



## **GCSE MARKING SCHEME**

**AUTUMN 2020** 

GCSE MATHEMATICS – COMPONENT 2 (HIGHER TIER) C300UB0-1

© WJEC CBAC Ltd.

## INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## EDUQAS GCSE MATHEMATICS AUTUMN 2020 MARK SCHEME

| GCSE (9-1) Mathematics<br>Component 2: Higher Tier                                                                                                                                                                                                                           | Mark           | Comment                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------|
| $\frac{1(a)}{\frac{6500-5720}{6500}} \times (100) \text{ or } (1-\frac{5720}{6500}) \times (100)$                                                                                                                                                                            | M1             |                                                                                                       |
| = 12(%)                                                                                                                                                                                                                                                                      | <u>A1</u>      | If no marks, award SC1 for an answer of 88%                                                           |
| 1(b)<br>8495 × (1 – 0.16) <sup>11</sup>                                                                                                                                                                                                                                      | M2             | May be seen in stages<br>M1 for sight of 8495 × 0.84 (=7135.8) oe                                     |
| (£)1248.06(0) or (£)1248                                                                                                                                                                                                                                                     | A1             | ISW<br>Allow (£)1248.1(0)                                                                             |
|                                                                                                                                                                                                                                                                              | (5)            |                                                                                                       |
| 2*.<br>(Interior angle of the heptagon =)<br>$180 - 360 \div 7$<br>OR $(7 - 2) \times 180 \div 7$<br>OR $(7 \times 180 - 360) \div 7$                                                                                                                                        | M1             |                                                                                                       |
| =128.6(°) or 128.57()(°)                                                                                                                                                                                                                                                     | A1             | May be seen on diagram.<br>FT 'their derived 128 6'                                                   |
| (360 - 90 - 90 - 128.6 =) 51.4(28°)                                                                                                                                                                                                                                          | B1             | May be seen on diagram                                                                                |
| $(180 - 51.4(28)) \div 2 = 64.285 \text{ to } 64.3$                                                                                                                                                                                                                          | B1             | CAO                                                                                                   |
| Alternative method 1 working from 64.3<br>(Unique angle in triangle =)<br>(180 - 64.3 - 64.3) = 51.4<br>(Interior angle of the heptagon =)<br>(360 - 90 - 90 - 51.4) = 128.6<br>(Interior angle of the heptagon =)<br>$180 - (360 \div 7)$<br>OR $(7 - 2) \times 180 \div 7$ | B1<br>B1<br>M1 | FT 'their 180 – 64.3 – 64.3'<br>Only awarded if this is clearly the interior angle<br>of the heptagon |
| $OR(7 \times 180 - 360) \div 7$<br>=128.6 or 128.57(°)                                                                                                                                                                                                                       | Δ1             |                                                                                                       |
| Alternative method 1a for final 2 marks<br>(Sum of the interior angles of a heptagon=)<br>$(7-2) \times 180$ o.e                                                                                                                                                             | M1             | M0 for 'their 128.6 × 7' = 900(.2) alone                                                              |
| 900                                                                                                                                                                                                                                                                          | A1             | Allow for 900 and 900.2                                                                               |
| Alternative method 2 using exterior angles<br>Exterior angle (of the heptagon) =<br>360 ÷ 7                                                                                                                                                                                  | M1             | Method must be seen                                                                                   |
| = 51.4(28°)                                                                                                                                                                                                                                                                  | A1             |                                                                                                       |
| (Unique angle in triangle = )<br>(360 – 90 – 90 – (180 - 51.4(28°)))<br>= 51.4(28°)                                                                                                                                                                                          | B1             | May be seen on diagram.<br>FT 'their derived 51.4(28…)                                                |
| Working to show that<br>(x =) (180 – 51.4(28))÷ 2 = 64.3                                                                                                                                                                                                                     | B1             | May be seen on diagram.<br>CAO                                                                        |
| [                                                                                                                                                                                                                                                                            | (4)            |                                                                                                       |

| 3.*<br>(1 – 0.8(0)) × 40<br>OR 40 – 0.8(0) × 40<br>OR (0.15 + 0.05) × 40<br>OR 0.15 × 40 + 0.05 × 40                                                                                  | M2  | M1 for sight of one of the following:<br>• 1 - 0.8(0)<br>• 0.15 + 0.05<br>• 0.2(0)<br>• 0.8(0) × 40<br>• 32<br>• 0.15 × 40<br>• 0.05 × 40                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8                                                                                                                                                                                     | A1  | CAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                       | (3) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.*<br>( $h = $ ) $\frac{500}{\pi \times 3.5^2} = 500/38.4(8)$                                                                                                                        | M2  | M1 for $500 = \pi \times 3.5^2 \times h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (h =) 12.98() to 13 (cm)                                                                                                                                                              | A1  | CAO<br>Not from wrong working<br>If no marks award SC1 for an answer of:<br>25.97 to 26(.0) from $500 = \frac{1}{2}\pi \times 3.5^2 \times h$<br>OR 38.96 to 39(.0) from $500 = \frac{1}{2}\pi \times 3.5^2 \times h$                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                       | (3) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5(a)<br>Any valid reason e.g.<br>'10 years is too far ahead to predict'<br>'the paper might not be produced if sales<br>continue to fall'<br>'the change each time is not consistent' | B1  | If a satisfactory reason is given ignore further<br>spurious comments.<br>Allow e.g.<br>'because the sales may not follow the pattern<br>of the graph'<br>'there is not an equal; drop in numbers sold<br>every 5 years'<br>'it's too far in the future we cannot tell'<br>'it could increase instead of decrease'<br>'more people may read the paper on the<br>internet'<br>Do not allow statements that do not relate to<br>the graph e.g.<br>'there might be more or less than 10 000 sold<br>in 2025' as no reference to the trend<br>'we can't tell' as no reference to time or trend |
| 5(b)<br>(52 000 000 ÷ (16 + 9) ×16                                                                                                                                                    | M1  | Allow a place value slip in 52 000 000 for M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 33 280 000                                                                                                                                                                            | A1  | Allow 33 000 000 and 33 300 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                       | (3) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| $ \begin{array}{l} 6.* \\ 5x + 40 = 6x + 20 \end{array} $                                                                                                                         | M1             | Allow for $5 \times 20 + 40 = 6 \times 20 + 20$ which may be seen in stages                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x = 20<br>5 × 20 + 40 + y + 35 = 180 OR<br>6 × 20 + 20 + y + 35 = 180 OR<br>5 × 20 + 40 + 2(y + 35) + 6 × 20 + 20 = 360                                                           | A1<br>M2       | FT 'their 20' for possible M2 provided previous<br>M1 awarded<br>May be seen in stages.                                                                             |
| v = 5                                                                                                                                                                             | Δ1             | M1 for a correct equation<br>5x + 40 + y + 35 = 180<br>or $6x + 20 + y + 35 = 180$<br>or $5x + 40 + y + 35 = 180$<br>or $5x + 40 + y + 35 + 6x + 20 + y + 35 = 360$ |
| 6.* Alternative method (using simultaneous                                                                                                                                        |                |                                                                                                                                                                     |
| Writes two correct equations in x and y<br>5x + 40 + y + 35 = 180<br>or $6x + 20 + y + 35 = 180$<br>or $5x + 40 + y + 35 = 180$<br>or $5x + 40 + y + 35 + 6x + 20 + y + 35 = 360$ | М2             | M1 for each correct equation<br>May be simplified                                                                                                                   |
| Method to eliminate variable, e.g. equal coefficients and method to find second variable                                                                                          | m1             | Allow one error in one term but not with equal coefficients                                                                                                         |
| Finds the value of the first variable                                                                                                                                             | A1             | CAO<br>x = 20 OR y= 5                                                                                                                                               |
| Second variable                                                                                                                                                                   | A1             | FT 'their first variable'                                                                                                                                           |
|                                                                                                                                                                                   | (5)            |                                                                                                                                                                     |
| 7.*<br>Correct perpendicular bisector construction<br>with appropriate arcs                                                                                                       | B2             | B1 for perpendicular bisector within tolerance $(\pm 2^\circ)$ without arcs or with invalid arcs or for correct pair of arcs that intersect twice                   |
| Correct angle bisector construction of <i>XOY</i> with appropriate arcs                                                                                                           | B2             | B1 for angle bisector within tolerance $(\pm 2^{\circ})$ without arcs or with invalid arcs or for a correct pair of arcs                                            |
| Correct point indicated                                                                                                                                                           | B1             | FT provided at least B1, B1 awarded; may be implied by intersecting loci                                                                                            |
|                                                                                                                                                                                   | (5)            |                                                                                                                                                                     |
| 8*(a)<br>$(x^2 = ) 11.3^2 - 8.6^2$<br>$x^2 = 53.73 \text{ or } (x =) \sqrt{53.73}$<br>(x =) 7.3(3  cm)                                                                            | M1<br>A1<br>A1 | FT from M1 for the correctly evaluated square root of 'their 53.73' provided 'their x < 11.3'                                                                       |
| 8(b)                                                                                                                                                                              | <br>           | If no marks award SC2 for an answer of $7.3(3)$ seen from use of $8.6^2 - 11.3^2$                                                                                   |
| $cos(y) = 8.6 \div 13.5$<br>(y = ) cos <sup>-1</sup> (8.6 \div 13.5)<br>(y = ) 50(.4°)                                                                                            | M1<br>m1<br>A1 | Accept any equivalent full method                                                                                                                                   |
|                                                                                                                                                                                   |                |                                                                                                                                                                     |

| 9.<br>(7·3 × 60 ÷ 50) – (7·3 × 60 ÷ 70)                                                                                                                                                                           | М3                     | May be seen in stages<br>Allow M3 for $(7 \cdot 3 \times 60 \div 70) - (7 \cdot 3 \times 60 \div 50)$<br>M2 for $7 \cdot 3 \div 50 - 7 \cdot 3 \div 70$<br>$(=0 \cdot 146 - 0 \cdot 104 = 0 \cdot 0417 \text{ or } 0 \cdot 042)$<br>may be embedded in other calculations<br>OR $7 \cdot 3 \times 60 \div 50$ (=8.76 min)<br>OR $7 \cdot 3 \times 60 \div 70$ (= 6.257 min)<br>M1 for $7 \cdot 3 \div 70$ (=0 \cdot 104)<br>OR $7 \cdot 3 \div 50$ (=0 \cdot 146.) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2·5 (mins)                                                                                                                                                                                                        | A1<br>(4)              | CAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10(a)<br>7476 ÷ (10 + 8 + 3) × 2 = 712<br>OR (712 ÷ 2) × (10 + 8 + 3) = 7476<br>OR 7476 ÷ (10 + 8 + 3) × 10<br>$-7476 \div (10 + 8 + 3) \times 8 = 712$                                                           | B2                     | B1 for sight of 7476 ÷ (10 + 8 + 3) (=356)<br>Not for 356 from 712 ÷ 2<br>OR 3560 OR 2848 OR 1068                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{10(b)}{\frac{5}{8}}$ or 2 : 1 oe                                                                                                                                                                           | B1                     | Allow for 5 × n ÷ 8 AND 2 × n ÷ 3 where n is<br>any value                                                                                                                                                                                                                                                                                                                                                                                                          |
| (5 : 3 AND) 6 : 3<br>OR 0.62(5) AND 0.66() or 0.67<br>OR 62(.5)% AND 66()% or 67%<br>OR 15/24 AND 16/24<br>OR 1.6() : 1 or 1.7 : 1 AND 2 : 1<br>OR 1 : 0.6 AND 1 : 0.5<br>AND Third match unambiguously indicated | B1                     | Allow for the correct evaluation of both<br>'their 5 × n ÷ 8 AND 2 × n ÷ 3'<br>AND Third match unambiguously indicated                                                                                                                                                                                                                                                                                                                                             |
| 11.                                                                                                                                                                                                               | (+)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\frac{1270 - 900 (=370)}{\frac{370}{400} \times 1000 (=925) \text{ or } \frac{370}{400} \times 600 (=555)}$                                                                                                      | M1<br>m1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1270 – 925 or 900 - 555<br>345 (g)                                                                                                                                                                                | m1<br>A1               | CAO<br>If M1 m0 m0 A0 then award SC1 for an<br>answer of 653(.33g) from use of 400 ml<br>remaining                                                                                                                                                                                                                                                                                                                                                                 |
| Alternative method<br>1270 – 900 (=370)<br>(Bottle and 200 ml have mass) 900 – 370<br>(= 530 g)                                                                                                                   | M1<br>m1               | FT 'their 1270 – 900'                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (Mass of bottle =) 530 – 370 ÷ 2<br>345 (g)                                                                                                                                                                       | m1<br><u>A1</u><br>(4) | CAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12(a)<br>-2.2                                                                                                                                                                                                     | B1                     | CAO<br>B0 for (3.5, -2.2)                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12(b)<br>5.6                                                                                                                                                                                                      | B2                     | B1 for 3.5 – 1.4 or 3.5 + (3.5 - 1.4) or clear<br>evidence of attempting one of these.<br>Accept 3.45 to 3.55 as 'their 3.5'                                                                                                                                                                                                                                                                                                                                       |
| 13.                                                                                                                                                                                                               | (3)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(3.30 \times 10^{23}) \div (6.08 \times 10^{19})$                                                                                                                                                                | M1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5430 or 5.43 × 10 <sup>3</sup>                                                                                                                                                                                    | A2                     | A1 for 5427·(6…) or 5428 or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [                                                                                                                                                                                                                 | (3)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 14.                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4n^2 - 4n + 1$                                                                                                    | B1       |                                                                                                                                                                                                                                                                                                                                                                     |
| Correct justification e.g. $4n^2$ and $4n$ are                                                                     | B1       | Dep on first B1                                                                                                                                                                                                                                                                                                                                                     |
| even so $4n^2 - 4n + 1$ is odd'                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                     |
| or ' = $4(n^2 - n) + 1$ or '= $2(2n^2 - 2n) + 1$ '                                                                 |          | If no marks allow SC2 for a complete<br>explanation e.g. $2n$ is even, so $2n-1$ is odd,<br>odd × odd=odd, so $(2n - 1)^2$ is odd<br>or SC1 for a partial explanation e.g. $2n-1$ is<br>odd, odd × odd=odd, so $(2n - 1)^2$ is odd<br>SC1 for a complete justification with one error<br>in the expansion: $4n^2 - 4n - 1$ OR $4n^2 + 4n + 1$<br>OR $4n^2 - 2n + 1$ |
|                                                                                                                    | (2)      |                                                                                                                                                                                                                                                                                                                                                                     |
| 15.                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                     |
| a + b = 19                                                                                                         | B1       | Allow for $a + 5 + 1 + b + 2 + 3 = 30$                                                                                                                                                                                                                                                                                                                              |
| (a + 2×5 + 1×3 + 4b + 5×2 + 6×3) ÷ 30=2.7<br>OR (a + 4b + 41) ÷ 30 = 2.7<br>OR a+ 2×5 +1×3 +4b + 5×2 + 6×3= 30×2.7 | M1       |                                                                                                                                                                                                                                                                                                                                                                     |
| $a + 4b = 2.7 \times 30 - 41$ or $a + 4b = 40$                                                                     | M1       | FT 'their derived 41'                                                                                                                                                                                                                                                                                                                                               |
| Complete method to solve the simultaneous                                                                          | M1       | FT 'their equations' for M1 only                                                                                                                                                                                                                                                                                                                                    |
| a = 12 and $b = 7$                                                                                                 | A1       | CAO                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                    | (5)      |                                                                                                                                                                                                                                                                                                                                                                     |
| $\frac{16(a)}{3}\pi r^2 \times 20 = 2400$                                                                          | M1       |                                                                                                                                                                                                                                                                                                                                                                     |
| $(r^2 =) 3 \times 2400 \div 20\pi$ (=114.5(9) or 114.6)                                                            | A1       | (r = 10.7(0))                                                                                                                                                                                                                                                                                                                                                       |
| $(L^2 =) 114.5(9) +20^2 \text{ or } 10.7^2 + 20^2$                                                                 | M1       | FT 'their derived r'                                                                                                                                                                                                                                                                                                                                                |
| (L =) answer in the range 22.68 to 22.7 (cm)                                                                       | A1       | F  their derived r providing their L > 20<br>Allow 23 from correct working                                                                                                                                                                                                                                                                                          |
| 16(b)                                                                                                              | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                     |
| Use of 18 ÷ 12 or 12 ÷ 18 oe                                                                                       | B1       | May be embedded in further working                                                                                                                                                                                                                                                                                                                                  |
| (18 ÷ 12) <sup>2</sup> × 300 or 300 ÷ (12 ÷ 18) <sup>2</sup> oe                                                    | M1       | Award M1 for any other complete and correct method                                                                                                                                                                                                                                                                                                                  |
| 675 (cm <sup>2</sup> )                                                                                             | A1       |                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                    |          | Award B1 M0 A0 SC1 if 675 obtained from use of curved surface area = $300 \text{ cm}^2$ .                                                                                                                                                                                                                                                                           |
|                                                                                                                    | (7)      |                                                                                                                                                                                                                                                                                                                                                                     |

| 17(a)                                                                           |            |                                                                                                                                        |
|---------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| (Width =) $(15 - y) \text{ OR } \frac{55}{y}$                                   | M1         | Allow (30 – 2 <i>y</i> )/2                                                                                                             |
| OR 2y + 2w = 30 AND wy = 55 where w is the width                                |            |                                                                                                                                        |
| $y(15-y)=55 \text{ OR } 2\left(\frac{55}{y}+y\right)=30 \text{ oe}$             | M1         |                                                                                                                                        |
| Correct completion to $y^2 - 15y + 55 = 0$<br>17(b)(i)                          | <u>A1</u>  | Must be from convincing working.                                                                                                       |
| $(y =) \frac{-(-15) \pm \sqrt{((-15)^2 - 4 \times 1 \times 55)}}{2 (\times 1)}$ | M1         | This substitution into the formula must be seen<br>for M1, otherwise award M0 A0 A0.<br>Allow one slip in substitution for M1 only but |
| $=\frac{15\pm\sqrt{5}}{2}$                                                      | A1         | must be correct formula.<br>Can be implied from at least one correct value                                                             |
| 8.62 AND 6.38                                                                   | A1         | Both solutions to 2dp                                                                                                                  |
| 17(b)(ii) Correct interpretation e.g. 'The                                      | B1         | Allow length = 'their 8.62' and                                                                                                        |
| values give the length and width of                                             |            | width = 'their 6.38' or vice versa                                                                                                     |
| rectangle.'                                                                     |            | Allow length could be 'their 8.62' or 'their 6.38'                                                                                     |
|                                                                                 | (7)        |                                                                                                                                        |
| 18(a)                                                                           | (7)        | Allow the use of other variables e.g. c and d                                                                                          |
| $x+y \le 10$                                                                    | B1         |                                                                                                                                        |
| x + 3y > 15                                                                     | B1         |                                                                                                                                        |
|                                                                                 |            | If no marks award SC1 if both inequalities are                                                                                         |
|                                                                                 |            | signs.                                                                                                                                 |
| 18(b)                                                                           |            | FT 'their linear inequalities' (if they give                                                                                           |
|                                                                                 |            | equations of the form $ax + by = c$ ) where                                                                                            |
|                                                                                 | <b>D</b> 4 | possible                                                                                                                               |
| Line $x + y = 10$ drawn                                                         | B1<br>D1   |                                                                                                                                        |
| Line $x + 3y = 13$ drawn<br>Correct region indicated                            | B1         | ET if closed region                                                                                                                    |
|                                                                                 |            | Do not penalise omission of the line $x = 0$                                                                                           |
|                                                                                 |            | unless the area to the left of the axis is clearly                                                                                     |
| 10                                                                              |            | included in the required region.                                                                                                       |
|                                                                                 |            |                                                                                                                                        |
|                                                                                 |            |                                                                                                                                        |
| R                                                                               |            |                                                                                                                                        |
| 5                                                                               |            |                                                                                                                                        |
|                                                                                 |            |                                                                                                                                        |
|                                                                                 |            |                                                                                                                                        |
|                                                                                 |            |                                                                                                                                        |
|                                                                                 |            |                                                                                                                                        |
| (c) 10                                                                          | B1         | FT 'their closed region'                                                                                                               |
| 3                                                                               |            |                                                                                                                                        |
| 19(2)                                                                           | (6)        |                                                                                                                                        |
| No with valid explanation                                                       | B1         | Allow No 'it is a bar chart'                                                                                                           |
| e.g. 'she has plotted frequency, not                                            |            |                                                                                                                                        |
| frequency density'                                                              |            |                                                                                                                                        |
| 19(b)                                                                           | 50         |                                                                                                                                        |
| 160                                                                             | B2         | B'I for sight of any one of:<br>$120 \div 20$                                                                                          |
|                                                                                 |            | <ul> <li>120 - 30</li> <li>1 square represents / (nationts) on</li> </ul>                                                              |
|                                                                                 |            | <ul> <li>Areas in ratio e.g. 30 : 40</li> </ul>                                                                                        |
|                                                                                 |            | 24 and 16 placed correctly on vertical                                                                                                 |
|                                                                                 |            | scale                                                                                                                                  |
| 1                                                                               | (3)        |                                                                                                                                        |

| 20(a)<br>0.3 × 0.25 + (1 – 0.3)<br>0.775                                                  | M2<br>A1 | M1 for sight of 0.3 × 0.25                                                                              |
|-------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------|
| 20(b)(i)<br>Venn diagram correctly completed                                              | B1       |                                                                                                         |
| $\xi$ Watches a film Plays computer games                                                 |          |                                                                                                         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                    |          |                                                                                                         |
| 20(b)(ii)                                                                                 |          |                                                                                                         |
| x + (0.25 - x) + (0.45 - x) + 3x = 1                                                      | M1       | FT 'their Venn diagram' provided of similar<br>difficulty                                               |
| 0.15                                                                                      | A1       | CAO                                                                                                     |
| $0.15 \div 0.25$ OR ( $F \times 0.15$ ) $\div (0.25 \times F)$                            | M1       | FT 'their 0.15'                                                                                         |
| 0.6                                                                                       | A1       |                                                                                                         |
|                                                                                           | (8)      |                                                                                                         |
| 21.<br><u>greatest U<sup>2</sup></u><br><u>smallest 2a</u>                                | S1       | Allow 4.2 < <i>U</i> ≤ 4.25 and 1.55 ≤ <i>a</i> < 1.6                                                   |
| $\frac{4.25^2}{2 \times 1.55}$ or $\frac{18.0625}{3.1}$                                   | M1       |                                                                                                         |
| 5.8(2) or 5.83                                                                            | A1       | Allow an answer of 6 from correct working only.                                                         |
|                                                                                           |          | If many attempts are offered without a method<br>or answer being identified, then mark final<br>attempt |
|                                                                                           | (3)      |                                                                                                         |
| 22(a)<br>Starting with either form, show the two<br>stages of rearrangement               | B1       | $x = \sqrt{x+7} \qquad \qquad x^2 - x - 7 = 0$                                                          |
|                                                                                           |          | $x^{2} = x + 7$ or $x^{2} = x + 7$                                                                      |
| <br>  22/b)                                                                               |          | $x - x - i = 0 \qquad x = \sqrt{x + 7}$                                                                 |
| Sight of $x_2 = 3.16(22)$                                                                 | M1       |                                                                                                         |
| Sight of both $x_4 = 3.19(18)$ and $x_5 = 3.19(24)$                                       | m1       | Allow for sight of $x_3 = 3.18(78)$ or 3.19<br>and $x_4 = 3.19(18)$                                     |
| Solution to 2 d.p. is 3.19 from sight of both<br>$x_4 = 3.191(8)$ and<br>$x_5 = 3.192(4)$ | A1       | Ignore any further calculations                                                                         |
|                                                                                           | (4)      |                                                                                                         |

| 23(a)<br>DC = $\frac{9.6}{\sin(180 - (79 + 39))} \times \sin 39$                                                                                                   | M2  | M1 for $\frac{DC}{\sin 39} = \frac{9.6}{\sin (180 - (79 + 39))}$                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.8() (cm)                                                                                                                                                         | A1  |                                                                                                                                                                                                                                                                                                                                                                      |
| 23(b)                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                                                                                                      |
| ADB > 101                                                                                                                                                          | B1  | Accept example of 101 < <i>ADB</i> < 101.5                                                                                                                                                                                                                                                                                                                           |
| $\sin ADB < \sin 101$                                                                                                                                              | BI  | Accept FT example of $0.0700 < \sin 4\Omega R < 0.0816$                                                                                                                                                                                                                                                                                                              |
| Mona's area is ${}^{1/_{2}} \times 9.6 \times 5.7 \sin A\widehat{D}B$ and is too large or ${}^{1/_{2}} \times AD \times BD \times \sin A\widehat{D}B$ is too large | B1  | Need both 'too big' and sight of $1/2absinC$ .<br>Accept calculation using $1/2 \times AD \times BD \times sin$<br>$A\widehat{D}B$ e.g. 26.810 < area < 26.857<br>If no marks award SC1 for a convincing<br>explanation without calculations, e.g. by<br>drawing<br>B3 for Area = $1/2 \times 9.6 \times 5.7 sin A\widehat{D}B$<br>and sin 101 > sin $A\widehat{D}B$ |
|                                                                                                                                                                    | (6) |                                                                                                                                                                                                                                                                                                                                                                      |
| 24(a)                                                                                                                                                              | (0) |                                                                                                                                                                                                                                                                                                                                                                      |
| Correct sketch with inflection points at $(0,0)$ , $(180, 0)$ and $(360,0)$ AND graph tending towards the vertical asymptotes at x = 90 and x = 270                | B2  | If vertical asymptotes not seen, they may be<br>implied by a break in the curve of 'their sketch'<br>at $x = 90 x = 270$ provided there is asymptotic<br>behaviour.<br>Graph must be attempted from $x = 0$ to $x =$<br>360.<br>Ignore continuation of sketch beyond these<br>values.                                                                                |
|                                                                                                                                                                    |     | B1 for sketch with inflection points at (0,0),<br>(180, 0) and (360,0) only OR vertical<br>asymptotes seen at 90 and 270 only                                                                                                                                                                                                                                        |
| 24(b)<br>40 and 220 and no others in the range                                                                                                                     | B2  | B1 for either one                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                    | (4) |                                                                                                                                                                                                                                                                                                                                                                      |
| 25(a)(i)                                                                                                                                                           |     |                                                                                                                                                                                                                                                                                                                                                                      |
| 135                                                                                                                                                                | B1  |                                                                                                                                                                                                                                                                                                                                                                      |
| 25(a)(ii)<br>33 or 33.8 or 34                                                                                                                                      | B2  | Award B2 for answers of $32.59()$ or $32.6$<br>from working year by year and rounding down<br>to a whole number.<br>B1 for any one of the following seen<br>• $1.06^5$ (=1.338()) or $133.8()$ or $134$<br>• $135 \times 1.06^5$ (=180.66)<br>• 179, 180(.66) or 181 voles after 5 years                                                                             |
| 25(a)(iii)<br>0.54()                                                                                                                                               | B1  |                                                                                                                                                                                                                                                                                                                                                                      |
| 25(b)                                                                                                                                                              | [   |                                                                                                                                                                                                                                                                                                                                                                      |
| $\left(1+\frac{p}{100}=\right)\sqrt[20]{2}$ or 1.03526                                                                                                             | B2  | Allow B2 for $p = \sqrt[20]{2}$ or $p = 1.03(52)$<br>B1 for $(300\times) \left(1 + \frac{p}{100}\right)^{20} = 2(300)$ or $x^{20} = 2$<br>Allow B1 for $p^{20} = 2$                                                                                                                                                                                                  |
| 3.5(26)                                                                                                                                                            | B1  |                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                    | (7) |                                                                                                                                                                                                                                                                                                                                                                      |

| 26(a)                                                      |      |                                                         |
|------------------------------------------------------------|------|---------------------------------------------------------|
| $\frac{x}{360} \times 2\pi r = 5\pi$                       | M1   |                                                         |
| $x = \frac{900}{r}$ from clear correct working             | A1   |                                                         |
| Alternative method                                         |      |                                                         |
| $\frac{x}{360} = \frac{5}{2r}$                             | М1   |                                                         |
| $x = \frac{900}{r}$ from clear correct working             | A1   |                                                         |
| 26(b)                                                      |      |                                                         |
| $\frac{x}{360} \times \pi r^2 = 30\pi$                     | M1   |                                                         |
| ( <u>900</u> )                                             | m1   |                                                         |
| $\left(\frac{r}{260}\right) \times \pi \times r^2 = 30\pi$ |      |                                                         |
| (r =) 12                                                   | A1   |                                                         |
| (x =) 75                                                   | A1   | FT 'their derived 12' provided M1 previously awarded    |
| Alternative method                                         |      |                                                         |
| $\frac{x}{360} \times \pi r^2 = 30\pi$                     | М1   |                                                         |
| $xr = 900$ and $xr^2 = 10800$ oe                           | m1   |                                                         |
| ( <i>r</i> =) 12                                           | A1   |                                                         |
| (x =) 75                                                   | A1   | FT 'their derived 12' provided M1 previously<br>awarded |
| Alternative method                                         |      |                                                         |
| $\frac{x}{1} = \frac{30}{2}$ oe                            | 11   |                                                         |
| $\frac{360}{5} r^2$                                        | 1011 |                                                         |
| $\frac{5}{2r} = \frac{30}{r^2}$                            | mı   |                                                         |
| (r =) 12                                                   | A1   |                                                         |
| (x =) 75                                                   | A1   | FT 'their derived 12' provided M1 previously awarded    |
| Alternative method                                         |      |                                                         |
| $\frac{x}{360} = \frac{30}{r^2} \text{ oe}$                | М1   |                                                         |
| $\frac{x}{360} = \frac{30}{\left(\frac{900}{2}\right)^2}$  | m1   |                                                         |
| (x =) 75                                                   | A2   |                                                         |
|                                                            | (6)  |                                                         |