

GCSE MARKING SCHEME

AUTUMN 2017

GCSE MATHEMATICS - COMPONENT 1 (HIGHER) C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE (9-1) Mathematics Autumn 2017 Component 1: Higher Tier	Mark	Comment
1(a) $2^3 \times 3^2 \times 5$	B3	B2 for 2×2×2×3×3×5 or B1 for an attempt at the factors (list, repeated division or factor tree) with two correct factors seen before the first error
1(b) 45	B2	FT the HCF of $3^2 \times 5 \times 7$ and 'their $2^3 \times 3^2 \times 5$ ' B1 for $3^2 \times 5$ or for any common factor of 315 and 360 which is greater than 1
1(c)(i) 0.00054	B1	
1(c)(ii) 8 × 10 ⁴	B2	B1 for 0.8×10^5 seen or for a final answer of 80 000
*2.(a)(i) Valid criticism about the instruction or response boxes. e.g. 'You may want to tick more than one box.' or 'You may have used it to do something else like go on the internet.' or 'You may not have done any of these things.'	E1	Do not allow e.g. 'They may not have a mobile phone.'
*2.(a)(ii) Valid criticism about the vagueness of the times used e.g. 'It does not say what <i>a lot</i> means.'	E1	
*2.(b)(i) Valid comment. e.g. 'Not reliable as only 5 students.' or 'Not very reliable, she needs to ask more people'	E1	
*2.(b)(ii) SIM only is better because e.g. 'the bills are less varied (as the range is £3 compared to £65 for Pay-as-you-go.)' or 'SIM only bills are all about the same' or 'Pay-as-you-go bills are more spread out'.	E1	Do not allow e.g. 'it has the cheaper highest bill.'
Pay-as-you-go is better because e.g. 'the average monthly cost is less (as the mean is £12.75 compared to £16.25 for SIM only.' or 'Most Pay-as-you-go bills will be less than £12.75' or 'The mean Pay-as- you-go bill is lower than the lowest SIM only bill.'	E1	Do not allow e.g. 'it has the cheaper lowest bill.'
	(5)	

*3.(a) (9)	D a	
9.5	B2	B1 for each element or
		for $2\mathbf{p} = \begin{pmatrix} 10\\ 8 \end{pmatrix}$ or equivalent seen or
		for $\left(\frac{9}{9.5}\right)$ or for $\frac{9}{9.5}$ or for $\frac{9}{9.5}$
*3.(b) Line of correct length and direction:	B2	B1 for correct length but direction omitted or incorrect or for correct direction but incorrect length
	(4)	
*4. Correct construction with arcs	B2	B1 for correct arcs
		Tolerance ±2°
	(2)	
$x^{2}-3x-10$	B2	B1 for $x^2 - 3x + \dots$ or for any three correct terms in $x^2 + 2x - 5x - 10$
*5.(b) 18 <i>a</i>	B2	Accept 18 a^1 for 2 marks.
		B1 for $k \times a^1$ or equivalent
*6 (2)(i)	(4)	
y is inversely proportional to x indicated	B1	
*6.(a)(ii) (<i>x</i> =) 0.25 or equivalent	B2	B1 for $100 = \frac{25}{x}$ seen
		Do not accept $y = 0.25$ or equivalent
$^{*6(b)}$ $\frac{4}{0.8}$ or equivalent	M1	Allow e.g. '1 metre every 0.2 seconds.'
5 (m/s)	A1	
	(5)	
*7(a)(i) 14π	B1	allow 43.96
*7(a)(ii) 4	B1	

*7(b)	ſ	[
(diameter =) 6 (cm)	B1	May be on diagram
	5.0	
9π or $\pi \times 9$ or equivalent	B2	Mark final answer P_{1} for $= 2^{2}$ or equivalent
		BTIOR $\pi \times 3$ or equivalent
		If no marks award SC1 for an
		answer of 36π or 144π
	(5)	
8.	(0)	
(a)		
$\left(\frac{16}{9}-\frac{9}{2}\right)\frac{112}{45}$ or $2-\frac{3}{2}$		M1 for 112 or 45 or 2, 7 10
(5 7) 35 35 35 35	M2	$\frac{1}{35} \text{ or } \frac{1}{35} \text{ or } \frac{1}{35} \text{ or } 2 + \frac{1}{35} - \frac{1}{35}$
67 at 132		
$\overline{35}$ $\overline{35}$	A1	
*8.(b)	DO	D4 fan aante aanvaat value
(a =) 28 $(b =) 35$ $(c =) 55$	B3	B1 for each correct value
		or
		B2 for 35 and attempting 4×7 and
		11×5
		or for a set of values in the correct
		110 ratio that are not 2-digit e.g. 56, 70,
		or
		B1 for a common multiple of 5 and 7
		or for two pairs of two-digit numbers in the ratio $4 \cdot 5$ AND $7 \cdot 11$
*8.(c)	+	
$205 \div 5 \times 8$ or equivalent	M1	Must be a complete method
328 (cm) or equivalent, CAO	A1	
	(0)	

*9.(a) 4 10	M2	May be in st	eps or as sta	atements
$3 \times \frac{-}{6} \times \frac{-}{5}$ or equivalent, seen or implied		e.g. Workers	Tonnes	Hours
		6	5	2
		6	10	4
		or		-
		Workers	Tonnes	Hours
		6	7.5	3
		6	10	4
		M1 for one c implied	correct step s	seen or
		e.g. $3 \times \frac{10}{5}$	or $3 \times \frac{4}{6}$	
		or one corre	ct statement	e.g.
		Workers	Tonnes	Hours
		1	1.25	3
		6	5	2
		6	7.5	3
		4	10	6
		8	10	3
		or equivalen NB 4 worker given and do	t s 5 tonnes 3 bes not score	hours is e on its own
4 (hours)	A1			
*9.(b) Valid assumption. e.g. 'The goods are all of the same type.' or 'The vehicles used are the same.' or 'The goods can all be loaded into one vehicle.'	E1	Allow 'The w take any bre Do not allow the same we	vorkers did n aks.' · e.g. 'They c eight.'	ot need to an all lift
Valid impact. e.g. 'If the goods are heavier, they may take longer to load.' or 'The load time would be longer if the vehicle could not take all 10 tonnes at once.'	E1	Allow 'The lo longer if they	pad time wou y had to take	Ild be breaks.'
	(5)			
10.(a) No (stated or implied) AND either a correct justification e.g. a comment such as 'He should have reversed the inequality sign in step 3 because he divided by -2 ' or ' it should be $x < \frac{-7}{-2}$ $x < 3.5$ ' or showing by substitution an example of a value of $x > 3.5$ is not a solution of the original inequality or showing by substitution an example of a value of of $x < 3.5$ is a solution of the original inequality	E2	E1 for No an justification. e.g. Stating to or stating that e solution (no or stating the a x < 3.5 or stating that e solution (no	ad a partially that step 3 is e.g. $x = 4$ is r subst seen) nswer shoul e.g. $x = 2$ is r subst seen)	correct s incorrect. not a d be not a

	T	
Correct parabola through (–2, 0) and (2, 0).	B2 B1 rel ma sh	1 for correct shape with intercepts latively correct but roots not arked or for correct roots seen but hape of curve incorrect.
	CO	pordinates of vertex
$-2 < x < 2$ or $x \in (-2, 2)$	B2 Ac -2 for B1 or or	ccept $-2 < x$ and $x < 2$ or 2 < x, x < 2 or the interval $(-2, 2)r 2 marks.1 for each correct endfor -2 < x \text{ or } x < 2for 'their -2' < x < 'their 2',FT their intercepts from (b)(i)$
	or or gra so at	for $-2 \le x \le 2$ for the correct region on the aph in (b)(i) identified as the plution set (including open circles each <i>x</i> -intercept)
	(6)	
22	B1	
11.(a)(ii) M LQ UQ IQR 9.2 8.9 9.4 to 9.5 0.5 to 0.6	B3 B1 B1 B1 F1 on	1 for correct median 1 for correct LQ and UQ 1 FT for correct IQR; Γ 'their UQ' – 'their LQ' provided he is correct
11.(b)(i) Correct box plot: Whiskers from 8 to 10.4 Box from 8.9 to (9.4 to 9.5) Median at 9.2	B2 F1 B1 wł	Γ their values from (a)(ii) 1 FT for 2 out of 3 correct from hiskers, box, median
11.(b)(ii) Litestar <i>A</i> and a correct reason. e.g. 'She should buy tablet <i>A</i> as the median is greater (than tablet <i>B</i>).' or 'She should buy tablet <i>A</i> as the median is 0.3 hours more (than tablet <i>B</i>).' or 'She should buy tablet <i>A</i> as the shortest battery life is $\frac{1}{2}$ hour greater.' or 'Tablet <i>A</i> as the Lower quartile is more than the lower quartile of tablet <i>B</i> .'	E1 FT bo All hig A	Γ their values from (a)(ii) or their ox plot from (b)(i) low 'Every statistic apart from the ghest value is greater for Litestar than for Litestar <i>B</i> .'
	(1)	

wy-5 = x + 2xy or equivalent wy-5 = x(1+2y)	M1 M1	Collects <i>x</i> terms to one side. Factorises
$x = \frac{wy - 5}{1 + 2y}$	A1	Divides Final answer; must be $x =$ not
	(5)	- <i>x</i> =
	(3)	
14.	(3)	
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^2$	(3) B1	
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$	(3) B1 B1	
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4+18}} \text{ or equivalent}$	(3) B1 B1 M1	FT 'their 18' and 'their 2' providing
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4}+18} \text{ or equivalent}$	(3) B1 B1 M1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4}+18} \text{ or equivalent}$ 2^{16}	(3) B1 B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO <u>Alternative method 1:</u>
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4}+18} \text{ or equivalent}$ 2^{16}	(3) B1 B1 M1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO <u>Alternative method 1:</u> $\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4+18}} \text{ or equivalent}$ 2^{16}	(3) B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO <u>Alternative method 1:</u> $\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1 $(4^{10} =) [2^2]^{10}$ or $(2^{-4} =) 4^{-2}$
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^2$ $(4^9 =) [2^2]^9 \text{ or } 2^{18}$ $2^{2^{-4}+18} \text{ or equivalent}$ 2^{16}	(3) B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO <u>Alternative method 1:</u> $\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1 $(4^{10} =) [2^2]^{10}$ or $(2^{-4} =) 4^{-2}$ seen or implied B1
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4+18}} \text{ or equivalent}$ 2^{16}	(3) B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO <u>Alternative method 1:</u> $\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1 $(4^{10} =) [2^2]^{10}$ or $(2^{-4} =) 4^{-2}$ seen or implied B1 2^{20-4} or 4^{10-2} or equivalent M1
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4+18}} \text{ or equivalent}$ 2^{16}	(3) B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO <u>Alternative method 1:</u> $\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1 $(4^{10} =) [2^2]^{10}$ or $(2^{-4} =) 4^{-2}$ seen or implied B1 2^{20-4} or 4^{10-2} or equivalent M1 2^{16} A1
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4+18}} \text{ or equivalent}$ 2^{16}	(3) B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO <u>Alternative method 1:</u> $\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1 $(4^{10} =) [2^2]^{10}$ or $(2^{-4} =) 4^{-2}$ seen or implied B1 2^{20-4} or 4^{10-2} or equivalent M1 2^{16} A1 <u>Alternative method 2:</u>
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4+18}} \text{ or equivalent}$ 2^{16}	(3) B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO <u>Alternative method 1:</u> $\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1 $(4^{10} =) [2^2]^{10}$ or $(2^{-4} =) 4^{-2}$ seen or implied B1 2^{20-4} or 4^{10-2} or equivalent M1 2^{16} A1 <u>Alternative method 2:</u> $(2^{-4} =) \frac{1}{16}$ seen or implied B1
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4+18}} \text{ or equivalent}$ 2^{16}	(3) B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO <u>Alternative method 1:</u> $\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1 $(4^{10} =) [2^2]^{10}$ or $(2^{-4} =) 4^{-2}$ seen or implied B1 2^{20-4} or 4^{10-2} or equivalent M1 2^{16} A1 <u>Alternative method 2:</u> $(2^{-4} =) \frac{1}{16}$ seen or implied B1 $\sqrt[3]{64} \times \frac{1}{16} = \frac{1}{16}$ acon or implied B1
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4+18}} \text{ or equivalent}$ 2^{16}	(3) B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO <u>Alternative method 1:</u> $\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1 $(4^{10} =) [2^2]^{10}$ or $(2^{-4} =) 4^{-2}$ seen or implied B1 2^{20-4} or 4^{10-2} or equivalent M1 2^{16} A1 <u>Alternative method 2:</u> $(2^{-4} =) \frac{1}{16}$ seen or implied B1 $\sqrt[3]{64} \times \frac{1}{16} = \frac{1}{4}$ seen or implied B1 $\sqrt[3]{64} \times \frac{1}{16} = \frac{1}{4}$ seen or implied B1
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2-4+18} \text{ or equivalent}$ 2^{16}	(3) B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO $\frac{Alternative method 1:}{\sqrt[3]{64} \times 4^9 = 4^{10} \text{ seen or implied } B1}$ $(4^{10} =) [2^2]^{10} \text{ or } (2^{-4} =) 4^{-2}$ $\frac{B1}{2^{20-4}} \text{ or } 4^{10-2} \text{ or equivalent } M1$ $2^{16} A1$ $\frac{Alternative method 2:}{(2^{-4} =) \frac{1}{16}} \text{ seen or implied } B1$ $\sqrt[3]{64} \times \frac{1}{16} = \frac{1}{4} \text{ seen or implied } B1$ $4^{9-1} \text{ or equivalent } M1$ $2^{16} A1$
14. $(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^{2}$ $(4^{9} =) [2^{2}]^{9} \text{ or } 2^{18}$ $2^{2^{-4+18}} \text{ or equivalent}$ 2^{16}	(3) B1 M1 A1	FT 'their 18' and 'their 2' providing both are positive Complete method required. CAO $\frac{Alternative method 1:}{\sqrt[3]{64} \times 4^9 = 4^{10} \text{ seen or implied } B1}$ $(4^{10} =) [2^2]^{10} \text{ or } (2^{-4} =) 4^{-2}$ seen or implied $B1$ $2^{20-4} \text{ or } 4^{10-2} \text{ or equivalent } M1$ $2^{16} A1$ $\frac{Alternative method 2:}{(2^{-4} =) \frac{1}{16} \text{ seen or implied } B1}$ $\sqrt[3]{64} \times \frac{1}{16} = \frac{1}{4} \text{ seen or implied } B1$ $4^{9-1} \text{ or equivalent } M1$ $2^{16} A1$

15.		
C W J	B4	B1 for the given 24, 28, 8, 0
P 12 0 6 18		(snaded) correctly placed
B 16 0 8 24		B1 for the 5's and remaining 0's
K 0 5 3 8		
28 5 17 50		B1 for 16 and 12 correctly placed or for the 16 and 8 correctly placed
		B1 for the 18 and 6 correctly placed or for the 17 and 6 correctly placed FT 'their 16' & 'their 12' or 'their 16' & 'their 8', i.e.18 and 18 – 'their 12' or 18 and 18 – (28 – 'their 16') or 17 and 17 – (8 – 'their 5') – 'their 8' or 17 and 17 – (8 – 'their 5') – (24 - 'their 16')
		May be probabilities or frequencies
$\frac{16+6}{50}$	M2	FT 'their 16' and 'their 6' for M1 or M2
		M1 for sight of either $\frac{16}{10}$ or $\frac{6}{10}$ or
		50 50 equivalent or sight of 'their (16 + 6)'
22	A1	CAO
${50}$ or equivalent		
	(7)	
16.		
BG = DF (pentagon regular, given)	ВТ	
Angle <i>AGB</i> = angle <i>EFD</i> (exterior angles of regular pentagon)	B1	
Angle <i>ABG</i> = angle <i>EDF</i> (exterior angles of regular pentagon)	B1	
All necessary reasons given	E1	Allow exterior angles of a regular pentagon to be stated once only.
(Triangles are congruent) ASA	B1	Dependent on all previous marks having been awarded.
17 (a)	(5)	
$\frac{22}{2}$		
$(\text{length}=)\frac{1}{1+2\sqrt{3}}$	M1	
$\frac{22}{1+2\sqrt{3}} \times \frac{1-2\sqrt{3}}{1-2\sqrt{3}}$	M1	
$22 - 44\sqrt{3}$	M1	
1-4(3)		
$-2+4\sqrt{3}$	A1	

17.(b) $x = (-2 + 4\sqrt{3})^2 + (1 + 2\sqrt{3})^2$	M1	FT 'their $-2+4\sqrt{3}$ ' for M1 only
$4 - 8\sqrt{3} - 8\sqrt{3} + 16(3) + 1 + 2\sqrt{3} + 2\sqrt{3} + 4(3) = 65 - 12\sqrt{3}$ 18.(a) Correct explanation. e.g. $\frac{8}{6} = \frac{4}{3}$ and $6^2 + 8^2 = 10^2$ or equivalent or draws a 3,4,5 triangle and a 6,8,10 triangle and states they are similar	A1 (6) B2	NB Answer is given Must use both the gradient and the length of <i>OA</i> . B1 for a correct partial explanation e.g. $\frac{8}{6} = \frac{4}{3}$ or $6^2 + 8^2 = 10^2$ or equivalent or draws a 3,4,5 triangle and a 6,8,10 triangle
18.(b) (Gradient of tangent =) $\frac{-1}{-1}$	M1	
(Gradient of tallgent =) $\frac{4}{3}$ $8 = -\frac{3}{4} \times 6 + c$ $y = -\frac{3}{4}x + \frac{25}{2}$ or equivalent $0 = -\frac{3}{4}x + \frac{25}{2}$ $\left(\frac{50}{3}, 0\right)$ or equivalent	m1 A1 M1 A1	FT 'their – ³ / ₄ ' CAO FT their equation of <i>AB</i> providing the gradient is negative. Allow a final answer of $x = \frac{50}{2}$
		Alternative method 1:Identifies similar triangles OAX and OBA, seen or impliedM1 $\frac{10}{6} = \frac{OB}{10}$, seen or impliedM1 $OB = 10 \times \frac{10}{6}$ M1 $OB = 10 \times \frac{10}{6}$ or equivalent CAOA1 $B\left(\frac{50}{3}, 0\right)$ or equivalentA1Alternative method 2:Identifies similar triangles OXA and AXB, seen or impliedM1 $\frac{BX}{8} = \frac{8}{6}$, seen or impliedM1 $OB = \frac{100}{6}$ or equivalent CAOA1 $B\left(\frac{50}{3}, 0\right)$ or equivalent CAOA1 $B=8 \times \frac{8}{6} + 6$ M1 $OB = \frac{100}{6}$ or equivalent CAOA1 $B\left(\frac{50}{3}, 0\right)$ or equivalent CAOA1 $B\left(\frac{50}{3}, 0\right)$ or equivalent CAOA1

$$\frac{A}{10} + \frac{A}{10} + \frac{A}{10}$$

19.(a)		
Translation through $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ where $h = 0$	54	
Translation through $\binom{k}{k}$ where $k > 0$	B1	(0,4)
Correct coordinates seen or scale marked	B1	× (-4,2)
19.(b)		T
Reflection in <i>y</i> -axis	B1	
Correct coordinates seen or scale marked	B1	(0,3)
	(4)	
20.(a)(i)	БО	
120	DZ	Billor $5 \times 4 \times 3 \times 2$ (×1) or 5! or equivalent
20.(a)(ii)		
2 or equivalent	B1	
5		
20.(b)	B2	ET 18 × 'their 120'
	DZ	
		$P1 \text{ for } 6 \vee 5 \vee 4 \vee 2 \vee 2 \vee 2 \text{ or } 3 \vee 7$
		$\begin{bmatrix} B & 101 & 0 \times 5 \times 4 \times 5 \times 2 \times 5 & 01 & - \mathbf{x} \\ & 7 & 7 \end{bmatrix}$
	(E)	or equivalent
21.(a)	(5)	
x-2		
$f'(x) = \frac{1}{5}$ or equivalent	B2	Award B1 for $x = \frac{y-2}{y-2}$ or equivalent
		Award B fior $x = \frac{1}{5}$ or equivalent
		unless <i>x</i> and <i>y</i> interchanged later
		c^{-1}
		SC1 for $y \text{ or } f^{-1}(x) = \frac{1}{5}$ or
		equivalent
r = 2		
$\frac{x-2}{5} = 10$	M1	
x = 52	A1	
		Alternative method:
		$f^{-1}(x) = 10$ means $x = f(10)$ B2
		f(10) = 5(10) + 2 M1
		x = 52 A1

21.(b)(i) $gf(x) = g(5x+2)$ or $gf(x) = (5x+2)^3$ or $gf(x) = (f(x))^3$	B1	Correct order of composition seen or implied.
$(5x+2)(5x+2)^2 = (5x+2)(25x^2+20x+4)$	M1	Seen or implied. Allow $(5x+2)^2 = 25x^2 + 20x + 4$ if
		$(5x+2)^3$ attempted
answer $125x^3 + 150x^2 + 60x + 8$	A1	NB Answer is given
21.(b)(ii)		
-27	(8)	
22.(a) $(x-3)^2 + 10$ or $a = -3, b = 10$	B3	B2 for sight of $\left(x - \frac{6}{2}\right)^2 - 3^2$ or B1 for sight of $\left(x - \frac{6}{2}\right)^2 \pm \dots$ Ignore '= 0' if seen.
22.(b) (3, 21)	B2	FT –'their a ' and 11 + 'their b ' B1 for each coordinate.
	(5)	