GCSE MARKING SCHEME

AUTUMN 2017

GCSE MATHEMATICS - COMPONENT 2 (HIGHER) C300UB0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Eduqas GCSE Mathematics Autumn 2017 Component 2 Higher Tier	Mark	Comment
$1.2 \times 330 \div 15$ (£)44	M1 A1 (2)	For a full method although may be seen in stages
2. $3000 \times 1.025^{\prime}$ (£)3566(.0572...) (£)434	M1 A1 B1 (3)	Or equivalent full method. Use of 25% in the calculation is not a misread CAO Provided at least 6 years of correct calculations, with incorrect interpretation of the number of years, allow MR-1, then possible M1, A1 but B0
$\begin{array}{ll} \text { 3(a) Midpoints } 2,5,8,12 & \\ 2 \times 4+5 \times 14+8 \times 10+12 \times 2 & \\ & \div 30 \\ & \\ & \\ & \\ & (.0666 \ldots \mathrm{~mm}) \end{array}$	B1 M1 m1 A1	FT 'their midpoints' provided these are at the bounds or within the groups $(8+70+80+24=182)$
3(b) Explanation, e.g. 'Hightown is only an estimate', 'Hightown mean was calculated using midpoints', 'more of the Hightown results might be below the midpoints'	E1 (5)	Accept a suitable example
4(a) 2	B1	
4(b) 'Yes' selected or unambiguously implied AND a reason, e.g. 'Yes, $4+5$ ', 'Yes it is possible to score 9'	B1	Ignore further irrelevant statements
4(c) States or implies that the list to score 5 is incomplete, e.g. 'Ryan has missed $4+1$ and $3+2$ States or implies that number of ways of scoring 5 the number of outcomes is a correct method $4 / 20(=1 / 5)$	M1 M1 A1 (5)	Accept sight of 'their number of outcomes', provided 'their number of outcomes > 10, or sight of 1/5 ISW. Depends on M1, M1 previously awarded If no marks, allow SC1 for an answer of 2/20 or equivalent

$\begin{aligned} & 5(a) 11 x-9 x=25+3 \\ & 2 x=28 \text { or } x=28 / 2 \\ & x=14 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT until ${ }^{\text {nd }}$ error
5(b) $5 \mathrm{x}(\mathrm{x}+2)$	B2 (5)	B1 for a correct partially factorised answer, or 5 x (x ...) or $5 x(\ldots+2)$
6(a)(i) w+7 and 30 inserted, or equivalent	B1	Accept 2×15 for 30
$\begin{aligned} & 6(a)(i i) w^{2}+7 w=30 \text { leading to } \\ & w^{2}+7 w-30=0 \end{aligned}$	B1	CAO Must be convincing from their manipulation of algebraic terms
$\begin{aligned} & 6(\mathrm{a}) \text { (iii) }(\mathrm{w}+10)(\mathrm{w}-3) \\ & \qquad \mathrm{w}=3 \text { with } \mathrm{w}=-10 \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	$\text { B1 for }(w-10)(w+3)$ FT from B1
$\begin{gathered} 6(\mathrm{a}) \text { (iv) }\left(\begin{array}{c} 7-\mathrm{w}=) 4(\mathrm{~cm}) \text { and } \\ (2 \mathrm{w}=) 6(\mathrm{~cm}) \end{array}\right. \end{gathered}$	B1	CAO There should not be any evidence of working with a negative value for w , without it being dismissed. If not dismissed, then B0
6(b) Use of right-angled triangle with trigonometry with sight of 4.4 or 18.6-14.2 $\begin{aligned} & (y=) \tan ^{-1} \frac{3.3}{18.6-14.2} \text { or equivalent } \\ & 36\left(.8698 \ldots .^{\circ}\right) \text { or } 36.9\left(^{\circ}\right) \text { or } 37\left({ }^{\circ}\right) \end{aligned}$	S1 M2 A1 (10)	M1 for $\tan \mathrm{y}=3.3$ or equivalent $18.6-14.2$ ISW following sight of 36.86... Do not accept $36.8\left({ }^{\circ}\right)$
7. Density $\begin{aligned} 4 / 3 \times \frac{1538}{\pi \times 3.6^{3}} & \left(\mathrm{~g} / \mathrm{cm}^{3}\right)\end{aligned}$ $7.86\left(\ldots \mathrm{~g} / \mathrm{cm}^{3}\right)$ or $7.87\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ AND states 'iron'	M3 A2 (5)	M2 for 1.538 or with other place value error $4 / 3 \times \pi \times 3.6^{3}$, OR M1 for 'digits 1538' 'their volume' provided 'their volume' is dimensionally correct OR M1 for sight of $4 / 3 \times \pi \times 3.6^{3}$ CAO A1 for $7.86\left(\ldots\left(\mathrm{~g} / \mathrm{cm}^{3}\right)\right)$ or $7.87\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$
8. $\pi \times 1.22(\mathrm{~m})$ or $\pi \times 0.00122(\mathrm{~km})$ $\times 2.4 \times 10^{6}$ For an answer in the range 9193 to 9200 (km)	M1 m1 A1 (3)	Or equivalent Allow M1 for $\pi \times 1.22 \times n$ or $\pi \times 0.00122 \times n$ where $\mathrm{n}>1$ CAO. No FT from incorrectly considering more than 1 wheel

\begin{tabular}{|c|c|c|}
\hline 9(a) (3x+11y =) 180 \& B1 \& \\
\hline \begin{tabular}{l}
\(9(b) 6 x+7 y=180\) \\
Method to eliminate variable, e.g. equal coefficients and method to find second variable \\
First variable \\
Second variable OR (from \(1^{\text {st }}\) variable \(y=12\)) \(3 x=48\) \\
Decision to evaluate (7y (=84),) 4y (=48) and \(3 x(=48)\) with a conclusion, e.g. 'ABC is an isosceles triangle as \(4 y=3 x=48\) '
\end{tabular} \& B1
M1

A1
A1
E2

(7) \& | FT provided at least one equation is correct and the other is of equivalent difficulty. |
| :--- |
| Allow 1 error in one term, not one with equal coefficients $x=16 \text { or } y=12$ |
| FT their first variable provided M1 previously awarded |
| CAO, not FT. Accept 'therefore' as a conclusion correct angles stated |
| FT for award of E1 only, for an attempt to evaluate at least $4 y$ with $3 x$ using 'their x ' and 'their y ' |
| Alternative: $\begin{array}{ll} \begin{array}{l} 6 x+7 y=180 \\ 6 x+7 y=3 x+11 y \text { or } 6 x=4 y+3 x \text { or equivalent } \end{array} & \text { M1 } \\ 6 x-3 x=11 y-7 y \text { or } 6 x-3 x=4 y & \text { (so) } 3 x=4 y \end{array} \quad \text { A1 }$ |

\hline 10(a) $y=4-3 x$ \& B1 \&

\hline 10(b) $y=2 x+4$ \& | B2 |
| :--- |
| (3) | \& B1 for $\mathrm{y}=2 \mathrm{x} \pm \ldots$ or $\mathrm{y}=\ldots \mathrm{x}+4$

\hline 11(a) 138(${ }^{\circ}$) \& B2 \& B1 for sight of an appropriate $48\left({ }^{\circ}\right)$ and $42\left({ }^{\circ}\right)$, or for $180\left({ }^{\circ}\right)-42\left({ }^{\circ}\right)$ or $132\left({ }^{\circ}\right)$ or $360\left({ }^{\circ}\right)-90\left({ }^{\circ}\right)-132\left({ }^{\circ}\right)$

\hline \[
$$
\begin{aligned}
& \text { 11(b) Start to Dolphin Reach }=\underline{3.8} \\
& \qquad 4.7(\mathrm{~km})
\end{aligned}
$$

\] \& | M2 |
| :--- |
| A2 (6) | \& | M1 for $\sin 54^{\circ}=3.8 /$ distance |
| :--- |
| A1 for $4.697 \ldots(\mathrm{~km})$ rounded or truncated (other than to 2 s.f. as required) |

\hline
\end{tabular}

12. Idea to work with the area of the cross-section \times width of the pool	S1	
Area of the cross-section, e.g. trapezium $1 / 2(1.4+2.2) \times 20$, or 2 rectangles $x \times 1.4+(20-x) \times 2.2$ where x is a value used <20, or other more complex split of areas	M1	Candidates may split the area into a number of trapezia or rectangles Allow 1 slip or 1 error
Area of cross-section $\times 12$	m1	
Volume, e.g. Using:	A1	Volume calculated correctly
Trapezium or 2 rectangles $x=10$ $432\left(\mathrm{~m}^{3}\right)$,		Do not FT from 1 slip or 1 error
Two rectangles $x=8 \quad 451.2\left(\mathrm{~m}^{3}\right)$,		Two rectangles $\mathrm{x}=1 \quad 518.4\left(\mathrm{~m}^{3}\right)$
Two rectangles $x=12 \quad 412.8\left(\mathrm{~m}^{3}\right)$		Two rectangles $x=19 \quad 345.6\left(\mathrm{~m}^{3}\right)$
Assumption, e.g. correct description of the pool floor used, i.e. crosssection is a trapezium or split into rectangles, OR e.g. correct description of the sides being vertical	E1	FT provided S1 awarded
Showing or describing the impact of the assumption, with the actual volume possibly being the same or greater or less than the one calculated	E1	FT provided S1 awarded
13(a)		May be completed for each of the 3 days separately
$\begin{aligned} & \text { (Total distance }=\text {) } \\ & 52 \times 31 / 2+45 \times 21 / 3+44 \times 1.75 \\ & \quad(=182+105+77) \end{aligned}$	M2	For M2 allow use of 2.33 for $21 / 3$, but not 2.3 M1 for incorrect notation, 3(.)30 for 3.5 hours, $2()$. for 2 hours 20 minutes and 1(.)45 for 1 hour 45 minutes, OR M1 for any 1 of the 3 terms correct
$364 \text { (miles) }$	A1	CAO, do not accept 363.85 from use of 2.33 for $21 / 3$ May be implied in further work
(Number of gallons of fuel used) $364 \div 40$	M2	FT 'their derived 364' (= 9.1 gallons)
AND (Number of litres used) $\div 0.22$ (= 41.36... litres)		M1 for $364 \div 40$ or $364 \div 0.22$
(Cost is) $41.36 \ldots \times 1.25$	m1	FT provided the previous M2 awarded
(£) $51.7(0)$	A1	CAO, although accept answers in the range ($£$) 51.62 to ($£$) 52 inclusive

13(b)(i) Estimate (£) 103.40 to ($£) 103.41$ or ($£$) 103 or (£)100 or (£)104 or (£)105 or (£)110	B1	Allow answers in the range ($\mathfrak{£}$) 100 to $(£) 110$ If an amount is not $(\mathcal{£}) 103.40$ to ($£$) 103.41 , then 'their estimate' must be a whole number of $£ s$ Similarly accept FT ' $2 \times$ their (a)' with an equivalent range
13(b)(ii) Reason, e.g. 'don't know distance travelled', 'don't know his speed for this other time', 'could be different fuel consumption', 'price of fuel might change'	E1 (9)	Do not accept, e.g. 'because it is not accurate'
14(a) 2 (tiles left over)	B2	B1 for (Pattern 5 uses) 73 (tiles) or $75-\left(2 \times 6^{2}+1\right)$
$\text { 14(b) } 2(n+1)^{2}+1 \text { or } 2 n^{2}+4 n+3 \text { or }$ equivalent	B2	ISW B1 for sight of $(n+1)^{2}$ or equivalent or for sight of $2 n^{2}$
14(c) Demonstrates correctly, e.g. $2 \times 20^{2}+1=801 \text { and }$ $2 \times 19^{2}+1=723$, OR (omitting the +1), considering $2 \times 19^{2}=722$ and $2 \times 20^{2}=800$ OR $(\mathrm{n}+1)^{2}=397.5$ with an indication that n cannot be a whole number, OR statement that complete designs all have an odd number of tiles, i.e. '796 is not odd and all designs use an odd number of tiles', or '796 is even and all designs use an odd number of tiles' OR $\begin{aligned} & 2 n^{2}+4 n+3=796 \text { so } \\ & 2 n^{2}+4 n-793=0 \end{aligned}$ with substitution of $n=18$ to give -73 , $n=19$ to give 5	B1	
15(a) 0.3 indicated for no cereal Idea $0.7 \times \ldots=0.28$ P (toast) $=0.4$ Second branches 0.40 .60 .40 .6	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	In working or on tree In working or on tree FT from their P (toast) provided M1 awarded
$\begin{array}{r} 15 \text { (b) } 0.3 \times 0.6 \\ \\ =0.18 \end{array}$	A1 (6)	FT 'their $0.3^{\prime} \times$ 'their 0.6^{\prime} from their lowest branches in (a)

$\begin{aligned} & \text { 16. }\left(\mathrm{DA}^{2}=\right) 20^{2}+15^{2} \text { or } \\ & \mathrm{DA}^{2}=625 \text { or } D A=\sqrt{ } 625 \\ & D A=25 \text { (metres) } \end{aligned}$	M1 A1	
Area triangle ($1 / 2 \times 15 \times 20=)$		
Area DAE in the range 327.08 to 327.4 or $625 \pi / 6\left(\mathrm{~m}^{2}\right)$	B2	FT 'their derived 25 ' provided $\neq 15$ and $\neq 20$ B1 for $\pi \times 25^{2} \times 60 \div 360$, OR B1 for an answer of 270.6 to $271\left(\mathrm{~m}^{2}\right)$ from Area DAE as a triangle, FT 'their 25 ' for DA: $1 / 2 \times 25 \times 25 \times \sin 60^{\circ}=270.6\left(3 . . \mathrm{m}^{2}\right) O R$ $1 / 2 D E$ straight $=25 \times \sin 30^{\circ}=12.5(\mathrm{~m})$ and A to midpoint $D E=25 \times \cos 30^{\circ}=21.65(\ldots \mathrm{~m})$, and $12.5 \times 21.65(\ldots)=270.6\left(3 \ldots m^{2}\right)$
Area CAB in the range 88.3 to 88.4 or $225 \pi / 8 \quad\left(\mathrm{~m}^{2}\right)$	B2	B1 for $\pi \times 15^{2} \times 45 \div 360$, OR B1 for an answer of 79.5 to $80\left(\mathrm{~m}^{2}\right)$ from Area CAB as a triangle: $1 / 2 \times 15 \times 15 \times \sin 45^{\circ}=79.5\left(4 . . \mathrm{m}^{2}\right) O R$ $1 / 2 C B$ straight $=15 \times \sin 22.5^{\circ}=5.7(4 \ldots m)$ and A to midpoint $C B=15 \times \cos 22.5^{\circ}=13.8(58 \ldots \mathrm{~m})$, and $5.7(4 \ldots) \times 13.8(58 \ldots)=\underline{79.5\left(4 \ldots m^{2}\right)}$
Total area answer in the range 565 to 566 (m^{2})	B1	CAO. Not FT from area of triangles
Assumption, e.g. '(area of) sector(s) of a circle', 'Shireen is correct to think DA = EA', 'Shireen is correct in thinking $A C=A B^{\prime}$	E1	Allow descriptions of a sector of a circle FT assumption '(area of) triangle(s)' provided implies knowing that 'their area(s)' will be less than the actual area(s)
	(9)	
17 (a)(i) $(10 / 6)^{3} \times 0.4$ $1.8(5 .$. litres) or $1.9($ litres $)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
$\begin{array}{lr} \text { 17(b) } & \pi \times r^{2} \times 4 r=30000 \\ \text { OR } & \pi \times(h / 4)^{2} \times h=30000 \end{array}$	M2	Accept use of letters other than ' r ' M1 for $\pi \times r^{2} \times h=30000$, or for sight of $\pi \times r^{2} \times 4 r$
$\begin{array}{ll} & r^{3}=30000 / 4 \pi \\ \text { OR } & h={ }_{3} \sqrt{ }(16 \times 30000 \div \pi) \end{array}$	A1	$\begin{aligned} & \left(r^{3}=2387 \ldots\right) \\ & \left(h^{3}=152788.745 \ldots \text { giving } h=53.46 \ldots(\mathrm{~cm})\right) \end{aligned}$
Radius of the drum is in the range 13.36 (cm) to 13.4 (cm)	A1	CAO, although accept rounded or truncated answers from correct working.
	(6)	

18. $5 x^{2}+10 x-73=0$ or	B2	B1 for $5 x^{2}+10 x=73$ or $x^{2}+2 x=73 / 5$
$\begin{aligned} & (x=) \frac{-10 \pm \sqrt{ }\left(10^{2}-4 \times 5 \times-73\right)}{2 \times 5} \text { or } \\ & \frac{-2 \pm \sqrt{ }\left(2^{2}-4 \times 1 \times-14.6\right)}{2 \times 1} \end{aligned}$	M1	Allow 1 slip in substitution, must be correct formula Accept a method of completing the square, with 1 slip for M1
$\begin{aligned} & \text { or } \\ & (x=) \frac{-10 \pm \sqrt{ } 1560}{10} \quad \text { or } \frac{-2 \pm \sqrt{ } 62.4}{2} \end{aligned}$		
$(x=) 2.94968 \ldots \text { with }-4.94968 \ldots$ or $\frac{-5 \pm \sqrt{ } 390}{5}$	A1	Accept rounded answers from correct working Allow truncated answers provided at least 2d.p. is shown, e.g. 2.94 with $-4.9(4 \ldots)$ or 2.9 with -4.94
	(4)	
19(a) Either starting $x=8-10 / x$ or starting with $x^{2}-8 x+10=0$, showing the 2 stages of rearrangement	B1	2 stages required either multiplication by x and ${ }^{\prime}=0$ ', or division by x and isolating the original ' x ' term
19(b) ($\mathrm{x}_{1}=5$ gives) $\mathrm{x}_{2}=6$	M1	
Sight of	m1	Must be shown to at least 3 d.p.
Solution to 2 d.p. is 6.45	A1	Do not allow FT from M0
		$\begin{aligned} & x_{2}=6 \\ & x_{3}=6.333 \ldots \\ & x_{4}=6.421 \ldots \\ & x_{5}=6.4426 \ldots \\ & x_{6}=6.4478 \ldots \\ & x_{7}=6.449 \ldots \\ & x_{8}=6.449 \ldots \end{aligned}$
	(4)	
20(a) (27) $\div 60 \div 60$	M1	
$7.5(\mathrm{~m} / \mathrm{s})$	A1	
Reading from graph 40 (seconds)	B1	FT from 'their $7.5 \mathrm{~m} / \mathrm{s}$ ' provided at least M1 previously awarded
20 (b)(i) Sight of tangent at $\mathrm{t}=30$	S1	
Use of difference in vertical difference in horizontal	M1	
Correct evaluation ($\mathrm{m} / \mathrm{s}^{2}$ or ms^{-2})	A1	Must be negative
20(b)(ii) Reasonable statement, e.g. 'the trend is positive acceleration not negative', 'at $t=30$ it is almost zero acceleration but generally it is positive'	E1	Allow FT from (b)(i) being zero, but no FT from (b)(i) being positive

