

GCSE MARKING SCHEME

SUMMER 2019

MATHEMATICS – COMPONENT 1 (FOUNDATION TIER) C300U10-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE MATHEMATICS

COMPONENT 1 - FOUNDATION TIER

SUMMER 2019 MARK SCHEME

	Mark	Comment
1. (a)(i) 50	B1	
(a)(ii)	 B1	not for 4 rem 5
(b)(i)		or equivalent fraction
$\frac{31}{100}$	BJ	
(b)(ii) 31(%)	B1	
(c) 4 601 indicated	 B1	
(d) $45 \div 5 \times 4 \text{ or } 45 \times 4 \div 5 \text{ si}$	<u>D1</u>	Implied by 9×4 or $180 \div 5$: may be in stages
26	A 1	
	(7)	
2. (a)(i) B indicated	B1	
(a)(ii) 3 indicated	B1	
(b) sphere indicated	B1	
	(3)	
3. (a)		
12 × 4.5(0)	M1	Must be seen
54	A1	CAO; not from wrong working; sight of 54 does not imply M1 A1
Valid conclusion e.g. 10% of 60 = 6 and 60 – 54 = 6	A1	or equivalent
or $60 - 54 = 6$ and $\frac{6}{60} = \frac{1}{10}$ (=10%)		
$rac{60-6}{54}$		
60 ÷ 12	M1	Must be seen
5	A1	
Valid conclusion e.g. 10% of 5 = 0.5(0) and 5 – 4.5(0) = 0.5(0)	A1	
or $5 - 4.5(0) = 0.5(0)$ and $\frac{0.5}{5} = \frac{1}{10} (=10\%)$		
(b) 630 ÷ 30 si	M1	Allow for $630 \div k$, where $k = 28$, 29 or 31; may be in stages but $600 \div 30$ only is M0
21	A1	CAO; allow for e.g. $30\overline{)630}$
	(5)	

	-	
4.(a)(i) Labels on both axes	B1	horizontal axis labels may be on bars; at least the bars labelled with the country names; allow abbreviations e.g. B, K, J, S
Uniform scale on vertical axis	B1	at least 2 values; must start with 0
All bars of equal width and correct height	B1	heights: 17, 12, 12, 6 mark intent allow inconsistent-width gaps or no gaps
(a)(ii) 2 South Africa	B2	B1 for each; allow abbreviations for South Africa if clear
(b) (70 – 18) ÷ 2 26	M1 A1	May be in stages If no marks then SC1 for two improving trials on x + x + 18 = 70 oe
- / >	(7)	
5.(a) 30 40 27 45	B1	
(b) <u>5</u> 16 ISW	B2	B1 for a numerator of 5 or for a denominator of 16 in final answer or for $\frac{6}{16}$ oe or for $\frac{12}{16}$ oe seen
	(3)	
6. (a)(i) (3, 4)	B1	
(a)(ii) C marked at (–1, 1)	B1	Allow unambiguous mark at (–1, 1)
<i>D</i> marked at (–5, 4) and 8 cm	B2	B1 for <i>D</i> correctly marked or B1STRICT FT for 'their length <i>AD</i> '; ± 2mm Allow unambiguous mark at (–5, 4)
	(4)	
7. (a)(i) 7 <i>a</i> – 4 <i>b</i>	B2	Mark final answer for B2 or B1 B1 for $7a + kb$ or for $ka - 4b$
(a)(ii) $1+4c^2$	B1	Mark final answer
(b)(i) 10.5	B1	
(b)(ii) USA size – 1	B1	allow equivalent in words or e.g. USA – 1
	(5)	

8. (a)						
Appropriate method 28 × 4	d for calculating	M1	Typical Values	per 100 ml	per bottle	
112		A1		00	110	
0.1		B1	Energy	28	112	
			Carbs	6·25	25	
			sugars	4	16	
			Salt	0.1	0.4	
			lf no marks by 4 or divid e.g. 0.4 ÷ 4	then SC ² ding by 4	l for evidence in a correct n	e of multiplying nethod
(b) 1200 1.2		B1 B1				
(c) $\frac{16}{25} = \frac{64}{100}$ or $\frac{4}{6.25}$	$=\frac{64}{100}$ (= 64%)	B1	or shows th $\frac{64}{100} \times 6.25$	at <u>64</u> 100×2 = 4 oe	25=16 or	
		(6)				

9.(a)(i)		
$1 + 3 = 4$ si or $16.8(0) \div 8 (= 2.1(0))$	M1	
$16.8(0) \div 4$ oe or 'their $2.1(0)' \times 2$	M1	NB 16.8(0) ÷ 4 or 16.8(0) ÷ 8 × 2 earns M1M1
(£) 4.2(0)	A1	CAO
(a)(ii)		
Yes indicated with valid	E1	
reason/calculation e.g. (24.20 ± 16.20)		
34.20 + 10.80 - 51 or 34 + 10 - 50 or 37.20 or 39.20 or 39.20		
(50 - 34.20 = 15.80)		
(b)		
(£5 saving =) Tea and Cupcake	B1	May be in working or on answer line provided no contradiction or choice; answer line takes precedence.
Appropriate strategy to find the 2 drinks or 2 cakes e.g. at least 2 relevant trials of drinks/cakes or one relevant trial of drinks/cakes and comparison with 16.5(0) or considering how to make the odd 50p or considering the difference between the cost of cakes and the bill to see what drinks are possible	S1	May be awarded for similar strategies used to find the 3 drinks or 3 cakes using £21.50.
possible		
2 Flat whites and 2 Cake of the day slices indicated	B2	Implies S1; B1 for either 2 Flat whites or 2 Cake of the day slices May be in working or on answer line provided no contradiction no choice; answer line takes
	(8)	
10. (a)(i)	<u> </u>	
2.1 (hours)	B1	
(a)(II) 1.7 (bours)	B1	
(a)(iii)		
4		
$\frac{1}{12}$ oe, ISW	B1	
(b)(i)		
Plot at (0.7, 2.5) circled	B1	
(b)(II) Correct plots at (1.8, 1.0) and	22	B1 for one correct plat: ignoring outro plate
(2.2. 2.4) only		
(b)(iii)		
0.6 (second run) or 0.8 (third run) identified	B1	si
	М1	ET 'their difference' provided one value correct:
$(0.0 - 0.0) \times 00$ 01 40 - 30 01 2 × 0		
(minutes) de		
12 (minutes)	A1	CAO If no marks then SC1 for $(2.5-2.2) \times 60$ leading
		to 18 minutes
	(9)	

11.(a) 0 × 52		
	$\frac{3\times32}{2}$ oe	M1	may be stages
	234 (cm²)	A1	CAO; implies M1
(b)	Correct use of line of symmetry: 2(<i>AB</i> + <i>BC</i>) = 20 oe	M1	si; allow $40 - 10 - 10$ (= 20) or $\frac{40}{2}$ (= 20) or $10 + 10 + + = 40$ or $10 + 10 = 20$
	Correct use of proportion: $(4 \times) \frac{10}{5}$ or $5x = 10$ oe	M1	or 2 improving trials on e.g. <i>AB</i> + <i>BC</i> = 10
	8 (cm)	A1 (5)	CAO; implies M1 M1; may be on diagram
12.	(a) 2500 + 00		
	258° ± 2°	B.1	
(b)	Arc centre A radius $5 \text{ cm} \pm 2 \text{ mm}$	B1	Use overlay
	Arc centre <i>B</i> radius $6 \text{ cm} \pm 2 \text{ mm}$	B1	If no arcs shown, but single point indicated as C, then allow either or both of the first 2 marks if it satisfies one or both criteria; may be below <i>AB</i>
			If two points are drawn, each of which satisfies only one condition, then no marks
	Position of C unambiguously identified	B1	FT 'their 5 cm \pm 2 mm from A' OR 'their 6 cm \pm 2 mm from B' provided at least B1 already awarded; must be above AB
	· · · · · · · · · · · · · · · · · · ·	(4)	
13.	(a) 7 : 10	B2	B1 for any simplified ratio not in simplest form seen e.g. 21 : 30
			If no marks then SC1 for an answer of 10 : 7
(b)	1 + 4 + 3 (= 8) si	M1	Allow for sight of $1:4:3$ oe or x , $4x$, $3x$
	(96 ÷ 8) × 3 oe	M1	FT 'their 1 + 4 + 3' e.g. division by 7 is M0 unless it comes from 1 + 4 + 3 = 7
	(£) 36	A1	CAO
(c)	$(54 +) \frac{54}{10} + \frac{54}{10} \div 2$ oe	M1	e.g. (54 +) 5.4(0) + 2.7(0) or (54 +) 8.1(0)
	(£) 62.1(0)	A1	
		(7)	

14.		Answers may be seen on the diagram
<i>TRS</i> or <i>TSR</i> = 40° (Base angles of an isosceles triangle (are equal))	B1	If values not marked on diagram, angle labels must be correct; allow $S = \dots$ or $R = \dots$
<pre>PTQ = 40° (Corresponding angles (are equal)) or QTR = 40° (Alternate angles (are equal)) and PTQ = 40° (Angles on a straight line (sum to 180))</pre>	B1	FT 'their <i>TRS</i> or <i>TSR</i> '; if values not marked on diagram, angle labels must be correct; do not allow <i>T</i> =
$(x =) 90^{\circ} - 40^{\circ} = 50^{\circ}$ (<i>QTU</i> is a right angle) At least one correct reason stated appropriately	B1 E1	CAO as answer given; must be convinced they are not working back from the given value and full and correct method must be shown
		Alternative method: Draws the line of symmetry, TM, of triangle RTS and MTS = 50° (TM is a line of symmetry or triangles RTM and STM are congruent or equivalent)
		$(x =) 50^{\circ}$ (Vertically) opposite angles B2
	(4)	
 15. (a) Valid explanation e.g. 'He should have divided not subtracted.' or 'The correct answer is 5.' or 'He should have worked out 30 ÷ 6' 	E1	Must not contain incorrect statements
(b) 275 (000) ÷ 5 = 55 (000) and 55 (000) × 3 = 165 (000) or 165(000) ÷ 3 = 55(000) or 165(000) ÷ 55(000) = 3 AND Yes indicated or implied	B2	May be in one calculation e.g. $\frac{165}{275} \times 5 = \frac{165}{55} = 3$ or $\frac{165}{275} \times 5 = \frac{33}{55} \times 5 = 3$ B1 for a partially correct solution e.g. $275(000) \div 5 = 55(000)$ or $165(000) \div 3 = 55(000)$ or 55(000) seen or $\frac{165}{275} \times 5$ or
		275(000) ÷ 5 × 3; may be in stages
	(3)	

16. (a) $\frac{27}{63} + \frac{49}{63}$ oe	M1	May have different common denominator for all marks
$\frac{76}{63}$ oe	A1	
$1\frac{13}{63}$	B1	FT 'their $\frac{76}{63}$ ' provided an improper fraction
(b)		
$\frac{2}{7}$ oe	B2	B1 for $\frac{6}{7} \times \frac{1}{2}$ oe seen
/		7 3
	(5)	
17.* (a)		
$40 \times 5 - 40$ or 40×4 (=160)	M1	
160×0.3 or $160 - 160 \times 0.7$ oe	M1	FT 'their $40 \times 5 - 40$ ' or 'their 40×4 '
(£) 48	A1	CAO; implies M1 M1
		If no marks then SC1 for an answer of $(\pounds)20$ or for an answer of $(\pounds)9.6(0)$
Alternative method:		
$(\text{social life} =) 0.3 \times 0.8 = 24\%$	M1	
20% is (£)40 4% is (£)8 (£) 48		CAO: implies M1 M1
(b)		
$\frac{48}{200}$ (×100) or 0.3 × 0.8	M1	FT $\frac{\text{'their 48'}}{\text{'their 200'}}$ (×100) provided of equivalent
		difficulty
24(%)	A1	FT
	(5)	

18.*(a	1)		FT until 2nd error
-	-4x = 11 - 19 (= -8) or $4x = 19 - 11 (= 8)$	B1	si
x	· = 2	B1	FT; mark final answer; allow 2 marks for $19 - 4(2) = 11$ or
(b)	$2x - 3 = 4 \times 3x$		FT until 2nd error
	or $\frac{2}{4}x - 3x = \frac{3}{4}$	B1	or separates fractions <u>and</u> collects terms
1	10x = -3 oe	B1	FT; allow for $-\frac{10}{4}x = \frac{3}{4}$
	3		
,	$x = -\frac{3}{10}$ oe; ISW	B1	FT 'their expression of the form $ax = b$, where $a \neq \pm 1$ and $b \neq 0$ '
(c)(i)			
3	3x > 5 - 2 oe	M1	
د	x >1 oe	A1	No marks for use of "=", unless finally replaced to give $x > 1$ then award M1 A1; mark final answer
(ii)			
E	Empty circle at 1 with arrow right	B1	STRICT FT 'their (c)(i)' provided an inequality; if a line drawn rather than an arrow then there must be no idea of termination and it must extend as far as the end of the number line
		(8)	
19.*(a	a) Valid comment e.g. 'Some of the data is lost' or 'There are too many categories for a pie chart' or 'It does not show coffee and green tea'	E1	Allow e.g. 'It does not show the value of sales'
(b)	Valid comment e.g.	E1	Ignore embellishments/superfluous comments
, " (The number of visitors seems to be decreasing' or 'The annual number is		about seasons.
9	going down.'		Allow e.g. 'From 2015 to 2018 the numbers have decreased.'
		(2)	

20.*	(a)		
	Ĩ	B1	May be embedded
(b)	Method to find prime factors with two correct prime factors seen before the second error	M1	Ignore 1's; the two prime factors may be correct or correct FT after one error
	$2 \times 2 \times 2 \times 3 \times 7$ oe	A1	ISW
(c)	Attempts to find a common factor of 168 and 120	S1	e.g. May list some of the factors of both 168 and 120 or draw a Venn diagram with the factors of 168 and 120 correctly positioned
	Finds at least one common factor of 168 and 120 greater than 3	M1	FT 'their (a) and their (b)' 4, 6, 8, 12, 24
	24	A1	CAO Mark final answer
		(6)	
21.*	(a) 50 inches = 127 cm	B2	B1 for e.g. 50.8 + 50.8 + 25.4
	Might possibly be safe and use of the limit of accuracy e.g. 'she could be only 126.9 cm tall' or 'Her height could be anywhere between 126.5 and 127.5.'	B1	NB bounds are not required, though could be used. Candidates must indicate they have interpreted the given limit of accuracy correctly in some way. Must not contain contradictions or errors.
(b)(i) Valid assumption eg 'Jenna has not grown since she was last measured' or 'Jenna is still 127 cm' or Jenna has not had a growth spurt.' or 'Jenna is wearing the same shoes that she was when she was measured.'	E1	Any valid assumption that indicates that Jenna may no longer be the same height Not for comments assuming her height is 127 or a rounded version of this, as this is given information
(b)(i	 i) Valid impact based on their assumption and decision in part (a) e.g. 'Jenna may now be definitely tall enough to ride.' 	E1	Comments such as 'My answer would be different' are not acceptable
·			

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B2	B1 for any two correct
(b) All 5 correct points plotted correctly and joined with a smooth curve	B2	Mark intent B1 for a smooth curve at least through 3 correct pairs of coordinates or for all of their 5 pairs of coordinates plotted correctly Allow 2 marks here if curve correct even if there is a slip in their table
(c) $x = -\frac{1}{2}$ oe	B1	Equation must be stated; check graph; not for $x = -\frac{1}{2}y = -1.25$
(d) (<i>x</i> =) 0.5 to 0.7 , −1.5 to −1.7	B2 (7)	or FT 'their curve' B1 FT for one correct root If their curve has more than 2 roots, they must give all their solutions for B2 and may omit one solution only for B1.
23.* (5) (-1)	B2	Mark final answer for B2 B1 for each element or for $(\frac{1}{2}\mathbf{p} =) \begin{pmatrix} 2\\ 1 \end{pmatrix}$ oe seen or for $\begin{pmatrix} 5\\ -1 \end{pmatrix}$ or for $\begin{pmatrix} 5\\ -1 \end{pmatrix}$ in working space without brackets; allow $\begin{pmatrix} 2\\ 1 \end{pmatrix}$ seen for B1.

C300U10-1 EDUQAS GCSE Mathematics – Mathematics FT MS S19/DM