GCSE MARKING SCHEME

AUTUMN 2019

GCSE
MATHEMATICS - COMPONENT 2 (HIGHER TIER)
C300UB0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE MATHEMATICS

COMPONENT 2 - HIGHER TIER

AUTUMN 2019 MARK SCHEME

Eduqas Autumn 2019 C2 Higher Tier		
1.* ${ }^{*} 500 \times 1.034^{25}=(£) 1153.41$	M1 A2 (3)	Or equivalent full method Must be to the nearest penny A1 for (£) 1153.40 ($9 \ldots$...)
$\begin{aligned} & \text { 2.* Sight of } \\ & x+5+x-10+x-75(+125) \\ & \\ & \left.\begin{array}{ll} \text { or } & 3 x-80+125 \end{array}\right)=360 \\ & \text { or } \\ & \\ & \end{aligned}$	B1 B1 B1 (3)	Implies previous B1 FT 'their $x+5+x-10+x-75$ ' provided it contains at least 2 of the appropriate angle terms, simplified and correctly equated CAO. An answer ' $x=105$ ' without previous equation is awarded BO
3.* $64 \mathrm{~km} / \mathrm{h}$ is $64 \times 50 \div 80$ 40 (mph) $12 \times 1.3+24 \times 1.2$ or for sight of 15.6 and 28.8 $44.4 \text { (m) }$	M1 A1 M1 A1 (4)	CAO FT 'their mph' for one of: - intention to calculate ' $a \times 1.3+b \times 1.2$ ’ - correctly evaluated ' $a \times 1.3$ and $b \times 1.2$ ' provided 'their b ' > 'their a ' Only FT for speeds used from the table
$\begin{array}{r} 4(\mathrm{a})^{*} 6 x^{2}-16 x-21 x+56 \\ 6 x^{2}-37 x+56 \end{array}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for any 2 terms correct FT for equivalent level of difficulty, providing at least 3 terms to consider and like terms to collect
$\begin{array}{rr} 4(b)(w+11)(w-3) & (=0) \\ w=-11 & \text { with } w=3 \end{array}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \hline \text { B1 for (w ...11)(w ... 3) } \\ & \text { STRICT FT from 'their pair of brackets' } \end{aligned}$
4(c) (b-12)(b+12)	B1	
$4(\mathrm{~d}) \mathrm{e}=(\pm) \frac{\mathrm{t}^{2}}{3}$	(9)	B1 for $e=\frac{t^{x}}{3}$ or $e=y t^{2}$, where $x \neq 0$ and $y \neq 0$

5(a)* 2.6 (cm)	B1	
5(b)* Mid points 2, 3, 4, 5, 6 $2 \times 4+3 \times 2+4 \times 1+5 \times 0+6 \times 3$ $\div 10$ $3.6 \text { (cm) }$	B1 M1 m1 A1	FT 'their mid points' provided 4 lie within, including 'bounds', of the groups, allow 1 of the mid points is outside the group
$5(\mathrm{c})^{*} 5 \times 4.7+23.9 \div 6 \quad 7.9(\mathrm{~cm})$	M1 m1 A1 (8)	
6(a)* Sight of appropriate measurements $0.8(\mathrm{~m})$ and $1.2(\mathrm{~m})$ Full method to find the correct angle, e.g. $\tan \mathrm{x}=0.8 / 1.2$ ($\mathrm{x}=$) $\tan ^{-1} 0.8 / 1.2$ $33.69 . . .\left({ }^{\circ}\right)$ or $33.7\left({ }^{\circ}\right)$ or $34\left({ }^{\circ}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT 'their $2.5-1.7$ ' and 'their $2.4 \div 2$ ' If M0, A0 then award SC1 for an answer of $56\left(.3^{\circ}\right.$) (or equivalent unrounded irrespective of any labelling on the diagram
$\begin{aligned} & \hline 6(\mathrm{~b})^{*} \quad 2.4 \times 2.04 \div 1.7 \\ & \text { or } 2.5 \times 2.04 \div 1.7 \\ & 2.88(\mathrm{~m}) \text { or } 2.9(\mathrm{~m}) \\ & 3(\mathrm{~m}) \end{aligned}$	A1 A1 (7)	

11(a) $5 \mathbf{x}-8 \mathbf{y}$	B1	
11(b)(i) $6 \mathbf{x}+3 \mathbf{y}$	B1	
11(b)(ii) - \mathbf{x} - $3 \mathbf{y}$	B1	FT '- (b)(i) + 5x' simplified correctly
11(c) States or implies ' No ' with a reason, e.g. ' $5 \mathbf{x}-8 \mathbf{y}$ is not a multiple of $-\mathbf{x}-3 \mathbf{y}$ '	E1 (4)	
12(a) $(2 x+3)(2 x+5)(=0)$ $x=-3 / 2$ with $x=-5 / 2$ ISW	B2 B1	If not B2, award B1 for $(2 x \pm 3)(2 x \pm 5)$ $\text { or }(x+5 / 2)(x+3 / 2)$ Strict FT from 'their pair of brackets' provided equivalent level of difficulty, with at least one answer a fraction
12(b) $\mathrm{n}^{2}+6$	B2	B 1 for $\mathrm{n}^{2} \pm \mathrm{a}$, where $\mathrm{a} \neq 0$
12(c) $x=5.5$	B2	B1 for sight of any one of the following: - $\frac{3 x+1}{x / 2+6}=2$ - $\frac{3 x+1}{2}=x / 2+6$ - $3 x+1=2(x / 2+6)$ - $2 x=11$ - at least 2 correct trials
Total number of hours 8.75 (hours) $5(:) 45 \mathrm{pm}$ or $17(:) 45$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT 'their number of hours' provided at least B1 previously awarded
$12(\mathrm{~d})(\mathrm{x}+9)^{2} \pm \ldots$ (Minimum value at $x=$) -9 (Minimum value is) $\quad-79$	M1 A1 A1 (12)	

17. $\sin \mathrm{BA} C=\frac{4.1}{2 \times 3.6}$	M1	
180-93- $\sin ^{-1} 4.1 / 7.2$ or 180-93-34.7(...) or equivalent	m1	
Convincing 52.3(${ }^{\circ}$)	A1	
States: Angle in a semi-circle AND angles in the same segment	E1	If no marks award SC1 for sight of ($\sin ^{-1} 4.1 / 7.2=$) 34.7(....)
		Alternatives: - using angles from the same chord and cos - finding BAC, then CAD $=87-$ BAC (cyclic quadriateral), $D B C=C A D$ (angles on the same arc)
	(4)	

