

# Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE A Level Mathematics Statistics & Mechanics (9MA0/03)

# Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018

Publications Code 9MA0\_03\_1806\_MS

All the material in this publication is copyright © Pearson Education Ltd 2018 General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is awarded.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# PEARSON EDEXCEL GCE MATHEMATICS

# General Instructions for Marking

- 1. The total number of marks for the paper is 100.
- 2. These mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper or ag- answer given
- 4. All M marks are follow through.

A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but answers that don't logically make sense e.g. if an answer given for a probability is >1 or <0, should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response. If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used. If no such alternative answer is provided but the response is deemed to be valid, examiners must escalate the response for a senior examiner to review.

# Section A: STATISTICS

| Qu 1 |                                |               |                 |               | Sch               | eme           |                                            |                                   |               |               |                      | Marks       | AO      |
|------|--------------------------------|---------------|-----------------|---------------|-------------------|---------------|--------------------------------------------|-----------------------------------|---------------|---------------|----------------------|-------------|---------|
| (a)  | С                              | 0             | 1               | 2             | 3                 | 4             | 5                                          | 6                                 | 7             | 8             |                      | B1          | 1.2     |
|      | P(C=c)                         | $\frac{1}{9}$ | $\frac{1}{9}$   | $\frac{1}{9}$ | $\frac{1}{9}$     | $\frac{1}{9}$ | $\frac{1}{9}$                              | $\frac{1}{9}$                     | $\frac{1}{9}$ | $\frac{1}{9}$ |                      | B1ft        | 1.2     |
|      |                                |               |                 |               | 1                 | 1             |                                            |                                   |               |               | 1                    | (2)         |         |
| (b)  | $P(C < 4) = \frac{4}{9}$       | (acce         | pt 0.44         | 44 or 1       | better)           |               |                                            |                                   |               |               |                      | B1          | 3.4     |
|      |                                |               |                 |               |                   |               |                                            |                                   |               |               |                      | (1)         |         |
| (c)  | Probability lo                 | wer that      | in expe         | ected s       | sugges            | sts mo        | del is                                     | <u>not</u> go                     | ood           |               |                      | B1ft        | 3.5a    |
| (1)  | Classifier                     |               | 1               | <b>c</b>      |                   | 4             | 41                                         | . 1 . 1 .                         | 4             | . 1           |                      | (1)<br>D1   | 2.5     |
| (d)  | e.g. Cloud co<br>So e.g. use a |               |                 |               |                   |               | onth a                                     | na pia                            | ce to j       | place         |                      | B1<br>(1)   | 3.5c    |
|      | 50 e.g. use i                  | i IIOII-ui    | morm            | uistii        | oution            | L             |                                            |                                   |               |               |                      | (1)         | (S)     |
|      |                                |               |                 |               |                   |               | Note                                       | 5                                 |               |               |                      |             |         |
| (a)  | 1 <sup>st</sup> B1 for a c     | orrect s      | et of v         | alues         | for <i>c</i> .    | Allow         | $N\left\{\frac{1}{8}, \frac{1}{8}\right\}$ | $\frac{2}{3}, \dots, \frac{8}{8}$ |               |               |                      |             |         |
|      | 2 <sup>nd</sup> B1ft for       |               |                 |               |                   |               |                                            |                                   |               | vith d        | iscrete unif         | form distri | b'n     |
|      | Maybe as a                     |               |                 |               |                   |               |                                            |                                   |               |               |                      |             |         |
|      | clearly defin                  |               |                 |               |                   |               | ,                                          |                                   |               | -             | · ·                  |             |         |
|      | 2                              |               |                 |               |                   |               |                                            |                                   |               |               |                      |             |         |
| (b)  | B1 for us                      | ing corr      | ect mo          | odel to       | get $\frac{4}{9}$ | (o.e          | .)                                         |                                   |               |               |                      |             |         |
| SC   | Sample spac                    | e {1,         | <b>, 8</b> } If | score         | d B0B             | 1 in (a       | a) for                                     | this al                           | low P         | (C < 4)       | $=\frac{3}{8}$ to sc | ore B1 in   | (b)     |
|      |                                |               |                 |               |                   |               |                                            |                                   |               |               |                      |             |         |
| (c)  |                                |               |                 |               |                   |               | -                                          | -                                 |               | is not        | a good one           | e based on  |         |
|      | their (b) – 0.315              | model         | -               | · /           |                   | -             |                                            |                                   | /             | 00011#0       | te" etc              |             |         |
|      | (b) - 0.315 <br> (b) - 0.315   |               |                 |               |                   |               |                                            |                                   |               |               |                      |             |         |
|      | No prob in (                   |               |                 |               |                   |               |                                            |                                   |               |               | and rejects t        | the model   |         |
|      | No prob in (                   | b) and 1      | no 50%          | % or (        | <b>).5</b> or     | (b) >         | 1 scor                                     | res B0                            | )             |               | -                    |             |         |
|      | Ign                            | ore any       | comm            | nents a       | ibout l           | ocatio        | on or v                                    | veathe                            | er patte      | erns.         |                      |             |         |
| (d)  | B1 for a                       | sensihle      | refine          | ement         | consid            | derino        | varia                                      | tions i                           | n mor         | nth or        | location             |             |         |
| (4)  |                                | saying "      |                 |               |                   | •             | , • 1111                                   |                                   |               |               | 100001011            |             |         |
|      | Context & "                    | non-un        | iform'          | ' Allo        | w mei             | ntion o       |                                            |                                   |               |               |                      |             |         |
|      |                                |               |                 |               |                   |               |                                            |                                   | -             |               | oilities base        | 1           | encies  |
|      | Context & "<br>Just refined    |               |                 |               |                   |               |                                            |                                   |               |               |                      | mial        |         |
|      |                                |               |                 |               |                   |               |                                            |                                   |               |               | abilities for        | r less clou | 1 cover |
|      | Continuous                     |               |                 |               |                   |               |                                            |                                   |               |               |                      |             |         |
|      |                                |               | 5               |               |                   |               |                                            |                                   |               |               | 0                    |             |         |
|      |                                |               |                 |               |                   |               |                                            |                                   |               |               |                      |             |         |

| Qu 2 | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks            | AO   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|
| (a)  | $H_0: \rho = 0$ $H_1: \rho < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1               | 2.5  |
|      | Critical value: $-0.6215$ (Allow any cv in range $0.5 <  cv  < 0.75$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1               | 1.1a |
|      | r < -0.6215 so significant result and there is evidence of a negative correlation between <i>w</i> and <i>t</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1               | 2.2b |
|      | correlation between w and i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3)              |      |
| (b)  | e.g. As temperature increases people spend more time on the beach and less time shopping (o.e.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1               | 2.4  |
| (c)  | Since $r$ is close to $-1$ , it is consistent with the suggestion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)<br>B1<br>(1) | 2.4  |
| (d)  | <i>t</i> will be the explanatory variable since sales are likely to depend on the temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1               | 2.4  |
| (e)  | Every degree rise in temperature leads to a drop in weekly earnings of £171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)<br>B1<br>(1) | 3.4  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (7 mar           | ks)  |
| (a)  | $\frac{\text{Notes}}{\text{B1 for both hypotheses in terms of }\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |      |
| (b)  | <ul> <li>is seen then A0 but may use  r  o<br/>and mention "negative", "correlation/relationship" and at least "w" and "t"</li> <li>B1 for a suitable reason to explain negative correlation using the context given<br/>e.g. "As temperature drops people are more likely to go shopping (than to<br/>e.g. "As temperature increases people will be outside rather than in shops"<br/>A mere description in context of negative correlation is B0</li> <li>SO e.g. "As temperature increases people don't want to go shopping/buy cloth<br/>e.g. "Less clothes needed as temp increases" is B0</li> </ul> | n.<br>the beach  | ı)"  |
| (c)  | B1 for a suitable reason e.g. "strong"/"significant"/"near perfect" "correlation <u>and</u> saying it is consistent with the suggestion. Allow "yes" followed by t                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |      |
| (d)  | <ul> <li>B1 For identifying t and giving a suitable reason.</li> <li>Need idea that "w depends on t" or "w responds to t" or "t affects w" Allow t (temperature) affects the other variable etc Just saying "t is the independent variable" or "t explains change in w" is N. B. Suggesting causation is B0 e.g. "t causes w to decrease"</li> </ul>                                                                                                                                                                                                                                                       |                  |      |
| (e)  | B1 for a description that conveys the idea of rate per degree Celsius.<br>Must have 171, condone missing "£" sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |      |

| Qu 3       | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks            | AO           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| (a)        | The <u>probability</u> of a dart hitting the target is <u>constant</u> (from child to child and for each throw by each child) (o.e.)                                                                                                                                                                                                                                                                                                                                                                                           | B1               | 1.2          |
| (1-)       | The <u>throws</u> of each of the darts are <u>independent</u> (o.e.) $D(U \ge 1) = D(U \le 2) = 1 = 0.0072 = 0.012705 = 1 = 0.012705$                                                                                                                                                                                                                                                                                                                                                                                          | B1 (2)           | 1.2          |
| (b)        | $[P(H \ge 4) = 1 - P(H \le 3) = 1 - 0.9872 = 0.012795 =] $ awrt <u>0.0128</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1 (1)           | 1.1b         |
| (c)        | $P(F=5) = 0.9^4 \times 0.1, = 0.06561$<br>= awrt <u>0.0656</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1,<br>A1<br>(2) | 3.4<br>1.1b  |
| (d)        | n         1         2          10 $P(F=n)$ 0.01         0.01 + $\alpha$ 0.01+9 $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1               | 3.1b         |
|            | Sum of probs = 1 $\Rightarrow \frac{10}{2} [2 \times 0.01 + 9\alpha] = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1A1             | 3.1a<br>1.1b |
|            | [i.e. $5(0.02 + 9\alpha) = 1$ or $0.1 + 45\alpha = 1$ ] so $\alpha = 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1<br>(4)        | 1.1b         |
| (e)        | $P(F = 5  \text{ Thomas' model}) = \underline{0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1ft<br>(1)      | 3.4          |
| (f)        | <u>Peta's</u> model assumes the <u>probability</u> of hitting target is <u>constant</u> (o.e.)<br><b>and</b> <u>Thomas</u> ' model assumes this <u>probability increases</u> with each attempt(o.e.)                                                                                                                                                                                                                                                                                                                           | B1               | 3.5a         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)<br>(11 mark  | (s)          |
|            | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |
| (a)        | $1^{\text{st}}$ B1 for stating that the <u>probability</u> (or possibility or chance) is <u>constant</u> (or f $2^{\text{nd}}$ B1 for stating that <u>throws</u> are <u>independent</u> ["trials" are independent is B0]                                                                                                                                                                                                                                                                                                       | ixed or sa       | me)          |
| (b)        | B1 for awrt 0.0128 (found on calculator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |              |
| (c)        | M1 for a probability expression of the form $(1-p)^4 \times p$ where $0A1 for awrt 0.0656$                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
| SC         | Allow M1A0 for answer only of 0.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |
| (d)        | 1 <sup>st</sup> M1 for setting up the distribution of <i>F</i> with at least 3 correct values of <i>n</i> and terms of $\alpha$ . (Can be implied by 2 <sup>nd</sup> M1 or 1 <sup>st</sup> A1)<br>2 <sup>nd</sup> M1 for use of sum of probs = 1 <b>and</b> clear summation or use of arithmetic set (allow 1 error or missing term). (Can be implied by 1 <sup>st</sup> A1)<br>1 <sup>st</sup> A1 for a correct equation for $\alpha$<br>2 <sup>nd</sup> A1 for $\alpha$ = 0.02 (must be exact and come from correct working) | · · · ·          |              |
| (e)        | B1ft for value resulting from $0.01 + 4 \times$ "their $\alpha$ " (provided $\alpha$ and the answer <b>Beware</b> If their answer is the same as their (c) (or a rounded version of their (                                                                                                                                                                                                                                                                                                                                    | - /              |              |
| (f)<br>ALT | B1 for a suitable comment about the <u>probability</u> of hitting the target<br>Allow idea that Peta's model suggests the dart may never hit the target but The<br>it will hit at least once (in the first 10 throws).                                                                                                                                                                                                                                                                                                         | omas' says       | that         |

| Qu 4 | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks                                  | AO           |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|
| (a)  | Convenience or opportunity [sampling]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1                                     | 1.2          |
| (b)  | Quota [sampling]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1)<br>B1<br>D1                        | 1.1a         |
|      | e.g. Take 4 people every 10 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1 (2)                                 | 1.1b         |
| (c)  | Census                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1 (1)                                 | 1.2          |
|      | [58-26=] <u>32</u> (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1 (1)                                 | 1.1b         |
| (e)  | $\mu = \frac{4133}{95} = 43.505263$ awrt <u>43.5</u> (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1                                     | 1.1b         |
|      | $\sigma_x = \sqrt{\frac{202294}{95} - \mu^2} = \sqrt{236.7026}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                                     | 1.1b         |
|      | = 15.385 <b>awrt</b> <u>15.4</u> (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1 (3)                                 | 1.1b         |
| (f)  | There are outliers in the data (or data is skew) which will affect mean and sd<br>Therefore use median and IQR                                                                                                                                                                                                                                                                                                                                                                                                                     | B1<br>dB1<br>(2)                       | 2.4<br>2.4   |
| (g)  | Value of 20, LQ at 26 and outliers will not change<br>or state that median and upper quartile are the values that <u>do</u> change                                                                                                                                                                                                                                                                                                                                                                                                 | B1                                     | 1.1b         |
|      | <u>More values now below 40 than above</u> so $Q_2$ or $Q_3$ will change and be lower<br>Both $Q_2$ and $Q_3$ will be lower                                                                                                                                                                                                                                                                                                                                                                                                        | M1<br>A1                               | 2.1<br>2.4   |
|      | Both $Q_2$ and $Q_3$ will be lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3)                                    |              |
|      | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (13 mark                               | KS)          |
| (b)  | <ul> <li>1<sup>st</sup> B1 for quota (sampling) mentioned ("Stratified" or "systematic" or "random 2<sup>nd</sup> B1 for a description of how such a system might work, requires suitable strate.g. time slots, departments, gender, age groups, distance travelled etc Suggestion of randomness is B0</li> </ul>                                                                                                                                                                                                                  |                                        |              |
| (e)  | B1 for a correct mean (awrt 43.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |              |
|      | M1 for a correct expression for the sd (including $$ )ft their mean<br>A1 for awrt 15.4 (Allow <i>s</i> = 15.4667 awrt 15.5)                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |              |
| (f)  | 1 <sup>st</sup> B1 for acknowledging <u>outliers</u> or <u>skewness</u> are a problem for <u>mean and sd</u><br>"extreme values"/"anomalies" OK May be implied by saying median and IQR if<br>We need to see mention of "outliers", "skewness" and the problem so "data is sk<br>median and IQR" is B0 unless mention that they are not affected by extreme val<br>and standard deviation can be "inflated" by the positive skew etc<br>2 <sup>nd</sup> dB1 dep on 1 <sup>st</sup> B1 for therefore choosing <u>median and IQR</u> | kewed so u                             | se           |
| (g)  | B1 for identifying 2 of these 3 groups of unchanged values or stating only $Q_2$ a<br>M1 for <u>explaining</u> that median or UQ should be lower.<br>E.g. the 2 values have moved to below 40 (or 58) and therefore more than 50%<br>(more than 75% below 58) <u>or</u> an argument to show that the other 3 values are<br>Allow arrows on box plot provided statement in words about increased % below<br>A1 for stating median <u>and</u> UQ are both lower with clear evidence of M1 score                                      | 6 below 40<br>the same.<br>ow 40 or 58 | or<br>(o.e.) |
|      | [If lots of values on 40 then median might not change but, since two values <u>do</u> c<br>would change. If this meant that 92 became an outlier then we would have a new<br>upper whisker and an extra outlier so effectively 3 values are altered. So median                                                                                                                                                                                                                                                                     | w value for                            |              |

| Qu 5 | Scheme                                                                                                                                                                                                                                                                                                                                                                                                          | Marks                                  | AO          |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|
| (a)  | P(L > 16) = 0.69146 awrt 0.691                                                                                                                                                                                                                                                                                                                                                                                  | B1                                     | 1.1b        |
| (b)  | $\mathbf{P}(L > 20)$                                                                                                                                                                                                                                                                                                                                                                                            | (1)                                    |             |
|      | $P(L > 20   L > 16) = \frac{P(L > 20)}{P(L > 16)}$                                                                                                                                                                                                                                                                                                                                                              | M1                                     | 3.1b        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                 | A1ft,                                  | 1.1b        |
|      | $= \frac{0.308537}{(a)}  \underline{\text{or}}  \frac{1-(a)}{(a)}, = 0.44621$                                                                                                                                                                                                                                                                                                                                   | A1                                     | 1.1b        |
|      | For calc to work require $(0.44621)^4 = 0.03964$ <b>awrt</b> <u>0.0396</u>                                                                                                                                                                                                                                                                                                                                      | dM1                                    | 2.1         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                 | A1 (5)                                 | 1.1b        |
| (c)  | Require: $[P(L > 4)]^2 \times [P(L > 20   L > 16)]^2$                                                                                                                                                                                                                                                                                                                                                           | M1 (5)                                 | 1.1a        |
|      | $= (0.99976)^2 \times ("0.44621")^2$                                                                                                                                                                                                                                                                                                                                                                            | Alft                                   | 1.1b        |
|      | = 0.19901 awrt <u>0.199</u> (*)                                                                                                                                                                                                                                                                                                                                                                                 | Alcso*                                 | 1.1b        |
| (4)  |                                                                                                                                                                                                                                                                                                                                                                                                                 | (3)<br>B1                              | 2.5         |
| (d)  | $H_0: \mu = 18$ $H_1: \mu > 18$                                                                                                                                                                                                                                                                                                                                                                                 | DI                                     | 2.3         |
|      | $\bar{L} \sim N\left(18, \left(\frac{4}{\sqrt{20}}\right)^2\right)$                                                                                                                                                                                                                                                                                                                                             | M1                                     | 3.3         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                 | . 1                                    | 2.4         |
|      | P(L > 19.2) = P(Z > 1.3416) = 0.089856<br>(0.0899 > 5%) or (19.2 < 19.5) or 1.34 < 1.6449 so not significant                                                                                                                                                                                                                                                                                                    | A1<br>A1                               | 3.4<br>1.1b |
|      | Insufficient evidence to support Alice's claim (or belief)                                                                                                                                                                                                                                                                                                                                                      | Al                                     | 3.5a        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                 | (5)                                    |             |
|      | Notes                                                                                                                                                                                                                                                                                                                                                                                                           | (14 mar                                | ks)         |
| (a)  | B1 for evaluating probability using their calculator (awrt 0.691) Accept 0.69                                                                                                                                                                                                                                                                                                                                   | 915                                    |             |
| (b)  | $1^{st}$ M1for a first step of identifying a suitable conditional probability (either $1^{st}$ A1ftfor a ratio of probabilities with numerator = awrt 0.309 or 1 - (a) and $2^{nd}$ A1for awrt 0.446 (o.e.) Accept 0.4465 (from $\frac{0.3085}{0.691}$ = 0.44645 )                                                                                                                                              |                                        | heir (a)    |
|      | NB $\frac{P(16 < L < 20)}{P(L > 16)} = 0.5538$ scores M1A1A1 when they do $1 - 0.5538 = 0.5538$                                                                                                                                                                                                                                                                                                                 | 4462                                   |             |
|      | $2^{nd}$ M1 (dep on 1 <sup>st</sup> M1) for 2 <sup>nd</sup> correct step i.e. (their 0.446) <sup>4</sup> or X~B(4, "0.43 <sup>rd</sup> A1 for awrt 0.0396                                                                                                                                                                                                                                                       | 146") and I                            | P(X=4)      |
| (c)  | $1^{st}$ M1for a correct approach to solving the problem (May be implied by $L$ $1^{st}$ A1ftfor P( $L > 4$ ) = awrt 0.9998 used and ft their 0.44621 in correct expr                                                                                                                                                                                                                                           | /                                      |             |
|      | If use $P(L > 20) = 0.3085$ as 0.446 in (b) then M1 for $(0.3085)^2 \times [P(L > 4)]$                                                                                                                                                                                                                                                                                                                          | $\left( \right) \right]^{2}$ ; A1ft as | s above     |
| *    | 2 <sup>nd</sup> A1cso for 0.199 or better with clear evidence of M1 [NB $(0.4662)^2 = 0.1$<br>Must see M1 scored by correct expression in symbols or values                                                                                                                                                                                                                                                     |                                        | 0A0A0]      |
| (d)  | B1 for both hypotheses in terms of $\mu$ .                                                                                                                                                                                                                                                                                                                                                                      |                                        |             |
|      | M1 for selecting a suitable model. Sight of <u>normal</u> , <u>mean</u> 18, <u>sd</u> $\frac{4}{\sqrt{20}}$ (o.e.) o                                                                                                                                                                                                                                                                                            | or <u>variance</u>                     | = 0.8       |
|      | $1^{\text{st}}$ A1 for using the model correctly. Allow awrt 0.0899 or 0.09 from correct p                                                                                                                                                                                                                                                                                                                      |                                        |             |
| ALT  | <b>CR</b> $(\overline{L})$ > 19.471 (accept awrt 19.5) <u>or</u> <b>CV</b> of 1.6449 (or better: calc                                                                                                                                                                                                                                                                                                           | : 1.644853                             | 6)          |
|      | <ul> <li>2<sup>nd</sup> A1 for correct non-contextual conclusion. Wrong comparison or contradictions A0 Error giving 2<sup>nd</sup> A0 implies 3<sup>rd</sup> A0 but just a correct contextual conclusion can</li> <li>3<sup>rd</sup> A1 dep on M1 and 1<sup>st</sup> A1 for a correct contextual conclusion mentioning A1 or there is insufficient evidence that the mean lifetime is more than 181</li> </ul> | 0<br>1 score A1A<br>lice's clain       | .1          |

# Section B: MECHANICS

| Question                                        | Scheme                                                                                                                                                                                                                                                        | Marks | AOs   |  |  |  |  |  |  |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--|--|--|--|--|--|
| 6.                                              | Integrate v w.r.t. time                                                                                                                                                                                                                                       | M1    | 1.1a  |  |  |  |  |  |  |
|                                                 | $\mathbf{r} = 2t^{\frac{1}{2}}\mathbf{i} - 2t^{2}\mathbf{j} \ (+ \mathbf{C})$                                                                                                                                                                                 | A1    | 1.1b  |  |  |  |  |  |  |
|                                                 | Substitute $t = 4$ and $t = 1$ into their <b>r</b>                                                                                                                                                                                                            | M1    | 1.1b  |  |  |  |  |  |  |
|                                                 | $t = 4, \mathbf{r} = 4\mathbf{i} - 32\mathbf{j}(+\mathbf{C}); t = 1, \mathbf{r} = 2\mathbf{i} - 2\mathbf{j}(+\mathbf{C}) \text{ or } (4, -32); (2, -2)$                                                                                                       | A1    | 1.1b  |  |  |  |  |  |  |
|                                                 | $\sqrt{2^2 + (-30)^2}$                                                                                                                                                                                                                                        | M1    | 1.1b  |  |  |  |  |  |  |
|                                                 | $\sqrt{904} = 2\sqrt{226}$                                                                                                                                                                                                                                    | A1    | 1.1b  |  |  |  |  |  |  |
|                                                 |                                                                                                                                                                                                                                                               | (6)   |       |  |  |  |  |  |  |
|                                                 |                                                                                                                                                                                                                                                               | (6 )  | marks |  |  |  |  |  |  |
| Notes: Allow                                    | column vectors throughout                                                                                                                                                                                                                                     |       |       |  |  |  |  |  |  |
| M1: At leas                                     | t one power increasing by 1.                                                                                                                                                                                                                                  |       |       |  |  |  |  |  |  |
| A1: Any co                                      | rrect (unsimplified) expression                                                                                                                                                                                                                               |       |       |  |  |  |  |  |  |
| M1: Must h                                      | have attempted to integrate v. Substitute $t = 4$ and $t = 1$ into their r to produce 2 vectors (or 2 st working with coordinates)                                                                                                                            |       |       |  |  |  |  |  |  |
| points if just                                  | working with coordinates).                                                                                                                                                                                                                                    |       |       |  |  |  |  |  |  |
|                                                 | t working with coordinates).<br>$\mathbf{i}(+\mathbf{C})$ and $2\mathbf{i}-2\mathbf{j}(+\mathbf{C})$ or $(4, -32)$ and $(2, -2)$ . These can be seen or imp                                                                                                   | lied. |       |  |  |  |  |  |  |
| A1: 4i – 32                                     | t working with coordinates).<br>$\mathbf{j}(+\mathbf{C})$ and $2\mathbf{i} - 2\mathbf{j}(+\mathbf{C})$ or $(4, -32)$ and $(2, -2)$ . These can be seen or import at distance of form $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ for their points. Must have 2 not |       | s.    |  |  |  |  |  |  |
| <b>A1:</b> 4 <b>i</b> – 32<br><b>M1:</b> Attemp | $\mathbf{j}(\mathbf{+C})$ and $2\mathbf{i}-2\mathbf{j}(\mathbf{+C})$ or $(4,-32)$ and $(2,-2)$ . These can be seen or imp                                                                                                                                     |       | s.    |  |  |  |  |  |  |
| A1: 4i – 32<br>M1: Attemp                       | $\mathbf{j}(\mathbf{+C})$ and $2\mathbf{i} - 2\mathbf{j}(\mathbf{+C})$ or $(4, -32)$ and $(2, -2)$ . These can be seen or import at distance of form $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ for their points. Must have 2 not                                 |       | s.    |  |  |  |  |  |  |

| Question | Scheme                                                      | Marks | AOs  |
|----------|-------------------------------------------------------------|-------|------|
| 7(a)     | Resolve vertically                                          | M1    | 3.1b |
|          | $R + 40\sin\alpha = 20g$                                    | Al    | 1.1b |
|          | Resolve horizontally                                        | M1    | 3.1b |
|          | $40\cos\alpha - F = 20a$                                    | Al    | 1.1b |
|          | F = 0.14R                                                   | B1    | 1.2  |
|          | $a = 0.396 \text{ or } 0.40 \text{ (m s}^{-2})$             | A1    | 2.2a |
|          |                                                             | (6)   |      |
| (b)      | Pushing will increase $R$ which will increase available $F$ | B1    | 2.4  |
|          | Increasing $F$ will decrease $a$ * GIVEN ANSWER             | B1*   | 2.4  |
|          |                                                             | (2)   |      |

## (8 marks)

#### Notes:

**(a)** 

M1: Resolve vertically with usual rules applying

A1: Correct equation. Neither g nor  $\sin a$  need to be substituted

**M1:** Apply F = ma horizontally, with usual rules

A1: Neither F nor  $\cos \partial$  need to be substituted

**B1:** F = 0.14R seen (e.g. on a diagram)

A1: Either answer

## **(b)**

B1: Pushing increases R which produces an increase in available (limiting) friction

B1: F increase produces an <u>a decrease (need to see this)</u>

**N.B.** It is possible to score B0 B1 but for the B1, some "explanation" is needed to say why friction is increased e.g. by pushing into the ground.

| a     | Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ : $(7\mathbf{i} - 10\mathbf{j}) = 2(2\mathbf{i} - 3\mathbf{j}) + \frac{1}{2}\mathbf{a}2^2$<br>$\mathbf{a} = (1.5\mathbf{i} - 2\mathbf{j})$<br>$ \mathbf{a}  = \sqrt{1.5^2 + (-2)^2}$ | M1<br>A1<br>M1 | 3.1b<br>1.1b |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
|       |                                                                                                                                                                                                                                                   |                | 1.1b         |
| :     | $ \mathbf{a}  = \sqrt{1.5^2 + (-2)^2}$                                                                                                                                                                                                            | M1             |              |
|       |                                                                                                                                                                                                                                                   |                | 1.1b         |
|       | $= 2.5 \text{ m s}^{-2} * \text{ GIVEN ANSWER}$                                                                                                                                                                                                   | A1*            | 2.1          |
|       |                                                                                                                                                                                                                                                   | (4)            |              |
| (b) U | Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t = (2\mathbf{i} - 3\mathbf{j}) + 2(1.5\mathbf{i} - 2\mathbf{j})$                                                                                                                                     | M1             | 3.1b         |
| =     | =(5i - 7j)                                                                                                                                                                                                                                        | Al             | 1.1b         |
|       | $\mathbf{v} = (5\mathbf{i} - 7\mathbf{j}) + t(4\mathbf{i} + 8.8\mathbf{j}) = (5 + 4t)\mathbf{i} + (8.8t - 7)\mathbf{j}$ and<br>(5 + 4t) = (8.8t - 7)                                                                                              | M1             | 3.1b         |
| t     | t = 2.5 (s)                                                                                                                                                                                                                                       | A1             | 1.1b         |
|       |                                                                                                                                                                                                                                                   | (4)            |              |

#### (8 marks)

Notes: Allow column vectors throughout

### **(a)**

#### No credit for individual component calculations

M1: Using a complete method to obtain the acceleration. N.B. Equation, in **a** only, could be obtained by two integrations

#### ALTERNATIVE

M1: Use velocity at half-time (t = 1) = Average velocity over time period

So at 
$$t = 1$$
,  $\mathbf{v} = \frac{1}{2}(7\mathbf{i} - 10\mathbf{j})$  so  $\mathbf{a} = \frac{1}{2}(7\mathbf{i} - 10\mathbf{j}) - (2\mathbf{i} - 3\mathbf{j})$ 

**N.B.** could see  $(7\mathbf{i} - 10\mathbf{j}) = (4\mathbf{i} - 6\mathbf{j}) + 2\mathbf{a}$  as first line of working

A1: Correct a vector

**M1:** Attempt to find magnitude of their **a** using form  $\sqrt{a^2 + b^2}$ 

A1\*: Correct GIVEN ANSWER obtained correctly

# **(b)**

M1: Using a complete method to obtain the velocity at A e.g. by use of  $\mathbf{v} = \mathbf{u} + \mathbf{a}t$  with t = 2 and

 $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}$  and their  $\mathbf{a}$ 

OR: by use of  $\mathbf{s} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$ 

OR: by integrating their **a**, with addition of C = 2i - 3j, and putting t = 2

A1: correct vector

M1: Complete method to find equation in t only

e.g. by using  $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ , with their  $\mathbf{u}$  and equating  $\mathbf{i}$  and  $\mathbf{j}$  components

**OR**: by integrating  $(4\mathbf{i} + 8.8\mathbf{j})$ , with addition of a constant, and equating  $\mathbf{i}$  and  $\mathbf{j}$  components.

**N.B.** Must be equating **i** and **j** components of <u>a velocity vector</u> and must be their velocity at A, to give an equation in t only for this M mark

A1: 2.5 (s)

| Question | Scheme                                                                                                                                                                          | Marks        | AOs    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|
| 9(a)     | Moments about A (or any other complete method)                                                                                                                                  | M1           | 3.3    |
|          | $T2a\sin a = Mga + 3Mgx$                                                                                                                                                        | A1           | 1.1b   |
|          | $T = \frac{Mg(a+3x)}{2a \cdot \frac{3}{5}} = \frac{5Mg(3x+a)}{6a}  * \qquad \text{GIVEN ANSWER}$                                                                                | A1*          | 2.1    |
|          |                                                                                                                                                                                 | (3)          |        |
| (b)      | $\frac{5Mg(3x+a)}{6a}\cos \partial = 2Mg \qquad \text{OR} \qquad 2Mg.2a\tan \alpha = Mga + 3Mgx$                                                                                | M1           | 3.1b   |
|          | $x = \frac{2a}{3}$                                                                                                                                                              | A1           | 2.2a   |
|          |                                                                                                                                                                                 | (2)          |        |
| (c)      | Resolve vertically <b>OR</b> Moments about B                                                                                                                                    | M1           | 3.1b   |
|          | $Y = 3Mg + Mg - \frac{5Mg(3.\frac{2a}{3} + a)}{6a}\sin \beta \qquad 2aY = Mga + 3Mg(2a - \frac{2a}{3})$<br>Or: $Y = 3Mg + Mg - \left(\frac{2Mg}{\cos \alpha}\right)\sin \alpha$ | A1 <b>ft</b> | 1.1b   |
|          | $Y = \frac{5Mg}{2}$ <b>N.B.</b> May use $R\sin\beta$ for Y and/or $R\cos\beta$ for X throughout                                                                                 | A1           | 1.1b   |
|          | $\tan \beta = \frac{Y}{X}$ or $\frac{R \sin \beta}{R \cos \beta} = \frac{\frac{5Mg}{2}}{\frac{2}{2Mg}}$                                                                         | M1           | 3.4    |
|          | $=\frac{5}{4}$                                                                                                                                                                  | A1           | 2.2a   |
|          |                                                                                                                                                                                 | (5)          |        |
| (d)      | $\frac{5Mg(3x+a)}{6a} \le 5Mg  \text{and solve for } x$                                                                                                                         | M1           | 2.4    |
|          | $x \le \frac{5a}{3}$                                                                                                                                                            | A1           | 2.4    |
|          | For rope not to break, block can't be more than $\frac{5a}{3}$ from A oe                                                                                                        |              |        |
|          | Or just: $x \le \frac{5a}{3}$ , if no incorrect statement seen.                                                                                                                 | B1 A1        | 2.4    |
|          | <b>N.B. If the correct inequality is not found,</b> their comment must mention 'distance from <i>A</i> '.                                                                       |              |        |
|          |                                                                                                                                                                                 | (3)          |        |
|          |                                                                                                                                                                                 | (13          | marks) |

Notes:

**(a)** 

M1: Using M(A), with usual rules, or any other complete method to obtain an equation in a, M, x and T only. A1: Correct equation

A1\*: Correct PRINTED ANSWER, correctly obtained, need to see  $\sin \alpha = \frac{3}{5}$  used.

**(b)** 

**M1:** Using an appropriate strategy to find x. e.g. Resolve horizontally with usual rules applying OR Moments about *C*. Must use the <u>given</u> expression for *T*.

A1: Accept 0.67*a* or better

(c)

**M1:** Using a complete method to find  $Y(\operatorname{or} R \sin \beta)$  e.g. resolve vertically or Moments about *B*, with usual rules

A1 ft: Correct equation with their x substituted in T expression or using  $T = \frac{2Mg}{\cos \alpha}$ 

A1: 
$$Y(\text{ or } R\sin\beta) = \frac{5Mg}{2} \text{ or } 2.5Mg \text{ or } 2.50Mg$$

**M1:** For finding an equation in tan  $\beta$  only using  $\tan \beta = \frac{Y}{X}$  or  $\tan \beta = \frac{X}{Y}$ 

This is independent but must have found a *Y*.

A1: Accept  $\frac{-5}{4}$  if it follows from their working.

(d)

x is  $\frac{5a}{3}$ 

M1: Allow T = 5Mg or T < 5Mg and solves for *x*, showing all necessary steps (M0 for T > 5Mg) A1: Allow  $x = \frac{5a}{3}$  or  $x < \frac{5a}{3}$ . Accept 1.7*a* or better. B1: Treat as A1. For any appropriate equivalent fully correct comment or statement. E.g. maximum value of

| Question | Scheme                                                                                                                                                                                                                                                                                                                                                              | Marks   | AOs  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| 10(a)    | Using the model and vertical motion: $0^2 = (U \sin a)^2 - 2g (3 - 2)$                                                                                                                                                                                                                                                                                              | M1      | 3.3  |
|          | $U^2 = \frac{2g}{\sin^2 a} * \text{ GIVEN ANSWER}$                                                                                                                                                                                                                                                                                                                  | A1*     | 2.2a |
|          |                                                                                                                                                                                                                                                                                                                                                                     | (2)     |      |
| (b)      | Using the model and horizontal motion: $s = ut$                                                                                                                                                                                                                                                                                                                     | M1      | 3.4  |
|          | $20 = Ut \cos a$                                                                                                                                                                                                                                                                                                                                                    | A1      | 1.1b |
|          | Using the model and vertical motion: $s = ut + \frac{1}{2}at^2$                                                                                                                                                                                                                                                                                                     | M1      | 3.4  |
|          | $-\frac{5}{4} = Ut\sin a - \frac{1}{2}gt^2$                                                                                                                                                                                                                                                                                                                         | A1      | 1.1b |
|          | sub for t: $-\frac{5}{4} = U \sin \alpha \left(\frac{20}{U \cos \alpha}\right) - \frac{1}{2} g \left(\frac{20}{U \cos \alpha}\right)^2$                                                                                                                                                                                                                             | M1 (I)  | 3.1b |
|          | sub for $U^2$                                                                                                                                                                                                                                                                                                                                                       | M1(II)  | 3.1b |
|          | $-\frac{5}{4} = 20\tan a - 100\tan^2 a$                                                                                                                                                                                                                                                                                                                             | A1(I)   | 1.1b |
|          | $(4\tan \partial - 1)(100\tan \partial + 5) = 0$                                                                                                                                                                                                                                                                                                                    | M1(III) | 1.1b |
|          | $\tan a = \frac{1}{4} \triangleright a = 14^{\circ}$ or better                                                                                                                                                                                                                                                                                                      | A1(II)  | 2.2a |
|          |                                                                                                                                                                                                                                                                                                                                                                     | (9)     |      |
|          | <b>N.B.</b> For the last 5 marks, they may set up a quadratic in <i>t</i> , by substituting for $U\sin\alpha$ first, then solve the quadratic to find the value of <i>t</i> , then use $20 = Ut \cos \alpha$ to find $\alpha$ . The marks are the same but earned in a different order. Enter on ePen in the corresponding M and A boxes above, as indicated below. |         |      |
|          | Sub for $U\sin \alpha$ to give equation in t only                                                                                                                                                                                                                                                                                                                   | M1(II)  |      |
|          | $-\frac{5}{4} = \sqrt{2gt} - \frac{1}{2}gt^{2}$                                                                                                                                                                                                                                                                                                                     | A1(I)   |      |
|          | Solve for <i>t</i>                                                                                                                                                                                                                                                                                                                                                  | M1(III) |      |
|          | $t = \frac{5}{\sqrt{2g}}$ or 1.1 or 1.13 and use $20 = Ut \cos a$                                                                                                                                                                                                                                                                                                   | M1(I)   |      |
|          | $\alpha = 14^{\circ}$ or better                                                                                                                                                                                                                                                                                                                                     | A1(II)  |      |
| (b)      | ALTERNATIVE                                                                                                                                                                                                                                                                                                                                                         |         |      |

|     | Using the model and horizontal motion: $s = ut$                                                                                                                                                                                                            | M1    | 3.4  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
|     | $20 = Ut \cos a$                                                                                                                                                                                                                                           | A1    | 1.1b |
|     | A to top: $s = vt - \frac{1}{2}at^2$ and top to T: $s = ut + \frac{1}{2}at^2$                                                                                                                                                                              |       |      |
|     | $1 = \frac{1}{2}gt_{1}^{2} \implies t_{1} = \sqrt{\frac{2}{g}} \qquad \text{and} \qquad \frac{9}{4} = \frac{1}{2}gt_{2}^{2} \implies t_{2} = \frac{3}{\sqrt{2g}}$<br>Total time $t = t_{1} + t_{2}$                                                        | M1    | 3.4  |
|     | $= \sqrt{\frac{2}{g}} + \frac{3}{\sqrt{2g}}  (=\frac{5}{\sqrt{2g}})$                                                                                                                                                                                       | A1    | 1.11 |
|     | $20 = U \frac{5}{\sqrt{2g}} \cos \alpha \qquad (\text{sub. for } t)$                                                                                                                                                                                       | M1    | 3.11 |
|     | $20 = \sqrt{\frac{2g}{\sin^2 \alpha}} \frac{5}{\sqrt{2g}} \cos \alpha  (\text{sub. for } U)$                                                                                                                                                               | M1    | 3.11 |
|     | $\tan \partial = \frac{1}{4}$                                                                                                                                                                                                                              | A1    | 1.11 |
|     | Solve for $\alpha$                                                                                                                                                                                                                                         | M1    | 1.11 |
|     | $\triangleright \partial = 14^{\circ}$ or better                                                                                                                                                                                                           | A1    | 2.2a |
|     |                                                                                                                                                                                                                                                            | (9)   |      |
| (c) | <ul> <li>The target will have dimensions so in practice there would be a range of possible values of α</li> <li>Or There will be air resistance</li> <li>Or The ball will have dimensions</li> <li>Or Wind effects</li> <li>Or Spin of the ball</li> </ul> | B1    | 3.51 |
|     |                                                                                                                                                                                                                                                            | (1)   |      |
| (d) | Find U using their $\alpha$ e.g. $U = \sqrt{\frac{2g}{\sin^2 \alpha}}$                                                                                                                                                                                     | M1    | 3.11 |
|     | Use $20 = Ut \cos a$ (or use vertical motion equation)                                                                                                                                                                                                     | A1 M1 | 1.11 |
|     | $t = \frac{5}{\sqrt{2g}}$ or 1.1 or 1.13                                                                                                                                                                                                                   | B1 A1 | 1.11 |
|     |                                                                                                                                                                                                                                                            | (3)   |      |
|     |                                                                                                                                                                                                                                                            |       |      |
| (d) | ALTERNATIVE                                                                                                                                                                                                                                                |       |      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A to top: $s = vt - \frac{1}{2}at^2$ and top to T: $s = ut + \frac{1}{2}at^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1           | 3.1b    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1 = \frac{1}{2}gt_1^2 \implies t_1 = \sqrt{\frac{2}{g}} \qquad \text{and} \qquad \frac{9}{4} = \frac{1}{2}gt_2^2 \implies t_2 = \frac{3}{\sqrt{2g}}$<br>Total time $t = t_1 + t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1 <b>M1</b> | 1.1b    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $= = \sqrt{\frac{2}{g} + \frac{3}{\sqrt{2g}}}  (=\frac{5}{\sqrt{2g}}) = 1.1 \text{ or } 1.13 \text{ (s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1 A1        | 1.1b    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3)          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (15          | marks)  |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |
| (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v other complete method to obtain an equation in U, g and $\partial$ only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |         |
| A1*: Corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ct GIVEN ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |
| (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |
| M1: Using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | horizontal motion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |
| A1: Corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.75 or ±2   | 2.25 01 |
| A1: Corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ct equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.75 or ±2   | 2.25 01 |
| A1: Correc<br>M1: Using<br>±2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ct equation<br>s vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm $ | 0.75 or ±2   | 2.25 or |
| <ul> <li>A1: Correc</li> <li>M1: Using ±2.75</li> <li>A1: Correc</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ct equation<br>s vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm $ | 0.75 or ±2   | 2.25 or |
| <ul> <li>A1: Correct</li> <li>M1: Using</li> <li>±2.75</li> <li>A1: Correct</li> <li>M1: Using</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ct equation<br>s vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.75 or ±2   | 2.25 or |
| <ul> <li>A1: Correc</li> <li>M1: Using</li> <li>±2.75</li> <li>A1: Correc</li> <li>M1: Using</li> <li>M1: Substitution</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 2$<br>et equation<br>$g = 20 = Ut \cos a$ to sub. for $t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.75 or ±2   | 2.25 or |
| <ul> <li>A1: Correct</li> <li>M1: Using</li> <li>±2.75</li> <li>A1: Correct</li> <li>M1: Using</li> <li>M1: Substitication</li> <li>A1: Correct</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 2$<br>et equation<br>$f_{2} = 20 = Ut \cos a$ to sub. for t<br>ituting for $U^{2}$ using (a)<br>ct quadratic equation (in tan $a$ or cot $a$ )<br>a 3 term quadratic, either by factorisation or formula (or by calculator (implied) i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |         |
| A1: Correc<br>M1: Using<br>±2.75<br>A1: Correc<br>M1: Using<br>M1: Substi<br>A1: Correc<br>M1: Solve<br>correct) an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 2$<br>et equation<br>$f_{2} = 20 = Ut \cos a$ to sub. for t<br>ituting for $U^{2}$ using (a)<br>ct quadratic equation (in tan $a$ or cot $a$ )<br>a 3 term quadratic, either by factorisation or formula (or by calculator (implied) i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |         |
| A1: Correct<br>M1: Using<br>$\pm 2.75$<br>A1: Correct<br>M1: Using<br>M1: Substite<br>A1: Correct<br>M1: Solve<br>correct) an<br>A1: $\partial = 1$<br>N.B. If answ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 3$<br>et equation<br>g $20 = Ut \cos a$ to sub. for t<br>ituting for $U^2$ using (a)<br>ct quadratic equation (in tan $a$ or cot $a$ )<br>a 3 term quadratic, either by factorisation or formula (or by calculator (implied) in<br>d find $a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f answer is  | S       |
| A1: Correct<br>M1: Using<br>$\pm 2.75$<br>A1: Correct<br>M1: Using<br>M1: Substite<br>A1: Correct<br>M1: Solve<br>correct) an<br>A1: $\partial = 1$<br>N.B. If answ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 20$ equation<br>g $20 = Ut \cos a$ to sub. for t<br>ituting for $U^2$ using (a)<br>ct quadratic equation (in tan $a$ or cot $a$ )<br>a 3 term quadratic, either by factorisation or formula (or by calculator (implied) i<br>d find $a$<br>4° or better (No restriction on accuracy since g's cancel)<br>wer is correct, previous M mark can be implied, but if answer is incorrect, an expl<br>be seen to earn the previous M mark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f answer is  | S       |
| A1: Correc<br>M1: Using<br>$\pm 2.75$<br>A1: Correc<br>M1: Using<br>M1: Substi<br>A1: Correc<br>M1: Solve<br>correct) an<br>A1: $\partial = 1$<br>N.B. If answ<br>solve must $\partial$<br>(b) ALTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 20$ equation<br>g $20 = Ut \cos a$ to sub. for t<br>ituting for $U^2$ using (a)<br>ct quadratic equation (in tan $a$ or cot $a$ )<br>a 3 term quadratic, either by factorisation or formula (or by calculator (implied) i<br>d find $a$<br>4° or better (No restriction on accuracy since g's cancel)<br>wer is correct, previous M mark can be implied, but if answer is incorrect, an expl<br>be seen to earn the previous M mark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f answer is  | S       |
| A1: Correc<br>M1: Using<br>$\pm 2.75$<br>A1: Correc<br>M1: Using<br>M1: Substi<br>A1: Correc<br>M1: Solve<br>correct) an<br>A1: $\partial = 1$<br>N.B. If answ<br>solve must b<br>(b) ALTER<br>M1: Using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 3$<br>et equation<br>$g = 20 = Ut \cos a$ to sub. for $t$<br>ituting for $U^2$ using (a)<br>ct quadratic equation (in tan $a$ or cot $a$ )<br>a 3 term quadratic, either by factorisation or formula (or by calculator (implied) in<br>d find $a$<br>4° or better (No restriction on accuracy since g's cancel)<br>wer is correct, previous M mark can be implied, but if answer is incorrect, an expl<br>be seen to earn the previous M mark.<br><b>RNATIVE</b><br>the model with the usual rules applying to the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f answer is  | S       |
| A1: Correct<br>M1: Using<br>$\pm 2.75$<br>A1: Correct<br>M1: Using<br>M1: Substit<br>A1: Correct<br>M1: Solve<br>correct) an<br>A1: $\partial = 1$<br>N.B. If answ<br>solve must b<br>(b) ALTER<br>M1: Using<br>A1: Correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 3$<br>et equation<br>$g = 20 = Ut \cos a$ to sub. for $t$<br>ituting for $U^2$ using (a)<br>ct quadratic equation (in tan $a$ or cot $a$ )<br>a 3 term quadratic, either by factorisation or formula (or by calculator (implied) in<br>d find $a$<br>4° or better (No restriction on accuracy since g's cancel)<br>wer is correct, previous M mark can be implied, but if answer is incorrect, an expl<br>be seen to earn the previous M mark.<br><b>RNATIVE</b><br>the model with the usual rules applying to the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f answer is  | S       |
| A1: Correc<br>M1: Using<br>$\pm 2.75$<br>A1: Correc<br>M1: Using<br>M1: Substi<br>A1: Correc<br>M1: Solve<br>correct) an<br>A1: $\partial = 1$<br>N.B. If answ<br>solve must $\partial$<br>(b) ALTER<br>M1: Using<br>A1: Correc<br>M1: Using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 3$<br>et equation<br>$g = 20 = Ut \cos a$ to sub. for $t$<br>ituting for $U^2$ using (a)<br>ct quadratic equation (in tan $a$ or cot $a$ )<br>a 3 term quadratic, either by factorisation or formula (or by calculator (implied) in<br>d find $a$<br>4° or better (No restriction on accuracy since $g$ 's cancel)<br>wer is correct, previous M mark can be implied, but if answer is incorrect, an explibe<br>be seen to earn the previous M mark.<br><b>RNATIVE</b><br>the model with the usual rules applying to the equation<br>ct equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f answer is  | S       |
| A1: Correct<br>M1: Using<br>$\pm 2.75$<br>A1: Correct<br>M1: Using<br>M1: Substite<br>A1: Correct<br>M1: Solve<br>correct) an<br>A1: $\partial = 1$<br>N.B. If answer<br>solve must b<br>(b) ALTEF<br>M1: Using<br>A1: Correct<br>M1: Using<br>A1: Correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 2$<br>et equation<br>$g 20 = Ut \cos a$ to sub. for t<br>ituting for $U^2$ using (a)<br>ct quadratic equation (in tan $a$ or cot $a$ )<br>a 3 term quadratic, either by factorisation or formula (or by calculator (implied) in<br><b>d find</b> $a$<br>4° or better (No restriction on accuracy since g's cancel)<br>wer is correct, previous M mark can be implied, but if answer is incorrect, an expl<br>be seen to earn the previous M mark.<br><b>RNATIVE</b><br>the model with the usual rules applying to the equation<br>ct equation<br>g the model to obtain the <b>total</b> time from A to T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f answer is  | S       |
| A1: Correct<br>M1: Using<br>$\pm 2.75$<br>A1: Correct<br>M1: Using<br>M1: Substit<br>A1: Correct<br>M1: Solve<br>correct) an<br>A1: $\partial = 1$<br>N.B. If answ<br>solve must b<br>(b) ALTEF<br>M1: Using<br>A1: Correct<br>M1: Using<br>A1: Correct<br>M1: Using<br>A1: Correct<br>M1: Substit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ct equation<br>y vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 1.25$ or $\pm$  | f answer is  | S       |
| A1: Correct<br>M1: Using<br>$\pm 2.75$<br>A1: Correct<br>M1: Using<br>M1: Substite<br>A1: Correct<br>M1: Solve<br>correct) an<br>A1: $\partial = 1$<br>N.B. If answer<br>solve must b<br>(b) ALTER<br>M1: Using<br>A1: Correct<br>M1: Using<br>A1: Correct<br>M1: Substite<br>M1: S | ct equation<br>y vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 1.25$ or $\pm$  | f answer is  | S       |
| A1: Correct<br>M1: Using<br>$\pm 2.75$<br>A1: Correct<br>M1: Using<br>M1: Substite<br>A1: Correct<br>M1: Solve<br>correct) an<br>A1: $\partial = 1$<br>N.B. If answer<br>solve must b<br>(b) ALTEF<br>M1: Using<br>A1: Correct<br>M1: Using<br>A1: Correct<br>M1: Substite<br>M1: Substite<br>M1: Substite<br>A1: Correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ct equation<br>g vertical motion . N.B. M0 if they use $s = \pm 2$ or $\pm 3$ , but allow $s = \pm 1.25$ or $\pm 3$<br>et equation<br>$(20 = Ut \cos \beta \text{ to sub. for } t)$<br>ituting for $U^2$ using (a)<br>ct quadratic equation (in tan $\beta$ or cot $\beta$ )<br>a 3 term quadratic, either by factorisation or formula (or by calculator (implied) in<br>d find $\beta$<br>4° or better (No restriction on accuracy since g's cancel)<br>wer is correct, previous M mark can be implied, but if answer is incorrect, an expl<br>be seen to earn the previous M mark.<br><b>RNATIVE</b><br>the model with the usual rules applying to the equation<br>ct equation<br>the model to obtain the total time from A to T<br>et total time t<br>itute for t in $20 = Ut \cos \beta$ , using part (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f answer is  | S       |

**N.B. If they quote the equation of the trajectory**  $y = x \tan \alpha - \frac{gx^2}{2U^2 \cos^2 \alpha}$  or **AND** put in values for x

and *y*, could score first 5 marks, M1A1M1A1M1 (nothing for the equation only); wrong *x* value loses first A mark and wrong *y* value loses second A mark

(c)

**B1:** Give one limitation of the model e.g. the ball will have dimensions, or there will be air resistance or wind effects or spin

N.B. B0 if any incorrect extra(s) but ignore extra consequences.

(d)

**M1:** Using their  $\mathcal{A}$  to find a value for U

A1: Treat as M1: Using their U to find a value for t

**B1: Treat as A1 :** t = 1.1 or 1.10 (since depends on g = 9.8)

#### (d) ALTERNATIVE

**M1:** Using their  $\mathcal{A}$  to find a value for U

A1: Treat as M1: Using their U to find a value for t

**B1: Treat as A1 :** t = 1.1 or 1.10 (since depends on g = 9.8)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom