Paper 3: Statistics and Mechanics Mark Scheme

Question	Scheme	Marks	AOs
1(a)	Area = $8 \times 1.5 = 12 \text{ cm}^2$ Frequency = $8 \text{ so } 1 \text{ cm}^2 = \frac{2}{3} \text{ hour (o.e.)}$	M1	3.1a
	Frequency of 12 corresponds to area of 18 so height = $18 \div 2.5 = 7.2$ (cm)	A1	1.1b
	Width = $5 \times 0.5 = 2.5$ (cm)	B1cao	1.1b
		(3)	
(b)	$[\bar{y} =] \frac{205.5}{31} = \text{awrt } 6.63$	B1cao	1.1b
	$\left[\sigma_{y}=\right]\sqrt{\frac{1785.25}{31}-\bar{y}^{2}}=\sqrt{13.644641}=\text{awrt }3.69$		
		M1	1.1a
	allow $[s=] \sqrt{\frac{1785.25 - 31\overline{y}^2}{30}} = \text{awrt } 3.75$	A1	1.1b
		(3)	
(c)	Mean of Heathrow is higher than Hurn and standard deviation smaller suggesting Heathrow is more reliable	M1	2.4
	Hurn is South of Heathrow so does <u>not</u> support his belief	A1	2.2b
		(2)	
(d)	$\overline{x} + \sigma \approx 10.3$ so number of days is e.g. $\frac{(11 - "10.3")}{3} \times 8 \ (+5)$	M1	1.1b
	= 6.86 so 7 days	A1	1.1b
		(2)	
(e)	[$H = \text{no. of hours}$] $P(H > 10.3)$ or $P(Z > 1) = [0.15865]$	M1	3.4
	Predict $31 \times 0.15865 = 4.9 \text{ or } 5 \text{ days}$	A1	1.1b
		(2)	
(f)	(5 or) 4.9 days < (7 or) 6.9 days so model may not be suitable	B1	3.5a
		(1)	
		(13 n	narks)

Ques	Question 1 continued		
Note	s:		
(a)			
M1:	for clear attempt to relate the area to frequency. Can also award if		
	their height ×their width = 18		
A1:	for height = 7.2 (cm)		
(b)			
M1:	for a correct expression for σ or s , can ft their value for mean		
A1:	awrt 3.69 (allow $s = 3.75$)		
(c)			
M1:	for a suitable comparison of standard deviations to comment on reliability.		
A1:	for stating Hurn is south of Heathrow and a correct conclusion		
(d)			
M1:	for a correct expression – ft their $\bar{x} + \sigma \approx 10.3$		
A1:	for 7 days but accept 6 (rounding down) following a correct expression		
(e)			
M1 :	for a correct probability attempted		
A1:	for a correct prediction		
(f)			
B1:	for a suitable comparison and a compatible conclusion		

Questio	n Scheme	Marks	AOs	
2(a)	e.g. It requires extrapolation so will be unreliable (o.e.)	B1	1.2	
		(1)		
(b)	e.g. Linear association between w and t	B1	1.2	
		(1)		
(c)	$H_0: \rho = 0 H_1: \rho > 0$	B1	2.5	
	Critical value 0.5822	M1	1.1a	
	Reject H ₀			
	There is evidence that the product moment correlation coefficient is greater than 0	A1	2.2b	
		(3)		
(d)	Higher \bar{t} suggests overseas and not Perthlower wind speed so perhaps not close to the sea so suggest Beijing	B1	2.4	
		(1)		
		(0	6 marks)	
Notes:				
(a) B1: fo	or a correct statement (unreliable) with a suitable reason			
(b)				
B1: fo	or a correct statement			
(c)				
	or both hypotheses in terms of ρ			
	for selecting a suitable 5% critical value compatible with their H ₁			
	or a correct conclusion stated			
(d)				
	or suggesting Beijing with some supporting reason based on t or w llow Jacksonville with a reason based just on higher \bar{t}			

Question	Scheme	Marks	AOs
Q3(a)	49 50.75		
	P(L > 50.98) = 0.025	Blcao	3.4
	$\therefore \frac{50.98 - \mu}{0.5} = 1.96$	M1	1.1b
	$\therefore \mu = 50$	Alcao	1.1b
	P(49 < L < 50.75)	M1	3.4
	= 0.9104 awrt 0.910	A1ft	1.1b
		(5)	
(b)	$S =$ number of strips that cannot be used so $S \sim B(10, 0.090)$	M1	3.3
	$= P(S \le 3) = 0.991166$ awrt 0.991	A1	1.1b
		(2)	
(c)	$H_0: \mu = 50.1$ $H_1: \mu > 50.1$	B1	2.5
	$\bar{X} \sim N\left(50.1, \frac{0.6^2}{15}\right) \text{ and } \bar{X} > 50.4$	M1	3.3
	$P(\bar{X} > 50.4) = 0.0264$	A1	3.4
	p = 0.0264 > 0.01 or z = 1.936 < 2.3263 and not significant	A1	1.1b
	There is insufficient evidence that the <u>mean length</u> of strips is <u>greater than 50.1</u>	A1	2.2b
		(5)	
		(12	2 marks)

Question 3 continued

Notes:

(a)

1st M1: for standardizing with μ and 0.5 and setting equal to a z value (|z| > 1)

2nd M1: for attempting the correct probability for strips that can be used

2nd A1ft: awrt 0.910 (allow ft of their μ)

(b)

M1: for identifying a suitable binomial distribution

A1: awrt 0.991 (from calculator)

(c)

B1: hypotheses stated correctly

M1: for selecting a correct model (stated or implied)

1st A1: for use of the correct model to find p = awrt 0.0264 (allow z = awrt 1.94)

2nd A1: for a correct calculation, comparison and correct statement

3rd A1: for a correct conclusion in context mentioning "mean length" and 50.1

Question	Scheme	Marks	AOs
4(a)	$P(A' B') = \frac{P(A' \cap B')}{P(B')} \text{ or } \frac{0.33}{0.55}$	M1	3.1a
	$=\frac{3}{5}$ or 0.6	A1	1.1b
		(2)	
(b)	e.g. $P(A) \times P(B) = \frac{7}{20} \times \frac{9}{20} = \frac{63}{400} \neq P(A \cap B) = 0.13 = \frac{52}{400}$ or $P(A' \mid B') = 0.6 \neq P(A') = 0.65$	B1	2.4
		(1)	
(c)		B1	2.5
	В	M1	3.1a
	A C	A1	1.1b
	0.22 (0.13) 0.23 (0.09) 0.11	M1	1.1b
		A1	1.1b
		(5)	
(d)	$P(B \cup C)' = 0.22 + 0.22 \text{ or } 1-[0.56]$ or $1-[0.13+0.23+0.09+0.11]$ o.e.	M1	1.1b
	= 0.44	A1	1.1b
		(2)	

(10 marks)

Notes:

(a)

M1: for a correct ratio of probabilities formula and at least one correct value.

A1: a correct answer

(b) for a fully correct explanation: correct probabilities and correct comparisons.

(c)

B1: for box with B intersecting A and C but C not intersecting A.(Or accept three intersecting circles, but with zeros entered for $A \cap C$ and $A \cap B \cap C$)No box is B0

M1: for method for finding $P(B \cap C)$

A1: for 0.09

M1: for 0.13 and their 0.09 in correct places and method for their 0.23

A1: fully correct

(d)

M1: for a correct expression – ft their probabilities from their Venn diagram.

A1: cao

uestion	Scheme	Marks	AOs
5 (a)	The seeds would be destroyed in the process so they would have none to sell	B1	2.4
		(1)	
(b)	[$S = \text{no. of seeds out of 24 that germinate}, S \sim B(24, 0.55)$]		
	$T = \text{no. of trays with at least 15 germinating.} \ T \sim B(10, p)$	M1	3.3
	$p = P(S \ge 15) = 0.299126$	A1	1.1b
	So $P(T \ge 5) = 0.1487$ awrt <u>0.149</u>	A1	1.1b
		(3)	
(c)	n is large and p close to 0.5	B1	1.2
		(1)	
(d)	X~N(132, 59.4)	B1	3.4
	$P(X \ge 149.5) = P\left(Z \ge \frac{149.5 - 132}{\sqrt{59.4}}\right)$	M1	1.1b
	= 0.01158 awrt <u>0.0116</u>	A1cso	1.1b
		(3)	
(e)	e.g The probability is very small therefore there is evidence that the company's claim is incorrect.	B1	2.2b
		(1)	
		(9 marks

(a)

B1: cao

(b)

M1: for selection of an appropriate model for T

 1^{st} A1: for a correct value of the parameter p (accept 0.3 or better)

2nd A1: for awrt 0.149

(c)

B1: both correct conditions

(d)

B1: for correct normal distribution

M1: for correct use of continuity correction

A1: cso

(e)

B1: correct statement

Question	Scheme	Marks	AOs
6	Integrate a w.r.t. time	M1	1.1a
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + \mathbf{C} \text{ (allow omission of } \mathbf{C})$	A1	1.1b
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + 20\mathbf{i}$	A1	1.1b
	When $t = 4$, $\mathbf{v} = 60\mathbf{i} - 80\mathbf{j}$	M1	1.1b
	Attempt to find magnitude: $\sqrt{(60^2 + 80^2)}$	M1	3.1a
	Speed = 100 m s^{-1}	Alft	1.1b
			(6 maulta)

(6 marks)

Notes:

1st M1: for integrating a w.r.t. time (powers of t increasing by 1)

 $1^{st} A1$: for a correct v expression without C

 2^{nd} A1: for a correct v expression including C 2^{nd} M1: for putting t = 4 into their v expression

 3^{rd} M1: for finding magnitude of their v

3rd A1: ft for 100 m s⁻¹, follow through on an incorrect v

Question	Scheme	Marks	AOs
7(a)	$R = mg\cos\alpha$	B1	3.1b
	Resolve parallel to the plane	M1	3.1b
	$-F - mg\sin\alpha = -0.8mg$	A1	1.1b
	$F = \mu R$	M1	1.2
	Produce an equation in μ only and solve for μ	M1	2.2a
	$\mu = \frac{1}{4}$	A1	1.1b
		(6)	
(b)	Compare $\mu mg\cos\alpha$ with $mg\sin\alpha$	M1	3.1b
	Deduce an appropriate conclusion	A1 ft	2.2a
		(2)	
			(9 o velvo)

(8 marks)

Notes:

(a)

B1: for $R = mg\cos\alpha$

1st M1: for resolving parallel to the plane

1st A1: for a correct equation 2nd M1: for use of $F = \mu R$

 3^{rd} M1: for eliminating F and R to give a value for μ

2nd A1: for $\mu = \frac{1}{4}$

(b)

M1: comparing size of limiting friction with weight component down the plane

A1ft: for an appropriate conclusion from their values

Question	Scheme	Marks	AOs
8(a)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t : (10.5\mathbf{i} - 0.9\mathbf{j}) = 0.6\mathbf{j} + 15\mathbf{a}$	M1	3.1b
	$\mathbf{a} = (0.7\mathbf{i} - 0.1\mathbf{j}) \text{ m s}^{-2}$ Given answer	A1	1.1b
		(2)	
(b)	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	3.1b
	$\mathbf{r} = 0.6\mathbf{j} \ t + \frac{1}{2}(0.7\mathbf{i} - 0.1\mathbf{j}) \ t^2$	A1	1.1b
		(2)	
(c)	Equating the i and j components of r	M1	3.1b
	$\frac{1}{2} \leftarrow 0.7 \ t^2 = 0.6 \ t - \frac{1}{2} \leftarrow 0.1 \ t^2$	A1ft	1.1b
	t = 1.5	A1	1.1b
		(3)	
(d)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$: $\mathbf{v} = 0.6\mathbf{j} + (0.7\mathbf{i} - 0.1\mathbf{j}) t$	M1	3.1b
	Equating the i and j components of v	M1	3.1b
	t = 0.75	A1 ft	1.1b
		(3)	

(10 marks)

Notes:

(a)

M1: for use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$

A1: for given answer correctly obtained

(b)

M1: for use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$

A1: for a correct expression for \mathbf{r} in terms of t

(c)

M1: for equating the i and j components of their r

A1ft: for a correct equation following their **r**

A1: for t = 1.5

(d)

M1: for use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ for a general t

M1: for equating the i and j components of their v

A1ft: for t = 0.75, or a correct follow through answer from an incorrect equation

Question	Scheme	Marks	AOs
9(a)	Take moments about A (or any other complete method to produce an equation in S , W and α only)	M1	3.3
	$Wa\cos\alpha + 7W2a\cos\alpha = S 2a\sin\alpha$	A1 A1	1.1b 1.1b
	Use of $\tan \alpha = \frac{5}{2}$ to obtain S	M1	2.1
	S = 3W *	A1*	2.2a
		(5)	
(b)	R = 8W	B1	3.4
	$F = \frac{1}{4} R (= 2W)$	M1	3.4
	$P_{\text{MAX}} = 3W + F \text{ or } P_{\text{MIN}} = 3W - F$	M1	3.4
	$P_{\text{MAX}} = 5W \text{ or } P_{\text{MIN}} = W$	A1	1.1b
	$W \le P \le 5W$	A1	2.5
		(5)	
(c)	M(A) shows that the reaction on the ladder at B is unchanged	M1	2.4
	also <i>R</i> increases (resolving vertically)	M1	2.4
	which increases max F available	M1	2.4
		(3)	
		(13 marks)

Question 9 continued

Notes:

(a)

1st M1: for producing an equation in S, W and α only

1st A1: for an equation that is correct, or which has one error or omission

2nd A1: for a fully correct equation

2nd M1: for use of $\tan \alpha = \frac{5}{2}$ to obtain S in terms of W only

 3^{rd} A1*: for given answer S = 3W correctly obtained

(b)

B1: for R = 8W

1st M1: for use of $F = \frac{1}{4} R$

2nd M1: for either P = (3W + their F) or P = (3W - their F)

 1^{st} A1: for a correct max or min value for a correct range for P

 2^{nd} A1: for a correct range for P

(c)

1st M1: for showing, by taking moments about A, that the reaction at B is unchanged by the builder's assistant standing on the bottom of the ladder

 2^{nd} M1: for showing, by resolving vertically, that R increases as a result of the builder's assistant standing on the bottom of the ladder

 3^{rd} M1: for concluding that this increases the limiting friction at A

Question	Scheme	Marks	AOs
10(a)	Using the model and horizontal motion: $s = ut$	M1	3.4
	$36 = Ut\cos\alpha$	A1	1.1b
	Using the model and vertical motion: $s = ut + \frac{1}{2}at^2$	M1	3.4
	$-18 = Ut\sin\alpha - \frac{1}{2}gt^2$	A1	1.1b
	Correct strategy for solving the problem by setting up two equations in t and U and solving for U	M1	3.1b
	U=15	A1	1.1b
		(6)	
(b)	Using the model and horizontal motion: $U\cos\alpha$ (12)	B1	3.4
	Using the model and vertical motion: $v^2 = (U\sin\alpha)^2 + 2(-10)(-7.2)$	M1	3.4
	v = 15	A1	1.1b
	Correct strategy for solving the problem by finding the horizontal and vertical components of velocity and combining using Pythagoras: Speed = $\sqrt{(12^2 + 15^2)}$	M1	3.1b
	$\sqrt{369} = 19 \text{ m s}^{-1} \text{ (2sf)}$	A1 ft	1.1b
		(5)	
(c)	Possible improvement (see below in notes)	B1	3.5c
	Possible improvement (see below in notes)	B1	3.5c
		(2)	
		(13 marks)

Question 10 continued

Notes:

(a)

1st M1: for use of s = ut horizontally

1st A1: for a correct equation

2nd M1: for use of $s = ut + \frac{1}{2}at^2$ vertically

2nd A1: for a correct equation

3rd M1: for correct strategy (need both equations)

2nd A1: for U = 15

(b)

B1: for $U\cos\alpha$ used as horizontal velocity component

1st M1: for attempt to find vertical component

1st A1: for 15

2nd M1: for correct strategy (need both components)

2nd A1ft: for 19 m s⁻¹ (2sf) following through on incorrect component(s)

(c)

B1, B1: for any two of

e.g. Include air resistance in the model of the motion

e.g. Use a more accurate value for g in the model of the motion

e.g. Include wind effects in the model of the motion

e.g. Include the dimensions of the stone in the model of the motion