9MA0/03: Statistics & Mechanics Paper 3 mark scheme

uestion	Scheme	Marks	AO
1(a)	Width = $0.4 \times 5 = 2$ (cm)	B1	3.1
	Area = 12 cm ² Frequency = 15 so 1 cm ² = $\frac{5}{4}$ packet o.e	M1	1.1
	Frequency of 9 corresponds to area of 7.2 Height = $7.2 \div 2 = 3.6$ (cm)	A1	1.1
		(3)	
(b)	$[Q_2 =] (248+) \frac{22}{35} \times 4$ or (use of $(n+1)$) $(248+) \frac{22.5}{35} \times 4$	M1	1.1
	= awrt 250.5 (g) or 250.6	A1	1.1
		(2)	
(c)	Mean = awrt 250.4 (g)	B1	1.1
	$\left[\sigma_{x}=\right]\sqrt{\frac{5644171.75}{90}-\left(\frac{22535.5}{90}\right)^{2}}=\sqrt{15.64}$	M1	1.1
	= awrt 4.0 (g)	A1	1.1
	Accept $\left(s_x = \sqrt{\frac{5644171.75 - 90\left(\frac{22535.5}{90}\right)^2}{89}} = 3.977 \right)$	(3)	
(d)	$H_0: \mu = 250$ $H_1: \mu > 250$	B1	2.:
	$\overline{X} \sim N\left(250, \frac{4^2}{90}\right) \text{ and } \overline{X} > 250.4$	M1	3.
	$P(\bar{X} > 250.4) = 0.171$	A1	3.4
	0.171 > 0.05 or $z = 0.9486 < 1.6449$	A1	1.1
	There is insufficient evidence that the mean weight of coffee is greater than 250 g, or there is no evidence to support the sellers claim.	A1	2.2
		(5)	
(e)	It is consistent as (the estimate of) the mean is close to (the estimate of) the median which is true for the normal distribution.	B1ft	3.5
		(1)	
		(14 r	nark

Notes:
(a) B1: for correct width
M1: for clear attempt to relate the area to frequency.
May be implied by their height \times their width = 7.2
A1: for height = 3.6 cm
(b) M1: for $\frac{22}{35} \times 4$ or $\frac{22.5}{35} \times 4$
A1: awrt 250.5 or 250.6
(c) B1: awrt 250.4
M1: for a correct expression for σ or s , can ft their mean
A1: awrt 4.0 (allow $s = awrt 4.0$)
(d) B1: hypotheses stated correctly
M1: for selecting a correct model, (stated or implied)
A1: for use of the correct model to find $p = awrt 0.171$ (allow $z = awrt 0.948$)
A1: for a correct calculation, comparison and correct statement
A1: for a correct conclusion in context mentioning mean weight and 250
(e) B1: evaluating the validity of the model used in (d)

	Scheme	Marks	AOs
2(a)	Not suitable with a correct reason eg the points do not lie close to a straight line. there appear to be two populations if <i>G</i> and <i>H</i> were removed it appears to be a negative correlation	B1	1.2
		(1)	
(b)	$H_0: \rho = 0 H_1: \rho > 0$	B1	2.5
	Critical value 0.5509	M1	1.1a
	Reject H ₀		
	There is evidence that pmcc is greater than zero	A1	2.2b
		(3)	
(c)	Beijing and Jacksonville	B1	2.2a
		(1)	
(d)	Beijing and Jacksonville are the closest to the equator	B1	2.4
		(1)	
(e)	Use data from one place.	B1	2.4
		(1)	
		(7 n	narks)
Notes:			
(a) B1: for a	a correct statement using the data in the table		
(b) B1: for b	both hypotheses in terms of ρ		
	selecting a suitable critical value compatible with their H ₁ a correct conclusion stated		
(c) B1: both	Beijing and Jacksonville – they do not need to be attached to G and H	correctly.	
(d) B1: for t	the idea they are near the equator dependent only Beijing or Jacksonvill	e being give	en in

part(c)

Question	Scheme	Marks	AOs
3 (a)	[A = no. of bulbs that grow into plants with blue flowers,] $A \sim B(40, 0.36)$	M1	3.3
	$p = P(A \ge 21) = 0.0240$	A1	1.1b
	C = no. of bags with more than 20 bulbs that grow into blue flowers, $C \sim B(5, p)$	M1	3.3
	So $P(C \le 1) = 0.9945$ awrt 0.995	A1	1.1b
		(4)	
(b)	[$T \sim$ number of bulbs that grow into blue flowers] $T \sim B(n, 0.36)$		
	T can be approximated by N($0.36n$, $0.2304n$)	B1	3.4
	$P\left(Z < \frac{244.5 - 0.36n}{\sqrt{0.2304n}}\right) = 0.9479$	M1	1.1b
	$\frac{244.5 - 0.36n}{\sqrt{0.2304n}} = 1.625 \text{ or } \frac{244.5 - 0.36x^2}{0.48x} = 1.625$	M1 A1	3.4 1.1b
	$0.36n + 0.78\sqrt{n} - 244.5 = 0$	M1	1.1b
	<i>n</i> = 625	Alcso	1.1b
		(6)	
		(10 n	narks)
Notes:			
(a) M1: for	selecting an appropriate model for A		
A1: for	a correct value of the parameter p for C		
M1: for	selecting an appropriate model for C		
A1: for	awrt 0.995		
	correct normal distribution		
M1: for	correct use of continuity correction equal to a z value where $ z > 1$		
M1: for	standardisation with their μ and σ		
	a correct equation		
	ng a correct method to solve their 3-term quadratic		
A1: 625	on its own cso		

Question	Scheme	Marks	AOs
4 (a)	$P(S \cap D') = 0$	B1	1.1b
		(1)	
(b)	$P(C \mid S \cap D) = \frac{0.27}{0.6} = \frac{9}{20} = 0.45$	M1	3.1b
	∴ 80×"0.45"	M1	1.1b
	=36	A1	1.1t
		(3)	
(c)	$[P(C) \times P(S) = P(C \cap S)]$		
	$P(S) = 0.6, P(C) = 0.27 + v + u, P(S \cap C) = 0.27$	M1	3.1a
	$0.6 \times (0.27 + u + v) = 0.27$ or $u + v = 0.18$ o.e	A1	1.1t
	$\left[P(D \mid C) = \frac{P(D \cap C)}{P(C)} \right] P(D \cap C) = 0.27 + \nu$	M1	3.1a
	$\frac{14}{15} = \frac{0.27 + v}{0.27 + v + u} \text{ or } 14u - v = 0.27 \text{ o.e}$	A1	1.1t
	15u = 0.45	M1dd	1.1t
	u = 0.03 $v = 0.15$	A1	1.1t
	<i>w</i> = 0.22	A1ft	1.1t
		(7)	
	·	(11 n	narks
Notes:			
(a) B1: con	rrect answer only		
80	a correct ratio of probabilities formula with at least one correct	value and multiply	ing b <u>y</u>
(c) M1: fo	r translating the problem and realising the equation $P(C) \times P(S)$	$= P(C \cap S)$ needs	to be
	h at least 2 parts correct.		
	rrect equation a correct probability formula with $P(D \cap C) = 0.27 + v$		
	cond correct equation		
M1dd: d	dependent on the previous 2 method marks being awarded. Solvi s by eliminating one variable. May be implied by either u or v co	e	neous
A1: <i>v</i> co	rrect		
Alft: w	= 0.22. ft <i>their</i> u, v provided that $u + v + w < 0.4$		

A1ft: w = 0.22, ft *their* u, v provided that u + v + w < 0.4

	Scheme	Marks	AOs
5(a)	$P(L_x > 160) = P\left(Z > \frac{160 - 150}{25}\right)$		
	= P(Z > 0.4)		
	=1-0.6554		
	= awrt 0.345 0.34457	B1	1.1b
	Expected number = $12 \times "0.345"$	M1	1.1b
	= 4.13 (allow 4.14)	A1	1.1b
		(3)	
(b)	$P(L_{\gamma} < 180) = 0.841621$	B1	3.4
	$\frac{180-160}{\sigma} = 0.8416$	M1	1.1b
	$\sigma = $ awrt 23.8	A1	1.1b
		(3)	
(c)	The standard deviations for two companies are close but the mean for company <i>Y</i> is higher	M1	2.4
	therefore choose company Y	A1	2.2b
		(2)	
		(8 n	narks
Notes:			
	rt 0.345 • multiplying their probability by 12 3 (allow 4.14)		
	use of the correct model to find the correct value of z awrt 0.842 standardising = to a Z value $0.5 < Z < 1$ rt 23.8		
	a correct reason following their part(b)		
A1: for	making an inference that follows their part(b)		

Question	Scheme	Marks	AOs	
1	r = (-4.5i + 3j)	B1	1.1b	
	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	3.1b	
	$(-4.5i + 3j) = 3u + 0.5(i - 2j) 3^2$	Alft	1.1b	
	$\mathbf{u} = (-3\mathbf{i} + 4\mathbf{j})$	A1	1.1b	
		(4)		
		(4 n	narks)	
Notes:				
B1: Correct displacement vector				
M1: Use of correct strategy and/or formula to give equation in u only (could be obtained by two integrations)				
A1ft: Correct equation in u only, following their displacement vector				

A1: Correct answer

Question	Scheme	Marks	AOs	
2	Differentiate wrt t	M1	1.1a	
	a = (2t - 3) i - 12 j	A1	1.1b	
	$(2t-3)^2 + (-12)^2$	M1	1.1b	
	$(2t-3)^2 + (-12)^2 = (6.5 / 0.5)^2$ oe	M1	2.1	
	$4t^2 - 12t - 16 = 0$	A1	1.1b	
	(t-4)(t+1) = 0	M1	1.1b	
	t = 4	Al	1.1b	
		(7)		
		(7 n	narks)	
Notes:	Notes:			

M1: At least one power going down

A1: A correct expression

M1: Sum of squares of components (with or without square root) of \mathbf{a} or \mathbf{F}

M1: Equating magnitude to 6.5/0.5 or 6.5 as appropriate and squaring both sides

A1: Correct quadratic = 0 in any form

M1: Attempt to solve a 3 term quadratic

A1: 4

(a) M1: Using an appropriate strategy to se A1: g does not need to be substituted M1: Using an appropriate strategy to se A1: Neither g nor F need to be substitut B1: $F = 0.3R$ seen M1: Correct overall strategy to solve pr			
Equation of motion up the $25 \cos 30^\circ - 3g\sin 20^\circ - F =$ $F = 0.3R$ Correct strategy: sub for F $a = 2.4$ or 2.35 (m s ⁻²)(b)e.g. Include air resistance(c) $R = 3g\cos 20^\circ$ so $F\max =$ Consider $3g\sin 20^\circ - 0.9g$ Since > 0, box moves dowNotes:(a)M1: Using an appropriate strategy to seA1: g does not need to be substitutedM1: Using an appropriate strategy to seA1: Neither g nor F need to be substitutedB1: $F = 0.3R$ seenM1: Correct overall strategy to solve pr		M1	3.1b
$25 \cos 30^{\circ} - 3g\sin 20^{\circ} - F =$ $F = 0.3R$ Correct strategy: sub for F $a = 2.4 \text{ or } 2.35 \text{ (m s}^{-2})$ (b)e.g. Include air resistance(c) $R = 3g\cos 20^{\circ}$ so $F \max =$ Consider $3g\sin 20^{\circ} - 0.9g$ Since > 0 , box moves dowNotes:(a)M1: Using an appropriate strategy to seA1: g does not need to be substitutedM1: Using an appropriate strategy to seA1: Neither g nor F need to be substitutedB1: $F = 0.3R$ seenM1: Correct overall strategy to solve pr		A1	1.1b
Consider $3g\sin 20^\circ - 0.9g$ Notes:(b)e.g. Include air resistance(c) $R = 3g\cos 20^\circ$ so $Fmax =$ Consider $3g\sin 20^\circ - 0.9g$ Since > 0, box moves dowNotes:(a)M1: Using an appropriate strategy to seA1: g does not need to be substitutedM1: Using an appropriate strategy to seA1: Neither g nor F need to be substitutedB1: $F = 0.3R$ seenM1: Correct overall strategy to solve pr	plane	M1	3.1b
Correct strategy: sub for F $a = 2.4 \text{ or } 2.35 \text{ (m s}^{-2})$ (b)e.g. Include air resistance(c) $R = 3gcos20^{\circ} \text{ so } Fmax =$ Consider $3gsin20^{\circ} - 0.9g$ Since > 0, box moves dowNotes:(a)M1: Using an appropriate strategy to seA1: g does not need to be substitutedM1: Using an appropriate strategy to seA1: $R = 0.3R$ seenM1: Correct overall strategy to solve pr	=3a	A1	1.1t
(b)e.g. Include air resistance(c) $R = 3gcos20^{\circ}$ so $Fmax =$ Consider $3gsin20^{\circ} - 0.9g$ Since > 0, box moves dowNotes:(a)M1: Using an appropriate strategy to seA1: g does not need to be substitutedM1: Using an appropriate strategy to seA1: Neither g nor F need to be substitutedB1: $F = 0.3R$ seenM1: Correct overall strategy to solve pr		B1	1.2
(b) e.g. Include air resistance (c) $R = 3gcos20^{\circ}$ so $Fmax =$ Consider $3gsin20^{\circ} - 0.9g$ Since > 0, box moves dow Notes: (a) M1: Using an appropriate strategy to se A1: g does not need to be substituted M1: Using an appropriate strategy to se A1: neither g nor F need to be substituted B1: F = 0.3R seen M1: Correct overall strategy to solve pr	and solve for <i>a</i>	M1	3.1b
(c) $R = 3g\cos 20^{\circ}$ so $F\max =$ Consider $3g\sin 20^{\circ} - 0.9g$ Since > 0, box moves dow Notes: (a) M1: Using an appropriate strategy to se A1: g does not need to be substituted M1: Using an appropriate strategy to se A1: neither g nor F need to be substitut B1: F = 0.3R seen M1: Correct overall strategy to solve pr		A1	2.2a
(c) $R = 3g\cos 20^{\circ}$ so $F\max =$ Consider $3g\sin 20^{\circ} - 0.9g$ Since > 0, box moves dow Notes: (a) M1: Using an appropriate strategy to se A1: g does not need to be substituted M1: Using an appropriate strategy to se A1: neither g nor F need to be substitut B1: F = 0.3R seen M1: Correct overall strategy to solve pr		(7)	
Consider $3g\sin 20^\circ - 0.9g$ Since > 0 , box moves dowNotes:(a)M1: Using an appropriate strategy to seA1: g does not need to be substitutedM1: Using an appropriate strategy to seA1: Neither g nor F need to be substitutedB1: $F = 0.3R$ seenM1: Correct overall strategy to solve pr		B1	3.5c
Consider $3g\sin 20^\circ - 0.9g$ Since > 0 , boxmoves dowNotes: (a) M1: Using an appropriate strategy to seA1: g does not need to be substitutedM1: Using an appropriate strategy to seA1: Neither g nor F need to be substitutedB1: $F = 0.3R$ seenM1: Correct overall strategy to solve pr		(1)	
Since > 0, box moves down Notes: (a) M1: Using an appropriate strategy to set A1: g does not need to be substituted M1: Using an appropriate strategy to set A1: Neither g nor F need to be substitut B1: $F = 0.3R$ seen M1: Correct overall strategy to solve pr	= 0.9 gcos20°	B1	3.1b
Notes: (a) M1: Using an appropriate strategy to se A1: g does not need to be substituted M1: Using an appropriate strategy to se A1: Neither g nor F need to be substitut B1: $F = 0.3R$ seen M1: Correct overall strategy to solve pr	vcos20°	M1	2.1
(a) M1: Using an appropriate strategy to se A1: g does not need to be substituted M1: Using an appropriate strategy to se A1: Neither g nor F need to be substitut B1: $F = 0.3R$ seen M1: Correct overall strategy to solve pr	wn plane. *	A1*	2.2a
A1: g does not need to be substituted M1: Using an appropriate strategy to se A1: Neither g nor F need to be substitut B1: $F = 0.3R$ seen		(3)	
(a) M1: Using an appropriate strategy to se A1: g does not need to be substituted M1: Using an appropriate strategy to se A1: Neither g nor F need to be substitut B1: $F = 0.3R$ seen M1: Correct overall strategy to solve pr		(11 n	narks
M1: Using an appropriate strategy to se A1: g does not need to be substituted M1: Using an appropriate strategy to se A1: Neither g nor F need to be substitut B1: $F = 0.3R$ seen M1: Correct overall strategy to solve pr			
	roblem by substituting for F and solving for a	es applying	5
(b)			
B1: e.g. include air resistance, allow for	r the weight of the rope		

A1*: Given answer

Question	Scheme	Marks	AOs
4 (a)	Moments about A (or any other complete method)	M1	3.3
	$T\cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$	A1	1.1.t
	$T\cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$	A1	1.1.t
	T = 679 or 680 (N)	A1	1.1.t
		(4)	
(b)	Resolve horizontally	M1	3.1b
	$X = T \cos 60^{\circ}$	A1	1.1b
	Resolve vertically	M1	3.1b
	$Y = T\cos 30^\circ - 20g$	A1	1.1b
	Use of $\tan q = \frac{Y}{X}$ and sub for T	M1	3.4
	49° (or better), below horizontal, away from wall	A1	2.2a
		(6)	
(c)	Tension would increase as you move from <i>D</i> to <i>C</i>	B1	3.5a
	Since each point of the rope has to support the length of rope below it	B1	2.4
		(2)	
(d)	Take moments about G , $1.5Y = 0$	M1	3.3
	Y = 0 hence force acts horizontally.*	A1*	2.2a
		(2)	
		(14 n	narks
Notes:			
A1: (A1A0 A1: (A0A0	ct overall strategy e.g. M(A), with usual rules, to give equation in T only o one error) Condone 1 error two or more errors) r 679 or 680 (since $g = 9.8$ used)		
(b)			
-	an appropriate strategy to set up first of two equations, with usual rules a re horiz. or $M(C)$	pplying	
	e nonz. of M(C)		

A1: Correct equation in *X* only

M1: Using an appropriate strategy to set up second of two equations, with usual rules applying

e.g. Resolve vert. or M(D)

A1: Correct equation in *Y* only

M1: Using the model and their *X* and *Y*

A1: 49 or better (since g cancels) Need all three bits of answer to score this mark or any other appropriate angle e.g 41° to wall, downwards and away from wall

(c)

B1: Appropriate equivalent comment

B1: Appropriate equivalent reason

(**d**)

M1: Using the model and any other complete method e.g. the three force condition for equilibrium A1*: Correct conclusion GIVEN ANSWER

Question	Scheme	Marks	AOs
5(a)	Using the model and horizontal motion: $s = ut$	M1	3.3
	$12 = T \ge 45 \cos 10^{\circ}$	A1	1.1b
	T = 0.2707	Al	1.1b
	Using the model and vertical motion: $s = ut + \frac{1}{2}at^2$	M1	3.4
	$s = 45T\sin 10^\circ + 4.9T^2$	A1	1.1b
	Correct strategy: sub for T and find s	M1	3.1b
	d = 3.5 - 2.4752 - 1	M1	3.1b
	= 2.5 (cm) (2 SF)	A1	2.2a
		(8)	
(b)	Using the model and vertical motion: $v = u + at$	M1	3.3
	$v = 45\sin 10^\circ + 9.8T$	A1	1.1b
	Speed = $((45\cos 10^{\circ})^2 + v^2)^{0.5}$	M1	3.1b
	46 (m s ⁻¹) (2 SF)	A1	1.1b
		(4)	
(c)	Model does not take account of air resistance.	B1	3.5b
	Model does not take account of the size of the tennis ball	B1	3.5b
		(2)	
		(14 n	narks)
Notes:			
A1: Correc A1: 0.271 of M1: Using A1: Correc M1: Sub fo M1: Correc A1: 2.5 is th (b)	the model and correct strategy		
A1: Correct			
	ave found a v and usual rules apply. Square root is needed.		

A1: 46 (2 SF) is only correct answer

(c)

B1: Other appropriate answer e.g. spin of the ball, wind effect

B1: Other appropriate answer e.g. spin of the ball, wind effect