aligned}
\] \& M2 \& M1 for any 2 terms correct (sum need not be shown), or for \(x \times 15+(x+2) \times 30+(x-4) \times 15\) or for intention of the correct sum but missing brackets \\
\hline (=) \(x / 4+x / 2+1+x / 4-1\) or equivalent using decimals \& m1 \& FT from M1 previously awarded for 'their correct expansion' \\
\hline (\(=\)) \(\times(\mathrm{km}\)) \& A1 \& From convincing working \\
\hline \& (4) \& \\
\hline \begin{tabular}{l}
11(a) Explanation, e.g. \\
\(' 1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}\) ', 'as this is area not length', ' \(1 \mathrm{~m}^{2}\) is 100 cm by 100 cm '
\end{tabular} \& E1 \& Accept a diagram showing 1 m by 1 m is 100 cm by 100 cm \\
\hline 11(b)(i) \(6.5 \times\) 'a value between 1.2 m and 1.4 m inclusive' \& M1 \& Place value may not be correct \\
\hline \[
\begin{aligned}
\& 65000 \times 120 \text { or } 6.5 \times 1.2 \text { to } \\
\& 65000 \times 140 \text { or } 6.5 \times 1.4
\end{aligned}
\] \& M1 \& Place value must be consistent, although may include conversion to litres, \(\div 1000\) or \(\times 1000\) respectively
\[
\begin{aligned}
\& (65000 \times 130=8450000 \text { or } 6.5 \times 1.3=8.45) \\
\& \text { FT 'their }(120+120+130+140+140) \div 5 \text {) }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Answer in the range \\
\(7800000 \mathrm{~cm}^{3}\) to \(9100000 \mathrm{~cm}^{3}\), or \\
\(7.8 \mathrm{~m}^{3}\) to \(9.1 \mathrm{~m}^{3}\), or \\
7800 litres to 9100 litres
\end{tabular} \& A1 \& Accept embedded within further calculation Any units given must be correct FT correct evaluation using 'their
\[
(120+120+130+140+140) \div 5
\] \\
\hline ```
(7800 litres to 9100 litres)\div1800 }\times0.5\mathrm{ ,
or
(7800 litres to 9100 litres) }\div3600\mathrm{ ,
or equivalent
``` \& m1 \& \begin{tabular}{l}
Place value may not be correct \\
FT 'their volume' provided at least M1 previously awarded \\
Accept rounded or truncated from correct working
\end{tabular} \\
\hline Answer in the range 2.16 (litres) to 2.53 (litres) \& A1 \& CAO \\
\hline \begin{tabular}{l}
11(b)(ii) Explanation of decision, e.g. 'I only used one of the depths', 'I used an average depth but this may not be accurate', 'I used an average depth but there were only 5 readings', 'I used the median depth of just a few readings' \\
AND \\
Improvement of method, e.g. 'take more depth readings', 'I could have used the average depth', 'I could have looked at the shallowest and deepest readings', 'get more information', 'consider the shape of the pond'
\end{tabular} \& E2

(8) \& | This explanation must follow from the method they used. |
| :--- |
| E1 for either the decision or the improvement of the method |
| Allow 'I used one of the depths', 'I used the median', 'I used an average depth', 'I used the mean depth' | <br>

\hline
\end{tabular}

| 12. For sight of 0.85 and 0.78 or $85 \%$ and $78 \%$ or equivalent $(42.50 \div 0.85) \div 0.78$ or equivalent <br> (£) 64.10 | B1 <br> M2 <br> A1 <br> (4) | May be embedded <br> M1 for sight of $42.50 \div 0.85$ or 'an amount $>42.50$ $\div 0.78$ or equivalent, or for $(42.50 \div 85) \div 78$ or other consistent place value error, or for sight of (pre final reduction price of) ( $£$ ) 50 <br> CAO. Must be to the nearest penny |
| :---: | :---: | :---: |
| 13. Sight of $715(\mathrm{~g})$ and $305(\mathrm{~g})$ $715+4 \times 305$ $1935 \text { (g) }$ | B1 M1 <br> A1 <br> (3) | FT 'their 715 ' and 'their 305 ' in working provided $<720$ and <310 respectively <br> CAO, not FT |
| $14(\mathrm{a}){ }^{2} £(\mathrm{~s}) / \text { person }$ | $\begin{aligned} & \text { B1 } \\ & \text { U1 } \end{aligned}$ | Accept answers in the range 1.9 to 2.1 Allow $£(\mathrm{~s})$ per person or pounds per person Do not accept $£ /$ people (singular is needed for people), or charge per person |
| 14(b)(i) Correct graph with points connected, for 0 people $£ 60$ to 200 people $£ 660$ | B2 | B1 for 0 people costing $£ 60$ shown OR B1 for a straight line with a gradient of 3 |
| 14(b)(ii) $\mathrm{t}=3(\mathrm{x}) \mathrm{p}+60$ | B1 | CAO, not FT |
| 14(c) <br> 20 (people) <br> (£) 120 | B1 B1 <br> (7) | Allow tolerance of $1 / 2$ small square FT from 'their line' FT from 'their line' |
| $\begin{array}{r} 15(\mathrm{a}) 500 \times 1.021^{18} \\ (=£) 726.83 \end{array}$ | $\begin{aligned} & \text { M2 } \\ & \hline \text { A1 } \end{aligned}$ | M1 for sight of $500 \times 1.021$ or equivalent CAO |
| 15(b) (£) $\times \times(1+y / 100)^{6}$ or equivalent | B2 <br> (5) | ISW <br> B1 for sight of $x \times(1+\ldots)^{6}$ or $(1+y / 100)^{6}$ or $x(y / 100)^{6}$ <br> B0 for $x \times 1 . y^{6}$ |
| 16. 14625 | B2 <br> (2) | B1 for sight of $\mathrm{C}=\frac{2340}{(52 / \mathrm{A})^{2}} \text { or } \mathrm{C}=\frac{2340}{(52 / 130)^{2}} \text { or } \mathrm{C}=\frac{2340}{0.4^{2}} \text { or } \mathrm{B}=0.16$ |

\begin{tabular}{|c|c|c|}
\hline 17. \(\mathrm{n}^{2}+\mathrm{n}+1\) \& \begin{tabular}{l}
B2 \\
(2)
\end{tabular} \& \begin{tabular}{l}
CAO \\
B1 for sight of \(n^{2} \pm \ldots\), not for \(n^{2}\) alone OR B1 for \(\mathrm{an}^{2} \pm \ldots\) where \(\mathrm{a} \neq 1\)
\end{tabular} \\
\hline 18(a) Either starting \(x=13-9 / x\) or starting with \(x^{2}-13 x+9=0\), showing the 2 stages of rearrangement \& B1 \& 2 stages required either multiplication by x and \(\mathrm{=}=\) 0 ', or division by x and isolating the original ' \(\mathrm{x}^{2 \text {, }}\) term \\
\hline \begin{tabular}{l}
18(b) Sight of \(\mathrm{x}_{2}=12.25\) \\
Sight of \(x_{4}=12.26(62229 \ldots)\) and
\[
x_{5}=12.26(62778 \ldots)
\] \\
Solution to 2 d.p. is 12.27 from sight of \(x_{4}=12.26(62229 \ldots)\) and
\[
x_{5}=12.26(62778 \ldots)
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
m1 \\
A1 \\
(4)
\end{tabular} \& \begin{tabular}{l}
Allow for sight of \(x_{3}=12.26(5 \ldots)\) and
\[
x_{4}=12.26(6 \ldots)
\] \\
Ignore any further calculations
\end{tabular} \\
\hline 19. \((1 \div 0.8)^{3} \times 66\) or equivalent 128.9(0625 litres) or 129 (litres) \& \begin{tabular}{l}
M1 \\
A1 \\
(2)
\end{tabular} \& \\
\hline \begin{tabular}{l}
20(a) \(2 x(3 x-4)+5 x(=47)\) or \\
\(2 x(3 x+1)-5 x(=47)\) or equivalent
\[
\begin{aligned}
6 x^{2}-8 x+5 x= \& 47 \text { or } \\
\& 6 x^{2}+2 x-5 x=47
\end{aligned}
\]
\[
6 x^{2}-3 x-47=0
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Allow intention \\
Must be from convincing working shown \\
Must be from convincing working shown
\end{tabular} \\
\hline \[
\begin{aligned}
\& 20(\mathrm{~b})(\mathrm{x}=\frac{3 \pm \sqrt{ }\left((-3)^{2}-4 \times 6 \times-47\right)}{2 \times 6} \\
\&=\frac{3 \pm \sqrt{ } 1137}{12} \\
\& 3.06 \text { and }-2.56
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Allow 1 slip in substitution, but must be correct formula \\
Both solutions given to 2dp
\end{tabular} \\
\hline \[
\text { 20(c) } 32.6 \text { (cm) }
\] \& B2 \& \begin{tabular}{l}
FT use of 'their positive value' for B1 only provided previous M1 in (b) awarded \\
B1 for sight of \(10 x+2\) or equivalent, OR
\[
10 \times 3.06+2
\]
\end{tabular} \\
\hline \begin{tabular}{l}
Decision, e.g. 'that the negative solution in (b) was not valid', 'only used the position solution' \\
AND \\
Reason, e.g. 'as lengths can only be positive'
\end{tabular} \& E1

(9) \& Accept if the decision and/or reason is written in (b) <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
21. \((x+6)^{2} \pm \ldots\)
\[
\ldots \ldots \ldots+21
\] \\
Stationary point (-6, 21)
\end{tabular} \& B1
B1

B2

(4) \& | Sight of $(x+6)^{2}$ or $\left(x+{ }^{12} / 2\right)^{2}$ Ignore sight of ' $=0$ ' Accept 57-36 if not evaluated, otherwise mark final value. Do not accept ' $=-21$ ' or ' $=21^{\prime}$ $(x+6)^{2}+21, B 1, B 1$ ISW . |
| :--- |
| Must follow completing the square |
| FT from 'their $(x+6)^{2}$ ' for the $x$ coordinate FT their value but not 57 or -36 for the $y$ coordinate |
| B1 for ( $\ldots ., 21$ ) or $(-6, \ldots$. | <br>

\hline $$
\begin{array}{r}
22(\mathrm{a}) 20 \times 4+1 / 2 \times 10 \times 10 \\
130 \text { (girls) }
\end{array}
$$ \& M1 \& CAO <br>

\hline $$
\begin{aligned}
& \text { 22(b) } \\
& \text { Total boys: } \\
& 20 \times 2+10 \times 15+10 \times 19+10 \times 10+30 \times 1 \\
& \text { Boys } 510 \\
& >1 \text { hour: Girls } 225 \text { and Boys } 130 \\
& \text { \%: Girls }(100 \times) 225 / 580 \text {, OR } \\
& \text { Boys }(100 \times) 130 / 510
\end{aligned} \begin{aligned}
& \text { In order: } 38.79 \ldots(\%) \\
& \text { and } 25.49 \ldots(\%)
\end{aligned}
$$ \& M1

A1
B2
M1
A1

M1

(8) \& | Allow for sight of any three correct products in a sum of 5 products |
| :--- |
| CAO |
| B1 for one correct total |
| FT provided M1 previously awarded |
| FT provided M1 and at least B1 previously awarded |
| Mark final answer, in answer space if completed. Accept 38.8(\%) or 39(\%) and 25.5(\%) or 25(\%) Do not accept as final answers 38(\%) or 38.7(\%) and $25.4(\%)$ or $26(\%)$, i.e. any rounding must be correct | <br>

\hline
\end{tabular}



