Maths Questions By Topic:

Algebra \& Functions Mark Scheme

A-Level Edexcel

© www.expert-tuition.co.uk
\square online.expert-tuition.co.uk
— enquiries@expert-tuition.co.uk
\bigcirc The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 Page 1
Paper 2 Page 47
Old Spec
Core 1 Page 69
Core 2 Page 154Core 3Page 169
Core 4 Page 241

Question	Scheme	Marks	AOs				
$\mathbf{1}$	$\mathrm{f}(1)=a(1)^{3}+10(1)^{2}-3 a(1)-4=0$	M1	3.1 a				
	$6-2 a=0 \Rightarrow a=\ldots$	M 1	1.1 b				
	$a=3$	A 1	1.1 b				
	$\mathbf{(3)}$						
$\mathbf{(3 ~ m a r k s)}$							

Main method seen:
M1: Attempts $\mathrm{f}(1)=0$ to set up an equation in a It is implied by $a+10-3 a-4=0$
Condone a slip but attempting $\mathrm{f}(-1)=0$ is M0
M1: Solves a linear equation in a.
Using the main method it is dependent upon having set $f(\pm 1)=0$
It is implied by a solution of $\pm a \pm 10 \pm 3 a \pm 4=0$.
Don't be concerned about the mechanics of the solution.
A1: $a=3$ (following correct work)

Answers without working scores 0 marks. The method must be made clear. Candidates cannot guess. However if a candidate states for example, when $a=3, \mathrm{f}(x)=3 x^{3}+10 x^{2}-9 x-4$ and shows that $(x-1)$ is a factor of this $\mathrm{f}(x)$ by an allowable method, they should be awarded M1 M1 A1
E.g. 1: $3 x^{3}+10 x^{2}-9 x-4=(x-1)\left(3 x^{2}+13 x+4\right)$ Hence $a=3$
E.g. 2: $\mathrm{f}(x)=3 x^{3}+10 x^{2}-9 x-4, \quad \mathrm{f}(1)=3+10-9-4=0$ Hence $a=3$

The solutions via this method must end with the value for a to score the A1

Other methods are available. They are more difficult to determine what the candidate is doing. Please send to review if you are uncertain
It is important that a correct method is attempted so look at how the two M's are scored
Amongst others are:

$$
\begin{aligned}
& \qquad \\
& \begin{array}{|c|}
\hline
\end{array} \\
& \\
& a x^{3}+10 x^{2}-3 a x-4=(x-1)\left(a x^{2}+(10+a) x+4\right) \text { and sets terms in } x \text { equal } \\
& -3 a=-(10+a)+4 \Rightarrow 2 a=6 \Rightarrow a=3
\end{aligned}
$$

M1: This method is implied by a correct equation, usually $-3 a=-(10+a)+4$
M1: Attempts to find the quadratic factor which must be of the form $a x^{2}+\mathrm{g}(a) x \pm 4$ and then forms and solves a linear equation formed by linking the coefficients or terms in x

Alt (2) By division: $\quad x - 1 \longdiv { a x ^ { 2 } + (\pm 1 0 \pm a) x + (1 0 - 2 a) } \sqrt { a x ^ { 3 } + 1 0 x ^ { 2 } - 3 a x - 4 }$

$$
a x^{3}-a x^{2}
$$

$$
(10+a) x^{2}-3 a x
$$

$$
\frac{(10+a) x^{2}-(10+a) x}{(-2 a+10) x}
$$

M1: This method is implied by a correct equation, usually $-10+2 a=-4$
M1: Attempts to divide with quotient of $a x^{2}+(\pm 10 \pm a) x+\mathrm{h}(a)$ and then forms and solves a linear equation in a formed by setting the remainder $=0$.

Question	Scheme	Marks	AOs
2(a)	$\mathrm{f}(x)=(x-2)^{2} \pm \ldots$	M1	1.2
	$\mathrm{f}(x)=(x-2)^{2}+1$	A1	1.1b
		(2)	
(b)(i)	$P=(0,5)$	B1	1.1b
(b)(ii)	$Q=(2,1)$	B1ft	1.1b
		(2)	
(4 marks)			
Notes			

(a)

M1: Achieves $(x-2)^{2} \pm \ldots$ or states $a=-2$
A1: Correct expression $(x-2)^{2}+1$ ISW after sight of this
Condone $a=-2$ and $b=1$. Condone $(x-2)^{2}+1=0$
(b)
(i) B1: Correct coordinates for P. Allow to be expressed $x=0, y=5$
(ii) B1ft: Correct coordinates for Q. Allow to be expressed $x=2, y=1$ (Score for the correct answer or follow through their part (a) so allow ($-a, b$) where a and b are numeric)
Score in any order if they state $P=(0,5)$ and $Q=(2,1)$

Allow part (b) to be awarded from a sketch. So award
First B1 from a sketch crossing the y-axis at 5
Second B1 from a sketch with minimum at $(2,1)$

Question	Scheme	Marks	AOs
$\mathbf{3}$	$\mathrm{f}^{\prime}(x)=2 x+\frac{4 x-4}{2 x^{2}-4 x+5}$	M 1	1.1 b
	$2 x+\frac{4 x-4}{2 x^{2}-4 x+5}=0 \Rightarrow 2 x\left(2 x^{2}-4 x+5\right)+4 x-4=0$	A 1	1.1 b
	$2 x^{3}-4 x^{2}+7 x-2=0^{*}$	dM 1	1.1 b
		$\mathrm{~A} 1^{*}$	2.1
		(4)	

M1: Differentiates $\ln \left(2 x^{2}-4 x+5\right)$ to obtain $\frac{\mathrm{g}(x)}{2 x^{2}-4 x+5}$ where $\mathrm{g}(x)$ could be 1
A1: For $\mathrm{f}^{\prime}(x)=2 x+\frac{4 x-4}{2 x^{2}-4 x+5}$
dM 1 : Sets their $\mathrm{f}^{\prime}(x)=a x+\frac{\mathrm{g}(x)}{2 x^{2}-4 x+5}=0$ and uses "correct' algebra, condoning slips, to obtain a cubic equation. E.g Look for $a x\left(2 x^{2}-4 x+5\right) \pm \mathrm{g}(x)=0$ o.e., condoning slips, followed by some attempt to simplify
A1*: Achieves $2 x^{3}-4 x^{2}+7 x-2=0$ with no errors. (The dM1 mark must have been awarded)

Question	Scheme	Marks	AOs		
$\mathbf{4}$	Finds critical values $x^{2}-x>20 \Rightarrow x^{2}-x-20>0 \Rightarrow x=(5,-4)$	M1	1.1 b		
	Chooses outside region for their values Eg. $x>5, x<-4$	M1	1.1 b		
	Presents solution in set notation $\{x: x<-4\} \cup\{x: x>5\}$ oe	A1	2.5		
	Notes	(3)			
(3 marks)					

M1: Attempts to find the critical values using an algebraic method. Condone slips but an allowable method should be used and two critical values should be found

M1: Chooses the outside region for their critical values. This may appear in incorrect inequalities such as $5<x<-4$

A1: Presents in set notation as required $\{x: x<-4\} \cup\{x: x>5\}$ Accept $\{x<-4 \cup x>5\}$.
Do not accept $\{x<-4, x>5\}$

Note: If there is a contradiction of their solution on different lines of working do not penalise intermediate working and mark what appears to be their final answer.

Question	Scheme	Marks	AOs
5 (a)	$3 x^{3}-17 x^{2}-6 x=0 \Rightarrow x\left(3 x^{2}-17 x-6\right)=0$	M1	1.1a
	$\Rightarrow x(3 x+1)(x-6)=0$	dM1	1.1b
	$\Rightarrow x=0,-\frac{1}{3}, 6$	A1	1.1b
		(3)	
(b)	Attempts to solve $(y-2)^{2}=n$ where n is any solution $\ldots .0$ to (a)	M1	2.2a
	Two of $2,2 \pm \sqrt{6}$	A1ft	1.1b
	All three of 2, $2 \pm \sqrt{6}$	A1	2.1
		(3)	
(6 marks)			
(a)	Notes		

M1: Factorises out or cancels by x to form a quadratic equation.
dM1: Scored for an attempt to find x. May be awarded for factorisation of the quadratic or use of the quadratic formula.

A1: $x=0,-\frac{1}{3}, 6$ and no extras
(b)

M1: Attempts to solve $(y-2)^{2}=n$ where n is any solution $\ldots 0$ to (a). At least one stage of working must be seen to award this mark. $\operatorname{Eg}(y-2)^{2}=0 \Rightarrow y=2$

A1ft: Two of $2,2 \pm \sqrt{6}$ but follow through on $(y-2)^{2}=n \Rightarrow y=2 \pm \sqrt{n}$ where n is a positive solution to part (a). (Provided M1 has been scored)

A1: All three of $2,2 \pm \sqrt{6}$ and no extra solutions. (Provided M1A1 has been scored)

Question	Scheme	Marks	AOs
$\mathbf{6}$ (a)	$\mathrm{f}(x)=-3 x^{2}+12 x+8=-3(x \pm 2)^{2}+\ldots$	M1	1.1 b
	$=-3(x-2)^{2}+\ldots$	A1	1.1 b
	$=-3(x-2)^{2}+20$	A1	1.1 b
			$\mathbf{(3)}$
(b)	Coordinates of $M=(2,20)$	B1ft	1.1 b
		B1 ft	2.2 a

Notes:

(a)

M1: Attempts to take out a common factor and complete the square. Award for $-3(x \pm 2)^{2}+\ldots$
Alternatively attempt to compare $-3 x^{2}+12 x+8$ to $a x^{2}+2 a b x+a b^{2}+c$ to find values of a and b

A1: Proceeds to a form $-3(x-2)^{2}+\ldots$ or via comparison finds $a=-3, b=-2$
A1: $\quad-3(x-2)^{2}+20$
(b)

B1ft: One correct coordinate
B1ft: Correct coordinates. Allow as $x=\ldots, y=\ldots$
Follow through on their $(-b, c)$

Question	Scheme	Marks	AOs
7 (a) (i)	Uses $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3$ at $x=2 \Rightarrow 12 a+60-39=-3$	M1	1.1b
	Solves a correct equation and shows one correct intermediate step $12 a+60-39=-3 \Rightarrow 12 a=-24 \Rightarrow a=-2 *$	A1*	2.1
(a) (ii)	Uses the fact that (2,10) lies on $C \quad 10=8 a+60-78+b$	M1	3.1a
	Subs $a=-2$ into $10=8 a+60-78+b \Rightarrow b=44$	A1	1.1b
		(4)	
(b)	$\mathrm{f}(x)=-2 x^{3}+15 x^{2}-39 x+44 \Rightarrow \mathrm{f}^{\prime}(x)=-6 x^{2}+30 x-39$	B1	1.1b
	Attempts to show that $-6 x^{2}+30 x-39$ has no roots Eg. calculates $b^{2}-4 a c=30^{2}-4 \times-6 \times-39=-36$	M1	3.1a
	States that as $\mathrm{f}^{\prime}(x) \neq 0 \Rightarrow$ hence $\mathrm{f}(x)$ has no turning points	A1*	2.4
		(3)	
(c)	$-2 x^{3}+15 x^{2}-39 x+44 \equiv(x-4)\left(-2 x^{2}+7 x-11\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	1.1 b 1.1 b
		(2)	
(d)	Deduces either intercept. $(0,44)$ or $(20,0)$	B1 ft	1.1b
	Deduces both intercepts (0,44) and $(20,0)$	B1 ft	2.2a
		(2)	
(11 marks)			
Notes (a)(i) M1: Attempts to use $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3$ at $x=2$ to form an equation in a. Condone slips but expect to see two of the powers reduced correctly A1*: Correct differentiation with one correct intermediate step before $a=-2$ (a)(ii) M1: Attempts to use the fact that $(2,10)$ lies on C by setting up an equation in a and b with $a=-2$ leading to $b=\ldots$ A1: $b=44$ (b) B1: $\mathrm{f}^{\prime}(x)=-6 x^{2}+30 x-39$ oe M1: Correct attempt to show that " $-6 x^{2}+30 x-39$ " has no roots. This could involve an attempt at - finding the numerical value of $b^{2}-4 a c$ - finding the roots of $-6 x^{2}+30 x-39$ using the quadratic formula (or their calculator) - completing the square for $-6 x^{2}+30 x-39$ A1*: A fully correct method with reason and conclusion. Eg as $b^{2}-4 a c=-36<0, \mathrm{f}^{\prime}(x) \neq 0$ meaning that no stationary points exist			

(c)

M1: For an attempt at division (seen or implied) $\operatorname{Eg}-2 x^{3}+15 x^{2}-39 x+b \equiv(x-4)\left(-2 x^{2} \ldots \pm \frac{b}{4}\right)$ A1: $(x-4)\left(-2 x^{2}+7 x-11\right)$ Sight of the quadratic with no incorrect working seen can score both marks.
(d)

See scheme. You can follow through on their value for b

Question	Scheme	Marks	AOs
8 (a)	Either attempts $\frac{3 x-7}{x-2}=7 \Rightarrow x=\ldots$ Or attempts $\quad \mathrm{f}^{-1}(x)$ and substitutes in $x=7$	M1	3.1a
	$\frac{7}{4}$ oe	A1	1.1b
		(2)	
(b)	Attempts $\mathrm{ff}(x)=\frac{3 \times\left(\frac{3 x-7}{x-2}\right)-7}{\left(\frac{3 x-7}{x-2}\right)-2}=\frac{3 \times(3 x-7)-7(x-2)}{3 x-7-2(x-2)}$	$\begin{aligned} & \text { M1, } \\ & \text { dM1 } \end{aligned}$	$\begin{aligned} & \text { 1.1b } \\ & \text { 1.1b } \end{aligned}$
	$=\frac{2 x-7}{x-3}$	A1	2.1
		(3)	
(5 marks)			
Notes:			

(a)

M1: For either attempting to solve $\frac{3 x-7}{x-2}=7$. Look for an attempt to multiply by the $(x-2)$ leading to a value for x.
Or score for substituting in $x=7$ in $\mathrm{f}^{-1}(x)$. FYI $\mathrm{f}^{-1}(x)=\frac{2 x-7}{x-3}$
The method for finding $\mathrm{f}^{-1}(x)$ should be sound, but you can condone slips.
A1: $\frac{7}{4}$
(b)

M1: For an attempt at fully substituting $\frac{3 x-7}{x-2}$ into $\mathrm{f}(x)$. Condone slips but the expression must have a correct form. E.g. $\frac{3 \times\left(\frac{*_{-} *}{*-*}\right)-a}{\left(\frac{*-*}{*-*}\right)-b}$ where a and b are positive constants.
dM1: Attempts to multiply all terms on the numerator and denominator by $(x-2)$ to create a fraction $\frac{P(x)}{Q(x)}$ where both $P(x)$ and $Q(x)$ are linear expressions. Condone $\frac{P(x)}{Q(x)} \times \frac{x-2}{x-2}$
A1: Reaches $\frac{2 x-7}{x-3}$ via careful and accurate work. Implied by $a=2, b=-7$ following correct work.
Methods involving $\frac{3 x-7}{x-2} \equiv a+\frac{b}{x-2}$ may be seen. The scheme can be applied in a similar way FYI $\frac{3 x-7}{x-2} \equiv 3-\frac{1}{x-2}$

Question	Scheme	Marks	AOs
9	Attempts equation of line Eg Substitutes $(-2,13)$ into $y=m x+25$ and finds m	M1	1.1b
	Equation of l is $y=6 x+25$	A1	1.1b
	Attempts equation of C Eg Attempts to use the intercept $(0,25)$ within the equation $y=a(x \pm 2)^{2}+13, \quad$ in order to find a	M1	3.1a
	Equation of C is $y=3(x+2)^{2}+13$ or $y=3 x^{2}+12 x+25$	A1	1.1b
	Region R is defined by $3(x+2)^{2}+13<y<6 x+25$ o.e.	B1ft	2.5
		(5)	
(5 marks)			
Notes:			

The first two marks are awarded for finding the equation of the line
M1: Uses the information in an attempt to find an equation for the line l.
E.g. Attempt using two points: Finds $m= \pm \frac{25-13}{2}$ and uses of one of the points in their $y=m x+c$ or equivalent to find c. Alternatively uses the intercept as shown in main scheme.
A1: $y=6 x+25$ seen or implied. This alone scores the first two marks. Do not accept $l=6 x+25$
It must be in the form $y=\ldots$ but the correct equation can be implied from an inequality. E.g. $<y<6 x+25$
The next two marks are awarded for finding the equation of the curve
M1: A complete method to find the constant a in $y=a(x \pm 2)^{2}+13$ or the constants a, b in $y=a x^{2}+b x+25$.
An alternative to the main scheme is deducing equation is of the form $y=a x^{2}+b x+25$ and setting and solving a pair of simultaneous equations in a and b using the point $(-2,13)$ the gradient
being 0 at $x=-2$. Condone slips. Implied by $C=3 x^{2}+12 x+25$ or $3 x^{2}+12 x+25$
FYI the correct equations are $13=4 a-2 b+25(2 a-b=-6)$ and $-4 a+b=0$
A1: $y=3(x+2)^{2}+13$ or equivalent such as $y=3 x^{2}+12 x+25, \mathrm{f}(x)=3(x+2)^{2}+13$.
Do not accept $C=3 x^{2}+12 x+25$ or just $3 x^{2}+12 x+25$ for the A1 but may be implied from an inequality or from an attempt at the area, E.g. $\int 3 x^{2}+12 x+25 \mathrm{~d} x$
B1ft: Fully defines the region R. Follow through on their equations for l and C.
Allow strict or non -strict inequalities as long as they are used consistently.
E.g. Allow for example " $3(x+2)^{2}+13<y<6 x+25 " \quad " 3(x+2)^{2}+13 \leqslant y \leqslant 6 x+25 "$

Allow the inequalities to be given separately, e.g. $y<6 x+25, y>3(x+2)^{2}+13$. Set notation may be used so $\left\{(x, y): y>3(x+2)^{2}+13\right\} \cap\{(x, y): y<6 x+25\}$ is fine but condone with or without any of $(x, y) \leftrightarrow y \leftrightarrow x$ Incorrect examples include " $y<6 x+25$ or $y>3(x+2)^{2}+13$ ", $\left\{(x, y): y>3(x+2)^{2}+13\right\} \cup\{(x, y): y<6 x+25\}$

Values of x could be included but they must be correct. So $3(x+2)^{2}+13<y<6 x+25, x<0$ is fine If there are multiple solutions mark the final one.

Question	Scheme	Marks	AOs
10(a)	$\mathrm{f}(x)=4\left(x^{2}-2\right) \mathrm{e}^{-2 x}$		
	Differentiates to $\quad \mathrm{e}^{-2 x} \times 8 x+4\left(x^{2}-2\right) \times-2 \mathrm{e}^{-2 x}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
	$\mathrm{f}^{\prime}(x)=8 \mathrm{e}^{-2 x}\left\{x-\left(x^{2}-2\right)\right\}=8\left(2+x-x^{2}\right) \mathrm{e}^{-2 x} \quad *$	A1*	2.1
		(3)	
(b)	States roots of $\mathrm{f}^{\prime}(x)=0 \quad x=-1,2$	B1	1.1b
	Substitutes one x value to find a y value	M1	1.1b
	Stationary points are ($\left.-1,-4 \mathrm{e}^{2}\right)$ and $\left(2,8 \mathrm{e}^{-4}\right)$	A1	1.1b
		(3)	
(c)	(i) Range $\left[-8 \mathrm{e}^{2}, \infty\right)$ o.e. such as $\mathrm{g}(x) \geqslant-8 \mathrm{e}^{2}$	B1ft	2.5
	(ii) For - Either attempting to find $2 f(0)-3=2 \times-8-3=(-19)$ and identifying this as the lower bound - Or attempting to find $2 \times$ " $8 \mathrm{e}^{-4}$ " -3 and identifying this as the upper bound	M1	3.1a
	Range $\left[-19,16 \mathrm{e}^{-4}-3\right]$	A1	1.1b
		(3)	
(9 marks)			
Notes:			

(a)

M1: Attempts the product rule and uses $\mathrm{e}^{-2 x} \rightarrow \mathrm{ke}^{-2 x}, \quad k \neq 0$
If candidate states $u=4\left(x^{2}-2\right), v=\mathrm{e}^{-2 x}$ with $u^{\prime}=\ldots ., v^{\prime}=\ldots \mathrm{e}^{-2 x}$ it can be implied by their $v u^{\prime}+u v^{\prime}$ If they just write down an answer without working award for $\mathrm{f}^{\prime}(x)=p x \mathrm{e}^{-2 x} \pm q\left(x^{2}-2\right) \mathrm{e}^{-2 x}$
They may multiply out first $\mathrm{f}(x)=4 x^{2} \mathrm{e}^{-2 x}-8 \mathrm{e}^{-2 x}$. Apply in the same way condoning slips
Alternatively attempts the quotient rule on $\mathrm{f}(x)=\frac{u}{v}=\frac{4\left(x^{2}-2\right)}{\mathrm{e}^{2 x}}$ with $v^{\prime}=k \mathrm{e}^{2 x}$ and $\mathrm{f}^{\prime}(x)=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
A1: A correct $\mathrm{f}^{\prime}(x)$ which may be unsimplified.
Via the quotient rule you can award for $\mathrm{f}^{\prime}(x)=\frac{8 x \mathrm{e}^{2 x}-8\left(x^{2}-2\right) \mathrm{e}^{2 x}}{\mathrm{e}^{4 x}}$ o.e.
A1*: Proceeds correctly to given answer showing all necessary steps.
The $\mathrm{f}^{\prime}(x)$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ must be present at some point in the solution
This is a "show that" question and there must not be any errors. All bracketing must be correct.
Allow a candidate to move from the simplified unfactorised answer of $\mathrm{f}^{\prime}(x)=8 x \mathrm{e}^{-2 x}-8\left(x^{2}-2\right) \mathrm{e}^{-2 x}$
to the given answer in one step.
Do not allow it from an unsimplified $\mathrm{f}^{\prime}(x)=4 \times 2 x \mathrm{e}^{-2 x}+4\left(x^{2}-2\right) \times-2 \mathrm{e}^{-2 x}$
Allow the expression / bracketed expression to be written in a different order.
So, for example, $8\left(x-x^{2}+2\right) \mathrm{e}^{-2 x}$ is OK
(b)

B1: States or implies $x=-1,2$ (as the roots of $\mathrm{f}^{\prime}(x)=0$)
M1: Substitutes one x value of their solution to $\mathrm{f}^{\prime}(x)=0$ in $\mathrm{f}(x)$ to find a y value.
Allow decimals here (3sf). FYI, to 3 sf, $-4 \mathrm{e}^{2}=-29.6$ and $8 \mathrm{e}^{-4}=0.147$
Some candidates just write down the x coordinates but then go on in part (c) to find the ranges using the y coordinates. Allow this mark to be scored from work in part (c)
A1: Obtains $\left(-1,-4 \mathrm{e}^{2}\right)$ and $\left(2,8 \mathrm{e}^{-4}\right)$ as the stationary points. This must be scored in (b). Remember to isw after a correct answer. Allow these to be written separately. E.g. $x=-1, y=-4 \mathrm{e}^{2}$
Extra solutions, e.g. from $x=0$ will be penalised on this mark.
(c)(i)

B1ft: For a correct range written using correct notation.
Follow through on $2 \times$ their minimum " y " value from part (b), providing it is negative.
Condone a decimal answer if this is consistent with their answer in (b) to 3sf or better.
Examples of correct responses are $\left[-8 \mathrm{e}^{2}, \infty\right), \mathrm{g} \geqslant-8 \mathrm{e}^{2}, \quad y \geqslant-8 \mathrm{e}^{2},\left\{q \in \mathbb{R}, q \geqslant-8 \mathrm{e}^{2}\right\}$
(c)(ii)

M1: See main scheme. Follow through on $2 \times$ their " $8 \mathrm{e}^{-4}$ " -3 for the upper bound.
A1: Range $\left[-19,16 \mathrm{e}^{-4}-3\right]$ o.e. such as $-19 \leqslant y \leqslant 16 \mathrm{e}^{-4}-3$ but must be exact

Question	Scheme	Marks	AOs
11	Attempts to differentiate $x^{n} \rightarrow x^{n-1}$ seen once	M1	1.1b
	$y=2 x^{3}-4 x+5 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=6 x^{2}-4$	A1	1.1b
	For substituting $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}-4$	dM1	1.1b
	For a correct method of finding a tangent at $P(2,13)$. Score for $y-13=" 20 "(x-2)$	ddM1	1.1b
	$y=20 x-27$	A1	1.1b
		(5)	
(5 marks)			

Notes

M1: Attempts to differentiate $x^{n} \rightarrow x^{n-1}$ seen once. Score for $x^{3} \rightarrow x^{2}$ or $\pm 4 x \rightarrow 4$ or $+5 \rightarrow 0$
A1: $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 6 x^{2}-4$ which may be unsimplified $6 x^{2}-4+C$ is A0
dM1: Substitutes $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$. The first M must have been awarded. Score for sight of embedded values, or sight of " $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=2$ is" or a correct follow through. Note that 20 on its own is not enough as this can be done on a calculator.
ddM1: For a correct method of finding a tangent at $P(2,13)$. Score for $y-13=" 20 "(x-2)$ It is dependent upon both previous M's.

If the form $y=m x+c$ is used they must proceed as far as $c=\ldots$
A1: Completely correct $y=20 x-27$ (and in this form)

Question	Scheme	Marks	AOs
12 (i)	$x \sqrt{2}-\sqrt{18}=x \Rightarrow x(\sqrt{2}-1)=\sqrt{18} \Rightarrow x=\frac{\sqrt{18}}{\sqrt{2}-1}$	M1	1.1b
	$\Rightarrow x=\frac{\sqrt{18}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$	dM1	3.1a
	$x=\frac{\sqrt{18}(\sqrt{2}+1)}{1}=6+3 \sqrt{2}$	A1	1.1b
		(3)	
(ii)	$4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 2^{6 x-4}=2^{-\frac{3}{2}}$	M1	2.5
	$6 x-4=-\frac{3}{2} \Rightarrow x=\ldots$	dM1	1.1b
	$x=\frac{5}{12}$	A1	1.1b
		(3)	
(6 marks)			

Notes

(i)

M1: Combines the terms in x, factorises and divides to find x. Condone sign slips and ignore any attempts to simplify $\sqrt{18}$
Alternatively squares both sides $x \sqrt{2}-\sqrt{18}=x \Rightarrow 2 x^{2}-12 x+18=x^{2}$
dM1: Scored for a complete method to find x. In the main scheme it is for making x the subject and then multiplying both numerator and denominator by $\sqrt{2}+1$
In the alternative it is for squaring both sides to produce a 3 TQ and then factorising their quadratic equation to find x. (usual rules apply for solving quadratics)

A1: $x=6+3 \sqrt{2}$ only following a correct intermediate line. Allow $\frac{6+3 \sqrt{2}}{1}$ as an intermediate line.
In the alternative method the $6-3 \sqrt{2}$ must be discarded.
(ii)

M1: Uses correct mathematical notation and attempts to set both sides as powers of 2 or 4 .
Eg $2^{a x+b}=2^{c}$ or $4^{d x+e}=4^{f}$ is sufficient for this mark.
Alternatively uses logs (base 2 or 4) to get a linear equation in x.
$4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow \log _{2} 4^{3 x-2}=\log _{2} \frac{1}{2 \sqrt{2}} \Rightarrow 2(3 x-2)=\log _{2} \frac{1}{2 \sqrt{2}}$.
Or $\quad 4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 3 x-2=\log _{4} \frac{1}{2 \sqrt{2}}$
Or $\quad 4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 4^{3 x}=4 \sqrt{2} \Rightarrow 3 x=\log _{4} 4 \sqrt{2}$
dM1: Scored for a complete method to find x.
Scored for setting the indices of 2 or 4 equal to each other and then solving to find x. There must be an attempt on both sides.
You can condone slips for this mark Eg bracketing errors $4^{3 x-2}=2^{2 \times 3 x-2}$ or $\frac{1}{2 \sqrt{2}}=2^{-1+\frac{1}{2}}$ In the alternative method candidates cannot just write down the answer to the rhs.
So expect some justification. E.g. $\log _{2} \frac{1}{2 \sqrt{2}}=\log _{2} 2^{-\frac{3}{2}}=-\frac{3}{2}$
or $\log _{4} \frac{1}{2 \sqrt{2}}=\log _{4} 2^{-\frac{3}{2}}=-\frac{3}{2} \times \frac{1}{2}$ condoning slips as per main scheme
or $3 x=\log _{4} 4 \sqrt{2} \Rightarrow 3 x=1+\frac{1}{4}$
A1: $\quad x=\frac{5}{12}$ with correct intermediate work

Question	Scheme	Marks	AOs
13 (a)	$\mathrm{g}(5)=2 \times 5^{3}+5^{2}-41 \times 5-70=\ldots$	M1	1.1a
	$\mathrm{g}(5)=0 \Rightarrow(x-5)$ is a factor, hence $\mathrm{g}(x)$ is divisible by $(x-5)$.	A1	2.4
		(2)	
(b)	$2 x^{3}+x^{2}-41 x-70=(x-5)\left(2 x^{2} \ldots x \pm 14\right)$	M1	1.1b
	$=(x-5)\left(2 x^{2}+11 x+14\right)$	A1	1.1b
	Attempts to factorise quadratic factor	dM1	1.1 b
	$(\mathrm{g}(x))=(x-5)(2 x+7)(x+2)$	A1	1.1b
		(4)	
(c)	$\int 2 x^{3}+x^{2}-41 x-70 \mathrm{~d} x=\frac{1}{2} x^{4}+\frac{1}{3} x^{3}-\frac{41}{2} x^{2}-70 x$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Deduces the need to use $\int_{-2}^{5} \mathrm{~g}(x) \mathrm{d} x$ $-\frac{1525}{3}-\frac{190}{3}$	M1	2.2a
	Area $=571 \frac{2}{3}$	A1	2.1
		(4)	
(10 marks)			

(a)

M1: Attempts to calculate $\mathrm{g}(5)$ Attempted division by $(x-5)$ is M0
Look for evidence of embedded values or two correct terms of $\mathrm{g}(5)=250+25-205-70=$...

A1: Correct calculation, reason and conclusion. It must follow M1. Accept, for example,

$$
\begin{aligned}
& \mathrm{g}(5)=0 \Rightarrow(x-5) \text { is a factor, hence divisible by }(x-5) \\
& \mathrm{g}(5)=0 \Rightarrow(x-5) \text { is a factor } \checkmark
\end{aligned}
$$

Do not allow if candidate states

$$
\begin{aligned}
& \mathrm{f}(5)=0 \Rightarrow(x-5) \text { is a factor, hence divisible by }(x-5) \quad \text { (It is not } \mathbf{f} \text {) } \\
& \mathrm{g}(x)=0 \Rightarrow(x-5) \text { is a factor } \quad \text { (It is not } \mathrm{g}(\boldsymbol{x}) \text { and there is no conclusion) }
\end{aligned}
$$

This may be seen in a preamble before finding $\mathrm{g}(5)=0$ but in these cases there must be a minimal statement ie QED, "proved", tick etc.
(b)

M1: Attempts to find the quadratic factor by inspection (correct coefficients of first term and \pm last term) or by division (correct coefficients of first term and \pm second term). Allow this to be scored from division in part (a)

A1: $\quad\left(2 x^{2}+11 x+14\right)$ You may not see the $(x-5)$ which can be condoned
dM1: Correct attempt to factorise their $\left(2 x^{2}+11 x+14\right)$

A1: $\quad(\mathrm{g}(x)=)(x-5)(2 x+7)(x+2)$ or $(\mathrm{g}(x)=)(x-5)(x+3.5)(2 x+4)$
It is for the product of factors and not just a statement of the three factors
Attempts with calculators via the three roots are likely to score 0 marks. The question was "Hence" so the two M's must be awarded.
(c)

M1: For $x^{n} \rightarrow x^{n+1}$ for any of the terms in x for $\mathrm{g}(x)$ so

$$
2 x^{3} \rightarrow \ldots x^{4}, x^{2} \rightarrow \ldots x^{3},-41 x \rightarrow \ldots x^{2},-70 \rightarrow \ldots x
$$

A1: $\quad \int 2 x^{3}+x^{2}-41 x-70 \mathrm{~d} x=\frac{1}{2} x^{4}+\frac{1}{3} x^{3}-\frac{41}{2} x^{2}-70 x$ which may be left unsimplified (ignore any reference to $+C$)
M1: Deduces the need to use $\int_{-2}^{5} \mathrm{~g}(x) \mathrm{d} x$.
This may be awarded from the limits on their integral (either way round) or from embedded values which can be subtracted either way round.

A1: For clear work showing all algebraic steps leading to area $=571 \frac{2}{3}$ oe
So allow $\int_{-2}^{5} 2 x^{3}+x^{2}-41 x-70 \mathrm{~d} x=\left[\frac{1}{2} x^{4}+\frac{1}{3} x^{3}-\frac{41}{2} x^{2}-70 x\right]_{-2}^{5}=-\frac{1715}{3} \Rightarrow$ area $=\frac{1715}{3}$ for 4 marks
Condone spurious notation, as long as the algebraic steps are correct. If they find $\int_{-2}^{5} \mathrm{~g}(x) \mathrm{d} x$ then withhold the final mark if they just write a positive value to this integral since

$$
\int_{-2}^{5} \mathrm{~g}(x) \mathrm{d} x=-\frac{1715}{3}
$$

Note $\int_{-2}^{5} 2 x^{3}+x^{2}-41 x-70 \mathrm{~d} x \Rightarrow \frac{1715}{3}$ with no algebraic integration seen scores M0A0M1A0

Question	Scheme	Marks	AOs
14 (a)	Deduces $\mathrm{g}(x)=a x^{3}+b x^{2}+a x$	B1	2.2a
	$\text { Uses } \begin{aligned} (2,9) & \Rightarrow 9=8 a+4 b+2 a \\ & \Rightarrow 10 a+4 b=9 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\text { Uses } \begin{aligned} \mathrm{g}^{\prime}(2)=0 & \Rightarrow 0=12 a+4 b+a \\ & \Rightarrow 13 a+4 b=0 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	Solves simultaneously $\Rightarrow a, b$	dM1	1.1 b
	$\mathrm{g}(x)=-3 x^{3}+\frac{39}{4} x^{2}-3 x$	A1	1.1b
		(7)	
(b)	Attempts $\mathrm{g}^{\prime \prime}(x)=-18 x+\frac{39}{2}$ and substitutes $x=2$	M1	1.1b
	$\mathrm{g}^{\prime \prime}(2)=-\frac{33}{2}<0$ hence maximum	A1	2.4
		(2)	
(9 marks)			

Notes

(a)

B1: Uses the information given to deduce that $\mathrm{g}(x)=a x^{3}+b x^{2}+a x$. (Seen or implied)
M1: Uses the fact that $(2,9)$ lies on the curve so uses $x=2, y=9$ within a cubic function

A1: For a simplified equation in just two variables. E.g. $10 a+4 b=9$
M1: Differentiates their cubic to a quadratic and uses the fact that $\mathrm{g}^{\prime}(2)=0$ to obtain an equation in a and b.

A1: For a different simplified equation in two variables E.g. $13 a+4 b=0$
dM1: Solves simultaneously $\Rightarrow a=\ldots, b=\ldots$ It is dependent upon the B and both M's
A1: $\quad \mathrm{g}(x)=-3 x^{3}+\frac{39}{4} x^{2}-3 x$
(b)

M1: Attempts $\mathrm{g}^{\prime \prime}(x)=-18 x+\frac{39}{2}$ and substitutes $x=2$. Award for second derivatives of the form $\mathrm{g}^{\prime \prime}(x)=A x+B$ with $x=2$ substituted in.
Alternatively attempts to find the value of their $\mathrm{g}^{\prime}(x)$ or $\mathrm{g}(x)$ either side of $x=2$ (by substituting a value for x within 0.5 either side of 2)
A1: $\mathrm{g}^{\prime \prime}(2)=-\frac{33}{2}<0$ hence maximum. (allow embedded values but they must refer to the sign or that it is less than zero)
If $\mathrm{g}^{\prime}(x)=-9 x^{2}+\frac{39}{2} x-3$ or $\mathrm{g}(x)=-3 x^{3}+\frac{39}{4} x^{2}-3 x$ is calculated either side of $x=2$ then the values must be correct or embedded correctly (you will need to check these) they need to compare $\mathrm{g}^{\prime}(x)>0$ to the left of $x=2$ and $\mathrm{g}^{\prime}(x)<0$ to the right of $x=2$ or $\mathrm{g}(x)<9$ to the left and $\mathrm{g}(x)>9$ to the right of $x=2$ hence maximum.
Note If they only sketch the cubic function $\mathrm{g}(x)=-3 x^{3}+\frac{39}{4} x^{2}-3 x$ then award M1A0

Question	Scheme	Marks	AOs
$\mathbf{1 5}$	Attempts $\mathrm{f}(-3)=3 \times(-3)^{3}+2 a \times(-3)^{2}-4 \times-3+5 a=0$	M1	3.1 a
	Solves linear equation $23 a=69 \Rightarrow a=\ldots$	M1	1.1 b
	$a=3$ cso	A1	1.1 b
		(3)	

M1: Chooses a suitable method to set up a correct equation in a which may be unsimplified.
This is mainly applying $\mathrm{f}(-3)=0$ leading to a correct equation in a.
Missing brackets may be recovered.
Other methods may be seen but they are more demanding
If division is attempted must produce a correct equation in a similar way to the $f(-3)=0$ method

$$
\begin{aligned}
& x + 3 \longdiv { 3 x ^ { 2 } + (2 a - 9) x + 2 3 - 6 a } \begin{array} { l }
{ \frac { 3 x ^ { 3 } + 9 x ^ { 2 } } { (2 a - 9) x ^ { 2 } - 4 x + 5 a } } \\
{ \frac { (2 a - 9) x ^ { 2 } + (6 a - 2 7) x } { (2 3 - 6 a) x + 5 a } } \\
{ (2 3 - 6 a) x + 6 9 - 1 8 a }
\end{array}
\end{aligned}
$$

So accept $5 a=69-18 a$ or equivalent, where it implies that the remainder will be 0
You may also see variations on the table below. In this method the terms in x are equated to -4

$3 x^{2}$		$(2 a-9) x$	$\frac{5 a}{3}$	
	$3 x^{3}$	$(2 a-9) x^{2}$	$\frac{5 a}{3} x$	
3	3			
	$9 x^{2}$	$(6 a-27) x$	$5 a$	

M1: This is scored for an attempt at solving a linear equation in a.
For the main scheme it is dependent upon having attempted $\mathrm{f}(\pm 3)=0$. Allow for a linear equation in a leading to $a=\ldots$. Don't be too concerned with the mechanics of this.
Via division accept $x + 3 \longdiv { 3 x ^ { 2 } \ldots }$ 3 $x^{3}+2 a x^{2}-4 x+5 a$ followed by a remainder in a set $=0 \Rightarrow a=\ldots$
or two terms in a are equated so that the remainder $=0$
FYI the correct remainder via division is $23 a+12-81$ oe
A1: $a=3$ cso
An answer of 3 with no incorrect working can be awarded 3 marks

Question	Scheme	Marks	AOs
16 (a)	$2 x^{2}+4 x+9=2(x \pm k)^{2} \pm \ldots . \quad a=2$	B1	1.1b
	Full method $2 x^{2}+4 x+9=2(x+1)^{2} \pm \ldots \quad a=2 \& b=1$	M1	1.1b
	$2 x^{2}+4 x+9=2(x+1)^{2}+7$	A1	1.1b
		(3)	
(b)	U shaped curve any position but	B1	1.2
	y - intercept at $(0,9)$	B1	1.1b
	$\pm x$ Miner at ($-1,7$)	B1ft	2.2a
		(3)	
(c)	(i) Deduces translation with one correct aspect.	M1	3.1a
	Translate $\binom{2}{-4}$	A1	2.2a
	(ii) $\mathrm{h}(x)=\frac{21}{" 2(x+1)^{2}+7 "} \Rightarrow$ (maximum) value $\frac{21}{" 7 "}(=3)$	M1	3.1a
	$0<\mathrm{h}(x) \leqslant 3$	A1ft	1.1b
		(4)	
(10 marks)			

(a)

B1: Achieves $2 x^{2}+4 x+9=2(x \pm k)^{2} \pm \ldots$. or states that $a=2$
M1: Deals correctly with first two terms of $2 x^{2}+4 x+9$.
Scored for $2 x^{2}+4 x+9=2(x+1)^{2} \pm \ldots$ or stating that $a=2$ and $b=1$
A1: $2 x^{2}+4 x+9=2(x+1)^{2}+7$
Note that this may be done in a variety of ways including equating $2 x^{2}+4 x+9$ with the expanded form of $a(x+b)^{2}+c \equiv a x^{2}+2 a b x+a b^{2}+c$
(b)

B1: For a U-shaped curve in any position not passing through $(0,0)$. Be tolerant of slips of the pen but do not allow if the curve bends back on itself
B1: A curve with a y-intercept on the $+\mathrm{ve} y$ axis of 9 . The curve cannot just stop at $(0,9)$
Allow the intercept to be marked $9,(0,9)$ but not $(9,0)$
B1ft: For a minimum at $(-1,7)$ in quadrant 2. This may be implied by -1 and 7 marked on the axes in the correct places. The curve must be a U shape and not a cubic say.
Follow through on a minimum at $(-b, c)$, marked in the correct quadrant, for their $a(x+b)^{2}+c$
(c)(i)

M1: Deduces translation with one correct aspect or states $\binom{2}{-4}$ with no reference to 'translate'.
Allow instead of the word translate, shift or move. $\mathrm{g}(x)=\mathrm{f}(x-2)-4$ can score M1 For example, possible methods of arriving at this deduction are:

- $\mathrm{f}(x) \rightarrow \mathrm{g}(x)$ is $2 x^{2}+4 x+9 \rightarrow 2(x-2)^{2}+4(x-2)+5 \quad$ So $\mathrm{g}(x)=\mathrm{f}(x-2)-4$
- $\mathrm{g}(x)=2(x-1)^{2}+3 \quad$ New curve has its minimum at $(1,3)$ so $(-1,7) \rightarrow(1,3)$
- Using a graphical calculator to sketch $y=\mathrm{g}(x)$ and compares to the sketch of $y=\mathrm{f}(x)$

In almost all cases you will not allow if the candidate gives two different types of transformations. Eg, stretch and
A1: Requires both 'translate' and ' $\binom{2}{-4}$, Allow 'shift' or move' instead of translate.
So condone " Move shift 2 (units) to the right and move 4 (units) down
However, for M1 A1, it is possible to reflect in $x=0$ and translate $\binom{0}{-4}$, so please consider all responses.
SC: If the candidate writes translate $\binom{-2}{4}$ or " move 2 (units) to the left and 4 (units) up" score M1 A0
(c)(ii)

M1: Correct attempt at finding the maximum value (although it may not be stated as a maximum)

- Uses part (a) to write $\mathrm{h}(x)=\frac{21}{" 2(x+1)^{2}+7 "}$ and attempts to find $\frac{21}{\text { their " } 7 "}$
- Attempts to differentiate, sets $4 x+4=0 \rightarrow x=-1$ and substitutes into $\mathrm{h}(x)=\frac{21}{2 x^{2}+4 x+9}$
- Uses a graphical calculator to sketch $y=\mathrm{h}(x)$ and establishes the 'maximum' value $(\ldots, 3)$

A1ft: $0<\mathrm{h}(x) \leqslant 3$ Allow for $0<\mathrm{h} \leqslant 3(0,3]$ and $0<y \leqslant 3$ but not $0<x \leqslant 3$
Follow through on their $a(x+b)^{2}+c$ so award for $0<\mathrm{h}(x) \leqslant \frac{21}{c}$

Question	Scheme	Marks	AOs
17(i)	$16 a^{2}=2 \sqrt{a} \Rightarrow a^{\frac{3}{2}}=\frac{1}{8} \quad \begin{aligned} & 16 a^{2}-2 \sqrt{a}=0 \\ & \Rightarrow 2 a^{\frac{1}{2}}\left(8 a^{\frac{3}{2}}-1\right)=0 \\ & \Rightarrow a^{\frac{3}{2}}=\frac{1}{8} \end{aligned}$	M1	1.1b
	$\Rightarrow a=\left(\frac{1}{8}\right)^{\frac{2}{3}} \quad \Rightarrow a=\left(\frac{1}{8}\right)^{\frac{2}{3}}$	M1	1.1b
	$\Rightarrow a=\frac{1}{4} \quad \Rightarrow a=\frac{1}{4}$	A1	1.1b
	Deduces that $a=0$ is a solution	B1	2.2a
		(4)	
(ii)	$b^{4}+7 b^{2}-18=0 \Rightarrow\left(b^{2}+9\right)\left(b^{2}-2\right)=0$	M1	1.1b
	$b^{2}=-9,2$	A1	1.1b
	$b^{2}=k \Rightarrow b=\sqrt{k}, k>0$	dM1	2.3
	$b=\sqrt{2},-\sqrt{2}$ only	A1	1.1b
		(4)	
(8 marks)			
Notes			
(i) M1: Combines the two algebraic terms to reach $a^{ \pm^{\frac{3}{2}}}=C$ or equivalent such as $(\sqrt{a})^{3}=C$ $(C \neq 0)$ An alternative is via squaring and combining the algebraic terms to reach $a^{ \pm 3}=k, k>0$ Eg. $\quad \ldots a^{4}=\ldots a \Rightarrow a^{ \pm 3}=k \quad$ or $\quad \ldots a^{4}=\ldots a \Rightarrow \ldots a^{4}-\ldots a=0 \Rightarrow \ldots a\left(a^{3}-\ldots\right)=0 \Rightarrow a^{3}=\ldots$ Allow for slips on coefficients. M1: Undoes the indices correctly for their $a^{\frac{m}{n}}=C$ (So M0 M1 A0 is possible) You may even see logs used. A1: $a=\frac{1}{4}$ and no other solutions apart from 0 Accept exact equivalents Eg 0.25 B1: Deduces that $a=0$ is a solution. (ii) M1: Attempts to solve as a quadratic equation in b^{2} Accept $\left(b^{2}+m\right)\left(b^{2}+n\right)=0$ with $m n= \pm 18$ or solutions via the use of the quadratic formula Also allow candidates to substitute in another variable, say $u=b^{2}$ and solve for u A1: Correct solution. Allow for $b^{2}=2$ or $u=2$ with no incorrect solution given. Candidates can choose to omit the solution $b^{2}=-9$ or $u=-9$ and so may not be seen dM1: Finds at least one solution from their $b^{2}=k \Rightarrow b=\sqrt{k}, k>0$. Allow $b=1.414$			

A1: $b=\sqrt{2},-\sqrt{2}$ only. The solution asks for real values so if $3 i$ is given then score A 0

Notes on Question 17 continue

Answers with minimal or no working:

In part (i)

- no working, just answer(s) with they can score the B1
- If they square and proceed to the quartic equation $256 a^{4}=4 a$ oe, and then write down the answers they can have access to all marks.

In part (ii)

- Accept for 4 marks $b^{2}=2 \Rightarrow b= \pm \sqrt{2}$
- No working, no marks.

Question	Scheme	Marks	AOs
18(a)		M1	1.1 b

Note on Question 18 continue

A1: $k= \pm \sqrt{2} \quad$ and following correct a, b and c if stated
A solution via differentiation would be awarded as follows
M1: Sets the gradient of the curve $=-2 \Rightarrow-\frac{k^{2}}{x^{2}}=-2 \Rightarrow x=(\pm) \frac{k}{\sqrt{2}}$ oe and attempts to substitute into $2 x^{2}-4 x+k^{2}=0$
A1: $\quad 2 k^{2}=(\pm) 2 \sqrt{2} k$ oe
A1: $\quad k= \pm \sqrt{2}$

Question	Scheme	Marks	AOs
19 (a)	Attempts $\mathrm{f}(4)=2 \times 4^{3}-13 \times 4^{2}+8 \times 4+48$	M1	1.1b
	$\mathrm{f}(4)=0 \Rightarrow(x-4)$ is a factor	A1	1.1b
		(2)	
(b)	$2 x^{3}-13 x^{2}+8 x+48=(x-4)\left(2 x^{2} \ldots x-12\right)$	M1	2.1
	$=(x-4)\left(2 x^{2}-5 x-12\right)$	A1	1.1b
	Attempts to factorise quadratic factor or solve quadratic eqn	dM1	1.1b
	$\mathrm{f}(x)=(x-4)^{2}(2 x+3) \Rightarrow \mathrm{f}(x)=0$ has only two roots, 4 and -1.5	A1	2.4
		(4)	
(c)	Deduces either three roots or deduces that ${ }^{(x)}$ is moved down two units	M1	2.2a
	States three roots, as when is moved down two units there will be three points of intersection (with the x-axis)	A1	2.4
		(2)	
(d)	For sight of $k= \pm 4, \pm \frac{3}{2}$	M1	1.1b
	$k=4,-\frac{3}{2}$	A1ft	1.1b
		(2)	

(10 marks)

Notes

(a)

M1: Attempts to calculate $\mathrm{f}(4)$.
Do not accept $f(4)=0$ without sight of embedded values or calculations.
If values are not embedded look for two correct terms from $\mathrm{f}(4)=128-208+32+48$ Alternatively attempts to divide by $(x-4)$. Accept via long division or inspection.
See below for awarding these marks.
A1: Correct reason with conclusion. Accept $f(4)=0$, hence factor as long as M1 has been scored.
This should really be stated on one line after having performed a carrect calculation. It could appear as a preamble if the candidate states "If $\mathrm{f}(4)=0$, then is a factor before doing the calculation and then writing hence proven or \checkmark oe.
If division/inspection is attempted it^{2} must be correct and there must be some attempt to explain why they have shown that is a factor. Eg Via division they must state that there is no remainder, hence factor
(b)

M1: Attempts to find the quadratic factor by inspection (correct first and last terms) or by division (correct first two terms)

So for inspection award for $2 x^{3}-13 x^{2}+8 x+48=(x-4)\left(2 x^{2} \ldots x \pm 12\right)$

$$
\frac{2 x^{2}-5 x}{x - 4 \longdiv { 2 x ^ { 3 } - 1 3 x ^ { 2 } + 8 x + 4 8 }}
$$

For division look for

$$
\frac{2 x^{3}-8 x^{2}}{-5 x^{2}}
$$

A1: Correct quadratic factor $\left(2 x^{2}-5 x-12\right)$ For division award for sight of this "in the correct place" You don't have to see it paired with the $(x-4)$ for this mark.
If a student has used division in part (a) they can score the M1 A1 in (b) as soon as they start attempting to factorise their $\left(2 x^{2}-5 x-12\right)$.
dM1: Correct attempt to solve or factorise their $\left(2 x^{2}-5 x-12\right)$ including use of formula Apply the usual rules $\left(2 x^{2}-5 x-12\right)=(a x+b)(c x+d)$ where $a c= \pm 2$ and $b d= \pm 12$ Allow the candidate to move from $(x-4)\left(2 x^{2}-5 x-12\right)$ to $(x-4)^{2}(2 x+3)$ for this mark.
A1: Via factorisation
Factorises twice to $\mathrm{f}(x)=(x-4)(2 x+3)(x-4)$ or $\mathrm{f}(x)=(x-4)^{2}(2 x+3)$ or $\mathrm{f}(x)=2(x-4)^{2}\left(x+\frac{3}{2}\right)$ followed by a valid explanation why there are only two roots. The explanation can be as simple as

- hence $x=4$ and $-\frac{3}{2}$ (only). The roots must be correct
- only two distinct roots as 4 is a repeated root

There must be some understanding between roots and factors.
E.g. $\mathrm{f}(x)=(x-4)^{2}(2 x+3)$
only two distinct roots is insufficient.
This would require two distinct factors, so there are two distinct roots.
Via solving.
Factorsises to $(x-4)\left(2 x^{2}-5 x-12\right)$ and solves $2 x^{2}-5 x-12=0 \Rightarrow x=4,-\frac{3}{2}$ followed
by an explanation that the roots are $4,4,-\frac{3}{2}$ so only two distinct roots.
Note that this question asks the candidate to use algebra so you cannot accept any attempt to use their calculators to produce the answers.
(c)

M1: For a valid deduction.
Accept either there are 3 roots or states that it is a solution of $\mathrm{f}(x)=2$ or $\mathrm{f}(x)-2=0$
A1: Fully explains:
Eg. States three roots, as $\mathrm{f}(x)$ is moved down by two units (giving three points of intersection with the x-axis)
Eg. States three roots, as it is where $\mathrm{f}(x)=2$ (You may see $y=2$ drawn on the diagram)
(d)

M1: For sight of ± 4 and $\pm \frac{3}{2} \quad$ Follow through on \pm their roots.
A1ft: $k=4,-\frac{3}{2}$ Follow through on their roots. Accept $4,-\frac{3}{2}$ but not $x=4,-\frac{3}{2}$

Question	Scheme	Marks	AOs
20 (a)	Attempts $P=100-6.25(15-9)^{2}$	M1	3.4
	$=-125 \therefore$ not sensible as the company would make a loss	A1	2.4
		(2)	
(b)	Uses $P>80 \Rightarrow(x-9)^{2}<3.2 \quad$ or $P=80 \Rightarrow(x-9)^{2}=3.2$	M1	3.1b
	$\Rightarrow 9-\sqrt{3.2}<x<9+\sqrt{3.2}$	dM1	1.1b
	Minimum Price $=£ 7.22$	A1	3.2a
		(3)	
(c)	States (i) maximum profit $=£ 100000$ and (ii) selling price $£ 9$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 3.2 \mathrm{a} \\ & 2.2 \mathrm{a} \end{aligned}$
		(2)	
(7 marks)			

(a)

M1: Substitutes $x=15$ into $P=100-6.25(x-9)^{2}$ and attempts to calculate. This is implied by an answer of -125 . Some candidates may have attempted to multiply out the brackets before they substitute in the $x=15$. This is acceptable as long as the function obtained is quadratic. There must be a calculation seen or implied by the value of -125 .
A1: Finds $P=-125$ or states that $P<0$ and explains that (this is not sensible as) the company would make a loss.
Condone $P=-125$ followed by an explanation that it is not sensible as the company would make a loss of $£ 125$ rather than $£ 125000$. An explanation that it is not sensible as "the profit cannot be negative", "the profit is negative" or "the company will not make any money", "they might make a loss" is incomplete/incorrect. You may ignore any misconceptions or reference to the price of the toy being too cheap for this mark.
Alt: M1: Sets $P=0$ and finds $x=5,13 \mathrm{~A} 1$: States $15>13$ and states makes a loss
(b)

M1: Uses $P \ldots 80$ where \ldots is any inequality or " $=$ " in $P=100-6.25(x-9)^{2}$ and proceeds to $(x-9)^{2} \ldots k$ where $k>0$ and \ldots is any inequality or $"="$
Eg. Condone $P<80$ in $P=100-6.25(x-9)^{2} \Rightarrow(x-9)^{2}<k$ where $k>0$ If the candidate attempts to multiply out then allow when they achieve a form $a x^{2}+b x+c=0$
dM1: Award for solving to find the two positive values for x. Allow decimal answers
FYI correct answers are $\Rightarrow 9-\sqrt{3.2}<x<9+\sqrt{3.2} \quad$ Accept $\Rightarrow x=9 \pm \sqrt{3.2}$
Condone incorrect inequality work $100-6.25(x-9)^{2}>80 \Rightarrow(x-9)^{2}>3.2 \Rightarrow x>9 \pm \sqrt{3.2}$
Alternatively award if the candidate selects the lower of their two positive values $9-\sqrt{3.2}$
A1: Deduces that the minimum Price $=£ 7.22$ ($£ 7.21$ is not acceptable)
(c)
(i) B1: Maximum Profit $=£ 100000$ with units. Accept 100 thousand pound(s).
(ii) B1: Selling price $=£ 9$ with units

SC 1: Missing units in (b) and (c) only penalise once in these parts, withhold the final mark.
SC 2: If the answers to (c) are both correct, but in the wrong order score SC B1 B0
If (i) and (ii) are not written out score in the order given.

Question	Scheme	Marks	AOs
21(a)	$(\mathrm{g}(-2))=4 \times-8-12 \times 4-15 \times-2+50$	M1	1.1b
	$\mathrm{g}(-2)=0 \Rightarrow(x+2)$ is a factor	A1	2.4
		(2)	
(b)	$4 x^{3}-12 x^{2}-15 x+50=(x+2)\left(4 x^{2}-20 x+25\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
	$=(x+2)(2 x-5)^{2}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
		(4)	
(c)	(i) $\quad x \leqslant-2, x=2.5$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1ft } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	(ii) $x=-1, x=1.25$	B1ft	2.2a
		(3)	
(9 marks)			

(a)

M1: Attempts $\mathrm{g}(-2)$ Some sight of (-2) embedded or calculation is required.
So expect to see $4 \times(-2)^{3}-12 \times(-2)^{2}-15 \times(-2)+50$ embedded

$$
\text { Or }-32-48+30+50 \text { condoning slips for the M1 }
$$

Any attempt to divide or factorise is M0. (See demand in question)
A1: $\mathrm{g}(-2)=0 \Rightarrow(x+2)$ is a factor.
Requires a correct statement and conclusion. Both " $\mathrm{g}(-2)=0$ " and " $(x+2)$ is a factor" must be seen in the solution. This may be seen in a preamble before finding $g(-2)=0$ but in these cases there must be a minimal statement ie QED, "proved", tick etc.
Also accept, in one coherent line/sentence, explanations such as, 'as $\mathrm{g}(x)=0$ when $x=-2,(x+2)$ is a factor.'
(b)

M1: Attempts to divide $\mathrm{g}(x)$ by $(x+2)$ May be seen and awarded from part (a)
If inspection is used expect to see $4 x^{3}-12 x^{2}-15 x+50=(x+2)\left(4 x^{2}\right.$.

If algebraic / long division is used expect to see $\quad 4 x^{2} \pm 20 x$

$$
x + 2 \longdiv { 4 x ^ { 3 } - 1 2 x ^ { 2 } - 1 5 x + 5 0 }
$$

A1: Correct quadratic factor is $\left(4 x^{2}-20 x+25\right)$ may be seen and awarded from part (a)
M1: Attempts to factorise their $\left(4 x^{2}-20 x+25\right)$ usual rule $(a x+b)(c x+d), a c= \pm 4, b d= \pm 25$
A1: $(x+2)(2 x-5)^{2}$ oe seen on a single line. $(x+2)(-2 x+5)^{2}$ is also correct.
Allow recovery for all marks for $\mathrm{g}(x)=(x+2)(x-2.5)^{2}=(x+2)(2 x-5)^{2}$
(c)(i)

M1: For identifying that the solution will be where the curve is on or below the axis. Award for either $x \leqslant-2$ or $x=2.5$ Follow through on their $\mathrm{g}(x)=(x+2)(a x+b)^{2}$ only where $a b<0$ (that is a positive root). Condone $x<-2$ See SC below for $\mathrm{g}(x)=(x+2)(2 x+5)^{2}$

A1ft: BOTH $x \leqslant-2, x=2.5 \quad$ Follow through on their $-\frac{b}{a}$ of their $\mathrm{g}(x)=(x+2)(a x+b)^{2}$ May see $\{x \leqslant-2 \cup x=2.5\}$ which is fine.
(c) (ii)

B1ft: For deducing that the solutions of $\mathrm{g}(2 x)=0$ will be where $x=-1$ and $x=1.25$
Condone the coordinates appearing $(-1,0)$ and $(1.25,0)$
Follow through on their 1.25 of their $\mathrm{g}(x)=(x+2)(a x+b)^{2}$

SC: If a candidate reaches $\mathrm{g}(x)=(x+2)(2 x+5)^{2}$, clearly incorrect because of Figure 2, we will award
In (i) M1 A0 for $x \leqslant-2$ or $x<-2$
In (ii) B1 for $x=-1$ and $x=-1.25$

Alt (b)	$4 x^{3}-12 x^{2}-15 x+50=(x+2)(a x+b)^{2}$ $=a^{2} x^{3}+\left(2 b a+2 a^{2}\right) x^{2}+\left(b^{2}+4 a b\right) x+2 b^{2}$		
	Compares terms to get either a or b	M1	1.1 b
	Either $a=2$ or $b=-5$	A1	1.1 b
	Multiplies out expression $(x+2)(\pm 2 x \pm 5)^{2}$ and compares to $4 x^{3}-12 x^{2}-15 x+50$	M1	
	All terms must be compared or else expression must be multiplied out and establishes that $4 x^{3}-12 x^{2}-15 x+50=(x+2)(2 x-5)^{2}$	A1	1.1 b

Question		Scheme	Marks	AOs
22(a)	$(4,-3)$		B1	1.2
			(1)	
(b)	$x=6$		B1	1.1b
			(1)	
(c)	$\mathrm{x} \leq 4$		B1	1.1b
			(1)	
(d)	$k>1.5$		B1	2.2a
			(1)	
(4 marks)				

Question	Scheme	Marks	AOs
23(a)	$\mathrm{f}(-3)=(-3)^{3}+3 \times(-3)^{2}-4 \times(-3)-12$	M1	1.1b
	$\mathrm{f}(-3)=0 \Rightarrow(x+3)$ is a factor \Rightarrow Hence $\mathrm{f}(x)$ is divisible by $(x+3)$.	A1	2.4
		(2)	
(b)	$x^{3}+3 x^{2}-4 x-12=(x+3)\left(x^{2}-4\right)$	M1	1.1b
	$=(x+3)(x+2)(x-2)$	$\begin{gathered} \mathrm{dM} 1 \\ \mathrm{~A} 1 \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(3)	
(c)	$\frac{x^{3}+3 x^{2}-4 x-12}{x^{3}+5 x^{2}+6 x}=\frac{\ldots}{x\left(x^{2}+5 x+6\right)}$	M1	3.1a
	$=\frac{(x+3)(x+2)(x-2)}{x(x+3)(x+2)}$	dM1	1.1b
	$=\frac{(x-2)}{x}=1-\frac{2}{x}$	A1	2.1
		(3)	

Notes:

(a)

M1: Attempts $f(-3)$
A1: Achieves $\mathrm{f}(-3)=0$ and explains that $(x+3)$ is a factor and hence $\mathrm{f}(x)$ is divisible by $(x+3)$.
(b)

M1: Attempts to divide by $(x+3)$ to get the quadratic factor.
By division look for the first two terms. ie $x^{2}+0 x$

$$
\begin{gathered}
\quad \begin{array}{c}
x^{2} \pm 0 x \ldots \ldots ~ \\
x+3 \\
x^{3}+3 x^{2}-4 x-12 \\
x^{3}+3 x^{2}
\end{array}
\end{gathered}
$$

By inspection look for the first and last term $x^{3}+3 x^{2}-4 x-12=(x+3)\left(x^{2}+. . x \pm 4\right)$
dM1: For an attempt at factorising their $\left(x^{2}-4\right)$. (Need to check first and last terms)
A1: $\mathrm{f}(x)=(x+3)(x+2)(x-2)$
(c)

M1: Takes a common factor of x out of the denominator and writes the numerator in factors.
Alternatively rewrites to $x^{3}+3 x^{2}-4 x-12=A\left(x^{3}+5 x^{2}+6 x\right)+B\left(x^{2}+5 x+6\right)$
dM1: Further factorises the denominator and cancels
Alternatively compares terms or otherwise to find either A or B
A1: Shows that $\frac{x^{3}+3 x^{2}-4 x-12}{x^{3}+5 x^{2}+6 x}=1-\frac{2}{x}$ with no errors or omissions
In the alternative there must be a reference to
$x^{3}+3 x^{2}-4 x-12 \equiv 1\left(x^{3}+5 x^{2}+6 x\right)-2\left(x^{2}+5 x+6\right)$ and hence $\frac{x^{3}+3 x^{2}-4 x-12}{x^{3}+5 x^{2}+6 x}=1-\frac{2}{x}$

Notes:

(a)

B1: Sets the equations equal to each other and achieves a correct equation
M1: Awarded for the key step in solving the problem. This can be awarded via two routes. Both routes must lead to a value for x.

- Making the \sqrt{x} term the subject and squaring both sides (not each term)
- Recognising that this is a quadratic in \sqrt{x} and attempting to factorise

$$
\Rightarrow(5 \sqrt{x} \pm 8)(\sqrt{x} \pm 2)=0
$$

A1: A correct intermediate line $25 x^{2}-164 x+256=0$ or $(5 \sqrt{x}-8)(\sqrt{x}+2)=0$
M1: A correct method to find at least one value for x. Way One it is for factorising (usual rules), Way Two it is squaring at least one result of their \sqrt{x}
A1: Realises that $x=\frac{64}{25}$ is the only solution $\quad x=\frac{64}{25}, 4$ is A0
(b) M1: Attempts to solve $3 x-2 \sqrt{x}=0$ For example

Allow $3 x=2 \sqrt{x} \Rightarrow 9 x^{2}=4 x \Rightarrow x=\ldots$
Allow $3 x=2 \sqrt{x} \Rightarrow x^{\frac{1}{2}}=\frac{2}{3} \Rightarrow x=\ldots$
A1: Correct solution to $3 x-2 \sqrt{x}=0 \Rightarrow x=\frac{4}{9}$
B1: For a consistent solution defining R using either convention
Either $y, 3 x-2 \sqrt{x}, y>8 x-16 x \ldots \frac{4}{9} \quad$ Or $y<3 x-2 \sqrt{x}, y \ldots 8 x-16 x>\frac{4}{9}$

Question	Scheme	Marks	AOs
25 (a)(i)	$\mathrm{f}(x)=x^{3}+a x^{2}-a x+48, x \in \mathbb{R}$		
	$\mathrm{f}(6)=(6)^{3}+a(6)^{2} a(6)+48$	M1	1.1b
	$=216+36 a+6 a+48=0 \quad 42 a=168 \quad a=4$ *	A1*	1.1b
(a)(ii)	Hence, $\mathrm{f}(x)=(x+6)\left(\begin{array}{ll}x^{2} & 2 x+8\end{array}\right)$	M1	2.2a
		A1	1.1b
		(4)	
(b)	$2 \log _{2}(x+2)+\log _{2} x \quad \log _{2}\left(\begin{array}{ll}x & 6\end{array}\right)=3$		
	E.g. - $\log _{2}(x+2)^{2}+\log _{2} x \quad \log _{2}\left(\begin{array}{ll}x & 6\end{array}\right)=3$ - $\left.2 \log _{2}(x+2)+\log _{2}\left(\frac{x}{x}\right)^{f}\right)=3$	M1	1.2
	$\log _{2}\left(\frac{x(x+2)^{2}}{\left(\begin{array}{ll}x &)\end{array}\right)}=3 \quad\left[\right.\right.$ or $\left.\left.\log _{2}\left(x(x+2)^{2}\right)=\log _{2}\left(\begin{array}{ll}(x) & 6\end{array}\right)\right)\right]$	M1	1.1b
	$\left(\frac{x(x+2)^{2}}{(x-6)}\right)^{\prime}=2^{3} \quad\left\{\right.$ i.e. $\log _{2} a=3 \quad a=2^{3}$ or 8$\}$	B1	1.1b
	$x(x+2)^{2}=8\left(\begin{array}{ll}x & 6\end{array}\right) \quad x\left(x^{2}+4 x+4\right)=8 x \quad 48$		
	$x^{3}+4 x^{3}+4 x=8 x \quad 48 \quad x^{3}+4 x^{3} \quad 4 x+48=0 \quad *$	A1 *	2.1
		(4)	
(c)	$2 \log _{2}(x+2)+\log _{2} x \quad \log _{2}(x \quad 6)=3 \quad x^{3}+4 x^{3} \quad 4 x+48=0$		
	$(x+6)\left(x^{2} \quad 2 x+8\right)=0$		
	Reason 1: E.g. - $\log _{2} x$ is not defined when $x=6$ - $\log _{2}\left(\begin{array}{ll}x & 6\end{array}\right)$ is not defined when $x=6$ - $\quad x=6$, but $\log _{2} x$ is only defined for $x>0$ Reason 2: - $b^{2} 4 a c=28<0$, so $\left(\begin{array}{ll}x^{2} & 2 x+8\end{array}\right)=0$ has no (real) roots		
	At least one of Reason 1 or Reason 2	B1	2.4
	Both Reason 1 and Reason 2	B1	2.1
		(2)	
(10 marks)			

Question 25 Notes:

(a)(i)

M1: Applies f(6)
A1*: Applies $\mathrm{f}(6)=0$ to show that $a=4$
(a)(ii)

M1: Deduces $(x+6)$ is a factor of $\mathrm{f}(x)$ and attempts to find a quadratic factor of $\mathrm{f}(x)$ by either equating coefficients or by algebraic long division

A1: $\quad(x+6)\left(\begin{array}{ll}x^{2} & 2 x+8\end{array}\right)$
(b)

M1: Evidence of applying a correct law of logarithms
M1: Uses correct laws of logarithms to give either

- an expression of the form $\log _{2}(\mathrm{~h}(x))=k$, where k is a constant
- an expression of the form $\log _{2}(\mathrm{~g}(x))=\log _{2}(\mathrm{~h}(x))$

B1: \quad Evidence in their working of $\log _{2} a=3 \quad a=2^{3}$ or 8
A1*
Correctly proves $x^{3}+4 x^{3} \quad 4 x+48=0$ with no errors seen
(c)

B1: See scheme
B1: See scheme

Question	Scheme	Marks	AOs
27 (a)	$y=\frac{3 x 5}{x+1} \quad y(x+1)=3 x \quad 5 \quad x y+y=3 x \quad 5 \quad y+5=3 x \quad x y$	M1	1.1b
	$y+5=x(3 \quad y) \quad \frac{y+5}{3 y}=x$	M1	2.1
	Hence $\mathrm{f}^{1}(x)=\frac{x+5}{3 x}, \quad x \in \mathbb{R}, x \neq 3$	A1	2.5
		(3)	
(b)	$\left.\left.\mathrm{ff}(x)=\frac{3\left(\frac{3 x}{x+1}\right)}{\left(\frac{3 x}{x+1}\right)}\right)^{5}+1\right)$	M1	1.1a
	$3(3 x \quad 5) \quad 5(x+1)$	M1	1.1b
	$\begin{array}{ll} (3 x & 5)+(x+1) \\ x+1 \end{array}$	A1	1.1b
		A1	2.1
		(4)	
(c)	$\mathrm{fg}(2)=\mathrm{f}(4 \quad 6)=\mathrm{f}(2)=\frac{3(2) 5}{2+1} ;=11$	M1	1.1 b
		A1	1.1b
		(2)	
(d)	$\mathrm{g}(x)=x^{2}-3 x=(x-1.5)^{2}-2.25$. Hence $\mathrm{g}_{\text {min }}=-2.25$	M1	2.1
	Either $\mathrm{g}_{\text {min }}=-2.25$ or $\mathrm{g}(x) \geqslant-2.25$ or $\mathrm{g}(5)=25-15=10$	B1	1.1b
	$-2.25 \leqslant \mathrm{~g}(x) \leqslant 10$ or $-2.25 \leqslant y \leqslant 10$	A1	1.1b
		(3)	
(e)	E.g. - the function g is many-one - the function g is not one-one - the inverse is one-many - $g(0)=g(3)=0$	B1	2.4
		(1)	
(13 marks)			

Question 27 Notes:

(a)

M1: Attempts to find the inverse by cross-multiplying and an attempt to collect all the x-terms (or swapped y-terms) onto one side
M1: A fully correct method to find the inverse
A1: A correct $\mathrm{f}^{1}(x)=\frac{x+5}{3 x}, x \in \mathbb{R}, x \neq 3$, expressed fully in function notation (including the domain)
(b)

M1: Attempts to substitute $\mathrm{f}(x)=\frac{3 x \quad 5}{x+1}$ into $\frac{3 \mathrm{f}(x) 5}{\mathrm{f}(x)+1}$
M1: Applies a method of "rationalising the denominator" for both their numerator and their denominator.
A1:
$\frac{\left.\frac{3(3 x}{} 5\right) 5(x+1)}{x+1} \begin{aligned} & \frac{(3 x}{5 x+(x+1)} \\ & x+1\end{aligned}$ which can be simplified or un-simplified

A1:
Shows $\operatorname{ff}(x)=\frac{x+a}{x 1}$ where $a=5$ or $\mathrm{ff}(x)=\frac{x \quad 5}{x \quad 1}$, with no errors seen.
(c)

M1:
A1:
Attempts to substitute the result of $g(2)$ into f
(d)

M1:
Correctly obtains $\operatorname{fg}(2)=11$

Full method to establish the minimum of g.
E.g.

- $(x \pm)^{2}+\quad$ leading to $g_{\text {min }}=$
- Finds the value of x for which $g(x)=0$ and inserts this value of x back into $g(x)$ in order to find to $g_{\text {min }}$

B1:
For either

- finding the correct minimum value of g
(Can be implied by $\mathrm{g}(x) \geqslant-2.25$ or $\mathrm{g}(x)>2.25$)
- stating $\mathrm{g}(5)=25-15=10$

A1:
States the correct range for g. E.g. $-2.25 \leqslant g(x) \leqslant 10$ or $-2.25 \leqslant y \leqslant 10$
(e)

B1:
See scheme

Question	Scheme	Marks	AOs
28(a)	States or uses $\mathrm{f}(+3)=0$	M1	1.1b
	$4(3)^{3}-12(3)^{2}+2(3)-6=108-108+6-6=0$ and so $(x-3)$ is a factor	A1	1.1b
		(2)	
(b)	Begins division or factorisation so x $4 x^{3}-12 x^{2}+2 x-6=(x-3)\left(4 x^{2}+\ldots\right)$	M1	2.1
	$4 x^{3}-12 x^{2}+2 x-6=(x-3)\left(4 x^{2}+2\right)$	A1	1.1b
	Considers the roots of their quadratic function using completion of square or discriminant	M1	2.1
	$\left(4 x^{2}+2\right)=0$ has no real roots with a reason (e.g. negative number does not have a real square root, or $4 x^{2}+2>0$ for all x So $x=3$ is the only real root of $\mathrm{f}(x)=0$ *	A1*	2.4
		(4)	
(6 marks)			
Notes:			
(a) M1: \quad States or uses $\mathrm{f}(+3)=0$ A1: See correct work evaluating and achieving zero, together with correct conclusion			
(b) M1: Needs to have $(x-3)$ and first term of quadratic correct A1: Must be correct - may further factorise to $2(x-3)\left(2 x^{2}+1\right)$ M1: Considers their quadratic for no real roots by use of completion of the square or consideration of discriminant then A1*: A correct explanation			

Question	Scheme	Marks	AOs
29	Realises that $k=0$ will give no real roots as equation becomes $3=0$ (proof by contradiction)	B1	3.1a
	(For $k \neq 0$) quadratic has no real roots provided $b^{2}<4 a c$ so $16 k^{2}<12 k$	M1	2.4
	$4 k(4 k-3)<0$ with attempt at solution	M1	1.1b
	So $0<k<\frac{3}{4}$, which together with $k=0$ gives $0 \leqslant k<\frac{3}{4} *$	A1*	2.1
(4 marks)			
Notes:			
B1: Explains why $k=0$ gives no real roots M1: Considers discriminant to give quadratic inequality - does not need the $k \neq 0$ for this mark M1: Attempts solution of quadratic inequality A1*: Draws conclusion, which is a printed answer, with no errors (dependent on all three previous marks)			

Question	Scheme	Marks	AOs
31(a)	Sets $2 x y+\frac{\pi x^{2}}{2}=250$	B1	2.1
	Obtain $y=\frac{250-\frac{\pi x^{2}}{2}}{2 x}$ and substitute into P	M1	1.1b
	Use $P=2 x+2 y+\pi x$ with their y substituted	M1	2.1
	$P=2 x+\frac{250}{x}-\frac{\pi x^{2}}{2 x}+\pi x=2 x+\frac{250}{x}+\frac{\pi x}{2} *$	A1*	1.1b
		(4)	
(b)	$x>0$ and $y>0($ distance $) \Rightarrow \frac{250-\frac{\pi x^{2}}{2}}{2 x}>0$ or $250-\frac{\pi x^{2}}{2}>0$ o.e.	M1	2.4
	As x and y are distances they are positive so $0<x<\sqrt{\frac{500}{\pi}} *$	A1*	3.2a
		(2)	
(c)	Differentiates P with negative index correct in $\frac{\mathrm{d} P}{\mathrm{~d} x} ; x^{-1} \rightarrow x^{-2}$	M1	3.4
	$\frac{\mathrm{d} P}{\mathrm{~d} x}=2-\frac{250}{x^{2}}+\frac{\pi}{2}$	A1	1.1b
	Sets $\frac{\mathrm{d} P}{\mathrm{~d} x}=0$ and proceeds to $x=$	M1	1.1b
	Substitutes their x into $P=2 x+\frac{250}{x}+\frac{\pi x}{2}$ to give perimeter $=59.8 \mathrm{M}$	A1	1.1b
		(4)	
(10 marks)			

Question 31 continued

Notes:

(a)

B1: Correct area equation
M1: Rearranges their area equation to make y the subject of the formula and attempt to use with an expression for P
M1: Use correct equation for perimeter with their y substituted
A1*: Completely correct solution to obtain and state printed answer

(b)

M1: States $x>0$ and $y>0$ and uses their expression from (a) to form inequality
A1*: Explains that x and y are positive because they are distances, and uses correct expression for y to give the printed answer correctly

(c)

M1: Attempt to differentiate P (deals with negative power of x correctly)
A1: Correct differentiation
M1: Sets derived function equal to zero and obtains $x=$
A1: \quad The value of x may not be seen (it is 8.37 to 3 sf or $\sqrt{\left(\frac{500}{4+\pi}\right)}$)
Need to see awrt 59.8 M with units included for the perimeter

Question	Scheme	Marks	AOs
32(a)	Sets $\quad H=0 \Rightarrow 1.8+0.4 d-0.002 d^{2}=0$	M1	3.4
	Solves using an appropriate method, for example $d=\frac{-0.4 \pm \sqrt{(0.4)^{2}-4(-0.002)(1.8)}}{2 \times-0.002}$	dM1	1.1b
	Distance $=$ awrt 204(m) only	A1	2.2a
		(3)	
(b)	States the initial height of the arrow above the ground.	B1	3.4
		(1)	
(c)	$1.8+0.4 d-0.002 d^{2}=-0.002\left(d^{2}-200 d\right)+1.8$	M1	1.1b
	$=-0.002\left((d-100)^{2}-10000\right)+1.8$	M1	1.1b
	$=21.8-0.002(d-100)^{2}$	A1	1.1b
		(3)	
(d)	(i) 22.1 metres	B1ft	3.4
	(ii) 100 metres	B1ft	3.4
		(2)	
(9 marks)			
Notes:			
(a) M1: \quad Sets $H=0 \Rightarrow 1.8+0.4 d-0.002 d^{2}=0$ M1: Solves using formula, which if stated must be correct, by completing square (look for $\left.(d-100)^{2}=10900 \Rightarrow d=..\right)$ or even allow answers coming from a graphical calculator A1: Awrt 204 m only			
(b) B1: States it is the initial height of the arrow above the ground. Do not allow " it is the height of the archer"			
(c) M1: \quad Score for taking out a common factor of -0.002 from at least the d^{2} and d terms M1: For completing the square for their $\left(d^{2}-200 d\right)$ term A1: $=21.8-0.002(d-100)^{2}$ or exact equivalent			
(d) B1ft: For their '21.8+0.3' $=22.1 \mathrm{~m}$ B1ft: For their 100 m			

Question	Scheme	Marks	AOs
33(a)	$y \leqslant 7$	B1	2.5
		(1)	
(b)	$\mathrm{f}(1.8)=7-2 \times 1.8^{2}=0.52 \Rightarrow \mathrm{gf}(1.8)=\mathrm{g}(0.52)=\frac{3 \times 0.52}{5 \times 0.52-1}=\ldots$	M1	1.1b
	$\operatorname{gf}(1.8)=0.975$ oe e.g. $\frac{39}{40}$	A1	1.1b
		(2)	
(c)	$y=\frac{3 x}{5 x-1} \Rightarrow 5 x y-y=3 x \Rightarrow x(5 y-3)=y$	M1	1.1b
	$\left(\mathrm{g}^{-1}(x)=\right) \frac{x}{5 x-3}$	A1	2.2a
		(2)	
(5 marks)			
Notes			
(a) B1: Correct range. Allow $\mathrm{f}(x)$ or f for y. Allow e.g. $\{y \in \mathbb{R}: y \leqslant 7\},-\infty<y \leqslant 7,(-\infty, 7]$ (b) M1: Full method to find $f(1.8)$ and substitutes the result into g to obtain a value. Also allow for an attempt to substitute $x=1.8$ into an attempt at $\mathrm{gf}(x)$. $\text { E.g. } \quad \operatorname{gf}(x)=\frac{3\left(7-2 x^{2}\right)}{5\left(7-2 x^{2}\right)-1}=\frac{3\left(7-2(1.8)^{2}\right)}{5\left(7-2 \times(1.8)^{2}\right)-1}=\ldots$ A1: Correct value (c) M1: Correct attempt to cross multiply, followed by an attempt to factorise out x from an $x y$ term and an x term. If they swap x and y at the start then it will be for an attempt to cross multiply followed by an attempt to factorise out y from an $x y$ term and a y term. A1: Correct expression. Allow equivalent correct expressions e.g. $\frac{-x}{3-5 x}, \frac{1}{5}+\frac{3}{25 x-15}$ Ignore any domain if given.			

Question	Scheme	Marks	AOs
34(a)			

Allow e.g. $\left\{x: x \in \mathbb{R}, k<x<\frac{5 k}{3}\right\},\left\{x: k<x<\frac{5 k}{3}\right\}, x \in\left(k, \frac{5 k}{3}\right)$ and allow " \mid " for" :"
But $\left\{x: x<\frac{5 k}{3}\right\} \cup\{x: x>k\}$ scores A0 $\quad\left\{x: k<x, x<\frac{5 k}{3}\right\}$ scores A0
(c)

B1ft: Deduces one correct coordinate. Follow through their maximum coordinates from (a) so allow $x=2 \times$ " $1.5 k$ " or $y=3-5 \times$ " k " but must be in terms of k.
Allow as coordinates or $x=\ldots, y=\ldots$
B1ft: Deduces both correct coordinates. Follow through their maximum coordinates from (a) so allow $x=2 \times$ " $1.5 k$ " and $y=3-5 \times$ " k " but must be in terms of k.
Allow as coordinates or $x=. ., y=\ldots$
If coordinates are given the wrong way round and not seen correctly as $x=\ldots, y=\ldots$
e.g. $(3-5 k, 3 k)$ this is B0B0

Question	Scheme	Marks	AOs
35(a)	$x=-4$ or $y=-5$	B1	1.1b
	$P(-4,-5)$	B1	2.2a
		(2)	
(b)	$3 x+40=-2(x+4)-5 \Rightarrow x=\ldots$	M1	1.1b
	$x=-10.6$	A1	2.1
		(2)	
(c)	$a>2$	B1	2.2a
	$y=a x \Rightarrow-5=-4 a \Rightarrow a=\frac{5}{4}$	M1	3.1a
	$\{a: a \leqslant 1.25\} \cup\{a: a>2\}$	A1	2.5
		(3)	
(7 marks)			

Notes:

(a)

B1: One correct coordinate. Either $x=-4$ or $y=-5$ or $(-4, \ldots)$ or ($\ldots,-5)$ seen.
B1: Deduces that $P(-4,-5)$ Accept written separately e.g. $x=-4, y=-5$
(b)

M1: Attempts to solve $3 x+40=-2(x+4)-5 \Rightarrow x=\ldots$ Must reach a value for x.
You may see the attempt crossed out but you can still take this as an attempt to solve the required equation.
A1: $x=-10.6$ oe e.g. $-\frac{53}{5}$ only. If other values are given, e.g. $x=-37$ they must be rejected or the $-\frac{53}{5}$ clearly chosen as their answer. Ignore any attempts to find y.
Alternative by squaring:

$$
\begin{aligned}
& 3 x+40=2|x+4|-5 \Rightarrow 3 x+45=2|x+4| \Rightarrow 9 x^{2}+270 x+2025=4\left(x^{2}+8 x+16\right) \\
& \Rightarrow 5 x^{2}+238 x+1961=0 \Rightarrow x=-37,-\frac{53}{5}
\end{aligned}
$$

M1 for isolating the $|x+4|$, squaring both sides and solving the resulting quadratic
A1 for selecting the $-\frac{53}{5}$
Correct answer with no working scores both marks.
(c)

B1: Deduces that $a>2$
M1: Attempts to find a value for a using their $P(-4,-5)$
Alternatively attempts to solve $a x=2(x+4)-5$ and $a x=2(x+4)-5$ to obtain a value for a.
A1: Correct range in acceptable set notation.

$$
\begin{aligned}
& \{a: a \leqslant 1.25\} \cup\{a: a>2\} \\
& \{a: a \leqslant 1.25\},\{a: a>2\} \\
\text { Examples: } & \{a: a \leqslant 1.25 \text { or } a>2\} \\
& \{a: a \leqslant 1.25, a>2\} \\
& (-\infty, 1.25] \cup(2, \infty) \\
& (-\infty, 1.25],(2, \infty)
\end{aligned}
$$

Question	Scheme	Marks	AOs
36 (a)	$\mathrm{gg}(0)=\mathrm{g}\left((0-2)^{2}+1\right)=\mathrm{g}(5)=4(5)-7=13$	M1	2.1
		A1	1.1b
		(2)	
(b)	Solves either $(x-2)^{2}+1=28 \Rightarrow x=\ldots$ or $4 x-7=28 \Rightarrow x=\ldots$	M1	1.1b
	At least one critical value $x=2-3 \sqrt{3}$ or $x=\frac{35}{4}$ is correct	A1	1.1b
	Solves both $(x-2)^{2}+1=28 \Rightarrow x=\ldots$ and $4 x-7=28 \Rightarrow x=\ldots$	M1	1.1b
	Correct final answer of ' $x<2-3 \sqrt{3}, x>\frac{35}{4}$,	A1	2.1
	Note: Writing awrt -3.20 or a truncated -3.19 or a truncated -3.2 in place of $2-3 \sqrt{3}$ is accepted for any of the A marks	(4)	
(c)	$\underline{\mathrm{h} \text { is a one-one } \text { \{function (or mapping) so has an inverse\} }}$ g is a many-one \{function (or mapping) so does not have an inverse\}	B1	2.4
		(1)	
(d) Way 1	$\left\{\mathrm{h}^{-1}(x)=-\frac{1}{2} \Rightarrow\right\} x=\mathrm{h}\left(-\frac{1}{2}\right)$	$\underset{\text { B1 on epen }}{\text { M1 }}$	1.1b
	$x=\left(-\frac{1}{2}-2\right)^{2}+1$ Note: Condone $x=\left(\frac{1}{2}-2\right)^{2}+1$	M1	1.1b
	$\Rightarrow x=7.25$ only cso	A1	2.2a
		(3)	
(d) Way 2	$\left\{\right.$ their $\left.\mathrm{h}^{-1}(x)\right\}= \pm 2 \pm \sqrt{x \pm 1}$	M1	1.1b
	Attempts to solve $\pm 2 \pm \sqrt{x \pm 1}=-\frac{1}{2} \Rightarrow \pm \sqrt{x \pm 1}=\ldots$	M1	1.1b
	$\Rightarrow x=7.25$ only cso	A1	2.2a
		(3)	
(10 marks)			
Notes for Question 36			
(a)			
M1: U	Uses a complete method to find $\operatorname{gg}(0)$. E.g. - Substituting $x=0$ into $(0-2)^{2}+1$ and the result of this into the relevant part of $g(x)$ - Attempts to substitute $x=0$ into $4\left((x-2)^{2}+1\right)-7$ or $4(x-2)^{2}-3$		
A1:	$\mathrm{gg}(0)=13$		
(b)			
M1: S	See scheme		
A1:	See scheme		
M1: S	See scheme		
A1: B	Brings all the strands of the problem together to give a correct solution.		
Note:	You can ignore inequality symbols for any of the M marks		
Note: $\quad \begin{aligned} & \text { If } \\ & \text { the }\end{aligned}$	If a 3 TQ is formed (e.g. $x^{2}-4 x-23=0$) then a correct method for solving a 3 TQ is required for the relevant method mark to be given.		
Note:	Writing $(x-2)^{2}+1=28 \Rightarrow(x-2)+1=\sqrt{28} \Rightarrow x=-1+\sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^{2}+1=28$ is not considered to be an acceptable method)		
Note: A	Allow set notation. E.g. $\{x \in \mathbb{R}: x<2-3 \sqrt{3} \cup x>8.75\}$ is fine for the final A mark		

Notes for Question 36 Continued

(b)	continued
Note:	Give final A0 for $\{x \in \mathbb{R}: x<2-3 \sqrt{3} \cap x>8.75\}$
Note:	Give final A0 for $2-3 \sqrt{3}>x>8.75$
Note:	Allow final A1 for their writing a final answer of " $x<2-3 \sqrt{3}$ and $x>\frac{35}{4}$ "
Note:	Allow final A1 for a final answer of $x<2-3 \sqrt{3}, x>\frac{35}{4}$
Note:	Writing $2-\sqrt{27}$ in place of $2-3 \sqrt{3}$ is accepted for any of the A marks
Note:	Allow final A1 for a final answer of $x<-3.20, x>8.75$
Note:	Using 29 instead of 28 is M0 A0 M0 A0
(c)	
B1:	A correct explanation that conveys the underlined points
Note:	A minimal acceptable reason is " h is a one-one and g is a many-one"
Note:	Give B1 for " h^{-1} is one-one and g^{-1} is one-many"
Note:	Give B1 for " h is a one-one and g is not"
Note:	Allow B1 for "g is a many-one and h is not"
(d)	Way 1
M1:	Writes $x=\mathrm{h}\left(-\frac{1}{2}\right)$
M1:	See scheme
A1:	Uses $x=\mathrm{h}\left(-\frac{1}{2}\right)$ to deduce that $x=7.25$ only, cso
(d)	Way 2
M1:	See scheme
M1:	See scheme
A1:	Use a correct $\mathrm{h}^{-1}(x)=2-\sqrt{x-1}$ to deduce that $x=7.25$ only, cso
Note:	Give final A0 cso for $2+\sqrt{x-1}=-\frac{1}{2} \Rightarrow \sqrt{x-1}=-\frac{5}{2} \Rightarrow x-1=\frac{25}{4} \Rightarrow x=7.25$
Note:	Give final A0 cso for $2 \pm \sqrt{x-1}=-\frac{1}{2} \Rightarrow \sqrt{x-1}=-\frac{5}{2} \Rightarrow x-1=\frac{25}{4} \Rightarrow x=7.25$
Note:	Give final A1 cso for $2 \pm \sqrt{x-1}=-\frac{1}{2} \Rightarrow-\sqrt{x-1}=-\frac{5}{2} \Rightarrow x-1=\frac{25}{4} \Rightarrow x=7.25$
Note:	Allow final A1 for $2 \pm \sqrt{x-1}=-\frac{1}{2} \Rightarrow \pm \sqrt{x-1}=-\frac{5}{2} \Rightarrow x-1=\frac{25}{4} \Rightarrow x=7.25$

Question		Scheme	Marks	AOs
37		$\mathrm{g}(x)=\frac{2 x+5}{x-3}, x \geq 5$		
(a) Way 1		$\mathrm{g}(5)=\frac{2(5)+5}{5-3}=7.5 \Rightarrow \operatorname{gg}(5)=\frac{2(77.5 ")+5}{" 7.5 "-3}$	M1	1.1b
		$\operatorname{gg}(5)=\frac{40}{9} \quad\left(\right.$ or $4 \frac{4}{9}$ or 4.4$)$	A1	1.1b
			(2)	
(a) Way 2		$\operatorname{gg}(x)=\frac{2\left(\frac{2 x+5}{x-3}\right)+5}{\left(\frac{2 x+5}{x-3}\right)-3} \Rightarrow \operatorname{gg}(5)=\frac{2\left(\frac{2(5)+5}{(5)-3}\right)+5}{\left(\frac{2(5)+5}{(5)-3}\right)-3}$	M1	1.1b
		$\operatorname{gg}(5)=\frac{40}{9}\left(\right.$ or $4 \frac{4}{9}$ or 4.4$)$	A1	1.1b
			(2)	
(b)		\{Range:\} $2<y \leq \frac{15}{2}$	B1	1.1b
			(1)	
(c) Way 1		$y=\frac{2 x+5}{x-3} \Rightarrow y x-3 y=2 x+5 \Rightarrow y x-2 x=3 y+5$	M1	1.1b
		$x(y-2)=3 y+5 \Rightarrow x=\frac{3 y+5}{y-2} \quad\left\{\right.$ or $\left.y=\frac{3 x+5}{x-2}\right\}$	M1	2.1
		$\mathrm{g}^{-1}(x)=\frac{3 x+5}{x-2}, \quad 2<x \leq \frac{15}{2}$	A1ft	2.5
			(3)	
(c) Way 2		$y=\frac{2 x-6+11}{x-3} \Rightarrow y=2+\frac{11}{x-3} \Rightarrow y-2=\frac{11}{x-3}$	M1	1.1b
		$x-3=\frac{11}{y-2} \Rightarrow x=\frac{11}{y-2}+3 \quad\left\{\right.$ or $\left.y=\frac{11}{x-2}+3\right\}$	M1	2.1
		$\mathrm{g}^{-1}(x)=\frac{11}{x-2}+3, \quad 2<x \leq \frac{15}{2}$	A1ft	2.5
			(3)	
(6 marks)				
Notes for Question 37				
(a)				
M1: F	Full method of attempting $g(5)$ and substituting the result into g			
Note:	Way 2: Attempts to substitute $x=5$ into $\frac{2\left(\frac{2 x+5}{x-3}\right)+5}{\left(\frac{2 x+5}{x-3}\right)-3}$, o.e. Note that $\operatorname{gg}(x)=\frac{9 x-5}{14-x}$			
A1:	Obtains $\frac{40}{9}$ or $4 \frac{4}{9}$ or $4 . \dot{4}$ or an exact equivalent			
Note:	Give A0 for 4.4 or $4.444 \ldots$ without reference to $\frac{40}{9}$ or $4 \frac{4}{9}$ or $4 . \dot{4}$			

Notes for Question 37 Continued

(b)	
B1:	States $2<y \leq \frac{15}{2} \quad$ Accept any of $2<\mathrm{g} \leq \frac{15}{2}, 2<\mathrm{g}(x) \leq \frac{15}{2},\left(2, \frac{15}{2}\right]$
Note:	Accept $\mathrm{g}(x)>2$ and $\mathrm{g}(x) \leq \frac{15}{2}$ o.e.
(c) Way $\mathbf{1}$	
M1:	Correct method of cross multiplication followed by an attempt to collect terms in x or terms in a swapped y
M1:	A complete method (i.e. as above and also factorising and dividing) to find the inverse
A1ft:	Uses correct notation to correctly define the inverse function g^{-1}, where the domain of g^{-1} stated correctly or correctly followed through (using correct notation) on the values shown in their range in part (b). Allow $\mathrm{g}^{-1}: x \rightarrow$. Condone $\mathrm{g}^{-1}=\ldots \quad$ Do not accept $y=\ldots$
Note:	Correct notation is required when stating the domain of $\mathrm{g}^{-1}(x)$. Allow $2<x \leq \frac{15}{2}$ or $\left(2, \frac{15}{2}\right.$
Note:	Do not allow Alft for following through their range in (b) to give a domain for g^{-1} as $x \in \mathbb{R}$
(c) Way $\mathbf{2}$	Dillow any of e.g. $2<\mathrm{g} \leq \frac{15}{2}, 2<\mathrm{g}^{-1}(x) \leq \frac{15}{2}$
M1:	Writes $y=\frac{2 x+5}{x-3}$ in the form $y=2 \pm \frac{k}{x-3}, k \neq 0$ and rearranges to isolate y and 2 on one side of their equation. Note: Allow the equivalent method with x swapped with y
M1:	A complete method to find the inverse
A1ft:	As in Way 1
Note:	If a candidate scores no marks in part (c), but \bullet states the domain of g^{-1} correctly, or states a domain of g^{-1} which is correctly followed through on the values shown in their range in part (b)

Question	Scheme			Marks	AOs
38(i), (ii) Way 1			V shaped graph \{reasonably\} symmetrical about the y-axis with vertical interpret $(0,3)$ or 3 stated or marked on the positive y-axis	B1	1.1 b
			Superimposes the graph of $y=\|x+3\|$ on top of the graph of $y=\|x\|+3$	M1	3.1a
	the graph of $y=\|x\|+3$ is either the same or above the graph of $y=\|x+3\|$ \{for corresponding values of $x\}$ or when $x \geq 0$, both graphs are equal (or the same) when $x<0$, the graph of $y=\|x\|+3$ is above the graph of $y=\|x+3\|$			A1	2.4
				(3)	
38(ii) Way 2	Reason 1 When $x \geq 0,\|x\|+3=\|x+3\|$ Reason 2 When $x<0,\|x\|+3>\|x+3\|$		y one of Reason 1 or Reason 2	M1	3.1a
			Both Reason 1 and Reason 2	A1	2.4

38(i)	
B1:	See scheme for Question 38
3(ii)	
M1:	For constructing a method of comparing $\|x\|+3$ with $\|x+3\|$. See scheme.
A1:	Explains fully why $\|x\|+3 \geq\|x+3\|$. See scheme.
Note:	Do not allow either $x>0,\|x\|+3 \geq\|x+3\|$ or $x \geq 0,\|x\|+3 \geq\|x+3\|$ as a valid reason
Note	$x=0$ (or where necessary $x=-3$) need to be considered in their solutions for A1
Note:	Do not allow an incorrect statement such as $x \leq 0,\|x\|+3>\|x+3\|$ for A1

Notes for Question 38 Continued			
38(ii)			
Note:	Allow M1A1 for $x>0,\|x\|+3=\|x+3\|$ and for $x \leq 0,\|x\|+3 \geq\|x+3\| \geqslant$		
Note:	Allow M1 for any of - x is positive, $\|x\|+3=\|x+3\|$ - x is negative, $\|x\|+3>\|x+3\|$ - $x>0,\|x\|+3=\|x+3\|$ - $x \leq 0,\|x\|+3 \geq\|x+3\|$ - $x>0,\|x\|+3$ and $\|x+3\|$ are equal - $x \geq 0,\|x\|+3$ and $\|x+3\|$ are equal - when $x \geq 0$, both graphs are equal - for positive values $\|x\|+3$ and $\|x+3\|$ are the same Condone for M1 - $x \leq 0,\|x\|+3>\|x+3\|$ - $x<0,\|x\|+3 \geq\|x+3\|$		
$\begin{aligned} & \text { 38(ii) } \\ & \text { Way } 3 \end{aligned}$	- For $x>0,\|x\|+3=\|x+3\|$ - For $-3<x<0$, as $\|x\|+3>3$ and $\{0<\}\|x+3\|<3$, then $\|x\|+3>\|x+3\|$ - For $x \leq-3$, as $\|x\|+3=-x+3$ and $\|x+3\|=-x-3$, then $\|x\|+3>\|x+3\|$	M1	3.1a
		A1	2.4

Question		Scheme	Marks	AOs	
39		(a) $\mathrm{f}(x)=-3 x^{3}+8 x^{2}-9 x+10, \quad x \in \mathbb{R}$			
(a)		(i) $\{\mathrm{f}(2)=-24+32-18+10 \Rightarrow\} \mathrm{f}(2)=0$	B1	1.1b	
		(ii) $\{\mathrm{f}(x)=\}(x-2)\left(-3 x^{2}+2 x-5\right)$ or $(2-x)\left(3 x^{2}-2 x+5\right)$	M1	2.2a	
		A1	1.1b		
			(3)		
(b)			$-3 y^{6}+8 y^{4}-9 y^{2}+10=0 \Rightarrow\left(y^{2}-2\right)\left(-3 y^{4}+2 y^{2}-5\right)=0$		
		Gives a partial explanation by - explaining that $-3 y^{4}+2 y^{2}-5=0$ has no $\{$ real $\}$ solutions with a reason, e.g. $b^{2}-4 a c=(2)^{2}-4(-3)(-5)=-56<0$ - or stating that $y^{2}=2$ has $2\{$ real $\}$ solutions or $y= \pm \sqrt{2}\{$ only \}	M1	2.4	
		Complete proof that the given equation has exactly two \{real\} solutions	A1	2.1	
			(2)		
(c)		$3 \tan ^{3} \theta-8 \tan ^{2} \theta+9 \tan \theta-10=0 ; 7 \pi \leq \theta<10 \pi$			
		\{Deduces that\} there are 3 solutions	B1	2.2a	
			(1)		
(6 marks)					
Notes for Question 39					
(a)(i)					
B1:	$\mathrm{f}(2)=0$ or 0 stated by itself in part (a)(i)				
(a)(ii)					
M1:	Deduces that $(x-2)$ or $(2-x)$ is a factor and attempts to find the other quadratic factor by - using long division to obtain either $\pm 3 x^{2} \pm k x+\ldots, k=$ value $\neq 0$ or $\pm 3 x^{2} \pm \alpha x+\beta, \beta=$ value $\neq 0, \alpha$ can be 0 - factorising to obtain their quadratic factor in the form $\left(\pm 3 x^{2} \pm k x \pm c\right), k=$ value $\neq 0$, c can be 0 , or in the form $\left(\pm 3 x^{2} \pm \alpha x \pm \beta\right), \beta=$ value $\neq 0, \alpha$ can be 0				
A1:	$(x-2)\left(-3 x^{2}+2 x-5\right),(2-x)\left(3 x^{2}-2 x+5\right)$ or $-(x-2)\left(3 x^{2}-2 x+5\right)$ stated together as a product				
(b)					
M1: S	See scheme				
A1: S	See scheme. Proof must be correct with no errors, e.g. giving an incorrect discriminant value				
Note: C	Correct calculation e.g. (2) ${ }^{2}-4(-3)(-5), 4-60$ or -56 must be given for the first explanation				
Note: N	Note that M1 can be allowed for - a correct follow through calculation for the discriminant of their " $-3 y^{4}+2 y^{2}-5$ " which would lead to a value <0 together with an explanation that $-3 y^{4}+2 y^{2}-5=0$ has no $\{$ real $\}$ solutions - or for the omission of <0				
Note:	<0 must also been stated in a discriminant method for A1				
Note: D	Do not allow A1 for incorrect working, e.g. $(2)^{2}-4(-3)(-5)=-54<0$				
Note:	$y^{2}=2 \Rightarrow y= \pm 2$, so 2 solutions is not allowed for A1, but can be condoned for M1				
Note: ${ }^{\text {U }}$	Using the formula on $-3 y^{4}+2 y^{2}-5=0$ or $-3 x^{2}+2 x-5=0$ gives y^{2} or $x=\frac{-2 \pm \sqrt{-56}}{-6}$ or $\frac{-1 \pm \sqrt{-14}}{-3}$				

Notes for Question 39 Continued

Note:	Completing the square on $-3 x^{2}+2 x-5=0$
	gives $x^{2}-\frac{2}{3} x+\frac{5}{3}=0 \Rightarrow\left(x-\frac{1}{3}\right)^{2}-\frac{1}{9}+\frac{5}{3}=0 \Rightarrow x=\frac{1}{3} \pm \sqrt{\frac{-14}{9}}$
Note:	Do not recover work for part (b) in part (c)
(c)	
B1:	See scheme
Note:	Give B0 for stating $\theta=$ awrt 23.1, awrt 26.2, awrt 29.4 without reference to 3 solutions

Question	Scheme	Marks	AOs
40 (a) Way 1	$H=A x(40-x) \quad\{$ or $H=A x(x-40)\}$	M1	3.3
	$x=20, H=12 \Rightarrow 12=A(20)(40-20) \Rightarrow A=\frac{3}{100}$	dM1	3.1b
	$H=\frac{3}{100} x(40-x)$ or $H=-\frac{3}{100} x(x-40)$	A1	1.1b
		(3)	
(a) Way 2	$H=12-\lambda(x-20)^{2} \quad\left\{\right.$ or $\left.H=12+\lambda(x-20)^{2}\right\}$	M1	3.3
	$x=40, H=0 \Rightarrow 0=12-\lambda(40-20)^{2} \Rightarrow \lambda=\frac{3}{100}$	dM1	3.1b
	$H=12-\frac{3}{100}(x-20)^{2}$	A1	1.1b
		(3)	
(a) Way 3	$\begin{gathered} H=a x^{2}+b x+c \quad \text { (or deduces } H=a x^{2}+b x \text {) } \\ \text { Both } x=0, H=0 \Rightarrow 0=0+0+c \Rightarrow c=0 \\ \text { and either } x=40, H=0 \Rightarrow 0=1600 a+40 b \\ \text { or } x=20, H=12 \Rightarrow 12=400 a+20 b \\ \text { or } \frac{-b}{2 a}=20\{\Rightarrow b=-40 a\} \end{gathered}$	M1	3.3
	$\begin{gathered} b=-40 a \Rightarrow 12=400 a+20(-40 a) \Rightarrow a=-0.03 \\ \text { so } b=-40(-0.03)=1.2 \end{gathered}$	dM1	3.1b
	$H=-0.03 x^{2}+1.2 x$	A1	1.1b
		(3)	
(b)	$\begin{gathered} \{H=3 \Rightarrow\} 3=\frac{3}{100} x(40-x) \Rightarrow x^{2}-40 x+100=0 \\ \text { or }\{H=3 \Rightarrow\} 3=12-\frac{3}{100}(x-20)^{2} \Rightarrow(x-20)^{2}=300 \end{gathered}$	M1	3.4
	e.g. $x=\frac{40 \pm \sqrt{1600-4(1)(100)}}{2(1)}$ or $\quad x=20 \pm \sqrt{300}$	dM1	1.1b
	$\{$ chooses $20+\sqrt{300} \Rightarrow\}$ greatest distance $=$ awrt 37.3 m	A1	3.2a
		(3)	
(c)	Gives a limitation of the model. Accept e.g. - the ground is horizontal - the ball needs to be kicked from the ground - the ball is modelled as a particle - the horizontal bar needs to be modelled as a line - there is no wind or air resistance on the ball - there is no spin on the ball - no obstacles in the trajectory (or path) of the ball - the trajectory of the ball is a perfect parabola	B1	3.5b
		(1)	
(7 marks)			

Notes for Question 40	
(a)	
M1:	Translates the situation given into a suitable equation for the model. E.g. Way 1: $\{$ Uses $(0,0)$ and $(40,0)$ to write $\} H=A x(40-x)$ o.e. $\{$ or $H=A x(x-40)\}$
	Way 2: \{Uses (20, 12) to write\} $H=12-\lambda(x-20)^{2}$ or $H=12+\lambda(x-20)^{2}$
	Way 3: Writes $H=a x^{2}+b x+c$, and uses $(0,0)$ to deduce $c=0$ and an attempt at using either $(40,0)$ or $(20,12)$ Special Case: Allow SC M1dM0A0 for not deducing $c=0$ but attempting to apply both (40, 0) and $(20,12)$
dM1:	Applies a complete strategy with appropriate constraints to find all constants in their model. Way 1: Uses $(20,12)$ on their model and finds $A=\ldots$ Way 2: Uses either $(40,0)$ or $(0,0)$ on their model to find $\lambda=\ldots$ Way 3: Uses $(40,0)$ and $(20,12)$ on their model to find $a=\ldots$ and $b=\ldots$
A1:	Finds a correct equation linking H to x E.g. $H=\frac{3}{100} x(40-x), H=12-\frac{3}{100}(x-20)^{2}$ or $H=-0.03 x^{2}+1.2 x$
Note:	Condone writing y in place of H for the M1 and dM1 marks.
Note:	Give final A0 for $y=-0.03 x^{2}+1.2 x$
Note:	Give special case M1dM0A0 for writing down any of $H=12-(x-20)^{2}$ or $H=x(40-x)$ or $H=x(x-40)$
Note:	Give M1 dM1 for finding $-0.03 x^{2}+1.2 x$ or $a=-0.03, b=1.2, c=0$ in an implied $a x^{2}+b x$ or $a x^{2}+b x+c$ (with no indication of $H=\ldots$)
(b)	
M1:	Substitutes $H=3$ into their quadratic equation and proceeds to obtain a 3 TQ or a quadratic in the form $(x \pm \alpha)^{2}=\beta ; \alpha, \beta \neq 0$
Note:	E.g. $1.2 x-0.03 x^{2}=3$ or $40 x-x^{2}=100$ are acceptable for the $1^{\text {st }} \mathrm{M}$ mark
Note:	Give M0 dM0 A0 for (their A) $x^{2}=3 \Rightarrow x=\ldots$ or their (their $\left.A\right) x^{2}+($ their $k)=3 \Rightarrow x=\ldots$
dM1:	Correct method of solving their quadratic equation to give at least one solution
A1:	Interprets their solution in the original context by selecting the larger correct value and states correct units for their value. E.g. Accept awrt 37.3 m or $(20+\sqrt{300}) \mathrm{m}$ or $(20+10 \sqrt{3}) \mathrm{m}$
Note:	Condone the use of inequalities for the method marks in part (b)
(c):	
B1:	See scheme
Note:	Give no credit for the following reasons - H (or the height of ball) is negative when $x>40$ - Bounce of the ball should be considered after hitting the ground - Model will not be true for a different rugby ball - Ball may not be kicked in the same way each time

Question	Scheme	Marks	AOs
41(a)	/ \quadCorrect graph in quadrant 1 and quadrant 2 with V on the x-axis	B1	1.1b
	 States $(0,5)$ and $\left(\frac{5}{2}, 0\right)$ or $\frac{5}{2}$ marked in the correct position on the x-axis and 5 marked in the correct position on the y-axis	B1	1.1b
		(2)	
(b)	$\|2 x-5\|>7$		
	$2 x-5=7 \Rightarrow x=\ldots$ and $-(2 x-5)=7 \Rightarrow x=\ldots$	M1	1.1b
	$\{$ critical values are $x=6,-1 \Rightarrow\} x<-1$ or $x>6$	A1	1.1b
		(2)	
(c)	$\|2 x-5\|>x-\frac{5}{2}$		
	E.g. - Solves $2 x-5=x-\frac{5}{2}$ to give $x=\frac{5}{2}$ and solves $-(2 x-5)=x-\frac{5}{2}$ to also give $x=\frac{5}{2}$ - Sketches graphs of $y=\|2 x-5\|$ and $y=x-\frac{5}{2}$. Indicates that these graphs meet at the point $\left(\frac{5}{2}, 0\right)$	M1	3.1a
	Hence using set notation, e.g. - $\left\{x: x<\frac{5}{2}\right\} \cup\left\{x: x>\frac{5}{2}\right\}$ - $\left\{x \in \square, x \neq \frac{5}{2}\right\}$ - $\square-\left\{\frac{5}{2}\right\}$	A1	2.5
		(2)	
(6 marks)			

```
Question 41 Notes:
(a)
B1: See scheme
B1: See scheme
(b)
M1: See scheme
A1: Correct answer, e.g.
    - }x<-1\mathrm{ or }x>
    - }x<-1\cupx>
    - {x:x<-1}\cup{x:x>6}
(c)
M1:
A complete process of finding that }y=|2x-5| and y=x - \frac{5}{2}\mathrm{ meet at only one point.
This can be achieved either algebraically or graphically.
A1:
See scheme.
Note: Final answer must be expressed using set notation.
```

Question	Scheme	Marks	AOs
42	$3 x-2 y=k$ intersects $y=2 x^{2}-5$ at two distinct points		
	Eliminate y and forms quadratic equation $=0$ or quadratic expression $\{=0\}$	M1	3.1a
	$\left\{3 x-2\left(2 x^{2}-5\right)=k \Rightarrow\right\}-4 x^{2}+3 x+10-k=0$	A1	1.1b
	$\left\{" b^{2}-4 a c ">0 \Rightarrow\right\} 3^{2}-4(-4)(10-k)>0$	dM1	2.1
	$9+16(10-k)>0 \Rightarrow 169-16 k>0$		
	Critical value obtained of $\frac{169}{16}$	B1	1.1b
	$k<\frac{169}{16} \quad$ o.e.	A1	1.1b
		(5)	
$\begin{gathered} 42 \\ \text { Alt } 1 \end{gathered}$	Eliminate y and forms quadratic equation $=0$ or quadratic expression $\{=0\}$	M1	3.1a
	$y=2\left(\frac{1}{3}(k+2 y)\right)^{2}-5 \Rightarrow y=\frac{2}{9}\left(k^{2}+4 k y+4 y^{2}\right)-5$		
	$8 y^{2}+(8 k-9) y+2 k^{2}-45=0$	A1	1.1b
	$\left\{" b^{2}-4 a c ">0 \Rightarrow\right\}(8 k-9)^{2}-4(8)\left(2 k^{2}-45\right)>0$	dM1	2.1
	$64 k^{2}-144 k+81-64 k^{2}+1440>0 \Rightarrow-144 k+1521>0$		
	Critical value obtained of $\frac{169}{16}$	B1	1.1b
	$k<\frac{169}{16} \quad$ o.e.	A1	1.1 b
		(5)	
$\begin{gathered} 42 \\ \text { Alt } 2 \end{gathered}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x, m_{l}=\frac{3}{2} \Rightarrow 4 x=\frac{3}{2} \Rightarrow x=\frac{3}{8} \quad$ So $y=2\left(\frac{3}{8}\right)^{2}-5=-\frac{151}{32}$	M1	3.1a
	$\overline{\mathrm{d} x}=4 x, m_{l}=\frac{3}{2} \Rightarrow 4 x=\frac{3}{2} \Rightarrow x=\frac{1}{8}$. So $y=2\left(\frac{\overline{8}}{}\right)^{\prime}-5=-\frac{1}{32}$	A1	1.1b
	$k=3\left(\frac{3}{8}\right)-2\left(-\frac{151}{32}\right) \Rightarrow k=\ldots$	dM1	2.1
	Critical value obtained of $\frac{169}{16}$	B1	1.1b
	$k<\frac{169}{16} \quad$ o.e.	A1	1.1b
		(5)	
$\text { (} 5 \text { marks) }$			

Question 42 Notes:

M1: \quad Complete strategy of eliminating x or y and manipulating the resulting equation to form a quadratic equation $=0$ or a quadratic expression $\{=0\}$

A1: \quad Correct algebra leading to either

- $-4 x^{2}+3 x+10-k=0$ or $4 x^{2}-3 x-10+k=0$
or a one-sided quadratic of either $-4 x^{2}+3 x+10-k$ or $4 x^{2}-3 x-10+k$
- $8 y^{2}+(8 k-9) y+2 k^{2}-45=0$
or a one-sided quadratic of e.g. $8 y^{2}+(8 k-9) y+2 k^{2}-45$
dM1: Depends on the previous M mark.
Interprets $3 x-2 y=k$ intersecting $y=2 x^{2}-5$ at two distinct points by applying " $b^{2}-4 a c$ " >0 to their quadratic equation or one-sided quadratic.
B1: See scheme
A1: \quad Correct answer, e.g.
- $k<\frac{169}{16}$
- $\left\{k: k<\frac{169}{16}\right\}$

Alt 2
M1: \quad Complete strategy of using differentiation to find the values of x and y where $3 x-2 y=k$ is a tangent to $y=2 x^{2}-5$

A1: \quad Correct algebra leading to $x=\frac{3}{8}, y=-\frac{151}{32}$
dM1: Depends on the previous M mark.
Full method of substituting their $x=\frac{3}{8}, y=-\frac{151}{32}$ into l and attempting to find the value for k.
B1: See scheme
A1: \quad Deduces correct answer, e.g.

- $k<\frac{169}{16}$
- $\left\{k: k<\frac{169}{16}\right\}$

Question	Scheme	Marks	AOs
43	Sets $\mathrm{f}(-2)=0 \Rightarrow 2 \times(-2)^{3}-5 \times(-2)^{2}+a \times-2+a=0$	M1	3.1a
	Solves linear equation $2 a-a=-36 \Rightarrow a=$	dM1	1.1b
	$\Rightarrow a=-36$	A1	1.1b
(3 marks)			
Notes:			
M1: Selects a suitable method given that $(x+2)$ is a factor of $\mathrm{f}(x)$ Accept either setting $\mathrm{f}(-2)=0$ or attempted division of $\mathrm{f}(x)$ by $(x+2)$ dM1: Solves linear equation in a. Minimum requirement is that there are two terms in ' a ' which must be collected to get .. $a=. . \Rightarrow a=$ A1: $\quad a=-36$			

Question	Scheme	Marks	AOs
44 (a)	$\operatorname{gf}(x)=3 \ln \mathrm{e}^{x}$	M1	1.1b
	$=3 x,(x \in \mathbb{R})$	A1	1.1b
		(2)	
(b)	$\mathrm{gf}(x)=\mathrm{fg}(x) \Rightarrow 3 x=x^{3}$	M1	1.1b
	$\Rightarrow x^{3}-3 x=0 \Rightarrow x=$	M1	1.1b
	$\Rightarrow x=(+) \sqrt{3}$ only as $\ln x$ is not defined at $x=0$ and $-\sqrt{3}$	M1	2.2a
		(3)	
(5 marks)			
Notes:			
(a) M1: For applying the functions in the correct order A1: The simplest form is required so it must be $3 x$ and not left in the form $3 \ln \mathrm{e}^{x}$ An answer of $3 x$ with no working would score both marks			
(b) M1: Allow the candidates to score this mark if they have $\mathrm{e}^{3 \ln x}=$ their $3 x$ M1: For solving their cubic in x and obtaining at least one solution. A1: For either stating that $x=\sqrt{3}$ only as $\ln x(\operatorname{or} 3 \ln x)$ is not defined at $x=0$ and $-\sqrt{3}$ or stating that $3 x=x^{3}$ would have three answers, one positive one negative and one zero but $\ln x($ or $3 \ln x)$ is not defined for $x \leqslant 0$ so therefore there is only one (real) answer. Note: Student who mix up fg and gf can score full marks in part (b) as they have already been penalised in part (a)			

Question	Scheme	Marks	AOs
45(i)	$x^{2}-6 x+10=(x-3)^{2}+1$	M1	2.1
	Deduces "always true" as $(x-3)^{2} \geqslant 0 \Rightarrow(x-3)^{2}+1 \geqslant 1$ and so is always positive	A1	2.2a
		(2)	
(ii)	For an explanation that it need not (always) be true This could be if $a<0$ then $a x>b \Rightarrow x<\frac{b}{a}$	M1	2.3
	States 'sometimes' and explains if $a>0$ then $a x>b \Rightarrow x>\frac{b}{a}$ if $a<0$ then $a x>b \Rightarrow x<\frac{b}{a}$	A1	2.4
		(2)	
(iii)	Difference $=(n+1)^{2}-n^{2}=2 n+1$	M1	3.1a
	Deduces "Always true" as $2 n+1=($ even +1$)=$ odd	A1	2.2a
		(2)	
(6 marks)			
Notes:			
(i) M1: Attempts to complete the square or any other valid reason. Allow for a graph of $y=x^{2}-6 x+10$ or an attempt to find the minimum by differentiation A1: States always true with a valid reason for their method (ii) M1: For an explanation that it need not be true (sometimes). This could be if $a<0$ then $a x>b \Rightarrow x<\frac{b}{a}$ or simply $-3 x>6 \Rightarrow x<-2$ A1: Correct statement (sometimes true) and explanation (iii) M1: Sets up the proof algebraically. For example by attempting $(n+1)^{2}-n^{2}=2 n+1$ or $m^{2}-n^{2}=(m-n)(m+n)$ with $m=n+1$ A1: States always true with reason and proof Accept a proof written in words. For example If integers are consecutive, one is odd and one is even When squared odd \times odd $=$ odd and even \times even $=$ even The difference between odd and even is always odd, hence always true Score M1 for two of these lines and A1 for a good proof with all three lines or equivalent.			

Question	Scheme	Marks	AOs
46(a)	$\mathrm{f}(x) \geqslant 5$	B1	1.1b
		(1)	
(b)	Uses $-2(3-x)+5=\frac{1}{2} x+30$	M1	3.1a
	Attempts to solve by multiplying out bracket, collect terms etc $\frac{3}{2} x=31$	M1	1.1b
	$x=\frac{62}{3}$ only	A1	1.1b
		(3)	
(c)	Makes the connection that there must be two intersections. Implied by either end point $k>5$ or $k \leqslant 11$	M1	2.2a
	$\{k: k \in \mathbb{R}, 5<k \leqslant 11\}$	A1	2.5
		(2)	
(6 marks)			
Notes:			
(a) B1: $\mathrm{f}(x) \geqslant 5$ Also allow $\mathrm{f}(x) \in[5, \infty)$			
(b) M1: Deduces that the solution to $\mathrm{f}(x)=\frac{1}{2} x+30$ can be found by solving $-2(3-x)+5=\frac{1}{2} x+30$ M1: Correct method used to solve their equation. Multiplies out bracket/ collects like terms A1: $x=\frac{62}{3}$ only. Do not allow 20.6			
(c) M1: Deduces that two distinct roots occurs when $y=k$ intersects $y=\mathrm{f}(x)$ in two places. This may be implied by the sight of either end point. Score for sight of either $k>5$ or $k \leqslant 11$ A1: Correct solution only $\{k: k \in \mathbb{R}, 5<k \leqslant 11\}$			

Note:

The question does not specify the form of the final answer in (b) and so if answers are left un-simplified as e.g. $\frac{\log _{3} 81+3}{6}, \frac{\log _{3} 2187}{6}$ then allow full marks if correct.

Question Number	Scheme		Marks
50(a)	$b^{2}-4 a c=(4 k)^{2}-4(-2)(20+13 k)$	Attempts to use $b^{2}-4 a c$ with $a= \pm(20 \pm 13 k), b= \pm 4 k, c= \pm 2$. This could be as part of the quadratic formula or as $b^{2}<4 a c$ or as $b^{2}>4 a c$ or as $\sqrt{b^{2}-4 a c}$ etc. If it is part of the quadratic formula only look for use of $b^{2}-4 a c$. There must be no x 's. If they gather to the lhs, condone the omission of the "-" on the " $4 k$ ".	M1
	$(4 k)^{2}-4(-2)(20+13 k)$	For a correct un-simplified expression.	A1
	$\begin{gathered} b^{2}-4 a c<0 \\ \Rightarrow(4 k)^{2}-4(-2)(20+13 k)<0 \end{gathered}$	Uses $b^{2}-4 a c<0$ or e.g. $b^{2}<4 a c$ with their values of a, b and c in terms of k. The " <0 " must appear before the final printed answer but can appear as $b^{2}-4 a c<0$ at the start.	M1
	$\begin{aligned} & 16 k^{2}+160+104 k<0 \\ & \Rightarrow 2 k^{2}+13 k+20<0 * \end{aligned}$	Reaches the printed answer with no errors, including bracketing errors, or contradictory statements and sufficient working shown. Note that the statement $(20+13 k) x^{2}-4 k x-2<0$ or starting with e.g. $20 x^{2}<4 k x-13 k x^{2}+2$ would be an error.	A1*
			(4)
(b)	$\begin{gathered} 2 k^{2}+13 k+20=0 \Rightarrow k=\ldots \\ \text { e.g. } \\ (2 k+5)(k+4)=0 \Rightarrow k=\ldots \end{gathered}$	Attempt to solve the given quadratic to find 2 values for k. See general guidance.	M1
	$\Rightarrow k=-\frac{5}{2},-4$	Both correct. May be implied by e.g. $k<-\frac{5}{2}, \quad k<-4$ or seen on a sketch. If they use the quadratic formula allow $\frac{-13 \pm 3}{4}$ for this mark but not $\sqrt{9}$ for 3 and allow e.g. $-\frac{13}{4} \pm \frac{3}{4}$ if they complete the square.	A1
	$-4<k<-\frac{5}{2}$ Allow equivalent values e.g. $-\frac{10}{4}$ i.e. the critical values must be in the form $\frac{a}{b}$ where a and b are integers	M1: Chooses 'inside' region for their critical values i.e. Lower Limit $<k<$ Upper Limit or e.g. Lower Limit $\leq k \leq$ Upper Limit A1: Allow $k \in\left(-4,-\frac{5}{2}\right)$ or just $\left(-4,-\frac{5}{2}\right)$ and allow $k>-4$ and $k<-2.5$ and $\begin{aligned} & -\frac{5}{2}>k>-4 \text { but } k>-4, k<-\frac{5}{2} \\ & \text { scores M1A0. }-\frac{5}{2}<k<-4 \text { is M0A0 } \end{aligned}$	M1A1
	Allow working in terms of x in (b) but the answer must be in terms of k for the final mark.		
			(4)
			(8 marks)

(c)	$P Q^{2}=(0-4)^{2}+(19-3)^{2}$	Correct use of Pythagoras' Theorem on 2 points of the form $(0, p)$ and (q, r) where $q \neq 0$ and $p \neq r$ with p, q and r numeric.	M1	
	$P Q=\sqrt{4^{2}+16^{2}}$	Correct un-simplified numerical expression for $P Q$ including the square root. This must come from a correct P and Q. Allow e.g $\begin{aligned} & P Q=\sqrt{(0-4)^{2}+(19-3)^{2}} \\ & \text { Allow } \pm \sqrt{(0-4)^{2}+(19-3)^{2}} \end{aligned}$	A1	
	$P Q=4 \sqrt{17}$	Cao and cso i.e. This must come from a correct P and Q.	A1	
	Note that it is possible to obtain the correct value for PQ from $(-4,3)$ and $(0,19)$ and e.g. $(0,13)$ and $(4,-3)$ but the A marks in (c) can only be awarded for the correct P and Q .			
			(3)	
				(8 marks)

(b)	$\begin{aligned} \frac{1}{x}+5 & =-3 x+c \Rightarrow 1+5 x=-3 x^{2}+c x \\ \Rightarrow & 3 x^{2}+5 x-c x+1=0 \end{aligned}$	Sets $\frac{1}{x}+5=-3 x+c$, attempts to multiply by x and collects terms (to one side). Allow e.g. " $>$ " or " $<$ " for " $=$ ". At least 3 of the terms must be multiplied by x, e.g. allow one slip. The ' $=0$ ' may be implied by subsequent work and provided correct work follows, full marks are still possible in (b).	M1
	$b^{2}-4 a c=(5-c)^{2}-4 \times 1 \times 3$	Attempts to use $b^{2}-4 a c$ with their a, b and c from their equation where $a= \pm 3, b= \pm 5 \pm c$ and $c= \pm 1$. This could be as part of the quadratic formula or as $b^{2}<4 a c$ or as $b^{2}>4 a c$ or as $\sqrt{b^{2}-4 a c}$ etc. If it is part of the quadratic formula only look for use of $b^{2}-4 a c$. There must be no x 's.	M1
	$(5-c)^{2}>12 *$	Completes proof with no errors or incorrect statements and with the " $>$ " appearing correctly before the final answer, which could be from $b^{2}-4 a c>0$. Note that the statement $3 x^{2}+5 x-c x+1>0$ or starting with e.g. $\frac{1}{x}+5>-3 x+c$ would be an error.	A1*
	Note: A minimum for (b) could be, $\begin{aligned} \frac{1}{x}+5=-3 x+c & \Rightarrow 3 x^{2}+5 x-c x+1(=0)(\mathrm{M} 1) \\ b^{2}>4 a c & \Rightarrow(5-c)^{2}>12(\mathrm{M} 1 \mathrm{~A} 1) \end{aligned}$ If $b^{2}>4 a c$ is not seen then $4 \times 3 \times 1$ needs to be seen explicitly.		

(c)	$\begin{gathered} (5-c)^{2}=12 \Rightarrow(c=) 5 \pm \sqrt{12} \\ \quad \text { or } \\ (5-c)^{2}=12 \Rightarrow c^{2}-10 c+13=0 \\ \Rightarrow(c=) \frac{-10 \pm \sqrt{(-10)^{2}-4 \times 13}}{2} \end{gathered}$	M1: Attempts to find at least one critical value using the result in (b) or by expanding and solving a 3TQ (See General Principles) (the " $=0$ " may be implied) A1: Correct critical values in any form. Note that $\sqrt{12}$ may be seen as $2 \sqrt{3}$.	M1A1
	$c<75-\sqrt{12}{ }^{\prime}, c>45+\sqrt{12}{ }^{\prime}$	Chooses outside region. The ' $0<$ ' can be ignored for this mark. So look for $c<$ their $5-\sqrt{12}$, $c>$ their $5+\sqrt{12}$. This could be scored from $5+\sqrt{12}<c<5-\sqrt{12}$ or $5-\sqrt{12}>c>5+\sqrt{12}$. Evidence is to be taken from their answers not from a diagram.	M1
	$0<c<5-\sqrt{12}, c>5+\sqrt{12}$	Correct ranges including the ' $0<$ ' e.g. answer as shown or each region written separately or e.g. $(0,5-\sqrt{12}),(5+\sqrt{12}, \infty)$. The critical values may be un-simplified but must be at least $\frac{10+\sqrt{48}}{2}, \frac{10-\sqrt{48}}{2}$. Note that $0<c<5-\sqrt{12} \text { and } c>5+\sqrt{12}$ would score M1A0.	A1
	Allow the use of \boldsymbol{x} rather than \boldsymbol{c} in (c) but the final answer must be in terms of \boldsymbol{c}.		
			(4)
			(11 marks)

Question Number	Scheme	Notes	Marks
53.(a)	$\sqrt{50}-\sqrt{18}=5 \sqrt{2}-3 \sqrt{2}$	$\sqrt{50}=5 \sqrt{2}$ or $\sqrt{18}=3 \sqrt{2}$ and the other term in the form $k \sqrt{2}$. This mark may be implied by the correct answer $2 \sqrt{2}$	M1
	$=2 \sqrt{2}$	Or $a=2$	A1
			[2]
(b) WAY 1	$\frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}}=\frac{12 \sqrt{3}}{" 2 " \sqrt{2}}$	Uses part (a) by replacing denominator by their $a \sqrt{2}$ where a is numeric. This is all that is required for this mark.	M1
	$=\frac{12 \sqrt{3}}{" 2 " \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{12 \sqrt{6}}{4}$	Rationalises the denominator by a correct method e.g. multiplies numerator and denominator by $k \sqrt{2}$ to obtain a multiple of $\sqrt{6}$. Note that multiplying numerator and denominator by $2 \sqrt{2}$ or $-2 \sqrt{2}$ is quite common and is acceptable for this mark. May be implied by a correct answer. This is dependent on the first M1.	dM1
	$=3 \sqrt{6}$ or $b=3, c=6$	Cao and cso	A1
			[3]
$\begin{gathered} \text { (b) } \\ \text { WAY } 2 \end{gathered}$	$\begin{aligned} & \frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}} \times \frac{\sqrt{50}+\sqrt{18}}{\sqrt{50}+\sqrt{18}} \\ & \text { or } \\ & \frac{12 \sqrt{3}}{5 \sqrt{2}-3 \sqrt{2}} \times \frac{5 \sqrt{2}+3 \sqrt{2}}{5 \sqrt{2}+3 \sqrt{2}} \end{aligned}$	For rationalising the denominator by a correct method i.e. multiplying numerator and denominator by $k(\sqrt{50}+\sqrt{18})$	M1
	$\frac{60 \sqrt{6}+36 \sqrt{6}}{50-18}$	For replacing numerator by $\alpha \sqrt{6}+\beta \sqrt{6}$. This is dependent on the first M1 and there is no need to consider the denominator for this mark.	dM1
	$=3 \sqrt{6}$ or $b=3, c=6$	Cao and cso	A1
			[3]
$\begin{gathered} \text { (b) } \\ \text { WAY } 3 \end{gathered}$	$\frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}}=\frac{12 \sqrt{3}}{22}{ }^{2} \sqrt{2}$	Uses part (a) by replacing denominator by their $a \sqrt{2}$ where a is numeric. This is all that is required for this mark.	M1
	$=\frac{12 \sqrt{3}}{2 \sqrt{2}}=\frac{6 \sqrt{3}}{\sqrt{2}}=\frac{\sqrt{108}}{\sqrt{2}}=\sqrt{54}=\sqrt{9} \sqrt{6}$	Cancels to obtain a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1
	$=3 \sqrt{6}$ Or $b=3, c=6$	Cao and cso	A1
			[3]
$\begin{gathered} \text { (b) } \\ \text { WAY } 4 \end{gathered}$	$\frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}}=\frac{12 \sqrt{3}}{2 " 2 \sqrt{2}}$	Uses part (a) by replacing denominator by their $a \sqrt{2}$ where a is numeric. This is all that is required for this mark.	M1
	$\left(\frac{12 \sqrt{3}}{12}{ }^{2} \sqrt{2}\right)^{2}=\frac{432}{8}$		
	$\sqrt{54}=\sqrt{9} \sqrt{6}$	Obtains a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1
	$=3 \sqrt{6}$ Or $b=3, c=6$	Cao and cso (do not allow $\pm 3 \sqrt{6}$)	A1
			5 marks

Question Number		Notes	Marks
54.(a)			Scheme Note original points are $A(-2,4)$ and $B(3,-8)$ through the origin. A cubic shape with a maximum in the second quadrant and a minimum in the 4 ${ }^{\text {th }}$ quadrant. There must be evidence of a change in at least one of the y-coordinates (inconsistent changes in the y-coordinates are acceptable) but not the x - coordinates.

Question Number	Scheme	Notes	Marks
	WAY 1		
55.	$\begin{gathered} y=-4 x-1 \\ \Rightarrow(-4 x-1)^{2}+5 x^{2}+2 x=0 \end{gathered}$	Attempts to makes y the subject of the linear equation and substitutes into the other equation. Allow slips e.g. substituting $y=-4 x+1$ etc.	M1
	$21 x^{2}+10 x+1=0$	Correct 3 term quadratic (terms do not need to be all on the same side). The " $=0$ " may be implied by subsequent work.	A1
	$(7 x+1)(3 x+1)=0 \Rightarrow(x=)-\frac{1}{7},-\frac{1}{3}$	dM1: Solves a 3 term quadratic by the usual rules (see general guidance) to give at least one value for x. Dependent on the first method mark.	dM1 A1
		A1: $(x=)-\frac{1}{7},-\frac{1}{3}$ (two separate correct exact answers). Allow exact equivalents e.g. $(x=)-\frac{6}{42},-\frac{14}{42}$	
	$y=-\frac{3}{7}, \quad \frac{1}{3}$	M1: Substitutes to find at least one y value (Allow substitution into their rearranged equation above but not into an equation that has not been seen earlier). You may need to check here if there is no working and x values are incorrect.	M1 A1
		A1: $y=-\frac{3}{7}, \frac{1}{3}$ (two correct exact answers) Allow exact equivalents e.g. $y=-\frac{18}{42}, \frac{14}{42}$	
	Coordinates do not need to be paired		
	Note that if the linear equation is explicitly rearranged to $y=4 x+1$, this gives the correct answers for x and possibly for y. In these cases, if it is not already lost, deduct the final A1.		
			[6]
	WAY 2		
	$\begin{gathered} x=-\frac{1}{4} y-\frac{1}{4} \\ \Rightarrow y^{2}+5\left(-\frac{1}{4} y-\frac{1}{4}\right)^{2}+2\left(-\frac{1}{4} y-\frac{1}{4}\right)=0 \end{gathered}$	Attempts to makes x the subject of the linear equation and substitutes into the other equation. Allow slips in the rearrangement as above.	M1
	$\frac{21}{16} y^{2}+\frac{1}{8} y-\frac{3}{16}=0\left(21 y^{2}+2 y-3=0\right)$	Correct 3 term quadratic (terms do not need to be all on the same side). The " $=0$ " may be implied by subsequent work.	A1
	$(7 y+3)(3 y-1)=0 \Rightarrow(y=)-\frac{3}{7}, \frac{1}{3}$	dM1: Solves a 3 term quadratic by the usual rules (see general guidance) to give at least one value for y. Dependent on the first method mark.	dM1 A1
		A1: $(y=)-\frac{3}{7}, \frac{1}{3}$ (two separate correct exact answers). Allow exact equivalents e.g. $(y=)-\frac{18}{42}, \frac{14}{42}$	
	$X=-\frac{1}{7},-\frac{1}{3}$	M1: Substitutes to find at least one x value (Allow substitution into their rearranged equation above but not into an equation that has not been seen earlier). You may need to check here if there is no working and y values are incorrect.	M1 A1
		A1: $x=-\frac{1}{7},-\frac{1}{3}$ (two correct exact answers) Allow exact equivalents e.g. $x=-\frac{6}{42},-\frac{14}{42}$	
	Coordinates do not need to be paired		
	Note that if the linear equation is explicitly rearranged to $x=(y+1) / 4$, this gives the correct answers for y and possibly for x. In these cases, if it is not already lost, deduct the final A1.		
			[6]
			6 marks

Question Number	Scheme	Notes	Marks
56(a)	$2 p x^{2}-6 p x+4 p "=" 3 x-7$ or $y=2 p\left(\frac{y+7}{3}\right)^{2}-6 p\left(\frac{y+7}{3}\right)+4 p$	Either: Compares the given quadratic expression with the given linear expression using $<,>,=, \neq$ (May be implied) or Rearranges $y=3 x-7$ to make x the subject and substitutes into the given quadratic	M1
	$\begin{array}{r} 2 p x^{2}-6 p x+4 p-3 x+7(= \\ 2 p\left(\frac{y+7}{3}\right)^{2}-6 p\left(\frac{y+7}{3}\right)+4 p- \\ y=2 p x^{2} \end{array}$	$\begin{aligned} & \frac{\text { mples }}{} \quad-2 p x^{2}+6 p x-4 p+3 x-7(=0) \\ & =0), \quad 2 p y^{2}+(10 p-9) y+8 p(=0) \\ & 6 p x+4 p-3 x+7 \end{aligned}$	dM1
	Moves all the terms to one side allow The terms do not need to be collec	sign errors only. Ignore $>0,<0,=0$ etc. . Dependent on the first method mark.	
	E.g. $\begin{aligned} b^{2}-4 a c & =(-6 p-3)^{2}-4(2 p)(4 p+7) \\ b^{2}-4 a c & =(10 p-9)^{2}-4(2 p)(8 p) \end{aligned}$	Attempts to use $b^{2}-4 a c$ with their a, b and c where $a= \pm 2 p, b= \pm(-6 p \pm 3)$ and $c= \pm(4 p \pm 7)$ or for the quadratic in y, $a= \pm 2 p, b= \pm(10 p \pm 9)$ and $c= \pm 8 p$. This could be as part of the quadratic formula or as $b^{2}<4 a c$ or as $b^{2}>4 a c$ or as $\sqrt{b^{2}-4 a c}$ etc. If it is part of the quadratic formula only look for use of $b^{2}-4 a c$. There must be no x 's or y 's. Dependent on both method marks.	ddM1
	$4 p^{2}-20 p+9<0$ *	Obtains printed answer with no errors seen (Allow $0>4 p^{2}-20 p+9$) but this <0 must been seen at some stage before the last line.	A1*
			[4]
(b)	$(2 p-9)(2 p-1)=0 \Rightarrow p=\ldots$ to obtain $p=$	Attempt to solve the given quadratic to find 2 values for p. See general guidance.	M1
	$p=\frac{9}{2}, \quad \frac{1}{2}$	Both correct. May be implied by e.g. $p<\frac{9}{2}, \quad p<\frac{1}{2}$. Allow equivalent values e.g. $4.5, \frac{36}{8}, 0.5$ etc. If they use the quadratic formula allow $\frac{20 \pm 16}{8}$ for this mark but not $\sqrt{256}$ for 16 and allow e.g. $\frac{5}{2} \pm 2$ if they complete the square.	A1
	$\frac{1}{2}<p<4 \frac{1}{2}$ Allow equivalent values e.g. $\frac{36}{8}$ for $4 \frac{1}{2}$	M1: Chooses ‘inside’ region i.e. Lower Limit < $p<$ Upper Limit or e.g. Lower Limit $\leq p \leq$ Upper Limit	M1A1
		A1: Allow $p \in\left(\frac{1}{2}, 4 \frac{1}{2}\right)$ or just $\left(\frac{1}{2}, 4 \frac{1}{2}\right)$ and allow $p>\frac{1}{2}$ and $p<4 \frac{1}{2}$ and $4 \frac{1}{2}>p>\frac{1}{2}$ but $p>\frac{1}{2}, p<4 \frac{1}{2}$ scores M1A0 $\frac{1}{2}>p>4 \frac{1}{2}$ scores M0A0	
	Allow working in terms of x in (b) but the answer must be in terms of \boldsymbol{p} for the final A mark.		[4]
			8 marks

Special case: Use of $4 x^{3}-9 x$ for the curve gives $(-2,-14)$ and $(1,-5)$ in part (c). Allow this to score a maximum of B0B0M1A1 as a special case in part (c) as the length AB comes from equivalent work.

Notes

(a) M1 Reaching $p x>q$ with one or both of p or q correct. Also give for $-4 x<-10$

A1 Cao $x>2.5$ o.e. Accept alternatives to 2.5 like $2 \frac{1}{2}$ and $\frac{5}{2}$ even allow $\frac{10}{4}$ and allow $\frac{5}{2}<x \quad$ o.e. This answer must occur and be credited as part (a) A correct answer implies M1A1

Mark parts (b) and (c) together.
(b) M1 Rearrange $3 \mathrm{TQ} \leq 0$ or $3 \mathrm{TQ}=0$ or even $3 \mathrm{TQ}>0$ Do not worry about the inequality at this stage AND attempt to solve by factorising, formula or completion of the square with the usual rules (see notes)
A1 12 and -3 seen as critical values
M1 Inside region for their critical values - must be stated - not just a table or a graph
A1
$-3 \leq x \leq 12$ Accept $x \geq-3$ and $x \leq 12$ or [-3, 12]
For the A mark: Do not accept $x \geq-3$ or $x \leq 12$ nor $-3<x<12$ nor $(-3,12)$ nor $x \geq-3, x \leq 12$
However allow recovery if they follow these statements by a correct statement, either in (b) or as they start part (c)
N.B. $-3 \leq 0 \leq 12$ and $x \geq-3, x \leq 12$ are poor notation and get M1A0 here.
(c) A1 cso
$2.5<x \leq 12$ Accept $x>2.5$ and $x \leq 12$ Allow $\frac{10}{4}$ Do not accept $x>2.5$ or $x \leq 12$
Accept $(2.5,12]$ A graph or table is not sufficient. Must follow correct earlier work - except for special case

Special case (c) $x>2.5, x \leq 12 ; \quad 2.5<0 \leq 12$ are poor notation - but if this poor notation has been penalised in (b) then allow A1 here. Any other errors are penalised in both (b) and (c).

Notes

N.B. Check original diagram as answer may appear there.
(a) B1 The x coordinate of A is -1 . Accept -1 or $(-1,0)$ on the diagram or stated with or without diagram Allow $(0,-1)$ on the diagram if it is on the correct axis.
(b) If no graph is drawn then no marks are available in part (b)

B1 Correct shape. The position is not important for this mark but the curve must have two clear turning points and be a $+\mathrm{ve} x^{3}$ curve (with a maximum and minimum)
B1 The graph touches the origin. Accept touching as a maximum or minimum. There must be a sketch for this mark but sketch may be wrong and this mark is independent of previous mark. Origin is where axes cross and may not be labelled. This may be a quadratic or quartic curve for this mark.
B1 The graph crosses the x-axis at the point $(2,0)$ only. If it crosses at $(2,0)$ and $(0,0)$ this is B0. Accept $(0,2)$ or 2 marked on the correct axis. Accept $(2,0)$ in the text of the answer provided that the curve crosses the positive x axis. There must be a sketch for this mark. Do not give credit if $(2,0)$ appears only in a table with no indication that this is the intersection point. (If in doubt send to review) Graph takes precedence over text for third B mark.
(c) B1ft Two (solutions) as there are two intersections (of the curves) N.B. Just states 2 with no reason is B0 If the answer states 2 roots and two intersections - or crosses twice this is enough for B1 BUT B0 If there is any wrong reason given - e.g. crosses x axis twice, or crosses asymptote twice Isw - is not used for this mark so any wrong statement listed to follow a correct statement will result in B0
Allow ft - so if their graph crosses the hyperbola once - allow "one solution as there is one intersection" And if it crosses three times - allow "three solutions as there are three intersections" or four etc.. If it does not cross at all (e.g.negative cubic) - allow "no solutions as there are no intersections" However in (c) if they have sketched a curve (even a fully correct one) but not extended it to intersect the hyperbola and they put "no points of intersection so no solutions" then this scores B0. Accept "lines or curves cross over twice, or touch twice, or meet twice...etc as explanation, but need some form of words)

Question Number	Scheme		Marks
63.	(a) $\begin{aligned} 80 & =5 \times 16 \\ \sqrt{80} & =4 \sqrt{5}\end{aligned}$		B1
	Method 1$\text { (b) } \begin{aligned} & \frac{\sqrt{80}}{\sqrt{5}+1} \text { or } \frac{c \sqrt{5}}{\sqrt{5}+1} \\ = & \frac{\sqrt{80}}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1} \text { or } \\ = & \frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} \\ = & \frac{20-4 \sqrt{5}}{4} \\ = & \text { or } \\ & \frac{4 \sqrt{5}-20}{-4} \end{aligned}$	$\begin{aligned} & \text { Method } 2 \\ & (p+q \sqrt{ } 5)(\sqrt{ } 5+1)=\sqrt{ } 80 \end{aligned}$	B1ft
		$p \sqrt{ } 5+q \sqrt{ } 5+p+5 q=4 \sqrt{ } 5$	M1
		$\begin{aligned} & p+5 q=0 \\ & p+q=4 \\ & p=5, q=-1 \end{aligned}$	A1 A1cao
			$\begin{array}{r} (4) \\ \text { (5 marks) } \\ \hline \end{array}$

Notes

(a) B1 Accept $4 \sqrt{ } 5$ or $c=4-$ no working necessary
(b)
(Method 1)
B1ft Only ft on c See $\frac{\sqrt{80}}{\sqrt{5}+1}$ or $\frac{c \sqrt{5}}{\sqrt{5}+1}$
M1 State intention to multiply by $\sqrt{5}-1$ or $1-\sqrt{5}$ in the numerator and the denominator
A1 Obtain denominator of 4 (for $\sqrt{ } 5-1$) or -4 (for $1-\sqrt{ } 5$) or correct simplified numerator of $20-4 \sqrt{ } 5$ or $4(5-\sqrt{ } 5)$ or $4 \sqrt{ } 5-20$ or $4(\sqrt{ } 5-5)$ So either numerator or denominator must be correct
A1 Correct answer only. Both numerator and denominator must have been correct and division of numerator and denominator by 4 has been performed.
Accept $p=5, q=-1$ or accept $5-\sqrt{5}$ or $-\sqrt{5}+5$ Also accept $5-1 \sqrt{5}$
(Method 2)
B1ft Only ft on $c \quad(p+q \sqrt{ } 5)(\sqrt{ } 5+1)=\sqrt{80}$ or $c \sqrt{ } 5$
M1 Multiply out the lhs and replace $\sqrt{ } 80$ by $c \sqrt{ } 5$
A1 Compare rational and irrational parts to give $p+q=4$, and $p+5 q=0$
A1 Solve equations to give $p=5, q=-1$
Common error:
$\frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}=\frac{4 \sqrt{5}-20}{4}=\sqrt{5}-5$ gets B1 M1 A1 (for correct numerator - denominator is wrong for their product) then A0

Correct answer with no working - send to review - have they used a calculator?
Correct answer after trial and improvement with evidence that $(5-\sqrt{ } 5)(\sqrt{ } 5+1)=\sqrt{ } 80$ could earn all four marks

Question Number	Scheme	Marks
64.	(a) Discriminant $=b^{2}-4 a c=8^{2}-4 \times 2 \times 3,=40$	M1, A1 (2)
	(b) $2 x^{2}+8 x+3=2\left(x^{2}+\ldots \ldots \ldots \ldots.\right) \quad$ or $p=2$	B1
	$=2\left((x+2)^{2} \pm \ldots\right) \quad$ or $q=2$	M1
	$=2(x+2)^{2}-5 \quad$ or $p=2, q=2$ and $r=-5$	A1
		(3)
	(c) Method 1A: Sets derivative" $4 x+8$ " $=4 \Rightarrow x=, \quad x=-1$	$\Gamma^{\mathrm{M} 1, \mathrm{~A} 1}$
	Substitute $x=-1$ in $y=2 x^{2}+8 x+3 \quad(\Rightarrow y=-3)$	$\square \mathrm{dM} 1$
	Substitute $x=-1$ and $y=-3$ in $y=4 x+c$ or into $(y+3)=4(x+1)$ and expand	dM1
	$c=1$ or writing $y=4 x+1$	Alcso
	Method 1B: \quad Sets derivative" $4 x+8$ " $=4 \Rightarrow x=, \quad x=-1$	- M1, A1
	Substitute $x=-1$ in $2 x^{2}+8 x+3=4 x+c$	$\zeta \mathrm{dM} 1$
	Attempts to find value of c	dM1
	$c=1 \text { or writing } y=4 x+1$	A1cso (5)
	Method 2: Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and collects x terms together	M1
	Obtains $2 x^{2}+4 x+3-c=0$ or equivalent	A1
	States that $b^{2}-4 a c=0$	dM1
	$4^{2}-4 \times 2 \times(3-c)=0$ and so $c=$	dM1
		A1cso
	Method 3: Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and collects x terms together	M1
	Obtains $2 x^{2}+4 x+3-c=0$ or equivalent	A1
	Uses $2(x+1)^{2}-2+3-c=0$ or equivalent	dM1
	Writes $-2+3-c=0$	dM1
	So $c=1$	A1cso
		(5)
	Also see special case for using a perpendicular gradient (overleaf)	(10 marks)

Notes

(a) M1 Attempts to calculate $b^{2}-4 a c$ using $8^{2}-4 \times 2 \times 3-$ must be correct - not just part of a quadratic formula A1 Cao 40
(b) B1 See $2(\ldots$.$) or p=2$

M1 .. $\left((x+2)^{2} \pm \ldots\right)$ is sufficient evidence or obtaining $q=2$
A1 Fully correct values. $2(x+2)^{2}-5$ or $p=2, q=2, r=-5$ cso.
Ignore inclusion of " $=0$ ".
[In many respects these marks are similar to three B marks.
$p=2$ is $\mathrm{B} 1 ; q=2$ is B 1 and $p=2, q=2$ and $r=-5$ is final B 1 but they must be entered on epen as $\mathbf{B 1} \mathrm{M} 1 \mathrm{~A} 1]$
Special case: Obtains $2 x^{2}+8 x+3=2(x+2)-1$ This may have first B1, for $p=2$ then M0A0
(c) Method 1A (Differentiates and puts gradient equal to 4 . Needs both x and y to find c)

M1 Attempts to solve their $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$. They must reach $x=\ldots$ (Just differentiating is M0 A0)
A1 $x=-1$ (If this follows $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+8$, then give M1 A1 by implication)
dM1 (Depends on previous M mark) Substitutes their $x=-1$ into $\mathrm{f}(x)$ or into "their $\mathrm{f}(x)$ from (b)" to find y
dM1 (Depends on both previous M marks) Substitutes their $x=-1$ and their $y=-3$ values into $y=4 x+c$ to find c or uses equation of line is $(y+" 3 ")=4(x+" 1 ")$ and rearranges to $y=m x+c$
A1 $c=1$ or allow for $y=4 x+1$ cso
(c) Method 1B (Differentiates and puts gradient equal to 4. Also equates equations and uses x to find c) M1A1 Exactly as in Method 1A above
dM1 (Depends on previous M mark) Substitutes their $x=-1$ into $2 x^{2}+8 x+3=4 x+c$
dM1 Attempts to find value of c then A1 as before
(c) Method 2 (uses repeated root to find c by discriminant)

M1 Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and tries to collect x terms together
A1 Collects terms e.g. $2 x^{2}+4 x+3-c=0$ or $-2 x^{2}-4 x-3+c=0$ or $2 x^{2}+4 x+3=c$ or even $2 x^{2}+4 x=c-3 \quad$ Allow " $=0$ " to be missing on RHS.
dM1 (If the line is a tangent it meets the curve at just one point so repeated root and $b^{2}-4 a c=0$)
Stating that $b^{2}-4 a c=0$ is enough
dM1 Using $b^{2}-4 a c=0$ to obtain equation in terms of c
(Eg. $\left.4^{2}-4 \times 2 \times(3-c)=0\right)$ AND leading to a solution for c
A1 $c=1$ or allow for $y=4 x+1$ cso
(c) Method 3 (Similar to method 2 but uses completion of the square on the quadratic to find repeated root)

M1 Sets $2 x^{2}+8 x+3=4 x+\mathrm{c}$ and tries to collect x terms together. May be implied by $2 x^{2}+8 x+3-4 x \pm \mathrm{c}$ on one side
A1 Collects terms e.g. $2 x^{2}+4 x+3-c=0$ or $-2 x^{2}-4 x-3+c=0$ or $2 x^{2}+4 x+3=c$ or even $2 x^{2}+4 x=c-3 \quad$ Allow " $=0$ " to be missing on RHS.
dM1 Then use completion of square $2(x+1)^{2}-2+3-c=0$ (Allow $\left.2(x+1)^{2}-k+3-c=0\right)$ where k is non zero. It is enough to give the correct or almost correct (with k) completion of the square
$\mathrm{dM} 1 \quad-2+3-c=0$ AND leading to a solution for $c \quad($ Allow $-1+3-c=0) \quad(x=-1$ has been used)
A1 $\quad c=1$ cso
In Method 1 they may use part (b) and differentiate their $\mathrm{f}(x)$ and put it equal to 4
They can earn M1, but do not follow through errors.
In Methods 2 and 3 they may use part (b) to write
their $2(x+2)^{2}-5=4 x+c$. They need to expand and collect x terms together for M1
Then expanding gives $2 x^{2}+4 x+3-c=0$ for A1 - do not follow through errors
Then the scheme is as before
If they just state $c=1$ with little or no working - please send to review,

PTO for special case

Sets

$$
4 x+8=-\frac{1}{4} \Rightarrow x=, \quad x=-\frac{33}{16}
$$

Substitute $\quad x=-\frac{33}{16}$ in $y=2 x^{2}+8 x+3 \quad\left(\Rightarrow y=-\frac{639}{128}\right)$
M0
Substitute $x=-\frac{33}{16}$ and $y=-\frac{639}{128}$ into $y=4 x+c$ or into $\left(y+\frac{639}{128}\right)=4\left(x+\frac{33}{16}\right)$ and expand M1 A0

Question Number	Scheme	Marks
$\mathbf{6 5 .}$	$25 x-9 x^{3}=x\left(25-9 x^{2}\right)$ $\left(25-9 x^{2}\right)=(5+3 x)(5-3 x)$ $25 x-9 x^{3}=x(5+3 x)(5-3 x)$	B1
		M1
		A1

B1 Take out a common factor, usually x, to produce $x\left(25-9 x^{2}\right)$. Accept $(x \pm 0)\left(25-9 x^{2}\right)$ or $-x\left(9 x^{2}-25\right)$ Must be correct.
Other possible options are $(5+3 x)\left(5 x-3 x^{2}\right)$ or $(5-3 x)\left(5 x+3 x^{2}\right)$
M1 For factorising their quadratic term, usually $\left(25-9 x^{2}\right)=(5+3 x)(5-3 x)$ Accept sign errors If $(5 \pm 3 x)$ has been taken out as a factor first, this is for an attempt to factorise $\left(5 x \mp 3 x^{2}\right)$

A1 cao $x(5+3 x)(5-3 x)$ or any equivalent with three factors
e.g. $x(5+3 x)(-3 x+5)$ or $x(3 x-5)(-3 x-5)$ etc including $-x(3 x+5)(3 x-5)$
isw if they go on to show that $x=0, \pm \frac{5}{3}$

Question Number	Scheme	Marks
66 Method 1	$\begin{align*} & x \sqrt{8}+10=\frac{6 x}{\sqrt{2}} \\ & x \sqrt{2} \Rightarrow x \sqrt{16}+10 \sqrt{2}=6 x \\ & 4 x+10 \sqrt{2}=6 x \Rightarrow 2 x=10 \sqrt{2} \\ & x=5 \sqrt{2} \tag{4} \end{align*} \text { or } a=5 \text { and } b=2,$	$\mathrm{M} 1, \mathrm{~A} 1$ M1A1
66 Method 2	$\begin{aligned} & x \sqrt{8}+10=\frac{6 x}{\sqrt{2}} \\ & 2 \sqrt{2} x+10=3 \sqrt{2} x \\ & \sqrt{2} x=10 \Rightarrow x=\frac{10}{\sqrt{2}}=\frac{10 \sqrt{2}}{2},=5 \sqrt{2} \quad \text { oe } \end{aligned}$	M1A1 M1,A1 (4)

Method 1

M1 For multiplying both sides by $\sqrt{ } 2$ - allow a slip e.g. $\sqrt{2} x \sqrt{8}+10=\frac{6 x}{\sqrt{2}} \times \sqrt{2}$ or $\sqrt{2} \times 10+x \sqrt{8}=\frac{6 x}{\sqrt{2}} \times \sqrt{2}$, where one term has an error or the correct $\sqrt{2}(10+x \sqrt{8})=\frac{6 x}{\sqrt{2}} \times \sqrt{2}$

NB $x \sqrt{8}+10=6 x \sqrt{2}$ is M0
A1 A correct equation in x with no fractional terms. Eg $x \sqrt{16}+10 \sqrt{2}=6 x$ oe.
M1 An attempt to solve their linear equation in x to produce an answer of the form $a \sqrt{2}$ or $a \sqrt{50}$
A1 $5 \sqrt{2}$ oe (accept $1 \sqrt{50}$)

Method 2

M1 For writing $\sqrt{ } 8$ as $2 \sqrt{ } 2$ or $\frac{6}{\sqrt{2}}$ as $3 \sqrt{ } 2$
A1 A correct equation in x with no fractional terms. Eg $2 \sqrt{2} x+10=3 \sqrt{2} x$ or $x \sqrt{8}+10=3 \sqrt{2} x$ oe.
M1 An attempt to solve their linear equation in x to produce an answer of the form $a \sqrt{2}$ or $a \sqrt{50}$ $\sqrt{2} x=10 \Rightarrow x=\frac{10}{\sqrt{2}}=\frac{10 \sqrt{2}}{2},=5 \sqrt{2}$ or $\sqrt{2} x=10 \Rightarrow 2 x^{2}=100 \Rightarrow x^{2}=50 \Rightarrow x=\sqrt{50}$ or $5 \sqrt{2}$
A1 $5 \sqrt{2}$ oe Accept $1 \sqrt{50}$

Question Number	Scheme	Marks
67(a).	$\begin{aligned} & P=20 x+6 \quad \text { o.e } \\ & 20 x+6>40 \Rightarrow x \\ & x>1.7 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1* } \end{array}$
(b)	Mark parts (b) and (c) together	
	$A=2 x(2 x+1)+2 x(6 x+3)=16 x^{2}+8 x$	B1
	$16 x^{2}+8 x-120<0$	M1
(c)	Try to solve their $2 x^{2}+x-15=0$ e.g. $(2 x-5)(x+3)=0$ so $x=$	M1
	Choose inside region	M1
	$-3<x<\frac{5}{2}$ or $0<x<\frac{5}{2}$ (as x is a length)	A1
		(5)
	$1.7<x<\frac{5}{2}$	B1cao
		(1)
		(9 marks)

(a) B1 Correct expression for perimeter but may not be simplified so accept $2 x+1+2 x+4 x+2+2 x+6 x+3+4 x$ or $2(10 x+3)$ or any equivalent
M1: \quad Set $P>40$ with their linear expression for P (this may not be correct but should be a sum of sides) and manipulate to get $x>\ldots$
A1* cao $x>1.7$. This is a given answer, there must not be any errors, but accept $1.7<x$
(b) Marks parts (b) and (c) together

B1 Writes a correct statement in x for the area. It need not be simplified. You may isw Amongst numerous possibilities are.
$2 x(2 x+1)+2 x(6 x+3), 16 x^{2}+8 x, \quad 4 x(6 x+3)-2 x(4 x+2), 4 x(2 x+1)+2 x(4 x+2)$
M1 Sets their quadratic expression <120 and collects on one side of the inequality
M1 For an attempt to solve a 3 Term quadratic equation producing two solutions by factorising, formula or completion of the square with the usual rules (see notes)
M1 For choosing the 'inside' region. Can follow through from their critical values - must be stated - not just a table or a graph. Can also be implied by $0<x<$ upper value

A1 $-3<x<\frac{5}{2}$. Accept $x>-3$ and $x<2.5$ or $(-3,2.5)$
As x is a width, accept $0<x<\frac{5}{2}$ Also accept $\frac{10}{4}$ or 2.5 instead of $\frac{5}{2}$. \leq would be M1A0 Allow this final answer to part (b) to appear as answer to part (c) This would score final M1A1 in (b) then B0 in (c)
(c) B1 cao $1.7<x<\frac{5}{2}$. Must be correct. [This does not imply final M1 in (b)]

(a) B1 Shape for C. Approximately Symmetrical about the y axis

B1 Coordinates of $(0,8)$ There must be a graph.
Accept graph crossing positive y axis with only 8 marked. Accept $(8,0)$ if given on y axis.
M1 Shape for L. A straight line with positive gradient and positive intercept
A1 Coordinates of $(0, k)$ and $(-k / 3,0)$ or k marked on y axis, and $-k / 3$ marked on x axis or even Accept $(k, 0)$ on y axis and $(0,-k / 3)$ on x axis
(b) Either

Methods 1
M1 Equate curves $\frac{1}{3} x^{2}+8=3 x+k$ and proceed to collect x terms on one side and ($\left.8-k\right)$ terms together on the same side or on the other side
A1 Achieves an expression that leads to the point of intersection e.g $\frac{1}{3} x^{2}-3 x+(8-k)$
Method 1a
dM1 (depends on previous M mark) Uses the fact that $b^{2}=4 a c$ or ' $b^{2}-4 a c^{\prime}=0$ is true
dM1 (depends on previous M mark) Solves their $b^{2}=4 a c$, leading to $k=$..
A1 cso $k=\frac{5}{4} \quad$ Accept equivalents like 1.25 etc.
Method 1b
dM1 (depends on previous M mark) Uses completion of the square as shown in scheme
dM1 (depends on previous M mark) Uses $k=8-\lambda$
A1 cso $k=\frac{5}{4} \quad$ Accept equivalents like 1.25 etc.
Methods 2
M1 Equate $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ Not given just for derivative
A1 Solves to get $x=4.5$
Method 2a
dM1 Substitutes their 4.5 into equation for C to give y coordinate
dM1 Substitutes both their x and y into $y=3 x+k$ to find k
A1 cso $k=\frac{5}{4} \quad$ Accept equivalents like 1.25 etc.
Method 2b
dM1 Substitutes their 4.5 into $\frac{1}{3} x^{2}+8=3 x+k$
dM1 Finds k
A1 cso $k=\frac{5}{4} \quad$ Accept equivalents like 1.25 etc.

Question Number	Scheme		Marks
69	$\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(\sqrt{5}+1)}{(\sqrt{5}+1)}$	Multiplies top and bottom by a correct expression. This statement is sufficient.	M1
	(Allow to multiply top and bottom by $k(\sqrt{5}+1)$)		
	$=\frac{\cdots}{4}$	Obtains a denominator of 4 or sight of $(\sqrt{5}-1)(\sqrt{5}+1)=4$	A1cso
	Note that M0A1 is not possible. The $\mathbf{4}$ must come from a correct method.		
	$(7+\sqrt{5})(\sqrt{5}+1)=7 \sqrt{5}+5+7+\sqrt{5}$	An attempt to multiply the numerator by ($\pm \sqrt{5} \pm 1$) and get 4 terms with at least 2 correct for their $(\pm \sqrt{5} \pm 1)$. (May be implied)	M1
	$3+2 \sqrt{5}$	Answer as written or $a=3$ and $b=2$. (Allow $2 \sqrt{5}+3$)	A1cso
	Correct answer with no working scores full marks		
			[4]
Way 2	$\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(-\sqrt{5}-1)}{(-\sqrt{5}-1)}$	Multiplies top and bottom by a correct expression. This statement is sufficient.	M1
	(Allow to multiply top and bottom by $k(-\sqrt{5}-1)$)		
	$=\frac{\ldots}{-4}$	Obtains a denominator of -4	A1cso
	$(7+\sqrt{5})(-\sqrt{5}-1)=-7 \sqrt{5}-5-7-\sqrt{5}$	An attempt to multiply the numerator by ($\pm \sqrt{5} \pm 1$) and get 4 terms with at least 2 correct for their $(\pm \sqrt{5} \pm 1)$. (May be implied)	M1
	$3+2 \sqrt{5}$	Answer as written or $a=3$ and $b=2$	A1cso
	Correct answer with no working scores full marks		
			[4]
	Alternative using Simultaneous Equations: $\frac{(7+\sqrt{5})}{\sqrt{5}-1}=a+b \sqrt{5} \Rightarrow 7+\sqrt{5}=(a-b) \sqrt{5}+5 b-a \mathrm{M} 1$ Multiplies and collects rational and irrational parts $a-b=1, \quad 5 b-a=7 \mathrm{~A} 1$ Correct equations $a=3, b=2$ M1 for attempt to solve simultaneous equations A1 both answers correct		

Question Number	Scheme		Marks
70(a)	$6 x+x>1-8$	Attempts to expand the bracket and collect x terms on one side and constant terms on the other. Condone sign errors and allow one error in expanding the bracket. Allow $<, \leq, \geq,=$ instead of $>$.	M1
	$x>-1$	Cao	A1
	Do not isw here, mark their final answer.		
			(2)
(b)	$\begin{aligned} & (x+3)(3 x-1)[=0] \\ & \Rightarrow x=-3 \text { and } \frac{1}{3} \end{aligned}$	M1: Attempt to solve the quadratic to obtain two critical values	M1A1
		A1: $x=-3$ and $\frac{1}{3}$ (may be implied by their inequality). Allow all equivalent fractions for -3 and $1 / 3$. (Allow 0.333 for $1 / 3$)	
	$-3<x<\frac{1}{3}$	M1: Chooses "inside" region (The letter x does not need to be used here)	M1A1ft
		A1ft: Allow $x<\frac{1}{3}$ and $x>-3$ or $\left(-3, \frac{1}{3}\right)$ or $x<\frac{1}{3} \cap x>-3$. Follow through their critical values. (must be in terms of x here) Allow all equivalent fractions for -3 and $1 / 3$. Both ($x<\frac{1}{3}$ or $x>-3$) and $\left(x<\frac{1}{3}, x>-3\right)$ as a final answer score A0.	
			(4)
			[6]
	Note that use of \leq or \geq appearing in an otherwise correct answer in (a) or (b) should only be penalised once, the first time it occurs.		

Question Number	Scheme	Marks	
73(a)	$x^{2}-4 k(1-2 x)+5 k(=0)$	Makes y the subject from the first equation and substitutes into the second equation (= 0 not needed here) or eliminates y by a correct method.	M1
	So $x^{2}+8 k x+k=0$ *	Correct completion to printed answer. There must be no incorrect statements.	A1cso
			(2)
(b)	$(8 k)^{2}-4 k$	M1: Use of $b^{2}-4 a c$ (Could be in the quadratic formula or an inequality, $=0$ not needed yet). There must be some correct substitution but there must be no x 's. No formula quoted followed by e.g. $8 k^{2}-4 k=0$ is M0.	M1 A1
		A1: Correct expression. Do not condone missing brackets unless they are implied by later work but can be implied by $(8 k)^{2}>4 k$ etc.	
	$k=\frac{1}{16}$ (oe)	Cso (Ignore any reference to $k=0$) but there must be no contradictory earlier statements. A fully correct solution with no errors.	A1
			(3)
(b) Way 2 Equal roots	$\begin{gathered} \Rightarrow x^{2}+8 k x+k=(x+\sqrt{k})^{2} \\ \Rightarrow 8 k=2 \sqrt{k} \end{gathered}$	M1: Correct strategy for equal roots	M1A1
		A1: Correct equation	
	$k=\frac{1}{16}$ (oe)	Cso (Ignore any reference to $k=0$)	A1
(b) Way 3	Completes the Square$\begin{aligned} & x^{2}+8 k x+k=(x+4 k)^{2}-16 k^{2}+k \\ & \Rightarrow 16 k^{2}-k=0 \end{aligned}$	M1: $(x \pm 4 k)^{2} \pm p \pm k, p \neq 0$	M1A1
		A1: Correct equation	
	$k=\frac{1}{16}$ (oe)	Cso (Ignore any reference to $k=0$)	A1
	$\begin{aligned} & x^{2}+\frac{1}{2} x+\frac{1}{16}=0 \text { so } \\ & \left(x+\frac{1}{4}\right)^{2}=0 \Rightarrow x= \end{aligned}$		(3)
(c)		Substitutes their value of k into the given quadratic and attempt to solve their 2 or 3 term quadratic as far as $x=$ (may be implied by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves simultaneously to obtain a value for x.	M1
	$x=-\frac{1}{4}, y=1 \frac{1}{2}$	First A1 one answer correct, second A1 both answers correct.	A1A1
	Special Case: $x^{2}+\frac{1}{2} x+\frac{1}{16}=0 \Rightarrow x=-\frac{1}{4}, \frac{1}{4} \Rightarrow y=1 \frac{1}{2}, \frac{1}{2}$ allow M1A1A0		
			(3)
			[8]

Question Number	Scheme		Marks
$\mathbf{7 4}$ (a)	$\left(-\frac{3}{4}, 0\right)$. Accept $x=-\frac{3}{4}$		B1
(b)	$y=4$	B1: One correct asymptote	(1)
	$x=0$ or ' y-axis'	B1: Both correct asymptotes and no extra ones.	
Special case $x \neq 0$ and $y \neq 4$ scores B1B0			
		$\mathbf{(2)}$	

Question Number	Scheme	Notes	Marks
75.	$\frac{15}{\sqrt{3}}=\frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=5 \sqrt{3}$	M1: Attempts to multiply numerator and denominator by $\sqrt{ } 3$. This may be implied by a correct answer. $\text { A1: } 5 \sqrt{3}$	M1A1
	$\sqrt{27}=3 \sqrt{3}$		B1
	$\frac{15}{\sqrt{3}}-\sqrt{27}=2 \sqrt{3}$		A1
	Correct answer only scores full marks		
			[4]
Way 2	$\frac{15}{\sqrt{3}}-\sqrt{27}=\frac{15-\sqrt{81}}{\sqrt{3}}\left(=\frac{6}{\sqrt{3}}\right)$	Terms combined correctly with a common denominator (Need not be simplified)	B1
	$\frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{6 \sqrt{3}}{3}$	M1: Attempts to multiply numerator and denominator by $\sqrt{ } 3$. This may be implied by a correct answer.	M1A1
	$\sqrt{3} \times \sqrt{3}$ 3	$\text { A1: } \frac{6 \sqrt{3}}{3}$	
	$\frac{15}{\sqrt{3}}-\sqrt{27}=2 \sqrt{3}$		A1
			[4]
	Note that $\frac{15}{\sqrt{3}}-\sqrt{27}=\frac{15 \sqrt{3}}{3}-3 \sqrt{3}=15 \sqrt{3}-9 \sqrt{3}=6 \sqrt{3}$ is quite common and scores M1A0B1A0 (i.e. $5 \sqrt{3}$ is never seen)		

Question Number	Scheme	Notes	Marks
77(a) Way 3	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+2 a x+b$	M1: $x^{n} \rightarrow x^{n-1}$ at least once including $\mathrm{c} \rightarrow 0$	M1
	$x=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow b=0$	Correct value for b	A1
	$x=0, y=4 \Rightarrow c=4$	Uses $(0,4)$ to obtain $c=4$ (can be just stated)	B1
	$\begin{gathered} 3(2)^{2}+2 a(2)+b=0 \text { or } \\ (-1)^{3}+a(-1)^{2}+b(-1)+4=0 \end{gathered}$	Obtains an equation in a	M1
	$a=-3$	Correct value for a	A1
			(5)
	Special case: A common incorrect approach is to assume the cubic is of the form e.g. $f(x)=x(x \pm 1)(x \pm 2)+4$ This scores B1 only for $c=4$		
			[8]

Question Number	Scheme	Marks
78.	$x\left(1-4 x^{2}\right)$ Accept $x\left(-4 x^{2}+1\right)$ or $-x\left(4 x^{2}-1\right)$ or $-x\left(-1+4 x^{2}\right)$ or even $4 x\left(\frac{1}{4}-x^{2}\right)$ or equivalent quadratic (or initial cubic) into two brackets $x(1-2 x)(1+2 x) \text { or }-x(2 x-1)(2 x+1) \text { or } x(2 x-1)(-2 x-1)$	B1 M1 A1 [3]
		3 marks
	Notes	
	B1: Takes out a factor of x or $-x$ or even $4 x$. This line may be implied by correct final answer, but if this stage is shown it must be correct. So B0 for $x\left(1+4 x^{2}\right)$ M1: Factorises the quadratic resulting from their first factorisation using usual rules (see note 1 in General Principles). e.g. $x(1-4 x)(x-1)$. Also allow attempts to factorise cubic such as $\left(x-2 x^{2}\right)(1+2 x)$ etc N.B. Should not be completing the square here. A1: Accept either $x(1-2 x)(1+2 x)$ or $-x(2 x-1)(2 x+1)$ or $x(2 x-1)(-2 x-1)$. (No fractions for this final answer)	
	Specific situations	
	Note: $x\left(1-4 x^{2}\right)$ followed by $x(1-2 x)^{2}$ scores B1M1A0 as factors follow quadratic factorisation criteria And $x\left(1-4 x^{2}\right)$ followed by $x(1-4 x)(1+4 x)$ B1M0A0.	
	Answers with no working: Correct answer gets all three marks B1M1A1	
	: $x(2 x-1)(2 x+1)$ gets B0M1A0 if no working as $x\left(4 x^{2}-1\right)$ would earn B0	
	Poor bracketing: e.g. $\left(-1+4 x^{2}\right)-x$ gets B0 unless subsequent work implies bracket round the $-x$ in which case candidate may recover the mark by the following correct work.	

Question Number	Scheme	Marks
79 (i)	$\begin{aligned} & (5-\sqrt{8})(1+\sqrt{2}) \\ = & 5+5 \sqrt{2}-\sqrt{8}-4 \\ = & 5+5 \sqrt{2}-2 \sqrt{2}-4 \\ = & 1+3 \sqrt{2} \end{aligned} \quad \sqrt{8}=2 \sqrt{2} \text {, seen or implied at any point. }$	$\begin{array}{\|lr} \text { M1 } & \\ \text { B1 } & \\ \text { A1 } & \text { [3] } \end{array}$
(ii)	$\begin{array}{ll} \text { Method 1 } & \text { Method 2 } \\ \text { Either } & \sqrt{80}+\frac{30}{\sqrt{5}}\left(\frac{\sqrt{5}}{\sqrt{5}}\right) \end{array} \begin{array}{ll} \text { Or }\left(\frac{\sqrt{400}+3}{\sqrt{5}}\right. \\ =4 \sqrt{5}+\ldots & =\left(\frac{20+. .}{. .}\right) . . \\ =4 \sqrt{5}+6 \sqrt{5} & =\left(\frac{50 \sqrt{5}}{5}\right) \\ & =10 \sqrt{5} \end{array}$	$\begin{array}{ll}\text { M1 } \\ \text { B1 } \\ \\ \\ \text { A1 } & \\ & \\ & {[3]}\end{array}$
Alternative for (i)	$\begin{array}{rr} & (5-2 \sqrt{2})(1+\sqrt{2}) \\ =5+5 \sqrt{2}-2 \sqrt{2}-2 \sqrt{2} \sqrt{2} & \text { This earns the B1 mark. } \\ \text { Multiplies out correctly with } 2 \sqrt{2} \text {. This may be seen } \\ \text { or implied and may be simplified } \\ \text { e.g. }=5+3 \sqrt{2}-2 \sqrt{4} \text { o.e. } \\ =1+3 \sqrt{2} & \text { For earlier use of } 2 \sqrt{2} \\ 1+3 \sqrt{2} \text { or } a=1 \text { and } b=3 . \end{array}$	M1 B1 A1 [3] 6 marks
	Notes	
(i) (ii)	M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) - can appear as table B1: $\sqrt{8}=2 \sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1+3 \sqrt{2}$ or $a=1$ and $b=3$. M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right)=\frac{6 \times 5}{\sqrt{5}}=6 \sqrt{5}$ B1: (Independent mark) States $\sqrt{80}=4 \sqrt{5}$ Or either $\sqrt{400}=20$ or $\sqrt{80} \sqrt{5}=20$ at any point if they use Method 2. A1: $10 \sqrt{5}$ or $c=10$.	
	N.B There are other methods e.g. $\sqrt{80}=\frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}}+\frac{30}{\sqrt{5}}=\frac{50}{\sqrt{5}}$ then M1 A1as before Those who multiply initial expression by $\sqrt{5}$ to obtain $\sqrt{400}+30=20+30=50$ earn M0 B1 A0	

Question Number	Scheme		Marks
80. (a)	$y^{4} \mathrm{~V}$	$y=\frac{2}{x}$ is translated up or down.	M1
		$y=\frac{2}{x}-5$ is in the correct position.	A1
		Intersection with x-axis at $\left(\frac{2}{5},\{0\}\right)$ only Independent mark.	B1
		$y=4 x+2$: attempt at straight line, with positive gradient with positive y intercept.	B1
	Check graph in question for possible answers and space below graph for answers to part (b)	Intersection with x-axis at $\left(-\frac{1}{2},\{0\}\right)$ and y-axis at $(\{0\}, 2)$.	B1 [5]
(b)	Asymptotes : $x=0$ (or y-axis) and $y=-5$. (Lose second B mark for extra asymptotes)	An asymptote stated correctly. Independent of (a) These two lines only. Not ft their graph.	$\begin{array}{lr} \text { B1 } \\ \text { B1 } \end{array}$
(c)	Method 1: $\frac{2}{x}-5=4 x+2$	Method 2: $\quad \frac{y-2}{4}=\frac{2}{y+5}$	M1
		$y+5$	M1
	$\begin{aligned} & 4 x^{2}+7 x-2=0 \Rightarrow x= \\ & x=-2, \frac{1}{4} \end{aligned}$ When $x=-2, y=-6$, When $x=\frac{1}{4}, y=3$	$\begin{aligned} & y^{2}+3 y-18=0 \rightarrow y= \\ & y=-6,3 \end{aligned}$	dM1
	When $x=-2, y=-6$,When $x=\frac{1}{4}, y=3$	When $y=-6, x=-2$ When $y=3, x=\frac{1}{4}$.	M1A1
			[5]
			12 marks
		Notes	

(a) M1: Curve implies y axis as asymptote and does not change shape significantly. Changed curve needs horizontal asymptote (roughly) Asymptote(s) need not be shown but shape of curve should be implying asymptote(s) parallel to x axis. Curve should not remain where it was in the given figure. Both sections move in the same direction. There should be no reflection
A1: Crosses positive x axis. Hyperbola has moved down. Both sections move by almost same amount. See sheet on page 19 for guidance.
B1: Check diagram and text of answer. Accept $2 / 5$ or 0.4 shown on x-axis or $x=2 / 5$, or $(2 / 5,0)$ stated clearly in text or on graph. This is independent of the graph. Accept $(0,2 / 5)$ if clearly on x axis. Ignore any intersection points with y axis. Do not credit work in table of values for this mark.
B1: Must be attempt at a straight line, with positive gradient \& with positive y intercept (need not cross x axis)
B1: Accept $x=-1 / 2$, or -0.5 shown on x-axis or $(-1 / 2,0)$ or ($-0.5,0$) in text or on graph and similarly accept 2 on y axis or $y=2$ or (0,2) in text or on graph. Need not cross curve and allow on separate axes.
(b) B1: For either correct asymptote equation. Second B1: For both correct (lose this if extras e.g. $x= \pm 1$ are given also). These asymptotes may follow correctly from equation after wrong graph in (a)
Just $y=-5$ is B1 B0 This may be awarded if given on the graph. However for other B mark it must be clear that $x=0$ (or the y-axis) is an asymptote. NB $x \neq 0, y \neq-5$ is B1B0
(c) M1: Either of these equations is enough for the method mark (May appear labelled as part (b))
dM1: Attempt to solve a 3 term quadratic by factorising, formula, completion of square or implied by correct answers. (see note 1) This mark depends on previous mark.
A1: Need both correct x answers (Accept equivalents e.g. 0.25) or both correct y values (Method 2)
M1: At least one attempt to find second variable (usually y) using their first variable (usually x) related to line meeting curve. Should not be substituting x or y values from part (a) or (b). This mark is independent of previous marks.
Candidate may substitute in equation of line or equation of curve.
A1: Need both correct second variable answers Need not be written as co-ordinates (allow as in the scheme)
Note: Special case: Answer only with no working in part (c) can have 5 marks if completely correct, with both points found. If coordinates of just one of the points is correct - with no working - this earns M0 M0 A0 M1 A0 (i.e. 1/5)

Question Number	Scheme	Marks
81. (a)	Method 1: Attempts $b^{2}-4 a c$ for $a=(k+3), b=6$ and their $c . \quad c \neq k$ $b^{2}-4 a c=6^{2}-4(k+3)(k-5)$ $\left(b^{2}-4 a c=\right) \quad-4 k^{2}+8 k+96 \quad$ or $\quad-\left(b^{2}-4 a c=\right) \quad 4 k^{2}-8 k-96$ (with no prior algebraic errors) As $b^{2}-4 a c>0$, then $-4 k^{2}+8 k+96>0 \quad$ and so, $k^{2}-2 k-24<0$	M1 A1 B1 A1
	Method 2: Considers $b^{2}>4 a c$ for $a=(k+3), b=6$ and their $c . \quad c \neq k$ $6^{2}>4(k+3)(k-5)$ $4 k^{2}-8 k-96<0 \text { or }-4 k^{2}+8 k+96>0 \quad \text { or } \quad 9>(k+3)(k-5)$ (with no prior algebraic errors) and so, $k^{2}-2 k-24<0$ following correct work	M1 A1 B1 A1 *
(b)	Attempts to solve $k^{2}-2 k-24=0$ to give $k=$ (\Rightarrow Critical values, $k=6,-4$.) $k^{2}-2 k-24<0$ gives $-4<k<6$	M1 M1 A1 [3] 7 marks
	Notes	
(a)	Method 1: M1: Attempts $b^{2}-4 a c$ for $a=(k+3), b=6$ and their $c . c \neq k$ or uses quadratic formula and has this expression under square root. (ignore $>0,<0$ or $=0$ for first 3 marks) A1: Correct expression for $b^{2}-4 a c$ - need not be simplified (may be under root sign) B1: Uses algebra to manipulate result without error into one of these three term quadratics. Again may be under root sign in quadratic formula. If inequality is used early in "proof" may see $4 k^{2}-8 k-96<0$ and B1 would be given for $4 k^{2}-8 k-96$ correctly stated. A1: Applies $b^{2}-4 a c>0$ correctly (or writes $b^{2}-4 a c>0$) to achieve the result given in the question. No errors should be seen. Any incorrect line of argument should be penalised here. There are several ways of reaching the answer; either multiplication of both sides of inequality by -1 , or taking every term to other side of inequality. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^{2}>4 a c, b^{2}<4 a c$ or $b^{2}=4 a c$ for $a=(k+3), b=6$ and their $c . c \neq k$ A1: Correct expressions on either side (ignore >, < or =). B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sides by 4 again without error A1: Produces result with no errors seen from initial consideration of $b^{2}>4 a c$.	
(b)	M1: Uses factorisation, formula, completion of square method to find two values for k, or finds two correct answers with no obvious method M1: Their Lower Limit $<k<$ Their Upper Limit . Allow the M mark mark for \leq. (Allow $k<$ upper and $k>$ lower) A1: $-4<k<6$ Lose this mark for \leq Allow $(-4,6)$ [not square brackets] or $k>-4$ and $k<6$ (must be and not or) Can also use intersection symbol \cap NOT $k>-4, k<6$ (M1A0)	
	Special case : In part (a) uses $c=k$ instead of $k-5-$ scores 0 . Allow $k+5$ for method marks	
	Special Case: In part (b) Obtaining $-6<k<4$ This is a common wrong answer. Give M1 M1 A0 special case.	
	Special Case: In part (b) Use of x instead of k - M1M1A0	
	Special Case: $-4<k<6$ and $k<-4, k>6$ both given is M0A0 for last two marks. Do not treat as isw.	

Question Number	Scheme	Marks
83.	$\begin{aligned} \left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\} & =\frac{2}{(\sqrt{12}-\sqrt{8})} \times \frac{(\sqrt{12}+\sqrt{8})}{(\sqrt{12}+\sqrt{8})} \\ & =\frac{\{2(\sqrt{12}+\sqrt{8})\}}{12-8} \\ & =\frac{2(2 \sqrt{3}+2 \sqrt{2})}{12-8} \\ & =\sqrt{3}+\sqrt{2} \end{aligned}$ Writing this is sufficient for M1. For 12-8. This mark can be implied.	M1 A1 B1 B1 A1 cso
	Notes	
	M1: for a correct method to rationalise the denominator. $\mathbf{1}^{\text {st }} \mathbf{A 1}: \quad(\sqrt{12}-\sqrt{8})(\sqrt{12}+\sqrt{8}) \rightarrow 12-8 \quad$ or $\quad(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2}) \rightarrow 3-2$ $\mathbf{1}^{\text {st }} \mathbf{B 1}$: for $\sqrt{12}=2 \sqrt{3}$ or $\sqrt{48}=4 \sqrt{3}$ seen or implied in candidate's working. $\mathbf{2}^{\text {nd }} \mathbf{B 1}$: for $\sqrt{8}=2 \sqrt{2}$ or $\sqrt{32}=4 \sqrt{2}$ seen or implied in candidate's working. $\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for $\sqrt{3}+\sqrt{2}$. Note: $\frac{\sqrt{3}+\sqrt{2}}{1}$ as a final answer is A0.	

Note: The first accuracy mark is dependent on the first method mark being awarded.
Note: $\frac{1}{2} \sqrt{12}+\frac{1}{2} \sqrt{8}=\sqrt{3}+\sqrt{2}$ with no intermediate working implies the B1B1 marks.
Note: $\sqrt{12}=\sqrt{4} \sqrt{3}$ or $\sqrt{8}=\sqrt{4} \sqrt{2}$ are not sufficient for the B1 marks.
Note: A candidate who writes down (by misread) $\sqrt{18}$ for $\sqrt{8}$ can potentially obtain M1A0B1B1A0, where the $2^{\text {nd }}$ B1 will be awarded for $\sqrt{18}=3 \sqrt{2}$ or $\sqrt{72}=6 \sqrt{2}$
Note: The final accuracy mark is for a correct solution only.

Alternative 1 solution

$$
\begin{aligned}
\left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\} & =\frac{2}{(2 \sqrt{3}-2 \sqrt{2})} & & \text { B1 B1 } \\
& =\frac{1}{(\sqrt{3}-\sqrt{2})} \times \frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}+\sqrt{2})} & & \text { M1 } \\
& =\frac{\{(\sqrt{3}+\sqrt{2})\}}{3-2} & & \text { A1 for } 3-2 \\
& =\sqrt{3}+\sqrt{2} & & \text { A1 }
\end{aligned}
$$

Please record the marks in the relevant places on the mark grid.

Alternative 2 solution

$\left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\}=\frac{2}{(2 \sqrt{3}-2 \sqrt{2})}=\frac{1}{(\sqrt{3}-\sqrt{2})}=\sqrt{3}+\sqrt{2}, \quad$ or $\quad \frac{2}{(2 \sqrt{3}-2 \sqrt{2})}=\sqrt{3}+\sqrt{2}$
with no incorrect working seen is awarded M1A1B1B1A1.

Alternative 3 to (a)

Negating $4 x-5-x^{2}$ gives $x^{2}-4 x+5$
So, $x^{2}-4 x+5=(x-2)^{2}-4+5 \quad\left\{=(x-2)^{2}+1\right\} \quad$ M1 for $\pm(\pm x \pm 2)^{2} \pm k+5$
then stating $p=-2$ is $\mathbf{1}^{\text {st }} \mathbf{A 1}$ and/or $q=-1$ is $\mathbf{2}^{\text {nd }} \mathbf{A 1}$.
or writing $-1-(x-2)^{2}$ is A1A1.

Special Case for part (a):

$q-(x+p)^{2}=q-\left(x^{2}+2 p x+p^{2}\right)=-x^{2}-2 p x+q-p^{2}=4 x-5-x^{2}$
$\Rightarrow-2 p x+q-p^{2}=4 x-5 \Rightarrow q-p^{2}+5=4 x+2 p x \Rightarrow q-p^{2}+5=x(4+2 p)$
$\Rightarrow x=\frac{q-p^{2}+5}{4+2 p} \Rightarrow p \neq-2$ scores Special Case M1A1A1 only once $p \neq-2$ achieved.
(b) M1: for correctly substituting any two of $a=-1, b=4, c=-5$ into $b^{2}-4 a c$ if this is quoted.

If $b^{2}-4 a c$ is not quoted then the substitution must be correct.
Substitution into $b^{2}<4 a c$ or $b^{2}=4 a c$ or $b^{2}>4 a c$ is M0.
A1: for -4 only.
If they write $-4<0$ treat the <0 as ISW and award A1. If they write $-4 \geq 0$ then score A0.
So substituting into $b^{2}-4 a c<0$ leading to $-4<0$ can score M1A1
Note: Only award marks for use of the discriminant in part (b).
Note: Award M0 if the candidate uses the quadratic formula UNLESS they later go on to identify that the discriminant is the result of $b^{2}-4 a c$.
Beware: A number of candidates are writing up their solution to part (b) at the bottom of the second page. So please look!
(c) M1: Correct \cap shape in any quadrant.

A1: The maximum must be within the fourth quadrant to award this mark.
B1: Curve (and not line!) cuts through -5 or $(0,-5)$ marked on the y-axis
Allow $(-5,0)$ rather than $(0,-5)$ if marked in the "correct" place on the y-axis.
If the curve cuts through the negative y-axis and this is not marked, then you can recover $(0,-5)$ from the candidate's working in part (c). You are not allowed to recover this point, though, from a table of values.

Note: Do not recover work for part (a) in part (c).

Question	Scheme ${ }^{\text {a }}$ Marks
87. (a) (b)	
	Notes
(a) (b)	M1 for reducing to the form $p x>q$ with one of p or q correct Using $p x=q$ is M0 unless > appears later on A1 $\quad x>4$ only $1^{\text {st }}$ M1 for multiplying out and attempting to solve a 3 TQ with at least $\pm 4 x$ or ± 12 See General Principles for definitions of "attempt to solve" $1^{\text {st }}$ A1 for 6 and -2 seen. Allow $x>6, x>-2$ etc to score this mark. Values may be on a sketch. $2^{\text {nd }}$ M1 for choosing the "outside region" for their critical values. Do not award simply for a diagram or table - they must have chosen their "outside" regions $2^{\text {nd }}$ A1ft follow through their 2 distinct critical values. Allow "," "or" or a "blank" between answers. Use of "and" is M1A0 i.e. loses the final A1 $-2>x>6$ scores M1A0 i.e. loses the final A1 but apply ISW if $x>6, x<-2$ has been seen Accept $(-\infty,-2) \cup(6, \infty)$ (o.e) Use of \leq instead of < (or \geq instead of $>$) loses the final A mark in (b) unless A mark was lost in (a) for $x \geq 4$ in which case allow it here.

\begin{tabular}{|c|c|}
\hline Question \& Scheme ${ }^{\text {a }}$ Marks

\hline 88. (a) \&

\hline \& Notes

\hline (a)

ALT
(b)

SC \& | $1^{\text {st }} \mathrm{M} 1$ for forming a suitable equation in one variable |
| :--- |
| $1^{\text {st }} \mathrm{A} 1$ for a correct 3 TQ equation. Allow missing " $=0$ " Accept $2 x^{2}+4=5 x$ etc |
| $2^{\text {nd }} \mathrm{M} 1$ for an attempt to evaluate discriminant for their 3TQ. Allow for $b^{2}>4 a c$ or $b^{2}<4 a c$ |
| Allow if it is part of a solution using the formula e.g. $(x=) \frac{5 \pm \sqrt{25-32}}{4}$ |
| Correct formula quoted and some correct substitution or a correct expression False factorising is M0 |
| $2^{\text {nd }}$ A1 for correct evaluation of discriminant for a correct 3TQ e.g. 25-32 (or better) and a comment indicating no roots or equivalent. For contradictory statements score A0 |
| $2^{\text {nd }}$ M1 for attempt at completing the square $a\left[\left(x \pm \frac{b}{2 a}\right)^{2}-q\right]+c$ |
| $2^{\text {nd }}$ A1 for $\left(x-\frac{5}{4}\right)^{2}=-\frac{7}{16}$ and a suitable comment |
| Coordinates must be seen on the diagram. Do not award if only in the body of the script. |
| "Passing through" means not stopping at and not touching. Allow $(0, x)$ and $(y, 0)$ if marked on the correct places on the correct axis. |
| $1^{\text {st }}$ B1 for correct shape and passing through origin. Can be assumed if it passes through the intersection of axes |
| $2^{\text {nd }} \mathrm{B} 1$ for correct shape and 5 marked on x-axis for \cap shape stopping at both $(5,0)$ and $(0,0)$ award B0B1 |
| $3^{\text {rd }} \mathrm{B} 1$ for a line of positive gradient that (if extended) has no intersection with their C (possibly extended). Must have both graphs on same axes for this mark. If no C given score B0 |
| $4^{\text {th }} \mathrm{B} 1$ for straight line passing through -0.8 on x-axis and 2 on y-axis |
| Accept exact fraction equivalents to -0.8 or 2(e.g. $\frac{4}{2}$) |

\hline
\end{tabular}

Question Number	Scheme	Marks
90.		M1 M1 A1 M1 A1 M1 A1 (7)
	Notes $1^{\text {st }} \mathrm{M}$: Squaring to give 3 or 4 terms (need a middle term) $2^{\text {nd }} \mathrm{M}$: Substitute to give quadratic in one variable (may have just two terms) $3^{\text {rd }} \mathrm{M}$: Attempt to solve a $\mathbf{3}$ term quadratic. $4^{\text {th }} \mathrm{M}$: Attempt to find at least one y value (or x value). (The second variable) This will be by substitution or by starting again. If y solutions are given as x values, or vice-versa, penalise accuracy, so that it to score M1 M1A1 M1 A0 M1 A0. "Non-algebraic" solutions: No working, and only one correct solution pair found (e.g. $x=5, y=-3$): M0 M0 A0 M1 A0 M1 A No working, and both correct solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M1 A Both correct solution pairs found, and demonstrated: Full marks are possible review)	it is possible A0 A1 (send to

Question Number	Scheme	Marks
91. (a)	Discriminant: $b^{2}-4 a c=(k+3)^{2}-4 k$ or equivalent	M1 A1 (2)
(b)	$(k+3)^{2}-4 k=k^{2}+2 k+9=(k+1)^{2}+8$	M1 A1 (2)
(c)	For real roots, $b^{2}-4 a c \geq 0$ or $b^{2}-4 a c>0$ or $(k+1)^{2}+8>0$ $(k+1)^{2} \geq 0$ for all k, so $b^{2}-4 a c>0$, so roots are real for all k equiv.)	M1 A1 cso (2) 6
	Notes (a) M1: attempt to find discriminant - substitution is required If formula $b^{2}-4 a c$ is seen at least 2 of a, b and c must be correct If formula $b^{2}-4 a c$ is not seen all 3 of a, b and c must be correct Use of $b^{2}+4 a c$ is M0 A1: correct unsimplified (b) M1: Attempt at completion of square (see earlier notes) A1: both correct (no ft for this mark) (c) M1: States condition as on scheme or attempts to explain that their $(k+1)^{2}+8$ is greater than 0 A1: The final mark (A1cso) requires $(k+1)^{2} \geq 0$ and conclusion. We will allow $(k+1)^{2}>0$ (or word positive) also allow $b^{2}-4 a c \geq 0$ an	and conclusion.

Question Number	Scheme	Marks
92. (a)	Shape through $(0,0)$ $(3,0)$ $(1.5,-1)$	B1 B1 B1 (3)
(b)	 Shape $(0,0)$ and $(6,0)$ $(3,1)$	B1 B1 B1 (3)
(c)	Shape \bigcup, not through $(0,0)$Minimum in $4^{\text {th }}$ quadrant$(-p, 0)$ and $(6-p, 0)$ $(3-p,-1)$	M1 A1 B1 B1 (4) 10
Notes		
	(a) B1: U shaped parabola through origin B1: $(3,0)$ stated or 3 labelled on x axis $B 1$: $(1.5,-1)$ or equivalent e.g. $(3 / 2,-1)$ (b) B1: Cap shaped parabola in any position B1: through origin (may not be labelled) and $(6,0)$ stated or 6 labelled on x - axis B1: $(3,1)$ shown (c) M1: U shaped parabola not through origin A1: Minimum in $4^{\text {th }}$ quadrant (depends on M mark having been given) B1: Coordinates stated or shown on x axis B1: Coordinates stated Note: If values are taken for p, then it is possible to give M1A1B0B0 even if there are several attempts. (In this case all minima should be in fourth quadrant)	

Question Number	Scheme	Marks
93.	$\begin{aligned} & \frac{5-2 \sqrt{3}}{\sqrt{3}-1} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} \\ & =\frac{\cdots}{2} \quad \text { denominator of } 2 \\ & \text { Numerator }=5 \sqrt{3}+5-2 \sqrt{3} \sqrt{3}-2 \sqrt{3} \\ & \text { So } \frac{5-2 \sqrt{3}}{\sqrt{3}-1}=-\frac{1}{2}+\frac{3}{2} \sqrt{3} \end{aligned}$	M1 A1 M1 M1 A1
	Alternative: $(p+q \sqrt{3})(\sqrt{3}-1)=5-2 \sqrt{3}$, and form simultaneous equations in p and q $-p+3 q=5 \text { and } p-q=-2$ Solve simultaneous equations to give $p=-\frac{1}{2}$ and $q=\frac{3}{2}$.	M1 A1 M1 A1
	Notes	
	$1^{\text {st }}$ M1 for multiplying numerator and denominator by same correct expression $1^{\text {st }} \mathrm{A} 1$ for a correct denominator as a single number (NB depends on M mark) $2^{\text {nd }}$ M1 for an attempt to multiply the numerator by $(\sqrt{3} \pm 1)$ and get 4 terms with at least 2 correct. $2^{\text {nd }} \mathrm{A} 1$ for the answer as written or $p=-\frac{1}{2}$ and $q=\frac{3}{2}$. Allow -0.5 and 1.5 . (Apply isw if correct answer seen, then slip writing $p=, q=$)	
	Answer only (very unlikely) is full marks if correct - no part marks	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 94. \& \(\left.\begin{array}{l}\substack{\mathrm{y}=1 \\
\mathrm{y}-1} \\
\underbrace{}_{\mathrm{x}=\mathrm{o}=3}\end{array} \begin{array}{l}\text { Correct shape with a single } \\
\text { crossing of each axis }\end{array}\right\}\)\begin{tabular}{l}
\(y=1\) labelled or stated \\
\(x=3\) labelled or stated
\end{tabular} \& B1
B1
B1 \\
\hline (b) \& \begin{tabular}{l}
Horizontal translation so crosses the \(x\)-axis at \((1,0)\) \\
New equation is \((y=) \frac{x \pm 1}{(x \pm 1)-2}\) \\
When \(x=0 \quad y=\)
\end{tabular} \& B1
M1
M1

A1

\hline \& Notes \&

\hline (b) \& | B1 for point (1,0) identified - this may be marked on the sketch as 1 on x axis. Accept $x=1$. |
| :--- |
| $1^{\text {st }} \mathrm{M} 1$ for attempt at new equation and either numerator or denominator correct |
| $2^{\text {nd }} \mathrm{M} 1$ for setting $x=0$ in their new equation and solving as far as $y=\ldots$ |
| A1 for $\frac{1}{3}$ or exact equivalent. Must see $y=\frac{1}{3}$ or ($0, \frac{1}{3}$) or point marked on y-axis. |
| Alternative |
| $f(-1)=\frac{-1}{-1-2}=\frac{1}{3}$ scores M1M1A0 unless $x=0$ is seen or they write the point as $\left(0, \frac{1}{3}\right)$ or give $y=1 / 3$ |
| Answers only: $x=1, y=1 / 3$ is full marks as is $(1,0)(0,1 / 3)$ |
| Just 1 and $1 / 3$ is B0 M1 M1 A0 |
| Special case : Translates 1 unit to left |
| (a) B0, B1, B0 |
| (b) Mark (b) as before |
| May score B0 M1 M1 A0 so 3/7 or may ignore sketch and start again scoring full marks for this part. | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
(a)	$\begin{array}{cll} b^{2}-4 a c=(k-3)^{2}-4(3-2 k) & \\ k^{2}-6 k+9-4(3-2 k)>0 & \text { or } & (k-3)^{2}-12+8 k>0 \quad \text { or better } \\ k^{2}+2 k-3>0 & * \end{array}$	M1 M1 Alcso
(b)	$(k+3)(k-1)[=0]$ Critical values are $k=1 \text { or }-3$ (choosing "outside" region)	M1 A1 M1 Al cao
	Notes	
(a)	$1^{\text {st }}$ M1 for attempt to find $b^{2}-4 a c$ with one of b or c correct $2^{\text {nd }} \mathrm{M} 1$ for a correct inequality symbol and an attempt to expand. A1cso no incorrect working seen	
(b)	$1^{\text {st }}$ M1 for an attempt to factorize or solve leading to $k=(2$ values $)$ $2^{\text {nd }}$ M1 for a method that leads them to choose the "outside" region. Can follow through their critical values. 2 ${ }^{\text {nd }}$ A1 Allow "," instead of "or" \geq loses the final A1 $1<k<-3$ scores M1A0 unless a correct version is seen before or after this one.	

Question Number	Scheme	Marks
$96 .$ (a)	(i) correct shape (-ve cubic)Crossing at $(-2,0)$ Through the origin Crossing at (3,0)(ii) 2 branches in correct quadrants not crossing axes One intersection with cubic on each branch	B1 B1 B1 B1 B1 B1 (6)
(b)	"2" solutions Since only "2" intersections	B1ft dB1ft (2) 8
	Notes	
(b)	B1ft for a value that is compatible with their sketch dB 1 ft This mark is dependent on the value being compatible with their sketch. For a comment relating the number of solutions to the number of intersections. [Only allow 0, 2 or 4]	

Question Number	Scheme	Marks
97.	$\begin{aligned} (\sqrt{75}-\sqrt{27}) & =5 \sqrt{3}-3 \sqrt{3} \\ & =2 \sqrt{3} \end{aligned}$	M1 A1
	Notes	
	M1 for $5 \sqrt{ } 3$ from $\sqrt{75}$ or $3 \sqrt{3}$ from $\sqrt{ } 27$ seen anywhere A1 for $2 \sqrt{3}$; allow $\sqrt{12}$ or or $\begin{aligned} & \\ & \text { allow } k=2, x=3 \\ &=1, x=12\end{aligned}$ Some Common errors $\sqrt{75}-\sqrt{27}=\sqrt{48}$ leading to $4 \sqrt{3}$ is M0A0 $25 \sqrt{3}-9 \sqrt{3}=16 \sqrt{3}$ is M0A0	

Question number	Scheme	Marks
102.	$\text { (a) } \begin{aligned} &(7+\sqrt{ } 5)(3-\sqrt{ } 5)=21-5+3 \sqrt{ } 5-7 \sqrt{ } 5 \quad \text { Expand to get } 3 \text { or } 4 \text { terms } \\ &=16,-4 \sqrt{ } 5\left(1^{\text {st }} \mathrm{A} \text { for } 16, \quad 2^{\text {nd }} \mathrm{A} \text { for }-4 \sqrt{ } 5\right) \\ &\text { (i.s.w. if necessary, e.g. } 16-4 \sqrt{ } 5 \rightarrow 4-\sqrt{ } 5) \end{aligned}$	M1 A1, A1
	(b) $\frac{7+\sqrt{ } 5}{3+\sqrt{ } 5} \times \frac{3-\sqrt{ } 5}{3-\sqrt{ } 5}$ (This is sufficient for the M mark) Correct denominator without surds, i.e. $9-5$ or 4 $4-\sqrt{ } 5$ or $4-1 \sqrt{ } 5$	M1 A1 A1 (3) [6]
	(a) M1: Allowed for an attempt giving 3 or 4 terms, with at least 2 correct (even if unsimplified). e.g. $21-\sqrt{ } 5^{2}+\sqrt{ } 15$ scores M1. Answer only: $16-4 \sqrt{ } 5$ scores full marks One term correct scores the M mark by implication, e.g. $26-4 \sqrt{ } 5$ scores M1 A0 A1 (b) Answer only: $4-\sqrt{ } 5$ scores full marks One term correct scores the M mark by implication, e.g. $4+\sqrt{ } 5$ scores M1 A0 A0 $16-\sqrt{ } 5$ scores M1 A0 A0 Ignore subsequent working, e.g. $4-\sqrt{ } 5$ so $a=4, b=1$ Note that, as always, A marks are dependent upon the preceding M mark, so that, for example, $\frac{7+\sqrt{ } 5}{3+\sqrt{ } 5} \times \frac{3+\sqrt{ } 5}{3-\sqrt{ } 5}=\frac{\ldots}{4}$ is M0 A0. Alternative $(a+b \sqrt{ } 5)(3+\sqrt{5})=7+\sqrt{ } 5$, then form simultaneous equations in a and b. M1 $\begin{array}{ccccc}\text { Correct equations: } & 3 a+5 b=7 & \text { and } & 3 b+a=1 & \text { A1 } \\ & a=4 & \text { and } & b=-1 & \text { A1 }\end{array}$	

Question number	Scheme	Marks
103.	$\begin{aligned} & \left.\begin{array}{l} y=3 x-2 \quad(3 x-2)^{2}-x-6 x^{2}(=0) \\ 9 x^{2}-12 x+4-x-6 x^{2}=0 \\ 3 x^{2}-13 x+4=0 \end{array} \quad \text { (or equiv., e.g. } 3 x^{2}=13 x-4\right) \\ & \\ & (3 x-1)(x-4)=0 \quad x=\ldots \quad x=\frac{1}{3} \text { (or exact equivalent) } x=4 \\ & y=-1 \quad y=10 \quad \text { (Solutions need not be "paired") } \end{aligned}$	M1 M1 A1cso M1 A1 M1 A1
	$1^{\text {st }} \mathrm{M}$: Obtaining an equation in x only (or y only). Condone missing " $=0$ " Condone sign slips, e.g. $(3 x+2)^{2}-x-6 x^{2}=0$, but not other algebraic mistakes (such as squaring individual terms... see bottom of page). $2^{\text {nd }} \mathrm{M}$: Multiplying out their $(3 x-2)^{2}$, which must lead to a 3 term quadratic, i.e. $a x^{2}+b x+c$, where $a \neq 0, b \neq 0, c \neq 0$, and collecting terms. $3^{\text {rd }} \mathrm{M}$: Solving a 3-term quadratic (see general principles at end of scheme). $2^{\text {nd }} A$: Both values. $4^{\text {th }} \mathrm{M}$: Using an x value, found algebraically, to attempt at least one y value (or using a y value, found algebraically, to attempt at least one x value)... allow b.o.d. for this mark in cases where the value is wrong but working is not shown. $3^{\text {rd }} \mathrm{A}$: Both values. If y solutions are given as x values, or vice-versa, penalise at the end, so that it is possible to score M1 M1A1 M1 A1 M0 A0. "Non-algebraic" solutions: No working, and only one correct solution pair found (e.g. $x=4, y=10$): M0 M0 A0 M0 A0 M1 A0 No working, and both correct solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M1 A1 Both correct solution pairs found, and demonstrated: Full marks Alternative: $\begin{array}{lll} x=\frac{y+2}{3} \quad y^{2}-\frac{y+2}{3}-6\left(\frac{y+2}{3}\right)^{2}=0 & \text { M1 } \\ y^{2}-\frac{y+2}{3}-6\left(\frac{y^{2}+4 y+4}{9}\right)=0 & y^{2}-9 y-10=0 & \text { M1 A1 } \\ (y+1)(y-10)=0 \quad y=\ldots & y=-1 \quad y=10 & \text { M1 A1 } \\ & x=\frac{1}{3} \quad x=4 & \text { M1 A1 } \end{array}$ Squaring each term in the first equation, e.g. $y^{2}-9 x^{2}+4=0$, and using this to obtain an equation in x only could score at most 2 marks: M0 M0 A0 M1 A0 M1 A0.	

Question number	Scheme	Marks
104.	(a) (b) (c)	
	(a) ($-2,7$), $y=3 \quad$ (Marks are dependent upon a sketch being attempted) See conditions below.	B1, B1 (2)
	(b) $(-2,20), \quad y=4 \quad$ (Marks are dependent upon a sketch being attempted) See conditions below.	B1, B1 (2)
	(c) Sketch: Horizontal translation (either way)... (There must be evidence that $y=5$ at the max and that the asymptote is still $y=1$) $(-3,5), \quad y=1$	B1 B1, B1
	Parts (a) and (b): (i) If only one of the B marks is scored, there is no penalty for a wrong sketch. (ii) If both the maximum and the equation of the asymptote are correct, the sketch must be "correct" to score B1 B1. If the sketch is "wrong", award B1 B0. The (generous) conditions for a "correct" sketch are that the maximum must be in the $2^{\text {nd }}$ quadrant and that the curve must not cross the positive x-axis... ignore other "errors" such as "curve appearing to cross its asymptote" and "curve appearing to have a minimum in the $1^{\text {st }}$ quadrant". Special case: (b) Stretch $\frac{1}{4}$ instead of 4: Correct shape, with $\left(-2, \frac{5}{4}\right), y=\frac{1}{4}:$ B1 B0. Coordinates of maximum: If the coordinates are the wrong way round (e.g. ($7,-2$) in part (a)), or the coordinates are just shown as values on the x and y axes, penalise only once in the whole question, at first occurrence. Asymptote marks: If the equation of the asymptote is not given, e.g. in part (a), 3 is marked on the y-axis but $y=3$ is not seen, penalise only once in the whole question, at first occurrence. Ignore extra asymptotes stated (such as $x=0$).	

Question number	Scheme	Marks
105.	(a) $x\left(x^{2}-4\right) \quad$ Factor x seen in a correct factorised form of the expression. $=x(x-2)(x+2) \quad \mathrm{M}$: Attempt to factorise quadratic (general principles). Accept $(x-0)$ or $(x+0)$ instead of x at any stage. Factorisation must be seen in part (a) to score marks.	B1 M1 A1 (3)
	(b) \qquad Shape $\sqrt{ }$ (2 turning points required) Through (or touching) origin Crossing x-axis or "stopping at x-axis" (not a turning point) at $(-2,0)$ and $(2,0)$. Allow -2 and 2 on x-axis. Also allow $(0,-2)$ and $(0,2)$ if marked on x-axis. Ignore extra intersections with x-axis.	B1 B1 B1 (3)
	(c) Either $y=3($ at $x=-1) \quad$ or $y=15($ at $x=3) \quad$ Allow if seen elsewhere. Gradient $=\frac{\text { "15-3" }}{3-(-1)}(=3) \quad$ Attempt correct grad. formula with their y values. For gradient M mark, if correct formula not seen, allow one slip, e.g. " $\frac{15-3 \text { " }}{3-1}$ $y-" 15 "=m(x-3) \quad$ or $\quad y-" 3 "=m(x-(-1))$, with any value for m. $y-15=3(x-3)$ or the correct equation in any form, e.g. $y-3=\frac{15-3}{3-(-1)}(x-(-1)), \frac{y-3}{x+1}=\frac{15-3}{3+1}$ $y=3 x+6$	B1 M1 M1 A1 A1 (5)
	$\begin{aligned} & \text { (d) } A B=\sqrt{\left(" 15-3^{\prime}\right)^{2}+(3-(-1))^{2}} \quad \text { (With their non-zero } y \text { values)... } \\ & =\sqrt{160}(=\sqrt{16} \sqrt{10})=4 \sqrt{10} \quad \text { (Ignore } \pm \text { if seen) }(\sqrt{16} \sqrt{10} \text { need not be seen). } \end{aligned}$	M1 A1 (2) $[13]$
	(a) $\begin{array}{ll} x^{3}-4 x \rightarrow x\left(x^{2}-4\right) \rightarrow(x-2)(x+2) & \text { scores B1 M1 A0. } \\ x^{3}-4 x \rightarrow x^{2}-4 \rightarrow(x-2)(x+2) & \text { scores B0 M1 A0 (dividing by } x) . \\ x^{3}-4 x \rightarrow x\left(x^{2}-4 x\right) \rightarrow x^{2}(x-4) & \text { scores B0 M1 A0. } \\ x^{3}-4 x \rightarrow x\left(x^{2}-4\right) \rightarrow x(x-2)^{2} & \text { scores B1 M1 A0 } \end{array}$ Special cases: $x^{3}-4 x \rightarrow(x-2)\left(x^{2}+2 x\right)$ scores B0 M1 A0. $x^{3}-4 x \rightarrow x(x-2)^{2}$ (with no intermediate step seen) scores B0 M1 A0 (b) The $2^{\text {nd }}$ and $3^{\text {rd }} \mathrm{B}$ marks are not dependent upon the $1^{\text {st }} \mathrm{B}$ mark, but are dependent upon a sketch having been attempted. (c) $1^{\text {st }} \mathrm{M}$: May be implicit in the equation of the line, e.g. $\frac{y-" 15 "}{3-" 15 "}=\frac{x-" 3 "}{-1-" 3 "}$ $2^{\text {nd }} M$: An equation of a line through (3, "15") or (-1, " 3 ") in any form, with any gradient (except 0 or ∞). $2^{\text {nd }} \mathrm{M}$: Alternative is to use one of the points in $y=m x+c$ to find a value for c, in which case $y=3 x+c$ leading to $c=6$ is sufficient for both A marks. $1^{\text {st }} \mathrm{A} 1$: Correct equation in any form.	

Question number	Scheme	Marks
106.	(a) $(x+2 k)^{2}$ or $\left(x+\frac{4 k}{2}\right)^{2}$ $(x \pm F)^{2} \pm G \pm 3 \pm 11 k \quad$ (where F and G are any functions of k, not involving x) $(x+2 k)^{2}-4 k^{2}+(3+11 k)$ Accept unsimplified equivalents such as $\left(x+\frac{4 k}{2}\right)^{2}-\left(\frac{4 k}{2}\right)^{2}+3+11 k$, and i.s.w. if necessary.	M1 M1 A1 (3)
	(b) Accept part (b) solutions seen in part (a). $" 4 k^{2}-11 k-3 "=0$ $(4 k+1)(k-3)=0 \quad k=\ldots$ [Or, 'starting again', $b^{2}-4 a c=(4 k)^{2}-4(3+11 k)$ and proceed to $k=\ldots$] $-\frac{1}{4}$ and 3 (Ignore any inequalities for the first 2 marks in (b)). Using $b^{2}-4 a c<0$ for no real roots, i.e. " $4 k^{2}-11 k-3 "<0$, to establish inequalities involving their two critical values m and n (even if the inequalities are wrong, e.g. $k<m, k<n$). $-\frac{1}{4}<k<3$ (See conditions below) Follow through their critical values. The final A1ft is still scored if the answer $m<k<n$ follows $k<m, k<n$. Using x instead of k in the final answer loses only the $2^{\text {nd }}$ A mark, (condone use of x in earlier working).	M1 A1 M1 Alft (4)
		B1 B1 B1 (3) [10]
	(b) $1^{\text {st }} \mathrm{M}$: Forming and solving a 3-term quadratic in k (usual rules.. see general principles at end of scheme). The quadratic must come from " $b^{2}-4 a c$ ", or from the " q " in part (a). Using wrong discriminant, e.g. " $b^{2}+4 a c$ " will score no marks in part (b). $2^{\text {nd }} \mathrm{M}$: As defined in main scheme above. $2^{\text {nd }}$ A1ft: $m<k<n$, where $m<n$, for their critical values m and n. Other possible forms of the answer (in each case $m<n$): (i) $n>k>m$ (ii) $k>m$ and $k<n$ In this case the word "and" must be seen (implying intersection). (iii) $k \in(m, n)$ (iv) $\{k: k>m\} \cap\{k: k<n\}$ Not just a number line. Not just $k>m, k<n$ (without the word "and"). (c) Final B1 is dependent upon a sketch having been attempted in part (c).	

Question Number	Scheme	Marks
107. (a) (b)	$\begin{align*} & (3 \sqrt{ } 7)^{2}=63 \tag{1}\\ & (8+\sqrt{ } 5)(2-\sqrt{ } 5)=16-5+2 \sqrt{ } 5-8 \sqrt{ } 5 \\ & \quad=11,-6 \sqrt{ } 5 \end{align*}$	M1 A1, A1 (3) [4]
(a) (b)	B1 for 63 only M1 for an attempt to expand their brackets with ≥ 3 terms correct. They may collect the $\sqrt{5}$ terms to get $16-5-6 \sqrt{5}$ Allow $-\sqrt{5} \times \sqrt{5}$ or $-(\sqrt{5})^{2}$ or $-\sqrt{25}$ instead of the -5 These 4 values may appear in a list or table but they should have minus signs included The next two marks should be awarded for the final answer but check that correct values follow from correct working. Do not use ISW rule $1^{\text {st }}$ A1 for 11 from $16-5 \underline{o r}^{-6 \sqrt{5}}$ from $-8 \sqrt{5}+2 \sqrt{5}$ $2^{\text {nd }}$ A1 for both 11 and $-6 \sqrt{5}$. S.C - Double sign error in expansion For $16-5-2 \sqrt{5}+8 \sqrt{5}$ leading to $11+\ldots$ allow one mark	

Question Number	Scheme	Marks
108. (a) (b) (c)	$5 x>10, x>2 \quad$ [Condone $x>\frac{10}{2}=2$ for M1A1] $(2 x+3)(x-4)=0, \quad$ 'Critical values' are $-\frac{3}{2}$ and 4 $\begin{aligned} & -\frac{3}{2}<x<4 \\ 2 & <x<4 \end{aligned}$	M1, A1 (2) M1, A1 M1 A1ft (4) B1ft (1) [7]
(a) (b)	M1 for attempt to collect like terms on each side leading to $a x>b$, or $a x<b$, or $a x=b$ Must have a or b correct so eg $3 x>4$ scores M0 $1^{\text {st }}$ M1 for an attempt to factorize or solve to find critical values. Method must potentially give 2 critical values $1^{\text {st }}$ A1 for $-\frac{3}{2}$ and 4 seen. They may write $x<-\frac{3}{2}, x<4$ and still get this A1 $2^{\text {nd }}$ M1 for choosing the "inside region" for their critical values $2^{\text {nd }}$ A1ft follow through their 2 distinct critical values Allow $x>-\frac{3}{2}$ with "or" "," " \cup " "" $x<4$ to score M1A0 but "and" or " \cap " score M1A1 $x \in\left(-\frac{3}{2}, 4\right)$ is M1A1but $x \in\left[-\frac{3}{2}, 4\right]$ is M1A0. Score M0A0 for a number line or graph only	
(c)	B1ft Allow if a correct answer is seen or follow through their answer to (a) and their answer to (b) but their answers to (a) and (b) must be regions. Do not follow through single values. If their follow through answer is the empty set accept \varnothing or $\}$ or equivalent in words If (a) or (b) are not given then score this mark for cao NB You may see $x<4$ (with anything or nothing in-between) $x<-1.5$ in (b) and empty set in (c) for B1ft Do not award marks for part (b) if only seen in part (c) Use of \leq instead of $<$ (or \geq instead of $>$) loses one accuracy mark only, at first occurrence.	

Question Number	Scheme	Marks
109.	$b^{2}-4 a c$ attempted, in terms of p. $(3 p)^{2}-4 p=0 \quad$ o.e. Attempt to solve for p e.g. $p(9 p-4)=0 \quad$ Must potentially lead to $p=k, k \neq 0$ $p=\frac{4}{9}$ (Ignore $p=0$, if seen)	M1 A1 M1 Alcso
	$1^{\text {st }}$ M1 for an attempt to substitute into $b^{2}-4 a c$ or $b^{2}=4 a c$ with b or c correct Condone x 's in one term only. This can be inside a square root as part of the quadratic formula for example. Use of inequalities can score the M marks only $1^{\text {st }} \mathrm{A} 1$ for any correct equation: $(3 p)^{2}-4 \times 1 \times p=0$ or better $2^{\text {nd }} \mathrm{M} 1$ for an attempt to factorize or solve their quadratic expression in p. Method must be sufficient to lead to their $p=\frac{4}{9}$. Accept factors or use of quadratic formula or $\left(p \pm \frac{2}{9}\right)^{2}=k^{2}$ (o.e. eg) $\left(3 p \pm \frac{2}{3}\right)^{2}=k^{2}$ or equivalent work on their eqn. $9 p^{2}=4 p \Rightarrow \frac{9 p^{2}}{\ell}=4$ which would lead to $9 p=4$ is OK for this $2^{\text {nd }}$ M1 ALT Comparing coefficients M1 for $(x+\alpha)^{2}=x^{2}+\alpha^{2}+2 \alpha x$ and A1 for a correct equation eg $3 p=2 \sqrt{p}$ M1 for forming solving leading to $\sqrt{p}=\frac{2}{3}$ or better Use of quadratic/discriminant formula (or any formula) Rule for awarding M mark If the formula is quoted accept some correct substitution leading to a partially correct expression. If the formula is not quoted only award for a fully correct expression using their values.	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
110. (a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& x\left(x^{2}-6 x+9\right) \\
\& =x(x-3)(x-3)
\end{aligned}
\]
 \\
Shape \\
Through origin (not touching) \\
Touching \(x\)-axis only once \\
Touching at (3,0), or 3 on \(x\)-axis \\
[Must be on graph not in a table] \\
Moved horizontally (either way) \((2,0)\) and \((5,0)\), or 2 and 5 on \(x\)-axis
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 A1 \\
(3) \\
B1 \\
B1 \\
B1 \\
B1ft \\
(4) \\
M1 \\
A1 (2) \\
[9]
\end{tabular} \\
\hline (a)
S.C.

(b)
(b)

(c) \& | B1 for correctly taking out a factor of x |
| :--- |
| M1 for an attempt to factorize their 3TQ e.g. $(x+p)(x+q)$ where $\|p q\|=9$. |
| So $(x-3)(x+3)$ will score M1 but A0 |
| A1 for a fully correct factorized expression - accept $x(x-3)^{2}$ |
| If they "solve" use ISW |
| If the only correct linear factor is ($x-3$), perhaps from factor theorem, award B0M1A0 |
| Do not award marks for factorising in part (b) |
| For the graphs |
| "Sharp points" will lose the $1^{\text {st }} \mathrm{B} 1$ in (b) but otherwise be generous on shape Condone $(0,3)$ in (b) and $(0,2),(0,5)$ in (c) if the points are marked in the correct places. |
| $2^{\text {nd }} \mathrm{B} 1$ for a curve that starts or terminates at $(0,0)$ score B0 |
| $4^{\text {th }} \mathrm{B} 1 \mathrm{ft}$ for a curve that touches (not crossing or terminating) at $(a, 0)$ where their $y=x(x-a)^{2}$ |
| M1 for their graph moved horizontally (only) or a fully correct graph |
| Condone a partial stretch if ignoring their values looks like a simple translation |
| A1 for their graph translated 2 to the right and crossing or touching the axis at 2 and 5 only |
| Allow a fully correct graph (as shown above) to score M1A1 whatever they have in (b) | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
111	$\sqrt{7}^{2}+2 \sqrt{7}-2 \sqrt{7}-2^{2}$, or $7-4$ or an exact equivalent such as $\sqrt{49}-2^{2}$ $=3$	M1 A1 [2]
	M1 for an expanded expression. At worst, there can be one wrong term and one wrong sign, or two wrong signs. $\begin{aligned} & \text { e.g. } 7+2 \sqrt{7}-2 \sqrt{7}-2 \text { is M1 (one wrong term }-2 \text {) } \\ & 7+2 \sqrt{7}+2 \sqrt{7}+4 \text { is M1 (two wrong signs }+2 \sqrt{7} \text { and }+4 \text {) } \\ & 7+2 \sqrt{7}+2 \sqrt{7}+2 \text { is M1 (one wrong term }+2 \text {, one wrong sign }+2 \sqrt{7} \text {) } \\ & \sqrt{7}+2 \sqrt{7}-2 \sqrt{7}+4 \text { is M1 (one wrong term } \sqrt{7} \text {, one wrong sign }+4 \text {) } \\ & \sqrt{7}+2 \sqrt{7}-2 \sqrt{7}-2 \text { is M0 (two wrong terms } \sqrt{7} \text { and }-2 \text {) } \\ & 7+\sqrt{14}-\sqrt{14}-4 \text { is M0 (two wrong terms } \sqrt{14} \text { and }-\sqrt{14} \text {) } \end{aligned}$ If only 2 terms are given, they must be correct, i.e. (7-4) or an equivalent unsimplified version to score M1. The terms can be seen separately for the M1. Correct answer with no working scores both marks.	

| Question
 Number | | Marks |
| :--- | :--- | :--- | :--- |
| 112. (a) | | |

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme ${ }^{\text {arks }}$

\hline 113. (a)
(b) \&

\hline (a)

(b) \& | For this question, ignore (a) and (b) labels and award marks wherever correct work is seen. |
| :--- |
| M1 for attempting to use the discriminant of the initial equation (>0 not required, but substitution of a, b and c in the correct formula is required). |
| If the formula $b^{2}-4 a c$ is seen, at least 2 of a, b and c must be correct. |
| If the formula $b^{2}-4 a c$ is not seen, all $3(a, b$ and c) must be correct. |
| This mark can still be scored if substitution in $b^{2}-4 a c$ is within the quadratic formula. |
| This mark can also be scored by comparing b^{2} and $4 a c$ (with substitution). |
| However, use of $b^{2}+4 a c$ is M0. |
| $1^{\text {st }}$ A1 for fully correct expression, possibly unsimplified, with $>$ symbol. NB must appear before the last line, even if this is simply in a statement such as $b^{2}-4 a c>0$ or 'discriminant positive'. Condone a bracketing slip, e.g. $16-4 \times k \times 5-k$ if subsequent work is correct and convincing. |
| $2^{\text {nd }} \mathrm{A} 1$ for a fully correct derivation with no incorrect working seen. |
| Condone a bracketing slip if otherwise correct and convincing. |
| Using $\sqrt{b^{2}-4 a c}>0$: |
| Only available mark is the first M1 (unless recovery is seen). |
| $1^{\text {st }} \mathrm{M} 1$ for attempt to solve an appropriate 3TQ |
| $1^{\text {st }}$ A1 for both $k=1$ and 4 (only the critical values are required, so accept, e.g. $k>1$ and $k>4$). ** |
| $2^{\text {nd }}$ M1 for choosing the "outside" region. A diagram or table alone is not sufficient. |
| Follow through their values of k. |
| The set of values must be 'narrowed down' to score this M mark... listing everything $k<1,1<k<4, k>4$ is M0. |
| $2^{\text {nd }}$ A1 for correct answer only, condone " $k<1, k>4$ " and even " $k<1$ and $k>4$ ", but " $1>k>4$ " is A0. |
| ** Often the statement $k>1$ and $k>4$ is followed by the correct final answer. Allow full marks. |
| Seeing 1 and 4 used as critical values gives the first M1 A1 by implication. |
| In part (b), condone working with x 's except for the final mark, where the set of values must be a set of values of k (i.e. 3 marks out of 4). |
| Use of \leq (or \geq) in the final answer loses the final mark. |

\hline
\end{tabular}

Question Number	Scheme ${ }^{\text {arks }}$
(b)	$1^{\text {st }}$ B1 for shape ${ }$ or Can be anywhere, but there must be one max. and one min. and no further max. and min. turning points. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. $2^{\text {nd }} \mathrm{B} 1$ for minimum at $(-1,0)$ (even if there is an additional minimum point shown) $3^{\text {rd }}$ B1 for the sketch meeting axes at $(2,0)$ and $(0,2)$. They can simply mark 2 on the axes. The marks for minimum and intersections are dependent upon having a sketch. Answers on the diagram for min. and intersections take precedence over answers seen elsewhere. $4^{\text {th }}$ B1 for the branch fully within $1^{\text {st }}$ quadrant having 2 intersections with (not just 'touching') the other curve. The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes, and when the curve looks like two straight lines with a small curve at the join. Allow, for example, shapes like these: $5^{\text {th }}$ B1 for a branch fully in the $3^{\text {rd }}$ quadrant (ignore any intersections with the other curve for this branch). The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes. B1ft for a statement about the number of roots - compatible with their sketch. No sketch is B0. The answer 2 incompatible with the sketch is B 0 (ignore any algebra seen). If the sketch shows the 2 correct intersections and, for example, one other intersection, the answer here should be 3, not 2, to score the mark.

Question number	Scheme	Marks
115.	$x\left(x^{2}-9\right)$ or $(x \pm 0)\left(x^{2}-9\right)$ or $(x-3)\left(x^{2}+3 x\right)$ or $(x+3)\left(x^{2}-3 x\right)$ $x(x-3)(x+3)$	B1 M1A1 (3)
	B1 for first factor taken out correctly as indicated in line 1 above. So $x\left(x^{2}+9\right)$ is B0 M1 for attempting to factorise a relevant quadratic. "Ends" correct so e.g. $\left(x^{2}-9\right)=(x \pm p)(x \pm q)$ where $p q=9$ is OK. This mark can be scored for $\left(x^{2}-9\right)=(x+3)(x-3)$ seen anywhere. A1 for a fully correct expression with all 3 factors. Watch out for $-x(3-x)(x+3)$ which scores A1 Treat any working to solve the equation $x^{3}-9 x$ as ISW.	

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks

\hline 116 \&

\hline (a)

(b) \& | Allow "stopping at" $(0,10)$ or $(0,7)$ instead of "cutting" |
| :--- |
| $1^{\text {st }} \mathrm{B} 1$ for moving the given curve up. Must be U shaped curve, minimum in first quadrant, not touching x-axis but cutting positive y-axis. Ignore any values on axes. |
| $2^{\text {nd }}$ B1 for curve cutting y-axis at $(0,10)$. Point 10 (or even $(10,0)$ marked on positive y-axis is $O K$) $3^{\text {rd }}$ B1 for minimum indicated at $(7,3)$. Must have both coordinates and in the right order. |
| If the curve flattens out to a turning point like this penalise once at first offence ie $1^{\text {st }} \mathrm{B} 1$ in (a) or in (b) but not in both. |
| this would score B0B1B0 |
| The U shape mark can be awarded if the sides are fairly straight as long as the vertex is rounded. |
| $1^{\text {st }} \mathrm{B} 1$ for U shaped curve, touching positive x-axis and crossing y-axis at $(0,7)$ [condone $(7,0)$ if marked on positive y axis] or 7 marked on y-axis $2^{\text {nd }} \mathrm{B} 1$ for minimum at $(3.5,0)$ or 3.5 or $\frac{7}{2}$ marked on x-axis. Do not condone $(0,3.5)$ here. Redrawing $\mathrm{f}(x)$ will score B1B0 in part (b). |
| Points on sketch override points given in text/table. If coordinates are given elsewhere (text or table) marks can be awarded if they are compatible with the sketch. |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme ${ }^{\text {a }}$ Marks

\hline 117. (a)

(b) \&

\hline (a)

(b) \& | B1 for curve of correct shape i.e 2 branches of curve, in correct quadrants, of roughly the correct shape and no touching or intersections with axes. |
| :--- |
| Condone up to 2 inward bends but there must be some ends that are roughly asymptotic. |
| M1 for a straight line cutting the positive y-axis and the negative x-axis. Ignore any values. |
| A1 for $(0,5)$ and $(-2.5,0)$ or points correctly marked on axes. Do not give for values in tables. |
| Condone mixing up (x, y) as (y, x) if one value is zero and other value correct. |
| $1^{\text {st }}$ M1 for attempt to form a suitable equation and multiply by x (at least one of $2 x$ or +5) should be multiplied. |
| $1^{\text {st }} \mathrm{A} 1$ for correct 3 TQ - condone missing $=0$ |
| $2^{\text {nd }} \mathrm{M} 1$ for an attempt to solve a relevant 3TQ leading to 2 values for $x=\ldots$ |
| $2^{\text {nd }}$ A1 for both $x=-3$ and 0.5 . |
| T\&I for x values may score $1^{\text {st }}$ M1A1 otherwise no marks unless both values correct. |
| Answer only of $x=-3$ and $x=\frac{1}{2}$ scores $4 / 4$, then apply the scheme for the final M1A1ft |
| $3^{\text {rd }}$ M1 for an attempt to find at least one y value by substituting their x in either $\frac{3}{x}$ or $2 x+5$ |
| $3^{\text {rd }}$ A1ft follow through both their x values, in either equation but the same for each, correct pairings required but can be $x=-3, y=-1$ etc |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \({ }^{\text {S }}\) Marks \\
\hline 118. (a)
(b) \& \begin{tabular}{l}
[No real roots implies \(b^{2}-4 a c<0\).] \(b^{2}-4 a c=q^{2}-4 \times 2 q \times(-1)\) \\
So \(q^{2}-4 \times 2 q \times(-1)<0\) i.e. \(q^{2}+8 q<0\) \\
(*)
\[
q(q+8)=0 \quad \text { or } \quad(q \pm 4)^{2} \pm 16=0
\] \\
\((q)=0\) or -8
\[
-8<q<0 \text { or } q \in(-8,0) \text { or } q<0 \text { and } q>-8
\]
(2 cvs) \begin{tabular}{lll}
M1 \& \& \\
A1cso \& (2) \\
M1 \& \& \\
A1 \& \& \\
A1ft \& \& (3) \\
\& 5 \&
\end{tabular}
\end{tabular} \\
\hline (a)

(b) \& | M1 for attempting $b^{2}-4 a c$ with one of b or a correct. <0 not needed for M1 |
| :--- |
| This may be inside a square root. |
| A1cso for simplifying to printed result with no incorrect working or statements seen. |
| Need an intermediate step |
| e.g. $q^{2}--8 q<0$ or $q^{2}-4 \times 2 q \times-1<0$ or $q^{2}-4(2 q)(-1)<0$ or $q^{2}-8 q(-1)<0$ or $q^{2}-8 q \times-1<0$ |
| i.e. must have \times or brackets on the $4 a c$ term |
| <0 must be seen at least one line before the final answer. |
| M1 for factorizing or completing the square or attempting to solve $q^{2} \pm 8 q=0$. A method that would lead to 2 values for q. The "= 0 " may be implied by values appearing later. |
| $1^{\text {st }} \mathrm{A} 1$ for $q=0$ and $q=-8$ |
| $2^{\text {nd }}$ A1 for $-8<q<0$. Can follow through their cvs but must choose "inside" region. |
| $q<0, q>-8$ is A $0, q<0$ or $q>-8$ is A $0,(-8,0)$ on its own is A0 |
| BUT " $q<0$ and $q>-8$ " is A1 |
| Do not accept a number line for final mark |

\hline
\end{tabular}

Question number	Scheme	Marks
121.	(a) $x^{2}+k x+(8-k)(=0) \quad 8-k$ need not be bracketed $\begin{align*} & b^{2}-4 a c=k^{2}-4(8-k) \\ & b^{2}-4 a c<0 \Rightarrow k^{2}+4 k-32<0 \tag{*} \end{align*}$ (b) $\begin{array}{lrl} (k+8)(k-4)=0 & k=\ldots & \\ & k=-8 & k=4 \end{array}$ Choosing 'inside' region (between the two k values) $-8<k<4 \quad \text { or } \quad 4>k>-8$	M1 M1 A1cso (3) M1 A1 M1 (4) A1 7
	(a) $1^{\text {st }} \mathrm{M}$: Using the k from the right hand side to form 3-term quadratic in x ($=0$ ' can be implied), or... attempting to complete the square $\left(x+\frac{k}{2}\right)^{2}-\frac{k^{2}}{4}+8-k(=0)$ or equiv., using the k from the right hand side. For either approach, condone sign errors. $1^{\text {st }} \mathrm{M}$ may be implied when candidate moves straight to the discriminant $2^{\text {nd }} \mathrm{M}$: Dependent on the $1^{\text {st }} \mathrm{M}$. Forming expressions in k (with no x 's) by using b^{2} and 4ac. (Usually seen as the discriminant $b^{2}-4 a c$, but separate expressions are fine, and also allow the use of $b^{2}+4 a c$. (For 'completing the square' approach, the expression must be clearly separated from the equation in x). If b^{2} and $4 a c$ are used in the quadratic formula, they must be clearly separated from the formula to score this mark. For any approach, condone sign errors. If the wrong statement $\sqrt{b^{2}-4 a c}<0$ is seen, maximum score is M1 M1 A0. (b) Condone the use of x (instead of k) in part (b). 1 st M : Attempt to solve a 3 -term quadratic equation in k. It might be different from the given quadratic in part (a). Ignore the use of $<$ in solving the equation. The $1^{\text {st }}$ M1 A1 can be scored if -8 and 4 are achieved, even if stated as $k<-8, k<4$. Allow the first M1 A1 to be scored in part (a). $\begin{aligned} & \text { N.B. ' } k>-8, k<4 \text { ' scores } 2^{\text {nd }} \mathrm{M} 1 \text { A0 } \\ & \text { ' } k>-8 \text { or } k<4 \text { ' scores } 2^{\text {nd }} \mathrm{M} 1 \mathrm{~A} 0 \\ & \text { ' } k>-8 \text { and } k<4 \text { ' scores } 2^{\text {nd }} \text { M1 A1 } \\ & \text { ' } k=-7,-6,-5,-4,-3,-2,-1,0,1,2,3 \text { ' scores } 2^{\text {nd }} \text { M0 A0 } \end{aligned}$ Use of \leq (in the answer) loses the final mark.	

Question number	Scheme	Marks
122.	(a) Shape \sim (drawn anywhere) Minimum at $(1,0)$ (perhaps labelled 1 on x-axis) $(-3,0) \quad$ (or -3 shown on -ve x-axis) $(0,3) \quad$ (or 3 shown on +ve y-axis) N.B. The max. can be anywhere. $\text { (b) } \begin{aligned} y & =(x+3)\left(x^{2}-2 x+1\right) \\ & =x^{3}+x^{2}-5 x+3 \end{aligned}$	B1 B1 B1 B1 (4) M1 A1cso (2)
	(a) The individual marks are independent, but the $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }} \mathrm{B}$'s are dependent upon a sketch having been attempted. B marks for coordinates: Allow (0,1), etc. (coordinates the wrong way round) if marked in the correct place on the sketch. (b) M: Attempt to multiply out $(x-1)^{2}$ and write as a product with $(x+3)$, or attempt to multiply out $(x+3)(x-1)$ and write as a product with $(x-1)$, or attempt to expand $(x+3)(x-1)(x-1)$ directly (at least 7 terms). The $(x-1)^{2}$ or $(x+3)(x-1)$ expansion must have 3 (or 4$)$ terms, so should not, for example, be just $x^{2}+1$. A: It is not necessary to state explicitly ' $k=3$ '. Condone missing brackets if the intention seems clear and a fully correct expansion is seen.	

Question Number	Scheme		Marks
123. (a)	Way 1 Use $f(1 / 2)$ or $f(-1 / 2)$ and put equal to 30 Stated $\frac{24}{8}+\frac{1}{4} A-\frac{3}{2}+B=30$ and $A+4 B=114$ *	Way 2 Long division of $\mathrm{f}(x)$ by $(2 x-1)$ as far as remainder put $=30$ Obtains $B+\frac{1}{4} A+\frac{3}{2}=30$ (o.e) and $A+4 B=114$ *	M1 A1*
(b)	Way 1 Used $\mathrm{f}(-1)$ or $\mathrm{f}(1)=0$ Stated $-24+A+3+B=0$ so $A+B=2$	Way 2 Long division of $\mathrm{f}(x)$ by $(x+1)$ as far as remainder put $=0$ Obtains $B-21+A=0$	M1 A1
(c)	Solves to obtain one of A or B Obtains both $A=-10$ and $B=3$		M1 A1
(d)	$\mathrm{f}(x)=(x+1)\left(24 x^{2}-34 x+31\right)$ or factor is $\left(24 x^{2}-34 x+31\right)$		M1A1
			(8 marks)
		otes	
(a) Way 1			
M1: for attempting either $\mathrm{f}\left(\frac{1}{2}\right)$ or $\mathrm{f}\left(-\frac{1}{2}\right)$ - with numbers substituted into expression and put $=\mathbf{3 0}$			
A1*: Obtaining correct equation correctly (Signs and powers of $1 / 2$ need to be simplified correctly) (a) Way 2			
M1: for attempting long division of $\mathrm{f}(x)$ by $(2 x-1)$ obtaining $12 x^{2}+\ldots x+\ldots$ as quotient and remainder term put equal to 30			
A1*: Obtaining correct equation correctly (b) Way 1			
M1: for calculating $f(-1)$ or $f(1)$ and put equal to 0 (This may be implied by their equation in part (b))			
A1:for obtaining a correct equivalent equation in part (b). (This mark may not be recovered in part (c))			
$-24+A+3+B=0$ as a final answer to part (b). (b) Way 2			
M1: for attempting long division of $\mathrm{f}(x)$ by $(x+1)$ obtaining $24 x^{2}+\ldots x+\ldots$ as quotient and remainder term put equal to 0 (This may be implied by their equation in part (b))			
A1:for obtaining a correct equivalent equation in part (b). (This mark may not be recovered in part (c))			
Accept $A+B=21$ or $-A-B=-21$ or $A+B-21=0$ or $21-A-B=0$ or $B-21+A=0$ etc.. (c)			
M1: Eliminate one variable and solve to obtain A or B			
A1: Both correct			
M1: Uses their values of A and B in the given cubic (even the wrong way round) and attempts to divide by $(x+1)$ leading to a 3TQ beginning with the correct term, usually $24 x^{2}$ and including an x term and a constant term. This may be done by a variety of methods including long division, comparison of coefficients, inspection etc. (If values of A and B were wrong there may be a remainder but this may be ignored) If they used division in part (b) they may substitute A and B into their quotient expression from (b).			
A1: $24 x^{2}-34 x+31 \ldots$ Credit when seen and use isw if miscopied later or if attempt is made to solve			

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 124. (a) \& Attempt \(\mathrm{f}(3)\) or \(\mathrm{f}(-3)\) Use of long division is M0A0 as factor theorem was require \(\mathrm{f}(-3)=162-63-120+21=0 \quad\) so \((x+3)\) is a factor \& \\
\hline \multirow[t]{3}{*}{(b)} \& Either (Way 1): \(\mathrm{f}(x)=(x+3)\) \& \begin{tabular}{l}
M1A1 \\
M1A1 \\
(4)
\end{tabular} \\
\hline \& \begin{tabular}{l}
Or (Way 2) Uses trial or factor theorem to obtain \(x=-1 / 2\) or \(x=7 / 3\) Uses trial or factor theorem to obtain both \(x=-1 / 2\) and \(x=7 / 3\) \\
Puts three factors together (see notes below) \\
Correct factorisation : \((x+3)(7-3 x)(2 x+1)\) or \(-(x+3)(3 x-7)(2 x+1)\) oe
\end{tabular} \& M1
A1
M1 \\
\hline \& Or (Way 3) N \& \\
\hline (c) \& \[
\begin{aligned}
\& 2^{y}=\frac{7}{3}, \rightarrow \log \left(2^{y}\right)=\log \left(\frac{7}{3}\right) \text { or } y=\log _{2}\left(\frac{7}{3}\right) \text { or } \frac{\log (7 / 3)}{\log 2} \\
\& \{y=1.222392421 \ldots\} \Rightarrow y=\text { awrt } 1.22
\end{aligned}
\] \& \begin{tabular}{l}
B1, M1 \\
A1 \\
(3) \\
[9]
\end{tabular} \\
\hline (a)
(b)

(c) \& \multicolumn{2}{|l|}{| Notes |
| :--- |
| M1 for attempting either $\mathrm{f}(3)$ or $\mathrm{f}(-3)$ - with numbers substituted into expression |
| A1 for calculating $\mathrm{f}(-3)$ correctly to $\mathbf{0}$, and they must state $(x+3)$ is a factor for A 1 (or equivalent ie. QED, \square or a tick). A conclusion may be implied by a preamble, "if $\mathrm{f}(-3)=0,(x+3)$ is a factor". |
| $-6(-3)^{3}-7(-3)^{2}+40(-3)+21=0$ so $(x+3)$ is a factor of $\mathrm{f}(x)$ is M1A1 providing bracketing is correct. |
| $1^{\text {st }}$ M1: attempting to divide by $(x+3)$ leading to a 3 TQ beginning with the correct term, usually $-6 x^{2}$. |
| This may be done by a variety of methods including long division, comparison of coefficients, inspection etc. Allow for work in part (a) if the result is used in (b). |
| $1^{\text {st }}$ A1: usually for $\left(-6 x^{2}+11 x+7\right) \ldots$ Credit when seen and use isw if miscopied |
| $2^{\text {nd }}$ M1: for a valid* attempt to factorise their quadratic (* see notes on page 6-General Principles for Core Mathematics Marking section 1) |
| $2^{\text {nd }} \mathrm{A} 1$ is cao and needs all three factors together fully factorised. Accept e.g. $-3(x+3)\left(x-\frac{7}{3}\right)(2 x+1)$ but $(x+3)\left(x-\frac{7}{3}\right)(-6 x-3)$ and $(x+3)(3 x-7)(-2 x-1)$ are A0 as not fully factorised. |
| Ignore subsequent work (such as a solution to a quadratic equation.) |
| Way 2: The second M mark needs three roots together so $\pm 6(x-\alpha)(x-\beta)(x+3)$ or equivalent where they obtained α and β by trial, so if correct roots identified, then $(x+3)(3 x-7)(2 x+1)$ can gain M1A1M1A0. |
| N.B. Replacing $\left(-6 x^{2}+11 x+7\right)$ (already awarded M1A1) by $\left(6 x^{2}-11 x-7\right)$ giving $(x+3)(3 x-7)(2 x+1)$ can have M1A0 for factorization so M1A1M1A0 |
| B1: $2^{y}=\frac{7}{3}$ |
| M1: Attempt to take logs to solve $2^{y}=\alpha$ or $2^{y}=1 / \alpha$, where $\alpha>0$ and α was a root of their factorization. |
| A1: for an answer that rounds to 1.22. If other answers are included (and not "rejected") such as $\ln (-3)$ or - 1 lose final A mark |
| Special case: Those who deal throughout with $\mathrm{f}(x)=6 x^{3}+7 x^{2}-40 x-21$ |
| They may have full credit in part (a). In part (b) they can achieve a maximum of M1A0M1A0 unless they return the negative sign to give the correct answer. This is then full marks. Part (c) is fine. So they could lose 2 marks on the factorisation. (Like a misread) |}

\hline
\end{tabular}

	Scheme	Mar
	S	A1 o.e.
	Q	析
	Obtain $\left(3 x^{2}-48\right),\left(x^{2}-16\right),\left(6 x^{2}-96\right),\left(3 x^{2}+\frac{A}{2}\right),\left(3 x^{2}+B\right),\left(x^{2}+\frac{A}{6}\right)$ or $\left(x^{2}+\frac{B}{3} \quad\right.$ as factor or as quotient after division by $(2 x+1)$. Division by $(x+4)$ or $(x-4)$ see below Factorises $\left(3 x^{2}-48\right),\left(x^{2}-16\right),\left(48-3 x^{2}\right),\left(16-x^{2}\right)$ or $\left(6 x^{2}-96\right)$ $=3(2 x+1)(x+4)(x-4)$ (if this answer follows from a wrong A or B then award A0) isw if they go on to solve to give $x=4,-4$ and $-1 / 2$	B1ft M1 A1cso (3) [9]
Notes (a) Way 1: M1: 1 or -1 substituted into $\mathrm{f}(x)$ and expression put equal to ± 45 A1*: Answer is given. Must have substituted -1 and put expression equal to +45 . Correct equation with powers of -1 evaluated and conclusion with no errors seen. Way 2: M1: Long division as far as a remainder which is set equal to ± 45 A1*: See correct quotient and correct remainder and printed answer obtained with no errors (b) Way 1: M1: Must see $\mathrm{f}\left(-\frac{1}{2}\right)$ and " $=0$ " unless subsequent work implies this. A1: Give credit for a correct equation even unsimplified when first seen, then isw. A correct equation implies M1A1. M1: Attempts to solve the given equation from part (a) and their simplified or unsimplified linear equation in A and B from part (b) as far as $A=\ldots$ or $B=\ldots$ (must eliminate one of the constants but algebra need not be correct for this mark). May just write down the correct answers. A1: Both A and B correct Way 2: M1: Long division as far as a remainder which is set equal to 0 A1: See correct quotient and correct remainder put equal to 0 M1A1: As in Way 1 There may be a mixture of Way 1 for (a) and Way 2 for (b) or vice versa. (c) B1: May be written straight down or from long division, inspection, comparing coefficients or pairing terms M1: Valid attempt to factorise a listed quadratic (see general notes) so $(3 x-16)(x+3)$ could get M1A0 A1cso: (Cannot be awarded if A or B is wrong) Needs the answer in the scheme or $-3(2 x+1)(4+x)(4-x)$ or equivalent but factor 3 must be shown and there must be all the terms together with brackets. Way 2: A minority might divide by $(x-4)$ or $(x+4)$ obtaining $\left(6 x^{2}+27 x+12\right)$ or $\left(6 x^{2}-21 x-12\right)$ for B1 They then need to factorise $\left(6 x^{2}+27 x+12\right)$ or $\left(6 x^{2}-21 x-12\right)$ for M1 Then A1cso as before Special cases: If they write down $\mathrm{f}(x)=3(2 x+1)(x+4)(x-4)$ with no working, this is B1 M1 A1 But if they give $\mathrm{f}(x)=(2 x+1)(x+4)(x-4)$ with no working (from calculator?) give B1M0A0 And $\mathrm{f}(x)=(2 x+1)(3 x+12)(x-4)$ or $\mathrm{f}(x)=(6 x+3)(x+4)(x-4)$ or $\mathrm{f}(x)=(2 x+1)(x+4)(3 x-12)$ is B1M1A0		

Question Number	Scheme		Marks
129. (a)	$\mathrm{f}(x)=-4 x^{3}+a x^{2}+9 x-18$		
	$\begin{aligned} & \mathrm{f}(2)=-32+4 a+18-18=0 \\ & \Rightarrow 4 a=32 \Rightarrow a=8 \end{aligned}$	Attempts f(2) or f(-2)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		cso	
			[2]
(a) Way 2	$\mathrm{f}(x)=(x-2)\left(p x^{2}+q x+r\right)$		
	$=p x^{3}+(q-2 p) x^{2}+(r-2 q) x-2 r$		
	$r=9 \Rightarrow q=0$ also $p=-4 \therefore a=-2 p=8$	Compares coefficients leading to $-2 p=a$	M1
	$a=8$	cso	A1
(a) Way 3	$\left(-4 x^{3}+a x^{2}+9 x-18\right) \div(x-2)$		
	$\begin{gathered} Q=-4 x^{2}+(a-8) x+2 a-7 \\ R=4 a-32 \end{gathered}$	Attempt to divide $\pm \mathrm{f}(x)$ by ($x-$ 2) to give a quotient at least of the form $\pm 4 x^{2}+\mathrm{g}(a) x$ and a remainder that is a function of a	M1
	$4 a-32=0 \Rightarrow a=8$	cso	A1
(b)	$\mathrm{f}(\mathrm{x})=(\mathrm{x}-2)\left(-4 x^{2}+9\right)$	Attempts long division or other method, to obtain $\left(-4 x^{2} \pm a x \pm b\right), b \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection."	M1
	$=(x-2)(3-2 x)(3+2 x)$ or equivalent e.g. $\begin{gathered} =-(x-2)(2 x-3)(2 x+3) \\ \quad \text { or } \\ =(x-2)(2 x-3)(-2 x-3) \end{gathered}$	dM1: A valid attempt to factorise their quadratic - see General Principles. This is dependent on the previous method mark being awarded, but there must have been no remainder.	dM1A1
		A1: cao - must have all 3 factors on the same line. Ignore subsequent work (such as a solution to a quadratic equation.)	
			[3]
(c)	$\mathrm{f}\left(\frac{1}{2}\right)=-4\left(\frac{1}{8}\right)+8\left(\frac{1}{4}\right)+9\left(\frac{1}{2}\right)-18=-12$	Attempts $f\left(\frac{1}{2}\right)$ or $f\left(-\frac{1}{2}\right)$ Allow A1ft for the correct numerical value of $\frac{\text { their } a}{4}-14$	M1A1ft
			[2]
(c) Way 2	$\pm\left(-4 x^{3}+8 x^{2}+9 x-18\right) \div(2 x-1)$		
	$\begin{gathered} Q=-2 x^{2}+3 x+6 \\ R=-12 \end{gathered}$	M1: Attempt long division to give a remainder that is independent of x A1: Allow A1ft for the correct numerical value of $\frac{\text { their } a}{4}-14$.	M1A1ft

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& \multicolumn{2}{|l|}{Scheme} \& Marks \\
\hline \multirow[t]{2}{*}{130. (a)} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\begin{tabular}{l|l}
Either (Way 1) : Attempt \(\mathrm{f}(3)\) or \(\mathrm{f}(-3)\) \& \begin{tabular}{l}
Or (Way 2): Assume \(a=-9\) and \\
attempt \(\mathrm{f}(3)\) or \(\mathrm{f}(-3)\)
\end{tabular} \\
\(\mathrm{f}(3)=54-45+3 a+18=0 \Rightarrow 3 a=-27 \Rightarrow a=-9 *\) \& \(\mathrm{f}(3)=0\) so \((x-3)\) is factor
\end{tabular} \\
Or (Way 3): \(\left(2 x^{3}-5 x^{2}+a x+18\right) \div(x-3)=2 x^{2}+p x+q\) where \(p\) is a number and \(q\) is an expression in terms of \(a\) \\
Sets the remainder \(18+3 a+9=0\) and solves to give \(a=-9\)
\end{tabular}}} \& \begin{tabular}{l}
M1
\[
\mathrm{A} 1 * \mathrm{cso}
\] \\
(2)
\end{tabular} \\
\hline \& \& \& \begin{tabular}{l}
M1 \\
A1* cs \\
(2)
\end{tabular} \\
\hline \multirow[t]{3}{*}{(b)} \& \multicolumn{2}{|l|}{\[
\text { Either (Way 1): } \quad \begin{aligned}
\mathrm{f}(x) \& =(x-3)\left(2 x^{2}+x-6\right) \\
\& =(x-3)(2 x-3)(x+2)
\end{aligned}
\]} \& \begin{tabular}{l}
M1A1 \\
M1A1 \\
(4)
\end{tabular} \\
\hline \& \multicolumn{2}{|l|}{Or (Way 2) Uses trial or factor theorem to obtain \(x=-2\) or \(x=3 / 2\) Uses trial or factor theorem to obtain both \(x=-2\) and \(x=3 / 2\) Puts three factors together (see notes below) Correct factorisation : \((x-3)(2 x-3)(x+2)\) or \((3-x)(3-2 x)(x+2)\) or \(2(x-3)\left(x-\frac{3}{2}\right)(x+2)\) oe} \& \(\begin{array}{lll}\text { M1 } \& \\ \text { A1 } \& \\ \text { M1 } \& \\ \text { A1 } \& \\ \& \& \text { (4) }\end{array}\) \\
\hline \& \multicolumn{2}{|l|}{Or (Way 3) No working three factors \((x-3)(2 x-3)(x+2)\) otherwise need working} \& M1A1M1A \\
\hline (c) \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \left\{3^{y}=3 \Rightarrow\right\} y=1 \quad \text { or } g(1)=0 \\
\& \left\{3^{y}=1.5 \Rightarrow\right\} \log \left(3^{y}\right)=\log 1.5 \text { or } y=\log _{3} 1.5 \\
\& \{y=0.3690702 \ldots\} \Rightarrow y=\text { awrt } 0.37
\end{aligned}
\]} \& B1
M1
M1 (3)
A
[9] \\
\hline \& \multicolumn{3}{|l|}{Notes for Question 130} \\
\hline (a)
(b)

(c) \& \multicolumn{3}{|l|}{| M1 for attempting either $f(3)$ or $f(-3)$ - with numbers substituted into expression A1 for applying $f(3)$ correctly, setting the result equal to $\mathbf{0}$, and manipulating this correctly to give the result given on the paper i.e. $a=-9$. (Do not accept $\boldsymbol{x}=-9$) Note that the answer is given in part (a). If they assume $a=-9$ and verify by factor theorem or division they must state $(x-3)$ is a factor for A1 (or equivalent such as QED or a tick). |
| :--- |
| $1^{\text {st }}$ M1: attempting to divide by $(x-3)$ leading to a $3 T Q$ beginning with the correct term, usually $2 x^{2}$. (Could divide by $(3-x)$, in which case the quadratic would begin $-2 x^{2}$.) This may be done by a variety of methods including long division, comparison of coefficients, inspection etc. |
| $1^{\text {st }}$ A1: usually for $2 x^{2}+x-6 \ldots$ Credit when seen and use isw if miscopied |
| $2^{\text {nd }}$ M1: for a valid* attempt to factorise their quadratic (* see notes on page 6-General Principles for Core Mathematics Marking section 1) |
| $2^{\text {nd }}$ A1 is cao and needs all three factors together. |
| Ignore subsequent work (such as a solution to a quadratic equation.) |
| NB: $(x-3)\left(x-\frac{3}{2}\right)(x+2)$ is M1A1M0A0, $(x-3)\left(x-\frac{3}{2}\right)(2 x+4)$ is M1A1M1A0, but $2(x-3)\left(x-\frac{3}{2}\right)(x+2)$ is M1A1M1A1. |
| B1: $\underline{y=1}$ seen as a solution - may be spotted as answer - no working needed. Allow also for $\mathrm{g}(1)=0$. |
| M1: Attempt to take logs to solve $3^{y}=\alpha$ or even $3^{k y}=\alpha$, but not $6^{y}=\alpha$ where $\alpha>0$ and $\alpha \neq 3 \&$ was a root of $\mathrm{f}(x)=0$ (ft their factorization) |
| A1: for an answer that rounds to 0.37 . If a third answer is included (and not "rejected") such as $\ln (-2)$ lose final A mark |}

\hline
\end{tabular}

Question Number	Scheme		Marks
131.	$\mathrm{f}(1)=a+b-4-3=0$ or $a+b-7=0$	Attempt $\mathrm{f}(\pm 1)$	M1
	$a+b=7^{*}$	Must be $\mathrm{f}(1)$ and $=\mathbf{0}$ needs to be seen	A1
	Long Division		
	$\left(a x^{3}+b x^{2}-4 x-3\right) \div(x-1)=a x^{2}+p x+q$ where p and q arein terms of a or b or both and sets their remainder $=0$ NB Quotient $=a x^{2}+(a+b) x+(a+b-4)$ $\mathrm{a}+\mathrm{b}=7 *$	M1	
	(2)		
		A1	

Question Number	Scheme ${ }^{\text {a }}$ Marks
133. (a)	$\begin{aligned} & \mathrm{f}(x)=2 x^{3}-7 x^{2}-5 x+4 \\ & \text { Remainder }=f(1)=2-7-5+4=-6 \\ & \quad=-6 \end{aligned}$ Attempts f f(1) or \square
(b)	$\mathrm{f}(-1)=2(-1)^{3}-7(-1)^{2}-5(-1)+4$ and so $(x+1)$ is a factor. Attempts $\mathrm{f}(-1)$. M1 $\mathrm{f}(-1)=0$ with no sign or substitution errors and for conclusion. A1
(c)	$\mathrm{f}(\mathrm{x})$ $=\{(x+1)\}\left(2 x^{2}-9 x+4\right)$ M1 A1 $=(x+1)(2 x-1)(x-4)$ dM1 A1 (Note: Ignore the ePEN notation of $(b)($ should be $(c))$ for the final three marks in this part). [4]
(a) (b) (c)	M1 for attempting either $\mathrm{f}(1)$ or $\mathrm{f}(-1)$. Can be implied. Only one slip permitted. M1 can also be given for an attempt (at least two "subtracting" processes) at long division to give a remainder which is independent of x. A1 can be given also for -6 seen at the bottom of long division working. Award A0 for a candidate who finds -6 but then states that the remainder is 6 . Award M1A1 for -6 without any working. M1: attempting only $f(-1)$. A1: must correctly show $f(-1)=0$ and give a conclusion in part (b) only. Note: Stating "hence factor" or "it is a factor" or a "tick" or "QED" is fine for the conclusion. Note also that a conclusion can be implied from a preamble, eg: "If $\mathrm{f}(-1)=0,(x+1)$ is a factor...." Note: Long division scores no marks in part (b). The factor theorem is required. $1^{\text {st }} \mathrm{M} 1$: Attempts long division or other method, to obtain ($2 x^{2} \pm a x \pm b$), $a \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection." ($2 x^{2} \pm a x \pm b$) must be seen in part (c) only. Award $1^{\text {st }}$ M0 if the quadratic factor is clearly found from dividing $\mathrm{f}(x)$ by $(x-1)$. Eg. Some candidates use their $\left(2 x^{2}-5 x-10\right)$ in part (c) found from applying a long division method in part (a). $1^{\text {st }}$ A1: For seeing $\left(2 x^{2}-9 x+4\right)$. $2^{\text {nd }} \mathrm{dM} 1$: Factorises a 3 term quadratic. (see rule for factorising a quadratic). This is dependent on the previous method mark being awarded. This mark can also be awarded if the candidate applies the quadratic formula correctly. $2^{\text {nd }}$ A1: is cao and needs all three factors on one line. Ignore following work (such as a solution to a quadratic equation.) Note: Some candidates will go from $\{(x+1)\}\left(2 x^{2}-9 x+4\right)$ to $\{x=-1\}, x=\frac{1}{2}, 4$, and not list all three factors. Award these responses M1A1M1A0. Alternative: $1^{\text {st }}$ M1: For finding either $\mathrm{f}(4)=0$ or $\mathrm{f}\left(\frac{1}{2}\right)=0$. $1^{\text {st }}$ A1: A second correct factor of usually $(x-4)$ or $(2 x-1)$ found. Note that any one of the other correct factors found would imply the $1^{\text {st }}$ M1 mark. $2^{\text {nd }}$ dM1: For using two known factors to find the third factor, usually $(2 x \pm 1)$. $2^{\text {nd }} \mathrm{A} 1$ for correct answer of $(x+1)(2 x-1)(x-4)$. Alternative: (for the first two marks) $1^{\text {st }}$ M1: Expands $(x+1)\left(2 x^{2}+a x+b\right)$ \{giving $\left.2 x^{3}+(a+2) x^{2}+(b+a) x+b\right\}$ then compare coefficients to find values for a and b. $\quad 1^{\text {st }} \mathrm{A} 1: ~ a=-9, b=4$ Not dealing with a factor of 2: $(x+1)\left(x-\frac{1}{2}\right)(x-4)$ or $(x+1)\left(x-\frac{1}{2}\right)(2 x-8)$ scores M1A1M1A0. Answer only, with one sign error: eg. $(x+1)(2 x+1)(x-4)$ or $(x+1)(2 x-1)(x+4)$ scores M1A1M1A0. (c) Award M1A1M1A1 for Listing all three correct factors with no working.

Question Number	Scheme	Marks
$134 .$ (a)	Graph of $y=7^{x}, x \in \mathbb{R}$ and solving $7^{2 x}-4\left(7^{x}\right)+3=0$ At least two of the three criteria correct. (See notes below.) All three criteria correct. (See notes below.)	B1 B1 (2)
(b)	Forming a quadratic \{using $\begin{aligned} & y^{2}-4 y+3\{=0\} \\ & \begin{array}{l} \left\{(y-3)(y-1)=0 \text { or }\left(7^{x}-3\right)\left(7^{x}-1\right)=0\right\} \\ \begin{array}{l} y=3, \quad y=1 \quad \text { or } \quad 7^{x}=3,7^{x}=1 \end{array} \\ \left\{7^{x}=3 \Rightarrow\right\} x \log 7=\log 3 \end{array} \\ & \qquad \text { or } x=\frac{\log 3}{\log 7} \text { or } x=\log _{7} 3 \\ & x=0.5645 \ldots \\ & x=0 \end{aligned}$ $\left." y "=7^{x}\right\} .$ $y^{2}-4 y+3\{=0\}$ Both $y=3$ and $y=1$. A valid method for solving $7^{x}=k$ where $k>0, k \neq 1$ 0.565 or awrt 0.56 $x=0$ stated as a solution.	A1 dM1 A1 B1 (6) [8]
	Notes	
(a)	B1B0: Any two of the following three criteria below correct. B1B1: All three criteria correct. Criteria number 1: Correct shape of curve for $x \geq 0$. Criteria number 2: Correct shape of curve for $x<0$. Criteria number 3: $(0,1)$ stated or 1 marked on the y-axis. Allow $(1,0)$ rather than $(0$, marked in the "correct" place on the y-axis.	if

Question Number	Scheme ${ }^{\text {S }}$ Marks
(b)	$1^{\text {st }} \mathrm{M} 1$ is an attempt to form a quadratic equation \{using " y " $=7^{x}$. \} $1^{\text {st }} \mathrm{A} 1$ mark is for the correct quadratic equation of $y^{2}-4 y+3\{=0\}$. Can use any variable here, eg: y, x or 7^{x}. Allow M1A1 for $x^{2}-4 x+3\{=0\}$. Writing $\left(7^{x}\right)^{2}-4\left(7^{x}\right)+3=0$ is also sufficient for M1A1. Award M0A0 for seeing $7^{x^{2}}-4\left(7^{x}\right)+3=0$ by itself without seeing $y^{2}-4 y+3\{=0\}$ or $\left(7^{x}\right)^{2}-4\left(7^{x}\right)+3=0$ $1^{\text {st }}$ A1 mark for both $y=3$ and $y=1$ or both $7^{x}=3$ and $7^{x}=1$. Do not give this accuracy mark for both $x=3$ and $x=1$, unless these are recovered in later working by candidate applying logarithms on these. Award M1A1A1 for $7^{x}=3$ and $7^{x}=1$ written down with no earlier working. $3^{\text {rd }} \mathrm{dM} 1$ for solving $7^{x}=k, k>0, k \neq 1$ to give either $x \ln 7=\ln k$ or $x=\frac{\ln k}{\ln 7}$ or $x=\log _{7} k$. dM1 is dependent upon the award of M1. $2^{\text {nd }} \mathrm{A} 1$ for 0.565 or awrt 0.56 . B1 is for the solution of $x=0$, from any working.

(a) Alternative (long division): 'Grid' method

Divide by $(x-3)$ to get $\left(3 x^{2}+a x+b\right), a \neq 0, b \neq 0$. [M1]
$\left(3 x^{2}+4 x-46\right)$, and -98 seen.
[A1]
(If continues to say 'remainder $=98$ ', isw)

$3 |$| 3 | -5 | -58 | 40 |
| ---: | ---: | ---: | ---: |
| 0 | 9 | 12 | -138 |
| | 3 | 4 | -46 |

(b) 1st M requires use of $(x-5)$ to obtain $\left(3 x^{2}+a x+b\right), a \neq 0, b \neq 0$.
'Grid' method
(Working need not be seen... this could be done 'by inspection'.)

$$
\left(3 x^{2}+10 x-8\right)
$$

$$
\begin{array}{c|cccc}
\hline 3 & 3 & -5 & -58 & 40 \\
0 & 15 & 50 & -40 \\
\hline 3 & 10 & -8 & 0
\end{array}
$$

$2^{\text {nd }} \mathrm{M}$ for the attempt to factorise their 3-term quadratic, or to solve it using the quadratic formula.

$$
\text { Factorisation: } \quad\left(3 x^{2}+a x+b\right)=(3 x+c)(x+d) \text {, where }|c d|=|b| .
$$

A1ft: Correct factors for their 3-term quadratic followed by a solution (at least one value, which might be incorrect), or numerically correct expression from the quadratic formula for their 3 -term quadratic.
Note therefore that if the quadratic is correctly factorised but no solutions are given, the last 2 marks will be lost.
Alternative (first 2 marks):
$(x-5)\left(3 x^{2}+a x+b\right)=3 x^{3}+(a-15) x^{2}+(b-5 a) x-5 b=0$,

$$
\text { then compare coefficients to find values of } a \text { and } b \text {. }
$$

$$
\begin{equation*}
a=10, b=-8 \tag{A1}
\end{equation*}
$$

Alternative 1: (factor theorem)
M1: Finding that $f(-4)=0$
A1: Stating that $(x+4)$ is a factor.
M1: Finding third factor $(x-5)(x+4)(3 x \pm 2)$.
A1: Fully correct factors (no ft available here) followed by a solution, (which might be incorrect).
A1: All solutions correct.
Alternative 2: (direct factorisation)
M1: Factors $(x-5)(3 x+p)(x+q) \quad$ A1: $p q=-8$
M1: $(x-5)(3 x \pm 2)(x \pm 4)$
Final A marks as in Alternative 1.
Throughout this scheme, allow $\left(x \pm \frac{2}{3}\right)$ as an alternative to ($3 x \pm 2$).

Question number	Scheme	Marks
136.	(a) Attempt to find $f(-4)$ or $f(4)$. $\left(f(-4)=2(-4)^{3}-3(-4)^{2}-39(-4)+20\right)$ $\begin{equation*} (=-128-48+156+20)=0, \tag{2} \end{equation*}$ so $(x+4)$ is a factor. (b) $2 x^{3}-3 x^{2}-39 x+20=(x+4)\left(2 x^{2}-11 x+5\right)$ $(2 x-1)(x-5)$ (The 3 brackets need not be written together) or $\left.x-\frac{1}{2}\right)(2 x-10)$ or equivalent	M1 A1 M1 A1 M1 A1cso (4)
	(a) Long division scores no marks in part (a). The factor theorem is required. However, the first two marks in (b) can be earned from division seen in (a)... ... but if a different long division result is seen in (b), the work seen in (b) takes precedence for marks in (b). A1 requires zero and a simple conclusion (even just a tick, or Q.E.D.), or may be scored by a preamble, e.g. 'If $\mathrm{f}(-4)=0,(x+4)$ is a factor.....' (b) First M requires use of $(x+4)$ to obtain $\left(2 x^{2}+a x+b\right), a \neq 0, b \neq 0$, even with a remainder. Working need not be seen... this could be done 'by inspection'. Second M for the attempt to factorise their three-term quadratic. Usual rule: $\left(k x^{2}+a x+b\right)=(p x+c)(q x+d)$, where $\|c d\|=\|b\|$ and $\|p q\|=\|k\|$. If 'solutions' appear before or after factorisation, ignore... ... but factors must be seen to score the second M mark. Alternative (first 2 marks): $(x+4)\left(2 x^{2}+a x+b\right)=2 x^{3}+(8+a) x^{2}+(4 a+b) x+4 b=0$, then compare coefficients to find values of a and b. [M1] $\begin{equation*} \overline{a=-11}, b=5 \tag{A1} \end{equation*}$ Alternative: Factor theorem: Finding that $\mathrm{f}\left(\frac{1}{2}\right)=0 \therefore$ factor is, $(2 x-1)$ [M1, A1] Finding that $\mathrm{f}(5)=0 \therefore$ factor is, $\quad(x-5) \quad$ [M1, A1] "Combining" all 3 factors is not required. If just one of these is found, score the first 2 marks M1 A1 M0 A0. Losing a factor of 2: $(x+4)\left(x-\frac{1}{2}\right)(x-5)$ scores M1 A1 M1 A0. Answer only, one sign wrong: e.g. $(x+4)(2 x-1)(x+5)$ scores M1 A1 M1 A0	

Question Number	Scheme	Marks
137(a)	$4 x^{2}-25 \rightarrow(2 x+5)(2 x-5)$	B1
	$\frac{6}{2 x+5}+\frac{2}{2 x-5}+\frac{60}{4 x^{2}-25}=\frac{6(2 x-5)+2(2 x+5)+60}{(2 x+5)(2 x-5)}$	M1
	$=\frac{16 x+40}{}$	A1
	$=\frac{8(2 x+5)}{(2 x+5)(2 x-5)}=\frac{8}{(2 x-5)}$	A1
(b)	$\mathrm{f}(x)=\frac{8}{2 x-5} \Rightarrow y=\frac{8}{2 x-5} \Rightarrow 2 x y-5 y=8 \Rightarrow x=\frac{8+5 y}{2 y}$	M1
	$\Rightarrow \mathrm{f}^{-1}(x)=\frac{8+5 x}{2 x}$ oe	A1
	$0<x<\frac{8}{3}$	B1ft
		(3)
		(7 marks)

Alternative solutions to part (a)

137(a)		$4 x^{2}-25=(2 x+5)(2 x-5)$	B1
ALT I			
$\frac{6}{2 x+5}+\frac{2}{2 x-5}=\frac{16 x-20}{4 x^{2}-25}$		M1	
	$=\frac{16 x+40}{4 x^{2}-25}$		
	$=\frac{8(2 x+5)}{(2 x+5}+\frac{60}{4 x^{2}-25}=$	$\frac{16 x-20+60}{4 x^{2}-25}$	A1

$\begin{array}{r} 137(\mathbf{a}) \\ \text { ALT II } \end{array}$	$\begin{aligned} \frac{60}{4 x^{2}-25}=\frac{-6}{2 x+5}+\frac{6}{2 x-5} & 4 x^{2}-25=(2 x+5)(2 x-5) \\ \frac{6}{2 x+5}+\frac{2}{2 x-5}+\frac{60}{4 x^{2}-25}= & \frac{6}{2 x+5}+\frac{2}{2 x-5}+\frac{-6}{2 x+5}+\frac{6}{2 x-5} \\ & =\frac{8}{(2 x-5)} \end{aligned}$	B1 M1 A1 A1

(a)

B1: For factorising $4 x^{2}-25 \rightarrow(2 x+5)(2 x-5)$ This can occur anywhere in the solution.
Note that it is possible to score this mark for expanding $(2 x+5)(2 x-5) \rightarrow 4 x^{2}-25$ and then cancelling by $4 x^{2}-25$. Both processes are required by this route. It can be implied if you see the correct intermediate form. (See A1)
M1: For combining the three fractions with a common denominator. The denominator must be correct and at least one numerator must have been adapted correctly. Accept as separate fractions. Condone missing brackets.

Accept $\frac{6}{2 x+5}+\frac{2}{2 x-5}+\frac{60}{4 x^{2}-25}=\frac{6(2 x-5)\left(4 x^{2}-25\right)+2(2 x+5)\left(4 x^{2}-25\right)+60(2 x+5)(2 x-5)}{(2 x+5)(2 x-5)\left(4 x^{2}-25\right)}$
Condone $\frac{6}{2 x+5}+\frac{2}{2 x-5}+\frac{60}{4 x^{2}-25}=\frac{6(2 x-5)+2+60}{(2 x+5)(2 x-5)}$ correct denominator, one numerator adapted correctly
Alternatively uses partial fractions $\frac{60}{4 x^{2}-25}=\frac{A}{2 x+5}+\frac{B}{2 x-5}$ leading to values for A and B
A1: A correct intermediate form of $\frac{\text { simplified linear }}{\text { quadratic }}$ most likely to be $\frac{16 x+40}{(2 x+5)(2 x-5)}$
Sometimes the candidate may write out the simplified numerator separately. In cases like this, you can award this A mark without explicitly seeing the fraction as long as a correct denominator is seen.

Using the partial fraction method, it is for $\frac{6}{2 x+5}+\frac{2}{2 x-5}+\frac{60}{4 x^{2}-25}=\frac{6}{2 x+5}+\frac{2}{2 x-5}+\frac{-6}{2 x+5}+\frac{6}{2 x-5}$
A1: Further factorises and cancels (all of which may be implied) to reach the answer $\frac{8}{2 x-5}$
This is not a given answer so condone slips in bracketing etc.
(b)

M1: Attempts to change the subject of the formula for a function of the form $y=\frac{A}{B x+C}$
Condone attempts on an equivalent made up equation for candidates who don't progress in part (a). As a minimum expect to see multiplication by $(B x+C)$ leading to x (or a replaced $y)=$
Alternatively award for 'inverting' Eg. $y=\frac{A}{B x+C}$ to $\frac{B x+C}{A}=\frac{1}{y}$ leading to $x($ or a replaced $y)=$
A1: $\mathrm{f}^{-1}(x)=\frac{8+5 x}{2 x}$ or $y=\frac{8+5 x}{2 x}$ or equivalent. Accept $y=\frac{4}{x}+\frac{5}{2}$ Condone $\mathrm{F}^{-1}(x)=\frac{8+5 x}{2 x}$
Condone $y=\frac{1}{2}\left(\frac{8}{x}+5\right)$ and $y=\frac{8}{2 x}+\frac{5}{2}$ BUT NOT $y=\frac{\frac{8}{x}+5}{2}$ (fractions within fractions)
You may isw after a correct answer.
B1ft: $0<x<\frac{8}{3}$ or alternative forms such as $0<$ Domain $<\frac{8}{3}$ Domain $=\left(0, \frac{8}{3}\right)$ or $\frac{8}{3}>x>0$
Do not accept $0<y<\frac{8}{3}$ or $0<\mathrm{f}^{-1}(x)<\frac{8}{3}$
Follow through on their $y=\frac{A}{B x+C}$ so accept $0<x<\frac{A}{4 B+C}$

Question Number	Scheme	Marks
138(a)	Either $\quad$$k>13 \quad$ or $k=3$ Both $\quad k>13 \quad k=3$ B1 (b) Smaller solution: $2(5-x)+3=\frac{1}{2} x+10 \Rightarrow x=\frac{6}{5}$	
	Larger solution: $-2(5-x)+3=\frac{1}{2} x+10 \Rightarrow x=\frac{34}{3}$	M1 A1
(c)	$(6,12)$	M1 A1

(a)

B1: Either $k>13$ or $k=3$ Condone $k \geqslant 13$ instead of $k>13$ for this mark only. Also condone $y \leftrightarrow k$ Do not accept $k \geq 3$ for B1
B1: Both $k>13, k=3$ with no other restrictions. Accept and / or / , between the two solutions (b)

M1: An acceptable method of finding the smaller intersection. The initial equation must be of the correct form and it must lead to a value of x. For example $2(5-x)+3=\frac{1}{2} x+10 \Rightarrow x=\ldots$ or $5-x=\left(\frac{1}{4} x+\frac{7}{2}\right)$
A1: For $x=\frac{6}{5}$ or equivalent such as $1.2 \quad$ Ignore any reference to the y coordinate
M1: An acceptable method of finding the larger intersection. The initial equation must be of the correct form and it must lead to a value of x. For example $-2(5-x)+3=\frac{1}{2} x+10 \Rightarrow x=\ldots$ or $5-x=-\left(\frac{1}{4} x+\frac{7}{2}\right)$
A1: For $x=\frac{34}{3}$ or equivalent such as $11 . \dot{3} \quad$ Ignore any reference to the y coordinate
If there are any extra solutions in addition to the correct two, then withhold the final A1 mark.
ISW if the candidate then refers back to the range in (a) and deletes a solution
Alt method by squaring
M1: $2|5-x|+3=\frac{1}{2} x+10 \Rightarrow 4(5-x)^{2}=\left(\frac{1}{2} x+7\right)^{2}$ oe. In the main scheme the equation must be correct of the correct form but in this case you may condone ' 2 ' not being squared
A1: Correct 3TQ. The $=0$ may be implied by subsequent work. $\frac{15}{4} x^{2}-47 x+51=0$ oe
M1: Solves using an appropriate method $15 x^{2}-188 x+204=0 \Rightarrow(5 x-6)(3 x-34)=0 \Rightarrow x=.$.
A1: Both $x=\frac{6}{5} \quad x=\frac{34}{3}$ and no others.
(c)

B1: Accept $p=6$ or $q=12$. Allow in coordinates as $x=6$ or $y=12$.
B1: For both $p=6$ and $q=12$. Allow in coordinates as $x=6$ and $y=12$
Allow embedded within a single coordinate $(6,12)$. So for example $(2,12)$ is scored B1 B0

Question Number	Scheme	Marks
139.	$x^{2}-9=(x+3)(x-3)$	B1
	$=\frac{4 x}{x^{2}-9}-\frac{2}{(x+3)}=\frac{4 x-2(x-3)}{(x+3)(x-3)}$	
	$=\frac{2 x+6)(x-3)}{\frac{2(x+3)}{(x+3)(x-3)}}$	M1
$=\frac{2}{(x-3)}$	A1	

B1 $\quad x^{2}-9=(x+3)(x-3)$ This can occur anywhere.
M1 For combining the two fractions with a common denominator. The denominator must be correct and at least one numerator must have been adapted. Accept as separate fractions. Condone missing brackets.
For example accept $\frac{4 x}{x^{2}-9}-\frac{2}{x+3}=\frac{4 x(x+3)-2\left(x^{2}-9\right)}{(x+3)\left(x^{2}-9\right)}$
accept separately $\frac{4 x}{(x+3)(x-3)}-\frac{2}{(x+3)}=\frac{4 x}{(x+3)(x-3)}-\frac{2 x-3}{(x+3)(x-3)}$ condoning missing bracket condone $\frac{4 x}{x^{2}-9}-\frac{2}{x+3}=\frac{4 x(x+3)-2}{(x+3)\left(x^{2}-9\right)}$ \qquad as only one numerator has been adapted

A1 A correct intermediate form of $\frac{\text { simplified linear }}{\text { simplified quadratic }}$
Accept $\frac{2 x+6}{(x+3)(x-3)}, \frac{2 x+6}{x^{2}-9}$, and even $\frac{(2 x+6)(x+3)}{\left(x^{2}-9\right)(x+3)}$,
A1 Further factorises and cancels (which may be implied) to reach the answer $\frac{2}{x-3}$

Do not penalise correct solutions that include incomplete lines $\operatorname{Eg} \frac{4 x-2(x-3)}{(x+3)(x-3)}=\frac{4 x-2 x+6}{\ldots}=\frac{2 x+6}{(x+3)(x-3)}=\frac{2}{x-3}$

This is not a "show that" question.

Note: Watch out for an answer of $\frac{2}{x+3}$ probably scored from $\frac{4 x-2(x-3)}{(x+3)(x-3)}=\frac{2 x-6}{(x+3)(x-3)}=\frac{2(x-3)}{(x+3)(x-3)}$
This would score B1 M1 A0 A0

(a)

B1 States the correct range for g Accept $\mathrm{g}(x) . .33 \mathrm{~g} . .3$, Range.. $3,[3, \infty)$ Range is greater than or equal to 3 Condone f .. 3

Do not accept $\mathrm{g}(x)>3, x \ldots 3,(3, \infty)$
(b)

M1 Attempts to make x or a swapped y the subject of the formula. The minimum expectation is that the 3 is moved over followed by an attempt to square both sides. Condone for this mark $\sqrt{x+2}=y \pm 3 \Rightarrow x+2=y^{2} \pm 9$
A1 Achieves $x=(y-3)^{2}-2$ or if swapped $y=(x-3)^{2}-2$ or equivalent such as $x=y^{2}-6 y+7$
A1 Requires a correct function in $x+$ correct domain or a correct function in x with a correct follow through on the range in (a) but do not follow through on $x \in \mathrm{R}$

Accept for example $\mathrm{g}^{-1}(x)=(x-3)^{2}-2, \quad x . .3 \quad$ Condone $\mathrm{f}^{-1}(x)=(x-3)^{2}-2, \quad x . .3$
or variations such as $y=(x-3)^{2}-2, \quad x>3$ if (a) was $y>3$
Accept expanded versions such as $\mathrm{g}^{-1}(x)=x^{2}-6 x+7, \quad x . .3$ but remember to isw after a correct answer (Condone $\left.\mathrm{f}^{-1}(x)=x^{2}-6 x+7, \quad x .3\right)$
(c)

M1 Sets $3+\sqrt{x+2}=x$, moves the 3 over and then attempts to square both sides.
Can be scored for $\sqrt{x+2}=x-3 \Rightarrow x+2=x^{2} \pm 9$
A1 $\quad x^{2}-7 x+7=0$. The $=0$ may be implied by subsequent working
M1 Correct method of solving their 3 TQ by the formula/ completing the square. The equation must have real roots.
It is dependent upon them having attempted to set $3+\sqrt{x+2}=x$ and proceeding to a quadratic.
You may just see both roots written down which is fine.
Allow for this mark decimal answers Eg 5.79 and 1.21 for $x^{2}-7 x+7=0$ You may need to check with a calc.
A1 $(x)=\frac{7+\sqrt{21}}{2}$ or exact equivalent only.
This answer following the correct quadratic would imply the previous M
Allow $x=\frac{7}{2}+\sqrt{\frac{21}{4}}$ but DO NOT allow $x=\frac{7 \pm \sqrt{21}}{2}$
(c) can of course be attempted by solving $\begin{aligned} 3+\sqrt{x+2}="(x-3)^{2}-2 " & \Rightarrow x^{4}-12 x^{3}+44 x^{2}-49 x+14=0 \\ \vdots & \Rightarrow\left(x^{2}-7 x+7\right)\left(x^{2}-5 x+2\right)=0\end{aligned}$

The scheme can be applied to this
(d)

B1ft $\quad(a)=\frac{7+\sqrt{21}}{2}$ oe. You may condone $\boldsymbol{x}=\frac{7+\sqrt{21}}{2}$. You may allow this following a re - start.
You may allow the correct decimal answer, awrt 5.79, following exact/decimal work in part (c) or a restart. Follow through on their root, including decimals, coming from the positive root with the positive sign in (c). Eg In (c) . $x^{2}-7 x+11=0 \Rightarrow x=\frac{7 \pm \sqrt{5}}{2}$ So the correct follow through would be $x=\frac{7+\sqrt{5}}{2}$ If they only had one root in (c) then follow through on this as long as it is positive.

SC. If they give the correct roots in parts (c) and (d) without considering the correct answer then award B1 in (d) following the A0 in (c). So $(x)=\frac{7 \pm \sqrt{21}}{2}$ as their answer in part (c), allow $(x / a)=\frac{7 \pm \sqrt{21}}{2}$ for B1 in (d).

Question Number	Scheme	Marks
141(a)(i)		B1 B1
(ii)		B1ft B1 (4)
(b)	States or uses $a+b=8$ Attempts to solve $\|2 x-a\|+b=\frac{3}{2} x+8$ in either x or with $x=c$ $2 c-a+b=\frac{3}{2} c+8 \Rightarrow k c=\mathrm{f}(a, b)$	B1 M1
	Combines $k c=\mathrm{f}(a, b)$ with $a+b=8 \quad \Rightarrow c=4 a$	dM1 A1

(a)(i)

B1 V shape sitting anywhere on the x - axis or for $\left(\frac{1}{2} a, 0\right)$ and $(0, a)$ lying on the curve.
Condone non -symmetrical graphs and ones lying on just one side of the y-axis

B1 $\quad \mathrm{V}$ shape sitting on the positive x-axis at $\left(\frac{1}{2} a, 0\right)$, cutting the y-axis at $(0, a)$ and lying in both quadrants 1 and 2 Accept $\frac{1}{2} a$ and a marked on the correct axis. Condone say $(a, 0)$ for $(0, a)$ as long as it is on the correct axis. Condone a dotted line appearing on the diagram as many reflect $y=2 x-a$ to sketch $y=|2 x-a|$ If it is a solid line then it would not score the shape mark.
(a)(ii)

B1ft Follow through on (a)(i). Their graph translated up. Allow on U shapes and non symmetrical graphs. Alternatively score for the $(0, a+b)$ lying on the curve

B1 $\quad \mathrm{V}$ shape lying in quadrants 1 and 2 with the vertex in quadrant 1 cutting the y-axis at $(0, a+b)$ Ignore any coordinates given for the vertex.
(b)

B1 States or uses $a+b=8$ or exact equivalent. Condone use of capital letters throughout It is not scored for just $|0-a|+b=8$
M1 This M is for an understanding of the modulus.
It is scored for an attempt at solving $(2 x-a)+b=\frac{3}{2} x+8$ or $-(2 x-a)+b=\frac{3}{2} x+8$ in either x or with x replaced by c. The signs of the $2 x$ and the a must be different. $|2 x-a| \neq 2 x+a$
You may see $(2 x-a)+b=\frac{3}{2} x+8 \Rightarrow k x=\mathrm{f}(a, b)$
You may see $-2 x+a+b=\frac{3}{2} x+8 \Rightarrow k x=\mathrm{f}(a, b)$
You may see $(2 x-a)+b=\frac{3}{2} x+8 \Rightarrow k x=\mathrm{f}(a, b)$ being solved with b replaced with their $a+b=8$
You may see $-2 c+a+b=\frac{3}{2} c+8 \Rightarrow k c=\mathrm{f}(a, b)$ being solved with b replaced with their $a+b=8$
dM1 This dM mark is scored for combining $b=8-a$ with $(2 x-a)+b=\frac{3}{2} x+8$ (or their $k x=\mathrm{f}(a, b)$ resulting from that equation) resulting in a link between x and a Both equations must have been correct initially.
Alternatively for combining $b=8-a$ with their $2 c-a+b=\frac{3}{2} c+8$ (or their $k c=\mathrm{f}(a, b)$ resulting from that equation) resulting in a link between c and a

You may condone sign slips in finding the link between x (or $c)$ and a If you see an approach that involves making $|2 x-a|$ the subject followed by squaring, and you feel that it deserves credit, please send to review. The solution proceeds as follows
Look for $|2 x-a|=\frac{3}{2} x+8-b \Rightarrow|2 x-a|=\frac{3}{2} x+a \Rightarrow(2 x-a)^{2}=\left(\frac{3}{2} x+a\right)^{2} \Rightarrow 7 x\left(\frac{1}{4} x-a\right)=0$
A1 $\quad c=4 a$ ONLY

Special Case where they have the roots linked with the incorrect branch of the curve.

They have $x=0$ as the solution to $2 x-a+b=\frac{3}{2} x+8 \Rightarrow-a+b=8$.
They have $x=c$ as the solution to $-2 x+a+b=\frac{3}{2} x+8 \Rightarrow \frac{7}{2} x=a+b-8$.
Solve (1) and (2) $\Rightarrow x=\frac{4}{7} a$
Hence $\Rightarrow c=\frac{4}{7} a$
This would score B0 M1 dM0 A0 anyway but should be awarded SC B0, M1 dM1, A0 for above work leading to either $x=\frac{4}{7} a$ or $c=\frac{4}{7} a$

Question	Scheme		Marks
142(a) (b)	$\operatorname{fg}(x)=\frac{28}{x-2}-1$ Sets $\operatorname{fg}(x)=x \Rightarrow \frac{28}{x-2}-1=x$ $\begin{aligned} & \Rightarrow 28=(x+1)(x-2) \\ & \Rightarrow x^{2}-x-30=0 \\ & \Rightarrow(x-6)(x+5)=0 \\ & \Rightarrow x=6, x=-5 \end{aligned}$ $a=6$	$\left(=\frac{30-x}{x-2}\right)$	M1 M1 dM1 A1 (4) B1 ft (1) 5 marks
Alt 1(a)	$\begin{aligned} & \mathrm{fg}(x)=x \Rightarrow \mathrm{~g}(x)=\mathrm{f}^{-1}(x) \\ & \frac{4}{x-2}=\frac{x+1}{7} \\ & \Rightarrow x^{2}-x-30=0 \\ & \Rightarrow(x-6)(x+5)=0 \\ & \Rightarrow x=6, x=-5 \end{aligned}$		M1 M1 dM1 A1 4 marks
S. Case	Uses $\operatorname{gf}(x)$ instead $\operatorname{fg}(x)$ $\begin{aligned} & \frac{4}{7 x-1-2}=x \\ & \Rightarrow 7 x^{2}-3 x-4=0 \\ & \Rightarrow(7 x+4)(x-1)=0 \\ & \Rightarrow x=-\frac{4}{7}, \quad x=1 \end{aligned}$	Makes an error on $\operatorname{fg}(x)$ Sets $\operatorname{fg}(x)=x \Rightarrow \frac{7 \times 4}{7 \times(x-2)}-1=x$ $\begin{aligned} & \Rightarrow x^{2}-x-6=0 \\ & \Rightarrow(x+2)(x-3)=0 \\ & \Rightarrow x=-2, \quad x=3 \end{aligned}$	M0 M1 dM1 A0 2 out of 4 marks

(a)

M1 Sets or implies that $\operatorname{fg}(x)=\frac{28}{x-2}-1$ Eg accept $\operatorname{fg}(x)=7\left(\frac{4}{x-2}\right)-1$ followed by $\operatorname{fg}(x)=\frac{7 \times 4}{x-2}-1$
Alternatively sets $\mathrm{g}(x)=\mathrm{f}^{-1}(x)$ where $\mathrm{f}^{-1}(x)=\frac{x \pm 1}{7}$
Note that $\operatorname{fg}(x)=7\left(\frac{4}{x-2}\right)-1=\frac{28}{7(x-2)}-1$ is M0
M1 Sets up a 3TQ (=0) from an attempt at $\mathrm{fg}(x)=x$ or $\mathrm{g}(x)=\mathrm{f}^{-1}(x)$
dM1 Method of solving 3TQ ($=0$) to find at least one value for x. See "General Priciples for Core
Mathematics" on page 3 for the award of the mark for solving quadratic equations
This is dependent upon the previous M. You may just see the answers following the 3TQ.
A1 Both $x=6$ and $x=-5$
(b)

B1ft For $a=6$ but you may follow through on the largest solution from part (a) provided more than one answer was found in (a). Accept $6, a=6$ and even $x=6$
Do not award marks for part (a) for work in part (b).

Question	Scheme	Marks
143	(i) 21 (ii) $4 \mathrm{e}^{2 x}-25=0 \Rightarrow \mathrm{e}^{2 x}=\frac{25}{4} \Rightarrow 2 x=\ln \left(\frac{25}{4}\right) \Rightarrow x=\frac{1}{2} \ln \left(\frac{25}{4}\right), \Rightarrow x=\ln \left(\frac{5}{2}\right)$ (iii) 25	B1 M1A1, A1 B1

(i)

B1 Sight of 21. Accept $(0,21)$
Do not accept just $|4-25|$ or $(21,0)$
(ii)

M1 Sets $4 \mathrm{e}^{2 x}-25=0$ and proceeds via $\mathrm{e}^{2 x}=\frac{25}{4}$ or $\mathrm{e}^{x}=\frac{5}{2} \quad$ to $x=$..
Alternatively sets $4 \mathrm{e}^{2 x}-25=0$ and proceeds via $\left(2 \mathrm{e}^{x}-5\right)\left(2 \mathrm{e}^{x}+5\right)=0$ to $\mathrm{e}^{x}=.$.
A1 $\quad \frac{1}{2} \ln \left(\frac{25}{4}\right)$ or awrt 0.92
A1 cao $\ln \left(\frac{5}{2}\right)$ or $\ln 5-\ln 2$. Accept $\left(\ln \left(\frac{5}{2}\right), 0\right)$
(iii)

B1 $\quad k=25$ Accept also 25 or $y=25$
Do not accept just $|-25|$ or $x=25$ or $y= \pm 25$

(a) Ignore any scales that appear on the axes

M1 Accept for the method mark
Either one of the two sections with correct curvature passing through $(0,0)$,
Or both sections condoning dubious curvature passing through (0,0) (but do not accept any negative gradients)
Or a curve with a different range or an "extended range"
See the next page for a useful guide for clarification of this mark.
A1 A curve only in quadrants one and three passing through the point $(0,0)$ with a gradient that is always positive. The gradient should appear to be approx ∞ at each end. If you are unsure use review If range and domain are given then ignore.
(b)

M1 Substitutes $\mathrm{g}(x+1)=\arcsin (x+1)$ in $3 \mathrm{~g}(x+1)+\pi=0$ and attempts to make $\arcsin (x+1)$ the subject
Accept $\arcsin (x+1)= \pm \frac{\pi}{3}$ or even $\mathrm{g}(x+1)= \pm \frac{\pi}{3}$. Condone $\frac{\pi}{3}$ in decimal form awrt1.047
dM1 Proceeds by evaluating $\sin \left(\pm \frac{\pi}{3}\right)$ and making x the subject.
Accept for this mark $\Rightarrow x= \pm \frac{\sqrt{3}}{2} \pm 1$. Accept decimal such as -1.866
Do not allow this mark if the candidate works in mixed modes (radians and degrees)
You may condone invisible brackets for both M's as long as the candidate is working correctly with the function
A1 $-1-\frac{\sqrt{3}}{2}$ oe with no other solutions. Remember to isw after a correct answer
Be careful with single fractions. $-\frac{2-\sqrt{3}}{2}$ and $\frac{-2+\sqrt{3}}{2}$ are incorrect but $-\frac{2+\sqrt{3}}{2}$ is correct
Note: It is possible for a candidate to change $\frac{\pi}{3}$ to 60° and work in degrees for all marks

For an exponential (growth) shaped curve in any position. For this mark be tolerant on slips of the pen at either end. See Practice and Qualification for examples.
B1
Intersections with the axes at $\left(\ln \left(\frac{5}{2}\right), 0\right) \operatorname{and}(0,-3)$.
Allow $\ln \left(\frac{5}{2}\right)$ and -3 being marked on the correct axes.
Condone $\left(0, \ln \left(\frac{5}{2}\right)\right)$ and $(-3,0)$ being marked on the x and y axes respectively.
Do not allow $\left(\ln \left(\frac{5}{2}\right), 0\right)$ appearing as awrt $(0.92,0)$ for this mark unless seen
elsewhere. Allow if seen in body of script. If they are given in the body of the script and differently on the curve (save for the decimal equivalent) then the ones on the curve take precedence.

B1 Equation of the asymptote given as $y=-5$. Note that the curve must appear to have an asymptote at $y=-5$, not necessarily drawn. It is not enough to have -5 marked on the axis or indeed $x=-5$. An extra asymptote with an equation gets B0
(a)(ii)

B1 ft For either the correct shape or a reflection of their curve from (a)(i) in the x - axis. For this to be scored it must have appeared both above and below the x-axis. The shape must be correct including the cusp. The curve to the lhs of the cusp must appear to have the correct curvature
B1ft Score for both intersections or follow through on both the intersections given in part (a)(i), including decimals, as long as the curve appeared both above and below the x - axis. See part (a) for acceptable forms

B1ft Score for an asymptote of $y=5$ or follow through on an asymptote of $\boldsymbol{y}=-C$ from part (a)(i). Note that the curve must appear to have an asymptote at $y=C$ but do not penalise if the first mark in (a)(ii) has been withheld for incorrect curvature on the lhs.
(b)

M1 Accept $2 \mathrm{e}^{x}-5=-2$ or $-2 \mathrm{e}^{x}+5=2 \Rightarrow x=$.. $\ln (.$.
Allow squaring so $\left(2 \mathrm{e}^{x}-5\right)^{2}=4 \Rightarrow \mathrm{e}^{x}=.$. and.. $\Rightarrow x=\ln (.),. \ln (.$.

Remember to isw a subsequent decimal answer 0.405
B1

Remember to isw a subsequent decimal answer 1.25
If both answers are given in decimals and there is no working $x=$ awrt $1.25,0.405$ award SC 100

Question Number	Scheme	Marks
146.(a)	Applies $v u^{\prime}+u v^{\prime}$ to $\left(x^{2}-x^{3}\right) \mathrm{e}^{-2 x}$	
	$\begin{aligned} & \mathrm{g}^{\prime}(x)=\left(x^{2}-x^{3}\right) \times-2 \mathrm{e}^{-2 x}+\left(2 x-3 x^{2}\right) \times \mathrm{e}^{-2 x} \\ & \mathrm{~g}^{\prime}(x)=\left(2 x^{3}-5 x^{2}+2 x\right) \mathrm{e}^{-2 x} \end{aligned}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$
		(3)
(b)	Sets $\left(2 x^{3}-5 x^{2}+2 x\right) \mathrm{e}^{-2 x}=0 \Rightarrow 2 x^{3}-5 x^{2}+2 x=0$	M1
	$x\left(2 x^{2}-5 x+2\right)=0 \Rightarrow x=(0), \frac{1}{2}, 2$	M1,A1
	Sub $x=\frac{1}{2}, 2$ into $g(x)=\left(x^{2}-x^{3}\right) \mathrm{e}^{-2 x} \Rightarrow g\left(\frac{1}{2}\right)=\frac{1}{8 \mathrm{e}}, \quad g(2)=-\frac{4}{\mathrm{e}^{4}}$	dM1,A1
	$\text { Range }-\frac{4}{\mathrm{e}^{4}}, g(x), \frac{1}{8 \mathrm{e}}$	A1 (6)
(c)	Accept $\mathrm{g}(x)$ is NOT a ONE to ONE function	
	Accept $\mathrm{g}(x)$ is a MANY to ONE function	B1
	Accept $\mathrm{g}^{-1}(x)$ would be ONE to MANY	(1)
		(10 marks)

Note that parts (a) and (b) can be scored together. Eg accept work in part (b) for part (a)
(a)

M1 Uses the product rule $v u^{\prime}+u v^{\prime}$ with $u=x^{2}-x^{3}$ and $v=e^{-2 x}$ or vice versa. If the rule is quoted it must be correct. It may be implied by their $u=. . v=. . u^{\prime}=. . v^{\prime}=$..followed by their $v u^{\prime}+u v^{\prime}$. If the rule is not quoted nor implied only accept expressions of the form $\left(x^{2}-x^{3}\right) \times \pm A \mathrm{e}^{-2 x}+\left(B x \pm C x^{2}\right) \times \mathrm{e}^{-2 x}$ condoning bracketing issues
Method 2: multiplies out and uses the product rule on each term of $x^{2} \mathrm{e}^{-2 x}-x^{3} \mathrm{e}^{-2 x}$
Condone issues in the signs of the last two terms for the method mark
Uses the product rule for $u v w=u ' v w+u v^{\prime} w+u v w^{\prime}$ applied as in method 1
Method 3:Uses the quotient rule with $u=x^{2}-x^{3}$ and $v=e^{2 x}$. If the rule is quoted it must be correct. It may be implied by their $u=. . v=. . u^{\prime}=. . v^{\prime}=.$. followed by their $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$ If the rule is not quoted nor implied accept expressions of the form $\frac{\mathrm{e}^{2 x}\left(A x-B x^{2}\right)-\left(x^{2}-x^{3}\right) \times C \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}\right)^{2}}$ condoning missing brackets on the numerator and $\mathrm{e}^{2 x^{2}}$ on the denominator.

Method 4: Apply implicit differentiation to $y \mathrm{e}^{2 x}=x^{2}-x^{3} \Rightarrow \mathrm{e}^{2 x} \times \frac{\mathrm{d} y}{\mathrm{~d} x}+y \times 2 \mathrm{e}^{2 x}=2 x-3 x^{2}$
Condone errors on coefficients and signs

A1 A correct (unsimplified form) of the answer
$\mathrm{g}^{\prime}(x)=\left(x^{2}-x^{3}\right) \times-2 \mathrm{e}^{-2 x}+\left(2 x-3 x^{2}\right) \times \mathrm{e}^{-2 x}$ by one use of the product rule
or $\mathrm{g}^{\prime}(x)=x^{2} \times-2 \mathrm{e}^{-2 x}+2 x \mathrm{e}^{-2 x}-x^{3} \times-2 \mathrm{e}^{-2 x}-3 x^{2} \times \mathrm{e}^{-2 x}$ using the first alternative
or $\mathrm{g}^{\prime}(x)=2 x(1-x) \mathrm{e}^{-2 x}+x^{2} \times-1 \times \mathrm{e}^{-2 x}+x^{2}(1-x) \times-2 \mathrm{e}^{-2 x}$ using the product rule on 3 terms or $\mathrm{g}^{\prime}(x)=\frac{\mathrm{e}^{2 x}\left(2 x-3 x^{2}\right)-\left(x^{2}-x^{3}\right) \times 2 \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}\right)^{2}}$ using the quotient rule.
A1 Writes $\mathrm{g}^{\prime}(x)=\left(2 x^{3}-5 x^{2}+2 x\right) \mathrm{e}^{-2 x}$. You do not need to see $\mathrm{f}(x)$ stated and award even if a correct $\mathrm{g}^{\prime}(x)$ is followed by an incorrect $\mathrm{f}(x)$. If the $\mathrm{f}(\mathrm{x})$ is not simplified at this stage you need to see it simplified later for this to be awarded.
(b) Note: The last mark in e-pen has been changed from a 'B' to an A mark

M1 For setting their $\mathrm{f}(x)=0$. The $=0$ may be implied by subsequent working.
Allow even if the candidate has failed to reach a 3 TC for $\mathrm{f}(x)$.
Allow for $\mathrm{f}(x) \ldots 0$ or $\mathrm{f}(x), 0$ as they can use this to pick out the relevant sections of the curve
M1 For solving their $3 \mathrm{TC}=0$ by ANY correct method.
Allow for division of x or factorising out the x followed by factorisation of 3 TQ. Check first and last terms of the 3TQ. Allow for solutions from either $\mathrm{f}(x) \ldots 0$ or $\mathrm{f}(x), 0$
Allow solutions from the cubic equation just appearing from a Graphical Calculator
A1 $\quad x=\frac{1}{2}, 2$. Correct answers from a correct $\mathrm{g}^{\prime}(x)$ would imply all 3 marks so far in (b)
dM1 Dependent upon both previous M's being scored. For substituting their two (non zero) values of x into $\mathrm{g}(x)$ to find both y values. Minimal evidence is required $x=$.. $\mathrm{P} \quad y=.$. is OK.
A1 Accept decimal answers for this mark. $g\left(\frac{1}{2}\right)=\frac{1}{8 \mathrm{e}}=$ awrt $0.046 \quad$ AND $g(2)=-\frac{4}{\mathrm{e}^{4}}=$ awrt -0.073

Note that the question states hence and part (a) must have been used for all marks. Some students will just write down the answers for the range from a graphical calculator.
Seeing just $-\frac{4}{\mathrm{e}^{4}}, g(x), \frac{1}{8 \mathrm{e}}$ or $-0.073,, g(x),, 0.046$ ©pecial case 100000.
They know what a range is!
(c)

B1 If the candidate states 'NOT ONE TO ONE' then accept unless the explicitly link it to $\mathrm{g}^{-1}(x)$. So accept 'It is not a one to one function'. 'The function is not one to one' ' $\mathrm{g}(x)$ is not one to one'
If the candidate states 'IT IS MANY TO ONE' then accept unless the candidate explicitly links it to $\mathrm{g}^{-1}(x)$. So accept 'It is a many to one function.' 'The function is many to one' ' $\mathrm{g}(x)$ is many to one'
If the candidate states 'IT IS ONE TO MANY' then accept unless the candidate explicitly links it to $\mathrm{g}(x)$
Accept an explanation like " one value of x would map/ go to more than one value of y " Incorrect statements scoring B0 would be $\mathrm{g}^{-1}(x)$ is not one to one, $\mathrm{g}^{-1}(x)$ is many to one and $\mathrm{g}(x)$ is one to many.

(a)

B1 A W shape in any position. The arms of the W do not need to be symmetrical but the two bottom points must appear to be at the same height. Do not accept rounded W's.
A correct sketch of $y=\mathrm{f}(|x|)$ would score this mark.
B1 A W shape in quadrants 1 and 2 sitting on the x axis with $P^{\prime}=(0,11)$ and $Q^{\prime}=(6,1)$. It is not necessary to see them labelled. Accept 11 being marked on the y axis for P^{\prime}. Condone $P^{\prime}=(11,0)$ marked on the correct axis, but $Q^{\prime}=(1,6)$ is B 0
(b)

B1 Score for a V shape in any position on the grid. The arms of the V do not need to be symmetrical. Do not accept rounded or upside down V's for this mark.
B1 $\quad Q^{\prime}=(-6,1)$. It does not need to be labelled but it must correspond to the minimum point on the curve and be in the correct quadrant.
B1 $\quad P^{\prime}=(0,25)$. It does not need to be labelled but it must correspond to the y intercept and the line must cross the axis. Accept 25 marked on the correct axis. Condone $P^{\prime}=(25,0)$ marked on the positive y axis.

Special case: A candidate who mistakenly sketches $y=-2 \mathrm{f}(x)+3$ or $y=-2 \mathrm{f}(-x)+3$ will arrive at one of the following. They can be awarded SC B1B0B0

(c)

B1 Either states $a=2$ or $b=6$.
This can be implied (if there are no stated answers given) by the candidate writing that $y=. .|X-6|-1$ or $y=2|x-.|-$.1 . If they are both stated and written, the stated answer takes precedence.
B1 States both $a=2$ and $b=6$
This can be implied by the candidate stating that $y=2|x-6|-1$
If they are both stated and written, the stated answer takes precedence.

(a)

B1 $x^{2}+x-6=(x+3)(x-2)$ This can occur anywhere in the solution.
M1 For combining the two fractions with a common denominator. The denominator must be correct for their fractions and at least one numerator must have been adapted. Accept as separate fractions.
Condone missing brackets.
Accept $\frac{x}{x+3}+\frac{3(2 x+1)}{x^{2}+x-6}=\frac{x\left(x^{2}+x-6\right)+3(2 x+1)(x+3)}{(x+3)\left(x^{2}+x-6\right)}$
Condone $\frac{x}{x+3}+\frac{3(2 x+1)}{(x+3)(x-2)}=\frac{x \times x-2}{(x+3)(x-2)}+\frac{3(2 x+1)}{(x+3)(x-2)}$
A1 A correct intermediate form of $\frac{\text { simplified quadratic }}{\text { simplified quadratic }}$
Accept $\frac{x^{2}+4 x+3}{(x+3)(x-2)}, \frac{x^{2}+4 x+3}{x^{2}+x-6}$, OR $\frac{x^{3}+7 x^{2}+15 x+9}{(x+3)\left(x^{2}+x-6\right)} \rightarrow \frac{(x+1)(x+3)(x+3)}{(x+3)\left(x^{2}+x-6\right)}$
As in question one they can score this mark having 'invisible' brackets on line 1.
A1* Further factorises and cancels (which may be implied) to complete the proof to reach the given answer $=\frac{(x+1)}{(x-2)}$. All aspects including bracketing must be correct. If a cubic is formed then it needs to be correct.
(b)

B1 States either end of the range. Accept either $y<4, y \leqslant 4$ or $y>1, y \geqslant 1$ with or without the y 's.
B1 Correct range. Accept $1<y<4,1<\mathrm{g}<4, y>1$ and $y<4,(1,4), 1<$ Range <4, even $1<\mathrm{f}<4$,
Do not accept $1<x<4,1<y \leq 4$, $[1,4)$ etc.
Special case, allow B1B0 for $1<x<4$
(c)

M1 Attempting to set $g(x)=x, g^{-1}(x)=x$ or $g(x)=g^{-1}(x)$ or $g^{2}(x)=x$.
If $g^{-1}(x)$ has been used then a full attempt must have been made to make x the subject of the formula.
A full attempt would involve cross multiplying, collecting terms, factorising and ending with division.
As a result, it must be in the form $g^{-1}(x)=\frac{ \pm 2 x \pm 1}{ \pm x \pm 1}$
Accept as evidence $\frac{(x+1)}{(x-2)}=x$ OR $\frac{x+1}{x-2}=\frac{ \pm 2 x \pm 1}{ \pm x \pm 1}$ OR $\frac{ \pm 2 x \pm 1}{ \pm x \pm 1}=x$ OR $\frac{\frac{x+1}{x-2}+1}{\frac{x+1}{x-2}-2}=x$
A1 $x^{2}-3 x-1=0$ or exact equivalent. The $=0$ may be implied by subsequent work.
dM1 For solving a $3 T Q=0$. It is dependent upon the first M being scored. Do not accept a method using factors unless it clearly factorises. Allow the answer written down awrt 3.30 (from a graphical calculator).
A1 $\quad a$ or $x=\frac{3+\sqrt{ } 13}{2}$. Ignore any reference to $\frac{3-\sqrt{ } 13}{2}$
Withhold this mark if additional values are given for $x, x>3$

Question Number	Scheme	Marks
149.	Factorise $4 x^{2}-9=(2 x-3)(2 x+3)$ Use of common denominator $\begin{aligned} & \frac{3}{2 x+3}-\frac{1}{2 x-3}+\frac{6}{4 x^{2}-9}=\frac{3(2 x-3)-1(2 x+3)+6}{(2 x+3)(2 x-3)} \\ &=\frac{4 x-6}{(2 x+3)(2 x-3)} \\ &=\frac{2(2 x-3)}{(2 x+3)(2 x-3)}=\frac{2}{2 x+3} \end{aligned}$	B1 M1 A1 A1 (4) 4 marks
	Alternative where $4 x^{2}-9$ is not factorised $\begin{aligned} & \frac{3}{2 x+3}-\frac{1}{2 x-3}+\frac{6}{4 x^{2}-9}=\frac{3(2 x-3)\left(4 x^{2}-9\right)-1(2 x+3)\left(4 x^{2}-9\right)+6(2 x+3)(2 x-3)}{(2 x+3)(2 x-3)\left(4 x^{2}-9\right)} \\ & =\frac{2(2 x-3)\left(4 x^{2}-9\right)}{(2 x+3)(2 x-3)\left(4 x^{2}-9\right)} \text { or } \frac{(4 x-6)\left(4 x^{2}-9\right)}{(2 x+3)(2 x-3)\left(4 x^{2}-9\right)} \text { or } \frac{(2 x-3)\left(8 x^{2}-18\right)}{(2 x+3)(2 x-3)\left(4 x^{2}-9\right)} \\ & =\frac{(4 x-6)\left(4 x^{2}-9\right)}{(2 x+3)(2 x-3)\left(4 x^{2}-9\right)} \text { or } \frac{2(4 x-6)\left(4 x^{2}-9\right)}{(2 x+3)(2 x-3)\left(4 x^{2}-9\right)} \\ & =\frac{2}{2 x+3} \end{aligned}$	M1 B1 A1 A1

B1 For factorising $4 x^{2}-9$ to $(2 x-3)(2 x+3)$ at any point. Note that this is not scored for combining the terms $(2 x-3)(2 x+3)$ and writing the product as $4 x^{2}-9$
M1 Use of common denominator - combines three fractions to form one. The denominator must be correct for their fractions and at least one numerator must have been adapted. Condone missing brackets.
$\frac{16 x^{3}-24 x^{2}-36 x+54}{\left(4 x^{2}-9\right)^{2}}$ is a correct intermediate stage but needs to be factorised and cancelled before A1
Examples of incorrect fractions scoring this mark are: $\frac{3(2 x-3)-2 x+3+6}{(2 x+3)(2 x-3)}$ missing bracket
$\frac{3\left(4 x^{2}-9\right)-4 x^{2}-9+6(2 x+3)(2 x-3)}{(2 x+3)(2 x-3)\left(4 x^{2}-9\right)}$ denominator correct and at least one numerator has been adapted.
A1 Correct simplified intermediate answer. It must be a CORRECT $\frac{\text { Linear }}{\text { Quadratic }}$ or $\frac{\text { Quadratic }}{\text { Cubic }}$
Accept versions of $\frac{4 x-6}{(2 x+3)(2 x-3)}$ or $\frac{8 x^{2}-18}{(2 x+3)\left(4 x^{2}-9\right)}$
A1 cao $=\frac{2}{2 x+3}$
Allow recovery from invisible brackets for all 4 marks as the answer is not given.

B1 Correct shape and position for $y=x^{3}$. It must appear to go through the origin.
It must only appear in Quadrants 1 and 3 and have a gradient that is always $\geqslant 0$. The gradient should appear large at either end. Tolerate slips of the pen.See practice and qualification for acceptable curves.

B1 Correct shape for $y=-2-\mathrm{e}^{4 x}$, its position is not important for this mark. The gradient must be approximately zero at the left hand end and increase negatively as you move from left to right along the curve. See practice and qualification for acceptable curves.
B1 Score for $y=-2-\mathrm{e}^{4 x}$ cutting or meeting the y axis at ($0,-3$). Its shape is not important.
Accept for the intention of $(0,-3)$, -3 being marked on the $y-$ axis as well as $(-3,0)$
Do not accept 3 being marked on the negative y axis.
B1 Score for $y=-2-\mathrm{e}^{4 x}$ having an asymptote stated as $y=-2$. This is dependent upon the curve appearing to have an asymptote there. Do not accept the asymptote marked as ' -2 ' or indeed $x=-2$. See practice and qualification for acceptable solutions.

(a)

B1 A 'V' shaped graph. The position is not important. Do not accept curves. See practice and qualification items for clarity. Accept a V shape with a 'dotted' extension of $y=4 x-3$ appearing under the x axis.
B1 The graph meets the x axis at $x=\frac{3}{4}$ and crosses the y axis at $y=3$. Do not allow multiple meets or crosses If they have lost the previous B1 mark for an extra section of graph underneath the x axis allow for crossing the x axis at $x=\frac{3}{4}$ and crosses the y axis at $y=3$.
Accept marked elsewhere on the page with A and B marked on the graph and $A=\left(\frac{3}{4}, 0\right)$ and $B=(0,3)$ Condone $\left(0, \frac{3}{4}\right)$ and $(3,0)$ marked on the correct axis
(b)

M1 Attempts to solve $|4 x-3| \ldots 2-2 x$ finding at least one solution. You may see \ldots replaced by either $=$ or $>$
Accept as evidence $\pm 4 x \pm 3=2-2 x \Rightarrow x=$..
Accept as evidence $\pm 4 x \pm 3>2-2 x \Rightarrow x>$.., or $x<$..
A1 Both critical values $x=\frac{5}{6}$ and $x=\frac{1}{2}$, or one inequality, accept $x>\frac{5}{6}$ or $x<\frac{1}{2}$
Accept $x=0.83$ and $x=0.5$ for the critical values
Accept both of these answers with no incorrect working for both marks
dM1Dependent upon the previous M , this is scored for selecting the outside region of their two points.
Eg if M1 has been scored for $4 x-3=2-2 x \Rightarrow x=0.83$ and $-4 x-3=2-2 x \Rightarrow x=-2.5$
A correct application of M1 would be $x<-2.5, x>0.83$
A1 Correct answer only $x<\frac{1}{2}$ or $x>\frac{5}{6}$.
Accept $x<0.5, x>0.83$
(c)

M1 Either sketch both lines showing a single intersection at the point $x=\frac{3}{4}$
Or solves $|4 x-3|=1 \frac{1}{2}-2 x$ using both $4 x-3=1 \frac{1}{2}-2 x$ and $-4 x+3=1 \frac{1}{2}-2 x$ giving one solution $x=\frac{3}{4}$
Accept $|4 x-3|>1 \frac{1}{2}-2 x$ using both $4 x-3>1 \frac{1}{2}-2 x$ and $-4 x+3>1 \frac{1}{2}-2 x$ giving one solution $x \ldots \frac{3}{4}$

If two values are obtained using either method it is M0A0
A1 States that the solution set is all values apart from $x=\frac{3}{4}$. Do not isw in this question. Score their final statement. Accept versions of all values of x except $x=\frac{3}{4}$ or $x \in \mathbb{R}, x \neq \frac{3}{4}$, or $x<\frac{3}{4}, x>\frac{3}{4}$

Question Number	Scheme	Marks
152(a)	$\mathrm{f}(x)>k^{2}$	B1 (1)
(b)	$y=\mathrm{e}^{2 x}+k^{2} \Rightarrow \mathrm{e}^{2 x}=y-k^{2}$	M1
	$\Rightarrow x=\frac{1}{2} \ln \left(y-k^{2}\right)$	dM1
	$\Rightarrow \mathrm{f}^{-1}(x)=\frac{1}{2} \ln \left(x-k^{2}\right), \quad x>k^{2}$	A1
		(3)
(c)	$\ln 2 x+\ln 2 x^{2}+\ln 2 x^{3}=6$	M1
	$\Rightarrow \ln 8 x^{6}=6$	M1
	$\Rightarrow 8 x^{6}=\mathrm{e}^{6} \Rightarrow x=.$.	M1
	$\Rightarrow x=\left(\frac{\mathrm{e}}{\sqrt[6]{8}}\right)=\frac{\mathrm{e}}{\sqrt{2}}$ (Ignore any reference to $-\frac{\mathrm{e}}{\sqrt{2}}$)	A1
		(4)
(d)	$\mathrm{fg}(x)=e^{2 \times \ln (2 x)}+k^{2}$	M1
	$\Rightarrow \mathrm{fg}(x)=(2 x)^{2}+k^{2}=4 x^{2}+k^{2}$	A1
(e)	$\operatorname{fg}(x)=2 k^{2} \Rightarrow 4 x^{2}+k^{2}=2 k^{2}$	(2)
	$\Rightarrow 4 x^{2}=k^{2} \Rightarrow x=.$.	M1
	$\Rightarrow x=\frac{k}{2} \text { only }$	A1
		(2)
		12 marks
(alt c)	$\begin{aligned} & \ln 2 x+\ln 2 x^{2}+\ln 2 x^{3}=6 \\ & \Rightarrow \ln 2+\ln x+\ln 2+2 \ln x+\ln 2+3 \ln x=6 \\ & \Rightarrow 3 \ln 2+6 \ln x=6 \end{aligned}$	M1
	$\Rightarrow \ln x=1-\frac{1}{2} \ln 2$	M1
	$\Rightarrow x=e^{1-\frac{1}{2} \ln 2},=\frac{\mathrm{e}}{\sqrt{2}}$ (Ignore any reference to $-\frac{\mathrm{e}}{\sqrt{2}}$)	M1, A1
(alt e)		(4)
	$\Rightarrow \ln (2 x)^{2}=\ln \left(k^{2}\right), \Rightarrow 4 x^{2}=k^{2} \Rightarrow x=\frac{k}{2}$	M1, A1

(a)

B1 States the correct range for f . Accept $\mathrm{f}(x)>k^{2}, \mathrm{f}>k^{2}$, Range $>k^{2},\left(k^{2}, \infty\right), y>k^{2}$ Range is greater than k^{2} Do not accept $\mathrm{f}(x) \geq k^{2}, x>k^{2},\left[k^{2}, \infty\right)$
(b)

M1 Attempts to make x or a swapped y the subject of the formula. Score for $y=\mathrm{e}^{2 x}+k^{2} \Rightarrow \mathrm{e}^{2 x}=y \pm k^{2}$ and proceeding to $x=\ln$... The minimum expectation is that $\mathrm{e}^{2 x}$ is made the subject before taking \ln 's
dM1 Dependent upon the previous M having been scored. It is for proceeding by firstly taking ln's of the whole rhs, not the individual elements, and then dividing by 2 . Score M1, dM1 for writing down $x=\frac{1}{2} \ln \left(y \pm k^{2}\right)$ or alternatively $y=\frac{1}{2} \ln \left(x \pm k^{2}\right)$. Condone missing brackets for this mark.

A1 The correct answer in terms of x including the bracket and the domain $\mathrm{f}^{-1}(x)=\frac{1}{2} \ln \left(x-k^{2}\right), \quad x>k^{2}$. Accept equivalent answers like $y=0.5 \ln \left|x-k^{2}\right|$, Domain greater than $k^{2},\left(k^{2}, \infty\right)$
(c)

M1 Attempts to solve equation by writing down $\ln 2 x+\ln 2 x^{2}+\ln 2 x^{3}=6$
M1 Uses addition laws of logs to write in the form $\ln A x^{n}=6$
M1 Takes exp's (correctly) and proceeds to a solution for $x=$..
A1 Correct solution and correct answer. $x=\frac{\mathrm{e}}{\sqrt{2}}$. You may ignore any reference to $x=-\frac{\mathrm{e}}{\sqrt{2}}$
Special caseS. Candidate who solve (and treat it as though it was bracketed)
S. Case $1 \quad \ln 2 x+\ln 2 x^{2}+\ln 2 x^{3}=6 \Rightarrow \ln 2 x+2 \ln 2 x+3 \ln 2 x=6 \Rightarrow 6 \ln 2 x=6 \Rightarrow x=\frac{\mathrm{e}}{2}$
S. Case $2 \ln 2 x+\ln (2 x)^{2}+\ln (2 x)^{3}=6 \Rightarrow 6 \ln 2 x=6 \Rightarrow \ln 2 x=1 \Rightarrow x=\frac{\mathrm{e}}{2}$
S. Case 3

$$
\ln 2 x+\ln (2 x)^{2}+\ln (2 x)^{3}=6 \Rightarrow \ln 2 x+\ln 4 x^{2}+\ln 8 x^{3}=6 \Rightarrow \ln 64 x^{6}=6 \Rightarrow 64 x^{6}=\mathrm{e}^{6} \Rightarrow x=\frac{\mathrm{e}}{2}
$$

scores M0 (Incorrect statement/ may be implied by subsequent work), M1 (Correct ln laws), M1 (Correct method of arriving at $x=$), A0
(d) For the purposes of marking you can score (d) and (e) together

M1 Correct order of applying g before f to give a correct unsimplified answer. Accept $y=$
Accept versions of $\operatorname{fg}(x)=e^{2 \times \ln (2 x)}+k^{2}, y=e^{\ln (2 x)^{2}}+k^{2}$
A1 A correct simplified answer $\operatorname{fg}(x)=(2 x)^{2}+k^{2}$, or $\operatorname{fg}(x)=4 x^{2}+k^{2}$. Accept $y=$
(e)

M1 Sets the answer to (d) in the form $A x^{2}+k^{2}=2 k^{2}$, where $A=2$ or 4 and proceeds in the correct order to reach an equation of the form $A x^{2}=k^{2}$.
In the alternative method it would be for reaching $\ln \left(A x^{2}\right)=\ln \left(k^{2}\right), A=2$ or 4 or any equivalent form $\ln \ldots=\ln \ldots$
A1 $\quad x=\frac{k}{2}$ only. The answer $x= \pm \frac{k}{2}$ is A0.

Notes for Question 153

B1 Stating $a=3$. This can also be scored by the coefficient of x^{2} in $3 x^{2}-2 x+7$
M1 Using long division by $x^{2}-4$ and getting as far as the ' x ' term. The coefficients need not be correct.
Award if you see the whole number part as $\ldots x^{2}+\ldots x$ following some working. You may also see this in a table/ grid.
Long division by $(x+2)$ will not score anything until $(x-2)$ has been divided into the new quotient. It is very unlikely to score full marks and the mark scheme can be applied.
A1 Achieving two of $b=-2 c=7 d=-8 e=24$.
The answers may be embedded within the division sum and can be implied.
A1 Achieving all of $b=-2 c=7 d=-8$ and $e=24$
Accept a correct long division for 3 out of the 4 marks scoring B1M1A1A0
Need to see $\mathrm{a}=\ldots, \mathrm{b}=\ldots$, or the values embedded in the rhs for all 4 marks

Question Number	Scheme	Marks
$\begin{gathered} \text { Alt } 1 \\ \text { By } \\ \begin{array}{c} \text { Multiplicat } \\ \text { ion } \end{array} \end{gathered}$	* $3 x^{4}-2 x^{3}-5 x^{2}-4 \equiv\left(a x^{2}+b x+c\right)\left(x^{2}-4\right)+d x+e$ Compares the x^{4} terms $a=3$ Compares coefficients to obtain a numerical value of one further constant $-2=b, \quad-5=-4 a+c \Rightarrow c=. .$ Two of $b=-2 \quad c=7 \quad d=-8 \quad e=24$ All four of $b=-2 \quad c=7 \quad d=-8 \quad e=24$	B1 M1 A1 A1 (4 marks)
Notes for Question 153		
B1 Stating $a=3$. This can also be scored for writing $3 x^{4}=a x^{4}$		
M1	Multiply out expression given to get *. Condone slips only on signs of either expression. Then compare the coefficient of any term (other than x^{4}) to obtain a numerical value of one further constant. In reality this means a valid attempt at either b or c The method may be implied by a correct additional constant to a.	
A1 Ac	Achieving two of $b=-2 c=7 d=-8 e=24$	
A1 Achieving all of $b=-2 c=7 d=-8$ and $e=24$		

Notes for Question 154

(i) B1 Correct shape, correct position and passing through (1,0).

Graph must 'start' to the rhs of the y-axis in quadrant 4 with a gradient that is large. The gradient then decreases as it moves through $(1,0)$ into quadrant 1 . There must not be an obvious maximum point but condone 'slips'. Condone the point marked (0,1) on the correct axis. See practice and qualification for clarification. Do not with hold this mark if ($x=0$) the asymptote is incorrect or not given.
(ii) B1ft Correct shape including the cusp wholly contained in quadrant 1 .

The shape to the rhs of the cusp should have a decreasing gradient and must not have an obvious maximum.. The shape to the lhs of the cusp should not bend backwards past $(1,0)$
Tolerate a ‘linear’ looking section here but not one with incorrect curvature (See examples sheet (ii) number 3 . For further clarification see practice and qualification items.
Follow through on an incorrect sketch in part (i) as long as it was above and below the x axis.

B1ft The curve touches or crosses the x axis at $(1,0)$. Allow for the curve passing through a point marked ' 1 ' on the x axis. Condone the point marked on the correct axis as $(0,1)$

Follow through on an incorrect intersection in part (i).
B1 Award for the asymptote to the curve given/ marked as $x=0$. Do not allow for it given/ marked as 'the y axis'. There must be a graph for this mark to be awarded, and there must be an asymptote on the graph at $x=0$. Accept if $x=0$ is drawn separately to the y axis.
(iii)

B1 Correct shape.
The gradient should always be negative and becoming less steep. It must be approximately infinite at the $l h$ end and not have an obvious minimum. The lh end must not bend 'forwards' to make a C shape. The position is not important for this mark. See practice and qualification for clarification.

B1ft The graph crosses (or touches) the x axis at (5, 0). Allow for the curve passing through a point marked ' 5 ' on the x axis. Condone the point marked on the correct axis as $(0,5)$ Follow through on an incorrect intersection in part (i). Allow for $((i)+4,0)$

B1 The asymptote is given/ marked as $x=4$. There must be a graph for this to be awarded and there must be an asymptote on the graph (in the correct place to the rhs of the y axis).

If the graphs are not labelled as (i), (ii) and (iii) mark them in the order that they are given.

Examples of graphs in number 154

Part (i)

Condoned

Part (ii)

(ii) B1ftB1ftB0

(iii) B0B1ftBO

Notes for Question 155

(a)

B1 Correct range. Allow $0 \leqslant \mathrm{f}(x) \leqslant 10,0 \leqslant \mathrm{f} \leqslant 10,0 \leqslant y \leqslant 10,0 \leqslant$ range $\leqslant 10$, [0,10]
Allow $\mathrm{f}(x) \geqslant 0$ and $\mathrm{f}(x) \leqslant 10$ but not $\mathrm{f}(x) \geqslant 0$ or $\mathrm{f}(x) \leqslant 10$
Do Not Allow $0 \leqslant x \leqslant 10$. The inequality must include BOTH ends
(b)

B1 For correct one application of the function at $x=0$
Possible ways to score this mark are $\mathrm{f}(0)=5, \quad \mathrm{f}(5) \quad 0 \rightarrow 5 \rightarrow \ldots$
B1: 3 ('3’ can score both marks as long as no incorrect working is seen.)
(c)

M1 For an attempt to make x or a replaced y the subject of the formula. This can be scored for putting $\mathrm{y}=\mathrm{g}(\mathrm{x})$, multiplying across, expanding and collecting x terms on one side of the equation. Condone slips on the signs
dM1 Take out a common factor of x (or a replaced y) and divide, to make x subject of formula. Only allow one sign error for this mark
A1 Correct answer. No need to state the domain. Allow $\mathrm{g}^{-1}(x)=\frac{5 x-4}{3+x} \quad y=\frac{5 x-4}{3+x}$
Accept alternatives such as $y=\frac{4-5 x}{-3-x}$ and $y=\frac{5-\frac{4}{x}}{1+\frac{3}{x}}$
(d)

M1 Stating or implying that $\mathrm{f}(x)=\mathrm{g}^{-1}(16)$. For example accept $\frac{4+3 \mathrm{f}(x)}{5-\mathrm{f}(x)}=16 \Rightarrow \mathrm{f}(x)=$.
A1 Stating $\mathrm{f}(x)=4$ or implying that solutions are where $\mathrm{f}(x)=4$
B1 $\quad x=6$ and may be given if there is no working
M1 Full method to obtain other value from line $y=5-2.5 x$
$5-2.5 x=4 \Rightarrow x=\ldots$.
Alternatively this could be done by similar triangles. Look for $\frac{2}{5}=\frac{2-x}{4}(o e) \Rightarrow x=.$.
A1 $\quad 0.4$ or $2 / 5$
Alt 1 to (d)
M1 Writes $\operatorname{gf}(x)=16$ with a linear $\mathrm{f}(x)$. The order of $\operatorname{gf}(x)$ must be correct
Condone invisible brackets. Even accept if there is a modulus sign.
A1 Uses $\mathrm{f}(x)=x-2$ or $\mathrm{f}(x)=5-2.5 x$ in the equation $\mathrm{gf}(x)=16$
B1 $\quad x=6$ and may be given if there is no working
M1 Attempt at solving $\frac{4+3(5-2.5 x)}{5-(5-2.5 x)}=16 \Rightarrow x=\ldots$. The bracketing must be correct and there must be no more than one error in their calculation

A1 $\quad x=0.4, \frac{2}{5}$ or equivalent

Question Number	Scheme	Marks
157.	(a) $(2.5,0)(0,-5)$	B1B1
		B1
		M1,A1
		(3)
		(5 marks)

Question Number	Scheme	Marks
158	(a)	
	 Shape for $y=10-x$ Shape for $y=\mathrm{e}^{x}$ co- ordinates correct $(0,10),(10,0)$ and $(0,1)$ (b) One solution as there is one point of intersection	B1 B1 B1 (3) B1 $\sqrt{ }$
	(c) Sub $x=2$ and $x=3$ into $\mathrm{f}(x)=\mathrm{e}^{x}-10+x$ $f(2)=-0.61, f(3)=(+) 13.1$ Both correct to 1sf, reason (change of sign) and conclusion (hence root)	> (1) M1 A1
		(2)

| Question
 Number | Scheme | Marks |
| :---: | :---: | :---: | :--- |
| $\mathbf{1 6 0 .}$ | (a) $x^{2}+x-12=(x+4)(x-3)$ | B1 |
| | Attempt as a single fraction $\frac{(3 x+5)(x-3)-2\left(x^{2}+x-12\right)}{\left(x^{2}+x-12\right)(x-3)}$ or $\frac{3 x+5-2(x+4)}{(x+4)(x-3)}$ | M1 |
| $=\frac{x-3}{(x+4)(x-3)} \quad,=\frac{1}{(x+4)} \quad$ cao | A1, A1 | |
| | | (4 marks) |

Notes for Question 160

B1 For correctly factorising $x^{2}+x-12=(x+4)(x-3)$. It could appear anywhere in their solution
M1 For an attempt to combine two fractions. The denominator must be correct for 'their' fractions.
The terms could be separate but one term must have been modified.
Condone invisible brackets.
Examples of work scoring this mark are;
$\frac{(3 x+5)(x-3)}{\left(x^{2}+x-12\right)(x-3)}-\frac{2\left(x^{2}+x-12\right)}{\left(x^{2}+x-12\right)(x-3)}$ Two separate terms
$\frac{3 x+5-2 x+4}{(x+4)(x-3)}$ Single term, invisible bracket
$\frac{(3 x+5)}{\left(x^{2}+x-12\right)(x-3)}-\frac{2\left(x^{2}+x-12\right)}{\left(x^{2}+x-12\right)(x-3)}$ Separate terms, only one numerator modified
A1 Correct un simplified answer $\frac{x-3}{(x+4)(x-3)}$
If $\frac{x^{2}-6 x-9}{\left(x^{2}+x-12\right)(x-3)}$ scored M1 the fraction must be subsequently be reduced to a correct $\frac{x-3}{x^{2}+x-12}$ or $\frac{(x-3)(x-3)}{(x+4)(x-3)(x-3)}$ to score this mark.
A1 cao $\frac{1}{(x+4)}$

Do Not isw in this question.

The method of partial fractions is perfectly acceptable and can score full marks

$$
\underbrace{\frac{3 x+5}{(x+4)(x-3)}}_{B 1}-\frac{2}{x-3}=\underbrace{\frac{1}{x+4}+\frac{2}{x-3}}_{M 1 \mathrm{~A} 1}-\frac{2}{x-3}=\frac{1}{\underbrace{x+4}_{\mathrm{A} 1}}
$$

Notes for Question 161

(a)

B1 Award for the correct shape. Look for an increasing function with decreasing gradient. Condone linear looking functions in the first quadrant. It needs to look asymptotic at the y axis and have no obvious maximum point. It must be wholly contained in quadrants 1 and 4
See practice and qualification items for clarification.
B1 Crosses x axis at $\left(\frac{1}{2}, 0\right)$. Accept $\frac{1}{2}, 0.5$ or even $\left(0, \frac{1}{2}\right)$ marked on the correct axis.
There must be a graph for this mark to be scored.
(b)

B1 Correct shape wholly contained in quadrant 1.
The shape to the rhs of the cusp must not have an obvious maximum.
Accept linear, or positive with decreasing gradient. The gradient of the curve to the lhs of the cusp/minimum should always be negative. The curve in this section should not 'bend' back past $(1,0)$ forming a ' C ' shape or have incorrect curvature.
See practice and qualification for clarification.

B1 The curve touches or crosses the x axis at (1, 0). Allow for the curve passing through a point marked ' 1 ' on the x axis. Condone the point marked on the correct axis as $(0,1)$

B1 Award for a cusp, not a minimum at $(1,0)$

Note that $\mathrm{f}(|x|)$ scores B0 B1 B0 under the scheme.

If the graphs are not labelled (a) and (b), then they are to be marked in the order they are presented

Question Number	Scheme	Marks
162(a)	$\mathrm{f}(\mathrm{x}) \geqslant 3$	M1A1
(b)	An attempt to find $2\|3-4 x\|+3$ when $x=1$ Correct answer $\mathrm{fg}(1)=5$	M1
		A1
		(2)
(c)	$\begin{aligned} y=3-4 x \Rightarrow 4 x=3-y & \Rightarrow x=\frac{3-y}{4} \\ & \mathrm{~g}^{-1}(x)=\frac{3-x}{4} \end{aligned}$	M1
		A1
		(2)
(d)	$[g(x)]^{2}=(3-4 x)^{2}$$\operatorname{gg}(x)=3-4(3-4 x)$	B1
		M1
	$g g(x)+[g(x)]^{2}=0 \Rightarrow-9+16 x+9-24 x+16 x^{2}=0$	
	$16 x^{2}-8 x=0$	A1
	$8 x(2 x-1)=0 \Rightarrow x=0,0.5 \quad$ oe	M1A1
		(5)
		(11 marks)

Notes for Question 162

(a)

M1 Attempt at calculating f at $x=0$. Sight of 3 is sufficient. Accept $\mathrm{f}(x)>3$ and $x>3$ for M1,
A1 $\mathrm{f}(x) \geqslant 3$. Accept $y \geqslant 3$, range $\geqslant 3,[3, \infty)$
Do not accept $\mathrm{f}(x)>3, x \geqslant 3$
The correct answer is sufficient for both marks.
(b)

M1 A full method of finding $\operatorname{fg}(1)$. The order of substituting into the expressions must be correct and $2|x|+3$ must be used as opposed to $2 x+3$
Accept an attempt to calculate $2|x|+3$ when $x=-1$.
Accept an attempt to put $x=1$ into $3-4 x$ and then substituting their answer to $3-\left.4 x\right|_{x=1}$ into $2|x|+3$
Do not accept the substitution of $x=1$ into $2|x|+3$, followed by their result into ' $3-4 x$ '
This is evidence of incorrect order.
A1 $\mathrm{fg}(1)=5$.
Watch for $1 \xrightarrow{3-4 x} 1 \xrightarrow{2|x|+3} 5$ which is M1A0
(c)

M1 Award for an attempt to make x or a swapped y the subject of the formula. It must be a full method and cannot finish $4 x=$..

You can condone at most one 'arithmetic' error for this method mark.
$y=3-4 x \Rightarrow 4 x=3+y \Rightarrow x=\frac{3+y}{4}$ is fine for the M1 as there is only one error
$y=3-4 x \Rightarrow 4 x=3-y \Rightarrow x=\frac{3}{4}-y$ is fine for the M1 as there is only one error
$y=3-4 x \Rightarrow 4 x=3+y \Rightarrow x=\frac{3}{4}+y$ is M0 as there are two arithmetic errors
A1 Obtaining a correct expression $\mathrm{g}^{-1}(x)=\frac{3-x}{4}$ oe such as $\mathrm{g}^{-1}(x)=\frac{x-3}{-4}, \mathrm{~g}^{-1}(x)=\frac{3}{4}-\frac{x}{4}$
It must be in terms of \mathbf{x}, but could be expressed ' $\mathbf{y}=$ ' or $g^{-1}(x) \rightarrow$
(d)

B1 Sight of $[g(x)]^{2}=(3-4 x)^{2}$. If only the expanded version appears it must be correct
M1 A full attempt to find $\operatorname{gg}(x)=3-4(3-4 x)$
Condone invisible brackets. Note that it may appear in an equation
A1 $16 x^{2}-8 x=0$ Accept other alternatives such as $2 x^{2}=x$
M1 For factorising their quadratic or cancelling their $A x^{2}=B x$ by x to get ≥ 1 value of x If they have a 3TQ then usual methods are applicable.
A1 Both values correct $x=0,0.5$ oe

Question Number	Scheme	Marks
$\mathbf{1 6 3}$	$f(x)=0 \Rightarrow x^{2}+3 x+1=0$	
	$\Rightarrow x=\frac{-3 \pm \sqrt{5}}{2}=$ awrt $-0.382,-2.618$	M1A1
		(2)

Notes for Question 163

M1 Solves $x^{2}+3 x+1=0$ by completing the square or the formula, producing two 'non integer answers. Do not accept factorisation here. Accept awrt -0.4 and -2.6 for this mark
A1 Answers correct. Accept awrt -0.382, -2.618 .
Accept just the answers for both marks. Don’t withhold the marks for incorrect labelling.

(a) M1 A full method of finding $\mathrm{ff}(-3) . \mathrm{f}(0)$ is acceptable but $\mathrm{f}(-3)=0$ is not.

Accept a solution obtained from two substitutions into the equation $y=\frac{2}{3} x+2$ as the line passes through both points. Do not allow for $y=\ln (x+4)$, which only passes through one of the points.
A1 Cao ff(-3)=2. Writing down 2 on its own is enough for both marks provided no incorrect working is seen.
(b)

B1 For the correct shape. Award this mark for an increasing function in quadrants 3, 4 and 1 only. Do not award if the curve bends back on itself or has a clear minimum
B1 This is independent to the first mark and for the graph passing through $(0,-3)$ and $(2,0)$

Accept -3 and 2 marked on the correct axes.
Accept $(-3,0)$ and $(0,2)$ instead of $(0,-3)$ and $(2,0)$ as long as they are on the correct axes Accept $P^{\prime}=(0,-3), Q^{\prime}=(2,0)$ stated elsewhere as long as P'and Q' are marked in the correct place on the graph
There must be a graph for this to be awarded
(c)

B1 Award for a correct shape 'roughly' symmetrical about the y - axis. It must have a cusp and a gradient that 'decreases' either side of the cusp. Do not award if the graph has a clear maximum
B1 $(0,0)$ lies on their graph. Accept the graph passing through the origin without seeing $(0,0)$ marked
(d) B1 Shape. The position is not important. The gradient should be always positive but decreasing There should not be a clear maximum point.
B1 The graph passes through $(0,4)$ or $(-6,0)$. See part (b) for allowed variations
B1 The graph passes through $(0,4)$ and $(-6,0)$. See part (b) for allowed variations

Question Number	Scheme	Marks
165.	(a) $\begin{aligned} \frac{2}{x+2}+\frac{4}{x^{2}+5}-\frac{18}{(x+2)\left(x^{2}+5\right)} & =\frac{2\left(x^{2}+5\right)+4(x+2)-18}{(x+2)\left(x^{2}+5\right)} \\ & =\frac{2 x(x+2)}{(x+2)\left(x^{2}+5\right)} \\ & =\frac{2 x}{\left(x^{2}+5\right)} \end{aligned}$ (b) $\begin{aligned} & \mathrm{h}^{\prime}(x)=\frac{\left(x^{2}+5\right) \times 2-2 x \times 2 x}{\left(x^{2}+5\right)^{2}} \\ & \mathrm{~h}^{\prime}(x)=\frac{10-2 x^{2}}{\left(x^{2}+5\right)^{2}} \end{aligned}$ (c) Maximum occurs when $\mathrm{h}^{\prime}(x)=0 \Rightarrow 10-2 x^{2}=0 \Rightarrow x=$.. $\Rightarrow x=\sqrt{5}$ When $x=\sqrt{5} \Rightarrow \mathrm{~h}(x)=\frac{\sqrt{5}}{5}$ Range of $h(x)$ is $0 \leq h(x) \leq \frac{\sqrt{5}}{5}$	M1A1
		M1
		A1*
		M1A1
		A1 (3)
		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		M1,A1 A1ft
		(5) (12 marks)

(a) M1 Combines the three fractions to form a single fraction with a common denominator.

Allow errors on the numerator but at least one must have been adapted.
Condone 'invisible’ brackets for this mark.
Accept three separate fractions with the same denominator.
Amongst possible options allowed for this method are
$\frac{2 x^{2}+5+4 x+2-18}{(x+2)\left(x^{2}+5\right)}$ Eg 1 An example of 'invisible' brackets
$\frac{2\left(x^{2}+5\right)}{(x+2)\left(x^{2}+5\right)}+\frac{4}{(x+2)\left(x^{2}+5\right)}-\frac{18}{(x+2)\left(x^{2}+5\right)}$ Eg 2An example of an error (on middle term), $1^{\text {st }}$ term has been adapted
$\frac{2\left(x^{2}+5\right)^{2}(x+2)+4(x+2)^{2}\left(x^{2}+5\right)-18\left(x^{2}+5\right)(x+2)}{(x+2)^{2}\left(x^{2}+5\right)^{2}}$ Eg 3 An example of a correct fraction with a different denominator
A1 Award for a correct un simplified fraction with the correct (lowest) common denominator.
$\frac{2\left(x^{2}+5\right)+4(x+2)-18}{(x+2)\left(x^{2}+5\right)}$
Accept if there are three separate fractions with the correct (lowest) common denominator.
Eg $\frac{2\left(x^{2}+5\right)}{(x+2)\left(x^{2}+5\right)}+\frac{4(x+2)}{(x+2)\left(x^{2}+5\right)}-\frac{18}{(x+2)\left(x^{2}+5\right)}$

Note, Example 3 would score M1A0 as it does not have the correct lowest common denominator
M1 There must be a single denominator. Terms must be collected on the numerator.
A factor of $(x+2)$ must be taken out of the numerator and then cancelled with one in the denominator. The cancelling may be assumed if the term 'disappears'
A1* Cso $\frac{2 x}{\left(x^{2}+5\right)}$ This is a given solution and this mark should be withheld if there are any errors
(b) M1 Applies the quotient rule to $\frac{2 x}{\left(x^{2}+5\right)}$, a form of which appears in the formula book.

If the rule is quoted it must be correct. There must have been some attempt to differentiate both terms. If the rule is not quoted (nor implied by their working, meaning terms are written out $\mathrm{u}=\ldots, \mathrm{u}=\ldots, \mathrm{v}=\ldots, \mathrm{v}=\ldots$. followed by their $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$) then only accept answers of the form

$$
\frac{\left(x^{2}+5\right) \times A-2 x \times B x}{\left(x^{2}+5\right)^{2}} \quad \text { where } A, B>0
$$

A1 Correct unsimplified answer $\mathrm{h}^{\prime}(x)=\frac{\left(x^{2}+5\right) \times 2-2 x \times 2 x}{\left(x^{2}+5\right)^{2}}$
A1 $\quad h^{\prime}(x)=\frac{10-2 x^{2}}{\left(x^{2}+5\right)^{2}}$ The correct simplified answer. Accept $\frac{2\left(5-x^{2}\right)}{\left(x^{2}+5\right)^{2}} \quad \frac{-2\left(x^{2}-5\right)}{\left(x^{2}+5\right)^{2}}, \frac{10-2 x^{2}}{\left(x^{4}+10 x^{2}+25\right)}$

DO NOT ISW FOR PART (b). INCORRECT SIMPLIFICATION IS A0

(c) M1 Sets their $h^{\prime}(x)=0$ and proceeds with a correct method to find x. There must have been an attempt to differentiate. Allow numerical errors but do not allow solutions from 'unsolvable' equations.
A1 Finds the correct x value of the maximum point $x=\sqrt{5}$.
Ignore the solution $x=-\sqrt{ } 5$ but withhold this mark if other positive values found.
M1 Substitutes their answer into their $h^{\prime}(x)=0$ in $h(x)$ to determine the maximum value
A1 Cso-the maximum value of $h(x)=\frac{\sqrt{5}}{5}$. Accept equivalents such as $\frac{2 \sqrt{5}}{10}$ but not 0.447
A1ft Range of $\mathrm{h}(x)$ is $0 \leq \mathrm{h}(x) \leq \frac{\sqrt{5}}{5}$. Follow through on their maximum value if the M's have been scored. Allow $0 \leq y \leq \frac{\sqrt{5}}{5}, 0 \leq$ Range $\leq \frac{\sqrt{5}}{5},\left[0, \frac{\sqrt{5}}{5}\right]$ but not $0 \leq x \leq \frac{\sqrt{5}}{5},\left(0, \frac{\sqrt{5}}{5}\right)$
If a candidate attempts to work out $h^{-1}(x)$ in (b) and does all that is required for (b) in (c), then allow.
Do not allow $h^{-1}(x)$ to be used for $h^{\prime}(x)$ in part (c). For this question (b) and (c) can be scored together. Alternative to (b) using the product rule

M1 Sets $\mathrm{h}(x)=2 x\left(x^{2}+5\right)^{-1}$ and applies the product rule vu'+uv' with terms being $2 x$ and $\left(x^{2}+5\right)^{-1}$ If the rule is quoted it must be correct. There must have been some attempt to differentiate both terms. If the rule is not quoted (nor implied by their working, meaning terms are written out $u=\ldots, u^{\prime}=\ldots, \mathrm{v}=\ldots ., \mathrm{v}$ '=....followed by their vu'+uv') then only accept answers of the form

$$
\left(x^{2}+5\right)^{-1} \times A+2 x \times \pm B x\left(x^{2}+5\right)^{-2}
$$

A1 Correct un simplified answer $\left(x^{2}+5\right)^{-1} \times 2+2 x \times-2 x\left(x^{2}+5\right)^{-2}$

A1 The question asks for $h^{\prime}(\mathrm{x})$ to be put in its simplest form. Hence in this method the terms need to be combined to form a single correct expression.
For a correct simplified answer accept
$h^{\prime}(x)=\frac{10-2 x^{2}}{\left(x^{2}+5\right)^{2}}=\frac{2\left(5-x^{2}\right)}{\left(x^{2}+5\right)^{2}}=\frac{-2\left(x^{2}-5\right)}{\left(x^{2}+5\right)^{2}}=\left(10-2 x^{2}\right)\left(x^{2}+5\right)^{-2}$

Question Number	Scheme	Marks
166.	$9 x^{2}-4=(3 x-2)(3 x+2) \quad$ At any stage	B1
	$\frac{2(3 x+2)}{(3 x-2)(3 x+2)}=\frac{2}{3 x-2}$ Use of a common denominator $\frac{2(3 x+2)(3 x+1)}{\left(9 x^{2}-4\right)(3 x+1)}-\frac{2\left(9 x^{2}-4\right)}{\left(9 x^{2}-4\right)(3 x+1)}$ or $\frac{2(3 x+1)}{(3 x-2)(3 x+1)}-\frac{2(3 x-2)}{(3 x+1)(3 x-2)}$ 	M1

Notes

B1 For factorising $9 x^{2}-4=(3 x-2)(3 x+2)$ using difference of two squares. It can be awarded at any stage of the answer but it must be scored on E pen as the first mark
B1 For eliminating/cancelling out a factor of $(3 x+2)$ at any stage of the answer.
M1 For combining two fractions to form a single fraction with a common denominator. Allow slips on the numerator but at least one must have been adapted. Condone invisible brackets. Accept two separate fractions with the same denominator as shown in the mark scheme. Amongst possible (incorrect) options scoring method marks are

$$
\frac{2(3 x+2)}{\left(9 x^{2}-4\right)(3 x+1)}-\frac{2\left(9 x^{2}-4\right)}{\left(9 x^{2}-4\right)(3 x+1)} \quad \text { Only one numerator adapted, separate fractions }
$$

$\frac{2 \times 3 x+1-2 \times 3 x-2}{(3 x-2)(3 x+1)}$ Invisible brackets, single fraction
A1 $\frac{6}{(3 x-2)(3 x+1)}$
This is not a given answer so you can allow recovery from 'invisible' brackets.

Alternative method

$\frac{2(3 x+2)}{\left(9 x^{2}-4\right)}-\frac{2}{(3 x+1)}=\frac{2(3 x+2)(3 x+1)-2\left(9 x^{2}-4\right)}{\left(9 x^{2}-4\right)(3 x+1)}=\frac{18 x+12}{\left(9 x^{2}-4\right)(3 x+1)}$
has scored $0,0,1,0$ so far

$$
\begin{aligned}
& =\frac{6(3 x+2)}{(3 x+2)(3 x-2)(3 x+1)} \text { is now } 1,1,1,0 \\
& =\frac{6}{(3 x-2)(3 x+1)} \text { and now } 1,1,1,1
\end{aligned}
$$

(a) Note that this appears as M1A1 on EPEN

B1 Shape (inc cusp) with graph in just quadrants 1 and 2. Do not be overly concerned about relative gradients, but the left hand section of the curve should not bend back beyond the cusp
B1 This is independent, and for the curve touching the x-axis at $(-1.5,0)$ and crossing the y-axis at $(0,5)$
(b) Note that this appears as M1A1 on EPEN

B1 For a U shaped curve symmetrical about the y-axis
B1 $(0,5)$ lies on the curve
(c) Note that this appears as M1B1B1 on EPEN
B1 Correct shape- do not be overly concerned about relative gradients. Look for a similar shape to $\mathrm{f}(x)$
B1 Curve crosses the y axis at $(0,10)$. The curve must appear in both quadrants 1 and 2
B1 Curve crosses the x axis at $(-0.5,0)$. The curve must appear in quadrants 3 and 2 .
In all parts accept the following for any co-ordinate. Using $(0,3)$ as an example, accept both $(3,0)$ or 3 written on the y axis (as long as the curve passes through the point)
Special case with (a) and (b) completely correct but the wrong way around mark - $\mathrm{SC}(\mathrm{a}) \mathbf{0 , 1} \mathrm{SC}(\mathrm{b}) 0,1$ Otherwise follow scheme

(a) B1 Range of $\mathrm{f}(x)>2$. Accept $y>2,(2, \infty), \mathrm{f}>2$, as well as 'range is the set of numbers bigger than 2 ' but don't accept $x>2$
(b) M1 For applying the correct order of operations. Look for $e^{\ln x}+2$. Note that $\ln e^{x}+2$ is M0

A1 Simplifies $e^{\ln x}+2$ to $x+2$. Just the answer is acceptable for both marks
(c) M1 Starts with $e^{2 x+3}+2=6$ and proceeds to $e^{2 x+3}=\ldots$
A1 $e^{2 x+3}=4$
M1 Takes \ln 's both sides, $2 x+3=\ln$.. and proceeds to $x=\ldots$.
A1 $x=\frac{\ln 4-3}{2}$ oe. eg $\ln 2-\frac{3}{2}$ Remember to isw any incorrect working after a correct answer
(d) Note that this is marked M1A1A1 on EPEN

M1 Starts with $y=e^{x}+2$ or $x=e^{y}+2$ and attempts to change the subject.
All \ln work must be correct. The 2 must be dealt with first.
Eg. $y=e^{x}+2 \Rightarrow \ln y=x+\ln 2 \Rightarrow x=\ln y-\ln 2$ is M0
A1 $\quad \mathrm{f}^{-1}(x)=\ln (x-2) \quad$ or $\quad \mathrm{y}=\ln (x-2)$ or $\quad \mathrm{y}=\ln |x-2|$ There must be some form of bracket
B1ft Either $x>2$, or follow through on their answer to part (a), provided that it wasn't $y \in \mathfrak{R}$ Do not accept $\mathrm{y}>2$ or $\mathrm{f}^{-1}(x)>2$.
(e) B1 Shape for $\mathrm{y}=\mathrm{e}^{x}$. The graph should only lie in quadrants 1 and 2. It should start out with a gradient that is approx. 0 above the x axis in quadrant 2 and increase in gradient as it moves into quadrant 1 . You should not see a minimum point on the graph.
B1 $(0,3)$ lies on the curve. Accept 3 written on the y axis as long as the point lies on the curve
B1 Shape for $y=\ln x$. The graph should only lie in quadrants 4 and 1. It should start out with gradient that is approx. infinite to the right of the y axis in quadrant 4 and decrease in gradient as it moves into quadrant 1 . You should not see a maximum point. Also with hold this mark if it intersects $\mathrm{y}=\mathrm{e}^{x}$
B1 $(3,0)$ lies on the curve. Accept 3 written on the x axis as long as the point lies on the curve

Condone lack of labels in this part
 Examples

$\xrightarrow{ }$

	Scores 0,1,1,1 Shape for $y=e^{x}$ is incorrect, there is a minimum point on the graph. All other marks an be awarded

(a)

B1 Shape unchanged. The positioning of the curve is not significant for this mark. The right hand section of the curve does not have to cross x axis.
B1 The x - coordinates of P ' and Q ' are -5 and 0 respectively. This is for translating the curve 2 units left. The minimum point Q ' must be on the y axis. Accept if -5 is marked on the x axis for P ' with Q ' on the y axis (marked -12).
B1 The y-coordinates of P' and Q' are 0 and -12 respectively. This is for the stretch $\times 3$ parallel to the y axis. The maximum P' must be on the x axis. Accept if -12 is marked on the y axis for Q ' with P ' on the x axis (marked -5)

B1 The curve below the x axis reflected in the x axis and the curve above the x axis is unchanged. Do not accept if the curve is clearly rounded off with a zero gradient at the x axis but allow small curvature issues. Use the same principles on the lhs- do not accept if this is a cusp.
B1 Both the x - and y-coordinates of $Q^{\prime},(2,4)$ given correctly and associated with the maximum point in the first quadrant. To gain this mark there must be a graph and it must only have one maximum.
Accept as 2 and 4 marked on the correct axes or in the script as long as there is no ambiguity.
B1 Both the x - and y-coordinates of $P^{\prime},(-3,0)$ given correctly and associated with the minimum point in the second quadrant. To gain this mark there must be a graph. Tolerate two cusps if this mark has been lost earlier in the question. Accept ($0,-3$) marked on the correct axis.

Question No		Scheme	Marks
170	(a)	$2 x^{2}+7 x-4=(2 x-1)(x+4)$	B1
		$\frac{3(x+1)}{(2 x-1)(x+4)}-\frac{1}{(x+4)}=\frac{3(x+1)-(2 x-1)}{(2 x-1)(x+4)}$	M1
		$=\frac{x+4}{(2 x-1)(x+4)}$	M1
		$=\frac{1}{2 x-1}$	A1*
	(b)	$y=\frac{1}{2 x-1} \Rightarrow y(2 x-1)=1 \Rightarrow 2 x y-y=1$	
		$2 x y=1+y \Rightarrow x=\frac{1+y}{2 y}$	M1M1
		$y O R f^{-1}(x)=\frac{1+x}{2 x}$	A1
	(c)	x>0	B1 (3)
		1	M1 (1)
	(d)	$\overline{2 \ln (x+1)-1}=\frac{1}{7}$	
		$\ln (x+1)=4$	A1
		$x=e^{4}-1$	M1A1
			12 Marks

Question Number	Scheme		Marks
$173 .$ (a)	$\begin{aligned} & \frac{4 x-1}{2(x-1)}-\frac{3}{2(x-1)(2 x-1)} \\ &=\frac{(4 x-1)(2 x-1)-3}{2(x-1)(2 x-1)} \\ &=\frac{8 x^{2}-6 x-2}{\{2(x-1)(2 x-1)\}} \\ &=\frac{2(x-1)(4 x+1)}{\{2(x-1)(2 x-1)\}} \\ &=\frac{4 x+1}{2 x-1} \end{aligned}$	An attempt to form a single fraction Simplifies to give a correct quadratic numerator over a correct quadratic denominator An attempt to factorise a 3 term quadratic numerator	M1 Al aef M1 A1 (4)
(b)	$\begin{aligned} \mathrm{f}(x) & =\frac{4 x-1}{2(x-1)}-\frac{3}{2(x-1)(2 x-1)}-2, \quad x>1 \\ \mathrm{f}(x) & =\frac{(4 x+1)}{(2 x-1)}-2 \\ & =\frac{(4 x+1)-2(2 x-1)}{(2 x-1)} \\ & =\frac{4 x+1-4 x+2}{(2 x-1)} \\ & =\frac{3}{(2 x-1)} \end{aligned}$	An attempt to form a single fraction Correct result	M1 A1 * (2)

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& Scheme \& \& Marks \\
\hline \begin{tabular}{l}
\[
174 .
\] \\
(a)
\end{tabular} \& \[
\begin{aligned}
\& y=\frac{3-2 x}{x-5} \Rightarrow y(x-5)=3-2 x \\
\& x y-5 y=3-2 x \\
\& \Rightarrow x y+2 x=3+5 y \Rightarrow x(y+2)=3+5 y \\
\& \Rightarrow x=\frac{3+5 y}{y+2} \quad \therefore \mathrm{f}^{-1}(x)=\frac{3+5 x}{x+2}
\end{aligned}
\] \& \begin{tabular}{l}
Attempt to make \(x\) (or swapped \(y\)) the subject \\
Collect \(x\) terms together and factorise.
\[
\frac{3+5 x}{x+2}
\]
\end{tabular} \& A1 oe \\
\hline (b) \& Range of g is \(-9 \leq \mathrm{g}(\mathrm{x}) \leq 4\) or \(-9 \leq y \leq 4\) \& Correct Range \& B1
(1) \\
\hline (c) \& \(g g(2)=g(0)=-6\), from sketch. \& Deduces that \(g(2)\) is 0 . Seen or implied. \& M1

A1
(2)

\hline (d) \& $$
\mathrm{fg}(8)=\mathrm{f}(4)
$$

\[
=\frac{3-4(2)}{4-5}=\frac{-5}{-1}=5

\] \& | Correct order g followed by f |
| :--- |
| 5 | \& M1

A1
(2)

\hline
\end{tabular}

Question Number	Scheme		Marks
(e)(ii)		Correct shape Graph goes through $(\{0\}, 2)$ and $(-6,\{0\})$ which are marked.	B1 B1 (4)
(f)	Domain of g^{-1} is $-9 \leq \mathrm{x} \leq 4$	Either correct answer or a follow through from part (b) answer	B1 $\begin{array}{r} (1) \\ {[13]} \end{array}$

Question Number	Scheme		Marks
177.	$\frac{x+1}{3 x^{2}-3}-\frac{1}{3 x+1}$		
	$=\frac{x+1}{3\left(x^{2}-1\right)}-\frac{1}{3 x+1}$		
	$=\frac{x+1}{3(x+1)(x-1)}-\frac{1}{3 x+1}$	$\begin{aligned} x^{2}-1 & \rightarrow(x+1)(x-1) \text { or } \\ 3 x^{2}-3 & \rightarrow(x+1)(3 x-3) \text { or } \\ 3 x^{2}-3 & \rightarrow(3 x+3)(x-1) \end{aligned}$ seen or implied anywhere in candidate's working.	Award below
	$=\frac{1}{3(x-1)}-\frac{1}{3 x+1}$		
	$=\frac{3 x+1-3(x-1)}{3(x-1)(3 x+1)}$	Attempt to combine.	M1
	or $\frac{3 x+1}{3(x-1)(3 x+1)}-\frac{3(x-1)}{3(x-1)(3 x+1)}$	Correct result.	A1
		Decide to award M1 here!!	M1
		Either $\frac{4}{3(x-1)(3 x+1)}$	
	$=\frac{4}{3(x-1)(3 x+1)}$	or $\frac{\frac{4}{3}}{(x-1)(3 x+1)}$ or $\frac{4}{(3 x-3)(3 x+1)}$	A1 aef
		or $\frac{4}{9 x^{2}-6 x-3}$	
			[4]

Question Number	Scheme		Marks
178.	$y=\ln \|x\|$		
		Right-hand branch in quadrants 4 and 1. Correct shape.	B1
		Left-hand branch in quadrants 2 and 3. Correct shape.	B1
		Completely correct sketch and both $(-1,\{0\})$ and $(1,\{0\})$	B1
			(3)
			[3]

Question Number		Scheme	Marks
180 (a)	$\mathrm{f}(x)=\mathrm{e}^{2 x}+3, x \in \square$		
	$\begin{aligned} & y=\mathrm{e}^{2 x}+3 \Rightarrow y-3=\mathrm{e}^{2 x} \\ & \Rightarrow \ln (y-3)=2 x \\ & \Rightarrow \frac{1}{2} \ln (y-3)=x \end{aligned}$	Attempt to make x (or swapped y) the subject Makes $\mathrm{e}^{2 x}$ the subject and takes \ln of both sides	M1 M1
	Hence $\mathrm{f}^{-1}(x)=\underline{\frac{1}{2} \ln (x-3)}$	$\text { or } \mathrm{f}^{-1}(y)=\frac{1}{2} \ln \ln (y-3) \text { (see appendix) }$	A1 cao
	$\mathrm{f}^{-1}(x)$: Domain: $\underline{x>3}$ or $(3, \infty)$ $\mathrm{g}(x)=\ln (x-1), x \in \square, x>1$	Either $\underline{x>3}$ or $(3, \infty)$ or Domain >3.	B1 (4)
	$\operatorname{fg}(x)=\mathrm{e}^{2 \ln (x-1)}+3 \quad\left\{=(x-1)^{2}+3\right\}$	An attempt to put function g into function f . $\mathrm{e}^{2 \ln (x-1)}+3$ or $(x-1)^{2}+3$ or $x^{2}-2 x+4$.	M1 A1 isw
	$\operatorname{fg}(x)$: Range: $y>3$ or $(\underline{3, \infty})$	Either $\underline{y>3}$ or $\underline{(3, \infty)}$ or Range >3 or $\underline{\operatorname{tg}(x)>3}$.	B1

Question Number	Scheme	Marks
182.	$\left.\begin{array}{rl} \frac{2 x+2}{x^{2}-2 x-3}-\frac{x+1}{x-3} & =\frac{2 x+2}{(x-3)(x+1)}-\frac{x+1}{x-3} \\ & =\frac{2 x+2-(x+1)(x+1)}{(x-3)(x+1)} \\ & =\frac{(x+1)(1-x)}{(x-3)(x+1)} \\ & =\frac{1-x}{x-3} \quad \end{array} \quad \text { Accept }-\frac{x-1}{x-3}, \frac{x-1}{3-x}\right) ~ \$$ Alternative $\begin{aligned} \frac{2 x+2}{x^{2}-2 x-3} & =\frac{2(x+1)}{(x-3)(x+1)}=\frac{2}{x-3} \\ \frac{2}{x-3}-\frac{x+1}{x-3} & =\frac{2-(x+1)}{x-3} \\ & =\frac{1-x}{x-3} \end{aligned}$	M1 A1 M1 A1 (4) M1 A1 M1 A1 (4)

Question Number	Scheme	Marks
188.	$\begin{gathered} x^{2}-1 \begin{array}{\|c} \begin{array}{\|c} 2 x^{4}-3 x^{2}+x+1 \\ 2 x^{4}-2 x^{2} \end{array} \\ \begin{array}{l} -x^{2}+x+1 \\ \frac{-x^{2}+1}{x} \end{array} \\ 2 x^{2}-1+\frac{x}{x^{2}-1} \\ a=2 \text { stated or implied } \\ c=-1 \text { stated or implied } \end{array} \\ a=2, b=0, c=-1, d=1, e=0 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$

Question Number	Scheme	Marks
190.	(a) $\begin{align*} & x=1-2 y^{3} \Rightarrow y=\left(\frac{1-x}{2}\right)^{1 / 3} \text { or } \sqrt[3]{\frac{1-x}{2}} \tag{2}\\ & \mathrm{f}^{-1}: x \mapsto\left(\frac{1-x}{2}\right)^{1 / 3} \end{align*}$ Ignore domain	M1 A1
	(b) $\begin{aligned} \operatorname{gf}(x) & =\frac{3}{1-2 x^{3}}-4 \\ & =\frac{3-4\left(1-2 x^{3}\right)}{1-2 x^{3}} \\ & =\frac{8 x^{3}-1}{1-2 x^{3}} \quad * \\ \text { gf }: x & \mapsto \frac{8 x^{3}-1}{1-2 x^{3}} \end{aligned}$ Ignore domain	M1 A1 M1
	(c) $\begin{gathered} 8 x^{3}-1=0 \\ x=\frac{1}{2} \end{gathered}$ Attempting solution of numerator $=0$ Correct answer and no additional answers	M1 A1 (2)
		[8]

Question Number	Scheme		Marks
191.	$x=2 \sin t, \quad y=1-\cos 2 t \quad\left\{=2 \sin ^{2} t\right\}, \quad-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$		
(a)	$\begin{aligned} y & =1-\cos 2 t=1-\left(1-2 \sin ^{2} t\right) \\ & =2 \sin ^{2} t \end{aligned}$		M1
	So, $y=2\left(\frac{x}{2}\right)^{2}$ or $y=\frac{x^{2}}{2}$ or $y=2-2\left(1-\left(\frac{x}{2}\right)^{2}\right)$ Either $k=2$ or $-2 \leqslant x \leqslant 2$	$y=\frac{x^{2}}{2}$ or equivalent.	A1 cso isw B1
(b)	Range: $0 \leqslant \mathrm{f}(x) \leqslant 2$ or $0 \leqslant y \leqslant 2$ or $0 \leqslant \mathrm{f} \leqslant 2$	See notes	$\text { B1 B1 }{ }^{[3]}$
			$\begin{array}{r} {[2]} \\ 5 \end{array}$

Notes for Question 191

191. (a) M1: Uses the correct double angle formula $\cos 2 t=1-2 \sin ^{2} t$ or $\cos 2 t=2 \cos ^{2} t-1$ or $\cos 2 t=\cos ^{2} t-\sin ^{2} t$ in an attempt to get y in terms of $\sin ^{2} t$ or get y in terms of $\cos ^{2} t$ or get y in terms of $\sin ^{2} t$ and $\cos ^{2} t$. Writing down $y=2 \sin ^{2} t$ is fine for M1.
A1: Achieves $y=\frac{x^{2}}{2}$ or un-simplified equivalents in the form $\boldsymbol{y}=\mathbf{f}(\boldsymbol{x}$). For example: $y=\frac{2 x^{2}}{4} \quad$ or $\quad y=2\left(\frac{x}{2}\right)^{2} \quad$ or $\quad y=2-2\left(1-\left(\frac{x}{2}\right)^{2}\right) \quad$ or $\quad y=1-\frac{4-x^{2}}{4}+\frac{x^{2}}{4}$ and you can ignore subsequent working if a candidate states a correct version of the Cartesian equation. IMPORTANT: Please check working as this result can be fluked from an incorrect method.
Award A0 if there is a $+c$ added to their answer.
B1: Either $k=2$ or a candidate writes down $-2 \leqslant x \leqslant 2$. Note: $-2 \leqslant k \leqslant 2$ unless k stated as 2 is B 0 .
(b)

Note: The values of 0 and/or 2 need to be evaluated in this part
B1: Achieves an inclusive upper or lower limit, using acceptable notation. Eg: $\mathrm{f}(x) \geqslant 0$ or $\mathrm{f}(x) \leqslant 2$
B1: $0 \leqslant \mathrm{f}(x) \leqslant 2$ or $0 \leqslant y \leqslant 2$ or $0 \leqslant \mathrm{f} \leqslant 2$
Special Case: SC: B1B0 for either $0<\mathrm{f}(x)<2$ or $0<\mathrm{f}<2$ or $0<y<2$ or $(0,2)$
Special Case: SC: B1B0 for $0 \leqslant x \leqslant 2$.
IMPORTANT: Note that: Therefore candidates can use either y or f in place of $\mathrm{f}(x)$

Examples: $\quad 0 \leqslant x \leqslant 2$ is SC: B1B0
$x \geqslant 0$ is BOB0
$\mathrm{f}(x)>0$ is BOB0
$x>0$ is B0B0
$0 \geqslant \mathrm{f}(x) \geqslant 2$ is BOB0
$0 \leqslant \mathrm{f}(x)<2$ is B1B0.
$\mathrm{f}(x) \leqslant 2$ is B1B0
$2 \leqslant \mathrm{f}(x) \leqslant 2$ is B0B0
$|\mathrm{f}(x)| \leqslant 2$ is B 1 B 0
$1 \leqslant \mathrm{f}(x) \leqslant 2$ is B1B0
$0 \leqslant \mathrm{f}(x) \leqslant 4$ is B1B0
$0 \leqslant$ Range $\leqslant 2$ is B1B0
$0<$ Range <2 is B0B0.
Range $\leqslant 2$ is B 1 B 0
$[0,2]$ is B1B1
$0<x<2$ is B0B0
$x \leqslant 2$ is B0B0
$\mathrm{f}(x)<2$ is B0B0
$x<2$ is B0B0
$0<\mathrm{f}(x) \leqslant 2$ is B1B0
$\mathrm{f}(x) \geqslant 0$ is B1B0
$\mathrm{f}(x) \geqslant 0$ and $\mathrm{f}(x) \leqslant 2$ is B1B1. Must state AND $\{$ or $\} \cap$
$\mathrm{f}(x) \geqslant 0$ or $\mathrm{f}(x) \leqslant 2$ is B1B0.
$|\mathrm{f}(x)| \geqslant 2$ is B0B0
$1<\mathrm{f}(x)<2$ is BOB0
$0<\mathrm{f}(x)<4$ is B0B0
Range is in between 0 and 2 is B1B0
Range $\geqslant 0$ is B1B0
Range $\geqslant 0$ and Range $\leqslant 2$ is B1B0.
$(0,2)$ is SC B1B0

Aliter 191. (a) Way 2	$\begin{aligned} & y=1-\cos 2 t=1-\left(2 \cos ^{2} t-1\right) \\ & y=2-2 \cos ^{2} t \Rightarrow \cos ^{2} t=\frac{2-y}{2} \Rightarrow 1-\sin ^{2} t=\frac{2-y}{2} \\ & 1-\left(\frac{x}{2}\right)^{2}=\frac{2-y}{2} \\ & y=2-2\left(1-\left(\frac{x}{2}\right)^{2}\right) \end{aligned}$	M1 (Must be in th	(x)).
Aliter 191. (a) Way 3	$x=2 \sin t \Rightarrow t=\sin ^{-1}\left(\frac{x}{2}\right)$ Rearranges to make t the subject So, $y=1-\cos \left(2 \sin ^{-1}\left(\frac{x}{2}\right)\right)$ and substitutes the result into y. $y=1-\cos \left(2 \sin ^{-1}\left(\frac{x}{2}\right)\right)$		M1 A1 $\mathbf{0 e}$
Aliter 191. (a) Way 4	$y=1-\cos 2 t \Rightarrow \cos 2 t=1-y \Rightarrow t=\frac{1}{2} \cos ^{-1}(1-y)$ So, $x= \pm 2 \sin \left(\frac{1}{2} \cos ^{-1}(1-y)\right)$ Rearranges to make t the subject and substitutes the result into y. So, $y=1-\cos \left(2 \sin ^{-1}\left(\frac{x}{2}\right)\right)$ $y=1-\cos \left(2 \sin ^{-1}\left(\frac{x}{2}\right)\right)$		M1 A1 oe
Aliter 191. (a) Way 5	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sin t=x \Rightarrow y=\frac{1}{2} x^{2}+c$ Eg: when eg: $t=0\left(\mathrm{nb}:-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}\right)$, $x=0, y=1-1=0 \Rightarrow c=0 \Rightarrow y=\frac{1}{2} x^{2}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=x \Rightarrow y=\frac{1}{2} x^{2}+c$ Full method of finding $y=\frac{1}{2} x^{2}$ using a value of $t:-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$ Note: $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sin t=x \Rightarrow y=\frac{1}{2} x^{2}$, with no attempt to find c is M1A0.		M1 A1

$\mathbf{1}^{\text {st }} \mathbf{B 1}$: Their constant term must be equal to 3 for this mark.
$2^{\text {nd }} \mathbf{B 1}$ (M1 on epen): Forming a correct identity. This can be implied by later working.
M1 (A1 on epen): Attempts to find the value of either one of their B or their C from their identity. This can be achieved by either substituting values into their identity or comparing coefficients and solving the resulting equations simultaneously.
A1: Correct values for their B and their C, which are found using a correct identity.
Note : $\frac{9 x^{2}+20 x-10}{(x+2)(3 x-1)} \equiv \frac{A}{(x+2)}+\frac{B}{(3 x-1)}$, leading to $9 x^{2}+20 x-10 \equiv A(3 x-1)+B(x+2)$, leading to $A=2$ and $B=-1$ will gain a maximum of B0B0M1A0
193. ctd

Note: You can imply the $2^{\text {nd }}$ B1 from either $\frac{9 x^{2}+20 x-10}{(x+2)(3 x-1)} \equiv \frac{A(x+2)(3 x-1)+B(3 x-1)+C(x+2)}{(x+2)(3 x-1)}$

$$
\text { or } \frac{5 x-4}{(x+2)(3 x-1)} \equiv \frac{B(3 x-1)+C(x+2)}{(x+2)(3 x-1)}
$$

Alternative Method 1: Initially dividing by ($\mathrm{x}+2$)

$$
\frac{9 x^{2}+20 x-10}{"(x+2) "(3 x-1)} \equiv \frac{9 x+2}{(3 x-1)}-\frac{14}{(x+2)(3 x-1)}
$$

$$
\equiv 3+\frac{5}{(3 x-1)}-\frac{14}{(x+2)(3 x-1)}
$$

B1: their constant term $=3$
So, $\frac{-14}{(x+2)(3 x-1)} \equiv \frac{B}{(x+2)}+\frac{C}{(3 x-1)}$
$-14 \equiv B(3 x-1)+C(x+2)$
B1: Forming a correct identity.
$\Rightarrow B=2, C=-6$
So, $\frac{9 x^{2}+20 x-10}{(x+2)(3 x-1)} \equiv 3+\frac{5}{(3 x-1)}+\frac{2}{(x+2)}-\frac{6}{(3 x-1)}$
and $\frac{9 x^{2}+20 x-10}{(x+2)(3 x-1)} \equiv 3+\frac{2}{(x+2)}-\frac{1}{(3 x-1)}$
M1: Attempts to find either one of their B or their C from their identity.

Alternative Method 2: Initially dividing by ($\mathbf{3 x} \mathbf{- 1)}$

$$
\begin{aligned}
\frac{9 x^{2}+20 x-10}{(x+2)^{\prime}(3 x-1) "} & \equiv \frac{3 x+\frac{23}{3}}{(x+2)}-\frac{\frac{7}{3}}{(x+2)(3 x-1)} \\
& \equiv 3+\frac{\frac{5}{3}}{(x+2)}-\frac{\frac{7}{3}}{(x+2)(3 x-1)}
\end{aligned}
$$

B1: their constant term = 3
So, $\frac{-\frac{7}{3}}{(x+2)(3 x-1)} \equiv \frac{B}{(x+2)}+\frac{C}{(3 x-1)}$
$-\frac{7}{3} \equiv B(3 x-1)+C(x+2)$
B1: Forming a correct identity.
$\Rightarrow B=\frac{1}{3}, C=-1$
M1: Attempts to find either one of their B or their C
So, $\frac{9 x^{2}+20 x-10}{(x+2)(3 x-1)} \equiv 3+\frac{\frac{5}{3}}{(x+2)}+\frac{\frac{1}{3}}{(x+2)}-\frac{1}{(3 x-1)}$
and $\frac{9 x^{2}+20 x-10}{(x+2)(3 x-1)} \equiv 3+\frac{2}{(x+2)}-\frac{1}{(3 x-1)}$
A1: Correct answer in partial fractions.

Question Number	Scheme		Marks	
194.	$9 x^{2}=A(x-1)(2 x+1)+B(2 x+1)+C(x-1)^{2}$		B1	
	$x \rightarrow 1 \quad 9=3 B \Rightarrow B=3$		M1	
	$x \rightarrow-\frac{1}{2} \quad \frac{9}{4}=\left(-\frac{3}{2}\right)^{2} C \Rightarrow C=1$	Any two of A, B, C	A1	
	x^{2} terms $\quad 9=2 A+C \Rightarrow A=4$	All three correct	A1	(4)
	Alternatives for finding A.			
	x terms $\quad 0=-A+2 B-2 C \Rightarrow A=4$			
	Constant terms $0=-A+B+C \Rightarrow A=4$			

Question Number	Scheme		Marks
197. (a)	$x=\ln (t+2), \quad y=\frac{1}{t+1}$		
	$\mathrm{e}^{x}=t+2 \Rightarrow t=\mathrm{e}^{x}-2$	Attempt to make $t=\ldots$ the subject giving $t=\mathrm{e}^{x}-2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$y=\frac{1}{\mathrm{e}^{x}-2+1} \Rightarrow y=\frac{1}{\mathrm{e}^{x}-1}$	Eliminates t by substituting in y giving $y=\frac{1}{\mathrm{e}^{x}-1}$	dM1 A1
			[4]
Aliter 197. (a) Way 2	$\begin{aligned} & t+1=\frac{1}{y} \Rightarrow t=\frac{1}{y}-1 \text { or } t=\frac{1-y}{y} \\ & y(t+1)=1 \Rightarrow y t+y=1 \Rightarrow y t=1-y \Rightarrow t=\frac{1-y}{y} \end{aligned}$	Attempt to make $t=\ldots$ the subject Giving either $t=\frac{1}{y}-1$ or $t=\frac{1-y}{y}$	M1 A1
	$x=\ln \left(\frac{1}{y}-1+2\right) \quad \text { or } \quad x=\ln \left(\frac{1-y}{y}+2\right)$	Eliminates t by substituting in x	dM1
	$x=\ln \left(\frac{1}{y}+1\right)$		
	$e^{x}=\frac{1}{y}+1$		
	$e^{x}-1=\frac{1}{y}$		
	$y=\frac{1}{\mathrm{e}^{x}-1}$	giving $y=\frac{1}{\mathrm{e}^{x}-1}$	A1
(b)	Domain: $\underline{x>0}$	$\underline{x>0}$ or just >0	B1
			[1]
			5 marks

Question Number	Scheme		Marks
Aliter 197. (a) Way 3	$\mathrm{e}^{x}=t+2 \Rightarrow t+1=\mathrm{e}^{x}-1$	Attempt to make $t+1=\ldots$ the subject giving $t+1=\mathrm{e}^{x}-1$	M1 A1
Aliter 197. (a) Way 4	$y=\frac{1}{t+1} \Rightarrow y=\frac{1}{\mathrm{e}^{x}-1}$	Eliminates t by substituting in y giving $y=\frac{1}{\mathrm{e}^{x}-1}$	$\begin{aligned} & \mathrm{dM} 1 \\ & \mathrm{~A} 1 \end{aligned}$
	$t+1=\frac{1}{y} \Rightarrow t+2=\frac{1}{y}+1 \text { or } t+2=\frac{1+y}{y}$	Attempt to make $t+2=\ldots$ the subject Either $t+2=\frac{1}{y}+1$ or $t+2=\frac{1+y}{y}$	M1 A1
	$\begin{aligned} & x=\ln \left(\frac{1}{y}+1\right) \quad \text { or } \quad x=\ln \left(\frac{1+y}{y}\right) \\ & x=\ln \left(\frac{1}{y}+1\right) \end{aligned}$	Eliminates t by substituting in x	dM1
	$\begin{aligned} & e^{x}=\frac{1}{y}+1 \Rightarrow e^{x}-1=\frac{1}{y} \\ & y=\frac{1}{\mathrm{e}^{x}-1} \end{aligned}$	giving $y=\frac{1}{\mathrm{e}^{x}-1}$	A1
			[4]

