EXPERT TUITION

Maths Questions By Topic:

Algebra & Functions Mark Scheme

A-Level Edexcel

ر*ب* 0207 060 4494

www.expert-tuition.co.uk

💷 online.expert-tuition.co.uk

⊠ enquiries@expert-tuition.co.uk

The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents
<u>New Spec</u>
Paper 1 Page 1
Paper 2 Page 47
<u>Old Spec</u>
Core 1 Page 69
Core 2 Page 154
Core 3 Page 169
Core 4 Page 241

Question	Scheme	Marks	AOs
1	$f(1) = a(1)^{3} + 10(1)^{2} - 3a(1) - 4 = 0$	M1	3.1a
	$6-2a=0 \Rightarrow a=\dots$	M1	1.1b
	<i>a</i> = 3	A1	1.1b
		(3)	
		(3	marks)
	Notes		

Main method seen:

M1: Attempts f (1) = 0 to set up an equation in *a* It is implied by a+10-3a-4=0

Condone a slip but attempting f(-1) = 0 is M0

M1: Solves a linear equation in a.

Using the main method it is dependent upon having set $f(\pm 1) = 0$

It is implied by a solution of $\pm a \pm 10 \pm 3a \pm 4 = 0$.

Don't be concerned about the mechanics of the solution.

A1: a = 3 (following correct work)

Answers without working scores 0 marks. The method must be made clear. Candidates cannot guess. However if a candidate states for example, when a = 3, $f(x) = 3x^3 + 10x^2 - 9x - 4$ and shows that (x-1) is a factor of this f(x) by an allowable method, they should be awarded M1 M1 A1

E.g. 1: $3x^3 + 10x^2 - 9x - 4 = (x - 1)(3x^2 + 13x + 4)$ Hence a = 3

E.g. 2: $f(x) = 3x^3 + 10x^2 - 9x - 4$, f(1) = 3 + 10 - 9 - 4 = 0 Hence a = 3

The solutions via this method must end with the value for a to score the A1

.....

Other methods are available. They are more difficult to determine what the candidate is doing. Please send to review if you are uncertain

.....

It is important that a correct method is attempted so look at how the two M's are scored

Amongst others are:

	ax^2	(10+a)x	4 Al	t (1) by inspection which may be seen in a table/g
x	ax^3	$(10+a)x^2$	4x	
-1	$-ax^2$	-(10+a)x	-4	

$$ax^{3} + 10x^{2} - 3ax - 4 = (x - 1)(ax^{2} + (10 + a)x + 4)$$
 and sets terms in x equal
 $-3a = -(10 + a) + 4 \Longrightarrow 2a = 6 \Longrightarrow a = 3$

M1: This method is implied by a **correct** equation, usually -3a = -(10 + a) + 4

M1: Attempts to find the quadratic factor which must be of the form $ax^2 + g(a)x \pm 4$ and then forms and solves a linear equation formed by linking the coefficients or terms in x

.....

Alt (2) By division:
$$x-1$$

 $x-1$
 $x-1$
 $x-1$
 $x^{2} + (\pm 10 \pm a)x + (10 - 2a)$
 $ax^{3} + 10x^{2} - 3ax - 4$
 $ax^{3} - ax^{2}$
 $(10+a)x^{2} - 3ax$
 $(10+a)x^{2} - (10+a)x$
 $(-2a+10)x$

- M1: This method is implied by a **correct** equation, usually -10 + 2a = -4
- M1: Attempts to divide with quotient of $ax^2 + (\pm 10 \pm a)x + h(a)$ and then forms and solves a linear equation in *a* formed by setting the remainder = 0.

Question	Scheme	Marks	AOs
2(a)	$f(x) = (x-2)^2 \pm$	M1	1.2
	$f(x) = (x-2)^2 + 1$	A1	1.1b
		(2)	
(b)(i)	P = (0, 5)	B1	1.1b
(b)(ii)	Q = (2, 1)	B1ft	1.1b
		(2)	
		(4)	marks)
	Notes		

M1: Achieves $(x-2)^2 \pm \dots$ or states a = -2

A1: Correct expression $(x-2)^2 + 1$ ISW after sight of this

Condone a = -2 and b = 1. Condone $(x-2)^2 + 1 = 0$

(b)

(i) B1: Correct coordinates for *P*. Allow to be expressed x = 0, y = 5(ii) B1ft: Correct coordinates for *Q*. Allow to be expressed x = 2, y = 1 (Score for the correct answer or follow through their part (a) so allow (-a, b) where *a* and *b* are numeric) Score in any order if they state P = (0, 5) and Q = (2, 1)Allow part (b) to be awarded from a sketch. So award First B1 from a sketch crossing the *y*-axis at 5 Second B1 from a sketch with minimum at (2, 1)

Question	Scheme	Marks	AOs
3	f'(x) = 2x + 4x - 4	M1	1.1b
	$f'(x) = 2x + \frac{4x - 4}{2x^2 - 4x + 5}$	A1	1.1b
	$2x + \frac{4x - 4}{2x^2 - 4x + 5} = 0 \Longrightarrow 2x(2x^2 - 4x + 5) + 4x - 4 = 0$	dM1	1.1b
	$2x^3 - 4x^2 + 7x - 2 = 0 *$	A1*	2.1
		(4)	

M1: Differentiates $\ln(2x^2 - 4x + 5)$ to obtain $\frac{g(x)}{2x^2 - 4x + 5}$ where g(x) could be 1

A1: For $f'(x) = 2x + \frac{4x - 4}{2x^2 - 4x + 5}$

dM1: Sets their $f'(x) = ax + \frac{g(x)}{2x^2 - 4x + 5} = 0$ and uses "**correct**" algebra, condoning slips, to obtain a cubic equation. E.g Look for $ax(2x^2 - 4x + 5) \pm g(x) = 0$ o.e., condoning slips, followed by some attempt to simplify

A1*: Achieves 2 $x^3 - 4x^2 + 7x - 2 = 0$ with no errors. (The dM1 mark must have been awarded)

Question	Scheme	Marks	AOs
4	Finds critical values $x^2 - x > 20 \Rightarrow x^2 - x - 20 > 0 \Rightarrow x = (5, -4)$	M1	1.1b
	Chooses outside region for their values Eg. $x > 5$, $x < -4$	M1	1.1b
	Presents solution in set notation $\{x: x < -4\} \cup \{x: x > 5\}$ oe	A1	2.5
		(3)	
		(3	marks)
allow M1: Choo	appear to find the critical values using an algebraic method. Condone shall method should be used and two critical values should be found sets the outside region for their critical values. This may appear in in as $5 < x < -4$		
	t accept $\{x < -4\} \cup \{x : x > 5\}$ Accept $\{x < -4\} \cup \{x : x > 5\}$ Accept $\{x < -4, x > 5\}$	$4\cup x>5\}.$	
	ere is a contradiction of their solution on different lines of working of working and mark what appears to be their final answer.	lo not pena	lise

EXPERT TUITION

Question	Scheme	Marks	AOs
5 (a)	$3x^{3} - 17x^{2} - 6x = 0 \Longrightarrow x(3x^{2} - 17x - 6) = 0$	M1	1.1a
	$\Rightarrow x(3x+1)(x-6) = 0$	dM1	1.1b
	$\Rightarrow x = 0, -\frac{1}{3}, 6$	A1	1.1b
		(3)	
(b)	Attempts to solve $(y-2)^2 = n$ where <i>n</i> is any solution0 to (a)	M1	2.2a
	Two of 2, $2 \pm \sqrt{6}$	Alft	1.1b
	All three of 2, $2 \pm \sqrt{6}$	A1	2.1
		(3)	
		(6	marks)

Notes

(a)

M1: Factorises out or cancels by *x* to form a quadratic equation.

dM1: Scored for an attempt to find x. May be awarded for factorisation of the quadratic or use of the quadratic formula.

A1:
$$x = 0, -\frac{1}{3}, 6$$
 and no extras

(b)

- M1: Attempts to solve $(y-2)^2 = n$ where *n* is any solution ...0 to (a). At least one stage of working must be seen to award this mark. Eg $(y-2)^2 = 0 \Rightarrow y = 2$
- A1ft: Two of 2, $2 \pm \sqrt{6}$ but follow through on $(y-2)^2 = n \Rightarrow y = 2 \pm \sqrt{n}$ where *n* is a positive solution to part (a). (Provided M1 has been scored)

A1: All three of 2, $2 \pm \sqrt{6}$ and no extra solutions. (Provided M1A1 has been scored)

(a) Alternar and b	$f(x) = -3x^{2} + 12x + 8 = -3(x \pm 2)^{2} +$ = -3(x-2)^{2} + = -3(x-2)^{2} + 20 Coordinates of $M = (2, 20)$	M1 A1 (3) B1ft B1ft (2)	1.1b 1.1b 1.1b 1.1b 2.2a
(b) Notes: (a) M1: Attemp Alternar and b	$=-3(x-2)^2+20$	A1 (3) B1ft B1ft	1.1b 1.1b
(b) Notes: (a) M1: Attemp Alternar and b		(3) B1ft B1ft	1.1b
(b) Notes: (a) M1: Attemp Alternar and b	Coordinates of $M = (2, 20)$	B1ft B1ft	
(b) Notes: (a) M1: Attemp Alterna and b	Coordinates of $M = (2, 20)$	B1ft	
(a) M1: Attemp Alternar and b		(2)	
(a) M1: Attemp Alterna and b		· · · · · ·	
X	pts to take out a common factor and complete the square. Award for – atively attempt to compare $-3x^2 + 12x + 8$ to $ax^2 + 2abx + ab^2 + c$ to solve the form $-3(x-2)^2 +$ or via comparison finds $a = -3, b = -2$ $(x-2)^2 + 20$. ,	
(b)B1ft: One corrB1ft: Correct of			

Question	Scheme	Marks	AOs
7 (a) (i)	Uses $\frac{dy}{dx} = -3$ at $x = 2 \implies 12a + 60 - 39 = -3$	M1	1.1b
	Solves a correct equation and shows one correct intermediate step $12a+60-39 = -3 \Rightarrow 12a = -24 \Rightarrow a = -2*$	A1*	2.1
(a) (ii)	Uses the fact that (2,10) lies on C 10 = 8 a + 60 - 78 + b	M1	3.1a
	Subs $a = -2$ into $10 = 8a + 60 - 78 + b \Longrightarrow b = 44$	A1	1.1b
		(4)	
(b)	$f(x) = -2x^3 + 15x^2 - 39x + 44 \Longrightarrow f'(x) = -6x^2 + 30x - 39$	B1	1.1b
	Attempts to show that $-6x^2 + 30x - 39$ has no roots Eg. calculates $b^2 - 4ac = 30^2 - 4 \times -6 \times -39 = -36$	M1	3.1a
	States that as $f'(x) \neq 0 \Rightarrow$ hence $f(x)$ has no turning points *	A1*	2.4
		(3)	
(c)	$-2x^{3} + 15x^{2} - 39x + 44 \equiv (x - 4)(-2x^{2} + 7x - 11)$	M1 A1	1.1b 1.1b
		(2)	
(d)	Deduces either intercept. $(0, 44)$ or $(20, 0)$	B1 ft	1.1b
	Deduces both intercepts $(0,44)$ and $(20,0)$	B1 ft	2.2a
		(2)	

(11 marks)

Notes

(a)(i)

M1: Attempts to use $\frac{dy}{dx} = -3$ at x = 2 to form an equation in *a*. Condone slips but expect to see two of the powers reduced correctly

A1*: Correct differentiation with one correct intermediate step before a = -2

(a)(ii)

M1: Attempts to use the fact that (2,10) lies on *C* by setting up an equation in *a* and *b* with a = -2 leading to b = ...

A1: *b* = 44

(b)

B1: $f'(x) = -6x^2 + 30x - 39$ oe

M1: Correct attempt to show that " $-6x^2 + 30x - 39$ " has no roots. This could involve an attempt at

- finding the numerical value of $b^2 4ac$
- finding the roots of $-6x^2 + 30x 39$ using the quadratic formula (or their calculator)
- completing the square for $-6x^2 + 30x 39$

A1*: A fully correct method with reason and conclusion. Eg as $b^2 - 4ac = -36 < 0$, $f'(x) \neq 0$ meaning that no stationary points exist

(c)

M1: For an attempt at division (seen or implied) Eg $-2x^3 + 15x^2 - 39x + b \equiv (x-4)\left(-2x^2...\pm\frac{b}{4}\right)$ A1: $(x-4)\left(-2x^2 + 7x - 11\right)$ Sight of the quadratic with no incorrect working seen can score both marks.

(**d**)

See scheme. You can follow through on their value for b

Question	Scheme	Marks	AOs
8 (a)	Either attempts $\frac{3x-7}{x-2} = 7 \implies x =$ Or attempts $f^{-1}(x)$ and substitutes in $x = 7$	M1	3.1a
	$\frac{7}{4}$ oe	A1	1.1b
		(2)	
(b)	Attempts $\text{ff}(x) = \frac{3 \times \left(\frac{3x-7}{x-2}\right) - 7}{\left(\frac{3x-7}{x-2}\right) - 2} = \frac{3 \times (3x-7) - 7(x-2)}{3x-7-2(x-2)}$	M1, dM1	1.1b 1.1b
	$=\frac{2x-7}{x-3}$	A1	2.1
		(3)	
		((5 marks)
Notes:			

M1: For either attempting to solve $\frac{3x-7}{x-2} = 7$. Look for an attempt to multiply by the (x-2) leading to a value for *x*.

Or score for substituting in x = 7 in f⁻¹(x). FYI f⁻¹(x) = $\frac{2x-7}{x-3}$

The method for finding $f^{-1}(x)$ should be sound, but you can condone slips.

A1:
$$\frac{7}{4}$$

M1: For an attempt at fully substituting $\frac{3x-7}{x-2}$ into f(x). Condone slips but the expression must

have a correct form. E.g.
$$\frac{3 \times \left(\frac{*-*}{*-*}\right) - a}{\left(\frac{*-*}{*-*}\right) - b}$$
 where *a* and *b* are positive constants.

dM1: Attempts to multiply **all** terms on the numerator and denominator by (x-2) to create a fraction $\frac{P(x)}{Q(x)}$

where both P(x) and Q(x) are linear expressions. Condone $\frac{P(x)}{Q(x)} \times \frac{x-2}{x-2}$

A1: Reaches $\frac{2x-7}{x-3}$ via careful and accurate work. Implied by a = 2, b = -7 following correct work. Methods involving $\frac{3x-7}{x-3} = a + \frac{b}{x-3}$ may be seen. The scheme can be applied in a similar way.

Methods involving $\frac{3x-7}{x-2} \equiv a + \frac{b}{x-2}$ may be seen. The scheme can be applied in a similar way FYI $\frac{3x-7}{x-2} \equiv 3 - \frac{1}{x-2}$

Question	Scheme	Marks	AOs
9	Attempts equation of line Eg Substitutes $(-2,13)$ into $y = mx + 25$ and finds m	M1	1.1b
	Equation of <i>l</i> is $y = 6x + 25$	A1	1.1b
	Attempts equation of <i>C</i> Eg Attempts to use the intercept $(0,25)$ within the equation $y = a(x\pm 2)^2 + 13$, in order to find <i>a</i>	M1	3.1a
	Equation of <i>C</i> is $y = 3(x+2)^2 + 13$ or $y = 3x^2 + 12x + 25$	A1	1.1b
	Region <i>R</i> is defined by $3(x+2)^2 + 13 < y < 6x + 25$ o.e.	B1ft	2.5
		(5)	
			(5 marks)
Notes:			

The first two marks are awarded for finding the equation of the line

M1: Uses the information in an attempt to find an equation for the line *l*.

E.g. Attempt using two points: Finds $m = \pm \frac{25-13}{2}$ and uses of one of the points in their y = mx + c or equivalent to find *c*. Alternatively uses the intercept as shown in main scheme.

A1: y = 6x + 25 seen or implied. This alone scores the first two marks. Do not accept l = 6x + 25It must be in the form y = ... but the correct equation can be implied from an inequality. E.g. < y < 6x + 25

The next two marks are awarded for finding the equation of the curve

- M1: A complete method to find the constant *a* in $y = a(x\pm 2)^2 + 13$ or the constants *a*, *b* in $y = ax^2 + bx + 25$. An alternative to the main scheme is deducing equation is of the form $y = ax^2 + bx + 25$ and setting and solving a pair of simultaneous equations in *a* and *b* using the point (-2, 13) the gradient being 0 at x = -2. Condone slips. Implied by $C = 3x^2 + 12x + 25$ or $3x^2 + 12x + 25$ FYI the correct equations are 13 = 4a - 2b + 25(2a - b = -6) and -4a + b = 0
- A1: $y = 3(x+2)^2 + 13$ or equivalent such as $y = 3x^2 + 12x + 25$, $f(x) = 3(x+2)^2 + 13$. Do not accept $C = 3x^2 + 12x + 25$ or just $3x^2 + 12x + 25$ for the A1 but may be implied from an inequality or from an attempt at the area, E.g. $\int 3x^2 + 12x + 25 \, dx$
- **B1ft:** Fully defines the region *R*. Follow through on their equations for *l* and *C*.

Allow strict or non -strict inequalities as long as they are used consistently.

E.g. Allow for example " $3(x+2)^2 + 13 < y < 6x + 25$ " " $3(x+2)^2 + 13 \le y \le 6x + 25$ "

Allow the inequalities to be given separately, e.g. y < 6x + 25, $y > 3(x + 2)^2 + 13$. Set notation may be used so

 $\{(x, y): y > 3(x+2)^2 + 13\} \cap \{(x, y): y < 6x+25\}$ is fine but condone with or without any of $(x, y) \leftrightarrow y \leftrightarrow x$

Incorrect examples include "y < 6x + 25 or $y > 3(x+2)^2 + 13$ ", $\{(x, y): y > 3(x+2)^2 + 13\} \cup \{(x, y): y < 6x + 25\}$

Values of x could be included but they must be correct. So $3(x+2)^2 + 13 < y < 6x + 25$, x < 0 is fine If there are multiple solutions mark the final one.

Question	Scheme	Marks	AOs
10(a)	$f(x) = 4(x^2 - 2)e^{-2x}$		
	Differentiates to $e^{-2x} \times 8x + 4(x^2 - 2) \times -2e^{-2x}$	M1 A1	1.1b 1.1b
	$f'(x) = 8e^{-2x} \left\{ x - \left(x^2 - 2\right) \right\} = 8\left(2 + x - x^2\right)e^{-2x} *$	A1*	2.1
		(3)	
(b)	States roots of $f'(x) = 0$ $x = -1, 2$	B1	1.1b
	Substitutes one <i>x</i> value to find a <i>y</i> value	M1	1.1b
	Stationary points are $(-1, -4e^2)$ and $(2, 8e^{-4})$	A1	1.1b
		(3)	
(c)	(i) Range $\left[-8e^2,\infty\right)$ o.e. such as $g(x) \ge -8e^2$	B1ft	2.5
	 (ii) For Either attempting to find 2f (0) - 3 = 2×-8-3 = (-19) and identifying this as the lower bound Or attempting to find 2×"8e⁻⁴ "-3 and identifying this as the upper bound 	M1	3.1a
	Range $[-19, 16e^{-4} - 3]$	A1	1.1b
		(3)	
		1	

M1: Attempts the product rule and uses $e^{-2x} \rightarrow ke^{-2x}$, $k \neq 0$

If candidate states $u = 4(x^2 - 2), v = e^{-2x}$ with $u' = ..., v' = ...e^{-2x}$ it can be implied by their vu' + uv'If they just write down an answer without working award for $f'(x) = pxe^{-2x} \pm q(x^2 - 2)e^{-2x}$

They may multiply out first $f(x) = 4x^2e^{-2x} - 8e^{-2x}$. Apply in the same way condoning slips

Alternatively attempts the quotient rule on $f(x) = \frac{u}{v} = \frac{4(x^2 - 2)}{e^{2x}}$ with $v' = ke^{2x}$ and $f'(x) = \frac{vu' - uv'}{v^2}$ A1: A correct f'(x) which may be unsimplified.

Via the quotient rule you can award for $f'(x) = \frac{8xe^{2x} - 8(x^2 - 2)e^{2x}}{e^{4x}}$ o.e.

A1*: Proceeds correctly to given answer showing all necessary steps.

The f'(x) or $\frac{dy}{dx}$ must be present at some point in the solution

This is a "show that" question and there must not be any errors. All bracketing must be correct. Allow a candidate to move from the **simplified** unfactorised answer of $f'(x) = 8xe^{-2x} - 8(x^2 - 2)e^{-2x}$

to the given answer in one step.

Do not allow it from an **unsimplified** $f'(x) = 4 \times 2xe^{-2x} + 4(x^2 - 2) \times -2e^{-2x}$

Allow the expression / bracketed expression to be written in a different order. So, for example, $8(x-x^2+2)e^{-2x}$ is OK

(b)

B1: States or implies x = -1, 2 (as the roots of f'(x) = 0)

M1: Substitutes one x value of their solution to f'(x) = 0 in f(x) to find a y value.

Allow decimals here (3sf). FYI, to 3 sf, $-4e^2 = -29.6$ and $8e^{-4} = 0.147$

Some candidates just write down the x coordinates but then go on in part (c) to find the ranges using the y coordinates. Allow this mark to be scored from work in part (c)

A1: Obtains $(-1, -4e^2)$ and $(2, 8e^{-4})$ as the stationary points. This must be scored in (b). Remember to isw

after a correct answer. Allow these to be written separately. E.g. x = -1, $y = -4e^{2}$

Extra solutions, e.g. from x = 0 will be penalised on this mark.

(c)(i)

B1ft: For a correct range written using correct notation.

Follow through on 2 \times their minimum "y" value from part (b), providing it is negative. Condone a decimal answer if this is consistent with their answer in (b) to 3sf or better.

Examples of correct responses are $[-8e^2,\infty)$, $g \ge -8e^2$, $y \ge -8e^2$, $\{q \in \mathbb{R}, q \ge -8e^2\}$

(c)(ii)

M1: See main scheme. Follow through on $2 \times$ their "8e⁻⁴"-3 for the upper bound.

A1: Range $\left[-19, 16e^{-4} - 3\right]$ o.e. such as $-19 \le y \le 16e^{-4} - 3$ but must be exact

Question	Scheme	Marks	AOs
11	Attempts to differentiate $x^n \rightarrow x^{n-1}$ seen once	M1	1.1b
	$y = 2x^{3} - 4x + 5 \Longrightarrow \frac{dy}{dx} = 6x^{2} - 4$	A1	1.1b
	For substituting $x = 2$ into their $\frac{dy}{dx} = 6x^2 - 4$	dM1	1.1b
	For a correct method of finding a tangent at $P(2,13)$. Score for $y-13 = "20"(x-2)$	ddM1	1.1b
	y = 20x - 27	A1	1.1b
		(5)	
		(5	5 marks)

Notes

M1: Attempts to differentiate
$$x^n \to x^{n-1}$$
 seen once. Score for $x^3 \to x^2$ or $\pm 4x \to 4$ or $\pm 5 \to 0$

A1:
$$\left(\frac{dy}{dx}\right) = 6x^2 - 4$$
 which may be unsimplified $6x^2 - 4 + C$ is A0

dM1: Substitutes x = 2 into their $\frac{dy}{dx}$. The first M must have been awarded.

Score for sight of embedded values, or sight of " $\frac{dy}{dx}$ at x = 2 is" or a correct follow through. Note that 20 on its own is not enough as this can be done on a calculator.

ddM1: For a correct method of finding a tangent at P(2,13). Score for y-13 = "20"(x-2)It is dependent upon both previous M's.

If the form y = mx + c is used they must proceed as far as c = ...

A1: Completely correct y = 20x - 27 (and in this form)

Question	Scheme	Marks	AOs
12 (i)	$x\sqrt{2} - \sqrt{18} = x \Longrightarrow x\left(\sqrt{2} - 1\right) = \sqrt{18} \Longrightarrow x = \frac{\sqrt{18}}{\sqrt{2} - 1}$	M1	1.1b
	$\Rightarrow x = \frac{\sqrt{18}}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1}$	dM1	3.1a
	$x = \frac{\sqrt{18}\left(\sqrt{2} + 1\right)}{1} = 6 + 3\sqrt{2}$	A1	1.1b
		(3)	
(ii)	$4^{3x-2} = \frac{1}{2\sqrt{2}} \Longrightarrow 2^{6x-4} = 2^{-\frac{3}{2}}$	M1	2.5
	$6x - 4 = -\frac{3}{2} \Longrightarrow x = \dots$	dM1	1.1b
	$x = \frac{5}{12}$	A1	1.1b
		(3)	
		(6	marks)

Notes

(i)

M1: Combines the terms in *x*, factorises and divides to find *x*. Condone sign slips and ignore any attempts to simplify $\sqrt{18}$

Alternatively squares both sides $x\sqrt{2} - \sqrt{18} = x \Longrightarrow 2x^2 - 12x + 18 = x^2$

- **dM1:** Scored for a complete method to find *x*. In the main scheme it is for making *x* the subject and then multiplying both numerator and denominator by $\sqrt{2} + 1$ In the alternative it is for squaring both sides to produce a 3TQ and then factorising their quadratic equation to find *x*. (usual rules apply for solving quadratics)
- A1: $x = 6 + 3\sqrt{2}$ only following a correct intermediate line. Allow $\frac{6+3\sqrt{2}}{1}$ as an intermediate line. In the alternative method the $6-3\sqrt{2}$ must be discarded.

(ii)

M1: Uses correct mathematical notation and attempts to set both sides as powers of 2 or 4. Eg $2^{ax+b} = 2^c$ or $4^{dx+e} = 4^f$ is sufficient for this mark. Alternatively uses logs (base 2 or 4) to get a linear equation in x. $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow \log_2 4^{3x-2} = \log_2 \frac{1}{2\sqrt{2}} \Rightarrow 2(3x-2) = \log_2 \frac{1}{2\sqrt{2}}$. Or $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow 3x - 2 = \log_4 \frac{1}{2\sqrt{2}}$ Or $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow 4^{3x} = 4\sqrt{2} \Rightarrow 3x = \log_4 4\sqrt{2}$

dM1: Scored for a complete method to find *x*.

Scored for setting the indices of 2 or 4 equal to each other and then solving to find x. There must be an attempt on both sides.

You can condone slips for this mark Eg bracketing errors $4^{3x-2} = 2^{2\times 3x-2}$ or $\frac{1}{2\sqrt{2}} = 2^{-1+\frac{1}{2}}$

In the alternative method candidates cannot just write down the answer to the rhs.

So expect some justification. E.g. $\log_2 \frac{1}{2\sqrt{2}} = \log_2 2^{-\frac{3}{2}} = -\frac{3}{2}$

or $\log_4 \frac{1}{2\sqrt{2}} = \log_4 2^{-\frac{3}{2}} = -\frac{3}{2} \times \frac{1}{2}$ condoning slips as per main scheme or $3x = \log_4 4\sqrt{2} \Longrightarrow 3x = 1 + \frac{1}{4}$

A1: $x = \frac{5}{12}$ with correct intermediate work

$\frac{g(5) = 0 \Rightarrow (x-5) \text{ is a factor, hence } g(x) \text{ is divisible by } (x-5). A1 \qquad 2.4$ (2) (b) $\frac{2x^3 + x^2 - 41x - 70 = (x-5)(2x^2x \pm 14) \qquad M1 \qquad 1.1}{= (x-5)(2x^2 + 11x + 14)} \qquad A1 \qquad 1.1$ Attempts to factorise quadratic factor $\frac{dM1}{(1.1)} \qquad (4)$ (c) $\frac{\int 2x^3 + x^2 - 41x - 70 dx = \frac{1}{2}x^4 + \frac{1}{3}x^3 - \frac{41}{2}x^2 - 70x}{(4)} \qquad M1 \qquad 1.1$ Deduces the need to use $\int_{-2}^{5} g(x) dx \qquad M1 \qquad 2.2$	Question	Scheme	Marks	AOs
(b) $2x^{3} + x^{2} - 41x - 70 = (x - 5)(2x^{2}x \pm 14)$ $= (x - 5)(2x^{2} + 11x + 14)$ Attempts to factorise quadratic factor (g(x)) = (x - 5)(2x + 7)(x + 2) (4) (c) $\int 2x^{3} + x^{2} - 41x - 70 dx = \frac{1}{2}x^{4} + \frac{1}{3}x^{3} - \frac{41}{2}x^{2} - 70x$ $M_{1} = \frac{1.1}{1.1}$ Deduces the need to use $\int_{-2}^{5} g(x) dx$ $-\frac{1525}{3} - \frac{190}{3}$ Area = $571\frac{2}{3}$ A1 = 2.1	13 (a)	$g(5) = 2 \times 5^3 + 5^2 - 41 \times 5 - 70 = \dots$	M1	1.1a
(b) $2x^{3} + x^{2} - 41x - 70 = (x - 5)(2x^{2}x \pm 14)$ $= (x - 5)(2x^{2} + 11x + 14)$ Attempts to factorise quadratic factor (g(x)) = (x - 5)(2x + 7)(x + 2) (4) (c) $\int 2x^{3} + x^{2} - 41x - 70 dx = \frac{1}{2}x^{4} + \frac{1}{3}x^{3} - \frac{41}{2}x^{2} - 70x$ $M1 \qquad 1.1 \\ A1 \qquad 2.2 \\ -\frac{1525}{3} - \frac{190}{3}$ Area = $571\frac{2}{3}$ A1 = 2.1 A1 = 2.1 \\ A1 = 2		$g(5) = 0 \Rightarrow (x-5)$ is a factor, hence $g(x)$ is divisible by $(x-5)$.	A1	2.4
$\frac{2x + x^{2} - 4x^{2} - 4x^{2} - (x - 5)(2x - 3x + 2x + 1)}{= (x - 5)(2x^{2} + 11x + 14)}$ Alt 1.1 Attempts to factorise quadratic factor $\frac{dM1}{1.1}$ (4) (c) $\int 2x^{3} + x^{2} - 41x - 70 dx = \frac{1}{2}x^{4} + \frac{1}{3}x^{3} - \frac{41}{2}x^{2} - 70x$ M1 A1 1.1 Deduces the need to use $\int_{-2}^{5} g(x) dx$ M1 2.2 Area = $571\frac{2}{3}$ Area = $571\frac{2}{3}$ Alt 2.1			(2)	
Attempts to factorise quadratic factor dM1 1.1 $(g(x)) = (x-5)(2x+7)(x+2)$ A1 1.1 (c) $\int 2x^3 + x^2 - 41x - 70 dx = \frac{1}{2}x^4 + \frac{1}{3}x^3 - \frac{41}{2}x^2 - 70x$ M1 1.1 Deduces the need to use $\int_{-2}^{5} g(x) dx$ M1 2.2 $-\frac{1525}{3} - \frac{190}{3}$ M1 2.1 Area = $571\frac{2}{3}$ A1 2.1	(b)	$2x^{3} + x^{2} - 41x - 70 = (x - 5)(2x^{2} \dots x \pm 14)$	M1	1.1b
$\frac{(g(x)) = (x-5)(2x+7)(x+2)}{(4)}$ (c) $\int 2x^{3} + x^{2} - 41x - 70 dx = \frac{1}{2}x^{4} + \frac{1}{3}x^{3} - \frac{41}{2}x^{2} - 70x$ M1 1.1 A1 1.1 Deduces the need to use $\int_{-2}^{5} g(x) dx$ M1 2.2 $-\frac{1525}{3} - \frac{190}{3}$ Area = $571\frac{2}{3}$ A1 2.1		$= (x-5)(2x^2+11x+14)$	A1	1.1b
(c) $\int 2x^{3} + x^{2} - 41x - 70 dx = \frac{1}{2}x^{4} + \frac{1}{3}x^{3} - \frac{41}{2}x^{2} - 70x$ (4) M1 1.1 A1 1.1 Deduces the need to use $\int_{-2}^{5} g(x) dx$ $-\frac{1525}{3} - \frac{190}{3}$ Area = $571\frac{2}{3}$ A1 2.1		Attempts to factorise quadratic factor	dM1	1.1b
(c) $\int 2x^{3} + x^{2} - 41x - 70 dx = \frac{1}{2}x^{4} + \frac{1}{3}x^{3} - \frac{41}{2}x^{2} - 70x$ M1 A1 1.1 A1 1.1 Deduces the need to use $\int_{-2}^{5} g(x) dx$ M1 2.2 $-\frac{1525}{3} - \frac{190}{3}$ Area = $571\frac{2}{3}$ A1 2.1		(g(x)) = (x-5)(2x+7)(x+2)	A1	1.1b
$\int 2x + x - 41x - 70 dx = \frac{1}{2}x + \frac{1}{3}x - \frac{1}{2}x - 70x$ A1			(4)	
$-\frac{1525}{3} - \frac{190}{3}$ $Area = 571\frac{2}{3}$ $A1 2.1$	(c)	$\int 2x^{3} + x^{2} - 41x - 70 dx = \frac{1}{2}x^{4} + \frac{1}{3}x^{3} - \frac{41}{2}x^{2} - 70x$		1.1b 1.1b
3		1525 190	M1	2.2a
(4)			A1	2.1
			(4)	
(10 mark		marks)		

Notes

(a)

- M1: Attempts to calculate g(5) Attempted division by (x-5) is M0 Look for evidence of embedded values or two correct terms of g(5) = 250 + 25 - 205 - 70 = ...
- A1: Correct calculation, reason and conclusion. It must follow M1. Accept, for example, $g(5) = 0 \Rightarrow (x-5)$ is a factor, hence divisible by (x-5) $g(5) = 0 \Rightarrow (x-5)$ is a factor \checkmark

Do not allow if candidate states

 $f(5) = 0 \Rightarrow (x-5)$ is a factor, hence divisible by (x-5) (It is not f)

 $g(x) = 0 \Rightarrow (x-5)$ is a factor (It is not g(x) and there is no conclusion)

This may be seen in a preamble before finding g(5) = 0 but in these cases there must be a minimal statement ie QED, "proved", tick etc.

(b)

- M1: Attempts to find the quadratic factor by inspection (correct coefficients of first term and \pm last term) or by division (correct coefficients of first term and \pm second term). Allow this to be scored from division in part (a)
- A1: $(2x^2+11x+14)$ You may not see the (x-5) which can be condoned
- **dM1:** Correct attempt to factorise their $(2x^2 + 11x + 14)$

A1: (g(x)=)(x-5)(2x+7)(x+2) or (g(x)=)(x-5)(x+3.5)(2x+4)

It is for the product of factors and not just a statement of the three factors Attempts with calculators via the three roots are likely to score 0 marks. The question was "Hence" so the two M's must be awarded.

- M1: For $x^n \to x^{n+1}$ for any of the terms in x for g(x) so $2x^3 \to \dots x^4$, $x^2 \to \dots x^3$, $-41x \to \dots x^2$, $-70 \to \dots x$
- A1: $\int 2x^3 + x^2 41x 70 \, dx = \frac{1}{2}x^4 + \frac{1}{3}x^3 \frac{41}{2}x^2 70x$ which may be left unsimplified (ignore any reference to +C)

M1: Deduces the need to use
$$\int_{2}^{3} g(x) dx$$
.

This may be awarded from the limits on their integral (either way round) or from embedded values which can be subtracted either way round.

A1: For clear work showing all algebraic steps leading to area = $571\frac{2}{2}$ oe

So allow
$$\int_{-2}^{5} 2x^3 + x^2 - 41x - 70 \, dx = \left[\frac{1}{2}x^4 + \frac{1}{3}x^3 - \frac{41}{2}x^2 - 70x\right]_{-2}^{5} = -\frac{1715}{3} \Rightarrow \text{ area} = \frac{1715}{3}$$

for 4 marks

Condone spurious notation, as long as the algebraic steps are correct. If they find $\int_{a}^{b} g(x) dx$

then withhold the final mark if they just write a positive value to this integral since

$$\int_{-2}^{3} g(x) dx = -\frac{1715}{3}$$

Note $\int_{-2}^{5} 2x^3 + x^2 - 41x - 70 \, dx \Rightarrow \frac{1715}{3}$ with no algebraic integration seen scores M0A0M1A0

Question	Scheme	Marks	AOs
14 (a)	Deduces $g(x) = ax^3 + bx^2 + ax$	B1	2.2a
	Uses $(2,9) \Rightarrow 9 = 8a + 4b + 2a$	M1	2.1
	$\Rightarrow 10a + 4b = 9$	A1	1.1b
	Uses $g'(2) = 0 \Longrightarrow 0 = 12a + 4b + a$	M1	2.1
	$\Rightarrow 13a + 4b = 0$	A1	1.1b
	Solves simultaneously $\Rightarrow a, b$	dM1	1.1b
	$g(x) = -3x^3 + \frac{39}{4}x^2 - 3x$	A1	1.1b
		(7)	
(b)	Attempts $g''(x) = -18x + \frac{39}{2}$ and substitutes $x = 2$	M1	1.1b
	$g''(2) = -\frac{33}{2} < 0$ hence maximum	A1	2.4
		(2)	
		()	9 marks)

Notes

(a)

B1: Uses the information given to deduce that $g(x) = ax^3 + bx^2 + ax$. (Seen or implied)

M1: Uses the fact that (2,9) lies on the curve so uses x = 2, y = 9 within a cubic function

A1: For a simplified equation in just two variables. E.g. 10a + 4b = 9

M1: Differentiates their cubic to a quadratic and uses the fact that g'(2) = 0 to obtain an equation in *a* and *b*.

A1: For a different simplified equation in two variables E.g. 13a + 4b = 0

dM1: Solves simultaneously $\Rightarrow a = ..., b = ...$ It is dependent upon the B and both M's

A1:
$$g(x) = -3x^3 + \frac{39}{4}x^2 - 3x$$

(b)

M1: Attempts $g''(x) = -18x + \frac{39}{2}$ and substitutes x = 2. Award for second derivatives of the form g''(x) = Ax + B with x = 2 substituted in.

Alternatively attempts to find the value of their g'(x) or g(x) either side of x = 2 (by substituting a value for x within 0.5 either side of 2)

A1: $g''(2) = -\frac{33}{2} < 0$ hence maximum. (allow embedded values but they must refer to the sign or that it is less than zero) If $g'(x) = -9x^2 + \frac{39}{2}x - 3$ or $g(x) = -3x^3 + \frac{39}{4}x^2 - 3x$ is calculated either side of x = 2 then the values must be correct or embedded correctly (you will need to check these) they need to compare g'(x) > 0 to the left of x = 2 and g'(x) < 0 to the right of x = 2 or g(x) < 9 to the left and g(x) > 9 to the right of x = 2 hence maximum.

Note If they only sketch the cubic function $g(x) = -3x^3 + \frac{39}{4}x^2 - 3x$ then award M1A0

Question	Scheme	Marks	AOs
15	Attempts $f(-3) = 3 \times (-3)^3 + 2a \times (-3)^2 - 4 \times -3 + 5a = 0$	M1	3.1a
	Solves linear equation $23a = 69 \Longrightarrow a =$	M1	1.1b
	a=3 cso	A1	1.1b
		(3)	
		((3 marks)

M1: Chooses a suitable method to set up a correct equation in a which may be unsimplified.

This is mainly applying f(-3) = 0 leading to a correct equation in *a*.

Missing brackets may be recovered.

Other methods may be seen but they are more demanding

If division is attempted must produce a correct equation in a similar way to the f(-3) = 0 method

$$3x^{2} + (2a-9)x + 23 - 6a$$

$$x+3\overline{\smash{\big)}3x^{3} + 2ax^{2} - 4x + 5a}$$

$$\underline{3x^{3} + 9x^{2}}$$

$$(2a-9)x^{2} - 4x$$

$$(\underline{2a-9})x^{2} + (6a-27)x$$

$$(23-6a)x + 5a$$

$$(23-6a)x + 69 - 18a$$

So accept 5a = 69 - 18a or equivalent, where it implies that the remainder will be 0 You may also see variations on the table below. In this method the terms in x are equated to -4

	$3x^2$	(2a-9)x	$\frac{5a}{3}$	
x	$3x^3$	$(2a-9)x^2$	$\frac{5a}{3}x$	(27, ⁵ a
3	$9x^2$	(6a-27)x	5a	$6a - 27 + \frac{5a}{3} = -4$

M1: This is scored for an attempt at solving a linear equation in *a*.

For the main scheme it is dependent upon having attempted $f(\pm 3) = 0$. Allow for a linear equation in *a* leading to $a = \dots$. Don't be too concerned with the mechanics of this.

 $3x^{2}...$ Via division accept $x + 3\overline{\smash{\big)}}3x^{3} + 2ax^{2} - 4x + 5a}$ followed by a remainder in a set $= 0 \implies a = ...$ or two terms in a are equated so that the remainder = 0FYI the correct remainder via division is 23a + 12 - 81 oe A1: a = 3 cso

An answer of 3 with no incorrect working can be awarded 3 marks

Question	Scheme	Marks	AOs
16 (a)	$2x^{2} + 4x + 9 = 2(x \pm k)^{2} \pm \dots \qquad a = 2$	B1	1.1b
	Full method $2x^2 + 4x + 9 = 2(x+1)^2 \pm$ $a = 2 \& b = 1$	M1	1.1b
	$2x^{2} + 4x + 9 = 2(x+1)^{2} + 7$	A1	1.1b
		(3)	
(b)	U shaped curve any position but not through (0,0)	B1	1.2
	y - intercept at (0,9)	B1	1.1b
	$\frac{1}{x}$ Minimum at $(-1,7)$	B1ft	2.2a
		(3)	
(c)	(i) Deduces translation with one correct aspect.	M1	3.1a
	Translate $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$	A1	2.2a
	(ii) $h(x) = \frac{21}{"2(x+1)^2 + 7"} \implies (\text{maximum}) \text{ value } \frac{21}{"7"} (=3)$	M1	3.1a
	$0 < h(x) \leq 3$	A1ft	1.1b
		(4)	
	1	(10 marks)

B1: Achieves $2x^2 + 4x + 9 = 2(x \pm k)^2 \pm ...$ or states that a = 2

M1: Deals correctly with first two terms of $2x^2 + 4x + 9$.

Scored for $2x^2 + 4x + 9 = 2(x+1)^2 \pm ...$ or stating that a = 2 and b = 1

A1:
$$2x^2 + 4x + 9 = 2(x+1)^2 + 7$$

Note that this may be done in a variety of ways including equating $2x^2 + 4x + 9$ with the expanded form of $a(x+b)^2 + c \equiv ax^2 + 2abx + ab^2 + c$

(b)

- **B1:** For a U-shaped curve in any position not passing through (0,0). Be tolerant of slips of the pen but do not allow if the curve bends back on itself
- **B1:** A curve with a y intercept on the +ve y axis of 9. The curve cannot just stop at (0,9)

Allow the intercept to be marked 9, (0,9) but not (9,0)

B1ft: For a minimum at (-1, 7) in quadrant 2. This may be implied by -1 and 7 marked on the axes in the correct places. The curve must be a U shape and not a cubic say.

Follow through on a minimum at (-b, c), marked in the correct quadrant, for their $a(x+b)^2 + c$

(c)(i)

M1: Deduces translation with one correct aspect or states $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$ with no reference to 'translate'.

Allow instead of the word translate, shift or move. g(x) = f(x-2) - 4 can score M1 For example, possible methods of arriving at this deduction are:

- $f(x) \rightarrow g(x)$ is $2x^2 + 4x + 9 \rightarrow 2(x-2)^2 + 4(x-2) + 5$ So g(x) = f(x-2) 4
- $g(x) = 2(x-1)^2 + 3$ New curve has its minimum at (1,3) so $(-1,7) \rightarrow (1,3)$
- Using a graphical calculator to sketch y=g(x) and compares to the sketch of y=f(x)In almost all cases you will not allow if the candidate gives two **different types of** transformations. Eg, stretch and
- A1: Requires both 'translate' and $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$, Allow 'shift' or move' instead of translate.

So condone " Move shift 2 (units) to the right and move 4 (units) down

However, for M1 A1, it is possible to reflect in x = 0 and translate $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$, so please consider all responses.

SC: If the candidate writes translate $\begin{pmatrix} -2 \\ 4 \end{pmatrix}$ or " move 2 (units) to the left and 4 (units) up" score M1 A0

(c)(ii)

M1: Correct attempt at finding the maximum value (although it may not be stated as a maximum)

- Uses part (a) to write $h(x) = \frac{21}{"2(x+1)^2 + 7"}$ and attempts to find $\frac{21}{\text{their "7"}}$
- Attempts to differentiate, sets $4x + 4 = 0 \rightarrow x = -1$ and substitutes into $h(x) = \frac{21}{2x^2 + 4x + 9}$
- Uses a graphical calculator to sketch y=h(x) and establishes the 'maximum' value (...,3)

A1ft: $0 < h(x) \le 3$ Allow for $0 < h \le 3$ (0,3] and $0 < y \le 3$ but not $0 < x \le 3$

Follow through on their $a(x+b)^2 + c$ so award for $0 < h(x) \le \frac{21}{c}$

Question	Sc	heme	Marks	AOs
17(i)	$16a^2 = 2\sqrt{a} \Longrightarrow a^{\frac{3}{2}} = \frac{1}{8}$	$16a^{2} - 2\sqrt{a} = 0$ $\Rightarrow 2a^{\frac{1}{2}} \left(8a^{\frac{3}{2}} - 1 \right) = 0$ $\Rightarrow a^{\frac{3}{2}} = \frac{1}{8}$	M1	1.1b
	$\Rightarrow a = \left(\frac{1}{8}\right)^{\frac{2}{3}}$ $\Rightarrow a = \frac{1}{4}$	$\Rightarrow a = \left(\frac{1}{8}\right)^{\frac{2}{3}}$	M1	1.1b
	$\Rightarrow a = \frac{1}{4}$	$\Rightarrow a = \frac{1}{4}$	A1	1.1b
		a = 0 is a solution	B1	2.2a
(::))	(4)	
(ii)	$b^4 + 7b^2 - 18 = 0 \Longrightarrow (b^2 + 9)(b^2$	(-2) = 0	M1	1.1b
	$b^2 = -9, 2$		A1	1.1b
	$b^2 = k \Longrightarrow b$	$=\sqrt{k}, k > 0$	dM1	2.3
	$b=\sqrt{2}$, $-\sqrt{2}$	2 only	A1	1.1b
			(4)	marks
			10	ппат кэ
	pines the two algebraic terms to re	Notes each $a^{\pm \frac{3}{2}} = C$ or equivalent such	`	
M1: Comb $(C \neq 0)$ An alternat Ega Allow for a M1: Undo You A1: $a = \frac{1}{4}$	ive is via squaring and combining $a^4 =a \Rightarrow a^{\pm 3} = k$ or a^4 slips on coefficients. es the indices correctly for their may even see logs used. and no other solutions apart from	each $a^{\pm \frac{3}{2}} = C$ or equivalent such g the algebraic terms to reach $a^{\pm 3}$ $=a \Longrightarrowa^{4}a = 0 \Longrightarrowa \left(a^{3}a^{4}\right)$	as $(\sqrt{a})^3 = C$ = $k, k > 0$) = $0 \Rightarrow a^3$ s possible)	2
M1: Comb $(C \neq 0)$ An alternat Ega Allow for a M1: Undo You A1: $a = \frac{1}{4}$ B1: Deduc	ive is via squaring and combining $a^4 =a \Rightarrow a^{\pm 3} = k$ or a^4 slips on coefficients. es the indices correctly for their may even see logs used.	each $a^{\pm \frac{3}{2}} = C$ or equivalent such g the algebraic terms to reach $a^{\pm 3}$ $=a \Rightarrowa^4a = 0 \Rightarrowa \left(a^3 - a^{\frac{m}{n}}\right)$ $a^{\frac{m}{n}} = C$ (So M0 M1 A0 in	as $(\sqrt{a})^3 = C$ = $k, k > 0$) = $0 \Rightarrow a^3$ s possible)	2
M1: Comb $(C \neq 0)$ An alternat Ega Allow for a M1: Undo You A1: $a = \frac{1}{4}$ B1: Deduc (ii) M1: Atten Acce formu A1: Correct	ive is via squaring and combining $a^4 =a \Rightarrow a^{\pm 3} = k$ or a^4 slips on coefficients. es the indices correctly for their may even see logs used. and no other solutions apart from es that $a = 0$ is a solution. approximation by the solution of $b^2 = 2$ or u by the solution of $b^2 = 2$ or u	each $a^{\pm \frac{3}{2}} = C$ or equivalent such g the algebraic terms to reach $a^{\pm 3}$ $=a \Rightarrowa^4a = 0 \Rightarrowa (a^3 - a^{\frac{m}{n}}) = C$ (So M0 M1 A0 is m 0 Accept exact equivalents Equivalents Equivalents Equivalents Equivalents Equivalents Equivalents Equivalents in another variable, say u u = 2 with no incorrect solution gives $u = 2$ with no incorrect solution for $u = 2$ with no incorrect solution $u = 2$	as $(\sqrt{a})^3 = C$ = $k, k > 0$) = $0 \Rightarrow a^3$ s possible) g 0.25 the quadratic = b^2 and solv ven.	$= \dots$
M1: Comb $(C \neq 0)$ An alternat Ega Allow for a M1: Undo You A1: $a = \frac{1}{4}$ B1: Deduct (ii) M1: Attent Accee formu A1: Correct Candid	ive is via squaring and combining $a^4 =a \Rightarrow a^{\pm 3} = k$ or a^4 slips on coefficients. es the indices correctly for their may even see logs used. and no other solutions apart from es that $a = 0$ is a solution. hpts to solve as a quadratic equation pt $(b^2 + m)(b^2 + n) = 0$ with mn and a Also allow candidates to sub et solution. Allow for $b^2 = 2$ or m dates can choose to omit the solu	each $a^{\pm \frac{3}{2}} = C$ or equivalent such g the algebraic terms to reach $a^{\pm 3}$ $=a \Rightarrowa^4a = 0 \Rightarrowa(a^3 - a^m)$ $a^{\frac{m}{n}} = C$ (So M0 M1 A0 is m 0 Accept exact equivalents Egnetiation in b^2 $= \pm 18$ or solutions via the use of stitute in another variable, say u	as $(\sqrt{a})^3 = 0$ = k, k > 0 = k, k > 0 $= 0 \Rightarrow a^3$ s possible) g 0.25 the quadratic $= b^2$ and solv ven. ay not be seen	$= \dots$

A1: $b=\sqrt{2}$,	$-\sqrt{2}$ only. The solution asks for real values so if $3i$ is given then score A0
	Notes on Question 17 continue
Answers with	n minimal or no working:
In part (i)	 no working, just answer(s) with they can score the B1 If they square and proceed to the quartic equation 256a⁴ = 4a oe, and then write down the answers they can have access to all marks.
In part (ii)	 Accept for 4 marks b² = 2 ⇒ b = ±√2 No working, no marks.

Question	Scheme	Marks	AOs
18(a)	$\frac{1}{x}$ shape in 1st quadrant	M1	1.1b
	Correct	A1	1.1b
	Asymptote $y = 1$	B1	1.2
		(3)	
(b)	Combines equations $\Rightarrow \frac{k^2}{x} + 1 = -2x + 5$	M1	1.1b
	$(\times x) \Longrightarrow k^2 + 1x = -2x^2 + 5x \Longrightarrow 2x^2 - 4x + k^2 = 0 *$	A1*	2.1
		(2)	2 1
(c)	Attempts to set $b^2 - 4ac = 0$	M1	3.1a
	$\frac{8k^2 = 16}{k = \pm\sqrt{2}}$	A1 A1	1.1b 1.1b
	$\kappa = \pm \sqrt{2}$	(3)	1.10
			marks)
	Notes		
accept of the A1: Correct It must behavio B1: Asymp	shape of a $\frac{1}{x}$ type curve in Quadrant 1. It must not cross either axiable curvature. Look for a negative gradient changing from $-\infty$ to pencil". (See Practice and Qualification for clarification) shape and position for both branches. lie in Quadrants 1, 2 and 3 and have the correct curvature including to the given as $y = 1$. This could appear on the diagram or within the hat the curve does not need to be asymptotic at $y = 1$ but this must be asymptote offered by the candidate.	0 condonin g asymptoti e text.	
A1*: Multip slips. Condo (c) M1: Deduce If <i>a</i> , <i>b</i> a	obts to combine $y = \frac{k^2}{x} + 1$ with $y = -2x + 5$ to form an equation in jubilies by x (the processed line must be seen) and proceeds to given a ne if the order of the terms are different $2x^2 + k^2 - 4x = 0$ es that $b^2 - 4ac = 0$ or equivalent for the given equation. and c are stated only accept $a = 2, b = \pm 4, c = k^2$ so $4^2 - 4 \times 2 \times k^2 = 0$ etively completes the square $x^2 - 2x + \frac{1}{2}k^2 = 0 \Rightarrow (x-1)^2 = 1 - \frac{1}{2}k^2$	nswer with = 0	

EXPERT TUITION

If a, b and c are stated they must be correct. Note that b^2 appearing as 4^2 is correctNote on Question 18 continueA1: $k = \pm \sqrt{2}$ and following correct a, b and c if statedA solution via differentiation would be awarded as followsM1: Sets the gradient of the curve $= -2 \Rightarrow -\frac{k^2}{x^2} = -2 \Rightarrow x = (\pm)\frac{k}{\sqrt{2}}$ oe and attempts tosubstitute into $2x^2 - 4x + k^2 = 0$ A1: $2k^2 = (\pm)2\sqrt{2}k$ oeA1: $k = \pm\sqrt{2}$

Question	Scheme	Marks	AOs
19 (a)	Attempts $f(4) = 2 \times 4^3 - 13 \times 4^2 + 8 \times 4 + 48$	M1	1.1b
	$f(4) = 0 \Longrightarrow (x-4)$ is a factor	A1	1.1b
		(2)	
(b)	$2x^{3} - 13x^{2} + 8x + 48 = (x - 4)(2x^{2} \dots x - 12)$	M1	2.1
	$=(x-4)(2x^2-5x-12)$	A1	1.1b
	Attempts to factorise quadratic factor or solve quadratic eqn	dM1	1.1b
	$f(x) = (x-4)^{2} (2x+3) \Longrightarrow f(x) = 0$ has only two roots, 4 and -1.5	A1	2.4
	f(x)	(4)	
(c)	Deduces either three roots or deduces that $\frac{f(x)}{f(x)}$ is moved down two units $f(x)$	M1	2.2a
	States three roots, as when $f(x)$ is moved down two units there will be three points of intersection (with the <i>x</i> - axis)	A1	2.4
		(2)	
(d)	For sight of $k = \pm 4, \pm \frac{3}{2}$	M1	1.1b
	$k = 4, -\frac{3}{2}$	A1ft	1.1b
		(2)	
		(10	marks)
	Notes		
(a)			

M1: Attempts to calculate f(4).

Do not accept f(4) = 0 without sight of embedded values or calculations.

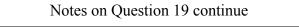
If values are not embedded look for two correct terms from f(4) = 128 - 208 + 32 + 48

Alternatively attempts to divide by (x-4). Accept via long division or inspection.

See below for awarding these marks.

A1: Correct reason with conclusion. Accept f(4) = 0, hence factor as long as M1 has been scored.

This should really be stated on one line after having performed a correct calculation. It could appear as a preamble if the candidate states "If f(4) = 0, then is a factor before doing the calculation and then writing hence proven or \checkmark oe.


If division/inspection is attempted it must be correct and there must be some attempt to explain why they have shown that is a factor. Eg Via division they must state that there is no remainder, hence factor

TUITION

(b)

27

M1: Attempts to find the quadratic factor by inspection (correct first and last terms) or by division (correct first two terms)

So for inspection award for $2x^3 - 13x^2 + 8x + 48 = (x-4)(2x^2...x \pm 12)$

$$\begin{array}{r}
 2x^2 - 5x \\
 x - 4 \overline{\smash{\big)} 2x^3 - 13x^2 + 8x + 48}
 \end{array}$$

For division look for

$$\frac{2x^3-8x^2}{-5x^2}$$

A1: Correct quadratic factor $(2x^2-5x-12)$ For division award for sight of this "in the correct place" You don't have to see it paired with the (x-4) for this mark. If a student has used division in part (a) they can score the M1 A1 in (b) as soon as they start attempting to factorise their $(2x^2-5x-12)$.

dM1: Correct attempt to solve or factorise their
$$(2x^2 - 5x - 12)$$
 including use of formula Apply the usual rules $(2x^2 - 5x - 12) = (ax+b)(cx+d)$ where $ac = \pm 2$ and $bd = \pm 12$

Allow the candidate to move from $(x-4)(2x^2-5x-12)$ to $(x-4)^2(2x+3)$ for this mark.

A1: Via factorisation

Factorises twice to
$$f(x) = (x-4)(2x+3)(x-4)$$
 or $f(x) = (x-4)^2(2x+3)$ or

$$f(x) = 2(x-4)^2\left(x+\frac{3}{2}\right)$$
 followed by a valid explanation why there are only two roots.

The explanation can be as simple as

- hence x = 4 and $-\frac{3}{2}$ (only). The roots must be correct
- only two distinct roots as 4 is a repeated root

There must be some understanding between roots and factors.

E.g.
$$f(x) = (x-4)^2 (2x+3)$$

only two distinct roots is insufficient. This would require two distinct factors, so there are two distinct roots.

Via solving.

Factorsises to
$$(x-4)(2x^2-5x-12)$$
 and solves $2x^2-5x-12=0 \Rightarrow x=4, -\frac{3}{2}$ followed

by an explanation that the roots are $4, 4, -\frac{3}{2}$ so only two distinct roots.

Note that this question asks the candidate to use algebra so you cannot accept any attempt to use their calculators to produce the answers.

(c)

M1: For a valid deduction.

Accept either there are 3 roots or states that it is a solution of f(x) = 2 or f(x) - 2 = 0

A1: Fully explains:

Eg. States three roots, as f(x) is moved down by **two** units (giving three points of

intersection with the x - axis)

Eg. States three roots, as it is where f(x) = 2 (You may see y = 2 drawn on the diagram)

Question	Scheme	Marks	AOs
20 (a)	Attempts $P = 100 - 6.25(15 - 9)^2$	M1	3.4
	=-125 : not sensible as the company would make a loss	Al	2.4
		(2)	
(b)	Uses $P > 80 \Rightarrow (x-9)^2 < 3.2$ or $P = 80 \Rightarrow (x-9)^2 = 3.2$	M1	3.1b
	$\Rightarrow 9 - \sqrt{3.2} < x < 9 + \sqrt{3.2}$	dM1	1.1b
	Minimum Price = $\pounds 7.22$	A1	3.2a
		(3)	
(c)	States (i) maximum profit =£ 100 000	B1	3.2a
	and (ii) selling price £9	B1	2.2a
		(2)	
		(*	7 marks)

M1: Substitutes x = 15 into $P = 100 - 6.25(x-9)^2$ and attempts to calculate. This is implied by an answer of -125. Some candidates may have attempted to multiply out the brackets before they substitute in the x = 15. This is acceptable as long as the function obtained is quadratic. There

must be a calculation seen or implied by the value of -125.

A1: Finds P = -125 or states that P < 0 and explains that (this is not sensible as) the company would make a loss.

Condone P = -125 followed by an explanation that it is not sensible as the company would make a loss of £125 rather than £125 000. An explanation that it is not sensible as "the profit cannot be negative", "the profit is negative" or "the company will not make any money", "they might make a loss" is incomplete/incorrect. You may ignore any misconceptions or reference to the price of the toy being too cheap for this mark.

Alt: M1: Sets P = 0 and finds x = 5,13 A1: States 15 > 13 and states makes a loss (b)

M1: Uses P...80 where ... is any inequality or "="in $P = 100 - 6.25(x-9)^2$ and proceeds to

 $(x-9)^2 \dots k$ where k > 0 and \dots is any inequality or "="

Eg. Condone P < 80 in $P = 100 - 6.25(x-9)^2 \Rightarrow (x-9)^2 < k$ where k > 0 If the candidate

attempts to multiply out then allow when they achieve a form $ax^2 + bx + c = 0$ dM1: Award for solving to find the two positive values for x. Allow decimal answers

FYI correct answers are $\Rightarrow 9 - \sqrt{3.2} < x < 9 + \sqrt{3.2}$ Accept $\Rightarrow x = 9 \pm \sqrt{3.2}$

Condone incorrect inequality work $100-6.25(x-9)^2 > 80 \Rightarrow (x-9)^2 > 3.2 \Rightarrow x > 9 \pm \sqrt{3.2}$

Alternatively award if the candidate selects the lower of their two positive values $9-\sqrt{3.2}$ A1: Deduces that the minimum Price = £7.22 (£7.21 is not acceptable)

(c)

(i) **B1:** Maximum Profit = \pounds 100 000 with units. Accept 100 thousand pound(s).

(ii) **B1:** Selling price = $\pounds 9$ with units

SC 1: Missing units in (b) and (c) only penalise once in these parts, withhold the final mark.

SC 2: If the answers to (c) are both correct, but in the wrong order score SC B1 B0

If (i) and (ii) are not written out score in the order given.

Question	Scheme	Marks	AOs
21(a)	$(g(-2)) = 4 \times -8 - 12 \times 4 - 15 \times -2 + 50$	M1	1.1b
	$g(-2) = 0 \Longrightarrow (x+2)$ is a factor	A1	2.4
		(2)	
(b)	$4x^{3} - 12x^{2} - 15x + 50 = (x+2)(4x^{2} - 20x + 25)$	M1 A1	1.1b 1.1b
	$=(x+2)(2x-5)^2$	M1 A1	1.1b 1.1b
		(4)	
(c)	(i) $x \le -2, x = 2.5$	M1 A1ft	1.1b 1.1b
	(ii) $x = -1, x = 1.25$	B1ft	2.2a
		(3)	
		(9 marks)
(a) M1: Atten	npts g(-2) Some sight of (-2) embedded or calculation is required	l.	
	spect to see $4 \times (-2)^3 - 12 \times (-2)^2 - 15 \times (-2) + 50$ embedded		
A1: g(-2) Requires a seen in the	Or $-32-48+30+50$ condoning slips for the M1 attempt to divide or factorise is M0. (See demand in question) $= 0 \Rightarrow (x+2)$ is a factor. a correct statement and conclusion. Both "g(-2) = 0" and "(x+2) is solution. This may be seen in a preamble before finding g(-2) = 0 b be a minimal statement ie QED, "proved", tick etc.		
is a factor.	t, in one coherent line/sentence, explanations such as, 'as $g(x) = 0$ w	hen $x = -2$, (x+2)
(b) M1: Attem	ipts to divide $g(x)$ by $(x+2)$ May be seen and awarded from part (a))	
	pection is used expect to see $4x^3 - 12x^2 - 15x + 50 = (x+2)(4x^2 - 15x)(4x^2 - 15x)(4x$		
If alge	ebraic / long division is used expect to see $\frac{4x^2 \pm 20x}{x+2 \sqrt{4x^3 - 12x^2 - 15x + 2x^2}}$	50	
A1: Correc	et quadratic factor is $(4x^2 - 20x + 25)$ may be seen and awarded from	n part (a)	
M1: Attem	apts to factorise their $(4x^2 - 20x + 25)$ usual rule $(ax+b)(cx+d)$, ac	$=\pm4, bd=$	±25
A1: $(x+2)$	$(2x-5)^2$ oe seen on a single line. $(x+2)(-2x+5)^2$ is also correct.		
Allow	recovery for all marks for $g(x) = (x+2)(x-2.5)^2 = (x+2)(2x-5)^2$	2	
(c)(i) M1: For id	entifying that the solution will be where the curve is on or below the	axis. Awa	rd for
	-2 or $x = 2.5$ Follow through on their $g(x) = (x+2)(ax+b)^2$ only		
	e root). Condone $x < -2$ See SC below for $g(x) = (x+2)(2x+5)^2$		
	T EVDEDT		

EXPERT TUITION

A1ft· BOT	FH $x \le -2$, $x = 2.5$ Follow through on their $-\frac{b}{a}$ of their $g(x) =$	(r+2)(ar)	$(+b)^2$
	Ci -	(x + 2)(ux	10)
	see $\{x \leq -2 \cup x = 2.5\}$ which is fine.		
(c) (ii) B1ft : For <i>c</i>	leducing that the solutions of $g(2x) = 0$ will be where $x = -1$ and x	-1.25	
	done the coordinates appearing $(-1,0)$ and $(1.25,0)$	-1.23	
Follo	w through on their 1.25 of their $g(x) = (x+2)(ax+b)^2$		
award In (i) M1 A	ndidate reaches $g(x) = (x+2)(2x+5)^2$, clearly incorrect because of A0 for $x \le -2$ or $x < -2$	Figure 2, v	ve will
In (ii) B1 f	for $x = -1$ and $x = -1.25$		
Alt (b)	$4x^{3} - 12x^{2} - 15x + 50 = (x+2)(ax+b)^{2}$		
	$=a^{2}x^{3} + (2ba + 2a^{2})x^{2} + (b^{2} + 4ab)x + 2b^{2}$		
	Compares terms to get either <i>a</i> or <i>b</i>	M1	1.1b
	Either $a = 2$ or $b = -5$	A1	1.1b
	Multiplies out expression $(x+2)(\pm 2x\pm 5)^2$ and compares to		
	$4x^3 - 12x^2 - 15x + 50$	M1	
	All terms must be compared or else expression must be multiplied out and establishes that $4x^3 - 12x^2 - 15x + 50 = (x+2)(2x-5)^2$	A1	1.1b
		(4)	

Question	Scheme	Marks	AOs
22(a)	(4,-3)	B1	1.2
		(1)	
(b)	x = 6	B1	1.1b
		(1)	
(c)	$x \le 4$	B1	1.1b
		(1)	
(d)	<i>k</i> >1.5	B1	2.2a
		(1)	
		(4 n	narks)

Question	Scheme	Marks	AOs
23 (a)	$f(-3) = (-3)^3 + 3 \times (-3)^2 - 4 \times (-3) - 12$	M1	1.1b
	$f(-3) = 0 \Rightarrow (x+3)$ is a factor \Rightarrow Hence $f(x)$ is divisible by $(x+3)$.	A1	2.4
		(2)	
(b)	$x^{3} + 3x^{2} - 4x - 12 = (x+3)(x^{2} - 4)$	M1	1.1b
	=(x+3)(x+2)(x-2)	dM1	1.1b
		Al	1.1b
		(3)	
(c)	$\frac{x^3 + 3x^2 - 4x - 12}{x^3 + 5x^2 + 6x} = \frac{\dots}{x(x^2 + 5x + 6)}$	M1	3.1a
	$=\frac{(x+3)(x+2)(x-2)}{x(x+3)(x+2)}$	dM1	1.1b
	$=\frac{(x-2)}{x}=1-\frac{2}{x}$	A1	2.1
		(3)	
		(-)	1
(a) M1: Attemp	pts $f(-3)$ wes $f(-3) = 0$ and explains that $(x+3)$ is a factor and hence $f(x)$ is divisi	(8 n	
(a) M1: Attemp A1: Achiev (b) M1: Attemp		(8 n	
(a) M1: Attemp A1: Achiev (b) M1: Attemp By div	wes $f(-3) = 0$ and explains that $(x+3)$ is a factor and hence $f(x)$ is divising pts to divide by $(x+3)$ to get the quadratic factor. This is a factor is $x^2 + 0x$ $x+3)\frac{x^2 \pm 0x}{x^3 + 3x^2 - 4x - 12}$ $\frac{x^3 + 3x^2}{x^3 + 3x^2}$	(8 n	
(a) M1: Attemp A1: Achiev (b) M1: Attemp By div By insp	wes $f(-3) = 0$ and explains that $(x+3)$ is a factor and hence $f(x)$ is divising pts to divide by $(x+3)$ to get the quadratic factor. rision look for the first two terms. ie $x^2 + 0x$ $x+3) \frac{x^2 \pm 0x}{x^3 + 3x^2 - 4x - 12}$ bection look for the first and last term $x^3 + 3x^2 - 4x - 12 = (x+3)(x^2 +x)$	(8 n) ble by $(x - 1)$ $\pm 4)$	
 (a) M1: Attemp A1: Achiev (b) M1: Attemp By div By insp 	wes $f(-3) = 0$ and explains that $(x+3)$ is a factor and hence $f(x)$ is divising pts to divide by $(x+3)$ to get the quadratic factor. This is a factor is $x^2 + 0x$ $x+3)\frac{x^2 \pm 0x}{x^3 + 3x^2 - 4x - 12}$ $\frac{x^3 + 3x^2}{x^3 + 3x^2}$	(8 n) ble by $(x - 1)$ $\pm 4)$	
 (a) M1: Attemp A1: Achiev (b) M1: Attemp By dive By insp dM1: For an 	wes $f(-3) = 0$ and explains that $(x+3)$ is a factor and hence $f(x)$ is divising pts to divide by $(x+3)$ to get the quadratic factor. rision look for the first two terms. ie $x^2 + 0x$ $x+3) \frac{x^2 \pm 0x}{x^3 + 3x^2 - 4x - 12}$ bection look for the first and last term $x^3 + 3x^2 - 4x - 12 = (x+3)(x^2 +x)$	(8 n) ble by $(x - 1)$ $\pm 4)$	
(a) M1: Attemp A1: Achiev (b) M1: Attemp By div By insp dM1: For at A1: $f(x) = 0$ (c) M1: Takes a	wes $f(-3) = 0$ and explains that $(x+3)$ is a factor and hence $f(x)$ is divising pts to divide by $(x+3)$ to get the quadratic factor. This is is a factor is two terms. If $x^2 + 0x$ $x+3)\frac{x^2 \pm 0x}{x^3 + 3x^2 - 4x - 12}$ bection look for the first and last term $x^3 + 3x^2 - 4x - 12 = (x+3)(x^2 +x)$ in attempt at factorising their $(x^2 - 4)$. (Need to check first and last terms $(x+3)(x+2)(x-2)$ a common factor of x out of the denominator and writes the numerator in	(8 n) ble by $(x-1)$ $\pm 4)$ (3)	
 (a) M1: Attemp A1: Achiev (b) M1: Attemp By div By insp dM1: For an A1: f(x) = 0 (c) M1: Takes and Altern dM1: Furth 	we f(-3) = 0 and explains that $(x+3)$ is a factor and hence f(x) is divising pts to divide by $(x+3)$ to get the quadratic factor. This is is a factor is two terms. If $x^2 + 0x$ $x+3)x^3+3x^2-4x-12$ x^3+3x^2 bection look for the first and last term $x^3 + 3x^2 - 4x - 12 = (x+3)(x^2 +x)$ a term attempt at factorising their $(x^2 - 4)$. (Need to check first and last terms (x+3)(x+2)(x-2) a common factor of x out of the denominator and writes the numerator in matively rewrites to $x^3 + 3x^2 - 4x - 12 = A(x^3 + 5x^2 + 6x) + B(x^2 + 5x + 6)$ are factorises the denominator and cancels	(8 n) ble by $(x-1)$ $\pm 4)$ (3)	
(a) M1: Attemp A1: Achiev (b) M1: Attemp By dive By insp dM1: For at A1: $f(x) = 0$ (c) M1: Takes a Altern dM1: Furth Alter	we f(-3) = 0 and explains that $(x+3)$ is a factor and hence f(x) is divising pts to divide by $(x+3)$ to get the quadratic factor. ision look for the first two terms. ie $x^2 + 0x$ $x+3)\frac{x^2 \pm 0x}{x^3 + 3x^2 - 4x - 12}$ bection look for the first and last term $x^3 + 3x^2 - 4x - 12 = (x+3)(x^2 +x)(x^2 +x)(x^2 +x)(x+2)(x-2)$ a common factor of x out of the denominator and writes the numerator in matively rewrites to $x^3 + 3x^2 - 4x - 12 = A(x^3 + 5x^2 + 6x) + B(x^2 + 5x + 6)$	(8 n) ble by $(x-1)$ $\pm 4)$ (3)	
(b) M1: Attemp By div By insp dM1: For an A1: $f(x) = 0$ (c) M1: Takes a Altern dM1: Furth Altern Altern A1: Shows In the a	we f(-3) = 0 and explains that $(x+3)$ is a factor and hence f(x) is divising pts to divide by $(x+3)$ to get the quadratic factor. This is a first two terms. if $x^2 + 0x$ $x+3)\frac{x^2 \pm 0x}{x^3 + 3x^2 - 4x - 12}$ bection look for the first and last term $x^3 + 3x^2 - 4x - 12 = (x+3)(x^2 +x)$ n attempt at factorising their $(x^2 - 4)$. (Need to check first and last terms $(x+3)(x+2)(x-2)$ a common factor of x out of the denominator and writes the numerator in natively rewrites to $x^3 + 3x^2 - 4x - 12 = A(x^3 + 5x^2 + 6x) + B(x^2 + 5x + 6)$ there factorises the denominator and cancels matively compares terms or otherwise to find either A or B	(8 n) ble by $(x - 4)$ (x - 4) ble by $(x - 4)$ (x - 4) ble by $(x - 4)$ (x - 4) (x -	+3).

Question	Sch	eme	Marks	AOs
24(a)	Sets 3x	$-2\sqrt{x} = 8x - 16$	B1	1.1a
	$2\sqrt{x} = 16 - 5x$ $4x = (16 - 5x)^2 \Longrightarrow x =$	$5x + 2\sqrt{x} - 16 = 0$ $\Rightarrow (5\sqrt{x} \pm 8)(\sqrt{x} \pm 2) = 0$	M1	3.1a
	$25x^2 - 164x + 256 = 0$	$\left(5\sqrt{x}-8\right)\left(\sqrt{x}+2\right)=0$	A1	1.1b
	$(25x-64)(x-4) = 0 \Longrightarrow x =$	$\sqrt{x} = \frac{8}{5}, (-2) \Longrightarrow x = \dots$	M1	1.1b
	$x = \frac{64}{25}$	only	A1	2.3
			(5)	
(b)	Attempts to solve $3x - 2\sqrt{x} = 0$		M1	2.1
	Correct solution $x = \frac{4}{9}$		A1	1.1b
	$y_{,,} 3x - 2\sqrt{x} ,$	$y > 8x - 16 \ x \dots \frac{4}{9}$	B1ft	1.1b
			(3)	
	·		(8 n	narks)
Notes:				

(a)

B1: Sets the equations equal to each other and achieves a correct equation

M1: Awarded for the key step in solving the problem. This can be awarded via two routes. Both routes must lead to a value for x.

- Making the \sqrt{x} term the subject and squaring both sides (not each term)
- Recognising that this is a quadratic in \sqrt{x} and attempting to factorise $\Rightarrow (5\sqrt{x}\pm 8)(\sqrt{x}\pm 2)=0$

A1: A correct intermediate line $25x^2 - 164x + 256 = 0$ or $(5\sqrt{x} - 8)(\sqrt{x} + 2) = 0$

M1: A correct method to find at least one value for x. Way One it is for factorising (usual rules), Way Two it is squaring at least one result of their \sqrt{x}

A1: Realises that $x = \frac{64}{25}$ is the only solution $x = \frac{64}{25}, 4$ is A0 (b) M1: Attempts to solve $3x - 2\sqrt{x} = 0$ For example Allow $3x = 2\sqrt{x} \Rightarrow 9x^2 = 4x \Rightarrow x = ...$ Allow $3x = 2\sqrt{x} \Rightarrow x^{\frac{1}{2}} = \frac{2}{3} \Rightarrow x = ...$ A1: Correct solution to $3x - 2\sqrt{x} = 0 \Rightarrow x = \frac{4}{9}$ B1: For a consistent solution defining *R* using either convention Either *y*, $3x - 2\sqrt{x}, y > 8x - 16 x ... \frac{4}{9}$ Or $y < 3x - 2\sqrt{x}, y ... 8x - 16 x > \frac{4}{9}$

$\begin{array}{c c c c} (1,1) & (1,1) & (1,1) \\ \hline \\ = -216 + 36a + 6a + 48 = 0 \ \bigodot 2a = 168 \ \bigodot a = 4 * & A1* & 1.1 \\ \hline \\ \hline \\ (a)(ii) & Hence, f(x) = (x+6)(x^2 - 2x + 8) & \frac{M1}{2.2} \\ \hline \\ A1 & 1.1 \\ \hline \\ (4) \\ \hline \\ (b) & 2\log_2(x+2) + \log_2x - \log_2(x-6) = 3 & \hline \\ \\ \hline \\ e. & \log_2(x+2)^2 + \log_2\left(\frac{x}{x-6}\right)^1 = 3 & \frac{M1}{2} \\ \hline \\ e. & 2\log_2(x+2) + \log_2\left(\frac{x}{x-6}\right)^1 = 3 & \frac{M1}{2} \\ \hline \\ \log_2\left(\frac{x(x+2)^2}{(x-6)}\right)^1 = 3 & \left[\text{or } \log_2(x(x+2)^2) = \log_2(8(x-6)) \right] & M1 & 1.1 \\ \hline \\ \left(\frac{x(x+2)^2}{(x-6)}\right)^1 = 2^3 & \left\{ \text{i.e. } \log_2 a = 3 \ \bigodot a = 2^3 \text{ or } 8 \right\} & B1 & 1.1 \\ \hline \\ x(x+2)^2 = 8(x-6) \ \bigodot x(x^2 + 4x + 4) = 8x - 48 & \frac{1}{2} \\ \hline \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & * \\ \hline \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & \frac{1}{2} \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & \frac{1}{2} \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & \frac{1}{2} \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & \frac{1}{2} \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & \frac{1}{2} \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & \frac{1}{2} \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & \frac{1}{2} \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & \frac{1}{2} \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & \frac{1}{2} \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \bigodot x^3 + 4x^3 - 4x + 48 = 0 & \frac{1}{2} \\ \hline \\ (c) & 2\log_2(x+2) + \log_2 x +$			Marks	AOs
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25 (a)(i)	$f(x) = x^3 + ax^2 - ax + 48, \ x \in \mathbb{R}$		
(a)(ii) Hence, $f(x) = (x + 6)(x^2 - 2x + 8)$ (b) $2\log_2(x + 2) + \log_2 x - \log_2(x - 6) = 3$ E.g. • $\log_2(x + 2)^2 + \log_2 x - \log_2(x - 6) = 3$ • $2\log_2(x + 2)^2 + \log_2 \left(\frac{x}{x - 6^2}\right) = 3$ $\log_2\left(\frac{x(x + 2)^2}{(x - 6)^2}\right) = 3$ [or $\log_2\left(x(x + 2)^2\right) = \log_2(8(x - 6))$] M1 1.1 $\left(\frac{\left(\frac{x(x + 2)^2}{(x - 6)^2}\right)}{(x - 6)^2} = 2^3$ {i.e. $\log_2 a = 3 \ racesimes a = 2^3 \ or 8$ } B1 1.1 $x(x + 2)^2 = 8(x - 6) \ racesimes x + 4x^3 - 4x + 48 = 0$ * A1 * 2.1 (4) (c) $2\log_2(x + 2) + \log_2 x - \log_2(x - 6) = 3 \ racesimes x^3 + 4x^3 - 4x + 48 = 0$ $racesimes x + 4x = 8x - 48 \ racesimes x^3 + 4x^3 - 4x + 48 = 0$ $racesimes x + 4x = 8x - 48 \ racesimes x^3 + 4x^3 - 4x + 48 = 0$ (c) $2\log_2(x + 2) + \log_2 x - \log_2(x - 6) = 3 \ racesimes x^3 + 4x^3 - 4x + 48 = 0$ $racesimes x + 4x = 8x - 48 \ racesimes x + 4x^3 - 4x + 48 = 0$ (c) $2\log_2(x + 2) + \log_2 x - \log_2(x - 6) = 3 \ racesimes x^3 + 4x^3 - 4x + 48 = 0$ $racesimes x + 4x = 8x - 48 \ racesimes x + 4x^3 - 4x + 48 = 0$ (c) $2\log_2(x + 2) + \log_2 x - \log_2(x - 6) = 3 \ racesimes x + 4x^3 - 4x + 48 = 0$ $racesimes x + 4x = 8x - 48 \ racesimes x + 4x^3 - 4x + 48 = 0$ $racesimes x + 6 \ racesimes x$		$f(-6) = (-6)^3 + a(-6)^2 - a(-6) + 48$	M1	1.1b
(d)(i) Hence, $f(x) = (x + 6)(x^2 - 2x + 8)$ (4) (4) (b) $2\log_2(x + 2) + \log_2 x - \log_2(x - 6) = 3$ E.g. • $\log_2(x + 2)^2 + \log_2 x - \log_2(x - 6) = 3$ • $2\log_2(x + 2) + \log_2\left(\frac{x}{x - 6\frac{1}{7}}\right) = 3$ $\log_2\left(\frac{x(x + 2)^2}{(x - 6)\frac{1}{7}}\right) = 3$ [or $\log_2(x(x + 2)^2) = \log_2(8(x - 6))$] M1 1.1 $\left(\frac{x(x + 2)^2}{(x - 6)\frac{1}{7}}\right) = 2^3$ {i.e. $\log_2 a = 3 \Rightarrow a = 2^3$ or 8} B1 1.1 $x(x + 2)^2 = 8(x - 6) \Rightarrow x(x^2 + 4x + 4) = 8x - 48$ $\Rightarrow x^3 + 4x^3 + 4x = 8x - 48 \Rightarrow x^3 + 4x^3 - 4x + 48 = 0$ * (4) (c) $2\log_2(x + 2) + \log_2 x - \log_2(x - 6) = 3 \Rightarrow x^3 + 4x^3 - 4x + 48 = 0$ $\Rightarrow (x + 6)(x^2 - 2x + 8) = 0$ Reason 1: E.g. • $\log_2 x$ is not defined when $x = -6$ • $\log_2(x - 6)$ is not defined when $x = -6$ • $\log_2(x - 6)$ is not defined when $x = -6$ • $\log_2(x - 6)$ is not defined when $x = -6$ • $x = -6$, but $\log_2 x$ is only defined for $x > 0$ Reason 2: • $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) roots At least one of Reason 1 or Reason 2 B1 2.1		$= -216 + 36a + 6a + 48 = 0 \ \triangleright \ 42a = 168 \ \triangleright \ a = 4 \ *$	A1*	1.1b
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(a)(ii)	Hence $f(x) = (x + b)(x^2 - 2x + b)$	M1	2.2a
(b) $\frac{2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3}{\text{E.g.}}$ • $\log_2(x+2)^2 + \log_2 x - \log_2(x-6) = 3$ • $2\log_2(x+2) + \log_2\left(\frac{x}{x-6\frac{1}{7}}\right) = 3$ $\log_2\left(\frac{x(x+2)^2}{(x-6)\frac{1}{7}}\right) = 3$ [or $\log_2(x(x+2)^2) = \log_2(8(x-6))$] M1 1.1 $\left(\frac{x(x+2)^2}{(x-6)\frac{1}{7}}\right) = 2^3$ {i.e. $\log_2 a = 3 \Rightarrow a = 2^3 \text{ or } 8$ } B1 1.1 $x(x+2)^2 = 8(x-6) \Rightarrow x(x^2+4x+4) = 8x-48$ $\Rightarrow x^3+4x^3+4x = 8x-48 \Rightarrow x^3+4x^3-4x+48 = 0$ * A1 * 2.1 (4) (c) $2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \Rightarrow x^3+4x^3-4x+48 = 0$ $\Rightarrow (x+6)(x^2-2x+8) = 0$ Reason 1: E.g. • $\log_2 x \text{ is not defined when } x = -6$ • $\log_2(x-6) \text{ is not defined when } x = -6$ • $x = -6$, but $\log_2 x$ is only defined for $x > 0$ Reason 2: • $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) roots At least one of Reason 1 or Reason 2 B1 2.4 Both Reason 1 and Reason 2 B1 2.4		Hence, $f(x) = (x + 6)(x - 2x + 8)$	A1	1.1b
E.g. E.g. $\frac{1}{2} \log_2(x+2)^2 + \log_2 x - \log_2(x-6) = 3$ $\frac{1}{2} \log_2(x+2)^2 + \log_2\left(\frac{x}{x-6}\right)^2 = 3$ $\log_2\left(\frac{x(x+2)^2}{(x-6)}\right)^2 = 3 \left[\text{ or } \log_2(x(x+2)^2) = \log_2(8(x-6)) \right] M1 1.1$ $\frac{\left(\frac{x(x+2)^2}{(x-6)}\right)^2}{\left(\frac{x-6}{(x-6)}\right)^2} = 2^3 \left\{ \text{ i.e. } \log_2 a = 3 \ \square a = 2^3 \text{ or } 8 \right\} B1 1.1$ $\frac{x(x+2)^2 = 8(x-6) \ \square x(x^2 + 4x + 4) = 8x - 48}{(4)}$ $\frac{(4)}{(4)}$ (c) $\frac{2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \square x^3 + 4x^3 - 4x + 48 = 0}{(4)}$ $\frac{(4)}{(2)}$ (c) $\frac{2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ \square x^3 + 4x^3 - 4x + 48 = 0}{(4)}$ $\frac{(4)}{(4)}$ (c) $\frac{\log_2 x \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(1 \log_2 x \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6)}{(1 \log_2(x-6) \text{ is not defined when } x = -6)}$ $\frac{1}{(2 \log_2(x-6) \text{ is not defined when } x = -6)}{(1 \log_2(x-6) \text{ is not defined hen } x = -6)}$ $\frac{1}{(2 \log_2(x-6) $			(4)	
$\begin{array}{ c c c c c c c } & & & & & & & & & & & & & & & & & & &$	(b)	$2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3$		
$\frac{\left(\frac{x(x+2)^{2}}{(x-6)}\right)^{2}}{\left(\frac{x-6}{x-6}\right)^{2}} = 2^{3}} \left\{ \text{i.e. } \log_{2} a = 3 \ \square \ a = 2^{3} \text{ or } 8 \right\} \qquad \text{B1} \qquad 1.1$ $\frac{\left(\frac{x(x+2)^{2}}{(x-6)}\right)^{2}}{x(x+2)^{2}} = 8(x-6) \ \square \ x(x^{2}+4x+4) = 8x-48 \qquad \qquad$		• $\log_2(x+2)^2 + \log_2 x - \log_2(x-6) = 3$	M1	1.2
$\frac{x(x+2)^{2} = 8(x-6) \ \ (x^{2}+4x+4) = 8x-48}{x(x+2)^{2} = 8(x-6) \ \ (x^{2}+4x+4) = 8x-48}$ $\frac{x(x+2)^{2} = 8(x-6) \ \ (x^{2}+4x+4) = 8x-48$ $\frac{x(x+2)^{2} = 8(x-6) \ \ (x^{2}-2x+8) = 0$ $\frac{x(x+6)(x^{2}-2x+8) = 0}{(4)}$ $x(x+6)$		$\log_2\left(\frac{x(x+2)^2}{(x-6)}\right) = 3 \qquad \left[\text{ or } \log_2\left(x(x+2)^2\right) = \log_2\left(8(x-6)\right) \right]$	M1	1.1b
$rac{1}{2}$ rac{1}{2} rac{1}{2} <td></td> <td>$\left(\frac{x(x+2)^2}{(x-6)}\right) = 2^3 \qquad \text{{i.e. }} \log_2 a = 3 \ \vartriangleright \ a = 2^3 \text{ or } 8$</td> <td>B1</td> <td>1.1b</td>		$\left(\frac{x(x+2)^2}{(x-6)}\right) = 2^3 \qquad \text{{i.e. }} \log_2 a = 3 \ \vartriangleright \ a = 2^3 \text{ or } 8$	B1	1.1b
(c) $2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ arphi \ x^3 + 4x^3 - 4x + 48 = 0$ (4) (c) $2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ arphi \ x^3 + 4x^3 - 4x + 48 = 0$ (c) (c) $2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ arphi \ x^3 + 4x^3 - 4x + 48 = 0$ (c) </td <td></td> <td>$x(x+2)^2 = 8(x-6) \triangleright x(x^2+4x+4) = 8x-48$</td> <td></td> <td></td>		$x(x+2)^2 = 8(x-6) \triangleright x(x^2+4x+4) = 8x-48$		
(c) $\frac{2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \ (x^3 + 4x^3 - 4x + 48 = 0)}{(x+6)(x^2 - 2x + 8) = 0}$ Reason 1: E.g. • $\log_2 x$ is not defined when $x = -6$ • $\log_2(x-6)$ is not defined when $x = -6$ • $\log_2(x-6)$ is not defined when $x = -6$ • $x = -6$, but $\log_2 x$ is only defined for $x > 0$ Reason 2: • $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) roots At least one of Reason 1 or Reason 2 Both Reason 1 and Reason 2 Both Reason 1 and Reason 2 Both Reason 1 and Reason 2 Reason 2: • $B11$ 2.1		$\triangleright x^3 + 4x^3 + 4x = 8x - 48 \ \triangleright x^3 + 4x^3 - 4x + 48 = 0 *$	A1 *	2.1
$B_2(x-y) = B_2(x-y) + B_2($			(4)	
Reason 1: E.g. $\log_2 x$ is not defined when $x = -6$ • $\log_2(x - 6)$ is not defined when $x = -6$ • $x = -6$, but $\log_2 x$ is only defined for $x > 0$ Reason 2:• $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) rootsAt least one of Reason 1 or Reason 2Both Reason 1 and Reason 2Both Reason 1 and Reason 2	(c)	$2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \rhd x^3 + 4x^3 - 4x + 48 = 0$		
• $\log_2 x$ is not defined when $x = -6$ • $\log_2(x - 6)$ is not defined when $x = -6$ • $x = -6$, but $\log_2 x$ is only defined for $x > 0$ Reason 2:• $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) rootsAt least one of Reason 1 or Reason 2Both Reason 1 and Reason 2Both Reason 1 and Reason 2		$(x+6)(x^2-2x+8) = 0$		
• $x = -6$, but $\log_2 x$ is only defined for $x > 0$ Reason 2: • $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) roots At least one of Reason 1 or Reason 2 Both Reason 1 and Reason 2 B1 2.4				
Reason 2: • $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) rootsB12.4At least one of Reason 1 or Reason 2B12.4Both Reason 1 and Reason 2B12.1		• $\log_2(x - 6)$ is not defined when $x = -6$		
• $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) rootsB12.4At least one of Reason 1 or Reason 2B12.4Both Reason 1 and Reason 2B12.1				
Both Reason 1 and Reason 2B12.1				
		At least one of Reason 1 or Reason 2	B1	2.4
(2)		Both Reason 1 and Reason 2	B1	2.1
			(2)	

Questi	on 2 5 Notes:
(a)(i)	
M1:	Applies f(-6)
A1*:	Applies $f(-6) = 0$ to show that $a = 4$
(a)(ii)	
M1:	Deduces $(x + 6)$ is a factor of $f(x)$ and attempts to find a quadratic factor of $f(x)$ by either equating coefficients or by algebraic long division
A1:	$(x+6)(x^2-2x+8)$
(b)	
M1:	Evidence of applying a correct law of logarithms
M1:	Uses correct laws of logarithms to give either
	• an expression of the form $\log_2(\mathbf{h}(x)) = k$, where k is a constant
	• an expression of the form $\log_2(g(x)) = \log_2(h(x))$
B1:	Evidence in their working of $\log_2 a = 3 \triangleright a = 2^3$ or 8
A1*:	Correctly proves $x^3 + 4x^3 - 4x + 48 = 0$ with no errors seen
(c)	
B1:	See scheme
B1:	See scheme

Questi	on Scheme	Marks	AOs
26 (a	Attempts to use an appropriate model; e.g. $y = A(3 - x)(3 + x)$ or $y = A(9 - x^2)$	M1	3.3
	e.g. $y = A(9 - x^{2})$ e.g. $y = A(9 - x^{2})$		
		M1	3.1b
	Substitutes $x = 0, y = 5 \Rightarrow 5 = A(9 - 0) \Rightarrow A = \frac{5}{9}$		
	$y = \frac{5}{9}(9 - x^2)$ or $y = \frac{5}{9}(3 - x)(3 + x), \{-3 \le x \le 3\}$	A1	1.1b
		(3)	
(b)	Substitutes $x = \frac{2.4}{2}$ into their $y = \frac{5}{9}(9 - x^2)$	M1	3.4
	$y = \frac{5}{9}(9 - x^2) = 4.2 > 4.1 \triangleright \text{ Coach can enter the tunnel}$	A1	2.2b
		(2)	
(b) Alt 1	4.1 = $\frac{5}{9}(9 - x^2)$ \bowtie $x = \frac{9\sqrt{2}}{10}$, so maximum width = $2\left(\frac{9\sqrt{2}}{10}\right)$	M1	3.4
	$= 2.545 > 2.4 \bowtie$ Coach can enter the tunnel	A1	2.2b
		(2)	
(c)	 E.g. Coach needs to enter through the centre of the tunnel. This will only be possible if it is a one-way tunnel In real-life the road may be cambered (and not horizontal) The quadratic curve <i>BCA</i> is modelled for the entrance to the tunnel but we do not know if this curve is valid throughout the entire length of the tunnel There may be overhead lights in the tunnel which may block the path of the coach 	B1	3.5b
		(1)	
		(6 n	narks)
Questio	n 2 6 Notes:		
(a)			
M1:	Translates the given situation into an appropriate quadratic model – see scheme		
M1:	Applies the maximum height constraint in an attempt to find the equation of the model – see scheme		
A1:	Finds a suitable equation – see scheme		
(b) M1:	See scheme		
A1:	Applies a fully correct argument to infer {by assuming that curve <i>BCA</i> is quadratic and the given measurements are correct}, that is possible for the coach to enter the tunnel		ven
(c)			
B1:	See scheme		

Question	Scheme	Marks	AOs
27 (a)	$y = \frac{3x-5}{x+1} \triangleright y(x+1) = 3x-5 \triangleright xy+y = 3x-5 \triangleright y+5 = 3x-xy$	M1	1.1b
	$\triangleright y + 5 = x(3 - y) \triangleright \frac{y + 5}{3 - y} = x$	M1	2.1
	Hence $f^{-1}(x) = \frac{x+5}{3-x}, x \in \mathbb{R}, x \neq 3$	A1	2.5
		(3)	
(b)	$ff(x) = \frac{3\left(\frac{3x-5}{x+1}\right) - 5}{\left(\frac{3x-5}{x+1}\right) + 1}$	M1	1.1a
	$\frac{3(3x-5)-5(x+1)}{x+1}$	M1	1.1b
	$= \frac{x+1}{\frac{(3x-5)+(x+1)}{x+1}}$	A1	1.1b
	$= \frac{9x-15-5x-5}{3x-5+x+1} = \frac{4x-20}{4x-4} = \frac{x-5}{x-1} (\text{note that } a = -5)$	A1	2.1
		(4)	
(c)	$fg(2) = f(4 - 6) = f(-2) = \frac{3(-2) - 5}{2 + 1};= 11$	M1	1.1b
. ,	$rg(2) = r(4 - 0) = r(-2) = \frac{1}{-2 + 1}, -11$	A1	1.1b
		(2)	
(d)	$g(x) = x^2 - 3x = (x - 1.5)^2 - 2.25$. Hence $g_{\min} = -2.25$	M1	2.1
	Either $g_{min} = -2.25$ or $g(x) \ge -2.25$ or $g(5) = 25 - 15 = 10$	B1	1.1b
	$-2.25 \le g(x) \le 10$ or $-2.25 \le y \le 10$	A1	1.1b
		(3)	
(e)	 E.g. the function g is many-one the function g is not one-one the inverse is one-many g(0) = g(3) = 0 	B1	2.4
		(1)	
	(13 marks		narks)

Quest	ion 27 Notes:
(a)	
M1:	Attempts to find the inverse by cross-multiplying and an attempt to collect all the <i>x</i> -terms (or swapped <i>y</i> -terms) onto one side
M1:	A fully correct method to find the inverse
A1:	A correct $f^{-1}(x) = \frac{x+5}{3-x}$, $x \in \mathbb{R}$, $x \neq 3$, expressed fully in function notation (including the domain)
(b)	
M1:	Attempts to substitute $f(x) = \frac{3x-5}{x+1}$ into $\frac{3f(x)-5}{f(x)+1}$
M1:	Applies a method of "rationalising the denominator" for both their numerator and their denominator.
A1:	3(3x - 5) - 5(x + 1)
	$\frac{x+1}{(3x-5)+(x+1)}$ which can be simplified or un-simplified x+1
A1:	Shows $ff(x) = \frac{x+a}{x-1}$ where $a = -5$ or $ff(x) = \frac{x-5}{x-1}$, with no errors seen.
(c)	
M1:	Attempts to substitute the result of $g(2)$ into f
A1:	Correctly obtains $fg(2) = 11$
(d)	
M1:	Full method to establish the minimum of g.
	E.g.
	• $(x \pm a)^2 + b$ leading to $g_{\min} = b$
	• Finds the value of x for which $g(x) = 0$ and inserts this value of x back into $g(x)$ in order
	to find to g_{\min}
B1:	For either
	• finding the correct minimum value of g
	(Can be implied by $g(x) \ge -2.25$ or $g(x) > -2.25$)
	• stating $g(5) = 25 - 15 = 10$
A1:	States the correct range for g. E.g. $-2.25 \le g(x) \le 10$ or $-2.25 \le y \le 10$
(e)	
B1:	See scheme

Questio	n Scheme	Marks	AOs
28(a)	States or uses $f(+3) = 0$	M1	1.1b
	$4(3)^3 - 12(3)^2 + 2(3) - 6 = 108 - 108 + 6 - 6 = 0 \text{ and so } (x - 3) \text{ is a factor}$	A1	1.1b
		(2)	
(b)	Begins division or factorisation so x $4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 +)$	M1	2.1
	$4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 + 2)$	A1	1.1b
	Considers the roots of their quadratic function using completion of square or discriminant	M1	2.1
	$(4x^2 + 2) = 0$ has no real roots with a reason (e.g. negative number does not have a real square root, or $4x^2 + 2 > 0$ for all x So $x = 3$ is the only real root of $f(x) = 0$ *	A1*	2.4
		(4)	
		(6 n	narks)
Notes:			
	rates or uses $f(+3) = 0$ ee correct work evaluating and achieving zero, together with correct conclusion	usion	
A1: M M1: C	Needs to have $(x - 3)$ and first term of quadratic correct Must be correct – may further factorise to $2(x - 3)(2x^2 + 1)$ Considers their quadratic for no real roots by use of completion of the square or consideration of discriminant then A correct explanation		

Ques	tion Scheme	Marks	AOs
29	Realises that $k = 0$ will give no real roots as equation becomes 3 = 0 (proof by contradiction)	B1	3.1a
	(For $k \neq 0$) quadratic has no real roots provided $b^2 < 4ac$ so $16k^2 < 12k$	M1	2.4
	4k(4k-3) < 0 with attempt at solution	M1	1.1b
	So $0 < k < \frac{3}{4}$, which together with $k = 0$ gives $0 \le k < \frac{3}{4} *$	A1*	2.1
		(4 n	narks)
Notes	5:		
B1:	Explains why $k = 0$ gives no real roots		
M1:	Considers discriminant to give quadratic inequality – does not need the <i>h</i> mark	$x \neq 0$ for this	
M1:	Attempts solution of quadratic inequality		
A1*:	Draws conclusion, which is a printed answer, with no errors (dependent on all three previous marks)		

Question	Scheme	Marks	AOs
30(a)	$x^3 + 10x^2 + 25x = x(x^2 + 10x + 25)$	M1	1.1b
	$=x(x+5)^2$	A1	1.1b
		(2)	
(b)	A cubic with correct orientation	M1	1.1b
	-5 0 x Curve passes through the origin (0, 0) and touches at (-5, 0) (see note below for ft)	A1ft	1.1b
		(2)	
(c)	Curve has been translated <i>a</i> to the left	M1	3.1a
	a = -2	A1ft	3.2a
	<i>a</i> = 3	Alft	1.1b
		(3)	
		(7 n	narks)
Notes:			
	these out factor x freet factorisation – allow $x(x + 5)(x + 5)$		
Alft: Curv	rect shape we passes through the origin $(0, 0)$ and touches at $(-5, 0)$ – allo in incorrect factorisation	ow follow through	l
Alft: ft fro	where a be implied by one of the correct answers for a or by a statement of their cubic as long as it meets the x-axis only twice of their cubic as long as it meets the x-axis only twice	ıt	

Question	Scheme	Marks	AOs
31(a)	Sets $2xy + \frac{\pi x^2}{2} = 250$	B1	2.1
	Obtain $y = \frac{250 - \frac{\pi x^2}{2}}{2x}$ and substitute into P	M1	1.1b
	Use $P = 2x + 2y + \pi x$ with their y substituted	M1	2.1
	$P = 2x + \frac{250}{x} - \frac{\pi x^2}{2x} + \pi x = 2x + \frac{250}{x} + \frac{\pi x}{2} *$	A1*	1.1b
		(4)	
(b)	$x > 0 \text{ and } y > 0 \text{ (distance)} \Rightarrow \frac{250 - \frac{\pi x^2}{2}}{2x} > 0 \text{ or } 250 - \frac{\pi x^2}{2} > 0 \text{ o.e.}$	M1	2.4
	As x and y are distances they are positive so $0 < x < \sqrt{\frac{500}{\pi}}$ *	A1*	3.2a
		(2)	
(c)	Differentiates P with negative index correct in $\frac{dP}{dx}$; $x^{-1} \rightarrow x^{-2}$	M1	3.4
	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{250}{x^2} + \frac{\pi}{2}$	A1	1.1b
	Sets $\frac{dP}{dx} = 0$ and proceeds to $x =$	M1	1.1b
	Substitutes their x into $P = 2x + \frac{250}{x} + \frac{\pi x}{2}$ to give perimeter = 59.8 M	A1	1.1b
		(4)	
	(10 r		narks)
		(/

Question 31 continued

Notes:

(a)

- **B1:** Correct area equation
- M1: Rearranges their area equation to make y the subject of the formula and attempt to use with an expression for P
- M1: Use correct equation for perimeter with their *y* substituted
- A1*: Completely correct solution to obtain and state printed answer

(b)

- M1: States x > 0 and y > 0 and uses their expression from (a) to form inequality
- A1*: Explains that *x* and *y* are positive because they are distances, and uses correct expression for *y* to give the printed answer correctly

(c)

- M1: Attempt to differentiate *P* (deals with negative power of *x* correctly)
- A1: Correct differentiation

M1: Sets derived function equal to zero and obtains x =

A1: The value of x may not be seen (it is 8.37 to 3sf or $\sqrt{\left(\frac{500}{4+\pi}\right)}$)

Need to see awrt 59.8 M with units included for the perimeter

Questio	n Scheme	Marks	AOs
32(a)	Sets $H = 0 \Longrightarrow 1.8 + 0.4d - 0.002d^2 = 0$	M1	3.4
	Solves using an appropriate method, for example		
	$d = \frac{-0.4 \pm \sqrt{(0.4)^2 - 4(-0.002)(1.8)}}{2 \times -0.002}$	dM1	1.1b
	Distance = awrt $204(m)$ only	A1	2.2a
		(3)	
(b)	States the initial height of the arrow above the ground.	B1	3.4
		(1)	
(c)	$1.8 + 0.4d - 0.002d^{2} = -0.002(d^{2} - 200d) + 1.8$	M1	1.1b
	$= -0.002((d-100)^2 - 10000) + 1.8$	M1	1.1b
	$= 21.8 - 0.002(d - 100)^2$	A1	1.1b
		(3)	
(d)	(i) 22.1 metres	B1ft	3.4
	(ii) 100 metres	B1ft	3.4
		(2)	
		(9 n	narks)
Notes:			
M1: So (c	ts $H = 0 \Rightarrow 1.8 + 0.4d - 0.002d^2 = 0$ Notes using formula, which if stated must be correct, by completing squares $(1-100)^2 = 10900 \Rightarrow d =$) or even allow answers coming from a graph wrt 204 m only		
	ates it is the initial height of the arrow above the ground. Do not allow e archer"	" it is the hei	ght of
	Score for taking out a common factor of -0.002 from at least the d^2 and d terms For completing the square for their $(d^2 - 200d)$ term		
A1: =	$= 21.8 - 0.002(d - 100)^2$ or exact equivalent		
	For their '21.8+0.3' =22.1m For their 100m		

Question	Scheme	Marks	AOs	
33 (a)	$y \leqslant 7$	B1	2.5	
		(1)		
(b)	$f(1.8) = 7 - 2 \times 1.8^{2} = 0.52 \Longrightarrow gf(1.8) = g(0.52) = \frac{3 \times 0.52}{5 \times 0.52 - 1} = \dots$	M1	1.1b	
	gf (1.8) = 0.975 oe e.g. $\frac{39}{40}$	A1	1.1b	
		(2)		
(c)	$y = \frac{3x}{5x-1} \Longrightarrow 5xy - y = 3x \Longrightarrow x(5y-3) = y$ $(g^{-1}(x) =)\frac{x}{5x-3}$	M1	1.1b	
	$\left(g^{-1}\left(x\right)=\right)\frac{x}{5x-3}$	A1	2.2a	
		(2)		
		(5	marks)	
	Notes			
(b) M1: Full r Also E.g.	et range. Allow f (x) or f for y. Allow e.g. $\{y \in \mathbb{R} : y \leq 7\}, -\infty < y \leq 7,$ nethod to find f (1.8) and substitutes the result into g to obtain a value. allow for an attempt to substitute $x = 1.8$ into an attempt at gf (x). gf $(x) = \frac{3(7-2x^2)}{5(7-2x^2)-1} = \frac{3(7-2(1.8)^2)}{5(7-2\times(1.8)^2)-1} =$	(−∞,7]		
 A1: Correct value (c) M1: Correct attempt to cross multiply, followed by an attempt to factorise out <i>x</i> from an <i>xy</i> term and an <i>x</i> term. If they swap <i>x</i> and <i>y</i> at the start then it will be for an attempt to cross multiply followed by an attempt to factorise out <i>y</i> from an <i>xy</i> term and a <i>y</i> term. A1: Correct expression. Allow equivalent correct expressions e.g. -x/(3-5x), 1/5 + 3/(25x-15) Ignore any domain if given. 				

Question	Scheme	Marks	AOs
34(a)	L		
	\mathcal{Y} (1.5k, k)		
	\wedge		
	O k $2k$ x		
	-2k		
	\wedge shape in any position	B1	1.1b
	Correct <i>x</i> -intercepts or coordinates	B1	1.1b
	Correct <i>y</i> -intercept or coordinates	B1	1.1b
	Correct coordinates for the vertex of a \land shape	B1	1.1b
		(4)	
(b)	x = k	B1	2.2a
	$k - (2x - 3k) = x - k \Longrightarrow x = \dots$	M1	3.1a
	$x = \frac{5k}{3}$	A1	1.1b
	Set notation is required here for this mark		
	$\left\{x:x < \frac{5k}{3}\right\} \cap \left\{x:x > k\right\}$	A1	2.5
(0)	21 2 51	(4)	2.22
(c)	x = 3k or y = 3 - 5k x = 3k and y = 3 - 5k	B1ft B1ft	2.2a 2.2a
	$x - 5\kappa$ and $y - 5 - 5\kappa$	(2)	2.2a
			marks)
	Notes	``````````````````````````````````````	,
(a) Note t	hat the sketch may be seen on Figure 4		
B1: See so	•		
	ct x-intercepts. Allow as shown or written as $(k, 0)$ and $(2k, 0)$ and cor	idone coor	dinates
	(0, k) and $(0, 2k)$ as long as they are in the correct places.		
	ct y-intercept. Allow as shown or written as $(0, -2k)$ or $(-2k, 0)$ as lon ace. Condone $k - 3k$ for $-2k$.	g as it is if	i the
-	ct coordinates as shown		
	the marks for the intercepts and the maximum can be seen away		
	bordinates must be the right way round or e.g. as $y = 0$, $x = k$ etc. The without a sketch but if there is a sketch, such points must not c		
sketch.	eu without a skeith out it there is a skeith, such points must not c	onn aulti	шe
(b)			
	ces the correct critical value of $x = k$. May be implied by e.g. $x > k$ or y		- 41
	npts to solve $k - (2x - 3k) = x - k$ or an equivalent equation/inequality lue. Allow this mark for reaching $k = \dots$ or $x = \dots$ as long as they are a		
required e		sorving uit	
A1: Corre	ct value		
A1. Corre	ct answer using the correct set notation		

A1: Correct answer using the correct set notation.

Allow e.g. $\left\{x: x \in \mathbb{R}, k < x < \frac{5k}{3}\right\}$, $\left\{x: k < x < \frac{5k}{3}\right\}$, $x \in \left(k, \frac{5k}{3}\right)$ and allow "|" for ":" But $\left\{x: x < \frac{5k}{3}\right\} \cup \left\{x: x > k\right\}$ scores A0 $\left\{x: k < x, x < \frac{5k}{3}\right\}$ scores A0 (c) B1ft: Deduces one correct coordinate. Follow through their maximum coordinates from (a) so allow $x = 2 \times$ "1.5k" or $y = 3 - 5 \times$ "k" but must be in terms of k.

Allow as coordinates or x = ..., y = ...

B1ft: Deduces both correct coordinates. Follow through their maximum coordinates from (a) so allow $x = 2 \times 1.5k$ and $y = 3 - 5 \times k$ but must be in terms of k.

Allow as coordinates or x = ..., y = ...

If coordinates are given the wrong way round and not seen correctly as x = ..., y = ...e.g. (3 - 5k, 3k) this is B0B0

Question	Scheme	Marks	AOs
35(a)	x = -4 or $y = -5$	B1	1.1b
	<i>P</i> (-4,-5)	B1	2.2a
		(2)	
(b)	$3x + 40 = -2(x+4) - 5 \Longrightarrow x = \dots$	M1	1.1b
	<i>x</i> = -10.6	A1	2.1
		(2)	
(c)	<i>a</i> > 2	B1	2.2a
	$y = ax \Longrightarrow -5 = -4a \Longrightarrow a = \frac{5}{4}$	M1	3.1a
	$\{a:a\leqslant 1.25\}\cup\{a:a>2\}$	A1	2.5
		(3)	
			(7 marks)

Notes:

(a)

B1: One correct coordinate. Either
$$x = -4$$
 or $y = -5$ or $(-4, ...)$ or $(..., -5)$ seen

B1: Deduces that P(-4, -5) Accept written separately e.g. x = -4, y = -5

(b)

M1: Attempts to solve $3x + 40 = -2(x+4) - 5 \Rightarrow x = \dots$ Must reach a value for x.

You may see the attempt crossed out but you can still take this as an attempt to solve the required equation.

A1: x = -10.6 oe e.g. $-\frac{53}{5}$ only. If other values are given, e.g. x = -37 they must be rejected or the $-\frac{53}{5}$ clearly chosen

as their answer. Ignore any attempts to find y.

Alternative by squaring:

$$3x + 40 = 2|x + 4| - 5 \Longrightarrow 3x + 45 = 2|x + 4| \Longrightarrow 9x^{2} + 270x + 2025 = 4(x^{2} + 8x + 16)$$
$$\Longrightarrow 5x^{2} + 238x + 1961 = 0 \Longrightarrow x = -37, -\frac{53}{5}$$

M1 for isolating the |x+4|, squaring both sides and solving the resulting quadratic

A1 for selecting the $-\frac{53}{5}$

Correct answer with no working scores both marks.

(c)

B1: Deduces that a > 2

M1: Attempts to find a value for *a* using their P(-4, -5)

Alternatively attempts to solve ax = 2(x + 4) - 5 and ax = 2(x + 4) - 5 to obtain a value for *a*. A1: Correct range in acceptable set notation.

$$\{a: a \le 1.25\} \cup \{a: a > 2\}$$

$$\{a: a \le 1.25\}, \{a: a > 2\}$$

$$\{a: a \le 1.25 \text{ or } a > 2\}$$

$$\{a: a \le 1.25 \text{ or } a > 2\}$$

$$\{a: a \le 1.25, a > 2\}$$

$$(-\infty, 1.25] \cup (2, \infty)$$

$$(-\infty, 1.25], (2, \infty)$$

Questi	on Scheme	Marks	AOs		
26 (2)	$a_{2}(0) = a_{2}(0 - 2)^{2} + 1 = a_{2}(5) - A_{2}(5) - 7 - 12$	M1	2.1		
36 (a)	$gg(0) = g((0-2)^{2}+1) = g(5) = 4(5)-7 = 13$	A1	1.1b		
		(2)			
(b)	Solves either $(x-2)^2 + 1 = 28 \implies x = \dots$ or $4x - 7 = 28 \implies x = \dots$	M1	1.1b		
	At least one critical value $x = 2 - 3\sqrt{3}$ or $x = \frac{35}{4}$ is correct	A1	1.1b		
	Solves both $(x-2)^2 + 1 = 28 \implies x = \dots$ and $4x - 7 = 28 \implies x = \dots$	M1	1.1b		
	Correct final answer of ' $x < 2 - 3\sqrt{3}$, $x > \frac{35}{4}$ '	A1	2.1		
	Note: Writing awrt -3.20 or a truncated -3.19 or a truncated -3.2	(4)			
	in place of $2-3\sqrt{3}$ is accepted for any of the A marks				
(c)	<u>h is a one-one</u> {function (or mapping) so has an inverse} <u>g is a many-one</u> {function (or mapping) so does not have an inverse}	B1	2.4		
		(1)			
(d) Way 1		M1 B1 on epen	1.1b		
	$x = \left(-\frac{1}{2}-2\right)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$	M1	1.1b		
	$\Rightarrow x = 7.25$ only cso	A1	2.2a		
		(3)			
(d)	{their $h^{-1}(x)$ } = $\pm 2 \pm \sqrt{x \pm 1}$	M1	1.1b		
Way 2	Attempts to solve $\pm 2 \pm \sqrt{x \pm 1} = -\frac{1}{2} \implies \pm \sqrt{x \pm 1} =$	M1	1.1b		
	$\Rightarrow x = 7.25$ only cso	A1	2.2a		
		(3)			
		(1	0 marks)		
(\mathbf{a})	Notes for Question 3 6				
(a) M1:	Uses a complete method to find gg(0). E.g.				
1411.	• Substituting $x = 0$ into $(0-2)^2 + 1$ and the result of this into the relev	ant part of	$\sigma(\mathbf{r})$		
	• Attempts to substitute $x = 0$ into $4((x-2)^2+1) - 7$ or $4(x-2)^2 - 3$	unit puit of			
A1:	gg(0) = 13				
(b)					
M1:	See scheme				
A1:	See scheme				
M1:	See scheme				
A1:	Brings all the strands of the problem together to give a correct solution.				
Note:	You can ignore inequality symbols for any of the M marks $I_{1} = \frac{1}{2} I_{2} = \frac{1}{2} I_{$				
Note:	If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.				
Note:	Writing $(x-2)^2 + 1 = 28 \implies (x-2) + 1 = \sqrt{28} \implies x = -1 + \sqrt{28}$ (i.e. taking the	e square_roo	ot of		
11010.					
NT 4	each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable meth				
Note:	Allow set notation. E.g. { $x \in \mathbb{R}$: $x < 2 - 3\sqrt{3} \cup x > 8.75$ } is fine for the fina	I A mark			

	Notes for Question 3 6 Continued			
(b)	continued			
Note:	Give final A0 for $\{x \in \mathbb{R} : x < 2 - 3\sqrt{3} \cap x > 8.75\}$			
Note:	Give final A0 for $2-3\sqrt{3} > x > 8.75$			
Note:	Allow final A1 for their writing a final answer of " $x < 2 - 3\sqrt{3}$ and $x > \frac{35}{4}$ "			
Note:	Allow final A1 for a final answer of $x < 2 - 3\sqrt{3}$, $x > \frac{35}{4}$			
Note:	Writing $2 - \sqrt{27}$ in place of $2 - 3\sqrt{3}$ is accepted for any of the A marks			
Note:	Allow final A1 for a final answer of $x < -3.20$, $x > 8.75$			
Note:	Using 29 instead of 28 is M0 A0 M0 A0			
(c)				
B1:	A correct explanation that conveys the <u>underlined points</u>			
Note:	A minimal acceptable reason is "h is a one-one and g is a many-one"			
Note:	Give B1 for " h^{-1} is one-one and g^{-1} is one-many"			
Note:	Give B1 for "h is a one-one and g is not"			
Note:	Allow B1 for "g is a many-one and h is not"			
(d)	Way 1			
M1:	Writes $x = h\left(-\frac{1}{2}\right)$			
M1:	See scheme			
A1:	Uses $x = h\left(-\frac{1}{2}\right)$ to deduce that $x = 7.25$ only, cso			
(d)	Way 2			
M1:	See scheme			
M1:	See scheme			
A1:	Use a correct $h^{-1}(x) = 2 - \sqrt{x-1}$ to deduce that $x = 7.25$ only, cso			
Note:	Give final A0 cso for $2 + \sqrt{x-1} = -\frac{1}{2} \Rightarrow \sqrt{x-1} = -\frac{5}{2} \Rightarrow x-1 = \frac{25}{4} \Rightarrow x = 7.25$ Give final A0 cso for $2 \pm \sqrt{x-1} = -\frac{1}{2} \Rightarrow \sqrt{x-1} = -\frac{5}{2} \Rightarrow x-1 = \frac{25}{4} \Rightarrow x = 7.25$			
Note:				
Note:	Give final A1 cso for $2 \pm \sqrt{x-1} = -\frac{1}{2} \Rightarrow -\sqrt{x-1} = -\frac{5}{2} \Rightarrow x-1 = \frac{25}{4} \Rightarrow x = 7.25$			
Note:	Allow final A1 for $2 \pm \sqrt{x-1} = -\frac{1}{2} \implies \pm \sqrt{x-1} = -\frac{5}{2} \implies x-1 = \frac{25}{4} \implies x = 7.25$			

Questi		Marks	AOs		
37	$g(x) = \frac{2x+5}{x-3}, \ x \ge 5$				
(a)	$g(x) = \frac{2x+5}{x-3}, \ x \ge 5$ $g(5) = \frac{2(5)+5}{5-3} = 7.5 \implies gg(5) = \frac{2("7.5")+5}{"7.5"-3}$	M1	1.1b		
Way 1	$gg(5) = \frac{40}{9} \left(\text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$	A1	1.1b		
		(2)			
(a) Way 2	$gg(x) = \frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3} \implies gg(5) = \frac{2\left(\frac{2(5)+5}{(5)-3}\right)+5}{\left(\frac{2(5)+5}{(5)-3}\right)-3}$	M1	1.1b		
	$gg(5) = \frac{40}{9} \left(\text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$	Al	1.1b		
		(2)			
(b)	{Range:} $2 < y \le \frac{15}{2}$	B1	1.1b		
		(1)			
(c) Way 1	$y = \frac{2x+5}{x-3} \Rightarrow yx-3y = 2x+5 \Rightarrow yx-2x = 3y+5$	M1	1.1b		
	$x(y-2) = 3y+5 \implies x = \frac{3y+5}{y-2} \left\{ \text{or } y = \frac{3x+5}{x-2} \right\}$	M1	2.1		
	$g^{-1}(x) = \frac{3x+5}{x-2}, 2 < x \le \frac{15}{2}$	Alft	2.5		
		(3)			
(c) Way 2	$y = \frac{2x - 6 + 11}{x - 3} \Rightarrow y = 2 + \frac{11}{x - 3} \Rightarrow y - 2 = \frac{11}{x - 3}$	M1	1.1b		
	$y = \frac{2x - 6 + 11}{x - 3} \Rightarrow y = 2 + \frac{11}{x - 3} \Rightarrow y - 2 = \frac{11}{x - 3}$ $x - 3 = \frac{11}{y - 2} \Rightarrow x = \frac{11}{y - 2} + 3 \text{{or } } y = \frac{11}{x - 2} + 3\text{{}}$	M1	2.1		
	$g^{-1}(x) = \frac{11}{x-2} + 3, 2 < x \le \frac{15}{2}$	Alft	2.5		
		(3)			
	Notes for Question 37	(6	marks)		
(a)					
M1:	Full method of attempting $g(5)$ and substituting the result into g				
Note:	Way 2: Attempts to substitute $x = 5$ into $\frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3}$, o.e. Note that $gg(x) = \frac{9x-5}{14-x}$				
A1:	Obtains $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4 or an exact equivalent				
Note:	Give A0 for 4.4 or 4.444 without reference to $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4				

	Notes for Question 37 Continued			
(b)				
B1:	States $2 < y \le \frac{15}{2}$ Accept any of $2 < g \le \frac{15}{2}$, $2 < g(x) \le \frac{15}{2}$, $\left(2, \frac{15}{2}\right]$			
Note:	Accept $g(x) > 2$ and $g(x) \le \frac{15}{2}$ o.e.			
(c) Way 1				
M1:	Correct method of cross multiplication followed by an attempt to collect terms in <i>x</i> or terms in a swapped <i>y</i>			
M1:	A complete method (i.e. as above and also factorising and dividing) to find the inverse			
A1ft:	Uses correct notation to correctly define the inverse function g^{-1} , where the domain of			
	g^{-1} stated correctly or correctly followed through (using correct notation) on the values shown in			
	their range in part (b). Allow $g^{-1}: x \to x$. Condone $g^{-1} = x$. Do not accept $y = x$.			
Note:	Correct notation is required when stating the domain of $g^{-1}(x)$. Allow $2 < x \le \frac{15}{2}$ or $\left(2, \frac{15}{2}\right]$			
	Do not allow any of e.g. $2 < g \le \frac{15}{2}$, $2 < g^{-1}(x) \le \frac{15}{2}$			
Note:	Do not allow A1ft for following through their range in (b) to give a domain for g^{-1} as $x \in \mathbb{R}$			
(c) Way 2				
M1:	Writes $y = \frac{2x+5}{x-3}$ in the form $y = 2 \pm \frac{k}{x-3}$, $k \neq 0$ and rearranges to isolate y and 2 on one side			
	of their equation. Note: Allow the equivalent method with x swapped with y			
M1:	A complete method to find the inverse			
A1ft:	As in Way 1			
Note:	If a candidate scores no marks in part (c), but			
	• states the domain of g^{-1} correctly, or			
	• states a domain of g^{-1} which is correctly followed through on the values shown in their			
	range in part (b) then give special case (SC) M1 M0 A0			

Question	Sche	eme	<u>)</u>	Marks	AOs
38(i), (ii) Way 1	y = x + 3 $y = x + 3 $		V shaped graph {reasonably} symmetrical about the y-axis with vertical interpret (0, 3) or 3 stated or marked on the positive y-axis	B1	1.1b
	$\begin{array}{c c} y = x+3 \\ \hline \\ $	► x	Superimposes the graph of $y = x+3 $ on top of the graph of $y = x + 3$	M1	3.1a
	the graph of $y = x + 3$ is either $y = x+3 $ {for corress or when $x \ge 0$, both graph when $x < 0$, the graph of $y = x + 1$	spond hs ar	ling values of x} e equal (or the same)	A1	2.4
				(3)	
38(ii) Way 2	$\frac{\text{Reason 1}}{\text{When } x \ge 0, x +3 = x+3 }$	Ar	ny one of Reason 1 or Reason 2	M1	3.1a
	$\frac{\text{Reason 2}}{\text{When } x < 0, x + 3 > x + 3 }$		Both Reason 1 and Reason 2	Al	2.4
				(3	marks)

	Notes for Question 38
38(i)	
B1:	See scheme
3(ii)	
M1:	For constructing a method of comparing $ x + 3$ with $ x + 3 $. See scheme.
A1:	Explains fully why $ x + 3 \ge x+3 $. See scheme.
Note:	Do not allow either $x > 0$, $ x + 3 \ge x+3 $ or $x \ge 0$, $ x + 3 \ge x+3 $ as a valid reason
Note	x=0 (or where necessary $x=-3$) need to be considered in their solutions for A1
Note:	Do not allow an incorrect statement such as $x \le 0$, $ x +3 > x+3 $ for A1

	Notes for Question 38 Continued		
38(ii)			
Note:	Allow M1A1 for $x > 0$, $ x + 3 = x + 3 $ and for $x \le 0$, $ x + 3 \ge x + 3 \ge$		
Note:	Allow M1 for any of • x is positive, $ x +3 = x+3 $ • x is negative, $ x +3 > x+3 $ • $x > 0$, $ x +3 = x+3 $ • $x \le 0$, $ x +3 \ge x+3 $ • $x \le 0$, $ x +3 \ge x+3 $		
	 x > 0, x +3 and x+3 are equal x ≥ 0, x +3 and x+3 are equal when x ≥ 0, both graphs are equal for positive values x +3 and x+3 are the same Condone for M1 x ≤ 0, x +3 > x+3 x < 0, x +3 ≥ x+3 		
38(ii) Way 3	 For x>0, x +3= x+3 For -3 < x < 0, as x +3>3 and {0 < } x+3 < 3, then x +3> x+3 	M1	3.1a
	• For $x \le -3$, as $ x + 3 = -x + 3$ and $ x + 3 = -x - 3$, then $ x + 3 > x + 3 $	A1	2.4

Quest	on Scheme	Marks	AOs			
39	(a) $f(x) = -3x^3 + 8x^2 - 9x + 10, x \in \mathbb{R}$					
(a)	(i) $\{f(2) = -24 + 32 - 18 + 10 \implies\} f(2) = 0$	B1	1.1b			
	(ii) {f(x) = } (x-2)(-3x ² +2x-5) or (2-x)(3x ² -2x+5)	M1	2.2a			
	(1) (1(x)) (x - 2) (5x + 2x - 5) (1 - 2x) (5x - 2x + 5)	Al	1.1b			
	$-3y^{6} + 8y^{4} - 9y^{2} + 10 = 0 \implies (y^{2} - 2)(-3y^{4} + 2y^{2} - 5) = 0$	(3)				
(b)	$\frac{-3y + 8y - 9y + 10 = 0}{\text{Gives a partial explanation by}} \Rightarrow (y - 2)(-3y + 2y - 5) = 0$					
	• explaining that $-3y^4 + 2y^2 - 5 = 0$ has no {real} solutions with a					
	reason, e.g. $b^2 - 4ac = (2)^2 - 4(-3)(-5) = -56 < 0$	M1	2.4			
	• or stating that $y^2 = 2$ has 2 {real} solutions or $y = \pm \sqrt{2}$ {only}					
	Complete proof that the given equation has exactly two {real} solutions	A1	2.1			
		(2)				
(c)	$3\tan^3\theta - 8\tan^2\theta + 9\tan\theta - 10 = 0; \ 7\pi \le \theta < 10\pi$					
	{Deduces that} there are 3 solutions	B1	2.2a			
		(1)				
	Notes for Question 39	(6	marks)			
(a)(i)						
B1:	f(2)=0 or 0 stated by itself in part (a)(i)					
(a)(ii)						
M1:	Deduces that $(x-2)$ or $(2-x)$ is a factor and attempts to find the other quad	ratic factor	by			
	• using long division to obtain either $\pm 3x^2 \pm kx +, k = \text{value} \neq 0$ or					
	$\pm 3x^2 \pm \alpha x + \beta$, $\beta = \text{value} \neq 0$, α can be 0					
	• factorising to obtain their quadratic factor in the form $(\pm 3x^2 \pm kx \pm c)$, k	$k = value \neq 0$),			
	<i>c</i> can be 0, or in the form $(\pm 3x^2 \pm \alpha x \pm \beta)$, $\beta = \text{value} \neq 0$, α can be 0					
A1:	$(x-2)(-3x^2+2x-5), (2-x)(3x^2-2x+5) \text{ or } -(x-2)(3x^2-2x+5) \text{ stated}$	together as	a product			
(b)		0	1			
M1:	See scheme					
A1:	See scheme. Proof must be correct <i>with no errors</i> , e.g. giving an incorrect dis					
Note:	Correct calculation e.g. $(2)^2 - 4(-3)(-5)$, $4 - 60$ or -56 must be given for the	e first explar	nation			
Note:	Note that M1 can be allowed for	4 . 2 2 5 .				
	• a correct follow through calculation for the discriminant of their "-3y					
	which would lead to a value < 0 together with an explanation that -3	$y' + 2y^2 - 5$	=0 has			
	 no {real} solutions or for the omission of < 0 					
Note:	< 0 must also been stated in a discriminant method for A1					
Note:	Do not allow A1 for incorrect working, e.g. $(2)^2 - 4(-3)(-5) = -54 < 0$					
Note:	$y^2 = 2 \Rightarrow y = \pm 2$, so 2 solutions is not allowed for A1, but can be condoned for M1					
Note:	Using the formula on $-3y^4 + 2y^2 - 5 = 0$ or $-3x^2 + 2x - 5 = 0$					
	gives y^2 or $x = \frac{-2 \pm \sqrt{-56}}{-6}$ or $\frac{-1 \pm \sqrt{-14}}{-3}$					
	0 5					

	Notes for Question 39 Continued
Note:	Completing the square on $-3x^2 + 2x - 5 = 0$
	gives $x^2 - \frac{2}{3}x + \frac{5}{3} = 0 \implies \left(x - \frac{1}{3}\right)^2 - \frac{1}{9} + \frac{5}{3} = 0 \implies x = \frac{1}{3} \pm \sqrt{\frac{-14}{9}}$
Note:	Do not recover work for part (b) in part (c)
(c)	
B1:	See scheme
Note:	Give B0 for stating θ = awrt 23.1, awrt 26.2, awrt 29.4 without reference to 3 solutions

40 (a) $H = Ax(40-x)$ (or $H = Ax(x-40)$) M1 3.3 Way 1 $x = 20, H = 12 \Rightarrow 12 = A(20)(40 - 20) \Rightarrow A = \frac{3}{100}$ dM1 3.1b $H = \frac{3}{100}x(40-x)$ or $H = -\frac{3}{100}x(x-40)$ A1 1.1b (a) $H = 12 - \lambda(x-20)^2$ (or $H = 12 + \lambda(x-20)^2$) M1 3.3 (b) $H = 12 - \lambda(x-20)^2$ (or $H = 12 + \lambda(x-20)^2$) M1 3.3 (a) $H = 12 - \lambda(x-20)^2$ (or $H = 12 + \lambda(x-20)^2$) M1 3.3 (b) $H = 12 - \frac{3}{100}x(x-20)^2$ A1 1.1b (a) $H = 12 - \frac{3}{100}(x-20)^2$ A1 1.1b (a) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) Both $x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ A1 1.1b (b) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) Both $x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ M1 3.3 (b) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) Both $x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ M1 3.3 (b) $Both x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ M1 3.3 3.3 3.3 (b) $G = x^2, H = 12 = 400a + 20b$ $G = x^2 + 2a^2 + 2$	Question	Scheme	Marks	AOs
(a) (a) $H = \frac{3}{100} x(40 - x) \text{ or } H = -\frac{3}{100} x(x - 40)$ (b) $H = 12 - \lambda(x - 20)^{2} \text{ (or } H = 12 + \lambda(x - 20)^{2} \text{ M1}$ (c) $H = 12 - \lambda(x - 20)^{2} \text{ (or } H = 12 + \lambda(x - 20)^{2} \text{ M1}$ (c) $H = 12 - \lambda(x - 20)^{2} \text{ (or } H = 12 + \lambda(x - 20)^{2} \text{ M1}$ (c) $H = 12 - \frac{3}{100} (x - 20)^{2} \Rightarrow \lambda = \frac{3}{100}$ (d) $H = 12 - \frac{3}{100} (x - 20)^{2} \Rightarrow \lambda = \frac{3}{100}$ (d) $H = 40 \Rightarrow 0 = 12 - \lambda(40 - 20)^{2} \Rightarrow \lambda = \frac{3}{100}$ (d) $H = 40 \Rightarrow 0 = 12 - \lambda(40 - 20)^{2} \Rightarrow \lambda = \frac{3}{100}$ (d) $H = 40 \Rightarrow 0 = 12 - \lambda(40 - 20)^{2} \Rightarrow \lambda = \frac{3}{100}$ (d) $H = 40 \Rightarrow 0 = 1600a + 40b$ (d) $H = 40 \Rightarrow 0 = 1600a + 40b$ (e) $H = 40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03$ (f) $H = 40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03$ (g) $H = 3 \Rightarrow 3 = \frac{3}{100} x(40 - x) \Rightarrow x^{2} - 40x + 100 = 0$ (g) $H = 3 \Rightarrow 3 = 12 - \frac{3}{100} (x - 20)^{2} \Rightarrow (x - 20)^{2} = 300$ (g) $H = 3 \Rightarrow 3 = 12 - \frac{3}{100} (x - 20)^{2} \Rightarrow (x - 20)^{2} = 300$ (g) (g) $H = 3 \Rightarrow 3 = 12 - \frac{3}{100} (x - 20)^{2} \Rightarrow (x - 20)^{2} = 300$ (g) (g) (g) (g) (g) (g) (g) (g)	40 (a)	$H = Ax(40 - x) $ {or $H = Ax(x - 40)$ }	M1	3.3
(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	Way 1		dM1	3.1b
(a) $H = 12 - \lambda(x - 20)^2$ {or $H = 12 + \lambda(x - 20)^2$ } M1 3.3 Way 2 $x = 40, H = 0 \Rightarrow 0 = 12 - \lambda(40 - 20)^2 \Rightarrow \lambda = \frac{3}{100}$ dM1 3.1b $H = 12 - \frac{3}{100}(x - 20)^2$ A1 1.1b (a) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) Both $x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ and either $x = 40, H = 0 \Rightarrow 0 = 1600a + 40b$ or $x = 20, H = 12 \Rightarrow 12 = 400a + 20b$ M1 3.3 (b) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) Both $x = 0, H = 0 \Rightarrow 0 = 1600a + 40b$ or $x = 20, H = 12 \Rightarrow 12 = 400a + 20b$ M1 3.3 (b) $H = -40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03$ so $b = -40(-0.03) = 1.2$ dM1 3.1b (b) $\{H = 3 \Rightarrow \} 3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0$ or $\{H = 3 \Rightarrow \} 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300$ M1 3.4 (c) $\{H = 3 \Rightarrow \} 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300$ M1 3.4 (c) Gives a limitation of the model. Accept e.g. (3) M1 3.2a (c) Gives a limitation of the model. Accept e.g. B1 3.5b B1 3.5b (c) the ground is horizontal B1 3.5b B1 3.5b		$H = \frac{3}{100}x(40 - x) \text{ or } H = -\frac{3}{100}x(x - 40)$		1.1b
Way 2 $x = 40, H = 0 \Rightarrow 0 = 12 - \lambda(40 - 20)^2 \Rightarrow \lambda = \frac{3}{100}$ dM1 3.1b $H = 12 - \frac{3}{100}(x - 20)^2$ A1 1.1b (a) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) (3) Way 3 Both $x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ and either $x = 40, H = 0 \Rightarrow 0 = 1600a + 40b$ M1 3.3 (a) and either $x = 40, H = 0 \Rightarrow 0 = 1600a + 40b$ M1 3.3 $or x = 20, H = 12 \Rightarrow 12 = 400a + 20b$ $or x = 20, H = 12 \Rightarrow 12 = 400a + 20b$ M1 3.1b $b = -40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03$ $so b = -40(-0.03) = 1.2$ M1 3.1b $H = -0.03x^2 + 1.2x$ A1 1.1b (3) (b) $\{H = 3 \Rightarrow\} 3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0$ M1 3.4 $or \{H = 3 \Rightarrow\} 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300$ M1 3.4 $e.g. x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)}$ or $x = 20 \pm \sqrt{300}$ dM1 1.1b $\{chooses 20 + \sqrt{300} \Rightarrow \}$ greatest distance = awrt 37.3 m A1 3.2a (c) Gives a limitation of the model. Accept e.g. (3) (3) (c) He ball needs to be kicked from the ground B1 3.5b (b) the ball neceds to be kicked fro				
(a) Way 3 (a) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) Both $x = 0$, $H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ and either $x = 40$, $H = 0 \Rightarrow 0 = 1600a + 40b$ or $x = 20$, $H = 12 \Rightarrow 12 = 400a + 20b$ $or \frac{-b}{2a} = 20 \ (\Rightarrow b = -40a)b = -40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03so b = -40(-0.03) = 1.2H = -0.03x^2 + 1.2x(b)\{H = 3 \Rightarrow\} 3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0or \{H = 3 \Rightarrow\} 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300e.g. x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)} or x = 20 \pm \sqrt{300}(c)(c)Gives a limitation of the model. Accept e.g.• the ground is horizontal• the ball is modelled as a particle• the ball is modelled as a particle• the ball is modelled as a particle• the ris no spin on the ball• the trajectory of the ball is a perfect parabola$		$H = 12 - \lambda (x - 20)^2 \text{{or }} H = 12 + \lambda (x - 20)^2 \text{{}}$	M1	3.3
(a) (a) (b) (b) (b) (c) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c	Way 2	$x = 40, H = 0 \Longrightarrow 0 = 12 - \lambda(40 - 20)^2 \Longrightarrow \lambda = \frac{3}{100}$	dM1	3.1b
(a) Way 3 $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) Both $x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ and either $x = 40, H = 0 \Rightarrow 0 = 1600a + 40b$ or $x = 20, H = 12 \Rightarrow 12 = 400a + 20b$ $or \frac{-b}{2a} = 20 \ \{\Rightarrow b = -40a\} M1 3.3 b = -40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03so b = -40(-0.03) = 1.2 dM1 3.1b H = -0.03x^2 + 1.2x A1 1.1b H = -0.03x^2 + 1.2x A1 1.1b (b) \{H = 3 \Rightarrow\} 3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0or \{H = 3 \Rightarrow\} 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300 M1 3.4 (c) Gives a limitation of the model. Accept e.g. (3) (401) 1.1b (c) Gives a limitation of the model. Accept e.g. (3) (3) (3) (c) Gives a limitation of the model. Accept e.g. (3) (3) (3) (3) (c) Gives a limitation of the model. Accept e.g. (3) (3) (3) (3) (c) Gives a limitation of the model. Accept e.g. (3) (3) (3) (3) (a) (b) (b) the ball needs to be kicked from the ground (b) (b) (3) (3) (3) $		$H = 12 - \frac{3}{100}(x - 20)^2$	A1	1.1b
Way 3 Both $x=0$, $H=0 \Rightarrow 0 = 0+0+c \Rightarrow c=0$ and either $x=40$, $H=0 \Rightarrow 0 = 1600a+40b$ or $x=20$, $H=12 \Rightarrow 12 = 400a+20b$ $or \frac{-b}{2a} = 20 \ \{\Rightarrow b = -40a\}b=-40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03so b = -40(-0.03) = 1.2H = -0.03x^2 + 1.2xA1 1.1b(3)(b) \{H=3 \Rightarrow\} 3 = \frac{3}{100}x(40-x) \Rightarrow x^2 - 40x + 100 = 0or \{H=3 \Rightarrow\} 3 = 12 - \frac{3}{100}(x-20)^2 \Rightarrow (x-20)^2 = 300e.g. x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)} or x = 20 \pm \sqrt{300}(c) Gives a limitation of the model. Accept e.g.• the ground is horizontal• the ball is modelled as a particle• the horizontal bar needs to be kicked from the ground• there is no spin on the ball• on obstacles in the trajectory (or path) of the ball• the trajectory of the ball is a perfect parabola$			(3)	
$\frac{b = -40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03}{\text{so } b = -40(-0.03) = 1.2} \text{dM1} \qquad 3.1b$ $\frac{b = -40a \Rightarrow 12 = 40(-0.03) = 1.2}{\text{M1} \qquad 3.1b}$ $\frac{dM1}{dM1} \qquad 3.1b$ $\frac{dM1}{dM1} \qquad 3.4b$ $\frac{dM1}{dM$		Both $x=0$, $H=0 \Rightarrow 0=0+0+c \Rightarrow c=0$ and either $x=40$, $H=0 \Rightarrow 0=1600a+40b$ or $x=20$, $H=12 \Rightarrow 12=400a+20b$	M1	3.3
$H = -0.03x^{2} + 1.2x$ A1 1.1b (3) (b) $\{H = 3 \Rightarrow\} 3 = \frac{3}{100}x(40 - x) \Rightarrow x^{2} - 40x + 100 = 0$ or $\{H = 3 \Rightarrow\} 3 = 12 - \frac{3}{100}(x - 20)^{2} \Rightarrow (x - 20)^{2} = 300$ M1 3.4 $e.g. x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)} \text{ or } x = 20 \pm \sqrt{300}$ dM1 1.1b $\{\text{chooses } 20 + \sqrt{300} \Rightarrow\} \text{ greatest distance = awrt } 37.3 \text{ m}$ A1 3.2a (3) (c) Gives a limitation of the model. Accept e.g. • the ground is horizontal • the ball needs to be kicked from the ground • the ball needs to be kicked from the ground • the ball is modelled as a particle • the horizontal bar needs to be modelled as a line • there is no wind or air resistance on the ball • there is no spin on the ball • the trajectory (or path) of the ball • the trajectory of the ball is a perfect parabola		$b = -40a \Longrightarrow 12 = 400a + 20(-40a) \Longrightarrow a = -0.03$	dM1	3.1b
(b) $ \{H = 3 \Rightarrow\} 3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0 $ or $\{H = 3 \Rightarrow\} 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300$ $ e.g. x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)} \text{ or } x = 20 \pm \sqrt{300} $ $ dM1 1.1b $ $ \{chooses \ 20 + \sqrt{300} \Rightarrow\} \text{ greatest distance = awrt 37.3 m} $ $ A1 3.2a $ $ (3) $ (c) Gives a limitation of the model. Accept e.g. $ \text{ the ground is horizontal} $ $ \text{ the ball needs to be kicked from the ground} $ $ \text{ the ball needs to be kicked from the ground} $ $ \text{ the ball is modelled as a particle} $ $ \text{ the horizontal bar needs to be modelled as a line } B1 3.5b $ $ \text{ there is no wind or air resistance on the ball } $ $ \text{ the trajectory of the ball is a perfect parabola } $			A1	1.1b
(b) $ \{H = 3 \Rightarrow\} 3 = \frac{3}{100} x(40 - x) \Rightarrow x^2 - 40x + 100 = 0 $ or $\{H = 3 \Rightarrow\} 3 = 12 - \frac{3}{100} (x - 20)^2 \Rightarrow (x - 20)^2 = 300 $ $ e.g. x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)} \text{ or } x = 20 \pm \sqrt{300} $ $ dM1 1.1b $ $ \{chooses \ 20 + \sqrt{300} \Rightarrow\} \text{ greatest distance = awrt 37.3 m} $ A1 3.2a (c) Gives a limitation of the model. Accept e.g. $ \text{ the ground is horizontal} $ $ \text{ the ball needs to be kicked from the ground} $ $ \text{ the ball needs to be kicked from the ground} $ $ \text{ the ball is modelled as a particle} $ $ \text{ the horizontal bar needs to be modelled as a line} $ $ \text{ the re is no wind or air resistance on the ball $ $ \text{ there is no spin on the ball} $ $ \text{ the trajectory of the ball is a perfect parabola} $			(3)	
$\{chooses 20 + \sqrt{300} \Rightarrow\}$ greatest distance = awrt 37.3 mA13.2a(3)(3)(c)Gives a limitation of the model. Accept e.g. • the ground is horizontal • the ball needs to be kicked from the ground • the ball is modelled as a particle • the horizontal bar needs to be modelled as a lineB13.5b• there is no wind or air resistance on the ball • there is no spin on the ball • the trajectory (or path) of the ball • the trajectory of the ball is a perfect parabolaB13.5b	(b)	100		3.4
$\{chooses 20 + \sqrt{300} \Rightarrow\}$ greatest distance = awrt 37.3 mA13.2a(3)(3)(c)Gives a limitation of the model. Accept e.g. • the ground is horizontal • the ball needs to be kicked from the ground • the ball is modelled as a particle • the horizontal bar needs to be modelled as a lineB13.5b• there is no wind or air resistance on the ball • there is no spin on the ball • the trajectory (or path) of the ball • the trajectory of the ball is a perfect parabolaB13.5b		e.g. $x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)}$ or $x = 20 \pm \sqrt{300}$	dM1	1.1b
(c) Gives a limitation of the model. Accept e.g. • the ground is horizontal • the ball needs to be kicked from the ground • the ball is modelled as a particle • the horizontal bar needs to be modelled as a line • the horizontal bar needs to be modelled as a line • there is no wind or air resistance on the ball • there is no spin on the ball • no obstacles in the trajectory (or path) of the ball • the trajectory of the ball is a perfect parabola			A1	3.2a
(c)Gives a limitation of the model. Accept e.g. • the ground is horizontal • the ball needs to be kicked from the ground • the ball is modelled as a particle • the horizontal bar needs to be modelled as a lineB13.5b8• there is no wind or air resistance on the ball • there is no spin on the ball • the trajectory (or path) of the ball • the trajectory of the ball is a perfect parabolaB1			(3)	
	(c)	 the ground is horizontal the ball needs to be kicked from the ground the ball is modelled as a particle the horizontal bar needs to be modelled as a line there is no wind or air resistance on the ball there is no spin on the ball no obstacles in the trajectory (or path) of the ball 		3.5b
			(1)	

	Notes for Question 40
(a)	
M1:	Translates the situation given into a suitable equation for the model. E.g. Way 1: {Uses $(0, 0)$ and $(40, 0)$ to write} $H = Ax(40 - x)$ o.e. {or $H = Ax(x - 40)$ }
	Way 2: {Uses (20, 12) to write} $H = 12 - \lambda (x - 20)^2$ or $H = 12 + \lambda (x - 20)^2$
	Way 3: Writes $H = ax^2 + bx + c$, and uses $(0, 0)$ to deduce $c = 0$ and an attempt at using either $(40, 0)$ or $(20, 12)$
	Special Case: Allow SC M1dM0A0 for not deducing $c = 0$ but attempting to apply both (40, 0) and (20, 12)
dM1:	Applies a complete strategy with appropriate constraints to find all constants in their model.
	Way 1: Uses (20, 12) on their model and finds $A = \dots$
	Way 2: Uses either $(40, 0)$ or $(0, 0)$ on their model to find $\lambda =$
	Way 3: Uses (40, 0) and (20, 12) on their model to find $a = \dots$ and $b = \dots$
A1:	Finds a correct equation linking <i>H</i> to <i>x</i>
	E.g. $H = \frac{3}{100}x(40-x), H = 12 - \frac{3}{100}(x-20)^2$ or $H = -0.03x^2 + 1.2x$
Note:	Condone writing <i>y</i> in place of <i>H</i> for the M1 and dM1 marks.
Note:	Give final A0 for $y = -0.03x^2 + 1.2x$
Note:	Give special case M1dM0A0 for writing down any of $H = 12 - (x - 20)^2$ or $H = x(40 - x)$
	or $H = x(x - 40)$
Note:	Give M1 dM1 for finding $-0.03x^2 + 1.2x$ or $a = -0.03, b = 1.2, c = 0$ in an implied
	$ax^2 + bx$ or $ax^2 + bx + c$ (with no indication of $H =$)
(b)	
M1:	Substitutes $H = 3$ into their quadratic equation and proceeds to obtain a 3TQ
	or a quadratic in the form $(x \pm \alpha)^2 = \beta; \alpha, \beta \neq 0$
Note:	E.g. $1.2x - 0.03x^2 = 3$ or $40x - x^2 = 100$ are acceptable for the 1 st M mark
Note:	Give M0 dM0 A0 for (their A) $x^2 = 3 \Rightarrow x =$ or their (their A) $x^2 + (\text{their } k) = 3 \Rightarrow x =$
dM1:	Correct method of solving their quadratic equation to give at least one solution
A1:	Interprets their solution in the original context by selecting the larger correct value <i>and states</i>
	<i>correct units for their value</i> . E.g. Accept awrt 37.3 m or $(20 + \sqrt{300})$ m or $(20 + 10\sqrt{3})$ m
Note:	Condone the use of inequalities for the method marks in part (b)
(c):	
B1:	See scheme
Note:	Give no credit for the following reasons
	• H (or the height of ball) is negative when $x > 40$ • Decrease of the ball should be considered after hitting the ground
	 Bounce of the ball should be considered after hitting the ground Model will not be true for a different rugby ball
	 Ball may not be kicked in the same way each time

Question	Scheme	Marks	AOs
41(a)	y ← Correct graph in quadrant 1 and quadrant 2 with V on the x-axis	B1	1.1b
	5 5 O $\frac{5}{2}$ x $States (0, 5) and (\frac{5}{2}, 0)or \frac{5}{2} marked in the correct positionon the x-axisand 5 marked in the correct positionon the y-axis$	B1	1.1b
		(2)	
(b)	$\left 2x-5\right > 7$		
	$2x-5=7 \implies x=\dots$ and $-(2x-5)=7 \implies x=\dots$	M1	1.1b
	{critical values are $x = 6, -1 \Rightarrow$ } $x < -1$ or $x > 6$	A1	1.1b
		(2)	
(c)	$\left \left 2x-5\right >x-\frac{5}{2}\right $		
	E.g. • Solves $2x - 5 = x - \frac{5}{2}$ to give $x = \frac{5}{2}$ and solves $-(2x - 5) = x - \frac{5}{2}$ to also give $x = \frac{5}{2}$ • Sketches graphs of $y = 2x - 5 $ and $y = x - \frac{5}{2}$. Indicates that these graphs meet at the point $\left(\frac{5}{2}, 0\right)$		3.1a
	Hence using set notation, e.g. • $\left\{x: x < \frac{5}{2}\right\} \cup \left\{x: x > \frac{5}{2}\right\}$ • $\left\{x \in \Box, x \neq \frac{5}{2}\right\}$ • $\Box - \left\{\frac{5}{2}\right\}$	A1	2.5
		(2)	
		(6 n	narks)

Quest	ion 41 Notes:
(a)	
B1:	See scheme
B1:	See scheme
(b)	
M1:	See scheme
A1:	Correct answer, e.g.
	• $x < -1$ or $x > 6$
	• $x < -1 \cup x > 6$
	• $\{x: x < -1\} \cup \{x: x > 6\}$
(c)	
M1:	A complete process of finding that $y = 2x - 5 $ and $y = x - \frac{5}{2}$ meet at <i>only</i> one point.
	This can be achieved either algebraically or graphically.
A1:	See scheme.
	Note: Final answer must be expressed using set notation.

Question	Scheme	Marks	AOs
42	$3x - 2y = k$ intersects $y = 2x^2 - 5$ at two distinct points		
	Eliminate <i>y</i> and forms quadratic equation = 0 or quadratic expression $\{=0\}$	M1	3.1a
	$\left\{3x - 2(2x^2 - 5) = k \implies\right\} - 4x^2 + 3x + 10 - k = 0$		1.1b
	$\{"b^2 - 4ac" > 0 \implies \} 3^2 - 4(-4)(10 - k) > 0$	dM1	2.1
	$9 + 16(10 - k) > 0 \implies 169 - 16k > 0$		
	Critical value obtained of $\frac{169}{16}$	B1	1.1b
	$k < \frac{169}{16} \text{o.e.}$	A1	1.1b
		(5)	
42	Eliminate y and forms quadratic equation = 0 or quadratic expression $\{=0\}$	M1	3.1a
Alt 1	$y = 2\left(\frac{1}{3}(k+2y)\right)^2 - 5 \implies y = \frac{2}{9}(k^2 + 4ky + 4y^2) - 5$		
	$8y^2 + (8k - 9)y + 2k^2 - 45 = 0$	A1	1.1b
	$\{"b^2 - 4ac" > 0 \implies\} (8k - 9)^2 - 4(8)(2k^2 - 45) > 0$	dM1	2.1
	$64k^2 - 144k + 81 - 64k^2 + 1440 > 0 \implies -144k + 1521 > 0$		
	Critical value obtained of $\frac{169}{16}$	B1	1.1b
	$k < \frac{169}{16} \text{o.e.}$	A1	1.1b
		(5)	
42	$\frac{dy}{dx} = 4x, m_1 = \frac{3}{2} \implies 4x = \frac{3}{2} \implies x = \frac{3}{8} \text{ So } y = 2\left(\frac{3}{8}\right)^2 - 5 = -\frac{151}{32}$		3.1a
Alt 2			1.1b
	$k = 3\left(\frac{3}{8}\right) - 2\left(-\frac{151}{32}\right) \Longrightarrow k = \dots$	dM1	2.1
	Critical value obtained of $\frac{169}{16}$	B1	1.1b
	$k < \frac{169}{16} \text{o.e.}$	A1	1.1b
		(5)	
		(5 n	narks)

Questio	on 42 Notes:			
M1:	Complete strategy of eliminating x or y and manipulating the resulting equation to form a quadratic equation = 0 or a quadratic expression $\{=0\}$			
A1:	Correct algebra leading to either			
	• $-4x^2 + 3x + 10 - k = 0$ or $4x^2 - 3x - 10 + k = 0$			
	or a one-sided quadratic of either $-4x^2 + 3x + 10 - k$ or $4x^2 - 3x - 10 + k$			
	• $8y^2 + (8k-9)y + 2k^2 - 45 = 0$			
	or a one-sided quadratic of e.g. $8y^2 + (8k-9)y + 2k^2 - 45$			
dM1:	Depends on the previous M mark.			
	Interprets $3x - 2y = k$ intersecting $y = 2x^2 - 5$ at two distinct points by applying			
	$b^2 - 4ac'' > 0$ to their quadratic equation or one-sided quadratic.			
B1:	See scheme			
A1:	Correct answer, e.g.			
	• $k < \frac{169}{16}$			
	• $\left\{k: k < \frac{169}{16}\right\}$			
Alt 2				
M1:	Complete strategy of using differentiation to find the values of x and y where $3x - 2y = k$ is a			
	tangent to $y = 2x^2 - 5$			
A1:	Correct algebra leading to $x = \frac{3}{8}, y = -\frac{151}{32}$			
dM1:	Depends on the previous M mark.			
	Full method of substituting their $x = \frac{3}{8}$, $y = -\frac{151}{32}$ into <i>l</i> and attempting to find the value for <i>k</i> .			
B1:	See scheme			
A1:	Deduces correct answer, e.g.			
	• $k < \frac{169}{16}$			
	• $\left\{k: k < \frac{169}{16}\right\}$			

Quest	Question Scheme		Marks	AOs	
43 Sets $f(-2) = 0 \Longrightarrow 2 \times ($		Sets $f(-2) = 0 \Longrightarrow 2 \times (-2)^3 - 5 \times (-2)^2 + a \times -2 + a = 0$	M1	3.1a	
		Solves linear equation $2a - a = -36 \Longrightarrow a =$		1.1b	
		$\Rightarrow a = -36$	A1	1.1b	
			(3 n	narks)	
Notes	:				
M1:	M1: Selects a suitable method given that $(x + 2)$ is a factor of $f(x)$ Accept either setting $f(-2) = 0$ or attempted division of $f(x)$ by $(x + 2)$				
dM1:	: Solves linear equation in <i>a</i> . Minimum requirement is that there are two terms in ' <i>a</i> ' which must be collected to get $a = \Rightarrow a =$				
A1:	<i>a</i> = -36				

Ques	tion	Scheme	Marks	AOs	
44	(a)	$gf(x) = 3\ln e^x$	M1	1.1b	
		$=3x, (x \in \mathbb{R})$	A1	1.1b	
			(2)		
(b)	$gf(x) = fg(x) \Longrightarrow 3x = x^3$	M1	1.1b	
		$\Rightarrow x^3 - 3x = 0 \Rightarrow x =$	M1	1.1b	
		$\Rightarrow x = (+)\sqrt{3}$ only as $\ln x$ is not defined at $x = 0$ and $-\sqrt{3}$	M1	2.2a	
			(3)		
			(5 n	narks)	
Notes	5:				
(a) M1:	For a	applying the functions in the correct order			
A1:		simplest form is required so it must be $3x$ and not left in the form $3\ln e$	x		
		An answer of $3x$ with no working would score both marks			
(b)					
M1:	Allow the candidates to score this mark if they have $e^{3\ln x} = \text{their } 3x$				
M1:		For solving their cubic in <i>x</i> and obtaining at least one solution.			
A1:		For either stating that $x = \sqrt{3}$ only as $\ln x$ (or $3 \ln x$) is not defined at $x = 0$ and $-\sqrt{3}$			
	or stating that $3x = x^3$ would have three answers, one positive one negative and one zero but $\ln x$ (or $3\ln x$) is not defined for $x \le 0$ so therefore there is only one (real) answer.				
		: Student who mix up fg and gf can score full marks in part (b) as they penalised in part (a)	have alrea	ıdy	

Ques	tion	Scheme	Marks	AOs
45(i)		$x^2 - 6x + 10 = (x - 3)^2 + 1$	M1	2.1
		Deduces "always true"		
		as $(x-3)^2 \ge 0 \Rightarrow (x-3)^2 + 1 \ge 1$ and so is always positive	A1	2.2a
			(2)	
(ii	i)	For an explanation that it need not (always) be true		
		This could be if $a < 0$ then $ax > b \Rightarrow x < \frac{b}{a}$	M1	2.3
		States 'sometimes' and explains if $a > 0$ then $ax > b \Rightarrow x > \frac{b}{a}$ if $a < 0$ then $ax > b \Rightarrow x < \frac{b}{a}$	A1	2.4
			(2)	
(iii	i)	Difference $= (n+1)^2 - n^2 = 2n+1$	M1	3.1a
		Deduces "Always true" as $2n+1 = (even +1) = odd$	A1	2.2a
			(2)	
Notes			(6 n	narks)
(i) M1: A1: (ii) M1: A1:	y = 1 State For a a < 0	mpts to complete the square or any other valid reason. Allow for a grap $x^2 - 6x + 10$ or an attempt to find the minimum by differentiation es always true with a valid reason for their method an explanation that it need not be true (sometimes). This could be if 0 then $ax > b \Rightarrow x < \frac{b}{a}$ or simply $-3x > 6 \Rightarrow x < -2$ rect statement (sometimes true) and explanation	oh of	
(iii) M1:				
A1:				

Quest	tion Scheme	Marks	AOs	
46(8	a) $f(x) \ge 5$	B1	1.1b	
		(1)		
(b)	Uses $-2(3-x)+5 = \frac{1}{2}x+30$	M1	3.1a	
	Attempts to solve by multiplying out bracket, collect terms etc $\frac{3}{2}x = 31$	M1	1.1b	
	$x = \frac{62}{3}$ only	A1	1.1b	
		(3)		
(c)	Makes the connection that there must be two intersections. Implied by either end point $k > 5$ or $k \le 11$	M1	2.2a	
	$\left\{k : k \in \mathbb{R}, 5 < k \leqslant 11\right\}$	A1	2.5	
		(2)		
		(6 n	narks)	
Notes	:			
(a) B1:	$f(x) \ge 5$ Also allow $f(x) \in [5,\infty)$			
(b)				
M1:	Deduces that the solution to $f(x) = \frac{1}{2}x + 30$ can be found by solving			
	$-2(3-x) + 5 = \frac{1}{2}x + 30$			
M1:	2 Correct method used to solve their equation. Multiplies out bracket/ collects like terms			
A1:	$x = \frac{62}{3}$ only. Do not allow 20.6			
(c) M1:	Deduces that two distinct roots occurs when $y = k$ intersects $y = f(x)$ in two places. This may be implied by the sight of either end point. Score for sight of either $k > 5$ or $k \le 11$			
A1:	Correct solution only $\{k : k \in \mathbb{R}, 5 < k \leq 11\}$			

Question Number	So	cheme	Marks
47.(i) Way 1	$\sqrt{48} = \sqrt{16}\sqrt{3}$ or $\frac{6}{\sqrt{3}} = 6\frac{\sqrt{3}}{3}$	Writes one of the terms of the given expression correctly in terms of $\sqrt{3}$	M1
	$\Rightarrow \sqrt{48} - \frac{6}{\sqrt{3}} = 2\sqrt{3}$	A correct answer of $2\sqrt{3}$. A correct answer with no working implies both marks.	A1
			(2)
(i) Way 2	$\sqrt{48} = 2\sqrt{12}$ or $\frac{6}{\sqrt{3}} = \sqrt{12}$	Writes one of the terms of the given expression correctly in terms of $\sqrt{12}$	M1
	$2\sqrt{12} - \sqrt{12} = \sqrt{12} = 2\sqrt{3}$	A correct answer of $2\sqrt{3}$. A correct answer with no working implies both marks.	A1
			(2)
(i) Way 3	$\sqrt{48} = \frac{12}{\sqrt{3}}$ or $\sqrt{48} = \frac{\sqrt{144}}{\sqrt{3}}$	Writes $\sqrt{48}$ correctly as $\frac{12}{\sqrt{3}}$ or $\frac{\sqrt{144}}{\sqrt{3}}$	M1
	$\frac{12}{\sqrt{3}} - \frac{6}{\sqrt{3}} = \frac{6}{\sqrt{3}} = 2\sqrt{3}$	A correct answer of $2\sqrt{3}$. A correct answer with no working implies both marks.	A1
			(2)
(i) Way 4	$\sqrt{48} - \frac{6}{\sqrt{3}} = \frac{\sqrt{3}\sqrt{48} - \dots}{\sqrt{3}} = \frac{12 - \dots}{\sqrt{3}}$ or $\sqrt{48} - \frac{6}{\sqrt{3}} = \frac{\sqrt{3}\sqrt{48} - \dots}{\sqrt{3}} = \frac{\sqrt{144} - \dots}{\sqrt{3}}$	Writes $\sqrt{48}$ correctly as $\frac{12}{\sqrt{3}}$ or $\frac{\sqrt{144}}{\sqrt{3}}$	M1
	$\frac{12-6}{\sqrt{3}} = \frac{6}{\sqrt{3}} = 2\sqrt{3}$	A correct answer of $2\sqrt{3}$. A correct answer with no working implies both marks.	A1
			(2)

(ii)	4	For $81 = 3^4$ or $\log_3 81 = 6x - 3$. This	
Way 1	$81 = 3^4$ or $\log_3 81 = 6x - 3$	may be implied by subsequent work.	B1
	$3^{6x-3} = 3^4$ or $\log_3 81 = 6x-3$ $\Rightarrow 4 = 6x-3 \Rightarrow x =$	Solves an equation of the form $6x - 3 = k$ where k is their power of 3.	M1
	$\Rightarrow 4 = 6x - 3 \Rightarrow x = \dots$ $\Rightarrow x = \frac{4+3}{6} = \frac{7}{6}$	$\frac{7}{6}$ or $1\frac{1}{6}$ or 1.16 with a dot over the 6	A1
	0 0	0 0	(3)
Way 2	$3 = 81^{\frac{1}{4}}$	For $3 = 81^{\frac{1}{4}}$. This may be implied by subsequent work.	B1
	$81^{\frac{6x-3}{4}} = 81 \Longrightarrow \frac{6x-3}{4} = 1 \Longrightarrow x = \dots$	Solves an equation of the form $k(6x-3) = 1$ where k is their power of 81.	M1
	$\Rightarrow x = \frac{4+3}{6} = \frac{7}{6}$	$\frac{7}{6}$ or $1\frac{1}{6}$ or 1.16 with a dot over the 6	A1
			(3)
Way 3	$81 = 9^2$ and $3 = 9^{\frac{1}{2}}$	For $81 = 9^2$ and $3 = 9^{\frac{1}{2}}$. This may be implied by subsequent work.	B1
	$9^{\frac{6x-3}{2}} = 9^2 \Rightarrow \frac{6x-3}{2} = 2 \Rightarrow x = \dots$	Solves an equation of the form p(6x-3) = q where p is their power of 9 for the 3 and q is their power of 9 for the 81.	M1
	$\Rightarrow x = \frac{4+3}{6} = \frac{7}{6}$	$\frac{7}{6}$ or $1\frac{1}{6}$ or 1.16 with a dot over the 6	A1
			(3)
Way 4	$3^{6x-3} = 3^{6x} \times 3^{-3}$	For writing 3^{6x-3} correctly in terms of 3^{6x}	B1
	$3^{6x} = 81 \times 3^3 = 3^7$ $\Rightarrow 6x = 7 \Rightarrow x = \dots$	Solves an equation of the form $6x = k$ where k is their $3^3 \times 81$ written as a power of 3.	M1
	$\Rightarrow x = \frac{7}{6}$	$\frac{7}{6}$ or $1\frac{1}{6}$ or 1.16 with a dot over the 6	A1
		T	(3)
Way 5	$\log 3^{6x-3} = \log 81$	Takes logs of both sides	B1
	$6x - 3 = \frac{\log 81}{\log 3}$ $6x - 3 = 4 \Longrightarrow x = \dots$	Solves an equation of the form $6x - 3 = k$ where k is their $\frac{\log 81}{\log 3}$	M1
	$6x - 3 = 4 \Longrightarrow x = \dots$ $\Rightarrow x = \frac{7}{6}$	$\frac{7}{6}$ or $1\frac{1}{6}$ or 1.16 with a dot over the 6	A1
			(3)
			(5 marks)

Note:

The question does not specify the form of the final answer in (b) and so if answers are left un-simplified as e.g. $\frac{\log_3 81+3}{6}$, $\frac{\log_3 2187}{6}$ then allow full marks if correct.

Question Number	Sch	eme	Marks
48.(a)	$x^2 - 10x + 23 = (x \pm 5)^2 \pm A$	For an attempt to complete the square. Note that if their $A = 23$ then this is M0 by the General Principles.	M1
	$(x-5)^2-2$	Correct expression. Ignore "= 0".	A1
			(2)
(b)	$(x\pm 5)^2 - A \Longrightarrow x = \dots$ or $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \Longrightarrow x = \dots$	Uses their completion of the square for positive <i>A</i> or uses the correct	
	$x = \frac{2a}{2a} \Rightarrow x = \dots$ $\left(x = \frac{10 \pm \sqrt{10^2 - 4(1)(23)}}{2}\right)$	quadratic formula to obtain at least one value for <i>x</i>	M1
	$x = 5 \pm \sqrt{2}$	Correct exact values. If using the quadratic formula must reach as far as $\frac{10 \pm \sqrt{8}}{2}$	A1
			(2)
(c)		Attempts to square any solution from part (b). Allow poor squaring	
	$(5\pm\sqrt{2})^2 = 27+10\sqrt{2}$	e.g. $(5+\sqrt{2})^2 = 25+2=27.$	M1
		Do not allow for substituting e.g. $5 + \sqrt{2}$ into $x^2 - 10x + 23$.	
	$=27+10\sqrt{2}$	Accept equivalent forms such as $27 + \sqrt{200}$. If any extra answers are given, this mark should be withheld.	A1
			(2)
		es to start again:	
	$y - 10y^{05} + 23 = 0 \Longrightarrow y^{05} =$	$\pm \frac{10 \pm \sqrt{10^2 - 4 \times 23}}{2} = 5 \pm \sqrt{2}$	M1
	$y = (5 \pm$	$\sqrt{2}$) ² =	
	$=27+10\sqrt{2}$	Accept equivalent forms such as $27 + \sqrt{200}$. If any extra answers are given, this mark should be withheld.	A1
			(6 marks)

Question Number	(Scheme	Marks
49(a)	(4, 7)	Accept (4, 7) or $x = 4$, $y = 7$ or a sketch of $y = f(x-2)$ with a maximum point marked at (4, 7). (Condone missing brackets) There should be no other coordinates.	B1
			(1)
(b)	(<i>x</i> =) 2.5	Allow (2.5, 0) (condone missing brackets) but no other values or points. Allow a sketch of $f(2x)$ with the only <i>x</i> -intercept marked at x = 2.5 (Allow (0, 2.5) marked in the correct place.	B1
			(1)
(c)	y = 1 (oe e.g. $y - 1 = 0$)	Must be an equation and not just '1' and no other asymptotes stated.	B1
			(1)
(d)	$k \le 1$ or $k = 7$	Either of $k \le 1$ or $k = 7$ Accept either of $y \le 1$ or $y = 7$ Note that $k = 7$ may sometimes be seen embedded in e.g. $k = 0, 1, 7$ and can score B1 here.	B1
	$k \le 1$ $k = 7$	Both correct and in terms of <i>k</i> with no other solutions.	B1
			(2)
			(5 marks)

Question Number	Se	cheme	Marks
50(a)	$b^2 - 4ac = (4k)^2 - 4(-2)(20 + 13k)$	Attempts to use $b^2 - 4ac$ with $a = \pm (20 \pm 13k), b = \pm 4k, c = \pm 2$. This could be as part of the quadratic formula or as $b^2 < 4ac$ or as $b^2 > 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no x's. If they gather to the lhs, condone the omission of the "–" on the "4k".	M1
	$(4k)^2 - 4(-2)(20 + 13k)$	For a correct un-simplified expression.	A1
	$b^{2} - 4ac < 0$ $\Rightarrow (4k)^{2} - 4(-2)(20 + 13k) < 0$	Uses $b^2 - 4ac < 0$ or e.g. $b^2 < 4ac$ with their values of <i>a</i> , <i>b</i> and <i>c</i> in terms of <i>k</i> . The " < 0" must appear before the final printed answer but can appear as $b^2 - 4ac < 0$ at the start.	M1
	$16k^{2} + 160 + 104k < 0$ $\implies 2k^{2} + 13k + 20 < 0*$	Reaches the printed answer with no errors, including bracketing errors, or contradictory statements and sufficient working shown. Note that the statement $(20 + 13k)x^2 - 4kx - 2 < 0$ or starting with e.g. $20x^2 < 4kx - 13kx^2 + 2$ would be an error.	A1*
			(4)
(b)	$2k^{2} + 13k + 20 = 0 \Longrightarrow k = \dots$ e.g. $(2k+5)(k+4) = 0 \Longrightarrow k = \dots$	Attempt to solve the <u>given</u> quadratic to find 2 values for k . See general guidance.	M1
	$\Rightarrow k = -\frac{5}{2}, -4$	Both correct. May be implied by e.g. $k < -\frac{5}{2}$, $k < -4$ or seen on a sketch. If they use the quadratic formula allow $\frac{-13\pm3}{4}$ for this mark but not $\sqrt{9}$ for 3 and allow e.g. $-\frac{13}{4}\pm\frac{3}{4}$ if they complete the square.	A1
	$-4 < k < -\frac{5}{2}$ Allow equivalent values e.g. $-\frac{10}{4}$ i.e. the critical values must be in the form $\frac{a}{b}$ where <i>a</i> and <i>b</i> are integers	M1: Chooses 'inside' region for their critical values i.e. Lower Limit $< k <$ Upper Limit or e.g. Lower Limit $\le k \le$ Upper Limit A1: Allow $k \in (-4, -\frac{5}{2})$ or just $(-4, -\frac{5}{2})$ and allow $k > -4$ and $k < -2.5$ and $-\frac{5}{2} > k > -4$ but $k > -4$, $k < -\frac{5}{2}$ scores M1A0. $-\frac{5}{2} < k < -4$ is M0A0	M1A1
	Allow working in terms of <i>x</i> in (b) but the a	answer must be in terms of k for the final mark.	
			(4)
			(8 marks)

Question Number	Scheme	Marks
51.(a)	$f(x) = (x-4)^2 + 3$ $M1: f(x) = (x \pm 4)^2 \pm \alpha, \ \alpha \neq 0$ (where α is a single number or a numerical expression $\neq 0$) $A1: Allow (x + 4)^2 + 3 \text{ and ignore}$ any spurious "= 0"	M1A1
	Allow $a = -4$, $b = 3$ to score both marks	
	· · · · · · · · · · · · · · · · · · ·	(2)
(b)	B1: U shape anywhere even with no axes. Do not allow a "V" shape i.e. with an obvious vertex.	B1
	B1: P(0, 19). Allow (0, 19) or just 19 marked in the correct place as long as the curve (or straight line) passes through or touches here and allow (19, 0) as long as it is marked in the correct place. Correct coordinates may be seen in the body of the script as long as the curve (or straight line) passes through or touches here. If there is any ambiguity, the sketch has precedence. (There must be a sketch to score this mark)	B1
	B1: $Q(4, 3)$ B1: $Q(4, 3)$. Correct coordinates(4, 3)that can be scored without a sketchbut if a sketch is drawn then it musthave a minimum in the firstquadrant and no other turningpoints. May be seen in the body ofthe script. If there is any ambiguity,the sketch has precedence. Allowthis mark if 4 is clearly marked onthe x-axis below the minimum and 3is marked clearly on the y-axis andcorresponds to the minimum,	B1
-	corresponds to the minimum,	(3)
		(3)

(c)		Correct use of Pythagoras'	
	$PQ^2 = (0-4)^2 + (19-3)^2$	Theorem on 2 points of the form	M1
	IQ = (0-4) + (19-3)	$(0, p)$ and (q, r) where $q \neq 0$ and	1011
		$p \neq r$ with p , q and r numeric.	
		Correct un-simplified numerical	
		expression for PQ including the	
		square root. <u>This must come from</u> <u>a correct <i>P</i> and <i>Q</i>. Allow e.g $PO = \sqrt{(Q - 4)^2 + (1Q - 2)^2}$ A1</u>	
	$PQ = \sqrt{4^2 + 16^2}$		A1
		$PQ = \sqrt{(0-4)^2 + (19-3)^2}$.	
		Allow $\pm \sqrt{(0-4)^2 + (19-3)^2}$	
	$PO = 4\sqrt{17}$	Cao and cso i.e. This must come	A1
	$PQ = 4\sqrt{17}$	from a correct P and Q.	AI
	Note that it is possible to obtain the	e correct value for PQ from (-4,3) and	
	(0, 19) and e.g. $(0, 13)$ and $(4, -3)$ but the A marks in (c) can only be		
	awarded for the	e correct P and Q.	
			(3)
			(8 marks)

Question Number	Scheme	Marks
52(a)(i)	B1: Straight line with negative gradient anywhere even with no axes.	B1
	(0, c) B1: Straight line with an intercept at (0, c) or just c marked on the positive y-axis provided the line passes through the positive y-axis. Allow (c, 0) as long as it is marked in the correct place. Allow (0, c) in the body of the script but in any ambiguity, the sketch has precedence. Ignore any intercepts with the x-axis.	B1
(a)(ii)	Either: For the shape of a $y = \frac{1}{x}$ curve in any position. It must have two branches and be asymptotic horizontally and vertically with no obvious "overlap" with the asymptotes, but otherwise be generous. The curve may bend away from the asymptote a little at the end. Sufficient curve must be seen to suggest the asymptotic behaviour, both vertically and horizontally and the branches must approach the same asymptote Or the equation $y = 5$ seen independently i.e. whether the sketch has an asymptote here or not. Do not allow $y \neq 5$ or $x = 5$.	B1
	B1: Fully correct graph and with a horizontal asymptote on the positive <i>y</i> -axis. The asymptote does not have to be drawn but the equation $y = 5$ must be seen. The shape needs to be reasonably accurate with the "ends" not bending away significantly from the asymptotes and the branches must approach the same asymptote. Ignore $x = 0$ given as an asymptote.	B1
[[Allow sketches to be on the same axes.	

(7.)	ГП		
(b)	$\frac{1}{x} + 5 = -3x + c \Longrightarrow 1 + 5x = -3x^2 + cx$ $\Longrightarrow 3x^2 + 5x - cx + 1 = 0$	Sets $\frac{1}{x} + 5 = -3x + c$, attempts to multiply by <i>x</i> and collects terms (to one side). Allow e.g. ">" or "<" for "=" . At least 3 of the terms must be multiplied by <i>x</i> , e.g. allow one slip. The ' = 0' may be implied by subsequent work and provided correct work follows, full marks are still possible in (b).	M1
	$b^2 - 4ac = (5 - c)^2 - 4 \times 1 \times 3$	Attempts to use $b^2 - 4ac$ with their a , b and c from their equation where $a = \pm 3$, $b = \pm 5 \pm c$ and $c = \pm 1$. This could be as part of the quadratic formula or as $b^2 < 4ac$ or as $b^2 > 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no x 's.	M1
	$(5-c)^2 > 12*$	Completes proof with no errors or incorrect statements and with the ">" appearing correctly before the final answer, which could be from $b^2 - 4ac > 0$. Note that the statement $3x^2 + 5x - cx + 1 > 0$ or starting with e.g. $\frac{1}{x} + 5 > -3x + c$ would be an error.	A1*
	Note: A minimum	for (b) could be,	
	1		
	$\frac{1}{x} + 5 = -3x + c \Longrightarrow 3x^2 + c$	5x - cx + 1 (= 0) (M1)	
	$b^2 > 4ac \Rightarrow (5-c)^2 > 12 \text{ (M1A1)}$		
	If $b^2 > 4ac$ is not seen then 4×3	\times 1 needs to be seen explicitly.	
		· ·	(3)

$(5-c)^{2} = 12 \Rightarrow (c=)5 \pm \sqrt{12}$ or $(5-c)^{2} = 12 \Rightarrow c^{2} - 10c + 13 = 0$ $\Rightarrow (c=) \frac{-10 \pm \sqrt{(-10)^{2} - 4 \times 13}}{2}$ critical value using the result in (b) or by expanding and solving a 3TQ (See General Principles) (the "= 0" may be implied) A1: Correct critical values in any form. Note that $\sqrt{12}$ may be seen as $2\sqrt{3}$. Chooses outside region.	
$(5-c)^{2} = 12 \Rightarrow c^{2} - 10c + 13 = 0$ $\Rightarrow (c =) \frac{-10 \pm \sqrt{(-10)^{2} - 4 \times 13}}{2}$ (See General Principles) (the "= 0" may be implied) A1: Correct critical values in any form. Note that $\sqrt{12}$ may be seen as $2\sqrt{3}$.	
$(3-c) = 12 \Rightarrow c^{-10c+13} = 0$ $\Rightarrow (c=) \frac{-10 \pm \sqrt{(-10)^2 - 4 \times 13}}{2}$ $and be implied)$ $A1: Correct critical values in any form. Note that \sqrt{12} may be seen as 2\sqrt{3}.$	
$\Rightarrow (c=) \frac{-10 \pm \sqrt{(-10)^2 - 4 \times 13}}{2}$ A1: Correct critical values in any form. Note that $\sqrt{12}$ may be seen as $2\sqrt{3}$.	
$2\sqrt{3}$.	L
$2\sqrt{3}$.	
Chooses outside region.	
The '0 <' can be ignored for this	
mark. So look for $c < \text{their } 5 - \sqrt{12}$,	
$c < 5 - \sqrt{12}, c > 5 + \sqrt{12}$ $c > 15 + \sqrt{12}$ $d > 16 + \sqrt{12}$. This could be M1	
scored from $5 + \sqrt{12} < c < 5 - \sqrt{12}$ or	
$5 - \sqrt{12} > c > 5 + \sqrt{12}$. Evidence is	
to be taken from their answers not	
from a diagram.	
Correct ranges including the ' $0 <$ ' e.g. answer as shown or each	
region written separately or e.g.	
$(0, 5 - \sqrt{12}), (5 + \sqrt{12}, \infty)$. The	
$0 < c < 5 - \sqrt{12}$, $c > 5 + \sqrt{12}$ critical values may be un-simplified but must be at least A1	
but must be at least	
$\frac{10+\sqrt{48}}{2}$, $\frac{10-\sqrt{48}}{2}$. Note that	
$0 < c < 5 - \sqrt{12}$ and $c > 5 + \sqrt{12}$	
would score M1A0.	
Allow the use of x rather than c in (c) but the final answer must be in terms of c	
terms of <i>c</i> .	(4)
(1)	l marks)

Question Number	Scheme	Notes	Ma	rks
53.(a)	$\sqrt{50} - \sqrt{18} = 5\sqrt{2} - 3\sqrt{2}$	$\sqrt{50} = 5\sqrt{2} \text{ or } \sqrt{18} = 3\sqrt{2}$ and the other term in the form $k\sqrt{2}$. This mark may be implied by the correct answer $2\sqrt{2}$	M1	
	$=2\sqrt{2}$	Or $a = 2$	A1	
				[2]
(b) WAY 1	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1	
	$=\frac{12\sqrt{3}}{"2"\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}=\frac{12\sqrt{6}}{4}$	Rationalises the denominator by a correct method e.g. multiplies numerator and denominator by $k\sqrt{2}$ to obtain a multiple of $\sqrt{6}$. Note that multiplying numerator and denominator by $2\sqrt{2}$ or $-2\sqrt{2}$ is quite common and is acceptable for this mark. May be implied by a correct answer. This is dependent on the first M1.	dM1	
	$= 3\sqrt{6}$ or $b = 3, c = 6$	Cao and cso	A1	
				[3]
(b) WAY 2	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} \times \frac{\sqrt{50} + \sqrt{18}}{\sqrt{50} + \sqrt{18}}$ or $\frac{12\sqrt{3}}{5\sqrt{2} - 3\sqrt{2}} \times \frac{5\sqrt{2} + 3\sqrt{2}}{5\sqrt{2} + 3\sqrt{2}}$	For rationalising the denominator by a correct method i.e. multiplying numerator and denominator by $k\left(\sqrt{50} + \sqrt{18}\right)$	M1	
	$\frac{60\sqrt{6}+36\sqrt{6}}{50-18}$	For replacing numerator by $\alpha \sqrt{6} + \beta \sqrt{6}$. This is dependent on the first M1 and there is no need to consider the denominator for this mark.	dM1	
	$= 3\sqrt{6}$ or $b = 3, c = 6$	Cao and cso	A1	
				[3]
(b) WAY 3	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1	
	$=\frac{12\sqrt{3}}{2\sqrt{2}}=\frac{6\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{108}}{\sqrt{2}}=\sqrt{54}=\sqrt{9}\sqrt{6}$	Cancels to obtain a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1	
	$= 3\sqrt{6}$ Or $b = 3, c = 6$	Cao and cso	A1	
(b)		Uses port (a) by replacing denominator by their		[3]
(b) WAY 4	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.	M1	
	$\left(\frac{12\sqrt{3}}{"2"\sqrt{2}}\right)^2 = \frac{432}{8}$			
	$\sqrt{54} = \sqrt{9}\sqrt{6}$	Obtains a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1	
	$= 3\sqrt{6}$ Or $b = 3, c = 6$	Cao and cso (do not allow $\pm 3\sqrt{6}$)	A1	
			5 ma	ırks

Question Number	Scheme	Notes	Marks
	Note original points are.	A(-2, 4) and B(3, -8)	
54.(a)	(-2, 12)	Similar shape to given figure passing through the origin. A cubic shape with a maximum in the second quadrant and a minimum in the 4^{th} quadrant. There must be evidence of a change in at least one of the <i>y</i> -coordinates (inconsistent changes in the <i>y</i> -coordinates are acceptable) but not the <i>x</i> - coordinates .	B1
	(3, -24)	Maximum at $(-2, 12)$ and minimum at $(3, -24)$ with coordinates written the right way round. Condone missing brackets. The coordinates may appear on the sketch, or separately in the text (not necessarily referenced as <i>A</i> and <i>B</i>). If they are on the sketch, the <i>x</i> and <i>y</i> coordinates can be positioned correctly on the axes rather than given as coordinate pairs. In cases of ambiguity, the sketch has precedence. The origin does not need to be labelled. Nor do the <i>x</i> and <i>y</i> axes.	B1
			[2]
(b)	Ť	A positive cubic which does not pass through the origin with a maximum to the left of the <i>y</i> -axis and a minimum to the right of the <i>y</i> -axis.	M1
	(-2, 0)	Maximum at $(-2, 0)$ and minimum at $(3, -12)$. Condone missing brackets. For the max allow just -2 or $(0, -2)$ if marked in the correct place. If the coordinates are in the text, they must appear as $(-2, 0)$ and must not contradict the sketch. The curve must touch the <i>x</i> -axis at $(-2, 0)$. For the min allow coordinates as shown or 3 and -12 to be marked in the correct places on the axes. In cases of ambiguity, the sketch has precedence.	A1
	(3, -12)	Crosses y-axis at (0, -4). Allow just -4 (not +4) and allow (-4, 0) if marked in the correct place. If the coordinates are in the text, they must appear as (0, -4) and must not contradict the sketch. In cases of ambiguity, the sketch has precedence.	A1
			[3]
			5 marks

Scheme	Notes	Marks
W	AY 1	
		1
2		M1
$\Rightarrow (-4x-1)^2 + 5x^2 + 2x = 0$	Allow slips e.g. substituting $y = -4x + 1$ etc.	
	Correct 3 term quadratic (terms do not need to	
$21x^2 + 10x + 1 = 0$	be all on the same side).	A1
	The "= 0" may be implied by subsequent work.	
	_	
$(7x+1)(3x+1)=0 \Longrightarrow (x=)-\frac{1}{7}, -\frac{1}{3}$		dM1 A1
	A1: $(x =) - \frac{1}{7}, -\frac{1}{3}$ (two separate correct exact	
	answers). Allow exact equivalents e.g.	
	$(x =) - \frac{6}{42}, - \frac{14}{42}$	
	M1: Substitutes to find at least one y value	
	(Allow substitution into their rearranged	
	equation above but not into an equation that has	
n - 3 1		N#1 A 1
$y = -\frac{1}{7}, \frac{1}{3}$	-	M1 A1
	Allow exact equivalents e.g. $y = -\frac{18}{42}, \frac{14}{42}$	
Coordinates do no	ot need to be paired	
answers for x and possibly for y. In these cas	es, if it is not already lost, deduct the final A1.	
		[6]
$x = -\frac{1}{4}y - \frac{1}{4}$		2.61
$\Rightarrow v^2 + 5(-\frac{1}{2}v - \frac{1}{2})^2 + 2(-\frac{1}{2}v - \frac{1}{2}) = 0$		M1
$\frac{21}{2}v^2 + \frac{1}{2}v - \frac{3}{2} = 0$ (21 $v^2 + 2v - 3 = 0$)	· ·	A1
$\frac{16}{16}y + \frac{8}{8}y - \frac{16}{16} = 0 (21y + 2y - 5 = 0)$		AI
$(7v+3)(3v-1) = 0 \rightarrow (v=) -\frac{3}{2} = \frac{1}{2}$	mark.	dM1 A1
$(7y+3)(3y+1)=0 \Rightarrow (y-1)=7, 3$	A1: $(y =) - \frac{3}{7}, \frac{1}{2}$ (two separate correct exact	
	~ ~ ~	
1 1		
$x = -\frac{1}{7}, -\frac{1}{3}$	here if there is no working and y values are	M1 A1
, 5	incorrect.	
	A1: $x = -\frac{1}{7}, -\frac{1}{3}$ (two correct exact answers)	
Coordinatas da re		<u> </u>
Coordinates do not need to be pairedNote that if the linear equation is explicitly rearranged to $x = (y + 1)/4$, this gives the correct		
NALE INSTITUTE THE HEAST DATISTIAN TO AVAILABLE PA		
	es, if it is not already lost, deduct the final A1.	[6]
	We y = -4x - 1 $\Rightarrow (-4x - 1)^2 + 5x^2 + 2x = 0$ $21x^2 + 10x + 1 = 0$ $(7x+1)(3x+1) = 0 \Rightarrow (x =) -\frac{1}{7}, -\frac{1}{3}$ $y = -\frac{3}{7}, \frac{1}{3}$ Coordinates do not Note that if the linear equation is explicitly to answers for x and possibly for y. In these cass $x = -\frac{1}{4}y - \frac{1}{4}$ $\Rightarrow y^2 + 5(-\frac{1}{4}y - \frac{1}{4})^2 + 2(-\frac{1}{4}y - \frac{1}{4}) = 0$ $\frac{21}{16}y^2 + \frac{1}{8}y - \frac{3}{16} = 0 (21y^2 + 2y - 3 = 0)$ $(7y+3)(3y-1) = 0 \Rightarrow (y =) -\frac{3}{7}, \frac{1}{3}$	WAY 1Y = -4x - 1 $\Rightarrow (-4x - 1)^2 + 5x^2 + 2x = 0$ Attempts to makes y the subject of the linear equation and substitutes into the other equation. Allow slips e.g. substituting $y = -4x + 1$ etc. Correct 3 term quadratic (terms do not need to be all on the same side). The "= 0" may be implied by subsequent work. dM1: Solves a 3 term quadratic by the usual rules (see general guidance) to give at least one value for x. Dependent on the first method mark. A1: $(x =) -\frac{1}{7}, -\frac{1}{3}$ $y = -\frac{3}{7}, \frac{1}{3}$ Attempts to makes y the subject of the linear equation above but not into an equation that has not been seen earlier). You may need to check here if there is no working and x values are incorrect. A1: $y = -\frac{1}{7}, -\frac{1}{3}$ WAY 2Coordinates do not need to be pairedWAY 2Xet $= -\frac{1}{4}y - \frac{1}{4}$ $= y^2 + 5(-\frac{1}{4}y - \frac{1}{4}) = 0$ ($7y+3$) $(3y-1)=0\Rightarrow (y=)-\frac{2}{7}, \frac{1}{3}$ Attempts to makes x the subject of the linear equation and substitutes into the other equation. Allow sizes a 1 term quadratic (terms do not need to be pairedNote that if the linear equation is explicitly rearranged to $y = 4x + 1$, this gives the correct answers for x and possibly for y. In these cases, if it is not already lost, deduct the final A1.WY 2($7y+3$) $(3y-1)=0\Rightarrow (y=)-\frac{2}{7}, \frac{1}{3}$ Attempts to makes x the subject of the linear equation and substitutes into the other equation. Allow sizes a 3 term quadratic by the usual rules (ceres do not need to be evalue for y. Dependent on the first method mark.($7y+3$) $(3y-1)$

Question Number	Scheme	Notes	Marks	
56 (a)	$2px^{2} - 6px + 4p'' = "3x - 7$ or $y = 2p\left(\frac{y+7}{3}\right)^{2} - 6p\left(\frac{y+7}{3}\right) + 4p$	Either: Compares the given quadratic expression with the given linear expression using $\langle , \rangle, =, \neq$ (May be implied) or Rearranges $y = 3x - 7$ to make <i>x</i> the subject and substitutes into the given quadratic	M1	
	$2px^{2}-6px+4p-3x+7(=0)$ $2p\left(\frac{y+7}{3}\right)^{2}-6p\left(\frac{y+7}{3}\right)+4p-y(y)$ $y=2px^{2}-2px^$	$\frac{\text{amples}}{(p-2)px^2 + 6px - 4p + 3x - 7(=0)}$ = 0), $2py^2 + (10p - 9)y + 8p(=0)$ $\frac{6px + 4p - 3x + 7}{(p-2)px^2 + 6px - 4p + 3x - 7(=0)}$	dM1	
		d. Dependent on the first method mark.		
	E.g. $b^2 - 4ac = (-6p-3)^2 - 4(2p)(4p+7)$ $b^2 - 4ac = (10p-9)^2 - 4(2p)(8p)$	Attempts to use $b^2 - 4ac$ with their <i>a</i> , <i>b</i> and <i>c</i> where $a = \pm 2p$, $b = \pm (-6p \pm 3)$ and $c = \pm (4p \pm 7)$ or for the quadratic in <i>y</i> , $a = \pm 2p$, $b = \pm (10p \pm 9)$ and $c = \pm 8p$. This could be as part of the quadratic formula or as $b^2 < 4ac$ or as $b^2 > 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no <i>x</i> 's or <i>y</i> 's. Dependent on both method marks.	ddM1	
	$4p^2 - 20p + 9 < 0 *$	Obtains printed answer with no errors seen (Allow $0 > 4p^2 - 20p + 9$) but this < 0 must been seen at some stage before the last line.	A1*	
(b)	$(2p-9)(2p-1)=0 \Longrightarrow p=$ to obtain $p=$	Attempt to solve the given quadratic to find 2 values for <i>p</i> . See general guidance.	[M1	[4]
	$p = \frac{9}{2}, \frac{1}{2}$	Both correct. May be implied by e.g. $p < \frac{9}{2}$, $p < \frac{1}{2}$. Allow equivalent values e.g. 4.5, $\frac{36}{8}$, 0.5 etc. If they use the quadratic formula allow $\frac{20\pm16}{8}$ for this mark but not $\sqrt{256}$ for 16 and allow e.g. $\frac{5}{2}\pm2$ if they complete the square. M1: Chooses 'inside' region i.e.	A1	
	$\frac{1}{2} Allow equivalent values e.g. \frac{36}{8} for 4\frac{1}{2}$	Lower Limit < p < Upper Limit or e.g. Lower Limit $\leq p \leq$ Upper Limit A1: Allow $p \in (\frac{1}{2}, 4\frac{1}{2})$ or just $(\frac{1}{2}, 4\frac{1}{2})$ and allow $p > \frac{1}{2}$ and $p < 4\frac{1}{2}$ and $4\frac{1}{2} > p > \frac{1}{2}$ but $p > \frac{1}{2}$, $p < 4\frac{1}{2}$ scores M1A0 $\frac{1}{2} > p > 4\frac{1}{2}$ scores M0A0	M1A1	
	Allow working in terms of x in (b) but the an	swer must be in terms of <i>p</i> for the final A mark.	[[4]
		-		

Question Number	Scheme		Marks
57(a)	20	Sight of 20. (4×5 is not sufficient)	B1
07(u)			(1)
(b)	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}}$	Multiplies top and bottom by a correct expression. This statement is sufficient. NB $2\sqrt{5} + 3\sqrt{2} \equiv \sqrt{20} + \sqrt{18}$	M1
	(Allow to multiply to	op and bottom by $k(2\sqrt{5}+3\sqrt{2})$	
		Obtains a denominator of 2 or sight of $(2\sqrt{5} - 3\sqrt{2})(2\sqrt{5} + 3\sqrt{2}) = 2$ with no errors	A1
	$=\frac{\dots}{2}$	seen in this expansion. May be implied by ${2k}$	
	Note that M0A1 is not possible	The 2 must come from a correct method.	
		re is no need to consider the numerator.	
	e.g. $\frac{2(MR?)}{2\sqrt{5}-3\sqrt{2}}$ ×	$\frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}} = {2}$ scores M1A1	
	Numerator = $\sqrt{2}(2\sqrt{5}\pm 3\sqrt{2}) = 2\sqrt{10}\pm 6$	An attempt to multiply the numerator by $\pm (2\sqrt{5} \pm 3\sqrt{2})$ and obtain an expression of the form $p + q\sqrt{10}$ where p and q are integers. This may be implied by e.g. $2\sqrt{10} + 3\sqrt{4}$ or by their final answer.	M1
	(Allow attempt to multiple)	ply the numerator by $k(2\sqrt{5}\pm 3\sqrt{2})$	
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{2\sqrt{10} + 6}{2} = 3 + \sqrt{10}$	Cso. For the answer as written or $\sqrt{10} + 3$ or a statement that $a = 3$ and $b = 10$. Score when first seen and ignore any subsequent attempt to 'simplify'. Allow $1\sqrt{10}$ for $\sqrt{10}$	A1
			(4)
			(5 marks)
	Alte	ernative for (b)	
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{1}{\sqrt{10} - 3} \text{ or } \frac{2}{2\sqrt{10} - 6}$	M1: Divides or multiplies top and bottom by $\sqrt{2}$ A1: $\frac{k}{k(\sqrt{10}-3)}$	M1A1
	$1 \sqrt{10} + 3$	Multiplies top and bottom by $\sqrt{10} + 3$	M1
	$=3+\sqrt{10}$		A1

Question Number	S	Scheme	Marks
58.	y - 2x - 4 = 0	$4x^2 + y^2 + 20x = 0$	
	$y = 2x + 4 \implies 4x^{2} + (2x + 4)^{2} + 20x = 0$ or $2x = y - 4 \text{ or } x = \frac{y - 4}{2}$ $\implies (y - 4)^{2} + y^{2} + 10(y - 4) = 0$	Attempts to rearrange the linear equation to $y =$ or $x =$ or $2x =$ and attempts to fully substitute into the second equation.	M1
	$8x^{2} + 36x + 16 = 0$ or $2y^{2} + 2y - 24 = 0$	M1: Collects terms together to produce quadratic expression = 0. The '= 0' may be implied by later work. A1: Correct three term quadratic equation in x or y. The '= 0' may be implied by later work.	- M1 A1
	$(4)(2x+1)(x+4) = 0 \Longrightarrow x = \dots$ or $(2)(y+4)(y-3) = 0 \Longrightarrow y = \dots$	Attempt to factorise and solve or complete the square and solve or uses a correct quadratic formula for a 3 term quadratic.	M1
	x = -0.5, x = -4 or y = -4, y = 3	Correct answers for either both values of x or both values of y (possibly un-simplified)	A1 cso
	Sub into $y = 2x + 4$ or Sub into $x = \frac{y-4}{2}$	Substitutes at least one of their values of x into a correct equation as far as $y =$ or substitutes at least one of their values of y into a correct equation as far as $y =$	M1
	y = 3, y = -4 and x = -4, x = -0.5	Fully correct solutions and simplified. Pairing not required. If there are any extra values of <i>x</i> or <i>y</i> , score A0.	A1
			(7 marks)
	Special Cas	e: Uses $y = -2x - 4$	
	$y = 2x + 4 \Longrightarrow 4x^{2} + (-2x - 4)^{2} + 20x = 0$		M1
	$8x^2 + 36x + 16 = 0$		M1A1
	$(4)(2x+1)(x+4) = 0 \Longrightarrow x = \dots$		M1
	x = -0.5, x = -4		A0
	Sub into $y = 2x + 4$	Sub into $y = -2x - 4$ is M0	M1
	y = 3, y = -4 and x = -4, x = -0.5		A0

Question Number		Scheme	Marks
59(a)	$b^2 - 4ac < 0 \Rightarrow e.g.$ $4^2 - 4(p-1)(p-5) < 0 = 0$ $0 > 4^2 - 4(p-1)(p-5) = 0$ $4^2 < 4(p-1)(p-5) = 0$ $4(p-1)(p-5) > 4^2$	Must be considering the given quadratic	M1A1
	$4 < p^2 - 6p + 5$ $p^2 - 6p + 1 > 0$	Correct solution with no errors that	A1*
(b)	$p^2 - 6p + 1 = 0 \Longrightarrow p = .$	For an attempt to solve $p^2 - 6p + 1 = 0$ (not <u>their</u> quadratic) leading to 2 solutions for <i>p</i> (do not allow attempts to factorise – must be using the quadratic formula or completing the square)	(3)
	$p = 3 \pm \sqrt{8}$ $p =$	$3\pm 2\sqrt{2}$ or any equivalent correct expressions e.g. $\frac{6\pm\sqrt{32}}{2}$ (May be implied by their inequalities) riminant must be a single number not e.g. 36 - 4	A1
	Allow the M1A1 to so	ore anywhere for solving the given quadratic	
	$p < 3 - \sqrt{8}$ or $p > 3$	M1: Chooses outside region – not dependent on the previous method mark A1: $p < 3 - \sqrt{8}$, $p > 3 + \sqrt{8}$ or equivalent e.g. $p < \frac{6 - \sqrt{32}}{2}$, $p > \frac{6 + \sqrt{32}}{2}$	M1A1
<u> </u>	A correct solution to the o	uadratic followed by $p > 3 \pm \sqrt{8}$ scores M1A1M0	A0
		$-\sqrt{8} scores M1A0$	
A	Allow candidates to use x r	ather than p but must be in terms of p for the fin	al A1
			(4) (7 marks)

Question Number	Sche	eme	Marks
60(a)	$9x - 4x^3 = x(9 - 4x^2)$ or $-x(4x^2 - 9)$	Takes out a common factor of x or $-x$ correctly.	B1
-	$9-4x^2 = (3+2x)(3-2x)$ or $4x^2-9 = (2x-3)(2x+3)$	$9-4x^{2} = (\pm 3 \pm 2x)(\pm 3 \pm 2x) \text{ or}$ $4x^{2}-9 = (\pm 2x \pm 3)(\pm 2x \pm 3)$	M1
	(2+2)(2-2) Cao	but allow equivalents e.g. 3-2x(-3+2x) or $-x(2x+3)(2x-3)$	A1
Note: 4x	$x^{3}-9x = x(4x^{2}-9) = x(2x-3)(2x+3)$ so	$9x-4x^3 = x(3-2x)(2x+3)$ would scor	e full marks
	Note: Correct work leading to $9x(1-$	$\left(-\frac{2}{3}x\right)\left(1+\frac{2}{3}x\right)$ would score full marks	
	Allow $(x \pm 0)$ or $(-x \pm 0)$	0) instead of x and -x	(3)
(b)	у ↑	A cubic shape with one maximum and one minimum	M1
		Any line or curve drawn passing through (not touching) the origin	B1
	(-1.5,0) 0 (1.5,0) x	Must be the correct shape and in all four quadrants and pass through (-1.5, 0) and (1.5, 0) (Allow (0, -1.5) and (0, 1.5) or just -1.5 and 1.5 provided they are positioned correctly). Must be on the diagram (Allow $\sqrt{\frac{9}{4}}$ for 1.5)	A1
			(3)
(c)	A = (-2, 14), B = (1, 5)	B1: $y = 14$ or $y = 5$ B1: $y = 14$ and $y = 5$	B1 B1
ľ	These must be se	en or used in (c) Correct use of Pythagoras including	
	$(AB =)\sqrt{(-2-1)^2 + (14-5)^2} (= \sqrt{90})$ (Correct use of Fyinagoras <u>including</u> the square root. Must be a correct expression for their A and B if a correct formula is not quoted		M1
	E.g. $AB = \sqrt{(-2+1)^2} + \frac{1}{2}$		
	However $AB = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2} =$	$=\sqrt{(-2+1)^2+(14-5)^2}$ scores M1	
	$(AB =) 3\sqrt{10}$	cao	A1
			(4)
	ase: Use of $4x^3 - 9x$ for the curve gives		(10 marks)

Question Number	Scheme	Marks
61.	(a) $3x-7 > 3-x$ 4x > 10 $x > 2.5, x > \frac{5}{2}, \frac{5}{2} < x$ o.e. (b) Obtain $x^2 - 9x - 36$ and attempt to solve $x^2 - 9x - 36 = 0$ e.g. $(x-12)(x+3) = 0$ so $x = $, or $x = \frac{9 \pm \sqrt{81 + 144}}{2}$ 12, -3 $-3 \le x \le 12$ (c) $2.5 < x \le 12$	M1 A1 (2) M1 A1 M1A1 (4) A1cso (1) (7 marks)

(a) M1 Reaching
$$px > q$$
 with one or both of p or q correct. Also give for $-4x < -10$
A1 Cao $x > 2.5$ o.e. Accept alternatives to 2.5 like $2\frac{1}{2}$ and $\frac{5}{2}$ even allow $\frac{10}{4}$ and allow $\frac{5}{2} < x$ o.e. This answer must occur and be credited as part (a) A correct answer implies M1A1

Mark parts (b) and (c) together.

- (b) M1 Rearrange $3TQ \le 0$ or 3TQ = 0 or even 3TQ > 0 Do not worry about the inequality at this stage AND attempt to solve by factorising, formula or completion of the square with the usual rules (see notes)
 - A1 12 and –3 seen as critical values
 - M1 Inside region for their critical values must be stated not just a table or a graph
 - A1 $-3 \le x \le 12$ Accept $x \ge -3$ and $x \le 12$ or [-3, 12]For the A mark: Do not accept $x \ge -3$ or $x \le 12$ nor $-3 \le x \le 12$ nor (-3, 12) nor $x \ge -3$, $x \le 12$ However allow recovery if they follow these statements by a correct statement, either in (b) or as they start part (c) N.B. $-3 \le 0 \le 12$ and $x \ge -3$, $x \le 12$ are poor notation and get M1A0 here.
- (c) A1 cso $2.5 < x \le 12$ Accept x > 2.5 and $x \le 12$ Allow $\frac{10}{4}$ Do not accept x > 2.5 or $x \le 12$ Accept (2.5, 12] A graph or table is not sufficient. Must follow correct earlier work – except for special case

Special case (c) x > 2.5, $x \le 12$; $2.5 < 0 \le 12$ are poor notation – but if this poor notation has been penalised in (b) then allow A1 here. Any other errors are penalised in both (b) and (c).

Question Number	Scheme	Mark	s
	Scheme (a) -1 accept (-1, 0) (b) (b) f f f f f f f f	B1 B1 B1 B1 B1	s (1)
	(c) 2 solutions as curves cross twice	B1 ft (5 ma	(3) (1) arks)

N.B. Check original diagram as answer may appear there.

- (a) B1 The *x* coordinate of *A* is -1. Accept -1 or (-1,0) on the diagram or stated with or without diagram Allow (0, -1) on the diagram if it is on the correct axis.
- (b) If no graph is drawn then no marks are available in part (b)
 - B1 Correct shape. The position is not important for this mark but the curve must have two clear turning points and be a +ve x^3 curve (with a maximum and minimum)
 - B1 The graph touches the origin. Accept touching as a maximum or minimum. There must be a sketch for this mark but sketch may be wrong and this mark is independent of previous mark. Origin is where axes cross and may not be labelled. This may be a quadratic or quartic curve for this mark.
 - B1 The graph crosses the *x*-axis at the point (2,0) only. If it crosses at (2,0) and (0,0) this is B0. Accept (0,2) or 2 marked on the correct axis. Accept (2, 0) in the text of the answer provided that the curve crosses the positive *x* axis. There must be a sketch for this mark. Do not give credit if (2,0) appears only in a table with no indication that this is the intersection point. (If in doubt send to review) Graph takes precedence over text for third B mark.
- (c) B1ft Two (solutions) as there are two intersections (of the curves) N.B. Just states 2 with no reason is B0 If the answer states 2 roots and two intersections or crosses twice this is enough for B1 BUT B0 If there is any wrong reason given e.g. crosses x axis twice, or crosses asymptote twice Isw is not used for this mark so any wrong statement listed to follow a correct statement will result in B0

Allow ft – so if their graph crosses the hyperbola once – allow "one solution as there is one intersection" And if it crosses three times – allow "three solutions as there are three intersections" or four etc.. If it does not cross at all (e.g.negative cubic) – allow "no solutions as there are no intersections" However in (c) if they have sketched a curve (even a fully correct one) but not extended it to intersect the hyperbola and they put "no points of intersection so no solutions" then this scores B0. Accept "lines or curves cross over twice, or touch twice, or meet twice...etc as explanation, but need some form of words)

Question Number	Scheme		Marks
63.	(a) $\begin{array}{c} 80 = 5 \times 16 \\ \sqrt{80} = 4\sqrt{5} \end{array}$		B1 (1)
	Method 1	Method 2	(1)
	(b) $\frac{\sqrt{80}}{\sqrt{5}+1}$ or $\frac{c\sqrt{5}}{\sqrt{5}+1}$	$(p+q\sqrt{5})(\sqrt{5}+1)=\sqrt{80}$	B1ft
	$=\frac{\sqrt{80}}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1} \text{or} \frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$	$p\sqrt{5+q}\sqrt{5+p+5q} = 4\sqrt{5}$	M1
	$=\frac{20-4\sqrt{5}}{4}$ or $\frac{4\sqrt{5}-20}{-4}$	p + 5 q = 0 p + q = 4 p = 5, q = -1	A1
	$=5-\sqrt{5}$	p = 5, q = -1	Alcao
			(4) (5 marks)

(a) B1 Accept $4\sqrt{5}$ or c = 4 – no working necessary

(b)

(Method 1)

B1ft Only ft on c See
$$\frac{\sqrt{80}}{\sqrt{5}+1}$$
 or $\frac{c\sqrt{5}}{\sqrt{5}+1}$

- M1 State intention to multiply by $\sqrt{5} 1$ or $1 \sqrt{5}$ in the numerator **and** the denominator
- A1 Obtain denominator of 4 (for $\sqrt{5} 1$) or -4 (for $1 \sqrt{5}$) or correct simplified numerator of
- A1 Correct answer only. Both numerator and denominator must have been correct and division of numerator and denominator by 4 has been performed.

Accept
$$p=5$$
, $q=-1$ or accept $5-\sqrt{5}$ or $-\sqrt{5}+5$ Also accept $5-1\sqrt{5}$

(Method 2)

- B1ft Only ft on c $(p+q\sqrt{5})(\sqrt{5}+1)=\sqrt{80}$ or $c\sqrt{5}$
- M1 Multiply out the lhs and replace $\sqrt{80}$ by $c\sqrt{5}$
- A1 Compare rational and irrational parts to give p + q = 4, and p + 5q = 0
- A1 Solve equations to give p = 5, q = -1

Common error:

 $\frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} = \frac{4\sqrt{5}-20}{4} = \sqrt{5}-5$ gets B1 M1 A1 (for correct numerator – denominator is wrong for their product) then A0

Correct answer with no working – send to review – have they used a calculator? Correct answer after trial and improvement with evidence that $(5 - \sqrt{5})(\sqrt{5+1}) = \sqrt{80}$ could earn all four marks

Question Number	Scheme	Marks
64.	(a) Discriminant = $b^2 - 4ac = 8^2 - 4 \times 2 \times 3 = 40$	M1, A1
	(b) $2x^2 + 8x + 3 = 2(x^2 + \dots)$ or $p=2$	(2) B1
	$=2((x+2)^2 \pm)$ or $q=2$	M1
	$=2(x+2)^2-5$ or $p=2$, $q=2$ and $r=-5$	A1
	(c) Method 1A: Sets derivative " $4x + 8$ " = 4 \Rightarrow x =, x = -1 Substitute $x = 1$ in $x = 2x^2 + 8x + 2$ ($\Rightarrow x = -2$)	$\begin{bmatrix} (3) \\ M1, & A1 \\ dM1 \end{bmatrix}$
	Substitute $x = -1$ in $y = 2x^2 + 8x + 3$ ($\Rightarrow y = -3$) Substitute $x = -1$ and $y = -3$ in $y = 4x + c$ or into $(y + 3) = 4(x + 1)$ and expand $c = 1$ or writing $y = 4x + 1$	dM1 A1cso (5)
	Method 1B: Sets derivative " $4x + 8$ " = 4 \Rightarrow x = , x = -1 Substitute x = -1 in $2x^2 + 8x + 3 = 4x + c$ Attempts to find value of c	$ \begin{bmatrix} M1, A1 \\ dM1 \\ dM1 \end{bmatrix} $
	c = 1 or writing $y = 4x + 1$	A1cso (5)
	Method 2: Sets $2x^2 + 8x + 3 = 4x + c$ and collects x terms together Obtains $2x^2 + 4x + 3 - c = 0$ or equivalent States that $b^2 - 4ac = 0$ $4^2 - 4 \times 2 \times (3 - c) = 0$ and so $c = c = 1$	- M1 A1 - dM1 - dM1 A1cso
	Method 3: Sets $2x^2 + 8x + 3 = 4x + c$ and collects x terms together Obtains $2x^2 + 4x + 3 - c = 0$ or equivalent Uses $2(x+1)^2 - 2 + 3 - c = 0$ or equivalent Writes $-2 + 3 - c = 0$ So $c = 1$	$ \begin{array}{c} $
	Also see special case for using a perpendicular gradient (overleaf)	(3) (10 marks)

- (a) M1 Attempts to calculate $b^2 4ac$ using $8^2 4 \times 2 \times 3$ must be correct not just part of a quadratic formula A1 Cao 40
- (b) B1 See 2(...) or p = 2
 - M1 ... $((x+2)^2 \pm ...)$ is sufficient evidence or obtaining q = 2
 - A1 Fully correct values. $2(x+2)^2 5$ or p = 2, q = 2, r = -5 cso. Ignore inclusion of "=0".

[In many respects these marks are similar to three B marks. p = 2 is B1; q = 2 is B1 and p = 2, q = 2 and r = -5 is final B1 but they must be entered on epen as **B1 M1 A1**]

Special case: Obtains $2x^2 + 8x + 3 = 2(x+2) - 1$ This may have first B1, for p = 2 then M0A0

(c) Method 1A (Differentiates and puts gradient equal to 4. Needs both x and y to find c)

- M1 Attempts to solve their $\frac{dy}{dx} = 4$. They must reach x = ... (Just differentiating is M0 A0)
- A1 x = -1 (If this follows $\frac{dy}{dx} = 4x + 8$, then give M1 A1 by implication)
- dM1 (Depends on previous M mark) Substitutes **their** x = -1 into f(x) or into "their f(x) from (b)" to find y
- dM1 (Depends on both previous M marks) Substitutes **their** x = -1 and **their** y = -3 values into y = 4x + c to find c or uses equation of line is (y + "3")=4(x + "1") and rearranges to y = mx + cA1 c = 1 or allow for y = 4x + 1 cso
- A1 c = 1 or allow for $y = 4x + 1 \cos \theta$
- (c) Method 1B (Differentiates and puts gradient equal to 4. Also equates equations and uses x to find c) M1A1 Exactly as in Method 1A above
 - dM1 (Depends on previous M mark) Substitutes **their** x = -1 into $2x^2 + 8x + 3 = 4x + c$
 - dM1 Attempts to find value of *c* then A1 as before
- (c) Method 2 (uses repeated root to find *c* by discriminant)
 - M1 Sets $2x^2 + 8x + 3 = 4x + c$ and tries to collect x terms together
 - A1 Collects terms e.g. $2x^2 + 4x + 3 c = 0$ or $-2x^2 4x 3 + c = 0$ or $2x^2 + 4x + 3 = c$ or even $2x^2 + 4x = c 3$ Allow "=0" to be missing on RHS.
 - dM1 (If the line is a tangent it meets the curve at just one point so repeated root and $b^2 4ac = 0$) Stating that $b^2 - 4ac = 0$ is enough
 - dM1 Using $b^2 4ac = 0$ to obtain equation in terms of c (Eg. $4^2 - 4 \times 2 \times (3 - c) = 0$) AND leading to a solution for c
 - A1 c = 1 or allow for $y = 4x + 1 \cos x$
- (c) Method 3 (Similar to method 2 but uses completion of the square on the quadratic to find repeated root)
 - M1 Sets $2x^2 + 8x + 3 = 4x + c$ and tries to collect x terms together. May be implied by $2x^2 + 8x + 3 4x \pm c$ on one side
 - A1 Collects terms e.g. $2x^2 + 4x + 3 c = 0$ or $-2x^2 4x 3 + c = 0$ or $2x^2 + 4x + 3 = c$ or even $2x^2 + 4x = c - 3$ Allow "=0" to be missing on RHS.
 - dM1 Then use completion of square $2(x+1)^2 2 + 3 c = 0$ (Allow $2(x+1)^2 k + 3 c = 0$) where k is non zero. It is enough to give the correct or almost correct (with k) completion of the square
 - dM1 -2+3-c=0 AND leading to a solution for c (Allow -1+3-c=0) (x = -1 has been used) A1 c=1 cso

In Method 1 they may use part (b) and differentiate their f(x) and put it equal to 4 They can earn M1, but do not follow through errors.

In Methods 2 and 3 they may use part (b) to write

their $2(x+2)^2 - 5 = 4x + c$. They need to expand and collect *x* terms together for M1 Then expanding gives $2x^2 + 4x + 3 - c = 0$ for A1 – do not follow through errors Then the scheme is as before

If they just state c = 1 with little or no working – please send to review,

PTO for special case

Special case uses perpendicular gradient (maximum of 2/5)

Sets
$$4x + 8 = -\frac{1}{4} \Rightarrow x = , \qquad x = -\frac{33}{16}$$
 M1 A0

Substitute
$$x = -\frac{33}{16}$$
 in $y = 2x^2 + 8x + 3$ ($\Rightarrow y = -\frac{639}{128}$) M0

Substitute
$$x = -\frac{33}{16}$$
 and $y = -\frac{639}{128}$ into $y = 4x + c$ or into $(y + \frac{639}{128}) = 4(x + \frac{33}{16})$ and expand M1 A0

Question Number	Scheme	Marks
65.	$25x-9x^{3} = x(25-9x^{2})$ (25-9x ²)=(5+3x)(5-3x) $25x-9x^{3} = x(5+3x)(5-3x)$	B1 M1 A1 (3)

- B1 Take out a common factor, usually x, to produce $x(25-9x^2)$. Accept $(x \pm 0)(25-9x^2)$ or $-x(9x^2-25)$ Must be correct. Other possible options are $(5+3x)(5x-3x^2)$ or $(5-3x)(5x+3x^2)$
- M1 For factorising their quadratic term, usually $(25-9x^2) = (5+3x)(5-3x)$ Accept sign errors If $(5\pm 3x)$ has been taken out as a factor first, this is for an attempt to factorise $(5x\mp 3x^2)$
- A1 cao x(5+3x)(5-3x) or any equivalent with three factors e.g. x(5+3x)(-3x+5) or x(3x-5)(-3x-5) etc including -x(3x+5)(3x-5)isw if they go on to show that $x = 0, \pm \frac{5}{3}$

Question Number	Scheme	Marks
66 Method 1	$x\sqrt{8} + 10 = \frac{6x}{\sqrt{2}}$ $\times \sqrt{2} \Longrightarrow x\sqrt{16} + 10\sqrt{2} = 6x$	M1,A1
	$4x + 10\sqrt{2} = 6x \Longrightarrow 2x = 10\sqrt{2}$ $x = 5\sqrt{2}$ or $a = 5$ and $b = 2$	M1A1 (4)
66 Method 2	$x\sqrt{8} + 10 = \frac{6x}{\sqrt{2}}$ $2\sqrt{2}x + 10 = 3\sqrt{2}x$ $\sqrt{2}x = 10 \implies x = \frac{10}{\sqrt{2}} = \frac{10\sqrt{2}}{2}, = 5\sqrt{2} \text{ oe}$	M1A1 M1,A1 (4)

Method 1

M1 For multiplying both sides by
$$\sqrt{2}$$
 – allow a slip e.g. $\sqrt{2}x\sqrt{8} + 10 = \frac{6x}{\sqrt{2}} \times \sqrt{2}$ or
 $\sqrt{2} \times 10 + x\sqrt{8} = \frac{6x}{\sqrt{2}} \times \sqrt{2}$, where one term has an error or the correct $\sqrt{2}(10 + x\sqrt{8}) = \frac{6x}{\sqrt{2}} \times \sqrt{2}$
NB $x\sqrt{8} + 10 = 6x\sqrt{2}$ is M0

A1 A correct equation in x with no fractional terms. Eg $x\sqrt{16} + 10\sqrt{2} = 6x$ oe.

M1 An attempt to solve their linear equation in x to produce an answer of the form $a\sqrt{2}$ or $a\sqrt{50}$

A1 $5\sqrt{2}$ oe (accept $1\sqrt{50}$)

Method 2

M1 For writing $\sqrt{8}$ as $2\sqrt{2}$ or $\frac{6}{\sqrt{2}}$ as $3\sqrt{2}$

A1 A correct equation in x with no fractional terms. Eg $2\sqrt{2}x + 10 = 3\sqrt{2}x$ or $x\sqrt{8} + 10 = 3\sqrt{2}x$ oe.

M1 An attempt to solve their linear equation in x to produce an answer of the form $a\sqrt{2}$ or $a\sqrt{50}$

$$\sqrt{2}x = 10 \Rightarrow x = \frac{10}{\sqrt{2}} = \frac{10\sqrt{2}}{2}, = 5\sqrt{2}$$

or $\sqrt{2}x = 10 \Rightarrow 2x^2 = 100 \Rightarrow x^2 = 50 \Rightarrow x = \sqrt{50}$ or $5\sqrt{2}$
 $5\sqrt{2}$ oe Accept $1\sqrt{50}$

A1

Question Number	Scheme	Marks
67(a).	P = 20x + 6 o.e $20x + 6 > 40 \Longrightarrow x >$ x > 1.7	B1 M1 A1*
(b)	Mark parts (b) and (c) together $A = 2x(2x+1) + 2x(6x+3) = 16x^2 + 8x$ $16x^2 + 8x - 120 < 0$	(3) B1 M1
(c)	Try to solve their $2x^2 + x - 15 = 0$ e.g. $(2x - 5)(x + 3) = 0$ so $x =$ Choose inside region $-3 < x < \frac{5}{2}$ or $0 < x < \frac{5}{2}$ (as x is a length) $1.7 < x < \frac{5}{2}$	M1 M1 A1 (5) B1cao (1) (9 marks)

(a)	B1	Correct expression for perimeter but may not be simplified so accept
		2x + 1 + 2x + 4x + 2 + 2x + 6x + 3 + 4x or 2(10x + 3) or any equivalent

M1: Set P > 40 with their linear expression for P (this may not be correct but should be a sum of sides) and manipulate to get x > ...

A1* cao x > 1.7. This is a given answer, there must not be any errors, but accept 1.7 < x

- (b) Marks parts (b) and (c) together
 - B1 Writes a correct statement in x for the area. It need not be simplified. You may isw Amongst numerous possibilities are.

 $2x(2x+1)+2x(6x+3), 16x^2+8x, 4x(6x+3)-2x(4x+2), 4x(2x+1)+2x(4x+2)$

- M1 Sets their quadratic expression < 120 and collects on one side of the inequality
- M1 For an attempt to solve a 3 Term quadratic equation producing two solutions by factorising, formula or completion of the square with the usual rules (see notes)
- M1 For choosing the 'inside' region. Can follow through from their critical values must be stated not just a table or a graph. Can also be implied by 0 < x < upper value

A1
$$-3 < x < \frac{5}{2}$$
. Accept $x > -3$ and $x < 2.5$ or (-3, 2.5)

As x is a width, accept $0 < x < \frac{5}{2}$ Also accept $\frac{10}{4}$ or 2.5 instead of $\frac{5}{2}$. \leq would be M1A0

Allow this final answer to part (b) to appear as answer to part (c) This would score final M1A1 in (b) then B0 in (c)

(c) B1cao
$$1.7 < x < \frac{5}{2}$$
. Must be correct. [This does not imply final M1 in (b)]

Question Number	Sche	me	Marks
68(a)		U shaped parabola – symmetric about <i>y</i> axis	B1
	(0, 8)	Graph passes through (0, 8)	B1
	(0,k)	Shape and position for L	M1
	$\left(-\frac{k}{3},0\right)$	Both $\left(-\frac{k}{3},0\right)$ and $\left(0,k\right)$	A1 (4)
68(b)	Allow marks even if or Method 1:	the same diagram	
	Equate curves $\frac{1}{3}x^2 + 8 = 3x + k$ and pro-	ceed to collect terms on one side	M1
	$\frac{1}{3}x^2 - 3x + (8 - k)$		A1
	Method 1a Uses " $b^2 = 4ac$ " $9 = 4 \times \frac{1}{3} \times (8 - k) \Rightarrow k =$ Defined	Method 1b npt $\frac{1}{3}(x-\frac{9}{2})^2 - \lambda + 8 - k$	dM1
	$9 = 4 \times \frac{1}{3} \times (8 - k) \Longrightarrow k = \dots \qquad De$	educe that $k = 8 - \lambda$	dM1
	$k = \frac{5}{4}$ c	$k = \frac{5}{4} \text{o.e.}$	
	Method 2 :		(5)
	Attempts to set $\frac{dy}{dx} =$	3	M1
	$\frac{2}{3}x = 3 \Longrightarrow x$	= 4.5	A1
	Method 2a Substitutes $x = "4.5"$ into	Method 2b Substitutes $x = "4.5"$ into	
	$y = \frac{1}{3}x^2 + 8 \implies y = \dots(14.75)$	$\frac{1}{3}x^2 + 8 = 3x + k$	dM1
	Substitutes both their x and y into y = 3x + k to find k	Finds $k =$	dM1
	k = 1.25	o.e.	A1 (5) (9 marks)

(a) B1 Shape for C. Approximately Symmetrical about the y axis

B1 Coordinates of (0, 8) There must be a graph.

- Accept graph crossing positive y axis with only 8 marked. Accept (8,0) if given on y axis.
- M1 Shape for *L*. A straight line with positive gradient and positive intercept
- A1 Coordinates of (0, k) and (-k/3, 0) or k marked on y axis, and -k/3 marked on x axis or even Accept (k, 0) on y axis and (0, -k/3) on x axis

(b) Either

Methods 1

M1 Equate curves $\frac{1}{3}x^2 + 8 = 3x + k$ and proceed to collect x terms on one side and (8 - k) terms together, on the same side or on the other side

together on the same side or on the other side

A1 Achieves an expression that leads to the point of intersection e.g $\frac{1}{3}x^2 - 3x + (8 - k)$

Method 1a

- dM1 (depends on previous M mark) Uses the fact that $b^2 = 4ac$ or $b^2 4ac' = 0$ is true
- **d**M1 (depends on previous M mark) Solves their $b^2 = 4ac$, leading to k=...

A1 cso
$$k = \frac{5}{4}$$
 Accept equivalents like 1.25 etc

Method 1b

dM1 (depends on previous M mark) Uses completion of the square as shown in scheme

dM1 (depends on previous M mark) Uses $k=8 - \lambda$

A1 cso
$$k = \frac{5}{4}$$
 Accept equivalents like 1.25 etc.

Methods 2

M1 Equate $\frac{dy}{dx} = 3$ Not given just for derivative

A1 Solves to get x = 4.5

Method 2a

dM1 Substitutes their 4.5 into equation for *C* to give *y* coordinate

dM1 Substitutes both their x and y into y = 3x + k to find k

A1 cso $k = \frac{5}{4}$ Accept equivalents like 1.25 etc.

Method 2b

dM1 Substitutes their 4.5 into $\frac{1}{3}x^2 + 8 = 3x + k$

- **d**M1 Finds k
- A1 cso $k = \frac{5}{4}$ Accept equivalents like 1.25 etc.

Question Number	Scheme	e	Marks
69	$\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(\sqrt{5}+1)}{(\sqrt{5}+1)}$	Multiplies top and bottom by a correct expression. This statement is sufficient.	M1
	(Allow to multiply top and b	pottom by $k(\sqrt{5}+1)$)	
	$=\frac{\cdots}{4}$	Obtains a denominator of 4 or sight of $(\sqrt{5}-1)(\sqrt{5}+1) = 4$	A1cso
	Note that M0A1 is not possible. The 4 m	ust come from a correct method.	
	$(7+\sqrt{5})(\sqrt{5}+1) = 7\sqrt{5}+5+7+\sqrt{5}$	An attempt to multiply the numerator by $(\pm\sqrt{5}\pm1)$ and get 4 terms with at least 2 correct for their $(\pm\sqrt{5}\pm1)$. (May be implied) Answer as written or $a = 3$	M1
	$3 + 2\sqrt{5}$	and $b = 2$. (Allow $2\sqrt{5} + 3$)	A1cso
	Correct answer with no wor	king scores full marks	
Way 2	$\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(-\sqrt{5}-1)}{(-\sqrt{5}-1)}$	Multiplies top and bottom by a correct expression. This statement is sufficient.	[4] M1
	(Allow to multiply top and bottom by $k(-\sqrt{5}-1)$)		
	$=\frac{\dots}{-4}$	Obtains a denominator of -4	A1cso
	$(7+\sqrt{5})(-\sqrt{5}-1) = -7\sqrt{5} - 5 - 7 - \sqrt{5}$	An attempt to multiply the numerator by $(\pm\sqrt{5}\pm1)$ and get 4 terms with at least 2 correct for their $(\pm\sqrt{5}\pm1)$. (May be implied)	M1
	$3 + 2\sqrt{5}$	Answer as written or $a = 3$ and $b = 2$	A1cso
	Correct answer with no wor	king scores full marks	
	A 14 anno 44	anoong Equational	[4]
	Alternative using Simult $\frac{(7 + \sqrt{5})}{\sqrt{5} - 1} = a + b\sqrt{5} \Rightarrow 7 + \sqrt{5} = 0$ Multiplies and collects ration a - b = 1, 5b - 0 Correct equa a = 3, b = 0 M1 for attempt to solve simultaneous equation	$= (a - b)\sqrt{5} + 5b - a \text{ M1}$ nal and irrational parts a = 7 A1 ations = 2	

Question Number	S	cheme	Marks	5
70(a)	6x + x > 1 - 8	Attempts to expand the bracket and collect <i>x</i> terms on one side and constant terms on the other. Condone sign errors and allow one error in expanding the bracket. Allow $<$, \leq , \geq ,= instead of $>$.	M1	
	x > -1	Cao	A1	
	Do not isw here, r	nark their final answer.		
				(2)
(b)	(x+3)(3x-1)[=0]	M1: Attempt to solve the quadratic to obtain two critical values	-	
	$\Rightarrow x = -3 \text{ and } \frac{1}{3}$	A1: $x = -3$ and $\frac{1}{3}$ (may be implied by their inequality). Allow all equivalent	M1A1	
		fractions for -3 and 1/3. (Allow 0.333 for $1/3$)		
		M1: Chooses "inside" region (The letter <i>x</i> does not need to be used here)	-	
	$-3 < x < \frac{1}{3}$	A1ft: Allow $x < \frac{1}{3}$ and $x > -3$ or $\left(-3, \frac{1}{3}\right)$ or $x < \frac{1}{3} \cap x > -3$. Follow through their critical values. (must be in terms of <i>x</i> here) Allow all equivalent fractions for -3 and 1/3. Both ($x < \frac{1}{3}$ or $x > -3$) and ($x < \frac{1}{3}$, $x > -3$) as a final answer	M1A1ft	
		$(x < \frac{1}{3}, x > -3)$ as a final answer score A0.		
				(4)
	Note that use of $< \text{or} > $ appearing in	an otherwise correct answer in (a) or (b)		[6]
		l once, the first time it occurs.		

Question Number	Schem	e	Marks	
71		Horizontal translation – does not have to cross the <i>y</i> -axis on the right but must at least reach the <i>x</i> -axis.	B1	
(a)		Touching at $(-5, 0)$. This could be stated anywhere or -5 could be marked on the <i>x</i> -axis. Or $(0, -5)$ marked in the correct place. Be fairly generous with 'touching' if the intention is clear.	B1	
	Х 	The right hand tail of their cubic shape crossing at $(-1, 0)$. This could be stated anywhere or -1 could be marked on the <i>x</i> -axis. Or (0, -1) marked in the correct place. The curve must cross the <i>x</i> -axis and not stop at -1 .	B1	
		• • • • • • • • • • • • • • • • • • •	(3	3)
(b)	$(x+5)^2(x+1)$	Allow $(x+3+2)^2(x-1+2)$	B1	
			(1	1)
(c)	When $x = 0, y = 25$	M1: Substitutes $x = 0$ into their expression in part (b) which is not $f(x)$. This may be implied by their answer. Note that the question asks them to use part (b) but allow independent methods. A1: $y = 25$ (Coordinates not needed)	M1 A1	
	If they expand <u>incorrectly</u> prior to s	ubstituting $x = 0$, score M1 A0		
	NB $f(x + 2) = x^3 + 1$	$1x^2 + 35x + 25$		
				2)
			[6]

Question Number		Scheme	Marks
72	$(3-x^2)^2 = 9 - 6x^2 + x^4$	An attempt to expand the numerator obtaining an expression of the form $9 \pm px^2 \pm qx^4$, $p,q \neq 0$	M1
	$9x^{-2} + x^2$	Must come from $\frac{9+x^4}{x^2}$	A1
	-6	Must come from $\frac{-6x^2}{x^2}$	A1
		s $(3x^{-1} - x)^2$ and attempts to expand = M1 1 as in the scheme.	
		$Ax^2 + Bx^4$, expands $(3 - x^2)^2$ and compares hen A1A1 as in the scheme.	
			(3)

(c) $x^2 + \frac{1}{2}x + \frac{1}{16} = 0$ so $(x + \frac{1}{4})^2 = 0 \Rightarrow x =$ Substitutes their value of k into the given quadratic and attempt to solve their 2 or 3 term quadratic as far as $x = (may be implied)$ by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves simultaneously to obtain a value for x.M1 $x = -\frac{1}{4}, y = 1\frac{1}{2}$ First A1 one answer correct, second A1 both answers correct.A1A1Special Case: $x^2 + \frac{1}{2}x + \frac{1}{16} = 0 \Rightarrow x = -\frac{1}{4}, \frac{1}{4} \Rightarrow y = 1\frac{1}{2}, \frac{1}{2}$ allow M1A1A0(3)	Question Number	Scheme	Marks	
(b)(8k)² - 4k(2)must be no incorrect statements.(A180)(b)(8k)² - 4k(8k)² - 4k(Could be in the quadratic formula or an inequality, = 0 not needed yet). There must be some correct subtitution but there must be no x's. No formula quoted followed by e.g., $8k^2 - 4k = 0$ is M0. A1: Correct expression. Do not condone missing brackets unless they are implied by later work but can be implied by $(8k)² > 4k$ etc.M1 A1(b) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$) but there must be no correct. A fully correct solution with no errors.A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(b) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(d) $k = \frac{1}{16}$ (oe)Cos (Ignore any reference to $k = 0$)A1(c) $k = \frac{1}{16}$ (oe)Cos (Ignore	73(a)	$x^2 - 4k(1 - 2x) + 5k(=0)$	and substitutes into the second equation (= 0 not needed here) or eliminates <i>y</i> by a	M1
		So $x^2 + 8kx + k = 0 *$		
k = $\frac{1}{16}$ (oe)must be no contradictory earlier statements. A fully correct solution with no errors.A1(b) Way 2 Equal 	(b)	$(8k)^2 - 4k$	quadratic formula or an inequality, = 0 not needed yet). There must be some correct substitution but there must be no x's. No formula quoted followed by e.g. $8k^2 - 4k = 0$ is M0. A1: Correct expression. Do not condone missing brackets unless they are implied by later work but can be implied by $(8k)^2 > 4k$ etc.	
(b) Way 2 Equal roots $\Rightarrow x^2 + 8kx + k = (x + \sqrt{k})^2$ $\Rightarrow 8k = 2\sqrt{k}$ M1: Correct strategy for equal roots A1: Correct equationM1A1 $k = \frac{1}{16}$ (oe) Completes the Square $x^2 + 8kx + k = (x + 4k)^2 - 16k^2 + k$ $\Rightarrow 16k^2 - k = 0$ Cso (Ignore any reference to $k = 0$)A1(b) Way 3 $k = \frac{1}{16}$ (oe) $x^2 + 8kx + k = (x + 4k)^2 - 16k^2 + k$ $\Rightarrow 16k^2 - k = 0$ M1: $(x \pm 4k)^2 \pm p \pm k, p \neq 0$ A1: Correct equationM1A1(c) $k = \frac{1}{16}$ (oe) $(x + \frac{1}{4})^2 = 0 \Rightarrow x =$ Cso (Ignore any reference to $k = 0$)A1(c) $x^2 + \frac{1}{2}x + \frac{1}{16} = 0$ so $(x + \frac{1}{4})^2 = 0 \Rightarrow x =$ Substitutes their value of k into the given quadratic as far as $x =$ (may be implied by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves simultaneously to obtain a value for x.M1 $x = -\frac{1}{4}, y = 1\frac{1}{2}$ First A1 one answer correct, second A1 both answers correct.A1A1Special Case: $x^2 + \frac{1}{2}x + \frac{1}{16} = 0 \Rightarrow x = -\frac{1}{4}, \frac{1}{4} \Rightarrow y = 1\frac{1}{2}, \frac{1}{2}$ allow M1A1A0(3)		$k = \frac{1}{16} \text{(oe)}$	must be no contradictory earlier statements.	
Way 2 Equal roots $\Rightarrow x^2 + 8kx + k = (x + \sqrt{k})^2$ $\Rightarrow 8k = 2\sqrt{k}$ Introduct stategy for equationsM1A1 $k = \frac{1}{16}$ (oc) $A1$: Correct equationA1(b) Way 3 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = x^2 + 8kx + k = (x + 4k)^2 - 16k^2 + k$ $\Rightarrow 16k^2 - k = 0$ $M1: (x \pm 4k)^2 \pm p \pm k, p \neq 0$ M1A1 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = \frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$)A1 $k = \frac{1}{16}$ (oc) $x = -\frac{1}{16}$ (oc) Cso (Ignore any reference to $k = 0$) $k = \frac{1}{16}$ (oc) $x = -\frac{1}{16}$ (oc) $Substitutes their value of k into the given quadratic and attempt to solve their 2 or 3term quadratic and attempt to solve their 2 or 3term quadratic and substitutes their value of k into the second equation and solvessimultaneously to obtain a value for x.k = -\frac{1}{4}, y = 1\frac{1}{2}First A1 one answer correct, second A1 bothanswers correct.$	(b)			(3)
(b) Way 3Completes the Square $x^2 + 8kx + k = (x + 4k)^2 - 16k^2 + k$ $\Rightarrow 16k^2 - k = 0$ M1: $(x \pm 4k)^2 \pm p \pm k$, $p \neq 0$ M1A1A1: Correct equationA1:A1: Correct equationM1A1 $k = \frac{1}{16}$ (oe)Cso (Ignore any reference to $k = 0$)A1(c) $x^2 + \frac{1}{2}x + \frac{1}{16} = 0$ so $(x + \frac{1}{4})^2 = 0 \Rightarrow x =$ Substitutes their value of k into the given quadratic and attempt to solve their 2 or 3 term quadratic as far as $x =$ (may be implied by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves simultaneously to obtain a value for x.M1 $x = -\frac{1}{4}, y = 1\frac{1}{2}$ First A1 one answer correct, second A1 both answers correct.A1A1Special Case: $x^2 + \frac{1}{2}x + \frac{1}{16} = 0 \Rightarrow x = -\frac{1}{4}, \frac{1}{4} \Rightarrow y = 1\frac{1}{2}, \frac{1}{2}$ allow M1A1A0(3)	Way 2 Equal			M1A1
(b) Way 3Completes the Square $x^2 + 8kx + k = (x + 4k)^2 - 16k^2 + k$ $\Rightarrow 16k^2 - k = 0$ M1: $(x \pm 4k)^2 \pm p \pm k$, $p \neq 0$ M1A1A1: Correct equationA1:A1: Correct equationM1A1 $k = \frac{1}{16}$ (oe)Cso (Ignore any reference to $k = 0$)A1(c) $x^2 + \frac{1}{2}x + \frac{1}{16} = 0$ so 		$k = \frac{1}{16} \text{ (oe)}$	Cso (Ignore any reference to $k = 0$)	A1
Way 3 $\Rightarrow 16k^2 - k = 0$ A1: Correct equationMIA1 $k = \frac{1}{16}$ (oe)Cso (Ignore any reference to $k = 0$)A1(c) $x^2 + \frac{1}{2}x + \frac{1}{16} = 0$ so $(x + \frac{1}{4})^2 = 0 \Rightarrow x =$ Substitutes their value of k into the given quadratic and attempt to solve their 2 or 3 term quadratic as far as $x = (may be implied)$ by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves simultaneously to obtain a value for x.M1 $x = -\frac{1}{4}, y = 1\frac{1}{2}$ First A1 one answer correct, second A1 both answers correct.A1A1Special Case: $x^2 + \frac{1}{2}x + \frac{1}{16} = 0 \Rightarrow x = -\frac{1}{4}, \frac{1}{4} \Rightarrow y = 1\frac{1}{2}, \frac{1}{2}$ allow M1A1A0(3)	(-)	Completes the Square	M1: $(x \pm 4k)^2 \pm p \pm k, \ p \neq 0$	
(c) $x^2 + \frac{1}{2}x + \frac{1}{16} = 0$ so $(x + \frac{1}{4})^2 = 0 \Rightarrow x =$ Substitutes their value of k into the given quadratic and attempt to solve their 2 or 3 term quadratic as far as $x = (may be implied)$ by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves simultaneously to obtain a value for x.M1 $x = -\frac{1}{4}, y = 1\frac{1}{2}$ First A1 one answer correct, second A1 both answers correct.A1A1Special Case: $x^2 + \frac{1}{2}x + \frac{1}{16} = 0 \Rightarrow x = -\frac{1}{4}, \frac{1}{4} \Rightarrow y = 1\frac{1}{2}, \frac{1}{2}$ allow M1A1A0(3)		$\Rightarrow 16k^2 - k = 0$	A1: Correct equation	M1A1
(c) $x^2 + \frac{1}{2}x + \frac{1}{16} = 0$ so $(x + \frac{1}{4})^2 = 0 \Rightarrow x =$ Substitutes their value of k into the given quadratic and attempt to solve their 2 or 3 term quadratic as far as $x = (may be implied)$ by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves simultaneously to obtain a value for x.M1 $x = -\frac{1}{4}, y = 1\frac{1}{2}$ First A1 one answer correct, second A1 both answers correct.A1A1Special Case: $x^2 + \frac{1}{2}x + \frac{1}{16} = 0 \Rightarrow x = -\frac{1}{4}, \frac{1}{4} \Rightarrow y = 1\frac{1}{2}, \frac{1}{2}$ allow M1A1A0(3)		$k = \frac{1}{16} \text{ (oe)}$	Cso (Ignore any reference to $k = 0$)	A1
$x = -\frac{1}{4}, y = 1\frac{1}{2}$ First A1 one answer correct, second A1 both answers correct. A1A1 Special Case: $x^2 + \frac{1}{2}x + \frac{1}{16} = 0 \Rightarrow x = -\frac{1}{4}, \frac{1}{4} \Rightarrow y = 1\frac{1}{2}, \frac{1}{2}$ allow M1A1A0 (3)	(c)	$x^2 + \frac{1}{2}x + \frac{1}{16} = 0$ so	quadratic and attempt to solve their 2 or 3 term quadratic as far as $x =$ (may be implied by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves	(3) M1
(3)		$x = -\frac{1}{4}, y = 1\frac{1}{2}$	First A1 one answer correct, second A1 both	A1A1
		Special Case: $x^2 + \frac{1}{2}x + \frac{1}{16} = 0 \Rightarrow$	$x = -\frac{1}{4}, \ \frac{1}{4} \Rightarrow y = 1\frac{1}{2}, \ \frac{1}{2}$ allow M1A1A0	
				(3) [8]

Question Number	Sche	me	Marks
74 (a)	$\left(-\frac{3}{4}, 0\right)$. Accept $x = -\frac{3}{4}$		B1
			(1)
(b)	<i>y</i> = 4	B1: One correct asymptote	
	x = 0 or 'y-axis'	B1: Both correct asymptotes and no extra ones.	B1B1
	Special case $x \neq 0$ and $y \neq 4$ scores B1B0		
			(2)

Question Number	Scheme	Notes	Marks
75.	$\frac{15}{\sqrt{3}} = \frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 5\sqrt{3}$	M1: Attempts to multiply numerator and denominator by $\sqrt{3}$. This may be implied by a correct answer. A1: $5\sqrt{3}$	M1A1
	$\sqrt{27} = 3\sqrt{3}$		B1
	$\frac{15}{\sqrt{3}} - \sqrt{27} = 2\sqrt{3}$		A1
	Correct answer onl	y scores full marks	
			[4]
Way 2	$\frac{15}{\sqrt{3}} - \sqrt{27} = \frac{15 - \sqrt{81}}{\sqrt{3}} \left(= \frac{6}{\sqrt{3}} \right)$	Terms combined correctly with a common denominator (Need not be simplified)	B1
	$\frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{6\sqrt{3}}{3}$	M1: Attempts to multiply numerator and denominator by $\sqrt{3}$. This may be implied by a correct answer. A1: $\frac{6\sqrt{3}}{3}$	- M1A1
	$\frac{15}{\sqrt{3}} - \sqrt{27} = 2\sqrt{3}$		A1
			[4]
	Note that $\frac{15}{\sqrt{3}} - \sqrt{27} = \frac{15\sqrt{3}}{3} - 3\sqrt{3} = 13$		
	scores M1A0B1A0 (i.	.e. $5\sqrt{3}$ is never seen)	

Question Number	Scheme	Notes	Marl	ks
	Ignore any references	to the units in this question		
76.(a)	length is ' $x + 4$ '	May be implied	B1	
/0.(a)	$x + x + x + 4 + x + 4 > 19.2 \Longrightarrow x > \dots$	$2x + 2(x \pm 4) > 19.2$ and proceeds to $x >$ (Accept 'invisible' brackets) Attempts 2 widths + 2 lengths > 19.2 leading to $x >$	M1	
	E.g. $x + x + 4x + 4x > 19$.	$2 \Rightarrow x > 1.92 \text{ scores B0M1A0}$		
	x > 2.8 *	Achieves $x > 2.8$ with no errors	A1(*)	
				(3)
		b) and (c) together		
	x(x+4) < 21	Сао	B1	
b(ii)	$x^{2} + 4x - 21 < 0$ $(x+7)(x-3) < 0 \Longrightarrow x = \dots$	Multiply out lhs, produce $3TQ = 0$ and attempt to solve leading to $x =$ according to general guidelines	M1	
		M1: Attempts the 'inside' for their critical values (may be from a 2TQ here)	-	
	Either $-7 < x < 3$ or $0 < x < 3$	A1: Accept either $-7 < x < 3$ or $0 < x < 3$ or (x > -7 and x < 3) or (x > 0 and x < 3) but not e.g. (x > -7, x < 3) or (x > -7 or x < 3) (There is no specific need for them to realise $x > 0$)	M1A1	
	Note that <u>many</u>	candidates stop here		
				(4)
(c)	2.8 < <i>x</i> < 3	Follow through their answers to (a) and (b) Provided "their 3 " > 2.8	B1ft	
(b)(i) b(ii) 				(1)
				[8]
		amples		
	$x(x-4) < 21 \Longrightarrow x^2 - 4x - 21 < 0$	$x \times 4x < 21 \Longrightarrow 4x^2 - 21 < 0$		
	(x-7)(x+3) < 0, x = 7, x = -3 -3 < x < 7 or 0 < x < 7	$(2x - \sqrt{21})(2x + \sqrt{21}) < 0, \ x = \pm \frac{\sqrt{21}}{2}$		
	2.8 < <i>x</i> < 7 Scores B0M1M1A0B1ft	$-\frac{\sqrt{21}}{2} < x < \frac{\sqrt{21}}{2} \text{ or } 0 < x < \frac{\sqrt{21}}{2}$		
		$2.8 < x < \frac{\sqrt{21}}{2}$		
		Scores B0M0M1A0B0		

Question Number	Scheme	Notes	Marks
77.(a)	$f(x) = (x+1)(x-2)^2$	M1: Either stating or writing down that $(x \pm 1)$ or $(x \pm 2)$ is a factor – may be implied by their f(x) A1: Both $(x + 1)$ and $(x - 2)$ are factors – may be implied by their f(x) B1: y or f(x)= $(x + 1)(x - 2)^2$	M1A1B1
	$= (x+1)(x^{2}-4x+4) = x^{3}-3x^{2}+4$	M1: Multiplying out a quadratic to get 3 terms and then multiplying by the linear term to form a cubic.	M1A1
		A1: $x^3 - 3x^2 + 4$ or $a = -3$, $b = 0$, $c = 4$	(5)
(b)		Same shape and position (ignore any coordinates) with the maximum on the y-axis y intercept = 4 or their 'c' x coordinates at -2 and 4 or marked as coordinates. Allow (0, -2) and (0, 4) if they are marked in the correct position. The curve must cross or at least stop at $x = -2$	B1 B1ft B1
			(3) [8]
(a) Way 2	$x = 0, y = 4 \Longrightarrow c = 4$	Uses (0, 4) to obtain $c = 4$ (can be just stated)	B1
	$x = -1, y = 0 \Longrightarrow -1 + a - b + c = 0$ $x = 2, y = 0 \Longrightarrow 8 + 4a + 2b + c = 0$		M1
	$a - b = -3$ $4a + 2b = -12$ $\Rightarrow a = \dots \text{ or } b = \dots$	Solves simultaneously with a value for c to obtain a value for a or a value for b	M1
	Either <i>a</i> = -3 or <i>b</i> = 0		A1
	Both $a = -3$ and $b = 0$		A1

Question Number	Scheme	Notes	Marks
77(a) Way 3	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2ax + b$	M1: $x^n \rightarrow x^{n-1}$ at least once including $c \rightarrow 0$	M1
	$x = 0 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow b = 0$	Correct value for <i>b</i>	A1
	$x = 0, y = 4 \Longrightarrow c = 4$	Uses (0, 4) to obtain $c = 4$ (can be just stated)	B1
	$3(2)^{2} + 2a(2) + b = 0$ or $(-1)^{3} + a(-1)^{2} + b(-1) + 4 = 0$	Obtains an equation in <i>a</i>	M1
	<i>a</i> = -3	Correct value for <i>a</i>	A1
			(5)
	Special A common incorrect approach is to a $f(x) = x(x \pm 1)$ This scores B1	assume the cubic is of the form e.g. $1(x \pm 2) + 4$	
			[8]

Question Number	Scheme	Marks	
78.			
	$x(1-4x^2)$ Accept $x(-4x^2+1)$ or $-x(4x^2-1)$ or $-x(-1+4x^2)$ or even $4x(\frac{1}{4}-x^2)$ or equivalent	B1	
	Accept $x(-4x^{-}+1)$ of $-x(4x^{-}-1)$ of $-x(-1+4x^{-})$ of even $4x(\frac{1}{4}-x^{-})$ of equivalent quadratic (or initial cubic) into two brackets	M1	
	x(1-2x)(1+2x) or $-x(2x-1)(2x+1)$ or $x(2x-1)(-2x-1)$	A1	
		[3]	
		3 marks	
	Notes		
	B1 : Takes out a factor of x or $-x$ or even $4x$. This line may be implied by correct final answer, but if this stage		
	is shown it must be correct . So B0 for $x(1+4x^2)$		
	M1: Factorises the quadratic resulting from their first factorisation using usual rules (see note 1 in General		
	Principles). e.g. $x(1-4x)(x-1)$. Also allow attempts to factorise cubic such as $(x-2x^2)(1+2x)$ etc		
	N.B. Should not be completing the square here.		
	A1: Accept either $x(1-2x)(1+2x)$ or $-x(2x-1)(2x+1)$ or $x(2x-1)(-2x-1)$. (No fractions the second	for this final	
	answer)		
	Specific situations		
	Note: $x(1-4x^2)$ followed by $x(1-2x)^2$ scores B1M1A0 as factors follow quadratic factorisation	on criteria	
	And $x(1-4x^2)$ followed by $x(1-4x)(1+4x)$ B1M0A0.		
	Answers with no working: Correct answer gets all three marks B1M1A1		
	: $x(2x-1)(2x+1)$ gets B0M1A0 if no working as $x(4x^2-1)$ would explain the formula of the second secon	earn B0	
	Poor bracketing: e.g. $(-1 + 4x^2) - x$ gets B0 unless subsequent work implies bracket round the case candidate may recover the mark by the following correct work.	-x in which	

Question Number	Scheme	Ma	arks
79 (i)	$ (5 - \sqrt{8})(1 + \sqrt{2}) = 5 + 5\sqrt{2} - \sqrt{8} - 4 = 5 + 5\sqrt{2} - 2\sqrt{2} - 4 = 1 + 3\sqrt{2} $ $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point. $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.	M1 B1 A1	[3]
(ii)	Method 1 Method 2 Method 3 Either $\sqrt{80} + \frac{30}{\sqrt{5}} \left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ Or $\left(\frac{\sqrt{400} + 30}{\sqrt{5}}\right) \frac{\sqrt{5}}{\sqrt{5}}$ $\sqrt{80} + \frac{\sqrt{900}}{\sqrt{5}} = \sqrt{80} + \sqrt{180}$	M1	
	$= 4\sqrt{5} + \dots = (\frac{20 + \dots}{\dots})^{-1} = 4\sqrt{5} + \dots$ $= 4\sqrt{5} + 6\sqrt{5} \qquad (50\sqrt{5})$	B1	
	$= \left(\frac{1}{5} \right) = 10\sqrt{5}$	A1	[3]
Alternative for (i)	$(5 - 2\sqrt{2})(1 + \sqrt{2})$ This earns the B1 mark. $= 5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified e.g. $= 5 + 3\sqrt{2} - 2\sqrt{4}$ o.e	M1	
	For earlier use of $2\sqrt{2}$ = 1 + $3\sqrt{2}$	B1 A1 61	[3] narks
(i)	Notes M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion may be implied by correct answer) – can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.	ion. (T	`his
(ii)	Al: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or multiplies $\left(\frac{30}{\sqrt{5}}\right) = \frac{6\times5}{\sqrt{5}} = 6\sqrt{5}$	uses	
	Method 3 of similar e.g. $\left(\frac{1}{\sqrt{5}}\right)^{-1} \frac{1}{\sqrt{5}} = -6\sqrt{5}$ B1 : (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20 \text{ or } \sqrt{80}\sqrt{5} = 20$ at any point Method 2. A1 : $10\sqrt{5}$ or $c = 10$.	if they	/ use
	N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as be Those who multiply initial expression by $\sqrt{5}$ to obtain $\sqrt{400} + 30 = 20 + 30 = 50$ earn M0 B		

Number	Scheme		Mark
80. (a)		2	
	² *	$y = \frac{2}{x}$ is translated up or down.	M1
		$y = \frac{2}{x} - 5$ is in the correct position.	A1
		Intersection with <i>x</i> -axis at $(\frac{2}{5}, \{0\})$ only Independent mark.	B1
		y = 4x + 2: attempt at straight line, with positive gradient with positive <i>y</i> intercept.	B1
	Check graph in question for possible answers	Intersection with x-axis at $\left(-\frac{1}{2}, \{0\}\right)$ and y-axis at $\left(\{0\}, 2\right)$.	B1
(b)	and space below graph for answers to part (b) Asymptotes : $x = 0$ (or y-axis) and $y = -5$.	An asymptote stated correctly. Independent of (a)	B1
	(Lose second B mark for extra asymptotes)	These two lines only. Not ft their graph	B1 [
	Method 1: $\frac{2}{x} - 5 = 4x + 2$	Method 2: $\frac{y-2}{4} = \frac{2}{y+5}$	M1
	$4x^2 + 7x - 2 = 0 \Longrightarrow x =$	$y^2 + 3y - 18 = 0 \rightarrow y =$	dM1
	$x = -2, \frac{1}{4}$	y = -6, 3	A1
	When $x = -2$, $y = -6$, When $x = \frac{1}{4}$, $y = 3$	When $y = -6$, $x = -2$ When $y = 3$, $x = \frac{1}{4}$.	M1A1
			12 mar
		Notes	12 mai
asymptote (r	should not remain where it was in the given fig	shape of curve should be implying asymptote(s) para ure. Both sections move in the same direction. There oth sections move by almost same amount. See sheet on	
axis. Curve no reflection A1: Crosses guidance.			
axis. Curve no reflection A1: Crosses guidance. B1: Check of or on graph.	diagram and text of answer. Accept 2/5 or 0.4 This is independent of the graph. Accept (0, 2)	shown on x -axis or $x = 2/5$, or $(2/5, 0)$ stated clear 2/5) if clearly on x axis. Ignore any intersection poin	rly in tex
axis. Curve no reflection A1: Crosses guidance. B1: Check (or on graph. axis. Do not	diagram and text of answer. Accept 2/5 or 0.4 This is independent of the graph. Accept (0, 2 credit work in table of values for this mark.	shown on x -axis or $x = 2/5$, or $(2/5, 0)$ stated clear 2/5) if clearly on x axis. Ignore any intersection poin	rly in tex its with y
axis. Curve no reflection A1: Crosses guidance. B1: Check or on graph. axis. Do not B1: Must be	diagram and text of answer. Accept 2/5 or 0.4 This is independent of the graph. Accept (0, 2 credit work in table of values for this mark. e attempt at a straight line, with positive gradien	shown on x -axis or $x = 2/5$, or $(2/5, 0)$ stated clear 2/5) if clearly on x axis. Ignore any intersection poin at & with positive y intercept (need not cross x axis)	rly in tex its with y
axis. Curve no reflection A1: Crosses guidance. B1: Check of or on graph. axis. Do not B1: Must be B1: Accept	diagram and text of answer. Accept 2/5 or 0.4 This is independent of the graph. Accept (0, 2 credit work in table of values for this mark. e attempt at a straight line, with positive gradien	shown on x -axis or $x = 2/5$, or $(2/5, 0)$ stated clear 2/5) if clearly on x axis. Ignore any intersection poin at & with positive y intercept (need not cross x axis) or (-0.5,0) in text or on graph and similarly accept 2	rly in tex its with y
axis. Curve no reflection A1: Crosses guidance. B1: Check of or on graph. axis. Do not B1: Must be B1: Accept $y = 2$ or $(0, 2)$ (b) B1: For	diagram and text of answer. Accept 2/5 or 0.4 This is independent of the graph. Accept (0, 2) c credit work in table of values for this mark. e attempt at a straight line, with positive gradien x = -1/2, or -0.5 shown on x -axis or (-1/2, 0) of 2) in text or on graph. Need not cross curve an either correct asymptote equation. Second B1 : 1	shown on x -axis or $x = 2/5$, or $(2/5, 0)$ stated clear 2/5) if clearly on x axis. Ignore any intersection poin at & with positive y intercept (need not cross x axis) or (-0.5,0) in text or on graph and similarly accept 2 on a allow on separate axes. For both correct (lose this if extras e.g. $x = \pm 1$ are given	rly in tex its with y) on y axis
axis. Curve no reflection A1: Crosses guidance. B1: Check (or on graph. axis. Do not B1: Must be B1: Accept y = 2 or $(0, 2)(b) B1: ForThese asymptotic$	diagram and text of answer. Accept 2/5 or 0.4 This is independent of the graph. Accept (0, 2) c credit work in table of values for this mark. e attempt at a straight line, with positive gradien x = -1/2, or -0.5 shown on x -axis or $(-1/2, 0)$ of 2) in text or on graph. Need not cross curve an either correct asymptote equation. Second B1 : I ptotes may follow correctly from equation after	shown on x -axis or $x = 2/5$, or $(2/5, 0)$ stated clear 2/5) if clearly on x axis. Ignore any intersection poin at & with positive y intercept (need not cross x axis) or (-0.5,0) in text or on graph and similarly accept 2 on allow on separate axes. For both correct (lose this if extras e.g. $x = \pm 1$ are given by wrong graph in (a)	rly in tex its with y on y axis iven also
axis. Curve no reflection A1: Crosses guidance. B1: Check (cor) or on graph. axis. Do not B1: Must be B1: Accept y = 2 or (0, 2 (b) B1: For These asymptotic for the set of th	diagram and text of answer. Accept 2/5 or 0.4 This is independent of the graph. Accept (0, 2) c credit work in table of values for this mark. e attempt at a straight line, with positive gradien x = -1/2, or -0.5 shown on x -axis or $(-1/2, 0)$ of 2) in text or on graph. Need not cross curve an either correct asymptote equation. Second B1 : I ptotes may follow correctly from equation after	shown on x -axis or $x = 2/5$, or $(2/5, 0)$ stated clear 2/5) if clearly on x axis. Ignore any intersection poin at & with positive y intercept (need not cross x axis) or (-0.5,0) in text or on graph and similarly accept 2 on allow on separate axes. For both correct (lose this if extras e.g. $x = \pm 1$ are given wrong graph in (a) are graph. However for other B mark it must be clear	rly in tex its with y on y axis iven also
axis. Curve no reflection A1: Crosses guidance. B1: Check (c) or on graph. axis. Do not B1: Must be B1: Accept y = 2 or (0, 2 (b) B1: For These asymption Just $y = -5$ if x = 0 (or the (c) M1: Either dM1: Atter	diagram and text of answer. Accept 2/5 or 0.4 This is independent of the graph. Accept (0, 2) credit work in table of values for this mark. e attempt at a straight line, with positive gradient x = -1/2, or -0.5 shown on x -axis or $(-1/2, 0)$ of 2) in text or on graph. Need not cross curve and either correct asymptote equation. Second B1: 1 ptotes may follow correctly from equation after is B1 B0 This may be awarded if given on the me y-axis) is an asymptote. NB $x \neq 0$, $y \neq -5$ is her of these equations is enough for the method	A shown on x -axis or $x = 2/5$, or $(2/5, 0)$ stated clear 2/5) if clearly on x axis. Ignore any intersection poin ant & with positive y intercept (need not cross x axis) or (-0.5,0) in text or on graph and similarly accept 2 on allow on separate axes. For both correct (lose this if extras e.g. $x = \pm 1$ are given wrong graph in (a) be graph. However for other B mark it must be clear is B1B0	rly in tex its with y on y axis iven also ir that

A1: Need both correct *x* answers (Accept equivalents e.g. 0.25) or both correct *y* values (Method 2)

M1: At least one attempt to find *second variable* (usually *y*) using their *first variable* (usually *x*) related to line meeting curve. Should not be substituting *x* or *y* values from part (a) or (b). This mark is **independent** of previous marks. Candidate may substitute in equation of line or equation of curve.

A1: Need both correct *second variable* answers Need not be written as co-ordinates (allow as in the scheme) Note: Special case: Answer only with no working in part (c) can have 5 marks if completely correct, with **both** points found. If coordinates of just one of the points is correct – with no working – this earns M0 M0 A0 M1 A0 (i.e. 1 / 5)

(b)	Method 1: Attempts $b^2 - 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \neq k$ $b^2 - 4ac = 6^2 - 4(k + 3)(k - 5)$ $(b^2 - 4ac =) -4k^2 + 8k + 96$ or $-(b^2 - 4ac =) -4k^2 - 8k - 96$ (with no prior algebraic errors) As $b^2 - 4ac > 0$, then $-4k^2 + 8k + 96 > 0$ and so, $k^2 - 2k - 24 < 0$ Method 2: Considers $b^2 > 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \neq k$ $6^2 > 4(k + 3)(k - 5)$ $4k^2 - 8k - 96 < 0$ or $-4k^2 + 8k + 96 > 0$ or $9 > (k + 3)(k - 5)$ (with no prior algebraic errors) and so, $k^2 - 2k - 24 < 0$ following correct work Attempts to solve $k^2 - 2k - 24 = 0$ to give $k =$ (\Rightarrow Critical values, $k = 6, -4$.) $k^2 - 2k - 24 < 0$ gives $-4 < k < 6$	M1 A1 B1 A1 * M1 A1 * [4] M1 M1 A1
(b)	$b^{2} - 4ac = 6^{2} - 4(k+3)(k-5)$ $(b^{2} - 4ac =) -4k^{2} + 8k + 96 \text{or} -(b^{2} - 4ac =) 4k^{2} - 8k - 96 (\text{ with no prior algebraic errors})$ As $b^{2} - 4ac > 0$, then $-4k^{2} + 8k + 96 > 0$ and so, $k^{2} - 2k - 24 < 0$ Method 2: Considers $b^{2} > 4ac$ for $a = (k+3)$, $b = 6$ and their c . $c \neq k$ $6^{2} > 4(k+3)(k-5)$ $4k^{2} - 8k - 96 < 0 \text{ or } -4k^{2} + 8k + 96 > 0 \text{ or } 9 > (k+3)(k-5)$ (with no prior algebraic errors) and so, $k^{2} - 2k - 24 < 0$ following correct work Attempts to solve $k^{2} - 2k - 24 = 0$ to give $k =$ (\Rightarrow Critical values, $k = 6, -4$.)	B1 A1 * M1 A1 B1 A1 * [4] M1 M1 A1
(b)	$(b^{2} - 4ac =) -4k^{2} + 8k + 96 \text{ or } -(b^{2} - 4ac =) 4k^{2} - 8k - 96 \text{ (with no prior algebraic errors)} As b^{2} - 4ac > 0, then -4k^{2} + 8k + 96 > 0 and so, k^{2} - 2k - 24 < 0Method 2: Considers b^{2} > 4ac for a = (k + 3), b = 6 and their c. c \neq k6^{2} > 4(k + 3)(k - 5)4k^{2} - 8k - 96 < 0 or -4k^{2} + 8k + 96 > 0 or 9 > (k + 3)(k - 5) (with no prior algebraic errors)and so, k^{2} - 2k - 24 < 0 following correct workAttempts to solve k^{2} - 2k - 24 = 0 to give k = (\Rightarrow Critical values, k = 6, -4.)$	B1 A1 * M1 A1 B1 A1 * [4] M1 M1 A1
(b)	As $b^2 - 4ac > 0$, then $-4k^2 + 8k + 96 > 0$ and so, $k^2 - 2k - 24 < 0$ Method 2: Considers $b^2 > 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq k$ $6^2 > 4(k + 3)(k - 5)$ $4k^2 - 8k - 96 < 0$ or $-4k^2 + 8k + 96 > 0$ or $9 > (k + 3)(k - 5)$ (with no prior algebraic errors) and so, $k^2 - 2k - 24 < 0$ following correct work Attempts to solve $k^2 - 2k - 24 = 0$ to give $k =$ (\Rightarrow Critical values, $k = 6, -4$.)	M1 A1 B1 A1 * [4] M1 M1 A1
(b)	$6^{2} > 4(k+3)(k-5)$ $4k^{2} - 8k - 96 < 0 \text{ or } -4k^{2} + 8k + 96 > 0 \text{ or } 9 > (k+3)(k-5) \qquad \text{(with no prior algebraic errors)}$ and so, $k^{2} - 2k - 24 < 0$ following correct work Attempts to solve $k^{2} - 2k - 24 = 0$ to give $k = \qquad (\Rightarrow \text{Critical values}, \ k = 6, -4.)$	A1 B1 A1 * [4] M1 M1 A1
	$4k^{2} - 8k - 96 < 0 \text{ or } -4k^{2} + 8k + 96 > 0 \text{ or } 9 > (k+3)(k-5) \qquad \text{(with no prior algebraic errors)}$ and so, $k^{2} - 2k - 24 < 0$ following correct work Attempts to solve $k^{2} - 2k - 24 = 0$ to give $k = \qquad (\Rightarrow \text{Critical values, } k = 6, -4.)$	B1 A1 * [4] M1 M1 A1
	and so, $k^2 - 2k - 24 < 0$ following correct work Attempts to solve $k^2 - 2k - 24 = 0$ to give $k = $ (\Rightarrow Critical values, $k = 6, -4$.)	A1 * [4] M1 M1 A1
	and so, $k^2 - 2k - 24 < 0$ following correct work Attempts to solve $k^2 - 2k - 24 = 0$ to give $k = $ (\Rightarrow Critical values, $k = 6, -4$.)	[4] M1 M1 A1
		M1 M1 A1
	$k^2 - 2k - 24 < 0$ gives $-4 < k < 6$	
		[3] 7 marks
	Notes	
	Method 1: M1: Attempts $b^2 - 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \neq k$ or uses quadratic and has this expression under square root. (ignore > 0, < 0 or = 0 for first 3 marks) A1: Correct expression for $b^2 - 4ac$ - need not be simplified (may be under root sign) B1: Uses algebra to manipulate result without error into one of these three term quadratics. Aga under root sign in quadratic formula. If inequality is used early in "proof" may see $4k^2 - 8k - 96 < 0$ and B1 would be given for $4k^2 - 8k - 96$ correctly stated. A1: Applies $b^2 - 4ac > 0$ correctly (or writes $b^2 - 4ac > 0$) to achieve the result given in t No errors should be seen. Any incorrect line of argument should be penalised here. There are sever reaching the answer; either multiplication of both sides of inequality by -1, or taking every term to of inequality. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac$, $b^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \neq$ A1: Correct expressions on either side (ignore >, < or =). B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both side again without error A1: Produces result with no errors seen from initial consideration of $b^2 > 4ac$.	in may be he question. eral ways of o other side k les by 4
-	M1: Uses factorisation, formula, completion of square method to find two values for k, or finds to answers with no obvious method M1: Their Lower Limit $< k <$ Their Upper Limit Allow the M mark mark for \leq . (Allow $k <$ upplower) A1: $-4 < k < 6$ Lose this mark for \leq Allow (-4, 6) [not square brackets] or $k > -4$ and $k < 6$ (mot or) Can also use intersection symbol \cap NOT $k > -4$, $k < 6$ (M1A0) Special case : In part (a) uses $c = k$ instead of $k - 5$ - scores 0. Allow $k + 5$ for method marks Special Case: In part (b) Obtaining $-6 < k < 4$ This is a common wrong answer. Give M1 M1 case. Special Case: In part (b) Use of x instead of $k - M1M1A0$ Special Case: $-4 < k < 6$ and $k < -4$, $k > 6$ both given is M0A0 for last two marks. Do not treat	per and $k >$ must be and A0 special

Question Number	Scheme	Marks
82. (a)	This may be done by completion of square or by expansion and comparing coefficients	
	a = 4	B1
	<i>b</i> = 1	B1
	All three of $a = 4$, $b = 1$ and $c = -1$	B1
	An unce of $u = 4$, $v = 1$ and $c = -1$	[3]
(b)	U shaped quadratic graph.	M1
	The curve is correctly positioned with the minimum in the third quadrant It crosses <i>x</i> axis twice on	A1
	negative x axis and y axis once on positive y axis.	
	Curve cuts y-axis at $(\{0\}, 3)$. only	B1
	Curve cuts <i>x</i> -axis at $(-\frac{3}{2}, \{0\})$ and $(-\frac{1}{2}, \{0\})$.	B1
		[4]
		7 marks
	Notes	
(a)	B1: States $a = 4$ or obtains $4(x + b)^2 + c$,	
	B1: States $b = 1$ or obtains $a(x + 1)^2 + c$,	
	B1: States $a = 4$, $b = 1$ and $c = -1$ or $4(x + 1)^2 - 1$ (Needs all 3 correct for final mark)	
	Special cases: If answer is left as $(2x + 2)^2 - 1$ treat as misread B1B0B0	
	or as $2(x+1)^2 - 1$ then the mark is B0B1B0 from scheme	
(b)	M1: Any position provided U shaped (be generous in interpretation of U shape but V shape is M0 A1: The curve is correctly positioned with the minimum in the third quadrant. It crosses x axis two negative x axis and y axis once on positive y axis. B1: Allow 3 on y axis and allow either $y = 3$ or (0, 3) if given in text Curve does not need to pass	vice on
	this point and this mark may be given even if there is no curve at all or if it is drawn as a line.	sunougn
	B1: Allow $-3/2$ and $-1/2$ if given on x axis – need co-ordinates if given in text or $x = -3/2$, $x = -1/2$	
	decimal equivalents. Curve does not need to pass through these points and this mark may be given there is no curve. Ignore third point of intersection and allow touching instead of cutting. So even	
	curve <i>might</i> get M0A0 B1 B1.	a cubic
	A V shape with two ruled lines for example might get M0A0B1B1	

Question Number	Scheme	Marks
83.	$\left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\} = \frac{2}{\left(\sqrt{12}-\sqrt{8}\right)} \times \frac{\left(\sqrt{12}+\sqrt{8}\right)}{\left(\sqrt{12}+\sqrt{8}\right)}$ Writing this is sufficient for N	11. M1
	$= \frac{\left\{2\left(\sqrt{12} + \sqrt{8}\right)\right\}}{12 - 8}$ For 12 – This mark can be impli	AI
	$= \frac{2(2\sqrt{3}+2\sqrt{2})}{12-8}$	B1 B1
	$= \sqrt{3} + \sqrt{2}$	A1 cso 5
	Notes	
	M1: for a correct method to rationalise the denominator. 1 st A1: $(\sqrt{12} - \sqrt{8})(\sqrt{12} + \sqrt{8}) \rightarrow 12 - 8$ or $(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) \rightarrow 3 - 2$	
	1st B1: for $\sqrt{12} = 2\sqrt{3}$ or $\sqrt{48} = 4\sqrt{3}$ seen or implied in candidate's working. 2nd B1: for $\sqrt{8} = 2\sqrt{2}$ or $\sqrt{32} = 4\sqrt{2}$ seen or implied in candidate's working.	
	2nd A1: for $\sqrt{3} + \sqrt{2}$. Note: $\frac{\sqrt{3} + \sqrt{2}}{1}$ as a final answer is A0.	
	Note: The first accuracy mark is dependent on the first method mark being awarded.	
	Note: $\frac{1}{2}\sqrt{12} + \frac{1}{2}\sqrt{8} = \sqrt{3} + \sqrt{2}$ with no intermediate working implies the B1B1 marks.	
	Note: $\sqrt{12} = \sqrt{4}\sqrt{3}$ or $\sqrt{8} = \sqrt{4}\sqrt{2}$ are not sufficient for the B1 marks.	0545440
	Note: A candidate who writes down (by misread) $\sqrt{18}$ for $\sqrt{8}$ can potentially obtain M1A the 2 nd B1 will be awarded for $\sqrt{18} = 3\sqrt{2}$ or $\sqrt{72} = 6\sqrt{2}$ Note: The final accuracy mark is for a correct solution only.	0B1B1A0, where
	$\frac{Alternative \ 1 \ solution}{\left\{\frac{2}{\sqrt{12} - \sqrt{8}}\right\}} = \frac{2}{\left(2\sqrt{3} - 2\sqrt{2}\right)}$ B1 B1	
	$1 \qquad 1 \qquad$	
	$= \frac{\left\{ \left(\sqrt{3} + \sqrt{2} \right) \right\}}{3 - 2}$ A1 for 3 - 2	
	$= \sqrt{3} + \sqrt{2} $ A1	
	$\frac{Alternative 2 \text{ solution}}{\left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\}} = \frac{2}{\left(2\sqrt{3}-2\sqrt{2}\right)} = \frac{1}{\left(\sqrt{3}-\sqrt{2}\right)} = \sqrt{3}+\sqrt{2} \text{, or } \frac{2}{\left(2\sqrt{3}-2\sqrt{2}\right)} = \sqrt{3}$ with no incorrect working seen is awarded M1A1B1B1A1.	$\sqrt{3} + \sqrt{2}$

ect ∩ shape	M1 A1 A1 M1 A1 M1	[3]
ect ∩ shape	A1 A1 M1 A1	[3]
ect ∩ shape	A1 A1 M1 A1	[3]
ect ∩ shape	M1 A1	[3]
ect ∩ shape	A1	
ect ∩ shape	A1	[2]
ect ∩ shape		[2]
ect ∩ shape	M1	
ect ∩ shape	M1	
ect \cap shape	M1	
ect \cap shape	M1	
ect \cap shape	M1	
4 th quadrant	A1	
hrough -5 or		
on the y-axis	B1	
		[3]
		8
$(\pm x \pm 2)^2 \pm$	<i>λ</i> , <i>λ</i> ≠	-5
nore $-1 - (x)$	$(x-2)^2$	= 0.
mply the M1 i	mark.	
not -1) gets M	M0A0A	0.
$1 - (x - 2)^2$		
()		
~ /		
~ /		
× ,		
-1		
ir r	imply the M1	gnore $-1 - (x - 2)^2$ fimply the M1 mark. not -1) gets M0A0A $-1 - (x - 2)^2$

(b) $\frac{Alternative 3 to (a)}{\text{Negating } 4x - 5 - x^2 \text{ gives } x^2 - 4x + 5}$ So, $x^2 - 4x + 5 = (x - 2)^2 - 4 + 5 \left\{ = (x - 2)^2 + 1 \right\}$ M1 for $\pm (\pm x \pm 2)^2 \pm k + 5$ then stating $p = -2$ is 1 st A1 and/or $q = -1$ is 2 nd A1. or writing $-1 - (x - 2)^2$ is A1A1. Special Case for part (a): $q - (x + p)^2 = q - (x^2 + 2px + p^2) = -x^2 - 2px + q - p^2 = 4x - 5 - x^2$ $\Rightarrow -2px + q - p^2 = 4x - 5 \Rightarrow q - p^2 + 5 = 4x + 2px \Rightarrow q - p^2 + 5 = x(4 + 2p)$ $\Rightarrow x = \frac{q - p^2 + 5}{4 + 2p} \Rightarrow p \neq -2$ scores Special Case M1A1A1 only once $p \neq -2$ achieved. (b) M1: for correctly substituting any two of $a = -1$, $b = 4$, $c = -5$ into $b^2 - 4ac$ if this is quoted.	
(b) So, $x^2 - 4x + 5 = (x - 2)^2 - 4 + 5 \{= (x - 2)^2 + 1\}$ M1 for $\pm (\pm x \pm 2)^2 \pm k + 5$ then stating $p = -2$ is 1 st A1 and/or $q = -1$ is 2 nd A1. or writing $-1 - (x - 2)^2$ is A1A1. Special Case for part (a): $q - (x + p)^2 = q - (x^2 + 2px + p^2) = -x^2 - 2px + q - p^2 = 4x - 5 - x^2$ $\Rightarrow -2px + q - p^2 = 4x - 5 \Rightarrow q - p^2 + 5 = 4x + 2px \Rightarrow q - p^2 + 5 = x(4 + 2p)$ $\Rightarrow x = \frac{q - p^2 + 5}{4 + 2p} \Rightarrow p \neq -2$ scores Special Case M1A1A1 only once $p \neq -2$ achieved. (b) M1: for correctly substituting any two of $a = -1, b = 4, c = -5$ into $b^2 - 4ac$ if this is quoted.	
(b) then stating $p = -2$ is $1^{st} A1$ and/or $q = -1$ is $2^{nd} A1$. or writing $-1 - (x - 2)^2$ is A1A1. Special Case for part (a): $q - (x + p)^2 = q - (x^2 + 2px + p^2) = -x^2 - 2px + q - p^2 = 4x - 5 - x^2$ $\Rightarrow -2px + q - p^2 = 4x - 5 \Rightarrow q - p^2 + 5 = 4x + 2px \Rightarrow q - p^2 + 5 = x(4 + 2p)$ $\Rightarrow x = \frac{q - p^2 + 5}{4 + 2p} \Rightarrow p \neq -2$ scores Special Case M1A1A1 only once $p \neq -2$ achieved. (b) M1: for correctly substituting any two of $a = -1$, $b = 4$, $c = -5$ into $b^2 - 4ac$ if this is quoted.	
(b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
(b) Special Case for part (a): $q - (x + p)^2 = q - (x^2 + 2px + p^2) = -x^2 - 2px + q - p^2 = 4x - 5 - x^2$ $\Rightarrow -2px + q - p^2 = 4x - 5 \Rightarrow q - p^2 + 5 = 4x + 2px \Rightarrow q - p^2 + 5 = x(4 + 2p)$ $\Rightarrow x = \frac{q - p^2 + 5}{4 + 2p} \Rightarrow p \neq -2$ scores Special Case M1A1A1 only once $p \neq -2$ achieved. M1: for correctly substituting any two of $a = -1, b = 4, c = -5$ into $b^2 - 4ac$ if this is quoted.	
(b) $\begin{aligned} q - (x+p)^2 &= q - (x^2 + 2px + p^2) = -x^2 - 2px + q - p^2 = 4x - 5 - x^2 \\ \Rightarrow -2px + q - p^2 = 4x - 5 \Rightarrow q - p^2 + 5 = 4x + 2px \Rightarrow q - p^2 + 5 = x(4+2p) \\ \Rightarrow x = \frac{q - p^2 + 5}{4 + 2p} \Rightarrow p \neq -2 \text{ scores Special Case M1A1A1 only once } p \neq -2 \text{ achieved.} \end{aligned}$ (b) $\begin{aligned} \mathbf{M1:} \text{ for correctly substituting any two of } a = -1, b = 4, c = -5 \text{ into } b^2 - 4ac \text{ if this is quoted.} \end{aligned}$	
(b) M1: for correctly substituting any two of $a = -1$, $b = 4$, $c = -5$ into $b^2 - 4ac$ if this is quoted.	
(b) $\Rightarrow x = \frac{q - p^2 + 5}{4 + 2p} \Rightarrow p \neq -2 \text{ scores Special Case M1A1A1 only once } p \neq -2 \text{ achieved.}$ (b) M1: for correctly substituting any two of $a = -1$, $b = 4$, $c = -5$ into $b^2 - 4ac$ if this is quoted.	
(b) M1: for correctly substituting any two of $a = -1$, $b = 4$, $c = -5$ into $b^2 - 4ac$ if this is quoted.	
If $b^2 - 4ac$ is not quoted then the substitution must be correct.	
Substitution into $b^2 < 4ac$ or $b^2 = 4ac$ or $b^2 > 4ac$ is M0.	
A1: for -4 only.	
If they write $-4 < 0$ treat the < 0 as ISW and award A1. If they write $-4 \ge 0$ then score A0.	
So substituting into $b^2 - 4ac < 0$ leading to $-4 < 0$ can score M1A1	
Note: Only award marks for use of the discriminant in part (b).	
Note: Award M0 if the candidate uses the quadratic formula UNLESS they later go on to identify that the	Э
discriminant is the result of $b^2 - 4ac$.	
Beware: A number of candidates are writing up their solution to part (b) at the bottom of the secon page. So please look!	ıd
(c) M1: Correct \cap shape in any quadrant.	
A1: The maximum must be <i>within</i> the fourth quadrant to award this mark.	
B1: Curve (<i>and not line!</i>) cuts through -5 or $(0, -5)$ marked on the y-axis	
Allow $(-5, 0)$ rather than $(0, -5)$ if marked in the "correct" place on the y-axis.	
If the curve cuts through the negative y-axis and this is not marked, then you can recover $(0, -5)$ from the	
candidate's working in part (c). You are not allowed to recover this point, though, from a table of values	
Note: Do not recover work for part (a) in part (c).	

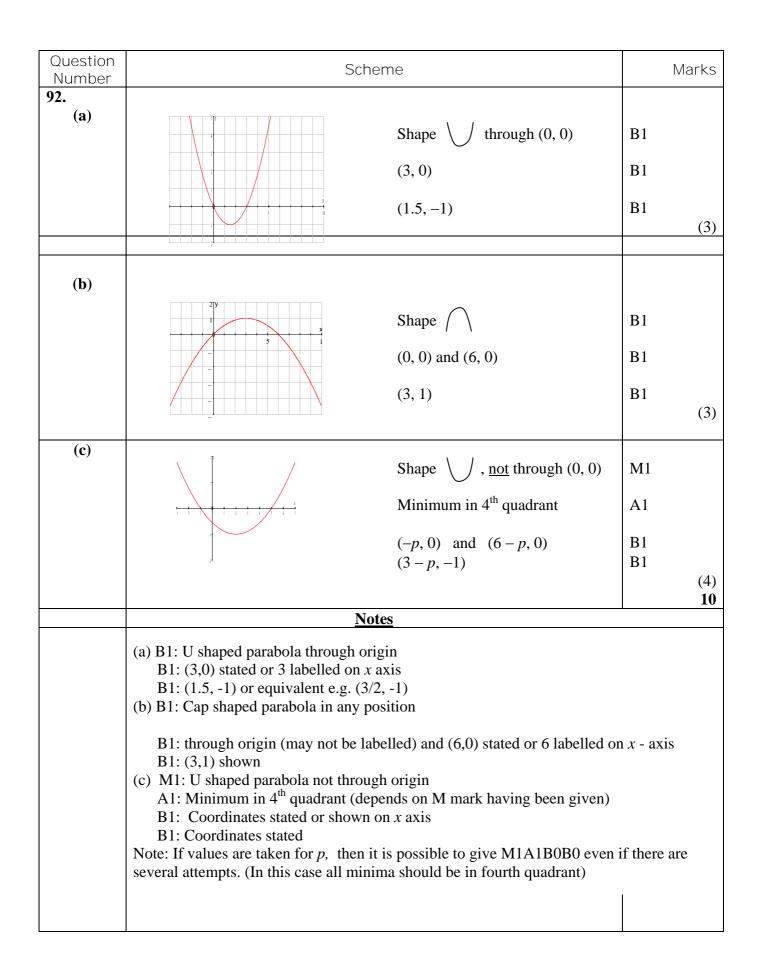
Question Number	Scheme	Mar	ĸs
85. (a) (b)(i)	{Coordinates of A are} (4.5, 0) See notes below	B1	[1]
(0)(1)	27 Horizontal translation	M1	
	-3 and their ft 1.5 on postitive <i>x</i> -axis Maximum at 27 marked on the <i>y</i> -axis	A1 ft B1	
(ii)	-3 O 1.5 x		[3]
	(1, 27) (1, 27) Correct shape, minimum at (0, 0) and a maximum within the first quadrant. 1.5 on <i>x</i> -axis Maximum at (1, 27)	M1 A1 ft B1	
(c)	$\{k = \} -17$	B1	[3] [1] 8
(a)	Notes B1: For stating either $x = 4.5$ or $\frac{9}{2}$ or $\frac{18}{4}$ etc. or $A = 4.5$ or $\frac{9}{2}$ or $(4.5, 0)$. Can be written on grap	h Dh	
(1)	Allow $(0, 4.5)$ marked on curve for B1. Otherwise $(0, 4.5)$ without reference to any of the above		
(b)(i)	 M1: for any horizontal (left-right) translation where minimum is still on <i>x</i>-axis not at (0, 0). Ignore any values. A1ft: for -3 (NOT 3) and 1.5 (or their <i>x</i> in part (a) – 3) <i>evaluated</i> and marked on the positive <i>x</i>-ax Allow (0, – 3) and/or (0, ft 1.5) rather than (–3, 0) and (ft 1.5, 0) if marked in the 		
(ii)	"correct" place on the <i>x</i> -axis. Note: Candidate <i>cannot</i> gain this mark if their <i>x</i> in part (a) B1: Maximum at 27 marked on the <i>y</i> -axis. Note: the maximum must be on the <i>y</i> -axis for this mark M1: for correct shape with minimum still at (0, 0) and a maximum within the first quadrant. Ignor	k. ore value	s.
	A1ft: for $\frac{\text{their } x \text{ in part } (a)}{3}$; as intercept on x-axis eg: $\frac{4.5}{3}$ or 1.5 or $\frac{3}{2}$ or $\frac{9}{6}$ Note: a generalised Allow (0, ft 1.5) rather than (ft 1.5, 0) if marked in the "correct" place on the x-axis.	$\frac{1}{3} \frac{A}{3}$ is A	0.
	B1: Maximum at (1, 27) or allow 1 marked on the <i>x</i> -axis and the corresponding 27 marked on the	-	
	Note: Be careful to look at the correct graph. The candidate may draw another graph to hele answer part (c). Note: You can recover (b)(i) $(-3, 0)$ and (ft 1.5, 0) or in (b)(ii) (ft 1.5, 0) as correct coordinates	-	0
(c)	candidate's working if these are not marked on their sketch(es). B1: for $(k =) -17$ only. BEWARE : This could be written in the middle or at the bottom of a p	-	

Question	Scheme	Marks
86(a)	$\sqrt{32} = 4\sqrt{2}$ or $\sqrt{18} = 3\sqrt{2}$	B1
	$\left(\sqrt{32} + \sqrt{18} =\right) \underline{7\sqrt{2}}$	B1 (2)
(b)	$\times \frac{3-\sqrt{2}}{3-\sqrt{2}}$ or $\times \frac{-3+\sqrt{2}}{-3+\sqrt{2}}$ seen	M1
	$\left[\frac{\sqrt{32} + \sqrt{18}}{3 + \sqrt{2}} \times \frac{3 - \sqrt{2}}{3 - \sqrt{2}}\right] \frac{a\sqrt{2}(3 - \sqrt{2})}{[9 - 2]} \rightarrow \frac{3a\sqrt{2} - 2a}{[9 - 2]} \text{ (or better)}$	dM1
	$=$ $3\sqrt{2},-2$	A1, A1 (4)
ALT	$(b\sqrt{2}+c)(3+\sqrt{2}) = 7\sqrt{2}$ leading to: $3b+c=7$, $3c+2b=0$ e.g. $3(7-3b)+2b=0$ (o.e.)	M1 dM1
		6 marks
(a)	Notes 1 st B1 for either surd simplified	
(u)	2^{nd} B1 for $7\sqrt{2}$ or accept $a = 7$. Answer only scores B1B1	
	NB Common error is $\sqrt{32} + \sqrt{18} = \sqrt{50} = 5\sqrt{2}$ this scores B0B0 but can use their get M1M1	r "5" in (b) to
(b)	1 st M1 for an attempt to multiply by $\frac{3-\sqrt{2}}{3-\sqrt{2}}$ (o.e.) Allow poor use of brackets	
	2 nd dM1 for using $a\sqrt{2}$ to correctly obtain a numerator of the form $p + q\sqrt{2}$ wh non-zero integers. Allow arithmetic slips e.g. $21\sqrt{2} - 28$ or $3\sqrt{2} \times \sqrt{2}$ Follow through their $a = 7$ or a new value found in (b). Ignore denomination Allow use of letter a . Dependent on 1 st M1	$\bar{2} = 3$
	So $3\sqrt{32} - \sqrt{64} + 3\sqrt{8} - \sqrt{36}$ is M0 until they reduce $p + q\sqrt{2}$	
	1 st A1 for $3\sqrt{2}$ or accept $b = 3$ from correct working 2 nd A1 for -2 or accept $c = -2$ from correct working	
ALT	2 nd A1 for -2 or accept $c = -2$ from correct working Simultaneous Equations 1 st M1 for $(b\sqrt{2}+c)(3+\sqrt{2}) = 7\sqrt{2}$ and forming 2 simultaneous equations. Ft their $a = 7$ 2 nd dM1 for solving their simultaneous equations: reducing to a linear equation in one variable	

Question	Scheme	Marks
87. (a)	$5x > 20$ $\underline{x > 4}$	M1 A1 (2)
(b)	$x^{2} - 4x - 12 = 0$ (x+2)(x-6)[=0]	M1
	x = 6, -2 x < -2, $x > 6$	A1 M1, A1ft (4)
		6 marks
	Notes	
(a)	M1 for reducing to the form $px > q$ with one of p or q correct Using $px = q$ is M0 unless > appears later on A1 $x > 4$ only	
(b)	1^{st} M1for multiplying out and attempting to solve a 3TQ with at least $\pm 4x$ or See General Principles for definitions of "attempt to solve" 1^{st} A1for 6 and -2 seen. Allow $x > 6$, $x > -2$ etc to score this mark. Values may be on a sketch. 2^{nd} M1for choosing the "outside region" for their critical values. Do not awa	
	diagram or table – they must have chosen their "outside" regions	
	2 nd A1ft follow through their 2 distinct critical values. Allow "," "or" or a "bla answers. Use of "and" is M1A0 i.e. loses the final A1	ank" between
	-2 > x > 6 scores M1A0 i.e. loses the final A1 but apply ISW if $x > 6$, $x <$	-2 has been seen
	Accept $(-\infty, -2) \cup (6, \infty)$ (o.e)	
	Use of \leq instead of $<$ (or \geq instead of $>$) loses the final A mark in (b) u lost in (a) for $x \geq 4$ in which case allow it here.	inless A mark was

Question	Scheme	Marks	
88. (a)	$x(5-x) = \frac{1}{2}(5x+4)$ (o.e.)	M1	
	$2x^2 - 5x + 4(=0)$ (o.e.) e.g. $x^2 - 2.5x + 2(=0)$	A1	
	$b^2 - 4ac = (-5)^2 - 4 \times 2 \times 4$	M1	
	= 25 - 32 < 0, so no roots <u>or</u> no intersections <u>or</u> no solutions	A1 (4)	
(b)	Curve: \cap shape and passing through (0, 0) \cap shape and passing through (5, 0)	B1 B1	
	Line : +ve gradient and no intersections with <i>C</i> . If no <i>C</i> drawn score B0	B1	
	Line passing through $(0, 2)$ and $(-0.8, 0)$ marked on axes	B1 (4)	
		8 marks	
(a)	Notes 1 st M1 for forming a suitable equation in one variable		
	1 st A1 for a correct 3TQ equation. Allow missing "= 0" Accept $2x^2 + 4 = 5x$ etc 2 nd M1 for an attempt to evaluate discriminant for their 3TQ. Allow for $b^2 > 4ac$ or $b^2 < 4ac$ Allow if it is part of a solution using the formula e.g. $(x =)\frac{5\pm\sqrt{25-32}}{4}$ Correct formula quoted and some correct substitution or a correct expression False factorising is M0 2 nd A1 for correct evaluation of discriminant for a correct 3TQ e.g. $25 - 32$ (or better) and a		
ALT	comment indicating no roots or equivalent. For <u>contradictory</u> statement 2 nd M1 for attempt at completing the square $a\left[\left(x \pm \frac{b}{2a}\right)^2 - q\right] + c$	nts score A0	
	$2^{\text{nd}} \text{A1} \text{for} \left(x - \frac{5}{4}\right)^2 = -\frac{7}{16}$ and a suitable comment		
(b)	Coordinates must be seen <u>on</u> the diagram. Do not award if only in the body of the script. "Passing through" means <u>not</u> stopping at and <u>not</u> touching. Allow $(0, x)$ and $(y, 0)$ if marked on the correct places on the correct axis.		
	 1st B1 for correct shape and passing through origin. Can be assumed if it pass intersection of axes 		
	2^{nd} B1 for correct shape and 5 marked on x-axis		
SC	for \cap shape stopping at <u>both</u> (5, 0) <u>and</u> (0, 0) award B0B1 3 rd B1 for a line of positive gradient that (if extended) has no intersection with extended). Must have both graphs on same axes for this mark. If no <i>C</i> g		
	4^{th} B1 for straight line passing through -0.8 on <i>x</i> -axis and 2 on <i>y</i> -axis Accept exact fraction equivalents to -0.8 or 2(e.g. $\frac{4}{2}$)	,	

Question	Scheme	Marks	
89. (a)	$[y = x^3 + 2x^2]$ so $\frac{dy}{dx} = 3x^2 + 4x$	M1A1 (2)	
(b)	Shape \bigwedge Touching <i>x</i> -axis at origin Through and not touching or stopping at -2 on <i>x</i> –axis. Ignore extra intersections.	B1 B1 B1 (3)	
(c)	At $x = -2$: $\frac{dy}{dx} = 3(-2)^2 + 4(-2) = 4$ At $x = 0$: $\frac{dy}{dx} = 0$ (Both values correct)	M1	
	At $x = 0$: $\frac{dy}{dx} = 0$ (Both values correct)	A1 (2)	
(d)	Horizontal translation (touches x-axis still) k-2 and k marked on positive x-axis $k^2(2-k)$ (o.e) marked on negative y-axis	M1 B1 B1 (3)	
		10 marks	
(a)	NotesM1for attempt to multiply out and then some attempt to differentiate $x^n \rightarrow x$	~ ⁿ⁻¹	
Prod Rule	Do not award for $2x(x+2)$ or $2x(1+2)$ etc Award M1 for a correct attempt: 2 products with a + and at least one prod A1 for both terms correct. (If + <i>c</i> or extra term is included score A0)		
(b)	1^{st} B1 for correct shape (anywhere). Must have 2 clear turning points. 2^{nd} B1 for graph touching at origin (not crossing or ending) 3^{rd} B1 for graph passing through (not stopping or touching at) -2 on x axis and -2 marked on axis		
SC	B0B0B1 for $y = x^3$ or cubic with straight line between $(-2, 0)$ and $(0, 0)$		
(c)	M1 for attempt at $y'(0)$ or $y'(-2)$. Follow through their 0 or -2 and their $y'(x)$ or for a <u>correct</u> statement of zero gradient for an identified point on their curve that touches <i>x</i> - axis A1 for both correct answers		
(d)	For the M1 in part (d) ignore any coordinates marked – just mark the shape. M1 for a horizontal translation of their (b). Should still touch x – axis if it did in (b) Or for a graph of correct shape with min. and intersection in correct order on +ve x-axis 1 st B1 for k and k – 2 on the positive x-axis. Curve must pass through k – 2 and touch at k 2 nd B1 for a correct intercept on negative y-axis in terms of k. Allow $(0, 2k^2 - k^3)$ (o.e.) seen in script if curve passes through –ve y-axis		



Question Number		Scheme	Marks	
90.				
	Either	Or		
	$y^2 = 4 - 4x + x^2$	$x^{2} = 4 - 4y + y^{2}$	M1	
	$4(4-4x+x^{2}) - x^{2} = 11$ or $4(2-x)^{2} - x^{2} = 11$	$4y^{2} - (4 - 4y + y^{2}) = 11$	M1	
	or $4(2-x) - x = 11$	or $4y - (2 - y) = 11$		
	$3x^2 - 16x + 5 = 0$	$3y^2 + 4y - 15 = 0$ Correct 3 terms	A1	
	(3x-1)(x-5) = 0, x =	$(3y-5)(y+3) = 0, y = \dots$	M1	
	$x = \frac{1}{3} x = 5$	$y = \frac{5}{3} y = -3$	A1	
	$y = \frac{5}{3} y = -3$	$x = \frac{1}{3} x = 5$	M1 A1	
			(7) 7	
	Notes 1 st M: Squaring to give 3 or 4 terms (need a middle term) 2 nd M: Substitute to give quadratic in one variable (may have just two terms) 3 rd M: Attempt to solve a 3 term quadratic.			
		least one y value (or x value). (The second variable	e)	
	This will be by substitution	on or by starting again.		
	If y solutions are given as x values, or vice-versa, penalise accuracy, so that it is possible to score M1 M1A1 M1 A0 M1 A0.			
	"Non-algebraic" solutions:			
	No working, and only one	e correct solution pair found (e.g. $x = 5$, $y = -3$): M0 M0 A0 M1 A0 M1	40	
	No working, and both cor	rect solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M1	-	
	Both correct solution pair review)	s found, and demonstrated: Full marks are possibl		

Question Number	Scheme	Marks
91.		
91. (a)	Discriminant: $b^2 - 4ac = (k+3)^2 - 4k$ or equivalent	M1 A1
(b)	$(k+3)^{2} - 4k = k^{2} + 2k + 9 = (k+1)^{2} + 8$	(2) M1 A1
(c)	For real roots, $b^2 - 4ac \ge 0$ or $b^2 - 4ac > 0$ or $(k+1)^2 + 8 > 0$ $(k+1)^2 \ge 0$ for all k, so $b^2 - 4ac > 0$, so roots are real for all k (or equiv.)	(2) M1 A1 cso (2)
	Notes (a) M1: attempt to find discriminant – substitution is required If formula $b^2 - 4ac$ is seen at least 2 of <i>a</i> , <i>b</i> and <i>c</i> must be correct Use of $b^2 + 4ac$ is not seen all 3 of <i>a</i> , <i>b</i> and <i>c</i> must be correct Use of $b^2 + 4ac$ is M0 A1: correct unsimplified (b) M1: Attempt at completion of square (see earlier notes) A1: both correct (no ft for this mark) (c) M1: States condition as on scheme or attempts to explain that their $(k+1)^2 + 8$ is greater than 0 A1: The final mark (A1cso) requires $(k+1)^2 \ge 0$ and conclusion. W will allow $(k+1)^2 > 0$ (or word positive) also allow $b^2 - 4ac \ge 0$	Ve

Question Number	Scheme	Marks
9 3.	$\frac{5-2\sqrt{3}}{\sqrt{3}-1} \times \frac{\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)}$	M1
	$=\frac{\dots}{2}$ denominator of 2	A1
	Numerator = $5\sqrt{3} + 5 - 2\sqrt{3}\sqrt{3} - 2\sqrt{3}$	M1
	So $\frac{5-2\sqrt{3}}{\sqrt{3}-1} = -\frac{1}{2} + \frac{3}{2}\sqrt{3}$	A1
		4
	Alternative: $(p+q\sqrt{3})(\sqrt{3}-1) = 5 - 2\sqrt{3}$, and form simultaneous	M1
	equations in p and q -p + 3q = 5 and p $-q = -2$	A1
	Solve simultaneous equations to give $p = -\frac{1}{2}$ and $q = \frac{3}{2}$.	M1 A1
	Notes	
	1^{st} M1for multiplying numerator and denominator by same correct expression 1^{st} A1for a correct denominator as a single number (NB depends on M mark) 2^{nd} M1for an attempt to multiply the numerator by $(\sqrt{3} \pm 1)$ and get 4 terms with at least 2	
	correct.	
	2^{nd} A1 for the answer as written or $p = -\frac{1}{2}$ and $q = \frac{3}{2}$. Allow -0.5 and 1.5.	(Apply isw if
	correct answer seen, then slip writing $p =, q =$)	
	Answer only (very unlikely) is full marks if correct – no part marks	

Question Number	Scheme		
94. (a)	Correct shape with a single crossing of each axis	B1	
	y=1 y=1 $y=1$ labelled or stated	B1	
	x=3 labelled or stated	B1 (3)
(b)	Horizontal translation so crosses the x-axis at (1, 0) New equation is $(y =) \frac{x \pm 1}{(x \pm 1) - 2}$ When $x = 0$ $y = = \frac{1}{3}$	B1 M1 M1 A1	
		(4) 7
	Notes		'
(b)	B1 for point (1,0) identified - this may be marked on the sketch as 1 on x axis. Accept $x = 1$. 1 st M1 for attempt at new equation and either numerator or denominator correct 2 nd M1 for setting $x = 0$ in their new equation and solving as far as $y =$ A1 for $\frac{1}{3}$ or exact equivalent. Must see $y = \frac{1}{3}$ or $(0, \frac{1}{3})$ or point marked on y-axis. Alternative $f(-1) = \frac{-1}{-1-2} = \frac{1}{3}$ scores M1M1A0 unless $x = 0$ is seen or they write the point as $(0, \frac{1}{3})$ or give $y = 1/3$ Answers only: $x = 1$, $y = 1/3$ is full marks as is (1,0) (0, 1/3) Just 1 and 1/3 is B0 M1 M1 A0		
	 Special case : Translates 1 unit to left (a) B0, B1, B0 (b) Mark (b) as before May score B0 M1 M1 A0 so 3/7 or may ignore sketch and start again scoring full marks for this part. 		

Questior Number	Scheme	Marks
95 . (a	$b^{2} - 4ac = (k-3)^{2} - 4(3-2k)$ $k^{2} - 6k + 9 - 4(3-2k) > 0 \text{or} (k-3)^{2} - 12 + 8k > 0 \text{or better}$ $\underline{k^{2} + 2k - 3 > 0} \qquad *$	M1 M1 A1cso (3)
(b	(k+3)(k-1)[=0] Critical values are $k = 1 or -3(choosing "outside" region) \underline{k > 1 \text{ or } k < -3}$	M1 A1 M1 A1 cao (4) 7
	Notes	
(a		
(b	 1st M1 for an attempt to factorize or solve leading to k = (2 values) 2nd M1 for a method that leads them to choose the "outside" region. Can follow through their critical values. 2nd A1 Allow "," instead of "or" ≥ loses the final A1 1 < k < -3 scores M1A0 unless a correct version is seen before or after this one. 	

Question Number	Scheme	Marks
96. (a)	(i) correct shape (-ve cubic) Crossing at (-2, 0) Through the origin Crossing at (3,0) (ii) 2 branches in correct quadrants not crossing axes One intersection with cubic on each branch	B1 B1 B1 B1 B1 B1 (6)
(b)	"2" solutions Since only "2" intersections	B1ft dB1ft (2)
	Notes	8
(b)	B1ft for a value that is compatible with their sketch dB1ft This mark is dependent on the value being compatible with their sketch. For a comment relating the number of solutions to the number of intersections. [Only allow 0, 2 or 4]	

Question Number	Scheme	Marks
97.	$\left(\sqrt{75} - \sqrt{27}\right) = 5\sqrt{3} - 3\sqrt{3}$	M1
	$\left(\sqrt{75} - \sqrt{27}\right) = 5\sqrt{3} - 3\sqrt{3}$ $= 2\sqrt{3}$	A1 2
	Notes	
	M1 for $5\sqrt{3}$ from $\sqrt{75}$ or $3\sqrt{3}$ from $\sqrt{27}$ seen anywhere	
	A1 for $2\sqrt{3}$; allow $\sqrt{12}$ or $k = 2, x = 3$ allow $k = 1, x = 12$	
	Some Common errors $\sqrt{75} - \sqrt{27} = \sqrt{48}$ leading to $4\sqrt{3}$ is M0A0	
	$25\sqrt{3} - 9\sqrt{3} = 16\sqrt{3}$ is M0A0	

Question Number		Scheme	Mark	<s< th=""></s<>
98 .				
(a)	$3x - 6 < 8 - 2x \rightarrow 5x < 14$	(Accept $5x - 14 < 0$ (o.e.))	M1	
	$x < 2.8$ or $\frac{14}{5}$ or $2\frac{4}{5}$	$(condone \leq)$	A1	(2)
(b)	Critical values are $x = \frac{7}{2}$ and -1		B1	
	Choosing "inside" $-1 < x < \frac{7}{2}$		M1 A1	(3)
(c)	-1 < x < 2.8		B1ft	(1)
	Accept any exac	ct equivalents to -1, 2.8, 3.5		6
	· · · · ·	Notes	I	
(a)	M1 for attempt to rearrange to $kx < m$ Allow $5x = 14$ or even $5x > 14$	(o.e.) Either $k = 5$ or $m = 14$ should be corrected by the second sec	rect	
(b)	 B1 for both correct critical values. (May be implied by a correct inequality) M1 ft their values and choose the "inside" region A1 for fully correct inequality (Must be in part (b): do not give marks if only seen in (c)) Condone seeing x < −1 in working provided −1 < x is in the final answer. e.g. x > −1, x < ⁷/₂ or x > −1 "or" x < ⁷/₂ or x > −1 "blank space" x < ⁷/₂ score M1A0 			
	BUT allow $x > -1$ and $x < \frac{7}{2}$ to score M1A1 (the "and" must be seen)			
	Also $\left(-1, \frac{7}{2}\right)$ will score M1A1			
	NB $x < -1, x < \frac{7}{2}$ is of course M0A0 Allow 3.5 instead of $\frac{7}{2}$	and a number line even with "open" ends is	5 M0A0	
(c)	and part (b) provided both answ Allow use of "and" between ine	previous answers) <u>or</u> ft their answers to par vers were regions and not single values. equalities as in part (b) able description in words or the symbol \emptyset .	t (a)	
		h (b) they simply leave their answer as $x < B1$ ft as this is a correct follow through of the		
	Penalise use of \leq only on the A1 in p	art (b) [i.e. condone in part (a)]		

Question Number	Scheme	Marks	
99. (a)	$(x+3)^2 + 2$ or $p = 3$ or $\frac{6}{2}$ q = 2	B1 B1	(2)
(b)	U shape with min in 2^{nd} quad (Must be above x-axis and not on y=axis) U shape crossing y-axis at (0, 11) only	B1 B1	(2)
(c)	$b^{2} - 4ac = 6^{2} - 4 \times 11$ $= -\frac{8}{-8}$ (Condone (11,0) marked on y-axis)	M1 A1	(2) (2) 6
	Notes		
(a)	Ignore an "= 0" so $(x+3)^2 + 2 = 0$ can score both marks		
(b)	 The U shape can be interpreted fairly generously. Penalise an obvious V on 1st B1 or The U needn't have equal "arms" as long as there is a clear min that "holds water" 1st B1 for U shape with minimum in 2nd quad. Curve need not cross the <i>y</i>-axis but minimum should NOT touch <i>x</i>-axis and should be left of (not on) <i>y</i>-axis 2nd B1 for U shaped curve crossing at (0, 11). Just 11 marked on <i>y</i>-axis is fine. The point must be marked on the sketch (do not allow from a table of values) Condone stopping at (0, 11) 	ıly.	
(c)	M1for some correct substitution into $b^2 - 4ac$. This may be as part of the quadratic formula but must be in part (c) and must be only numbers (no x terms present). Substitution into $b^2 < 4ac$ or $b^2 = 4ac$ or $b^2 > 4ac$ is M0A1for $- 8$ only. If they write $- 8 < 0$ treat the < 0 as ISW and award A1 If they write $- 8 \ge 0$ then score A0 A substitution in the quadratic formula leading to $- 8$ inside the square root is A0. So substituting into $b^2 - 4ac < 0$ leading to $- 8 < 0$ can score M1A1.		
	If they write $-8 \ge 0$ then score A0 A substitution in the quadratic formula leading to -8 inside the square root is A	A0.	

Question Number	Scheme	Marks	
100 .			
	$(-5, 3)$ Horizontal translation of ± 3	M1	
(a)	(-5, 3) marked on sketch or in text	B1	
	(0, -5) and min intentionally on y-axis Condone $(-5, 0)$ if correctly placed on negative y-axis	A1 (3)	
	(-2, 6) Correct shape and intentionally through $(0,0)$ between the max and min	B1	
(b)	(-2, 6) marked on graph or in text	B1	
	(3, -10) (3, -10) marked on graph or in text	B1 (3)	
(c)	(a =) 5	B1 (1)	
	Notes		
	Turning points (not on axes) should have both co-ordinates given in form(x , y). Do not accept points marked on axes e.g. -5 on x -axis and 3 on y -axis is not sufficient. For repeated offenders apply this penalty once only at first offence and condone elsewhere. In (a) and (b) no graphs means no marks.		
	In (a) and (b) the ends of the graphs do not need to cross the axes provided max and min are clear		
(a)	 M1 for a horizontal translation of ±3 so accept i.e max in 1st quad <u>and</u> coordinates of (1, 3) <u>or</u> (6, -5) seen. [Horizontal translation to the left should have a min <u>on</u> the y-axis] If curve passes through (0,0) then M0 (and A0) but they could score the B1 mark. A1 for minimum clearly on negative y-axis and at least -5 marked on y-axis. Allow this mark if the minimum is very close and the point (0, -5) clearly indicated 		
(b)	1 st B1 Ignore coordinates for this mark Coordinates or points on sketch override coordinates given in the text. Condone (y, x) confusion for points on axes only. So $(-5,0)$ for $(0, -5)$ is OK if the point is marked correctly but $(3,10)$ is B0 even if in 4 th quadrant.		
(c)	This may be at the bottom of a page or in the questionmake sure you scroll up and	d down!	

Question Number	Scheme	Marks
101. (a)	(i) \cap shape (anywhere on diagram)	B1
	Passing through or stopping at $(0, 0)$ and $(4,0)$ only(Needn't be \cap shape)	B1
	(ii) correct shape (-ve cubic) with a max and min drawn anywhere Minimum or maximum at (0,0) Passes through or stops at (7,0) but <u>NOT</u>	B1 B1 B1 (5)
	 touching. (7, 0) should be to right of (4,0) or B0 Condone (0,4) or (0, 7) marked correctly on x-axis. Don't penalise poor overlap near ori Points must be marked on the sketchnot in the text 	gin.
(b)	$x(4-x) = x^{2}(7-x) (0=)x[7x-x^{2}-(4-x)]$	M1
	$(0=)x[7x-x^2-(4-x)]$ (o.e.)	B1ft
	$0 = x\left(x^2 - 8x + 4\right) *$	A1 cso (3)
	$(0 = x^2 - 8x + 4 \Rightarrow)x = \frac{8 \pm \sqrt{64 - 16}}{2}$ or $(x \pm 4)^2 - 4^2 + 4(=0)$ $(x \pm 4)^2 = 12$	M1
(c)	(x-4) = 12	A1
	$=\frac{8\pm 4\sqrt{3}}{2}$ or $(x-4)=\pm 2\sqrt{3}$	B1
	$x = 4 \pm 2\sqrt{3}$	A1
	From sketch A is $x = 4 - 2\sqrt{3}$	M1
	So $y = (4 - 2\sqrt{3})(4 - [4 - 2\sqrt{3}])$ (dependent on 1 st M1)	M1
	$=-12+8\sqrt{3}$	A1 (7) 15
	Notes	15
(b)	M1 for forming a suitable equation B1 for a common factor of x taken out legitimately. Can treat this as an M mark. Can cubic = 0 found from an attempt at solving their equations e.g. $x^3 - 8x^2 - 4x = x$ A1cso no incorrect working seen. The "= 0" is required but condone missing from some working. Cancelling the x scores B0A0.	(
(c)	1 st M1 for some use of the correct formula or attempt to complete the square 1 st A1 for a fully correct expression: condone + instead of \pm or for $(x-4)^2 = 12$ B1 for simplifying $\sqrt{48} = 4\sqrt{3}$ or $\sqrt{12} = 2\sqrt{3}$. Can be scored independently of this 2 nd A1 for correct solution of the form $p + q\sqrt{3}$: can be \pm or + or – 2 nd M1 for selecting their answer in the interval (0,4). If they have no value in (0,4) scor 3 rd M1 for attempting $y = \dots$ using their x in correct equation. An expression needed for M	re M0

Question number	Scheme	Marks
102.	(a) $(7 + \sqrt{5})(3 - \sqrt{5}) = 21 - 5 + 3\sqrt{5} - 7\sqrt{5}$ Expand to get 3 or 4 terms	M1
	= 16, $-4\sqrt{5}$ (1 st A for 16, 2^{nd} A for $-4\sqrt{5}$) (i.s.w. if necessary, e.g. $16 - 4\sqrt{5} \rightarrow 4 - \sqrt{5}$)	A1, A1 (3)
	(b) $\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$ (This is sufficient for the M mark)	M1
	Correct denominator without surds, i.e. $9-5$ or 4 $4-\sqrt{5}$ or $4-1\sqrt{5}$	A1 A1 (3)
	(a) M1: Allowed for an attempt giving 3 or 4 terms, with at least 2 correct (even if unsimplified). e.g. $21 - \sqrt{5^2} + \sqrt{15}$ scores M1. Answer only: $16 - 4\sqrt{5}$ scores full marks One term correct scores the M mark by implication, e.g. $26 - 4\sqrt{5}$ scores M1 A0 A1 (b) Answer only: $4 - \sqrt{5}$ scores full marks One term correct scores the M mark by implication, e.g. $4 + \sqrt{5}$ scores M1 A0 A0 $16 - \sqrt{5}$ scores M1 A0 A0 Ignore subsequent working, e.g. $4 - \sqrt{5}$ so $a = 4$, $b = 1$ Note that, as always, A marks are dependent upon the preceding M mark, so that, for example, $\frac{7 + \sqrt{5}}{3 + \sqrt{5}} \times \frac{3 + \sqrt{5}}{3 - \sqrt{5}} = \frac{\dots}{4}$ is M0 A0. <u>Alternative</u> $(a + b\sqrt{5})(3 + \sqrt{5}) = 7 + \sqrt{5}$, then form simultaneous equations in <i>a</i> and <i>b</i> . M1 Correct equations: $3a + 5b = 7$ and $3b + a = 1$ A1 a = 4 and $b = -1$ A1	

Question number	Scheme	Marks
103.	$y = 3x - 2$ $(3x - 2)^2 - x - 6x^2 (= 0)$	M1
	$9x^{2} - 12x + 4 - x - 6x^{2} = 0$ $3x^{2} - 13x + 4 = 0 \text{(or equiv., e.g. } 3x^{2} = 13x - 4\text{)}$	M1 A1cso
	$(3x-1)(x-4) = 0$ $x = \dots$ $x = \frac{1}{3}$ (or <u>exact</u> equivalent) $x = 4$	M1 A1
	y = -1 $y = 10$ (Solutions need not be "paired")	M1 A1
		[7]
	1 st M: Obtaining an equation in x only (or y only). Condone missing "= 0" Condone sign slips, e.g. $(3x+2)^2 - x - 6x^2 = 0$, but <u>not</u> other algebraic mistakes (such as squaring individual terms see bottom of page).	
	2^{nd} M: Multiplying out their $(3x-2)^2$, which must lead to a 3 term quadratic,	
	i.e. $ax^2 + bx + c$, where $a \neq 0$, $b \neq 0$, $c \neq 0$, and collecting terms.	
	 3rd M: Solving a 3-term quadratic (see general principles at end of scheme). 2nd A: Both values. 4th M: Using an <i>x</i> value, found algebraically, to attempt at least one <i>y</i> value (or using a <i>y</i> value, found algebraically, to attempt at least one <i>x</i> value) allow b.o.d. for this mark in cases where the value is wrong but working is not shown. 3rd A: Both values. 	
	If y solutions are given as x values, or vice-versa, penalise at the end, so that it is possible to score M1 M1A1 M1 A1 M0 A0.	
	"Non-algebraic" solutions:No working, and only one correct solution pair found (e.g. $x = 4$, $y = 10$):M0 M0 A0 M0 A0 M1 A0No working, and both correct solution pairs found, but not demonstrated:	
	M0 M0 A0 M1 A1 M1 A1 Both correct solution pairs found, and demonstrated: Full marks	
	<u>Alternative</u> :	
	$x = \frac{y+2}{3} \qquad y^2 - \frac{y+2}{3} - 6\left(\frac{y+2}{3}\right)^2 = 0 \qquad M1$	
	$y^{2} - \frac{y+2}{3} - 6\left(\frac{y^{2}+4y+4}{9}\right) = 0$ $y^{2} - 9y - 10 = 0$ M1 A1	
	(y+1)(y-10) = 0 $y =$ $y = -1$ $y = 10$ M1 A1	
	$x = \frac{1}{3}$ $x = 4$ M1 A1	
	Squaring each term in the first equation,	
	e.g. $y^2 - 9x^2 + 4 = 0$, and using this to obtain an equation in x only could score at most 2 marks: M0 M0 A0 M1 A0 M1 A0.	
L		1

Question number	Scheme	Marks
104.	(a) (b) (c) $(-3,5)$	
	(a) $(-2, 7)$, $y = 3$ (Marks are dependent upon a sketch being attempted) See conditions below.	B1, B1 (2)
	(b) $(-2, 20)$, $y = 4$ (Marks are dependent upon a sketch being attempted) See conditions below.	B1, B1 (2)
	(c) Sketch: Horizontal translation (either way) (There must be evidence that $y = 5$ at the max and that the asymptote is still $y = 1$) (-3, 5), $y = 1$	B1 B1, B1 (3) [7]
	Parts (a) and (b): (i) If <u>only one</u> of the B marks is scored, there is <u>no penalty</u> for a wrong sketch. (ii) If both the maximum and the equation of the asymptote are correct, the sketch must be "correct" to score B1 B1. If the sketch is "wrong", award B1 B0. The (generous) conditions for a "correct" sketch are that the maximum must be in the 2 nd quadrant and that the curve must not cross the positive <i>x</i> -axis ignore other "errors" such as "curve appearing to cross its asymptote" and "curve appearing to have a minimum in the 1 st quadrant". <u>Special case</u> : (b) Stretch $\frac{1}{4}$ instead of 4: Correct shape, with $\left(-2, \frac{5}{4}\right)$, $y = \frac{1}{4}$: B1 B0. <u>Coordinates of maximum</u> : If the coordinates are the wrong way round (e.g. (7, -2) in part (a)), or the coordinates are just shown as values on the <i>x</i> and <i>y</i> axes, penalise <u>only once in</u> <u>the whole question</u> , at first occurrence.	
	<u>Asymptote marks</u> : If the <u>equation</u> of the asymptote is not given, e.g. in part (a), 3 is marked on the y-axis but $y = 3$ is not seen, penalise <u>only</u> <u>once in the whole question</u> , at first occurrence. <u>Ignore</u> extra asymptotes stated (such as $x = 0$).	

Question number	Scheme	Marks
105.	(a) $x(x^2 - 4)$ Factor x seen in a <u>correct</u> factorised form of the expression.	B1
	= x(x-2)(x+2) M: Attempt to factorise quadratic (general principles).	M1 A1
	Accept $(x - 0)$ or $(x + 0)$ instead of x at any stage.	(3)
	Factorisation must be seen in part (a) to score marks.	
	(b)	
	Shape (2 turning points required)	B1
	Through (or touching) origin	B1
	Crossing x-axis or "stopping at x-axis" $(not a turning point) at (-2, 0) and (2, 0).$	B1 (3)
	Allow -2 and 2 on x-axis. Also allow $(0, -2)$ and $(0, 2)$ if marked on x-axis. Ignore extra intersections with x-axis.	
	(c) <u>Either</u> $y = 3$ (at $x = -1$) or $y = 15$ (at $x = 3$) Allow if seen elsewhere.	B1
	Gradient = $\frac{"15-3"}{3-(-1)}$ (= 3) Attempt correct grad. formula with their y values.	M1
	For gradient M mark, if correct formula not seen, allow one slip, e.g. $\frac{"15-3"}{3-1}$	
	y - "15" = m(x-3) or $y - "3" = m(x - (-1))$, with any value for <i>m</i> .	M1
	y-15=3(x-3) or the <u>correct</u> equation in <u>any</u> form,	A1
	e.g. $y-3=\frac{15-3}{3-(-1)}(x-(-1)), \frac{y-3}{x+1}=\frac{15-3}{3+1}$	
	$3 - (-1)^{(x - (-1))}, x + 1 - 3 + 1$	A1 (5)
	y = 3x + 6	
	(d) $AB = \sqrt{("15 - 3")^2 + (3 - (-1))^2}$ (With their <u>non-zero</u> y values)	M1
	Square root is required.	
	$=\sqrt{160} \left(=\sqrt{16}\sqrt{10}\right) = 4\sqrt{10} \text{(Ignore \pm if seen)} (\sqrt{16}\sqrt{10} \text{ need not be seen)}.$	A1 (2) [13]
	(a) $x^3 - 4x \rightarrow x(x^2 - 4) \rightarrow (x - 2)(x + 2)$ scores B1 M1 A0.	
	$x^3 - 4x \rightarrow x^2 - 4 \rightarrow (x - 2)(x + 2)$ scores B0 M1 A0 (dividing by x).	
	$x^3 - 4x \rightarrow x(x^2 - 4x) \rightarrow x^2(x - 4)$ scores B0 M1 A0.	
	$x^3 - 4x \rightarrow x(x^2 - 4) \rightarrow x(x - 2)^2$ scores B1 M1 A0	
	Special cases: $x^3 - 4x \rightarrow (x - 2)(x^2 + 2x)$ scores B0 M1 A0.	
	$x^3 - 4x \rightarrow x(x-2)^2$ (with no intermediate step seen) scores B0 M1 A0	
l	(b) The 2 nd and 3 rd B marks are not dependent upon the 1 st B mark, but <u>are</u> dependent upon a sketch having been attempted.	
	(c) 1 st M: May be implicit in the equation of the line, e.g. $\frac{y-"15"}{3-"15"} = \frac{x-"3"}{-1-"3"}$	
	2^{nd} M: An equation of a line through (3, "15") or (-1, "3") <u>in any form</u> ,	
	with any gradient (except 0 or ∞). 2 nd M: Alternative is to use one of the points in $y = mx + c$ to <u>find a value</u>	
	for c, in which case $y = 3x + c$ leading to $c = 6$ is sufficient for both A marks.	
	1 st A1: <u>Correct</u> equation in <u>any</u> form.	

Question number	Scheme	Marks
106.	(a) $(x+2k)^2$ or $(x+\frac{4k}{2})^2$	M1
	$(x \pm F)^2 \pm G \pm 3 \pm 11k$ (where <i>F</i> and <i>G</i> are <u>any</u> functions of <i>k</i> , not involving <i>x</i>)	M1
	$(x+2k)^2 - 4k^2 + (3+11k)$ Accept unsimplified equivalents such as	A1 (1)
	$\left(x+\frac{4k}{2}\right)^2 - \left(\frac{4k}{2}\right)^2 + 3 + 11k$, and i.s.w. if necessary.	(3)
	(b) Accept part (b) solutions seen in part (a).	
	$"4k2 - 11k - 3" = 0 \qquad (4k + 1)(k - 3) = 0 \qquad k = \dots,$	M1
	[Or, 'starting again', $b^2 - 4ac = (4k)^2 - 4(3+11k)$ and proceed to $k =$]	
	$-\frac{1}{4}$ and 3 (Ignore any inequalities for the first 2 marks in (b)).	A1
	Using $b^2 - 4ac < 0$ for no real roots, i.e. $ 4k^2 - 11k - 3 < 0$, to establish inequalities involving their two critical values <i>m</i> and <i>n</i> (even if the inequalities are wrong, e.g. $k < m, k < n$).	M1
	$-\frac{1}{4} < k < 3$ (See conditions below) Follow through their critical values.	A1ft
	The final A1ft is still scored if the answer $m < k < n$ follows $k < m$, $k < n$. <u>Using x instead of k in the final answer</u> loses only the 2 nd A mark, (condone use of x in earlier working).	(4)
	(c) Shape (seen in (c))	B1
	Minimum in correct quadrant, <u>not</u> touching the <i>x</i> -axis, <u>not</u> on the <i>y</i> -axis, and there must be no other minimum or maximum. (0, 14) or 14 on <i>y</i> -axis. Allow (14, 0) marked on <i>y</i> -axis.	B1 B1 (3)
	n.b. Minimum is at $(-2,10)$, (but there is no mark for this).	[10]
	(b) 1 st M: Forming and solving a 3-term quadratic in k (usual rules see general principles at end of scheme). The quadratic must come from " $b^2 - 4ac$ ", or from the "q" in part (a).	
	Using wrong discriminant, e.g. " $b^2 + 4ac$ " will score <u>no marks</u> in part (b).	
	2 nd M: As defined in main scheme above. 2 nd A1ft: $m < k < n$, where $m < n$, for their critical values m and n. Other possible forms of the answer (in each case $m < n$): (i) $n > k > m$ (ii) $k > m$ and $k < n$	
	In this case the word "and" must be seen (implying intersection). (iii) $k \in (m, n)$ (iv) $\{k: k > m\} \cap \{k: k < n\}$	
	Not just a number line.	
	Not just $k > m$, $k < n$ (without the word "and").	
	(c) Final B1 is dependent upon a sketch having been attempted in part (c).	

Ques Num		Scheme	Marl	ks
107.	(a) (b)	$ (3\sqrt{7})^2 = 63 (8+\sqrt{5})(2-\sqrt{5}) = 16-5+2\sqrt{5}-8\sqrt{5} = 11, -6\sqrt{5} $	B1 M1 A1, A1	(1) (3) [4]
	(a) (b)	B1 for 63 only M1 for an attempt to expand <u>their</u> brackets with ≥ 3 terms correct. They may collect the $\sqrt{5}$ terms to get $16-5-6\sqrt{5}$ Allow $-\sqrt{5} \times \sqrt{5}$ or $-(\sqrt{5})^2$ or $-\sqrt{25}$ instead of the -5 These 4 values may appear in a list or table but they should have minus signs included		
		The next two marks should be awarded for the final answer but check that correct values follow from correct working. Do not use ISW rule $1^{\text{st}} \text{ A1} \text{for 11 from } 16-5 \text{or} -6\sqrt{5} \text{from } -8\sqrt{5}+2\sqrt{5}$ $2^{\text{nd}} \text{ A1} \text{for both 11 and } -6\sqrt{5}$. S.C - Double sign error in expansion For $16-5-2\sqrt{5}+8\sqrt{5}$ leading to $11 + \dots$ allow one mark		

Ques ⁻ Num		Scheme	Mark	S
108.		5x > 10, x > 2 [Condone $x > \frac{10}{2} = 2$ for M1A1]	M1, A1	(2)
	(b)	$(2x+3)(x-4) = 0$, 'Critical values' are $-\frac{3}{2}$ and 4	M1, A1	(2)
		$-\frac{3}{2} < x < 4$	M1 A1ft	
	(C)	2 < x < 4	B1ft	(4) (1) [7]
	(a)	M1 for attempt to collect like terms on each side leading to $ax > b$, or $ax < b$, or $ax = b$		
		Must have <i>a</i> or <i>b</i> correct so eg $3x > 4$ scores M0		
	(b)	1 st M1 for an attempt to factorize or solve to find critical values. Method must potentially give 2 critical values		
		1 st A1 for $-\frac{3}{2}$ and 4 seen. They may write $x < -\frac{3}{2}$, $x < 4$ and still get this A1		
		2^{nd} M1 for choosing the "inside region" for their critical values 2^{nd} A1ft follow through their 2 distinct critical values		
		Allow $x > -\frac{3}{2}$ with "or" "," " \cup " "" $x < 4$ to score M1A0 but "and" or " \cap " score		
		M1A1 $x \in (-\frac{3}{2}, 4)$ is M1A1 but $x \in [-\frac{3}{2}, 4]$ is M1A0. Score M0A0 for a number line or graph only		
	(C)	 B1ft Allow if a correct answer is seen or follow through their answer to (a) and their answer to (b) but their answers to (a) and (b) <u>must be regions</u>. Do not follow through single values. If their follow through answer is the empty set accept Ø or {} or {} or equivalent in words If (a) or (b) are not given then score this mark for cao 		
		 NB You may see x<4 (with anything or nothing in-between) x < -1.5 in (b) and empty set in (c) for B1ft Do not award marks for part (b) if only seen in part (c) 		
		Use of \leq instead of $<$ (or \geq instead of $>$) loses one accuracy mark only, at first occurrence.		

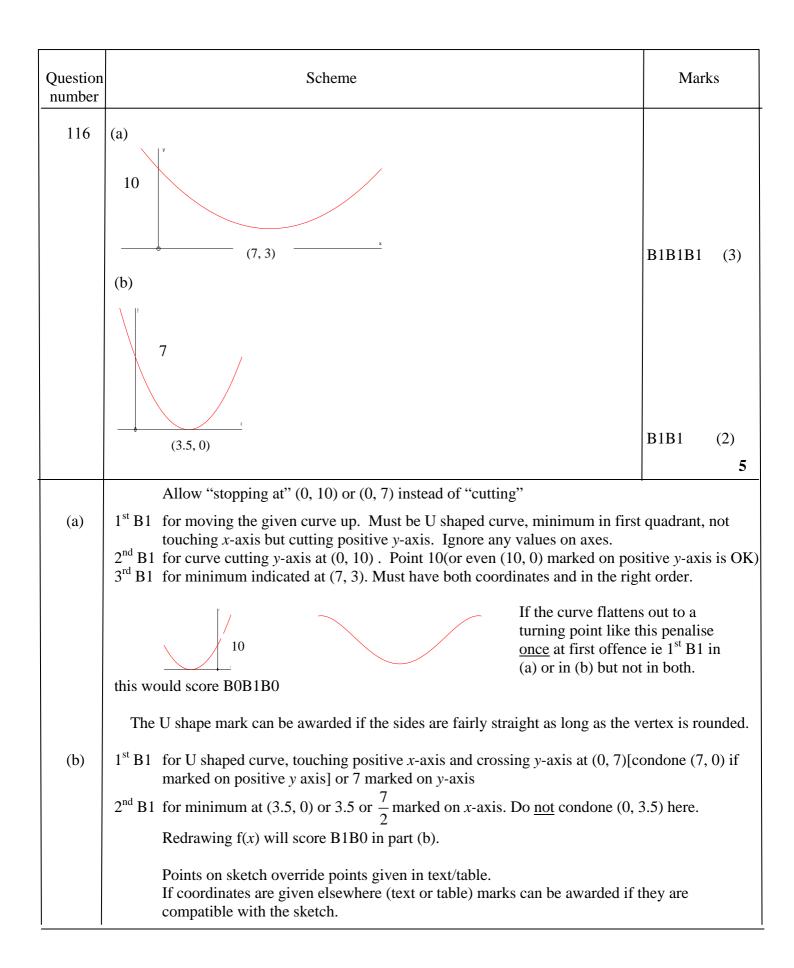
Question Number	Scheme	Marks
109.	$b^{2} - 4ac \text{ attempted, in terms of } p.$ $(3p)^{2} - 4p = 0 \qquad \text{o.e.}$ Attempt to solve for p e.g. $p(9p-4) = 0$ Must potentially lead to $p = k, k \neq 0$ $p = \frac{4}{9} \qquad (\text{Ignore } p = 0, \text{ if seen})$	M1 A1 M1 A1cso [4]
	1 st M1 for an attempt to substitute into $b^2 - 4ac$ or $b^2 = 4ac$ with <i>b</i> or <i>c</i> correct Condone <i>x</i> 's in one term only. This can be inside a square root as part of the quadratic formula for example. Use of inequalities can score the M marks only 1 st A1 for any correct equation: $(3p)^2 - 4 \times 1 \times p = 0$ or better 2 nd M1 for an attempt to factorize or solve their quadratic expression in <i>p</i> . Method must be sufficient to lead to their $p = \frac{4}{9}$. Accept factors or use of quadratic formula or $(p \pm \frac{2}{9})^2 = k^2$ (o.e. eg) $(3p \pm \frac{2}{3})^2 = k^2$ or equivalent work on their eqn. $9p^2 = 4p \Rightarrow \frac{9p^2}{N} = 4$ which would lead to $9p = 4$ is OK for this 2^{nd} M1 ALT Comparing coefficients M1 for $(x + \alpha)^2 = x^2 + \alpha^2 + 2\alpha x$ and A1 for a correct equation eg $3p = 2\sqrt{p}$ M1 for forming solving leading to $\sqrt{p} = \frac{2}{3}$ or better Use of quadratic/discriminant formula (or any formula). Rule for awarding M mark If the formula is quoted only award for a fully correct expression using their values.	

Question Number	Scheme	Mark	<s< th=""></s<>
1 1 0. (a) (b)	$x(x^{2}-6x+9)$ $= x(x-3)(x-3)$ Shape $from the transformation of the transformation of$	B1 M1 A1 B1 B1 B1 B1ft	(3)
(c)	2 5 Moved horizontally (either way) (2, 0) and (5, 0), or 2 and 5 on x-axis	M1 A1 (2)	[9]
(a)	B1 for correctly taking out a factor of x M1 for an attempt to factorize their 3TQ e.g. $(x + p)(x + q)$ where $ pq = 9$.		
S.C.	M1 for an attempt to factorize their 3TQ e.g. $(x + p)(x + q)$ where $ pq = 9$. So $(x-3)(x+3)$ will score M1 but A0 A1 for a fully correct factorized expression - accept $x(x-3)^2$ If they "solve" use ISW If the only correct linear factor is $(x - 3)$, perhaps from factor theorem, award B0M1A0 Do not award marks for factorising in part (b)		
(b)	For the graphs"Sharp points" will lose the 1 st B1 in (b) but otherwise be generous on shape Condone (0, 3) in (b) and (0, 2), (0,5) in (c) if the points are marked in the correct places. $2^{nd} B1$ for a curve that starts or terminates at (0, 0) score B0 $4^{th} B1ft$ for a curve that touches (not crossing or terminating) at (a, 0) where their $y = x(x-a)^2$		
(c)	 M1 for their graph moved horizontally (only) or a fully correct graph Condone a partial stretch if ignoring their values looks like a simple translation A1 for their graph translated 2 to the right and crossing or touching the axis at 2 and 5 only Allow a fully correct graph (as shown above) to score M1A1 whatever they have in (b) 		

Question Number	Scheme	Marks
111	$\sqrt{7}^2 + 2\sqrt{7} - 2\sqrt{7} - 2^2$, or 7 - 4 or an exact equivalent such as $\sqrt{49} - 2^2$ = 3	M1 A1
		[2]
	M1 for an expanded expression. At worst, there can be <u>one wrong term</u> and <u>one wrong sign</u> , or <u>two wrong signs</u> . e.g. $7 + 2\sqrt{7} - 2\sqrt{7} - 2$ is M1 (one wrong term -2) $7 + 2\sqrt{7} + 2\sqrt{7} + 4$ is M1 (two wrong signs $+ 2\sqrt{7}$ and $+4$) $7 + 2\sqrt{7} + 2\sqrt{7} + 2$ is M1 (one wrong term $+2$, one wrong sign $+ 2\sqrt{7}$) $\sqrt{7} + 2\sqrt{7} - 2\sqrt{7} + 4$ is M1 (one wrong term $\sqrt{7}$, one wrong sign $+4$) $\sqrt{7} + 2\sqrt{7} - 2\sqrt{7} - 2$ is M0 (two wrong terms $\sqrt{7}$ and -2) $7 + \sqrt{14} - \sqrt{14} - 4$ is M0 (two wrong terms $\sqrt{14}$ and $-\sqrt{14}$) If only 2 terms are given, they must be correct, i.e. $(7 - 4)$ or an equivalent unsimplified version to score M1. The terms can be seen <u>separately</u> for the M1. Correct answer with <u>no working</u> scores both marks.	

Question Number	S	Scheme	Mar	ks
112. (a)	-3 -3 (-1,-1)	Shape \bigwedge , touching the <i>x</i> -axis at its maximum. Through (0,0) & -3 marked on <i>x</i> -axis, or (-3,0) seen. Allow (0,-3) if marked on the <i>x</i> -axis. Marked in the correct place, but 3, is A0. Min at (-1,-1)	M1 A1 A1	(3)
(b)	-3, (-2,-1)	Correct shape \bigvee (top left - bottom right) Through -3 and max at (0, 0). Marked in the correct place, but 3, is B0. Min at (-2, -1)	B1 B1 B1	(3) [6]
(a)				
(b)	Shape: Be generous, even when line segments, but there must be 2^{nd} B1 for curve passing through (-3, 0 3^{rd} B1 for minimum at (-2, -1) and r If in correct quadrant but labell In each part the (0, 0) does <u>not</u> need to be	ed, e.g. (-2,1), this is B0.		
	(not, for example, $(-2, -1)$ marked in the	h part is dependent on a sketch being e minimum in approximately the correct place ne wrong quadrant). for the coordinates just marked on the axes		

Question Number	Scheme	Mark	<s< th=""></s<>
113. (a)	$b^2 - 4ac > 0 \Rightarrow 16 - 4k(5-k) > 0$ or equiv., e.g. $16 > 4k(5-k)$	M1A1	
	So $k^2 - 5k + 4 > 0$ (Allow any order of terms, e.g. $4 - 5k + k^2 > 0$) (*)	A1cso	(3)
(b)	<u>Critical Values</u> $(k-4)(k-1) = 0$ $k = \dots$ k = 1 or 4	M1 A1	
	$\kappa = 1$ of 4 Choosing "outside" region	M1	
	$\underline{k < 1}$ or $\underline{k > 4}$	A1	(4) [7]
	For this question, ignore (a) and (b) labels and award marks wherever correct work is se	een.	
(a)	M1 for attempting to use the discriminant of the initial equation (> 0 not required, but of <i>a</i> , <i>b</i> and <i>c</i> in the correct formula is required). If the formula $b^2 - 4ac$ is seen, at least 2 of <i>a</i> , <i>b</i> and <i>c</i> must be correct. If the formula $b^2 - 4ac$ is not seen, all 3 (<i>a</i> , <i>b</i> and <i>c</i>) must be correct. This mark can still be scored if substitution in $b^2 - 4ac$ is within the quadratic for This mark can also be scored by comparing b^2 and $4ac$ (with substitution). However, use of $b^2 + 4ac$ is M0. 1 st A1 for fully correct expression, possibly unsimplified, with > symbol. NB must ap the last line, even if this is simply in a statement such as $b^2 - 4ac > 0$ or 'discriminn Condone a bracketing slip, e.g. $16 - 4 \times k \times 5 - k$ if subsequent work is correct and condone a bracketing slip if otherwise correct and convincing. $\underline{Using} \sqrt{b^2 - 4ac} > 0$: Only available mark is the first M1 (unless recovery is seen).	ormula. opear befo ant positi	ore ive'.
(b)	 1st M1 for attempt to solve an appropriate 3TQ 1st A1 for both k = 1 and 4 (only the critical values are required, so accept, e.g. k > 1 a 2nd M1 for choosing the "outside" region. A diagram or table alone is not sufficient. Follow through their values of k. The set of values must be 'narrowed down' to score this M mark listing every k < 1, 1 < k < 4, k > 4 is M0. 2nd A1 for correct answer only, condone "k < 1, k > 4" and even "k < 1 and k > 4", but "1 > k > 4" is A0. ** Often the statement k > 1 and k > 4 is followed by the correct final answer. Allow fur Seeing 1 and 4 used as critical values gives the first M1 A1 by implication. In part (b), condone working with x's except for the final mark, where the set of values of values of k (i.e. 3 marks out of 4). Use of ≤ (or ≥) in the final answer loses the final mark. 	ything Ill marks.	



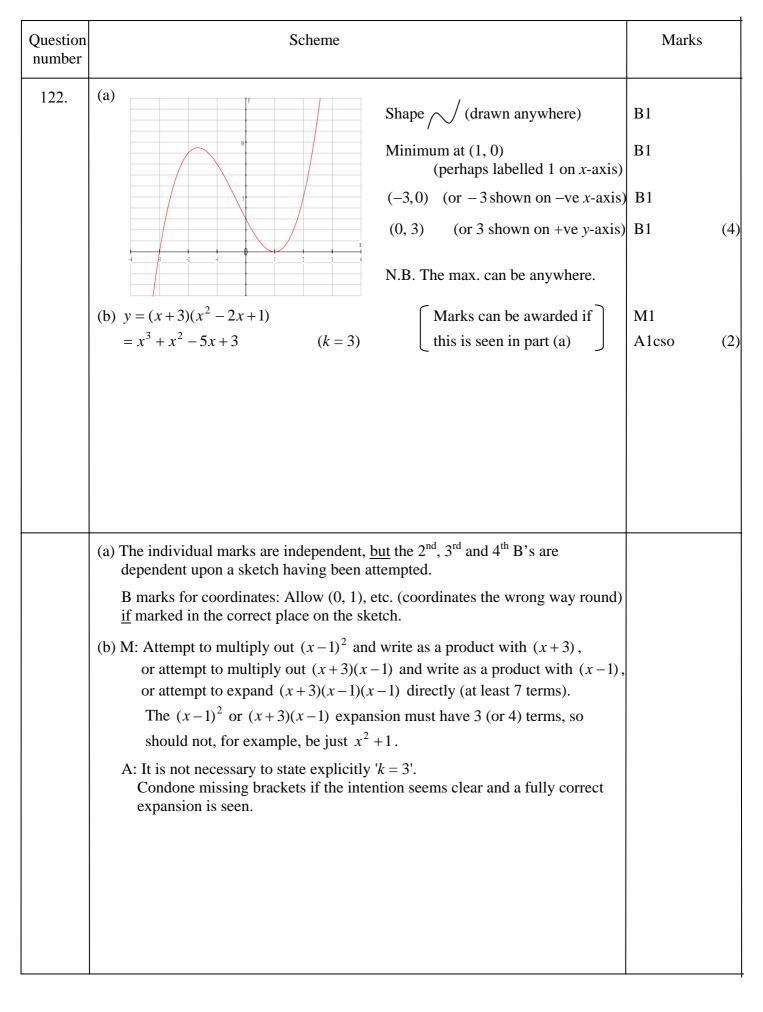
Question Number	Sch	neme	Mark	Ś	
114. (a) (b)	$(a=) (1+1)^2 (2-1) = 4$ (1,4) or	y = 4 is also acceptable	B1	(1)	
(0)	(i)	$_{\mathrm{Shape}}$ \bigvee $_{\mathrm{or}}$ \swarrow $_{\mathrm{anywhere}}$	B1		
	Alle Ma	n at $(-1,0)$ can be -1 on <i>x</i> -axis. ow $(0,-1)$ if marked on the <i>x</i> -axis. arked in the correct place, but 1, is B0.	B1		
	-1, 2 (2,	0) and (0, 2) can be 2 on axes	B1		
	inte	p branch in 1 st quadrant with 2 ersections	B1		
		ttom branch in 3 rd quadrant (ignore any ersections)	B1	(5)	
(C)	(2 intersections therefore) $\underline{2}$ (roots)		B1ft	(1) [7]	
(b)	 1st B1 for shape or Can be anywhere, but there must be one max. and one min. and no further max. and min. turning points. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. 2nd B1 for minimum at (-1,0) (even if there is an additional minimum point shown) 3rd B1 for the sketch meeting axes at (2, 0) and (0, 2). They can simply mark 2 on the axes. The marks for minimum and intersections are dependent upon having a sketch. Answers on the diagram for min. and intersections take precedence over answers seen elsewhere. 				
	 4th B1 for the branch fully within 1st quadrant having 2 intersections with (not just 'touching') the other curve. The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes, and when the curve looks like two straight lines with a small curve at the join. Allow, for example, shapes like these: 				
	5 th B1 for a branch fully in the 3 rd quadrant (ignore any intersections with the other curve for this branch). The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes.				
(c)	The answer 2 incompatible with the	f roots - compatible with their sketch. No ske <u>e sketch</u> is B0 (ignore any algebra seen). tersections <u>and</u> , for example, one other intersectore the mark.			

Question number		Scheme	Mark	CS
115.	$x(x^2)$	-9) or $(x\pm 0)(x^2-9)$ or $(x-3)(x^2+3x)$ or $(x+3)(x^2-3x)$ -3)(x+3)	B1	
	x(x -	(-3)(x+3)	M1A1	(3)
				3
	B1	for first factor taken out correctly as indicated in line 1 above. So $x(x)$	$r^2 + 0$ is P 0	
	ы М1	for attempting to factorise a relevant quadratic.	(+9) is D0	
	1011	"Ends" correct so e.g. $(x^2 - 9) = (x \pm p)(x \pm q)$ where $pq = 9$ is OK.		
		This mark can be scored for $(x^2-9)=(x+3)(x-3)$ seen anywhere.		
	A1	for a fully correct expression with all 3 factors.		
		Watch out for $-x(3-x)(x+3)$ which scores A1		
		Treat any working to solve the equation $x^3 - 9x$ as ISW.		

Question Number	Scheme	Marks		
(b)	$2x + 5 = \frac{3}{x}$ $2x^{2} + 5x - 3[=0] \text{or} 2x^{2} + 5x = 3$ $(2x - 1)(x + 3)[=0]$ $x = -3 \text{ or } \frac{1}{2}$ $y = \frac{3}{-3} \text{ or } 2 \times (-3) + 5 \text{or} y = \frac{3}{\frac{1}{2}} \text{ or } 2 \times (\frac{1}{2}) + 5$ Points are (-3, -1) and ($\frac{1}{2}$, 6) (correct pairings)	B1M1A1 (3) M1 A1 M1 A1 M1 A1 M1 A1ft		
		9		
(a) (b)	B1 for curve of correct shape i.e 2 branches of curve, in correct quadrants, of roughl and no touching or intersections with axes. Condone up to 2 inward bends but there must be some ends that are roughly asyn M1 for a straight line <u>cutting</u> the positive <i>y</i> -axis and the negative <i>x</i> -axis. Ignor A1 for (0,5) and (-2.5,0) or points correctly marked on axes. Do not give for Condone mixing up (<i>x</i> , <i>y</i>) as (<i>y</i> , <i>x</i>) if one value is zero and other value corr 1 st M1 for attempt to form a suitable equation and multiply by <i>x</i> (at least one of 2 <i>x</i> or +5 multiplied. 1 st A1 for correct 3TQ - condone missing = 0 2 nd M1 for an attempt to solve a relevant 3TQ leading to 2 values for <i>x</i> = 2 nd A1 for both <i>x</i> = -3 and 0.5. T&I for <i>x</i> values <u>may</u> score 1 st M1A1 otherwise no marks unless both values corr Answer only of <i>x</i> = -3 and <i>x</i> = $\frac{1}{2}$ scores 4/4, then apply the scheme for the	mptotic. e any values. values in tables. rect. 5) should be		
	3^{rd} M1 for an attempt to find at least one y value by substituting their x in either $\frac{3}{x}$ or $2x + 5$			
	3^{rd} A1ft follow through both their x values, in either equation but the same for ea pairings required but can be $x = -3$, $y = -1$ etc	ch, correct		

Question number	Scheme	Marks
118. (a) (b)	$q(q+8) = 0 or (q \pm 4)^2 \pm 16 = 0$ $(q) = 0 or -8 (2 cvs)$	M1 A1cso (2) M1 A1 A1ft (3) 5
(a)	M1 for attempting $b^2 - 4ac$ with one of <i>b</i> or <i>a</i> correct. < 0 not needed for M1 This may be inside a square root. A1cso for simplifying to printed result with no incorrect working or statements se Need an intermediate step e.g. $q^28q < 0$ or $q^2 - 4 \times 2q \times -1 < 0$ or $q^2 - 4(2q)(-1) < 0$ or $q^2 - 8q(-1) < 0$ or i.e. must have × or brackets on the 4 <i>ac</i> term < 0 must be seen at least one line before the final answer.	
(b)	M1 for factorizing or completing the square or attempting to solve $q^2 \pm 8q = 0$. would lead to 2 values for q . The "= 0" may be implied by values appearin 1 st A1 for $q = 0$ and $q = -8$ 2 nd A1 for $-8 < q < 0$. Can follow through their cvs but must choose "inside" reg q < 0, q > -8 is A0, $q < 0$ or $q > -8$ is A0, (-8, 0) on its own is A0 BUT " $q < 0$ and $q > -8$ " is A1 Do not accept a number line for final mark	ng later.

Question number	Scheme			Marks	
119.	$\frac{\left(5-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)} \times \frac{\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)}$			M1	
	$\frac{(5-\sqrt{3})}{(2+\sqrt{3})} \times \frac{(2-\sqrt{3})}{(2-\sqrt{3})}$ $= \frac{10-2\sqrt{3}-5\sqrt{3}+(\sqrt{3})^2}{\dots} \qquad \left(=\frac{10-7\sqrt{3}+3}{\dots}\right)$			M1	
	$\left(=13-7\sqrt{3}\right) \qquad \left(\text{Allow } \frac{13-7\sqrt{3}}{1}\right)$		(<i>a</i> = 13)	A1	
		$-7\sqrt{3}$	(<i>b</i> = -7)	A1	(4) 4
	1 st M: Multiplying top and bottom by $(2 - \sqrt{3})$. (As	s shown above is suf	ficient).		
	2 nd M: Attempt to multiply out numerator $(5 - \sqrt{3})$ 3 terms correct.	$\left(2-\sqrt{3}\right)$. Must have	at least		
	Final answer: Although 'denominator = 1' may be obviously be the final answer (not ar full marks. (Also M0 M1 A1 A1 is <u>n</u>	n intermediate step),			
	The A marks cannot be scored unless the 1^{st} M mark but this 1^{st} M mark <u>could</u> be implied by correct explored enominator.		nerator <u>and</u>		
	It <u>is</u> possible to score M1 M0 A1 A0 or M1 M0 A0 the numerator).	A1 (after 2 correct	terms in		
	Special case: If numerator is multiplied by $(2 + \sqrt{3})^{nd}$ M can still be scored for at least 3) instead of $(2 - \sqrt{3})$ of these terms corre	, the ct:		
	$10 - 2\sqrt{3} + 5\sqrt{3} - (\sqrt{3})^2$.	· 1 - 1 MOM	1 40 40		
	The maximum score in the special ca Answer only: Scores no marks.	se is 1 mark: MU M	I A0 A0.		
	Alternative method:				
	$\overline{5 - \sqrt{3}} = (a + b\sqrt{3})(2 + \sqrt{3})$				
		at least 3 terms corre	ect.		
		form and attempt to imultaneous equation			
	a = 13, b = -7 A1, A	-			



Question number	Scheme		Marks	
120.	(a) (2, 10)	Shape: Max in 1^{st} quadrant and 2 intersections on positive <i>x</i> -axis	B1	
		1 and 4 labelled (in correct place) or clearly stated as coordinates	B1	
		(2, 10) labelled or clearly stated	B1	(3)
	(b) (-2, 5)	Shape: Max in 2nd quadrant and 2 intersections on negative <i>x</i> -axis	B1	
		-1 and -4 labelled (in correct place) or clearly stated as coordinates	B1	
		(-2, 5) labelled or clearly stated	B1	(3)
	(c) $(a =) 2$	May be implicit, i.e. $f(x+2)$	B1	(1)
	Beware: The answer to part (c) may be	e seen on the first page.		
				7
	(a) and (b):			
	1^{st} B: 'Shape' is generous, providing the c 2^{nd} and 3^{rd} B marks are dependent upon a s			
	2 nd B marks: Allow (0, 1), etc. (coordinate correct.	s the wrong way round) <u>if</u> the sketch is		
	Points must be labelled correctly and be in first quadrant is B0).	appropriate place (e.g. $(-2, 5)$ in the		
	(b) <u>Special case</u> : If the graph is reflected in the <i>x</i> -axis (ir scored. This requires shape and coordin Shape: Minimum in 4 th quadrant			
	1 and 4 labelled (in correct place) or cle $(2, -5)$ labelled or clearly stated.	early stated as coordinates,		

Question number	Scheme	Marks	
121.	(a) $x^2 + kx + (8 - k) (= 0)$ $8 - k$ need not be bracketed	- M1	
	$b^2 - 4ac = k^2 - 4(8 - k)$	- M1	
	$b^{2} - 4ac < 0 \implies k^{2} + 4k - 32 < 0$ (*) (b) $(k+8)(k-4) = 0$ $k =$	A1cso M1	(3)
	k = -8 $k = 4$	A1	
	Choosing 'inside' region (between the two k values) -8 < k < 4 or $4 > k > -8$	M1 A1	(4) 7
	(a) 1^{st} M: Using the <i>k</i> from the right hand side to form 3-term quadratic in <i>x</i> ('= 0' can be implied), or		7
	attempting to complete the square $\left(x+\frac{k}{2}\right)^2 - \frac{k^2}{4} + 8 - k \ (=0)$ or equiv.,		
	using the <i>k</i> from the right hand side. For either approach, <u>condone sign errors</u> .		
	1 st M may be implied when candidate moves straight to the discriminant		
	2^{nd} M: Dependent on the 1^{st} M.		
	Forming expressions in k (with no x's) by using b^2 and $4ac$. (Usually		
	seen as the discriminant $b^2 - 4ac$, but separate expressions are fine,		
	and also allow the use of $b^2 + 4ac$. (For 'completing the square' approach, the expression must be clearly separated from the equation in <i>x</i>).		
	If b^2 and $4ac$ are used in the <u>quadratic formula</u> , they must be clearly separated from the formula to score this mark. For any approach, <u>condone sign errors</u> .		
	If the wrong statement $\sqrt{b^2 - 4ac} < 0$ is seen, maximum score is M1 M1 A0.		
	(b) Condone the use of <i>x</i> (instead of <i>k</i>) in part (b).1st M: Attempt to solve a 3-term quadratic equation in <i>k</i>.It <u>might</u> be different from the given quadratic in part (a).		
	Ignore the use of $<$ in solving the equation. The 1 st M1 A1 can be scored if -8 and 4 are achieved, even if stated as $k < -8$, $k < 4$.		
	Allow the first M1 A1 to be scored in part (a).		
	N.B. ' $k > -8$, $k < 4$ ' scores 2 nd M1 A0		
	$k > -8$ or $k < 4$ ' scores 2^{nd} M1 A0		
	$k > -8$ and $k < 4$ ' scores 2^{nd} M1 A1		
	k = -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3' scores 2 nd M0 A0		

Question Number	Scheme		Marks		
123. (a)	Way 1 Use $f(1/2)$ or $f(-1/2)$ and put equal to 30	Way 2 Long division of $f(x)$ by $(2x - 1)$ as far as remainder put = 30	M1		
	Stated $\frac{24}{8} + \frac{1}{4}A - \frac{3}{2} + B = 30$ and A + 4B = 114 *	Obtains $B + \frac{1}{4}A + \frac{3}{2} = 30$ (o.e) and $A + 4B = 114$ *	A1* (2)		
(b)	Way 1 Used $f(-1)$ or $f(1) = 0$	Way 2 Long division of $f(x)$ by $(x + 1)$ as far as remainder put = 0 Obtains $B - 21 + A = 0$	M1 A1		
(c)	Stated $-24+A+3+B = 0$ so $A + B = 21$ Solves to obtain one of A or B Obtains both $A = -10$ and $B = 31$		(2) M1 A1 (2)		
(d)	$f(x) = (x + 1)(24x^2 - 34x + 31)$ or factor is (2)	$4x^2 - 34x + 31$)	M1A1 (2) (8 marks)		
term put of A1*: Obta (b) Way 1 M1: for ca A1: for obt Accept $A +$ -24 + $A +$	tempting long division of $f(x)$ by $(2x - 1)$ obtained equal to 30 ining correct equation correctly lculating $f(-1)$ or $f(1)$ and put equal to 0 (The aining a correct equivalent equation in part (b) B = 21 or $-A - B = -21$ or $A + B - 21 = 0$ or 2 3 + B = 0 as a final answer to part (b).	is may be implied by their equatio). (This mark may not be recovere	n in part (b)) d in part (c))		
(b) Way 2 M1: for attempting long division of $f(x)$ by $(x + 1)$ obtaining $24x^2 +x +$ as quotient and remainder term put equal to 0 (This may be implied by their equation in part (b)) A1: for obtaining a correct equivalent equation in part (b). (This mark may not be recovered in part (c)) Accept $A + B = 21$ or $-A - B = -21$ or $A + B - 21 = 0$ or $21 - A - B = 0$ or $B - 21 + A = 0$ etc (c) M1: Eliminate one variable and solve to obtain A or B A1: Both correct					
(d) M1: Uses to by $(x + 1)$ l constant te coefficient ignored) If	their values of A and B in the given cubic (even eading to a 3TQ beginning with the correct te erm. This may be done by a variety of method s, inspection etc. (If values of A and B were wro they used division in part (b) they may substitute $A = -34x + 31$ Credit when seen and use isw if	rm, usually $24x^2$ and including an s including long division, compari- ng there may be a remainder but this <i>A</i> and <i>B</i> into their quotient expression	x term and a son of may be from (b).		

Question Number	Scheme	Marks	
124. (a)	Attempt $f(3)$ or $f(-3)$ Use of long division is M0A0 as factor theorem was required.	M1	
	f(-3) = 162 - 63 - 120 + 21 = 0 so $(x + 3)$ is a factor	A1	
		(2)	
(b)	Either (Way 1): $f(x) = (x + 3)(-6x^2 + 11x + 7)$	M1A1	
	= (x + 3)(-3x + 7)(2x + 1) or $-(x + 3)(3x - 7)(2x + 1)$	M1A1	
		(4)	
	Or (Way 2) Uses trial or factor theorem to obtain $x = -1/2$ or $x = 7/3$	M1	
	Uses trial or factor theorem to obtain both $x = -1/2$ and $x = 7/3$	A1	
	Puts three factors together (see notes below)	M1 A1	
	Correct factorisation : $(x+3)(7-3x)(2x+1)$ or $-(x+3)(3x-7)(2x+1)$ oe	(4)	
	Or (Way 3) No working three factors $(x + 3)(-3x + 7)(2x + 1)$ otherwise need working	M1A1M1A1 (4)	
(c)	$2^{y} = \frac{7}{3}, \rightarrow \log(2^{y}) = \log(\frac{7}{3}) \text{ or } y = \log_{2}(\frac{7}{3}) \text{ or } \frac{\log(7/3)}{\log 2}$	B1, M1	
		A1	
	$\{y=1.222392421\} \Rightarrow y=$ awrt 1.22	(3)	
		[9]	
	Notes		
(a)	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers substituted into expression		
	A1 for calculating $f(-3)$ correctly to 0, and they must state $(x + 3)$ is a factor for A1 (or eq	uivalent ie.	
	QED, \Box or a tick). A conclusion may be implied by a preamble, "if $f(-3) = 0$, (x+3) is a fac		
	$-6(-3)^3-7(-3)^2 + 40(-3) + 21 = 0$ so $(x + 3)$ is a factor of $f(x)$ is M1A1 providing bracketing		
(b)	1 st M1: attempting to divide by $(x + 3)$ leading to a 3TQ beginning with the correct term, us		
	This may be done by a variety of methods including long division, comparison of coefficients, inspection etc. Allow for work in part (a) if the result is used in (b).		
	1 st A1: usually for $(-6x^2 + 11x + 7)$ Credit when seen and use isw if miscopied		
	2 nd M1: for a <i>valid</i> * attempt to factorise their quadratic (* see notes on page 6 - General Principles for Core Mathematics Marking section 1)		
	2^{nd} A1 is cao and needs all three factors together fully factorised. Accept e.g. $-3(x + 3)(x - \frac{7}{3})(2x + 1)$		
	but $(x+3)(x-\frac{7}{3})(-6x-3)$ and $(x+3)(3x-7)(-2x-1)$ are A0 as not fully factorised.		
	Ignore subsequent work (such as a solution to a quadratic equation.)		
	Way 2: The second M mark needs three roots together so $\pm 6(x-\alpha)(x-\beta)(x+3)$ or equivalent where		
	they obtained α and β by trial, so if correct roots identified, then $(x+3)(3x-7)(2x+1)$ can gain M1A1M1A0.		
	N.B. Replacing $(-6x^2 + 11x + 7)$ (already awarded M1A1) by $(6x^2 - 11x - 7)$ giving		
	(x+3)(3x-7)(2x+1) can have M1A0 for factorization so M1A1M1A0		
(c)	B1: $2^{y} = \frac{7}{3}$		
	M1: Attempt to take logs to solve $2^y = \alpha$ or $2^y = 1/\alpha$, where $\alpha > 0$ and α was a root of their factorization.		
	A1: for an answer that rounds to 1.22. If other answers are included (and not "rejected") suc or -1 lose final A mark		
	Special case: Those who deal throughout with $f(x) = 6x^3 + 7x^2 - 40x - 21$		

Question Number		Scheme	Marks				
125.	$f(x) = 6x^3 + 13x^2 - 4$						
(a)	$f\left(-\frac{3}{2}\right) =$	$= 6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4 = 5$ Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$	M1				
	(2)	5	A1 cao				
		Attempts $f(-2)$.	[2] M1				
(b)		$6(-2)^{5} + 13(-2)^{5} - 4$ f(-2) = 0 with no sign or substitution errors					
	= 0, and	so $(x + 2)$ is a factor. $(-2) = 0$ with no sign of substitution criters and for conclusion.	A1				
		(1, 2) $(2, 2)$	[2]				
(c)		$(x+2)$ $(6x^2 + x - 2)$	M1 A1				
	=(x	(x + 2)(2x - 1)(3x + 2)	M1 A1 [4]				
			<u>ر ۲</u>				
		Question 125 Notes					
	Note	Long division scores no marks in part (a). The <u>remainder theorem</u> is required.					
(a)	M1	Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$. $6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4$ or $6\left(\frac{3}{2}\right)^3 + 13\left(\frac{3}{2}\right)^2 - 4$ is so	ufficient				
	A1	5 cao					
(b)	M1	Attempting $f(-2)$. (This is not given for $f(2)$)					
	A1	Must correctly show $f(-2) = 0$ and give a conclusion <i>in part (b) only</i> . No simplification of terms					
		is required here.					
	Note	Stating "hence factor" or "it is a factor" or a "tick" or "QED" are possible conclusions. Also a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-2) = 0$, $(x + 2)$ is a factor	r "				
		Long division scores no marks in part (b). The <u>factor theorem</u> is required.					
	1 st M1		towns				
(c)	1 1/11	Attempting to divide by $(x + 2)$ leading to a quotient which is quadratic with at least two beginning with first term of $\pm 6x^2$ + linear or constant term.	terms				
		Or $f(x) = (x + 2)(\pm 6x^2 + \text{linear and/or constant term})$ (This may be seen in part (b) where candid	ates did				
		not use factor theorem and might be referred to here)	ates did				
	1 st A1	$(6x^2 + x - 2)$ seen as quotient or as factor. If there is an error in the division resulting in	a				
		remainder give A0, but allow recovery to gain next two marks if $(6x^2 + x - 2)$ is used					
	2 nd M1	For a <i>valid</i> attempt to factorise their three term quadratic.					
	A1	(x + 2)(2x - 1)(3x + 2) and needs all three factors on the same line.					
		Ignore subsequent work (such as a solution to a quadratic equation).					
	Special cases	Calculator methods: Award M1A1M1A1 for correct answer $(x + 2)(2x - 1)(3x + 2)$ with no working.					
	Cases	Award M1A0M1A0 for either $(x + 2)(2x + 1)(3x + 2)$ with no working. Award M1A0M1A0 for either $(x + 2)(2x + 1)(3x + 2)$ or $(x + 2)(2x + 1)(3x - 2)$ or					
		(x + 2)(2x - 1)(3x - 2) with no working. (At least one bracket incorrect)					
		Award M1A1M1A1 for $x = -2$, $\frac{1}{2}$, $-\frac{2}{3}$ followed by $(x + 2)(2x - 1)(3x + 2)$.					
		Award M0A0M0A0 for a candidate who writes down $x = -2, \frac{1}{2}, -\frac{2}{3}$ giving no factors.					
		Award M1A1M1A1 for $6(x + 2)(x - \frac{1}{2})(x + \frac{2}{3})$ or $2(x + 2)(x - \frac{1}{2})(3x + 2)$ or equivalent					
		Award SC: M1A0M1A0 for $x = -2, \frac{1}{2}, -\frac{2}{3}$ followed by $(x + 2)(x - \frac{1}{2})(x + \frac{2}{3})$.					

Question Number	Scheme	Marks	
126.	$f(x) = 6x^3 + 3x^2 + Ax + B$		
Way 1 (a)	Attempting $f(1) = 45$ or $f(-1) = 45$	M1	
	$f(-1) = -6 + 3 - A + B = 45$ or $-3 - A + B = 45 \implies B - A = 48 * (allow 48 = B - A)$	A1 * cso	
Way 1 (b)	Attempting $f(-\frac{1}{2}) = 0$	(2) M1	
	$6\left(-\frac{1}{2}\right)^3 + 3\left(-\frac{1}{2}\right)^2 + A\left(-\frac{1}{2}\right) + B = 0 \text{ or } -\frac{1}{2}A + B = 0 \text{ or } A = 2B$	A1 o.e.	
	Solve to obtain $B = -48$ and $A = -96$	M1 A1 (4)	
Way 2 (a)	Long Division	M1	
	$(6x^3 + 3x^2 + Ax + B) \div (x \pm 1) = 6x^2 + px + q$ and sets remainder = 45		
	Quotient is $6x^2 - 3x + (A+3)$ and remainder is $B - A - 3 = 45$ so $B - A = 48 *$	A1*	
Way 2 (b)	$(6x^3 + 3x^2 + Ax + B) \div (2x + 1) = 3x^2 + px + q$ and sets remainder = 0	M1	
	Quotient is $3x^2 + \frac{A}{2}$ and remainder is $B - \frac{A}{2} = 0$	A1	
	Then Solve to obtain $B = -48$ and $A = -96$ as in scheme above (Way 1)	M1 A1	
(c)	Obtain $(3x^2 - 48), (x^2 - 16), (6x^2 - 96), (3x^2 + \frac{A}{2}), (3x^2 + B), (x^2 + \frac{A}{6}) \text{ or } (x^2 + \frac{B}{3} \text{ as})$	B1ft	
	factor or as quotient after division by $(2x + 1)$. Division by $(x+4)$ or $(x-4)$ see below		
	Factorises $(3x^2 - 48), (x^2 - 16), (48 - 3x^2), (16 - x^2) \text{ or } (6x^2 - 96)$	M1	
	= 3 $(2x + 1)(x + 4)(x - 4)$ (if this answer follows from a wrong A or B then award A0) isw if they go on to solve to give $x = 4$, -4 and -1/2	A1cso (3) [9]	
Way 2: 1 (b) Way 1: Way 2: There n (c) B1 : May M1: Val A1cso: (C	 Notes (a) Way 1: M1: 1 or -1 substituted into f(x) and expression put equal to ±45 A1*: Answer is given. Must have substituted -1 and put expression equal to +45. Correct equation with powers of -1 evaluated and conclusion with no errors seen. Way 2: M1: Long division as far as a remainder which is set equal to ±45 A1*: See correct quotient and correct remainder and printed answer obtained with no errors (b) Way 1: M1: Must see f(-1/2) and "= 0" unless subsequent work implies this. A1: Give credit for a correct equation even unsimplified when first seen, then isw. A correct equation implies M1A1. M1: Attempts to solve the given equation from part (a) and their simplified or unsimplified linear equation in A and B from part (b) as far as A = or B =(must eliminate one of the constants but algebra need not be correct for this mark). May just write down the correct answers. A1: Both A and B correct Way 2: M1: Long division as far as a remainder which is set equal to 0 A1: See correct quotient and correct remainder put equal to 0 A1: As in Way 1 There may be a mixture of Way 1 for (a) and Way 2 for (b) or vice versa. (c) B1: May be written straight down or from long division, inspection, comparing coefficients or pairing terms M1: Valid attempt to factorise a listed quadratic (see general notes) so (3x-16)(x+3) could get M1A0 Alcso: (Cannot be awarded if A or B is wrong) Needs the answer in the scheme or -3 (2x+1)(4+x)(4 -x) or equivalent but factor 3 must be shown and there must be all the terms together with brackets. 		
	A minority might divide by $(x-4)$ or $(x+4)$ obtaining $(6x^2+27x+12)$ or $(6x^2-21x-12)$ they then need to factorise $(6x^2+27x+12)$ or $(6x^2-21x-12)$ for M1		
Th Special case If they write But if they §	en A1cso as before	s B1M1A0	
157	<u> </u>		

Question Number	Scheme		Marks
	If there is no labelling, mark (a) and (b) in that order		
	$f(x) = 2x^3 - $	$7x^2 + 4x + 4$	
	$f(2) = 2(2)^{3} - 7(2)^{2} + 4(2) + 4$	Attempts f(2) or f(-2)	M1
127 (a)	= 0, and so $(x - 2)$ is a factor.	f(2) = 0 with no sign or substitution errors $(2(2)^3 - 7(2)^2 + 4(2) + 4 = 0$ is sufficient) and for conclusion. Stating "hence factor" or "it is a factor" or a "tick" or "QED" or "no remainder" or "as required" are fine for the conclusion but not = 0 just underlined and not hence (2 or f(2)) is a factor . Note also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(2) = 0$, $(x - 2)$ is a factor"	A1
	Note: Long division scores no marks in	part (a). The <u>factor theorem</u> is required.	[2]
	$f(x) = \{(x-2)\}(2x^2 - 3x - 2)$	M1: Attempts long division by $(x - 2)$ or other method using $(x - 2)$, to obtain $(2x^2 \pm ax \pm b), a \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection." A1: $(2x^2 - 3x - 2)$	M1 A1
127(b)	$= (x - 2)(x - 2)(2x + 1) \operatorname{or} (x - 2)^{2}(2x + 1)$ or equivalent e.g. $= 2(x - 2)(x - 2)(x + \frac{1}{2}) \operatorname{or} 2(x - 2)^{2}(x + \frac{1}{2})$ Note $= (x - 2)(\frac{1}{2}x - 1)(4x + 2)$ would los	 dM1: Factorises a 3 term quadratic. (see rule for factorising a quadratic in the General Principles for Core Maths Marking). This is dependent on the previous method mark being awarded but there must have been no remainder. Allow an attempt to solve the quadratic to determine the factors. A1: cao – needs all three factors on one line. Ignore following work (such as a solution to a quadratic equation.) 	d M1 A1
	For correct answers only award full marks in (b)		
			[4] Total 6

Question Number	Scheme		Marks
128.	Graph of $y = 3^x$ and solving	$3^{2x} - 9(3^x) + 18 = 0$	
(a)		At least two of the three criteria correct. (See notes below.)	B1
		All three criteria correct. (See notes below.)	B1
	y ↓ /	Criteria number 1 : Correct shape of curve for $x \ge 0$ and at least touches the	
		positive y-axis. Criteria number 2 : Correct shape of curve for $x < 0$. Must not touch the x-	
	(0, 1)	axis or have any turning points. Criteria number 3 : (0, 1) stated or in	
	<i>O x</i>	a table or 1 marked on the y-axis. Allow $(1, 0)$ rather than $(0, 1)$ if	
		marked in the "correct" place on the y- axis.	
	2		[2]
(b)	$(3^x)^2 - 9(3^x) + 18 = 0$	Forms a quadratic of the correct form in	
	or $y = 3^x \implies y^2 - 9y + 18 = 0$	3^x or in "y" where "y" = 3^x or even in x where "x" = 3^x	M1
	$\frac{y=3 \implies y = -9y + 18 = 0}{\{(y-6)(y-3) = 0 \text{ or } (3^{x}-6)(3^{x}-3) = 0\}}$		
	$y = 6, y = 3$ or $3^{x} = 6, 3^{x} = 3$	Both $y = 6$ and $y = 3$.	A1
		A valid method for solving $3^x = k$	
	$\{3^x = 6 \Rightarrow\} x \log 3 = \log 6$	where $k > 0, k \neq 1, k \neq 3$	
		$\frac{1}{x \log 3 = \log k \text{ or}}$	d M1
	or $x = \frac{\log 6}{\log 3}$ or $x = \log_3 6$	to give either $x = \frac{\log k}{\log 3}$ or $x = \log_3 k$.	
	<i>x</i> = 1.63092	awrt 1.63	A1cso
	Provided the first M1A1 is scored, the second	d M1A1 can be implied by awrt 1.63	
	<i>x</i> = 1	x = 1 stated as a solution from <i>any</i> working.	B1
			[5]
			Total 7

Question Number	Scheme	2	Marks
	$f(x) = -4x^3 + ax^3$	$x^{2} + 9x - 18$	
120 (.)	f(2) = -32 + 4a + 18 - 18 = 0	Attempts $f(2)$ or $f(-2)$	M1
129. (a)	$\Rightarrow 4a = 32 \Rightarrow a = 8$	CSO	A1
			[2
	$f(x) = (x-2)(px^2 + qx + r)$		-
	$= px^{3} + (q-2p)x^{2} + (r-2q)x - 2r$		
(a) Way 2	$r = 9 \Rightarrow q = 0$ also $p = -4$: $a = -2p = 8$	Compares coefficients leading to -2p = a	M1
	<i>a</i> = 8	cso	A1
	$(-4x^3 + ax^2 + 9x - 18) \div (x - 2)$		
(a) Way 3	$Q = -4x^{2} + (a-8)x + 2a - 7$ $R = 4a - 32$	Attempt to divide $\pm f(x)$ by $(x - 2)$ to give a quotient at least of the form $\pm 4x^2 + g(a)x$ and a remainder that is a function of <i>a</i>	M1
	$4a - 32 = 0 \Longrightarrow a = 8$	cso	A1
(b)	$f(x) = (x - 2)(-4x^{2} + 9)$ $= (x - 2)(3 - 2x)(3 + 2x)$ or equivalent e.g. $= -(x - 2)(2x - 3)(2x + 3)$ or $= (x - 2)(2x - 3)(-2x - 3)$	Attempts long division or other method, to obtain $(-4x^2 \pm ax \pm b), b \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection."dM1: A valid attempt to factorise their quadratic – see General Principles. This is dependent on the previous method mark being awarded, but there must have been no remainder.A1: cao – must have all 3 factors on the same line. Ignore subsequent work (such as a solution to a quadratic equation.)	M1 dM1A1
(c)	$f\left(\frac{1}{2}\right) = -4\left(\frac{1}{8}\right) + 8\left(\frac{1}{4}\right) + 9\left(\frac{1}{2}\right) - 18 = -12$	Attempts $f(\frac{1}{2})$ or $f(-\frac{1}{2})$ Allow A1ft for the correctnumerical value of $\frac{\text{their } a}{4} - 14$	M1A1ft
			[2
	$\pm (-4x^3 + 8x^2 + 9x - 18) \div (2x - 1)$		
(c) Way 2	$Q = -2x^2 + 3x + 6$ R = -12	M1: Attempt long division to give a remainder that is independent of xA1: Allow A1ft for the correct numerical value of $\frac{\text{their } a}{4} - 14.$	M1A1ft
			Total 7
	·	ERT Ton	

Question Number	Nenama		Marks
130. (a)	Either (Way 1) : Attempt $f(3)$ or $f(-3)$	Or (Way 2): Assume $a = -9$ and attempt f(3) or f(-3)	M1
	$f(3) = 54 - 45 + 3a + 18 = 0 \implies 3a = -27 \implies a = -9*$	f(3) = 0 so $(x - 3)$ is factor	A1 * cso (2)
	Or (Way 3): $(2x^3 - 5x^2 + ax + 18) \div (x - 3) = 2x^2 + px$	+q where p is a number and q	M1
	is an expression in terms of <i>a</i> Sets the remainder $18+3a+9=0$ and solves to give <i>a</i>	= -9	A1* cso (2)
(b)	Either (Way 1): $f(x) = (x - 3)(2x^2 + x - 6)$ = $(x - 3)(2x - 3)(x + 2)$		M1A1 M1A1 (4)
	Or (Way 2) Uses trial or factor theorem to obtain $x = -2$ Uses trial or factor theorem to obtain both $x = -2$ and $x =$ Puts three factors together (see notes below) Correct factorisation : $(x - 3)(2x - 3)(x + 2)$ or $(3 - x)(3 - 2(x - 3)(x - \frac{3}{2})(x + 2))$ oe	3/2	M1 A1 M1 A1 A1 (4)
	Or (Way 3) No working three factors $(x - 3)(2x - 3)(x - $	+ 2) otherwise need working	M1A1M1A1
(c)	$\{3^y = 3 \Rightarrow\} y = 1$ or $g(1) = 0$		B1
	$\left\{3^{y} = 1.5 \Rightarrow \right\}\log\left(3^{y}\right) = \log 1.5 \text{ or } y = \log_{3} 1.5$		M1
	$\{y = 0.3690702\} \Rightarrow y = awrt 0.37$		A1 (3)
	Notes for Ques	tion 130	[9]
(a)	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers		
(b)	A1 for applying f (3) correctly , setting the result equal to 0 , and manipulating this correctly to give the result given on the paper i.e. $a = -9$. (Do not accept $x = -9$) Note that the answer is given in part (a). If they assume $a = -9$ and verify by factor theorem or division they must state $(x - 3)$ is a factor for A1 (or equivalent such as QED or a tick). 1 st M1: attempting to divide by $(x - 3)$ leading to a 3TQ beginning with the correct term, usually $2x^2$.		
	(Could divide by $(3 - x)$, in which case the quadratic would begin $-2x^2$.) This may be done by a varie of methods including long division, comparison of coefficients, inspection etc. $1^{\text{st}} A1$: usually for $2x^2 + x - 6$ Credit when seen and use isw if miscopied $2^{\text{nd}} M1$: for a <i>valid</i> * attempt to factorise their quadratic (* see notes on page 6 - General Principles for Core Mathematics Marking section 1) $2^{\text{nd}} A1$ is cao and needs all three factors together. Ignore subsequent work (such as a solution to a quadratic equation.) NB: $(x - 3)(x - \frac{3}{2})(x + 2)$ is M1A1M0A0, $(x - 3)(x - \frac{3}{2})(2x + 4)$ is M1A1M1A0, but $2(x - 3)(x - \frac{3}{2})(x + 2)$ is M1A1M1A1.		ciples for
(c)	B1: $y = 1$ seen as a solution – may be spotted as answer – no working needed. Allow also for g(1) M1: Attempt to take logs to solve $3^y = \alpha$ or even $3^{ky} = \alpha$, but not $6^y = \alpha$ where $\alpha > 0$ and $\alpha \neq 3$ & war root of $f(x) = 0$ (ft their factorization) A1: for an answer that rounds to 0.37. If a third answer is included (and not "rejected") such as ln(- lose final A mark		3 & was a

Question Number	Scheme		Marks
131.	f(1) = a + b - 4 - 3 = 0 or $a + b - 7 = 0$	Attempt $f(\pm 1)$	M1
	<i>a</i> + <i>b</i> = 7 *	Must be $f(1)$ and $= 0$ needs to be seen	A1
			(2)
	Long Division		
	$(ax^{3} + bx^{2} - 4x - 3) \div (x - 1) = ax^{2} + px + q$ where p and q are in terms of a or b or both		
	and sets their remainder $= 0$		M1
	NB Quotient = $ax^{2} + (a+b)x + (a+b-4)$		
	a + b = 7 *		A1
			(2)

Question number	Scheme	Marks
132 (a)	$f(-2) = 2 \cdot (-2)^3 - 7 \cdot (-2)^2 - 10 \cdot (-2) + 24$ = 0 so (x+2) is a factor	M1 A1 (2)
(b)	$f(x) = (x+2)(2x^2 - 11x + 12)$	M1 A1
	f(x) = (x+2)(2x-3)(x-4)	dM1 A1 (4) 6 marks
Notes (a) (b)	M1 : Attempts $f(\pm 2)$ (Long division is M0) A1 : is for =0 and conclusion Note : Stating "hence factor" or "it is a factor" or a " $$ " (tick) or "QED" is fine for the conclusion. Note also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-2) = 0$, $(x + 2)$ is a factor" (Not just $f(-2)=0$) 1 st M1 : Attempts long division by correct factor or other method leading to obtaining $(2x^2 \pm ax \pm b)$, $a \neq 0$, $b \neq 0$, even with a remainder. Working need not be seen as could be done "by inspection." Or <i>Alternative Method</i> : 1 st M1 : Use $(x+2)(ax^2 + bx + c) = 2x^3 - 7x^2 - 10x + 24$ with expansion and comparison of coefficients to obtain $a = 2$ and to obtain values for b and c 1 st A1 : For seeing $(2x^2 - 11x + 12)$. [Can be seen here in (b) after work done in (a)] 2 nd M1 : Factorises quadratic. (see rule for factorising a quadratic). This is dependent on the previous method mark being awarded and needs factors 2 nd A1 : is cao and needs all three factors together. Ignore subsequent work (such as a solution to a quadratic equation.)	
	Note: Some candidates will go from $\{(x+2)\}(2x^2 - 11x + 12)$ to $\{x = -2\}, x = \frac{3}{2}, 4$, and not list all three factors. Award these responses M1A1M0A0. Finds $x = 4$ and $x = 1.5$ by factor theorem, formula or calculator and produces factors M1 $f(x) = (x+2)(2x-3)(x-4)$ or $f(x) = 2(x+2)(x-1.5)(x-4)$ o.e. is full marks $f(x) = (x+2)(x-1.5)(x-4)$ loses last A1	

Question Number	Scheme		Marks	
133.	$f(x) = 2x^3 - 7x^2 - 5x + 4$			
(a)	Remainder = $f(1) = 2 - 7 - 5 + 4 = -6$	Attempts $f(1)$ or $f(-1)$.	M1	
(u)	=-6	- 6	A1 [2]	
	()3 ()2 ()	Attempts $f(-1)$.	M1	
(b)	$f(-1) = 2(-1)^{3} - 7(-1)^{2} - 5(-1) + 4$	f(-1) = 0 with no sign or substitution		
	and so $(x + 1)$ is a factor.	errors and for conclusion.	A1 [2	
(c)	$f(x) = \{(x+1)\}(2x^2 - 9x + 4)$		M1 A1	
	= (x + 1)(2x - 1)(x - 4)		dM1 A	
	(Note: Ignore the ePEN notation of (b) (should be	be (c)) for the final three marks in this part).	[4	
(a)	M1 for <i>attempting</i> either $f(1)$ or $f(-1)$. Can be	implied. Only one slip permitted.		
	M1 can also be given for an attempt (at least two "subtracting" processes) at long division to give a remainder which is independent of x. A1 can be given also for -6 seen at the bottom of long divisio working. Award A0 for a candidate who finds -6 but then states that the remainder is 6. Award M1A1 for -6 without any working.			
(b)	M1: attempting only $f(-1)$. A1: must correctly	y show $f(-1) = 0$ and give a conclusion <i>in part</i>	(b) only	
	Note : Stating "hence factor" or "it is a factor" or Note also that a conclusion can be implied from	a "tick" or "QED" is fine for the conclusion.		
	Note: Long division scores no marks in part (b). The <u>factor theorem</u> is required.		
(c)	1 st M1: Attempts long division or other method,	to obtain $(2x^2 \pm ax \pm b)$, $a \neq 0$, even with a rem	ainder.	
	Working need not be seen as this could be done "by inspection." $(2x^2 \pm ax \pm b)$ must be seen <i>in part (c)</i>			
	only. Award 1 st M0 if the quadratic factor is clearly found from dividing $f(x)$ by $(x - 1)$. Eg. Some			
	candidates use their $(2x^2 - 5x - 10)$ in part (c) found from applying a long division method in part (a).			
	1^{st} A1: For seeing $(2x^2 - 9x + 4)$.			
	2^{nd} dM1: Factorises a 3 term quadratic. (see rule previous method mark being awarded. This mar quadratic formula correctly. 2^{nd} A1: is cao and needs all three factors on one quadratic equation.)	k can also be awarded if the candidate applies the	e	
	Note: Some candidates will go from $\{(x + 1)\}(2$	$x^{2} - 9x + 4$) to $\{x = -1\}, x = \frac{1}{2}, 4$, and not list a	all three	
	factors. Award these responses M1A1M1A0.			
	<u>Alternative</u> : 1 st M1: For finding either $f(4) = 0$ or $f(\frac{1}{2}) = 0$.			
	1 st A1: A second correct factor of usually $(x - 4)$ or $(2x - 1)$ found. Note that any one of the other correct			
	factors found would imply the 1^{st} M1 mark. 2^{nd} dM1: For using two known factors to find th			
	2^{nd} A1 for correct answer of $(x + 1)(2x - 1)(x - 4)$.			
	Alternative: (for the first two marks)	, ,		
	1^{st} M1: Expands $(x + 1)(2x^2 + ax + b)$ {giving $2x^3 + (a + 2)x^2 + (b + a)x + b$ } then compare			
	coefficients to find <u>values</u> for <i>a</i> and <i>b</i> . $1^{\text{st}} A1: a = -9, b = 4$			
	Not dealing with a factor of 2: $(x + 1)(x - \frac{1}{2})(x - 4)$ or $(x + 1)(x - \frac{1}{2})(2x - 8)$ scores M1A1M1A0.			
	Answer only, with one sign error: eg. $(x + 1)$			
		sting all three correct factors with no working		

Question Number	Scheme	Ма	rks
134. (a)	Graph of $y = 7^x$, $x \in \mathbb{R}$ and solving $7^{2x} - 4(7^x) + 3 = 0$		
	y At least two of the three criteria correct. (See notes below.)	B1	
	All three criteria correct. (See notes below.)	B1	
	(0,1)		
			(2)
(b)	Forming a quadratic {using $y^2 - 4y + 3 \{= 0\}$ "y" = 7 ^x }.	M1	
	$y^2 - 4y + 3 = 0$	A1	
	{ $(y-3)(y-1) = 0$ or $(7^{x}-3)(7^{x}-1) = 0$ }		
	$y = 3$, $y = 1$ or $7^{x} = 3$, $7^{x} = 1$ Both $y = 3$ and $y = 1$.	A1	
	$\{7^{x} = 3 \Rightarrow\} x \log 7 = \log 3$ or $x = \frac{\log 3}{\log 7}$ or $x = \log_{7} 3$ A valid method for solving $7^{x} = k$ where $k > 0, k \neq 1$	dM1	
	x = 0.5645 0.565 or awrt 0.56	A1	
	x = 0 $x = 0$ stated as a solution.	B1	
			(6
	N. /		[8
(a)	Notes		
(a)	B1B0: Any two of the following three criteria below correct. B1B1: All three criteria correct.		
	Criteria number 1: Correct shape of curve for $x \ge 0$.		
	Criteria number 2: Correct shape of curve for $x < 0$.		
	Criteria number 3: (0, 1) stated or 1 marked on the y-axis. Allow (1, 0) rather than (0,	,1) if	
	marked in the "correct" place on the y-axis.		

Question Number	Scheme	Marks
(b)	1^{st} M1 is an attempt to form a quadratic equation {using "y" = 7 ^x .}	
	1 st A1 mark is for the correct quadratic equation of $y^2 - 4y + 3 \{= 0\}$.	
	Can use any variable here, eg: y, x or 7^x . Allow M1A1 for $x^2 - 4x + 3 \{=0\}$.	
	Writing $(7^x)^2 - 4(7^x) + 3 = 0$ is also sufficient for M1A1.	
	Award M0A0 for seeing $7^{x^2} - 4(7^x) + 3 = 0$ by itself without seeing $y^2 - 4y + 3 = 0$	or
	$(7^x)^2 - 4(7^x) + 3 = 0$.	
	1^{st} A1 mark for both $y = 3$ and $y = 1$ or both $7^x = 3$ and $7^x = 1$. Do not give this accurately a state of the second state of the sec	iracy
	mark for both $x = 3$ and $x = 1$, unless these are recovered in later working by candidate	2
	applying logarithms on these.	
	Award M1A1A1 for $7^x = 3$ and $7^x = 1$ written down with no earlier working.	
	3^{rd} dM1 for solving $7^x = k, k > 0, k \neq 1$ to give either $x \ln 7 = \ln k$ or $x = \frac{\ln k}{\ln 7}$ or $x = \log_7 k$.	
	dM1 is dependent upon the award of M1.	
	2^{nd} A1 for 0.565 or awrt 0.56. B1 is for the solution of $x = 0$, from <i>any</i> working.	

Question Number	Scheme	Marks
135	(a) Attempting to find $f(3)$ or $f(-3)$	M1
	$f(3) = 3(3)^3 - 5(3)^2 - (58 \times 3) + 40 = 81 - 45 - 174 + 40 = -98$	A1 (2)
	(b) $\{3x^3 - 5x^2 - 58x + 40 = (x - 5)\}$ $(3x^2 + 10x - 8)$	M1 A1
	Attempt to <u>factorise</u> 3-term quadratic, or to use the quadratic formula (see general principles at beginning of scheme). This mark may be implied by the correct solutions to the quadratic.	M1
	$(3x-2)(x+4) = 0$ $x = \dots$ $\underline{\text{or}}$ $x = \frac{-10 \pm \sqrt{100+96}}{6}$	A1 ft
	$\frac{2}{3}$ (or exact equiv.), -4, 5 (Allow 'implicit' solns, e.g. $f(5) = 0$, etc.)	A1 (5)
	Completely correct solutions without working: full marks.	7
	tive (long division): <u>'Grid' met</u>	hod
Divide	by $(x-3)$ to get $(3x^2 + ax + b)$, $a \neq 0, b \neq 0$. [M1] 3 3 -5 -	-58 40
$(3x^2 +$	(4x-46), and -98 seen. [A1] 0 9	12 -138
(If con	tinues to say 'remainder = 98', isw) $3 4 -$	<u>12 –138</u> -46 –98
(b) 1st M	requires use of $(x-5)$ to obtain $(3x^2 + ax + b)$, $a \neq 0, b \neq 0$. <u>'Grid' met</u>	hod
	Vorking need not be seen this could be done 'by inspection'.) $3 \begin{vmatrix} 3 \\ -5 \end{vmatrix}$	
	$(3x^2 + 10x - 8) \leftarrow 3 10$	<u></u>
$2^{nd} \mathbf{M}$	for the attempt to <u>factorise</u> their 3-term quadratic, or to solve it using the quadratic	
2 IVI I	Factorisation: $(3x^2 + ax + b) = (3x + c)(x + d)$, where $ cd =$	
AIII: C	orrect factors for their 3-term quadratic <u>followed by a solution</u> (at least one va might be incorrect), <u>or</u> numerically correct expression from the quadratic for 3-term quadratic.	
	nerefore that if the quadratic is correctly factorised but no solutions are given, /ill be lost.	the last 2 marks
	ative (first 2 marks):	
(x-5)	(3x2 + ax + b) = 3x3 + (a - 15)x2 + (b - 5a)x - 5b = 0,	
	then compare coefficients to find values of a and b	р. [M1]
	$a = 10, \ b = -8$	[A1]
	<u>ative 1</u> : (factor theorem) nding that $f(-4) = 0$	
A1: Sta	ating that $(x + 4)$ is a factor.	
M1: Fi	nding third factor $(x-5)(x+4)(3x\pm 2)$.	
	lly correct factors (no ft available here) <u>followed by a solution</u> , (which might l solutions correct.	be incorrect).
Alterna	<u>ative 2</u> : (direct factorisation) actors $(x-5)(3x+p)(x+q)$ A1: $pq = -8$	
	$x - 5)(3x \pm 2)(x \pm 4)$	
	A marks as in Alternative 1.	
Throug	hout this scheme, allow $\left(x \pm \frac{2}{3}\right)$ as an alternative to $(3x \pm 2)$.	

Question number	Scheme	Marks	
136.	(a) Attempt to find f(-4) or f(4). $(f(-4) = 2(-4)^3 - 3(-4)^2 - 39(-4) + 20)$ (= -128 - 48 + 156 + 20) = 0, so $(x + 4)$ is a factor. (b) $2x^3 - 3x^2 - 39x + 20 = (x + 4)(2x^2 - 11x + 5)$ (2x - 1)(x - 5) (The 3 brackets need not be written together) or $(x - \frac{1}{2})(2x - 10)$ or equivalent	M1 A1 M1 A1 M1 A1cso	(2) (4) 6
	(a) Long division scores no marks in part (a). The <u>factor theorem</u> is required. However, the first two marks in (b) can be earned from division seen in (a) but if a different long division result is seen in (b), the work seen in (b) takes precedence for marks in (b). A1 requires zero and a simple <u>conclusion</u> (even just a tick, or Q.E.D.), or may be scored by a <u>preamble</u> , e.g. 'If $f(-4) = 0$, $(x + 4)$ is a factor' (b) First M requires use of $(x + 4)$ to obtain $(2x^2 + ax + b)$, $a \neq 0$, $b \neq 0$, even with a remainder. Working need not be seen this could be done 'by inspection'. Second M for the attempt to factorise their three-term quadratic. Usual rule: $(kx^2 + ax + b) = (px + c)(qx + d)$, where $ cd = b $ and $ pq = k $. If 'solutions' appear before or after factorisation, ignore but factors must be seen to score the second M mark. <u>Alternative (first 2 marks):</u> $(x + 4)(2x^2 + ax + b) = 2x^3 + (8 + a)x^2 + (4a + b)x + 4b = 0$, then compare coefficients to find <u>values</u> of a and b. [M1] a = -11, $b = 5$ [A1] <u>Alternative:</u> Factor theorem: Finding that $f(\frac{1}{2}) = 0$ \therefore factor is, $(2x - 1)$ [M1, A1] Finding that $f(5) = 0$ \therefore factor is, $(x - 5)$ [M1, A1] "Combining" all 3 factors is <u>not</u> required. If just one of these is found, score the <u>first 2 marks</u> M1 A1 M0 A0. <u>Losing a factor of 2:</u> $(x + 4)(x - \frac{1}{2})(x - 5)$ scores M1 A1 M1 A0.		
	Answer only, one sign wrong: e.g. $(x+4)(2x-1)(x+5)$ scores M1 A1 M1 A0		

Question Number	Scheme	Marks
137(a)	$4x^2 - 25 \rightarrow (2x+5)(2x-5)$	B1
	$\frac{6}{2x+5} + \frac{2}{2x-5} + \frac{60}{4x^2 - 25} = \frac{6(2x-5) + 2(2x+5) + 60}{(2x+5)(2x-5)}$	M1
	$=\frac{16x+40}{(2x+5)(2x-5)}$	A1
	$=\frac{8(2x+5)}{(2x+5)(2x-5)}=\frac{8}{(2x-5)}$	A1
		(4)
(b)	$f(x) = \frac{8}{2x-5} \Rightarrow y = \frac{8}{2x-5} \Rightarrow 2xy-5y = 8 \Rightarrow x = \frac{8+5y}{2y}$	M1
	$\Rightarrow f^{-1}(x) = \frac{8+5x}{2x} \text{oe}$	A1
	$0 < x < \frac{8}{3}$	B1ft
		(3)
		(7 marks)

Alternative solutions to part (a)

137(a) ALT I	$4x^2 - 25 = (2x + 5)(2x - 5)$	B1
	$\frac{6}{2x+5} + \frac{2}{2x-5} = \frac{16x-20}{4x^2-25}$	
	$\frac{6}{2x+5} + \frac{2}{2x-5} + \frac{60}{4x^2 - 25} = \frac{16x - 20 + 60}{4x^2 - 25}$	M1
	$=\frac{16x+40}{4x^2-25}$	A1
	$=\frac{8(2x+5)}{(2x+5)(2x-5)}=\frac{8}{2x-5}$	A1

137(a) ALT II	$4x^2 - 25 = (2x + 5)(2x - 5)$	B1
	$\frac{60}{4x^2 - 25} = \frac{-6}{2x + 5} + \frac{6}{2x - 5}$	M1
	$\frac{6}{2x+5} + \frac{2}{2x-5} + \frac{60}{4x^2 - 25} = \frac{6}{2x+5} + \frac{2}{2x-5} + \frac{-6}{2x+5} + \frac{6}{2x-5}$	A1
	$=\frac{8}{(2x-5)}$	A1

(a)

B1: For **factorising** $4x^2 - 25 \rightarrow (2x+5)(2x-5)$ This can occur anywhere in the solution. Note that it is possible to score this mark for expanding $(2x+5)(2x-5) \rightarrow 4x^2 - 25$ and then cancelling by $4x^2 - 25$. Both processes are required by this route. It can be implied if you see the correct intermediate form. (See A1)

M1: For combining the three fractions with a common denominator. The denominator must be correct and at least one numerator must have been adapted correctly. Accept as separate fractions. Condone missing brackets.

Accept
$$\frac{6}{2x+5} + \frac{2}{2x-5} + \frac{60}{4x^2-25} = \frac{6(2x-5)(4x^2-25) + 2(2x+5)(4x^2-25) + 60(2x+5)(2x-5)}{(2x+5)(2x-5)(4x^2-25)}$$

Condone $\frac{6}{2x+5} + \frac{2}{2x-5} + \frac{60}{4x^2-25} = \frac{6(2x-5)+2+60}{(2x+5)(2x-5)}$ correct denominator, one numerator adapted correctly

Alternatively uses partial fractions $\frac{60}{4x^2 - 25} = \frac{A}{2x + 5} + \frac{B}{2x - 5}$ leading to values for A and B

A1: A correct intermediate form of $\frac{\text{simplified linear}}{\text{quadratic}}$ most likely to be $\frac{16x+40}{(2x+5)(2x-5)}$

Sometimes the candidate may write out the simplified numerator separately. In cases like this, you can award this A mark without explicitly seeing the fraction as long as a correct denominator is seen.

Using the partial fraction method, it is for $\frac{6}{2x+5} + \frac{2}{2x-5} + \frac{60}{4x^2-25} = \frac{6}{2x+5} + \frac{2}{2x-5} + \frac{-6}{2x+5} + \frac{6}{2x-5}$

A1: Further factorises and cancels (all of which may be implied) to reach the answer $\frac{8}{2r-5}$

This is not a given answer so condone slips in bracketing etc.

- (b)
- M1: Attempts to change the subject of the formula for a function of the form $y = \frac{A}{Bx+C}$

Condone attempts on an equivalent made up equation for candidates who don't progress in part (a). As a minimum expect to see multiplication by (Bx + C) leading to x (or a replaced y) =

Alternatively award for 'inverting' Eg. $y = \frac{A}{Bx+C}$ to $\frac{Bx+C}{A} = \frac{1}{y}$ leading to x (or a replaced y) =

A1: $f^{-1}(x) = \frac{8+5x}{2x}$ or $y = \frac{8+5x}{2x}$ or equivalent. Accept $y = \frac{4}{x} + \frac{5}{2}$ Condone $F^{-1}(x) = \frac{8+5x}{2x}$ Condone $y = \frac{1}{2} \left(\frac{8}{x} + 5\right)$ and $y = \frac{8}{2x} + \frac{5}{2}$ BUT NOT $y = \frac{\frac{8}{x} + 5}{2}$ (fractions within fractions) You may isw after a correct answer. B1ft: $0 < x < \frac{8}{3}$ or alternative forms such as $0 < Domain < \frac{8}{3}$ Domain $= \left(0, \frac{8}{3}\right)$ or $\frac{8}{3} > x > 0$ Do not accept $0 < y < \frac{8}{3}$ or $0 < f^{-1}(x) < \frac{8}{3}$ Follow through on their $y = \frac{A}{Bx+C}$ so accept $0 < x < \frac{A}{4B+C}$

Question Number	Scheme	Marks
138(a)	Either $k > 13$ or $k = 3$	B1
	Both $k > 13$ $k = 3$	B1
		(2)
(b)	Smaller solution: $2(5-x)+3 = \frac{1}{2}x+10 \Longrightarrow x = \frac{6}{5}$	M1 A1
	Larger solution: $-2(5-x)+3 = \frac{1}{2}x+10 \Rightarrow x = \frac{34}{3}$	M1 A1
		(4)
(c)	(6,12)	B1B1
	(*,**)	(2)
		(8 marks)

⁽a)

B1: Either k > 13 or k = 3 Condone $k \ge 13$ instead of k > 13 for this mark only. Also condone $y \leftrightarrow k$ Do not accept $k \ge 3$ for B1

B1: Both k > 13, k = 3 with no other restrictions. Accept and / or /, between the two solutions (b)

M1: An acceptable method of finding the smaller intersection. The initial equation must be of the correct

form and it must lead to a value of x. For example $2(5-x)+3 = \frac{1}{2}x+10 \Rightarrow x = ...$ or $5-x = \left(\frac{1}{4}x+\frac{7}{2}\right)$

A1: For $x = \frac{6}{5}$ or equivalent such as 1.2 Ignore any reference to the y coordinate

M1: An acceptable method of finding the larger intersection. The initial equation must be of the correct

form and it must lead to a value of x. For example $-2(5-x)+3 = \frac{1}{2}x+10 \Rightarrow x = \dots$ or $5-x = -\left(\frac{1}{4}x+\frac{7}{2}\right)$

A1: For $x = \frac{34}{3}$ or equivalent such as 11.3 Ignore any reference to the y coordinate

If there are any extra solutions in addition to the correct two, then withhold the final A1 mark. ISW if the candidate then refers back to the range in (a) and deletes a solution

Alt method by squaring

M1: $2|5-x|+3 = \frac{1}{2}x+10 \Rightarrow 4(5-x)^2 = (\frac{1}{2}x+7)^2$ oe. In the main scheme the equation must be correct of the correct form but in this case you may condone '2' not being squared A1: Correct 3TQ. The = 0 may be implied by subsequent work. $\frac{15}{4}x^2 - 47x + 51 = 0$ oe M1: Solves using an appropriate method $15x^2 - 188x + 204 = 0 \Rightarrow (5x-6)(3x-34) = 0 \Rightarrow x = ..$

A1: Both $x = \frac{6}{5}$ $x = \frac{34}{3}$ and no others.

(c) **B1:** Accept p = 6 or q = 12. Allow in coordinates as x = 6 or y = 12. **B1:** For both p = 6 and q = 12. Allow in coordinates as x = 6 and y = 12Allow embedded within a single coordinate (6,12). So for example (2,12) is scored B1 B0

Question Number	Scheme	Marks
139.	$x^2 - 9 = (x+3)(x-3)$	B1
	$\frac{4x}{x^2 - 9} - \frac{2}{(x+3)} = \frac{4x - 2(x-3)}{(x+3)(x-3)}$	M1
	$=\frac{2x+6}{(x+3)(x-3)}$	A1
	$=\frac{2(x+3)}{(x+3)(x-3)}$	
	$=\frac{2}{(x-3)}$	A1
		(4)

B1 $x^2 - 9 = (x+3)(x-3)$ This can occur anywhere.

M1 For combining the two fractions with a common denominator. The denominator must be correct and at least one numerator must have been adapted. Accept as separate fractions. Condone missing brackets.

For example accept
$$\frac{4x}{x^2 - 9} - \frac{2}{x + 3} = \frac{4x(x + 3) - 2(x^2 - 9)}{(x + 3)(x^2 - 9)}$$

accept separately
$$\frac{4x}{(x + 3)(x - 3)} - \frac{2}{(x + 3)} = \frac{4x}{(x + 3)(x - 3)} - \frac{2x - 3}{(x + 3)(x - 3)}$$
 condoning missing bracket
condone
$$\frac{4x}{x^2 - 9} - \frac{2}{x + 3} = \frac{4x(x + 3) - 2}{(x + 3)(x^2 - 9)}$$
as only one numerator has been adapted
A correct intermediate form of $\frac{\text{simplified linear}}{\text{simplified quadratic}}$

Accept
$$\frac{2x+6}{(x+3)(x-3)}$$
, $\frac{2x+6}{x^2-9}$, and even $\frac{(2x+6)(x+3)}{(x^2-9)(x+3)}$

A1 Further factorises and cancels (which may be implied) to reach the answer $\frac{2}{x-3}$

Do not penalise correct solutions that include incomplete lines Eg $\frac{4x-2(x-3)}{(x+3)(x-3)} = \frac{4x-2x+6}{...} = \frac{2x+6}{(x+3)(x-3)} = \frac{2}{x-3}$

This is not a "show that" question.

Note: Watch out for an answer of $\frac{2}{x+3}$ probably scored from $\frac{4x-2(x-3)}{(x+3)(x-3)} = \frac{2x-6}{(x+3)(x-3)} = \frac{2(x-3)}{(x+3)(x-3)}$

This would score B1 M1 A0 A0

A1

Question Number	Scheme	Marks
140(a)	$y \ge 3$	B1
		(1)
(b)	$y=3+\sqrt{x+2} \Rightarrow y-3=\sqrt{x+2} \Rightarrow x=(y-3)^2-2$	M1 A1
	$\Rightarrow g^{-1}(x) = (x-3)^2 - 2, \text{ with } x3$	A1
		(3)
(c)	$g(x) = x \Longrightarrow 3 + \sqrt{x+2} = x$	
	$\Rightarrow x+2=(x-3)^2 \Rightarrow x^2-7x+7=0$	M1, A1
	$\Rightarrow x = \frac{7 \pm \sqrt{21}}{2} \Rightarrow x = \frac{7 + \sqrt{21}}{2} \text{ only}$	M1, A1
		(4)
(d)	$a = \frac{7 + \sqrt{21}}{2}$	B1 ft
		(1)
		9 marks
(c) Alt	Solves $g^{-1}(x) = x \Longrightarrow (x-3)^2 - 2 = x$	
	$\Rightarrow x^2 - 7x + 7 = 0$	M1, A1
	$\Rightarrow x = \frac{7 \pm \sqrt{21}}{2} \Rightarrow x = \frac{7 + \sqrt{21}}{2} \text{ only}$	dM1, A1
		(4)

(a)

- B1 States the correct range for g Accept g(x) ... 33g... 3, Range... $3, [3, \infty)$ Range is greater than or equal to 3 Condone f ... 3 Do not accept $g(x) > 3, x ... 3, (3, \infty)$
- (b)

- A1 Achieves $x = (y-3)^2 2$ or if swapped $y = (x-3)^2 2$ or equivalent such as $x = y^2 6y + 7$
- A1 Requires a correct function in x + correct domain or a correct function in x with a correct follow through on the range in (a) but do not follow through on $x \in \mathbb{R}$

M1 Attempts to make x or a swapped y the subject of the formula. The minimum expectation is that the 3 is moved over followed by an attempt to square both sides. Condone for this mark $\sqrt{x+2} = y \pm 3 \Rightarrow x+2 = y^2 \pm 9$

Accept for example $g^{-1}(x) = (x-3)^2 - 2$, x...3 Condone $f^{-1}(x) = (x-3)^2 - 2$, x...3 or variations such as $y = (x-3)^2 - 2$, x > 3 if (a) was y > 3Accept expanded versions such as $g^{-1}(x) = x^2 - 6x + 7$, x. 3 but remember to isw after a correct answer (Condone $f^{-1}(x) = x^2 - 6x + 7, x \dots 3$)

Sets $3 + \sqrt{x+2} = x$, moves the 3 over and then attempts to square both sides. M1 Can be scored for $\sqrt{x+2} = x-3 \Rightarrow x+2 = x^2 \pm 9$

- $x^2 7x + 7 = 0$. The = 0 may be implied by subsequent working A1
- Correct method of solving their 3TQ by the formula/ completing the square. The equation must have real roots. **M**1 It is dependent upon them having attempted to set $3 + \sqrt{x+2} = x$ and proceeding to a quadratic. You may just see both roots written down which is fine.

Allow for this mark decimal answers Eg 5.79 and 1.21 for $x^2 - 7x + 7 = 0$ You may need to check with a calc.

 $(x) = \frac{7 + \sqrt{21}}{2}$ or exact equivalent only. A1

This answer following the correct quadratic would imply the previous M

Allow
$$x = \frac{7}{2} + \sqrt{\frac{21}{4}}$$
 but **DO NOT** allow $x = \frac{7 \pm \sqrt{21}}{2}$

(c) can of course be attempted by solving $3 + \sqrt{x+2} = "(x-3)^2 - 2" \Longrightarrow x^4 - 12x^3 + 44x^2 - 49x + 14 = 0$ $\vdots \qquad \qquad \Rightarrow (x^2 - 7x + 7)(x^2 - 5x + 2) = 0$

The scheme can be applied to this

..... (d)

 $(a) = \frac{7 + \sqrt{21}}{2}$ or . You may condone $\mathbf{x} = \frac{7 + \sqrt{21}}{2}$. You may allow this following a re - start. B1ft

You may allow the correct decimal answer, awrt 5.79, following exact/decimal work in part (c) or a restart. Follow through on their root, including decimals, coming from the **positive** root with the **positive** sign in (c). Eg In (c). $x^2 - 7x + 11 = 0 \Rightarrow x = \frac{7 \pm \sqrt{5}}{2}$ So the correct follow through would be $x = \frac{7 + \sqrt{5}}{2}$

If they only had one root in (c) then follow through on this as long as it is positive.

SC. If they give the correct roots in parts (c) and (d) without considering the correct answer then award B1 in (d) following the A0 in (c). So $(x) = \frac{7 \pm \sqrt{21}}{2}$ as their answer in part (c), allow $(x/a) = \frac{7 \pm \sqrt{21}}{2}$ for B1 in (d).

Question Number	Scheme		
141(a)(i)	(0, a) V shape on x - axis or coordinates $\left(\frac{1}{2}a, 0\right)$ and (0, a) O $\left(\frac{1}{2}a, 0\right)$ x Correct shape, position and coordinates	B1 B1	
(ii)	(0, $a+b$) (0, $a+b$) Correct shape, position and (0, $a+b$)	B1ft B1	(4)
(b)	O States or uses $a+b=8$ Attempts to solve $ 2x-a +b=\frac{3}{2}x+8$ in either x or with $x = c$ $2c-a+b=\frac{3}{2}c+8 \Rightarrow kc = f(a,b)$	B1 M1	
	Combines $kc = f(a,b)$ with $a+b=8 \implies c=4a$	dM1 A1 (8 marks)	(4)

(a)(i)

- B1 V shape sitting anywhere on the *x* axis or for $\left(\frac{1}{2}a,0\right)$ and (0,a) lying on the curve. Condone non -symmetrical graphs and ones lying on just one side of the *y* -axis
- B1 V shape sitting on the positive x-axis at $(\frac{1}{2}a, 0)$, cutting the y-axis at (0, a) and lying in both quadrants 1 and 2 Accept $\frac{1}{2}a$ and a marked on the correct axis. Condone say (a, 0) for (0, a) as long as it is on the correct axis. Condone a dotted line appearing on the diagram as many reflect y = 2x - a to sketch y = |2x - a|If it is a solid line then it would not score the shape mark.

(a)(ii)

- B1ft Follow through on (a)(i). Their graph translated up. Allow on U shapes and non symmetrical graphs. Alternatively score for the (0, a+b) lying on the curve
- B1 V shape lying in quadrants 1 and 2 with the vertex in quadrant 1 cutting the *y* axis at (0, a+b)Ignore any coordinates given for the vertex.

- (b)
- B1 States or uses a+b=8 or exact equivalent. Condone use of capital letters throughout It is not scored for just |0-a|+b=8
- M1 This M is for an understanding of the modulus.

It is scored for an attempt at solving $(2x-a)+b = \frac{3}{2}x+8$ or $-(2x-a)+b = \frac{3}{2}x+8$ in either x or with x replaced by c. The signs of the 2x and the a must be different. $|2x-a| \neq 2x+a$

You may see
$$(2x-a)+b = \frac{3}{2}x+8 \Rightarrow kx = f(a,b)$$

You may see $-2x+a+b = \frac{3}{2}x+8 \Rightarrow kx = f(a,b)$

You may see $(2x-a)+b = \frac{3}{2}x+8 \Rightarrow kx = f(a,b)$ being solved with *b* replaced with **their** a+b=8You may see $-2c+a+b = \frac{3}{2}c+8 \Rightarrow kc = f(a,b)$ being solved with *b* replaced with **their** a+b=8

dM1 This dM mark is scored for combining b = 8 - a with $(2x - a) + b = \frac{3}{2}x + 8$ (or their kx = f(a, b) resulting from that equation) resulting in a link between x and a Both equations must have been correct initially. Alternatively for combining b = 8 - a with their $2c - a + b = \frac{3}{2}c + 8$ (or their kc = f(a, b) resulting from that equation) resulting in a link between c and a

You may condone sign slips in finding the link between x (or c) and aIf you see an approach that involves making |2x-a| the subject followed by squaring, and you feel that it deserves credit, please send to review. The solution proceeds as follows

Look for
$$|2x-a| = \frac{3}{2}x + 8 - b \Rightarrow |2x-a| = \frac{3}{2}x + a \Rightarrow (2x-a)^2 = \left(\frac{3}{2}x + a\right)^2 \Rightarrow 7x\left(\frac{1}{4}x - a\right) = 0$$

 $c = 4a$ ONLY

Special Case where they have the roots linked with the incorrect branch of the curve.

They have x = 0 as the solution to $2x - a + b = \frac{3}{2}x + 8 \Rightarrow -a + b = 8$(1) They have x = c as the solution to $-2x + a + b = \frac{3}{2}x + 8 \Rightarrow \frac{7}{2}x = a + b - 8$(2) Solve (1) and (2) $\Rightarrow x = \frac{4}{7}a$ Hence $\Rightarrow c = \frac{4}{7}a$ This would score B0 M1 dM0 A0 anyway but should be awarded SC B0, M1 dM1, A0 for above work leading to either $x = \frac{4}{7}a$ or $c = \frac{4}{7}a$

EXPERT TUITION

A1

Question	Sc	heme	Marks
142(a)	$fg(x) = \frac{28}{x-2} - 1$ Sets $fg(x) = x \Rightarrow \frac{28}{x-2} - 1 = x$ $\Rightarrow 28 = (x+1)(x-2)$	$\left(=\frac{30-x}{x-2}\right)$	M1
	$\Rightarrow x^2 - x - 30 = 0$ $\Rightarrow (x - 6)(x + 5) = 0$		M1
	$\Rightarrow (x-6)(x+5) = 0$ $\Rightarrow x = 6, x = -5$		dM1 A1 (4)
(b)	<i>a</i> = 6		B1 ft (1) 5 marks
Alt 1(a)	$fg(x) = x \Longrightarrow g(x) = f^{-1}(x)$ $\frac{4}{x-2} = \frac{x+1}{7}$		M1
	$\Rightarrow x^2 - x - 30 = 0$ $\Rightarrow (x - 6)(x + 5) = 0$		M1
	$\Rightarrow x = 6, x = -5$		dM1 A1 4 marks
S. Case	Uses $gf(x)$ instead $fg(x)$	Makes an error on $fg(x)$	
	$\frac{4}{7x - 1 - 2} = x$	Sets $fg(x) = x \Rightarrow \frac{7 \times 4}{7 \times (x-2)} - 1 = x$	M0
	$\Rightarrow 7x^2 - 3x - 4 = 0$ $\Rightarrow (7x + 4)(x - 1) = 0$	$\Rightarrow x^2 - x - 6 = 0$ $\Rightarrow (x+2)(x-3) = 0$	M1
	$\Rightarrow x = -\frac{4}{7}, x = 1$	$\Rightarrow x = -2, x = 3$	dM1 A0
			2 out of 4 marks

(a)

M1 Sets or implies that $fg(x) = \frac{28}{x-2} - 1$ Eg accept $fg(x) = 7\left(\frac{4}{x-2}\right) - 1$ followed by $fg(x) = \frac{7 \times 4}{x-2} - 1$ Alternatively sets $g(x) = f^{-1}(x)$ where $f^{-1}(x) = \frac{x \pm 1}{7}$ Note that $fg(x) = 7\left(\frac{4}{x-2}\right) - 1 = \frac{28}{7(x-2)} - 1$ is M0 M1 Sets up a 3TQ (= 0) from an attempt at fg(x) = x or $g(x) = f^{-1}(x)$

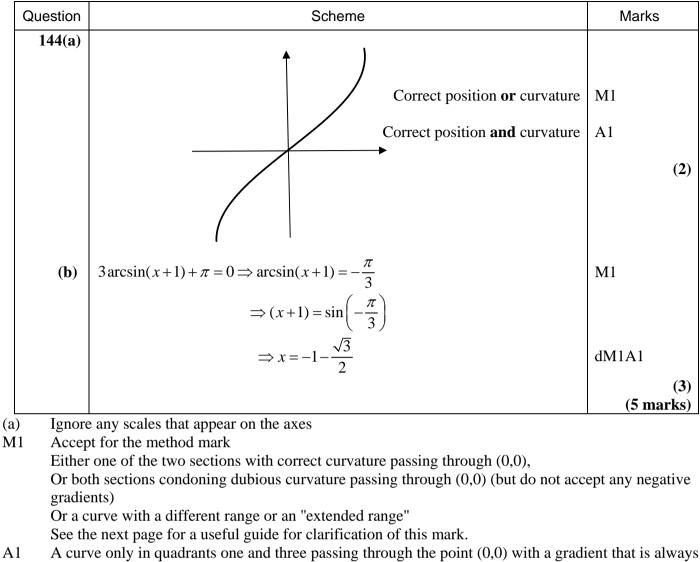
dM1 Method of solving 3TQ (= 0) to find at least one value for x. See "General Priciples for Core Mathematics" on page 3 for the award of the mark for solving quadratic equations This is dependent upon the previous M. You may just see the answers following the 3TQ. A1 Both x = 6 and x = -5

(b)

B1ft For a = 6 but you may follow through on the largest solution from part (a) provided more than one answer was found in (a). Accept 6, a = 6 and even x = 6Do not award marks for part (a) for work in part (b).

Question	Scheme	Marks	
143	(i) 21 (ii) $4e^{2x} - 25 = 0 \Rightarrow e^{2x} = \frac{25}{4} \Rightarrow 2x = \ln\left(\frac{25}{4}\right) \Rightarrow x = \frac{1}{2}\ln\left(\frac{25}{4}\right), \Rightarrow x = \ln\left(\frac{5}{2}\right)$ (iii) 25	B1 M1A1, A1 B1 (5	5)

(i)


- B1 Sight of 21. Accept (0, 21)Do not accept just |4-25| or (21, 0)
- (ii)
- M1 Sets $4e^{2x} 25 = 0$ and proceeds via $e^{2x} = \frac{25}{4}$ or $e^x = \frac{5}{2}$ to x = ...Alternatively sets $4e^{2x} - 25 = 0$ and proceeds via $(2e^x - 5)(2e^x + 5) = 0$ to $e^x = ...$

A1
$$\frac{1}{2}\ln\left(\frac{25}{4}\right)$$
 or awrt 0.92

A1 cao
$$\ln\left(\frac{5}{2}\right)$$
 or $\ln 5 - \ln 2$. Accept $\left(\ln\left(\frac{5}{2}\right), 0\right)$
(iii)

B1 k = 25 Accept also 25 or y = 25Do not accept just |-25| or x = 25 or $y = \pm 25$

positive. The gradient should appear to be approx ∞ at each end. If you are unsure use review If range and domain are given then ignore.

(b)

M1 Substitutes
$$g(x+1) = \arcsin(x+1)$$
 in $3g(x+1) + \pi = 0$ and attempts to make $\arcsin(x+1)$ the subject

Accept
$$\arcsin(x+1) = \pm \frac{\pi}{3}$$
 or even $g(x+1) = \pm \frac{\pi}{3}$. Condone $\frac{\pi}{3}$ in decimal form awrt1.047


dM1 Proceeds by evaluating $\sin\left(\pm\frac{\pi}{3}\right)$ and making x the subject. Accept for this mark $\Rightarrow x = \pm\frac{\sqrt{3}}{2} \pm 1$. Accept decimal such as -1.866

Do not allow this mark if the candidate works in mixed modes (radians and degrees) You may condone invisible brackets for both M's as long as the candidate is working correctly with the function

A1
$$-1 - \frac{\sqrt{3}}{2}$$
 oe with no other solutions. Remember to isw after a correct answer

Be careful with single fractions. $-\frac{2-\sqrt{3}}{2}$ and $\frac{-2+\sqrt{3}}{2}$ are incorrect but $-\frac{2+\sqrt{3}}{2}$ is correct Note: It is possible for a candidate to change $\frac{\pi}{3}$ to 60° and work in degrees for all marks

- (a)(i) Βĺ For an exponential (growth) shaped curve in any position. For this mark be tolerant on slips of the pen at either end. See Practice and Qualification for examples.
- Intersections with the axes at $\left(\ln\left(\frac{5}{2}\right), 0\right)$ and (0, -3). B1

Allow
$$\ln\left(\frac{5}{2}\right)$$
 and -3 being marked on the correct axes.Condone $\left(0, \ln\left(\frac{5}{2}\right)\right)$ and $\left(-3, 0\right)$ being marked on the x and y axes respectively.Do not allow $\left(\ln\left(\frac{5}{2}\right), 0\right)$ appearing as awrt (0.92, 0) for this mark unless seenelsewhere. Allow if seen in body of script. If they are given in the body of the scriptand differently on the curve (save for the decimal equivalent) then the ones on thecurve take precedence.B1Equation of the asymptote given as $y = -5$. Note that the curve must appear to havean asymptote at $y = -5$, not necessarily drawn. It is not enough to have -5 marked onthe axis or indeed $x = -5$. An extra asymptote with an equation gets B0(a)(ii)B1ftFor either the correct shape or a reflection of their curve from (a)(i) in the x- axis. The
shape must be correct including the cusp. The curve to the lhs of the cusp must appear
to have the correct including the cusp. The curve to the lbs of the cusp must appear
to have the correct explable formsB1ftScore for both intersections or follow through on both the intersections given in part
(a)(i), including docimals, as long as the curve appeared both above and below the x
- axis. See for an asymptote of $y = 5$ or follow through on an asymptote at $y = -C$ from
part (a)(i). Note that the curve must appear to have an asymptote at $y = -C$ from
pearlise if the first mark in (a)(ii) has been withheld for incorrect curvature on the lhs.(b)B1ftScore for $x \dots \ln \frac{35}{2\frac{5}{2}}x$... awrt 0.92 or follow through on the x intersection in part (a)
(i). Note that the curve must appear to have an asymptote at $y = -C$ from
pearlise if the first mark in (a)(ii) has been withheld for incorrec

award SC 100

A

Question Number	Scheme	Marks
146.(a)	Applies $vu'+uv'$ to $(x^2-x^3)e^{-2x}$	
	g'(x) = $(x^2 - x^3) \times -2e^{-2x} + (2x - 3x^2) \times e^{-2x}$	M1 A1
	$g'(x) = (2x^3 - 5x^2 + 2x)e^{-2x}$	A1
		(3)
(b)	Sets $(2x^3 - 5x^2 + 2x)e^{-2x} = 0 \Longrightarrow 2x^3 - 5x^2 + 2x = 0$	M1
	$x(2x^2-5x+2) = 0 \Longrightarrow x = (0), \frac{1}{2}, 2$	M1,A1
	Sub $x = \frac{1}{2}$, 2 into $g(x) = (x^2 - x^3)e^{-2x} \Rightarrow g(\frac{1}{2}) = \frac{1}{8e}$, $g(2) = -\frac{4}{e^4}$	dM1,A1
	Range - $\frac{4}{e^4}$, $g(x)$, $\frac{1}{8e}$	A1 (6)
(c)	Accept $g(x)$ is NOT a ONE to ONE function	
	Accept $g(x)$ is a MANY to ONE function	B1
	Accept $g^{-1}(x)$ would be ONE to MANY	(1)
		(10 marks)

(a)

M1 Uses the product rule vu'+uv' with $u = x^2 - x^3$ and $v = e^{-2x}$ or vice versa. If the rule is quoted it must be correct. It may be implied by their u = ..v = ..u' = ..v' = ..followed by their vu'+uv'. If the rule is not quoted nor implied only accept expressions of the form $(x^2 - x^3) \times \pm Ae^{-2x} + (Bx \pm Cx^2) \times e^{-2x}$ condoning bracketing issues

Method 2: multiplies out and **uses the product rule** on each term of $x^2e^{-2x} - x^3e^{-2x}$ Condone issues in the signs of the last two terms for the method mark Uses the product rule for uvw = u'vw + uv'w + uvw' applied as in method 1

Method 3:Uses **the quotient rule** with $u = x^2 - x^3$ and $v = e^{2x}$. If the rule is quoted it must be correct. It may be implied by their u = ..v = ..u' = ..v' = .. followed by their $\frac{vu'-uv'}{v^2}$. If the

rule is not quoted nor implied accept expressions of the form $\frac{e^{2x}(Ax - Bx^2) - (x^2 - x^3) \times Ce^{2x}}{(e^{2x})^2}$

condoning missing brackets on the numerator and e^{2x^2} on the denominator.

Method 4: Apply implicit differentiation to $ye^{2x} = x^2 - x^3 \Rightarrow e^{2x} \times \frac{dy}{dx} + y \times 2e^{2x} = 2x - 3x^2$ Condone errors on coefficients and signs

A1 A correct (unsimplified form) of the answer $g'(x) = (x^{2} - x^{3}) \times -2e^{-2x} + (2x - 3x^{2}) \times e^{-2x}$ by one use of the product rule or $g'(x) = x^{2} \times -2e^{-2x} + 2xe^{-2x} - x^{3} \times -2e^{-2x} - 3x^{2} \times e^{-2x}$ using the first alternative or $g'(x) = 2x(1-x)e^{-2x} + x^{2} \times -1 \times e^{-2x} + x^{2}(1-x) \times -2e^{-2x}$ using the product rule on 3 terms or $g'(x) = \frac{e^{2x}(2x - 3x^{2}) - (x^{2} - x^{3}) \times 2e^{2x}}{(e^{2x})^{2}}$ using the quotient rule.

A1 Writes $g'(x) = (2x^3 - 5x^2 + 2x)e^{-2x}$. You do not need to see f(x) stated and award even if a correct g'(x) is followed by an incorrect f(x). If the f(x) is not simplified at this stage you need to see it simplified later for this to be awarded.

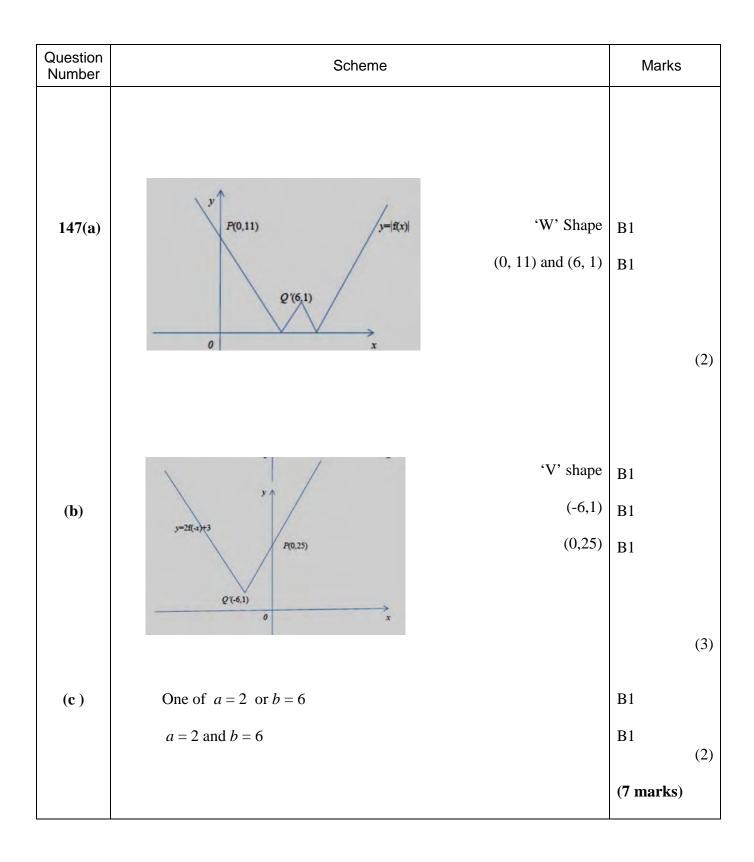
- (b) Note: The last mark in e-pen has been changed from a 'B' to an A mark
- M1 For setting their f(x) = 0. The = 0 may be implied by subsequent working. Allow even if the candidate has failed to reach a 3TC for f(x). Allow for $f(x) \dots 0$ or f(x), 0 as they can use this to pick out the relevant sections of the curve
- M1 For solving their 3TC = 0 by ANY correct method. Allow for division of x or factorising out the x followed by factorisation of 3TQ. Check first and last terms of the 3TQ. Allow for solutions from either $f(x) \dots 0$ or f(x), 0 Allow solutions **from the cubic equation** just appearing from a Graphical Calculator
- A1 $x = \frac{1}{2}$, 2. Correct answers from a correct g'(x) would imply all 3 marks so far in (b)
- dM1 Dependent upon both previous M's being scored. For substituting their **two** (non zero) values of x into g(x) to find both y values. Minimal evidence is required x = ... P y = ... is OK.

A1 Accept decimal answers for this mark.
$$g\left(\frac{1}{2}\right) = \frac{1}{8e} = \text{awrt } 0.046$$
 AND $g(2) = -\frac{4}{e^4} = \text{awrt } -0.073$

A1 CSO Allow -
$$\frac{4}{e^4}$$
, Range, $\frac{1}{8e}$, - $\frac{4}{e^4}$, $y_{,,,}$, $\frac{1}{8e}$, $\stackrel{e}{\hat{e}}$, $\frac{4}{e^4}$, $\frac{1}{8e}$, $\stackrel{u}{\hat{e}}$. Condone $y_{,,-}$, $\frac{4}{e^4}$, $y_{,,,}$, $\frac{1}{8e}$

Note that the question states hence and part (a) must have been used for all marks. Some students will just write down the answers for the range from a graphical calculator. Seeing just $-\frac{4}{e^4}$, g(x), $\frac{1}{8e}$ or -0.073, g(x), 0.046 (special case 100000. They know what a range is!

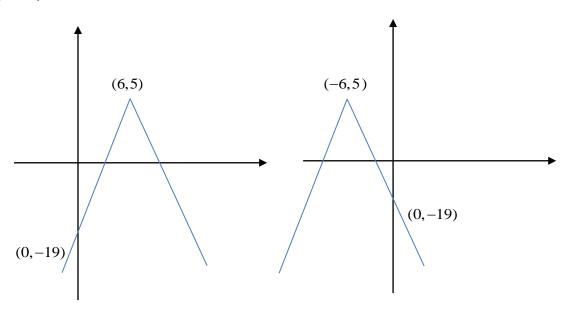
(c) B1


If the candidate states 'NOT ONE TO ONE' then accept unless the explicitly link it to $g^{-1}(x)$. So accept 'It is not a one to one function'. 'The function is not one to one' g(x) is not one to one'

If the candidate states 'IT IS MANY TO ONE' then accept unless the candidate explicitly links it to $g^{-1}(x)$. So accept 'It is a many to one function.' 'The function is many to one' 'g(x) is many to one'

If the candidate states 'IT IS ONE TO MANY' then accept unless the candidate explicitly links it to g(x)

Accept an explanation like " one value of x would map/ go to more than one value of y" Incorrect statements scoring B0 would be $g^{-1}(x)$ is not one to one, $g^{-1}(x)$ is many to one and g(x) is one to many.



- (a)
- B1 A W shape in any position. The arms of the W do not need to be symmetrical but the two bottom points must appear to be at the same height. Do not accept rounded W's. A correct sketch of $y = f(|_X|)$ would score this mark.
- B1 A W shape in quadrants 1 and 2 sitting on the x axis with P' = (0,11) and Q' = (6,1). It is not necessary to see them labelled. Accept 11 being marked on the y axis for P'. Condone P' = (11,0) marked on the correct axis, but Q' = (1,6) is B0
- (b)
- B1 Score for a V shape in any position on the grid. The arms of the V do not need to be symmetrical. Do not accept rounded or upside down V's for this mark.
- B1 Q' = (-6, 1). It does not need to be labelled but it must correspond to the minimum point on the curve and be in the correct quadrant.
- B1 P' = (0, 25). It does not need to be labelled but it must correspond to the y intercept and the line must cross the axis. Accept 25 marked on the correct axis. Condone P' = (25, 0) marked on the positive y axis.

Special case: A candidate who mistakenly sketches y = -2f(x) + 3 or y = -2f(-x) + 3 will arrive at one of the following. They can be awarded SC B1B0B0

(c)

B1 Either states a = 2 or b = 6.

This can be implied (if there are no stated answers given) by the candidate writing that y = ..|x-6|-1or y = 2|x-..|-1. If they are both stated and written, the stated answer takes precedence.

B1 States both a = 2 and b = 6

This can be implied by the candidate stating that y = 2|x-6|-1If they are both stated and written, the stated answer takes precedence.

Question Number	Scheme	Marks
148.(a)	$x^{2} + x - 6 = (x + 3)(x - 2)$ x = 3(2x+1) = x(x-2) + 3(2x+1)	B1
	$\frac{x}{x+3} + \frac{3(2x+1)}{(x+3)(x-2)} = \frac{x(x-2) + 3(2x+1)}{(x+3)(x-2)}$ $= \frac{x^2 + 4x + 3}{(x+3)(x-2)}$	M1 A1
	$=\frac{(x+3)(x+1)}{(x+3)(x-2)}$	
	$=\frac{(x+1)}{(x-2)}$ cso	A1* (4)
(b)	One end either $(y) > 1, (y) \ge 1$ or $(y) < 4, (y) \le 4$ 1 < y < 4	B1 B1 (2)
(c)	Attempt to set Either $g(x) = x$ or $g(x) = g^{-1}(x)$ or $g^{-1}(x) = x$ or $g^{2}(x) = x$ x + 1	
	$\frac{(x+1)}{(x-2)} = x \qquad \frac{x+1}{x-2} = \frac{2x+1}{x-1} \qquad \frac{2x+1}{x-1} = x \qquad \frac{\frac{x+1}{x-2}+1}{\frac{x+1}{x-2}-2} = x$	M1
	$x^{2} - 3x - 1 = 0 \Longrightarrow x = \dots$	A1, dM1
	$a = \frac{3 + \sqrt{13}}{2} \operatorname{oe} \left(1.5 + \sqrt{3.25} \right) $ cso	A1
		(4) (10 marks)

- (a)
- B1 $x^2 + x 6 = (x + 3)(x 2)$ This can occur anywhere in the solution.
- M1 For combining the two fractions with a common denominator. The denominator must be correct for their fractions and at least one numerator must have been adapted. Accept as separate fractions. Condone missing brackets.

Accept
$$\frac{x}{x+3} + \frac{3(2x+1)}{x^2+x-6} = \frac{x(x^2+x-6) + 3(2x+1)(x+3)}{(x+3)(x^2+x-6)}$$

Condone $\frac{x}{x+3} + \frac{3(2x+1)}{(x+3)(x-2)} = \frac{x \times x-2}{(x+3)(x-2)} + \frac{3(2x+1)}{(x+3)(x-2)}$

A1 A correct intermediate form of $\frac{\text{simplified quadratic}}{\text{simplified quadratic}}$

Accept
$$\frac{x^2 + 4x + 3}{(x+3)(x-2)}, \frac{x^2 + 4x + 3}{x^2 + x - 6}, \text{OR} \quad \frac{x^3 + 7x^2 + 15x + 9}{(x+3)(x^2 + x - 6)} \rightarrow \frac{(x+1)(x+3)(x+3)}{(x+3)(x^2 + x - 6)}$$

As in question one they can score this mark having 'invisible' brackets on line 1.

A1* Further factorises and cancels (which may be implied) to complete the proof to reach the given answer $=\frac{(x+1)}{(x-2)}$. All aspects including bracketing must be correct. If a cubic is formed then it needs

to be correct.

- B1 States either end of the range. Accept either y < 4, $y \le 4$ or y > 1, $y \ge 1$ with or without the y's.
- B1 Correct range. Accept 1 < y < 4, 1 < g < 4, y > 1 and y < 4, (1,4), 1 < Range < 4, even 1 < f < 4, Do not accept 1 < x < 4, $1 < y \le 4$, [1,4) etc.

Special case, allow B1B0 for 1 < x < 4

(c)

(b)

M1 Attempting to set g(x) = x, $g^{-1}(x) = x$ or $g(x) = g^{-1}(x)$ or $g^{2}(x) = x$.

If $g^{-1}(x)$ has been used then a full attempt must have been made to make *x* the subject of the formula. A full attempt would involve cross multiplying, collecting terms, factorising and ending with division.

As a result, it must be in the form
$$g^{-1}(x) = \frac{\pm 2x \pm 1}{\pm x \pm 1}$$

Accept as evidence
$$\frac{(x+1)}{(x-2)} = x$$
 OR $\frac{x+1}{x-2} = \frac{\pm 2x \pm 1}{\pm x \pm 1}$ OR $\frac{\pm 2x \pm 1}{\pm x \pm 1} = x$ OR $\frac{\frac{x+1}{x-2}+1}{\frac{x+1}{x-2}-2} = x$

A1 $x^2 - 3x - 1 = 0$ or exact equivalent. The =0 may be implied by subsequent work.

- dM1 For solving a 3TQ=0. It is dependent upon the first M being scored. Do not accept a method using factors unless it clearly factorises. Allow the answer written down awrt 3.30 (from a graphical calculator).
- A1 $a \text{ or } x = \frac{3 + \sqrt{13}}{2}$. Ignore any reference to $\frac{3 \sqrt{13}}{2}$ Withhold this mark if additional values are given for x, x > 3

Question Number	Scheme	Marks
	Factorise $4x^2 - 9 = (2x - 3)(2x + 3)$ Use of common denominator	B1
149.	$\frac{3}{2x+3} - \frac{1}{2x-3} + \frac{6}{4x^2-9} = \frac{3(2x-3) - 1(2x+3) + 6}{(2x+3)(2x-3)}$	M1
	$=\frac{4x-6}{(2x+3)(2x-3)}$	A1
	$=\frac{2(2x-3)}{(2x+3)(2x-3)}=\frac{2}{2x+3}$	A1 (4)
		4 marks
	Alternative where $4x^2 - 9$ is not factorised	
	$\frac{3}{2x+3} - \frac{1}{2x-3} + \frac{6}{4x^2-9} = \frac{3(2x-3)(4x^2-9) - 1(2x+3)(4x^2-9) + 6(2x+3)(2x-3)}{(2x+3)(2x-3)(4x^2-9)}$	M1
	$=\frac{2(2x-3)(4x^2-9)}{(2x+3)(2x-3)(4x^2-9)} \text{ or } \frac{(4x-6)(4x^2-9)}{(2x+3)(2x-3)(4x^2-9)} \text{ or } \frac{(2x-3)(8x^2-18)}{(2x+3)(2x-3)(4x^2-9)}$	B1
	$= \frac{(4x-6)(4x^2-9)}{(2x+3)(2x-3)(4x^2-9)} \text{ or } \frac{2(4x-6)(4x^2-9)}{(2x+3)(2x-3)(4x^2-9)}$	A1
	$=\frac{2}{2x+3}$	A1

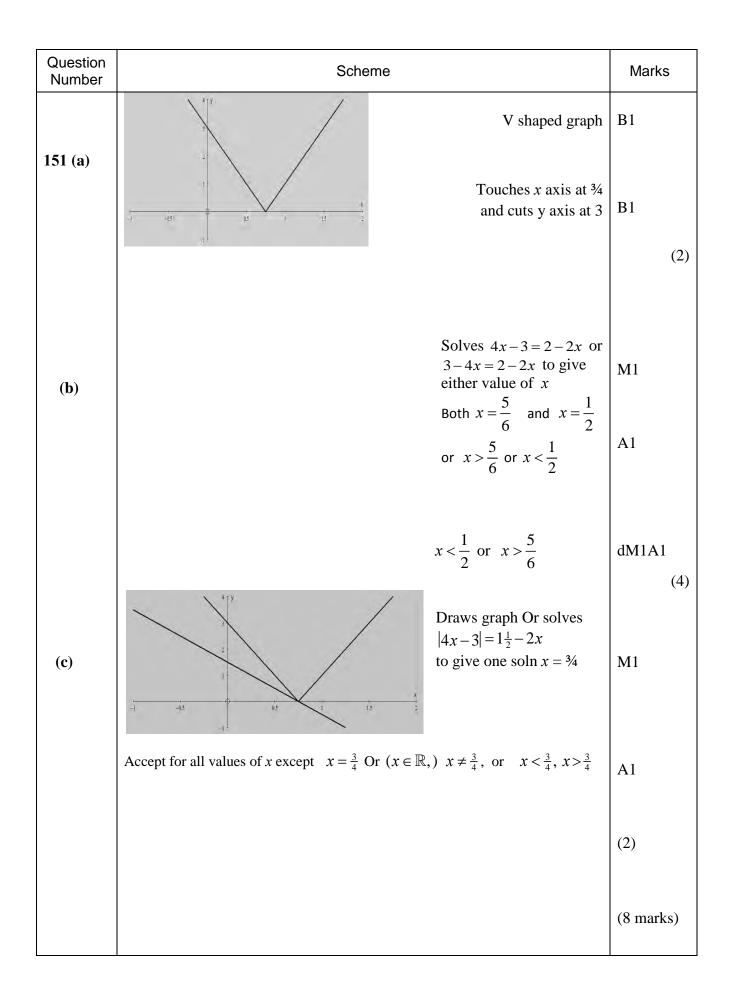
- B1 For **factorising** $4x^2 9$ to (2x-3)(2x+3) at any point. Note that this is not scored for combining the terms (2x-3)(2x+3) and writing the product as $4x^2 9$
- M1 Use of common denominator combines three fractions to form one. The denominator must be correct for their fractions and at least one numerator must have been adapted. Condone missing brackets. $\frac{16x^3 - 24x^2 - 36x + 54}{(4x^2 - 9)^2}$ is a correct intermediate stage but needs to be factorised and cancelled before A1

Examples of incorrect fractions scoring this mark are: $\frac{3(2x-3)-2x+3+6}{(2x+3)(2x-3)}$ missing bracket

$$\frac{3(4x^2-9)-4x^2-9+6(2x+3)(2x-3)}{(2x+3)(2x-3)(4x^2-9)}$$
 denominator correct and at least one numerator has been adapted.

A1 Correct simplified intermediate answer. It must be a CORRECT $\frac{\text{Linear}}{\text{Quadratic}}$ or $\frac{\text{Quadratic}}{\text{Cubic}}$

Accept versions of $\frac{4x-6}{(2x+3)(2x-3)}$ or $\frac{8x^2-18}{(2x+3)(4x^2-9)}$


A1 $\operatorname{cao} = \frac{2}{2x+3}$

Allow recovery from invisible brackets for all 4 marks as the answer is not given.

Question Number	Scheme	Marks
150	y = x Shape of $y = -2 - e^4$ $y = -2 - e^{4x}$ cuts y axis at (0,-3) $y = -2 - e^{4x}$ has asymptote a $y = -2 - e^{4x}$ has asymptote a $y = -2 - e^{4x}$ has asymptote a	B1

- B1 Correct shape and position for $y = x^3$. It must appear to go through the origin. It must only appear in Quadrants 1 and 3 and have a gradient that is always ≥ 0 . The gradient should appear large at either end. Tolerate slips of the pen.See practice and qualification for acceptable curves.
- B1 Correct shape for $y = -2 e^{4x}$, its position is not important for this mark. The gradient must be approximately zero at the left hand end and increase negatively as you move from left to right along the curve. See practice and qualification for acceptable curves.
- B1 Score for $y = -2 e^{4x}$ cutting or meeting the y axis at (0,-3). Its shape is not important. Accept for the intention of (0,-3), -3 being marked on the y – axis as well as (-3,0) Do not accept 3 being marked on the negative y axis.
- B1 Score for $y = -2 e^{4x}$ having an asymptote stated as y = -2. This is dependent upon the curve appearing to have an asymptote there. Do not accept the asymptote marked as '-2' or indeed x = -2. See practice and qualification for acceptable solutions.

- (a)
- B1 A 'V' shaped graph. The position is not important. Do not accept curves. See practice and qualification items for clarity. Accept a V shape with a 'dotted' extension of y = 4x 3 appearing under the x axis.
- B1 The graph **meets** the x axis at $x = \frac{3}{4}$ and **crosses** the y axis at y = 3. Do not allow multiple meets or crosses If they have lost the previous B1 mark for an extra section of graph underneath the x axis allow for **crossing** the x axis at $x = \frac{3}{4}$ and **crosses** the y axis at y = 3.

Accept marked elsewhere on the page with A and B marked on the graph and $A = \left(\frac{3}{4}, 0\right)$ and B = (0,3)

Condone
$$\left(0, \frac{3}{4}\right)$$
 and $(3, 0)$ marked on the correct axis

- (b)
- M1 Attempts to solve |4x-3|...2-2x finding at least one solution. You may see ... replaced by either = or > Accept as evidence $\pm 4x \pm 3 = 2 2x \Longrightarrow x = ..$ Accept as evidence $\pm 4x \pm 3 > 2 - 2x \Longrightarrow x > ...$, or x < ...
- A1 Both critical values $x = \frac{5}{6}$ and $x = \frac{1}{2}$, or one inequality, accept $x > \frac{5}{6}$ or $x < \frac{1}{2}$ Accept x = 0.83 and x = 0.5 for the critical values

Accept both of these answers with no incorrect working for both marks

- dM1Dependent upon the previous M, this is scored for selecting the outside region of their two points. Eg if M1 has been scored for $4x - 3 = 2 - 2x \Rightarrow x = 0.83$ and $-4x - 3 = 2 - 2x \Rightarrow x = -2.5$ A correct application of M1 would be x < -2.5, x > 0.83
- A1 Correct answer only $x < \frac{1}{2}$ or $x > \frac{5}{6}$.

Accept x < 0.5, x > 0.83

- (c)
- M1 Either sketch both lines showing a single intersection at the point $x = \frac{3}{4}$

Or solves $|4x-3| = 1\frac{1}{2} - 2x$ using both $4x - 3 = 1\frac{1}{2} - 2x$ and $-4x + 3 = 1\frac{1}{2} - 2x$ giving one solution $x = \frac{3}{4}$ Accept $|4x-3| > 1\frac{1}{2} - 2x$ using both $4x - 3 > 1\frac{1}{2} - 2x$ and $-4x + 3 > 1\frac{1}{2} - 2x$ giving one solution $x = \frac{3}{4}$

If two values are obtained using either method it is M0A0

A1 States that the solution set is all values apart from $x = \frac{3}{4}$. Do not isw in this question. Score their final statement. Accept versions of all values of *x* except $x = \frac{3}{4}$ or $x \in \mathbb{R}$, $x \neq \frac{3}{4}$, or $x < \frac{3}{4}$, $x > \frac{3}{4}$

Question Number	Scheme	Marks
152(a)	$\mathbf{f}(x) > k^2$	B1
(b)	$y = e^{2x} + k^2 \Longrightarrow e^{2x} = y - k^2$	(1) M1
	$\Rightarrow x = \frac{1}{2}\ln(y - k^2)$	dM1
	$\Rightarrow f^{-1}(x) = \frac{1}{2}\ln(x - k^2), x > k^2$	A1
(c)	$\ln 2x + \ln 2x^2 + \ln 2x^3 = 6$	(3) M1
(0)	$m 2x + m 2x^{2} + m 2x^{2} = 6$ $\Rightarrow \ln 8x^{6} = 6$	M1 M1
	$\Rightarrow 8x^6 = e^6 \Rightarrow x =$	M1
	$\Rightarrow x = \left(\frac{e}{\sqrt[6]{8}}\right) = \frac{e}{\sqrt{2}} (\text{Ignore any reference to } -\frac{e}{\sqrt{2}})$	A1
	2(1+(2-)) = 2	(4)
(d)	$fg(x) = e^{2 \times \ln(2x)} + k^2$	M1
	$\Rightarrow \mathrm{fg}(x) = (2x)^2 + k^2 = 4x^2 + k^2$	A1 (2)
(e)	$fg(x) = 2k^2 \Longrightarrow 4x^2 + k^2 = 2k^2$	(2)
	$\Rightarrow 4x^2 = k^2 \Rightarrow x =$	M1
	$\Rightarrow x = \frac{k}{2}$ only	A1
	-	(2)
(alt c)	$\ln 2x + \ln 2x^2 + \ln 2x^3 = 6$	12 marks M1
(urt c)	$\Rightarrow \ln 2 + \ln x + \ln 2 + 2 \ln x + \ln 2 + 3 \ln x = 6$	
	$\Rightarrow 3\ln 2 + 6\ln x = 6$	
	$\Rightarrow \ln x = 1 - \frac{1}{2} \ln 2$	M1
	$\Rightarrow x = e^{1 - \frac{1}{2} \ln 2}, = \frac{e}{\sqrt{2}}$ (Ignore any reference to $-\frac{e}{\sqrt{2}}$)	M1, A1
(alt e)	$\Rightarrow 2\ln(2x) = \ln(2k^2 - k^2)$	(4)
	$\Rightarrow \ln(2x)^2 = \ln(k^2), \Rightarrow 4x^2 = k^2 \Rightarrow x = \frac{k}{2}$	M1, A1

- (a)
- B1 States the correct range for f. Accept $f(x) > k^2$, $f > k^2$, $Range > k^2$, (k^2, ∞) , $y > k^2$ Range is greater than k^2 Do not accept $f(x) \ge k^2$, $x > k^2$, $[k^2, \infty)$
- (b)
- M1 Attempts to make x or a swapped y the subject of the formula. Score for $y = e^{2x} + k^2 \Rightarrow e^{2x} = y \pm k^2$ and proceeding to $x = \ln \dots$ The minimum expectation is that e^{2x} is made the subject before taking ln's
- dM1 Dependent upon the previous M having been scored. It is for proceeding by firstly taking ln's of the whole rhs, not the individual elements, and then dividing by 2. Score M1, dM1 for writing down

 $x = \frac{1}{2}\ln(y \pm k^2)$ or alternatively $y = \frac{1}{2}\ln(x \pm k^2)$. Condone missing brackets for this mark.

A1 The correct answer in terms of x including the bracket **and** the domain $f^{-1}(x) = \frac{1}{2}\ln(x-k^2)$, $x > k^2$. Accept equivalent answers like $y = 0.5 \ln |x-k^2|$, Domain greater than k^2 , (k^2, ∞)

(c)

- M1 Attempts to solve equation by writing down $\ln 2x + \ln 2x^2 + \ln 2x^3 = 6$
- M1 Uses addition laws of logs to write in the form $\ln Ax^n = 6$
- M1 Takes exp's (correctly) and proceeds to a solution for x = ...

A1 Correct solution and correct answer. $x = \frac{e}{\sqrt{2}}$. You may ignore any reference to $x = -\frac{e}{\sqrt{2}}$ Special caseS. Candidate who solve (and treat it as though it was bracketed)

S. Case 1 $\ln 2x + \ln 2x^2 + \ln 2x^3 = 6 \Rightarrow \ln 2x + 2\ln 2x + 3\ln 2x = 6 \Rightarrow 6\ln 2x = 6 \Rightarrow x = \frac{e}{2}$

S. Case 2 $\ln 2x + \ln(2x)^2 + \ln(2x)^3 = 6 \Rightarrow 6 \ln 2x = 6 \Rightarrow \ln 2x = 1 \Rightarrow x = \frac{e}{2}$

S. Case 3 $\ln 2x + \ln(2x)^2 + \ln(2x)^3 = 6 \Rightarrow \ln 2x + \ln 4x^2 + \ln 8x^3 = 6 \Rightarrow \ln 64x^6 = 6 \Rightarrow 64x^6 = e^6 \Rightarrow x = \frac{e}{2}$

- scores M0 (Incorrect statement/ may be implied by subsequent work), M1 (Correct ln laws), M1 (Correct method of arriving at *x*=), A0
- (d) For the purposes of marking you can score (d) and (e) together
- M1 Correct order of applying g before f to give a correct unsimplified answer. Accept y =Accept versions of $fg(x) = e^{2 \times \ln(2x)} + k^2$, $y = e^{\ln(2x)^2} + k^2$

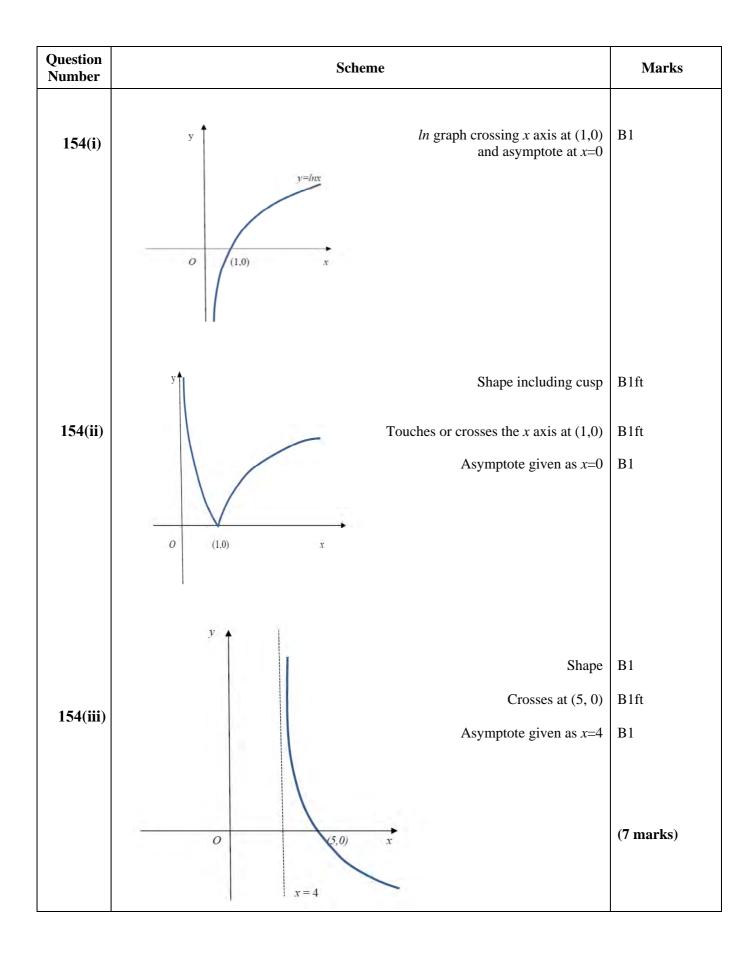
A1 A correct simplified answer $fg(x) = (2x)^2 + k^2$, or $fg(x) = 4x^2 + k^2$. Accept y =

(e)

M1 Sets the answer to (d) in the form $Ax^2 + k^2 = 2k^2$, where A = 2 or 4 and proceeds in the correct order to reach an equation of the form $Ax^2 = k^2$.

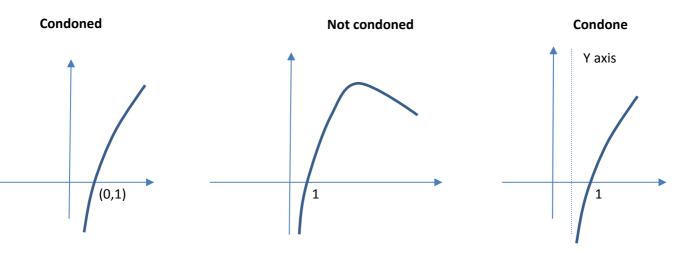
In the alternative method it would be for reaching $\ln(Ax^2) = \ln(k^2)$, A = 2 or 4 or any equivalent form $\ln \ldots = \ln \ldots$

A1
$$x = \frac{k}{2}$$
 only. The answer $x = \pm \frac{k}{2}$ is A0.


E EXPERT

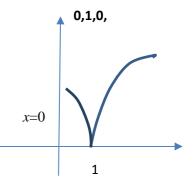
Question Number	Scheme	Marks	
153	$3x^2 - 2x + 7$		
	$x^{2}(+0x) - 4 \overline{\big)}3x^{4} - 2x^{3} - 5x^{2} + (0x) - 4$		
	$\frac{3x^4 + 0x^3 - 12x^2}{2}$		
	$-2x^3+7x^2+0x$		
By Division	$\frac{-2x^3+0x^2+8x}{2}$		
e e	$7x^2 - 8x - 4$		
	$\frac{7x^2 + 0x - 28}{2}$		
	-8x + 24		
	a = 3	B1	
	$3x^2 - 2x$		
	$x^{2}(+0x) - 4\overline{\smash{\big)}3x^{4} - 2x^{3} - 5x^{2} + (0x) - 4}$		
	Long division as far as $3x^4 + 0x^3 - 12x^2$	M1	
	$-2x^3 + \dots$		
	$-2x^3 + \dots$		
	Two of $b = -2$ $c = 7$ $d = -8$ $e = 24$	A1	
	All four of $b = -2$ $c = 7$ $d = -8$ $e = 24$	A1	
	Notes for Question 153	(4 marks)	
B1 Statin	If $a = 3$. This can also be scored by the coefficient of x^2 in $3x^2 - 2x + 7$		
M1 Usir	ng long division by $x^2 - 4$ and getting as far as the 'x' term. The coefficients need no	t be correct	
	ard if you see the whole number part as $x^2 +x$ following some working. You m		
	table/ grid.		
	ng division by $(x+2)$ will not score anything until $(x-2)$ has been divided into the n	ew quotient. It is	
•	y unlikely to score full marks and the mark scheme can be applied. ieving two of $b = -2$ $c = 7$ $d = -8$ $e = 24$.		
	answers may be embedded within the division sum and can be implied.		
Accept a corre	ect long division for 3 out of the 4 marks scoring B1M1A1A0		
Need to see a	=, b=, or the values embedded in the rhs for all 4 marks		

Question Number	Scheme	Marks
Alt 1		
By Multiplicat ion	* $3x^4 - 2x^3 - 5x^2 - 4 \equiv (ax^2 + bx + c)(x^2 - 4) + dx + e$	
	Compares the x^4 terms $a = 3$	B1
	Compares coefficients to obtain a numerical value of one furthe r constant $-2 = b$, $-5 = -4a + c \Longrightarrow c =$,	M1
	Two of $b = -2$ $c = 7$ $d = -8$ $e = 24$ All four of $b = -2$ $c = 7$ $d = -8$ $e = 24$	A1 A1
	Notes for Question 153	(4 marks)
B1 Sta	ting $a = 3$. This can also be scored for writing $3x^4 = ax^4$	
The	M1 Multiply out expression given to get *. Condone slips only on signs of either expression. Then compare the coefficient of any term (other than x^4) to obtain a numerical value of one further constant. In reality this means a valid attempt at either <i>b</i> or <i>c</i> The method may be implied by a correct additional constant to <i>a</i> .	
A1 Ac	hieving two of $b = -2$ $c = 7$ $d = -8$ $e = 24$	
A1 Ac	hieving all of $b = -2$ $c = 7$ $d = -8$ and $e = 24$	


	Notes for Question 154
(i) B1	Correct shape, correct position and passing through $(1, 0)$. Graph must 'start' to the rhs of the y - axis in quadrant 4 with a gradient that is large. The gradient then decreases as it moves through $(1, 0)$ into quadrant 1. There must not be an obvious maximum point but condone 'slips'. Condone the point marked $(0,1)$ on the correct axis. See practice and qualification for clarification. Do not with hold this mark if (x=0) the asymptote is incorrect or not given.
(ii) B1ft	Correct shape including the cusp wholly contained in quadrant 1. The shape to the rhs of the cusp should have a decreasing gradient and must not have an obvious maximum The shape to the lhs of the cusp should not bend backwards past (1,0) Tolerate a 'linear' looking section here but not one with incorrect curvature (See examples sheet (ii) number 3. For further clarification see practice and qualification items. Follow through on an incorrect sketch in part (i) as long as it was above and below the <i>x</i> axis.
B1ft point mar	The curve touches or crosses the x axis at $(1, 0)$. Allow for the curve passing through a ked '1' on the x axis. Condone the point marked on the correct axis as $(0, 1)$ Follow through on an incorrect intersection in part (i).
B1	Award for the asymptote to the curve given/ marked as $x = 0$. Do not allow for it given/ marked as 'the y axis'. There must be a graph for this mark to be awarded, and there must be an asymptote on the graph at $x = 0$. Accept if $x=0$ is drawn separately to the y axis.
(iii)	
B1	Correct shape. The gradient should always be negative and becoming less steep. It must be approximately infinite at the <i>lh</i> end and not have an obvious minimum. The lh end must not bend 'forwards' to make a C shape. The position is not important for this mark. See practice and qualification for clarification.
B1ft	The graph crosses (or touches) the <i>x</i> axis at (5, 0). Allow for the curve passing through a point marked '5' on the <i>x</i> axis. Condone the point marked on the correct axis as (0, 5) Follow through on an incorrect intersection in part (i). Allow for $((i) + 4, 0)$
B1 there a	The asymptote is given/marked as $x = 4$. There must be a graph for this to be awarded and nust be an asymptote on the graph (in the correct place to the rhs of the y axis).
XC .1	abs are not labelled as (i) (ii) and (iii) mark them in the order that they are given

If the graphs are not labelled as (i), (ii) and (iii) mark them in the order that they are given.




Examples of graphs in number 154

Part (i)

Part (ii)

Example of follow through in part (ii) and (iii)

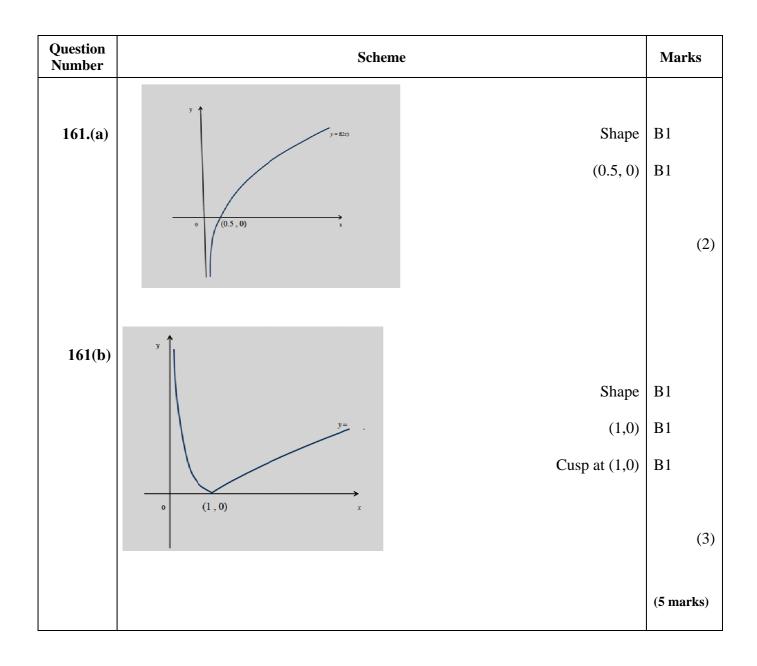
Question Number	Scheme	Marks
155(a)	$0 \leq f(x) \leq 10$	B1
		(1)
(b)	ff(0) = f(5), = 3	B1,B1
	$4 \pm 3r$	(2)
(c)	$y = \frac{4+3x}{5-x} \Longrightarrow y(5-x) = 4+3x$	
	$\Rightarrow 5y - 4 = xy + 3x$	M1
	$\Rightarrow 5y - 4 = x(y+3) \Rightarrow x = \frac{5y - 4}{y+3}$	dM1
	$g^{-1}(x) = \frac{5x - 4}{3 + x}$	A1
		(3)
(d)	$gf(x) = 16 \Longrightarrow f(x) = g^{-1}(16) = 4$ oe	M1A1
	$f(x) = 4 \Longrightarrow x = 6$	B1
	$f(x) = 4 \Rightarrow 5 - 2.5x = 4 \Rightarrow x = 0.4$ oe	M1A1
		(5)
		(11 marks)
Alt 1 to 155(d)	$gf(x) = 16 \Longrightarrow \frac{4 + 3(ax + b)}{5 - (ax + b)} = 16$	M1
	ax + b = x - 2 or 5 - 2.5x	A1
	$\Rightarrow x = 6$	B1
	$\frac{4+3(5-2.5x)}{5-(5-2.5x)} = 16 \Longrightarrow x = \dots$	M1
	$\Rightarrow x = 0.4$ oe	A1 (5)

	Notes for Question 155			
(a)				
B1	Correct range. Allow $0 \le f(x) \le 10$, $0 \le f \le 10$, $0 \le y \le 10$, $0 \le range \le 10$, $[0,10]$			
	Allow $f(x) \ge 0$ and $f(x) \le 10$ but not $f(x) \ge 0$ or $f(x) \le 10$			
	Do Not Allow $0 \le x \le 10$. The inequality must include BOTH ends			
(b)				
B1	For correct one application of the function at $x=0$			
	Possible ways to score this mark are $f(0)=5$, $f(5) 0 \rightarrow 5 \rightarrow$			
B1:	3 ('3' can score both marks as long as no incorrect working is seen.)			
(c)				
M1	For an attempt to make x or a replaced y the subject of the formula. This can be scored for			
	putting $y = g(x)$, multiplying across, expanding and collecting <i>x</i> terms on one side of the equation. Condone slips on the signs			
dM1	Take out a common factor of x (or a replaced y) and divide, to make x subject of formula. Only allow			
GIVII	one sign error for this mark			
A1				
AI	Correct answer. No need to state the domain. Allow $g^{-1}(x) = \frac{5x-4}{3+x}$ $y = \frac{5x-4}{3+x}$			
	$5 - \frac{4}{3}$			
	Accept alternatives such as $y = \frac{4-5x}{-3-x}$ and $y = \frac{5-\frac{4}{x}}{1+\frac{3}{x}}$			
	$\frac{-3-x}{1+\frac{5}{x}}$			
(d)	λ			
M1	Stating or implying that $f(x) = g^{-1}(16)$. For example accept $\frac{4+3f(x)}{5-f(x)} = 16 \Rightarrow f(x) =$			
A1	Stating $f(x) = 4$ or implying that solutions are where $f(x) = 4$			
B1	x = 6 and may be given if there is no working			
M1	Full method to obtain other value from line $y = 5 - 2.5x$			
	$5-2.5x = 4 \Longrightarrow x = \dots$			
	Alternatively this could be done by similar triangles. Look for $\frac{2}{5} = \frac{2-x}{4}$ (<i>oe</i>) $\Rightarrow x =$			
A1	0.4 or 2/5			
Alt 1				
M1	Writes $gf(x) = 16$ with a linear $f(x)$. The order of $gf(x)$ must be correct			
	Condone invisible brackets. Even accept if there is a modulus sign.			
A1	Uses $f(x) = x - 2$ or $f(x) = 5 - 2.5x$ in the equation $gf(x) = 16$			
B1	x = 6 and may be given if there is no working			
M1	Attempt at solving $\frac{4+3(5-2.5x)}{5-(5-2.5x)} = 16 \Rightarrow x = \dots$. The bracketing must be correct and there must be			
no mo	bre than one error in their calculation			
A1	$x = 0.4, \frac{2}{5}$ or equivalent			
	5			

Question Number	Scheme	Marks
156.	(a) $x^2 + 3x + 2 = (x+2)(x+1)$ Attempt as a single fraction $\frac{6x + 12 - 2(x^2 + 3x + 2)}{x^2 + 3x + 2}$ or $\frac{6 - 2(x+1)}{x+1}$	B1 M1
	$=\frac{4-2x}{x+1}$	A1
		(3)
	(b)(i) (0,8) Same shape	B1
	intercept at (0,8)	B1
	x intercept at (1,0) y=2g(2x)	B1
		(3)
	(b)(ii) y	
	Correct shape in quadrants 1& 2	B1
	(0,2) Both (0,2) and (4,0)	B1
	(4,0) x	
		(2) (8 marks)

Question Number	Scheme	Marks
157.	(a) (2.5,0) (0,-5)	B1B1 (2)
	(b) $2x-5=3-x \Longrightarrow x=\frac{8}{3}$ oe.	B1
	$-2x - 5 = 3 - x \Longrightarrow x = -8$	M1,A1
		(3)
		(5 marks)

Question Number	Scheme	Marks
158	(a)	
	$y=10-x$ $y = e^x$ Shape for $y=10-x$	B1
	10 Shape for $y = e^x$	B1
	$\begin{array}{c} 1 \\ \hline 10 \\ \hline x \end{array}$ co- ordinates correct (0,10),(10,0) and (0,1)	B1
		(3)
	(b) One solution as there is one point of intersection	B1√
		(1)
	(c) Sub $x=2$ and $x=3$ into $f(x) = e^x - 10 + x$	
	f(2)=-0.61, f(3)=(+)13.1	M1
	Both correct to 1sf, reason (change of sign) and conclusion (hence root)	A1
		(2)

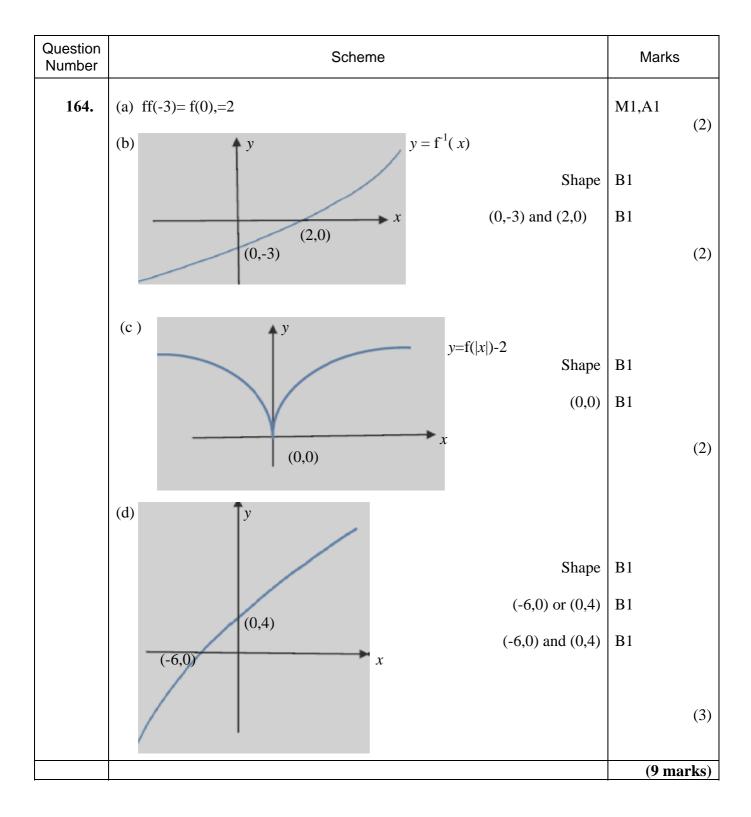


Question Number	Scheme	Marks
159.	(a) $f(x) \ge -3$	B1
	(b) $f(0) = 5$ or attempts to put their $f(0)$ into $e^{2x-8} - 4$	(1) M1
	Correct answer $ff(0)=e^2-4$	A1
		(2)
	(c) Either $5-2x = 21 \Rightarrow x = -8$	M1A1
	Or $e^{2x-8} - 4 = 21$	M1
	Correct order and $\ln \text{ work} \Rightarrow x = \frac{\ln 25 + 8}{2}$ oe. $\ln 5 + 4$	M1A1 (5)
	(d) f does not have an inverse as it is a 'many to one' functionAccept f does not have an inverse as it is not a 'one to one' function	B1
		(1)
		(9 marks)

Question Number	Scheme	Marks
160.	(a) $x^2 + x - 12 = (x + 4)(x - 3)$	B1
	Attempt as a single fraction $\frac{(3x+5)(x-3)-2(x^2+x-12)}{(x^2+x-12)(x-3)} \text{ or } \frac{3x+5-2(x+4)}{(x+4)(x-3)}$	M1
	$=\frac{x-3}{(x+4)(x-3)} , =\frac{1}{(x+4)} $ cao	A1, A1
		(4 marks)
	Notes for Question 160	
M1 For a The Cond Exa $\frac{(3)}{(x^2)}$	correctly factorising $x^2 + x - 12 = (x + 4)(x - 3)$. It could appear anywhere in their solution an attempt to combine two fractions. The denominator must be correct for 'their' fractions. terms could be separate but one term must have been modified. None invisible brackets. mples of work scoring this mark are; $\frac{3x+5)(x-3)}{(x-12)(x-3)} - \frac{2(x^2 + x - 12)}{(x^2 + x - 12)(x-3)}$ Two separate terms $\frac{5-2x+4}{(x-3)}$ Single term, invisible bracket	n
$\overline{(x^2)}$	$\frac{(3x+5)}{(x+x-12)(x-3)} - \frac{2(x^2+x-12)}{(x^2+x-12)(x-3)}$ Separate terms, only one numerator modified	
If $\frac{1}{(x)}$	ect un simplified answer $\frac{x-3}{(x+4)(x-3)}$ $\frac{x^2-6x-9}{x^2+x-12)(x-3)}$ scored M1 the fraction must be subsequently be reduced to a correct $\frac{x^2}{x^2}$ $\frac{(x-3)(x-3)}{4)(x-3)(x-3)}$ to score this mark.	$\frac{x-3}{x-12}$ or
	$\frac{1}{(x+4)}$ Not isw in this question.	
The method of partial fractions is perfectly acceptable and can score full marks		
$\frac{3}{(x+x)}$	$\frac{x+5}{\frac{4}{3}(x-3)}{\frac{3}{3}} - \frac{2}{x-3} = \frac{1}{\frac{x+4}{M} + \frac{2}{x-3}} - \frac{2}{x-3} = \frac{1}{\frac{x+4}{A1}}$	

	Notes for Question 161		
(a) B1	Award for the correct shape. Look for an increasing function with decreasing gradient. Condone linear looking functions in the first quadrant. It needs to look asymptotic at the <i>y</i> axis and have no obvious maximum point. It must be wholly contained in quadrants 1 and 4 See practice and qualification items for clarification.		
B1	Crosses <i>x</i> axis at $\left(\frac{1}{2}, 0\right)$. Accept $\frac{1}{2}$, 0.5 or even $\left(0, \frac{1}{2}\right)$ marked on the correct axis. There must be a graph for this mark to be scored.		
(b) B1	Correct shape wholly contained in quadrant 1. The shape to the rhs of the cusp must not have an obvious maximum. Accept linear, or positive with decreasing gradient. The gradient of the curve to the lhs of the cusp/minimum should always be negative. The curve in this section should not 'bend' back past (1, 0) forming a 'C' shape or have incorrect curvature. See practice and qualification for clarification.		
B1	The curve touches or crosses the <i>x</i> axis at $(1, 0)$. Allow for the curve passing through a point marked '1' on the <i>x</i> axis. Condone the point marked on the correct axis as $(0, 1)$		
B1	Award for a cusp, not a minimum at (1,0)		
Note that $f(x)$ scores B0 B1 B0 under the scheme.			
If the graphs are not labelled (a) and (b), then they are to be marked in the order they are presented			

Question Number	Scheme	Marks
162(a)	$f(x) \ge 3$	M1A1
		(2)
(b)	An attempt to find $2 3-4x +3$ when $x=1$	M1
	Correct answer $fg(1) = 5$	A1
		(2)
(c)	$y = 3 - 4x \Longrightarrow 4x = 3 - y \Longrightarrow x = \frac{3 - y}{4}$	M1
	$g^{-1}(x) = \frac{3-x}{4}$	A1
	Ť	(2)
(d)	$[g(x)]^2 = (3-4x)^2$	B1
	gg(x) = 3 - 4(3 - 4x)	M1
	$gg(x) + [g(x)]^2 = 0 \Longrightarrow -9 + 16x + 9 - 24x + 16x^2 = 0$	
	$16x^2 - 8x = 0$	A1
	$8x(2x-1) = 0 \Longrightarrow x = 0, 0.5 \qquad \text{oe}$	M1A1
		(5)
		(11 marks)


	Notes for Question 162		
(a) M1 A1	Attempt at calculating f at x=0. Sight of 3 is sufficient. Accept $f(x) > 3$ and $x > 3$ for M1, $f(x) \ge 3$. Accept $y \ge 3$, range ≥ 3 , $[3, \infty)$		
	Do not accept $f(x) > 3$, $x \ge 3$ The correct answer is sufficient for both marks.		
(b) M1	A full method of finding fg(1). The order of substituting into the expressions must be correct and $2 x +3$ must be used as opposed to $2x+3$ Accept an attempt to calculate $2 x +3$ when $x=-1$.		
	Accept an attempt to put $x=1$ into $3-4x$ and then substituting their answer to $3-4x _{x=1}$ into $2 x +3$ Do not accept the substitution of $x=1$ into $2 x +3$, followed by their result into '3-4x' This is evidence of incorrect order.		
A1	fg(1)=5. Watch for $1 \xrightarrow{3-4x} 1 \xrightarrow{2 x +3} 5$ which is M1A0		
(c) M1 cannot	Award for an attempt to make x or a swapped y the subject of the formula. It must be a full method and t finish $4x =$ You can condone at most one 'arithmetic' error for this method mark. $y = 3 - 4x \Rightarrow 4x = 3 + y \Rightarrow x = \frac{3 + y}{4}$ is fine for the M1 as there is only one error $y = 3 - 4x \Rightarrow 4x = 3 - y \Rightarrow x = \frac{3}{4} - y$ is fine for the M1 as there is only one error		
A1	$y = 3 - 4x \Longrightarrow 4x = 3 + y \Longrightarrow x = \frac{3}{4} + y$ is M0 as there are two arithmetic errors Obtaining a correct expression $g^{-1}(x) = \frac{3 - x}{4}$ or such as $g^{-1}(x) = \frac{x - 3}{-4}$, $g^{-1}(x) = \frac{3}{4} - \frac{x}{4}$		
	It must be in terms of x, but could be expressed 'y=' or $g^{-1}(x) \rightarrow$		
(d) B1	Sight of $[g(x)]^2 = (3-4x)^2$. If only the expanded version appears it must be correct		
M1 A1 M1 A1	A full attempt to find $gg(x) = 3 - 4(3 - 4x)$ Condone invisible brackets. Note that it may appear in an equation $16x^2 - 8x = 0$ Accept other alternatives such as $2x^2 = x$ For factorising their quadratic or cancelling their $Ax^2 = Bx$ by x to get ≥ 1 value of x If they have a 3TQ then usual methods are applicable. Both values correct $x = 0, 0.5$ oe		

Question Number	Scheme	Marks
163	$f(x) = 0 \Longrightarrow x^2 + 3x + 1 = 0$	
	$\Rightarrow x = \frac{-3 \pm \sqrt{5}}{2} = \text{awrt -0.382, -2.618}$	M1A1
		(2)

	Notes for Question 163		
M1	Solves $x^2 + 3x + 1 = 0$ by completing the square or the formula, producing two 'non integer answers. Do not accept factorisation here . Accept awrt -0.4 and -2.6 for this mark		
A1	Answers correct. Accept awrt -0.382, -2.618.		
	Accept just the answers for both marks. Don't withhold the marks for incorrect labelling.		

(a)

M1 A full method of finding ff(-3). f(0) is acceptable but f(-3)=0 is not.

Accept a solution obtained from two substitutions into the equation $y = \frac{2}{3}x + 2$ as the line passes through both points. Do not allow for $y = \ln(x+4)$, which only passes through one of the points. A1 Cao ff(-3)=2. Writing down 2 on its own is enough for both marks provided no incorrect working is seen.

(b)

- B1 For the correct shape. Award this mark for an increasing function in quadrants 3, 4 and 1 only. Do not award if the curve bends back on itself or has a clear minimum
- B1 This is independent to the first mark and for the graph passing through (0,-3) and (2,0)

Accept -3 and 2 marked on the correct axes.

Accept (-3,0) and (0,2) instead of (0,-3) and (2,0) as long as they are on the correct axes Accept P'=(0,-3), Q'=(2,0) stated elsewhere as long as P'and Q' are marked in the correct place on the graph

There must be a graph for this to be awarded

(c)

- B1 Award for a correct shape 'roughly' symmetrical about the *y* axis. It must have a cusp and a gradient that 'decreases' either side of the cusp. Do not award if the graph has a clear maximum
- B1 (0,0) lies on their graph. Accept the graph passing through the origin without seeing (0, 0) marked
- (d) B1 Shape. The position is not important. The gradient should be always positive but decreasing There should not be a clear maximum point.
 - B1 The graph passes through (0,4) or (-6,0). See part (b) for allowed variations
 - B1 The graph passes through (0,4) **and** (-6,0). See part (b) for allowed variations

Question Number	Scheme	Marks
165.	(a) $\frac{2}{x+2} + \frac{4}{x^2+5} - \frac{18}{(x+2)(x^2+5)} = \frac{2(x^2+5) + 4(x+2) - 18}{(x+2)(x^2+5)}$	M1A1
	$=\frac{2x(x+2)}{(x+2)(x^2+5)}$	M1
	$=\frac{2x}{(x^2+5)}$	A1*
	(b) $h'(x) = \frac{(x^2+5) \times 2 - 2x \times 2x}{(x^2+5)^2}$	(4) M1A1
	h'(x) = $\frac{10 - 2x^2}{(x^2 + 5)^2}$ cso	A1 (3)
	(c) Maximum occurs when $h'(x) = 0 \Rightarrow 10 - 2x^2 = 0 \Rightarrow x =$ $\Rightarrow x = \sqrt{5}$	M1 A1
	When $x = \sqrt{5} \Rightarrow h(x) = \frac{\sqrt{5}}{5}$	M1,A1
	Range of $h(x)$ is $0 \le h(x) \le \frac{\sqrt{5}}{5}$	A1ft
		(5) (12 marks)

 (a) M1 Combines the three fractions to form a single fraction with a common denominator. Allow errors on the numerator but at least one must have been adapted. Condone 'invisible' brackets for this mark. Accept three separate fractions with the same denominator.

Amongst possible options allowed for this method are

 $\frac{2x^2+5+4x+2-18}{(x+2)(x^2+5)}$ Eg 1 An example of 'invisible' brackets $\frac{2(x^2+5)}{(x+2)(x^2+5)} + \frac{4}{(x+2)(x^2+5)} - \frac{18}{(x+2)(x^2+5)}$ Eg 2An example of an error (on middle term), 1st term has been adapted

$$\frac{2(x^2+5)^2(x+2)+4(x+2)^2(x^2+5)-18(x^2+5)(x+2)}{(x+2)^2(x^2+5)^2}$$
 Eg 3 An example of a correct fraction with a different denominator

A1 Award for a correct un simplified fraction with the correct (lowest) common denominator. $\frac{2(x^2+5)+4(x+2)-18}{(x+2)(x^2+5)}$

Accept if there are three separate fractions with the correct (lowest) common denominator. Eg $\frac{2(x^2+5)}{(x+2)(x^2+5)} + \frac{4(x+2)}{(x+2)(x^2+5)} - \frac{18}{(x+2)(x^2+5)}$

> EXPERT TUITION

Note, Example 3 would score M1A0 as it does not have the correct lowest common denominator

- M1 There must be a single denominator. Terms must be collected on the numerator. A factor of (x+2) must be taken out of the numerator and then cancelled with one in the denominator. The cancelling may be assumed if the term 'disappears'
- A1* Cso $\frac{2x}{(x^2+5)}$ This is a given solution and this mark should be withheld if there are any errors

(b) M1 Applies the quotient rule to $\frac{2x}{(x^2+5)}$, a form of which appears in the formula book.

If the rule is quoted it must be correct. There must have been some attempt to differentiate both terms. If the rule is not quoted (nor implied by their working, meaning terms are written out

u=...,u'=...,v=...,v'=....followed by their $\frac{vu'-uv'}{v^2}$) then only accept answers of the form

$$\frac{(x^2+5) \times A - 2x \times Bx}{(x^2+5)^2} \quad \text{where } A, B > 0$$

A1 Correct unsimplified answer $h'(x) = \frac{(x^2+5) \times 2 - 2x \times 2x}{(x^2+5)^2}$

A1
$$h'(x) = \frac{10 - 2x^2}{(x^2 + 5)^2}$$
 The correct simplified answer. Accept $\frac{2(5 - x^2)}{(x^2 + 5)^2} = \frac{-2(x^2 - 5)}{(x^2 + 5)^2}$, $\frac{10 - 2x^2}{(x^4 + 10x^2 + 25)}$

DO NOT ISW FOR PART (b). INCORRECT SIMPLIFICATION IS A0

- (c) M1 Sets their h'(x)=0 and proceeds with a correct method to find x. There must have been an attempt to differentiate. Allow numerical errors but do not allow solutions from 'unsolvable' equations. A1 Finds the correct x value of the maximum point $x=\sqrt{5}$.
 - Ignore the solution $x=\sqrt{5}$ but withhold this mark if other positive values found.
 - M1 Substitutes their answer into their h'(x)=0 in h(x) to determine the maximum value

A1 Cso-the maximum value of
$$h(x) = \frac{\sqrt{5}}{5}$$
. Accept equivalents such as $\frac{2\sqrt{5}}{10}$ but not 0.447

A1ft Range of h(x) is $0 \le h(x) \le \frac{\sqrt{5}}{5}$. Follow through on their maximum value if the M's have been

scored. Allow
$$0 \le y \le \frac{\sqrt{5}}{5}$$
, $0 \le Range \le \frac{\sqrt{5}}{5}$, $\left[0, \frac{\sqrt{5}}{5}\right]$ but not $0 \le x \le \frac{\sqrt{5}}{5}$, $\left(0, \frac{\sqrt{5}}{5}\right)$

If a candidate attempts to work out $h^{-1}(x)$ in (b) and does all that is required for (b) in (c), then allow. Do not allow $h^{-1}(x)$ to be used for h'(x) in part (c). For this question (b) and (c) can be scored together. Alternative to (b) using the product rule

M1 Sets $h(x) = 2x(x^2 + 5)^{-1}$ and applies the product rule vu'+uv' with terms being 2x and $(x^2+5)^{-1}$ If the rule is quoted it must be correct. There must have been some attempt to differentiate both terms. If the rule is not quoted (nor implied by their working, meaning terms are written out u=...,u'=....,v'=....,v'=....followed by their vu'+uv') then only accept answers of the form

$$(x^{2}+5)^{-1} \times A + 2x \times \pm Bx(x^{2}+5)^{-2}$$

- A1 Correct un simplified answer $(x^2+5)^{-1} \times 2 + 2x \times -2x(x^2+5)^{-2}$
- A1 The question asks for h'(x) to be put in its simplest form. Hence in this method the terms need to be combined to form a single correct expression.

For a correct simplified answer accept

h'(x) =
$$\frac{10-2x^2}{(x^2+5)^2} = \frac{2(5-x^2)}{(x^2+5)^2} = \frac{-2(x^2-5)}{(x^2+5)^2} = (10-2x^2)(x^2+5)^{-2}$$

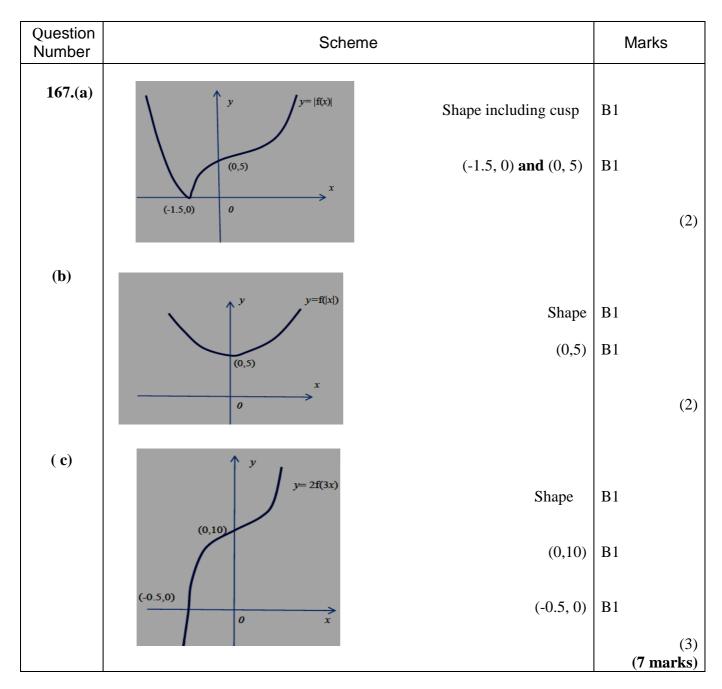
Question Number	Scheme	Marks
166.	$9x^2 - 4 = (3x - 2)(3x + 2)$ At any stage	B1
	Eliminating the common factor of $(3x+2)$ at any stage $\frac{2(3x+2)}{(3x-2)(3x+2)} = \frac{2}{3x-2}$ Use of a common denominator	B1
	$\frac{2(3x+2)(3x+1)}{(9x^2-4)(3x+1)} - \frac{2(9x^2-4)}{(9x^2-4)(3x+1)} \text{ or } \frac{2(3x+1)}{(3x-2)(3x+1)} - \frac{2(3x-2)}{(3x+1)(3x-2)}$	M1
	$\frac{6}{(3x-2)(3x+1)}$ or $\frac{6}{9x^2-3x-2}$	A1
		(4 marks)

Notes

- B1 For factorising $9x^2 4 = (3x 2)(3x + 2)$ using difference of two squares. It can be awarded at any stage of the answer but it must be scored on E pen as the first mark
- B1 For eliminating/cancelling out a factor of (3x+2) at any stage of the answer.
- M1 For combining two fractions to form a single fraction with a common denominator. Allow slips on the numerator but at least one must have been adapted. Condone invisible brackets. Accept two separate fractions with the same denominator as shown in the mark scheme. Amongst possible (incorrect) options scoring method marks are

 $\frac{2(3x+2)}{(9x^2-4)(3x+1)} - \frac{2(9x^2-4)}{(9x^2-4)(3x+1)}$ Only one numerator adapted, separate fractions $\frac{2\times 3x + 1 - 2\times 3x - 2}{(3x-2)(3x+1)}$ Invisible brackets, single fraction $\frac{6}{3x-2}$

A1


 $\overline{(3x-2)(3x+1)}$

This is not a given answer so you can allow recovery from 'invisible' brackets.

Alternative method

$$\frac{2(3x+2)}{(9x^2-4)} - \frac{2}{(3x+1)} = \frac{2(3x+2)(3x+1) - 2(9x^2-4)}{(9x^2-4)(3x+1)} = \frac{18x+12}{(9x^2-4)(3x+1)}$$
 has scored 0,0,1,0 so far
$$= \frac{6(3x+2)}{(3x+2)(3x-2)(3x+1)}$$
 is now 1,1,1,0
$$= \frac{6}{(3x-2)(3x+1)}$$
 and now 1,1,1,1

(a) Note that this appears as M1A1 on EPEN

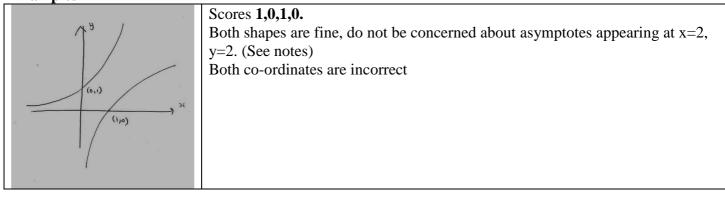
- B1 Shape (inc cusp) with graph in just quadrants 1 and 2. Do not be overly concerned about relative gradients, but the left hand section of the curve should not bend back beyond the cusp
- B1 This is independent, and for the curve touching the x-axis at (-1.5, 0) and crossing the y-axis at (0,5)

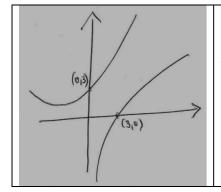
(b) Note that this appears as M1A1 on EPEN

- B1 For a U shaped curve symmetrical about the *y* axis
- B1 (0,5) lies on the curve
- (c) Note that this appears as M1B1B1 on EPEN
 - B1 Correct shape- do not be overly concerned about relative gradients. Look for a similar shape to f(x)
 - B1 Curve **crosses** the y axis at (0, 10). The curve must appear in both quadrants 1 and 2
 - B1 Curve **crosses** the *x* axis at (-0.5, 0). The curve must appear in quadrants 3 and 2.

In all parts accept the following for any co-ordinate. Using (0,3) as an example, accept both (3,0) or 3 written on the *y* axis (as long as the curve passes through the point)

Special case with (a) and (b) completely correct but the wrong way around mark - SC(a) 0,1 SC(b) 0,1 Otherwise follow scheme

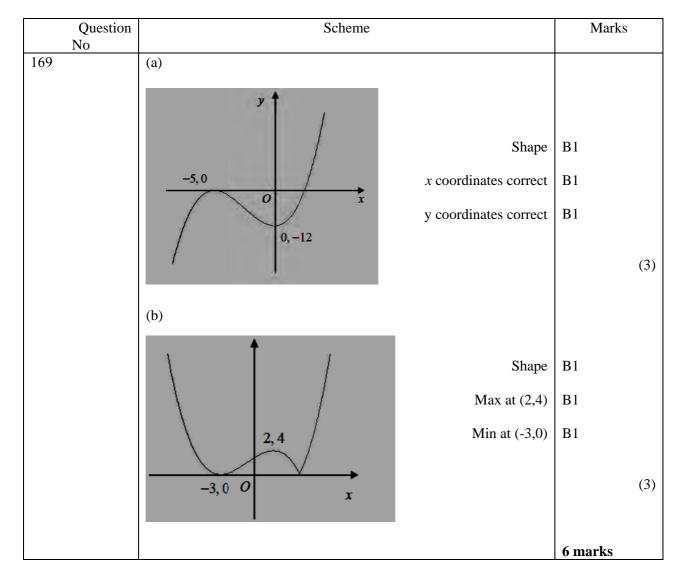

Question Number	Scheme	Marks
168.	(a) $f(x) > 2$	B1 (1)
	(b) $fg(x) = e^{\ln x} + 2, = x + 2$	M1,A1 (2)
	(c) $e^{2x+3}+2=6 \Rightarrow e^{2x+3}=4$ $\Rightarrow 2x+3=\ln 4$	M1A1
	$\Rightarrow x = \frac{\ln 4 - 3}{2} \text{or} \ln 2 - \frac{3}{2}$	M1A1 (4)
	(d) Let $y = e^x + 2 \Rightarrow y - 2 = e^x \Rightarrow \ln(y - 2) = x$	M1
	$f^{-1}(x) = \ln(x-2), x > 2.$	A1, B1ft (3)
	(e) $y = f(x)$ Shape for $f(x)$	B1
	(0,3)	B1
	$y=f^{-1}(x)$ Shape for $f^{-1}(x)$	B1
	(3, 0)	B1
	0 (3,0) x	(4)
		(14 marks)


- (a) B1 Range of f(x)>2. Accept y>2, $(2,\infty)$, f>2, as well as 'range is the set of numbers bigger than 2' but **don't accept** x>2
- (b) M1 For applying the correct order of operations. Look for $e^{\ln x} + 2$. Note that $\ln e^x + 2$ is M0 A1 Simplifies $e^{\ln x} + 2$ to x + 2. Just the answer is acceptable for both marks
- (c) M1 Starts with $e^{2x+3} + 2 = 6$ and proceeds to $e^{2x+3} = \dots$
 - A1 $e^{2x+3} = 4$
 - M1 Takes ln's both sides, $2x+3 = \ln n$. and proceeds to $x = \dots$
 - A1 $x = \frac{\ln 4 3}{2}$ oe. eg $\ln 2 \frac{3}{2}$ Remember to isw any incorrect working after a correct answer

(d) Note that this is marked M1A1A1 on EPEN

- M1 Starts with $y = e^x + 2$ or $x = e^y + 2$ and attempts to change the subject. All ln work must be correct. The 2 must be dealt with first. Eg. $y = e^x + 2 \Rightarrow \ln y = x + \ln 2 \Rightarrow x = \ln y - \ln 2$ is M0
- A1 $f^{-1}(x) = \ln(x-2)$ or $y = \ln(x-2)$ or $y = \ln|x-2|$ There must be some form of bracket
- **B1ft** Either *x*>2, or follow through on their answer to part (a), provided that it wasn't $y \in \Re$ Do not accept y>2 or $f^{-1}(x)>2$.
- (e) B1 Shape for $y=e^x$. The graph should only lie in quadrants 1 and 2. It should start out with a gradient that is approx. 0 above the *x* axis in quadrant 2 and increase in gradient as it moves into quadrant 1. You should not see a minimum point on the graph.
 - B1 (0, 3) lies on the curve. Accept 3 written on the y axis as long as the point lies on the curve
 - B1 Shape for $y=\ln x$. The graph should only lie in quadrants 4 and 1. It should start out with gradient that is approx. infinite to the right of the *y* axis in quadrant 4 and decrease in gradient as it moves into quadrant 1. You should not see a maximum point. Also with hold this mark if it intersects $y=e^x$
 - B1 (3, 0) lies on the curve. Accept 3 written on the x axis as long as the point lies on the curve

Condone lack of labels in this part Examples



Scores **0,1,1,1** Shape for $v = e^x$ is in

Shape for $y = e^x$ is incorrect, there is a minimum point on the graph. All other marks an be awarded

(a)

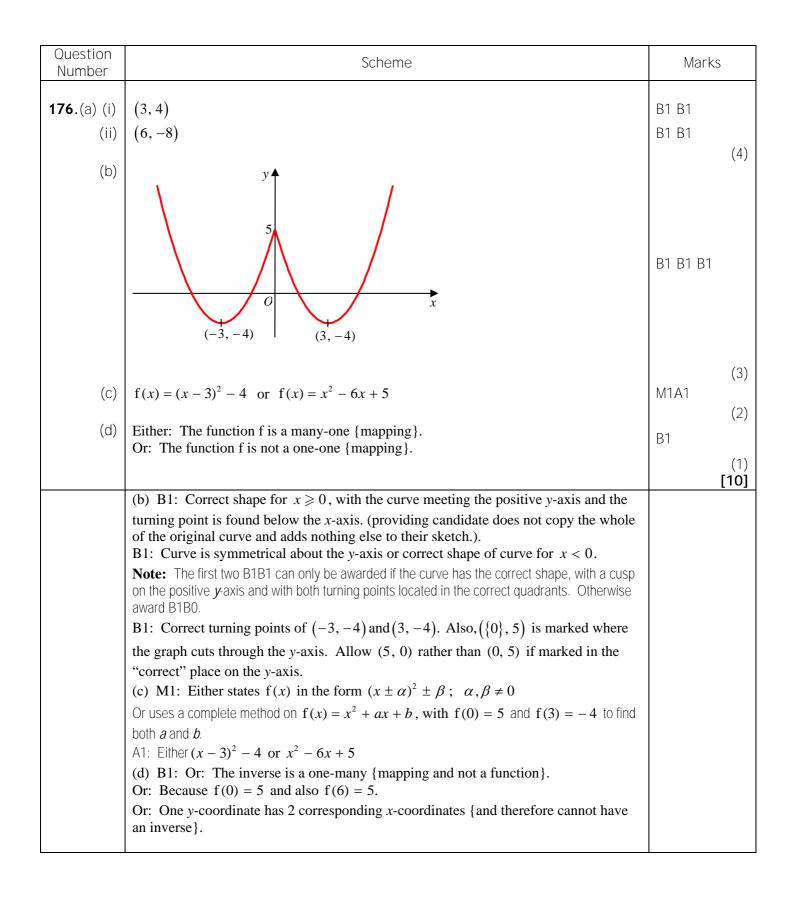
- B1 Shape unchanged. The positioning of the curve is not significant for this mark. The right hand section of the curve does not have to cross *x* axis.
- B1 The x- coordinates of P' and Q' are -5 and 0 respectively. This is for translating the curve 2 units left. The minimum point Q' must be on the y axis. Accept if -5 is marked on the x axis for P' with Q' on the y axis (marked -12).
- B1 The y- coordinates of P' and Q' are 0 and -12 respectively. This is for the stretch \times 3 parallel to the y axis. The maximum P' must be on the x axis. Accept if -12 is marked on the y axis for Q' with P' on the x axis (marked -5)
- (b)
- B1 The curve below the x axis reflected in the x axis and the curve above the x axis is unchanged. Do not accept if the curve is clearly rounded off with a zero gradient at the x axis but allow small curvature issues. Use the same principles on the lhs- do not accept if this is a cusp.
- B1 Both the x- and y- coordinates of Q', (2,4) given correctly and associated with the maximum point in the first quadrant. To gain this mark there must be a graph and it must only have one maximum. Accept as 2 and 4 marked on the correct axes or in the script as long as there is no ambiguity.
- B1 Both the x- and y- coordinates of P', (-3,0) given correctly and associated with the minimum point in the second quadrant. To gain this mark there must be a graph. Tolerate two cusps if this mark has been lost earlier in the question. Accept (0, -3) marked on the correct axis.

Question No	Scheme	Marks
170	(a) $2x^2 + 7x - 4 = (2x - 1)(x + 4)$	B1
	$\frac{3(x+1)}{(2x-1)(x+4)} - \frac{1}{(x+4)} = \frac{3(x+1) - (2x-1)}{(2x-1)(x+4)}$	M1
	$=\frac{x+4}{(2x-1)(x+4)}$	M1
	$=\frac{1}{2x-1}$	A1* (4)
	(b) $y = \frac{1}{2x-1} \Rightarrow y(2x-1) = 1 \Rightarrow 2xy - y = 1$	
	$2xy = 1 + y \Longrightarrow x = \frac{1+y}{2y}$	M1M1
	$y \ OR \ f^{-1}(x) = \frac{1+x}{2x}$	A1
	(c) x>0	(3) B1 (1)
	(d) $\frac{1}{2\ln(x+1)-1} = \frac{1}{7}$	M1
	$\ln\left(x+1\right)=4$	A1
	$x = e^4 - 1$	M1A1 (4)
		12 Marks

Question Number	Scheme	Marks
171 (a)	∧ <i>y</i>	
	V shape	B1
	vertex on y axis &both branches of graph cross x axis	B1
	,y [™] ∞-ordinate of R is -6	B1
	(0,-6)	(3)
(b)	л ^у	
	(-4,3) W shape	B1
	2 vertices on the negative x axis. W in both quad 1 & quad 2. x	B1dep
	R''=(-4,3)	B1
		(3)
		6 Marks
172 (a)	$y = 4 - \ln(x + 2)$ $\ln(x + 2) = 4 - y$ $x + 2 = e^{4-y}$	
	$ x + 2 = e^{4-y} x = e^{4-y} - 2 f^{-1}(x) = e^{4-x} - 2 $ oe	M1 M1A1
(1-)		(3)
(b)	$x \le 4$	B1 (1)
(c)	$fg(x) = 4 - \ln(e^{x^2} - 2 + 2)$	M1
	$fg(x) = 4 - x^2$	dM1A1 (3)
(d)	$fg(x) \leq 4$	B1ft (1)
		8 Marks
		0 1/10100

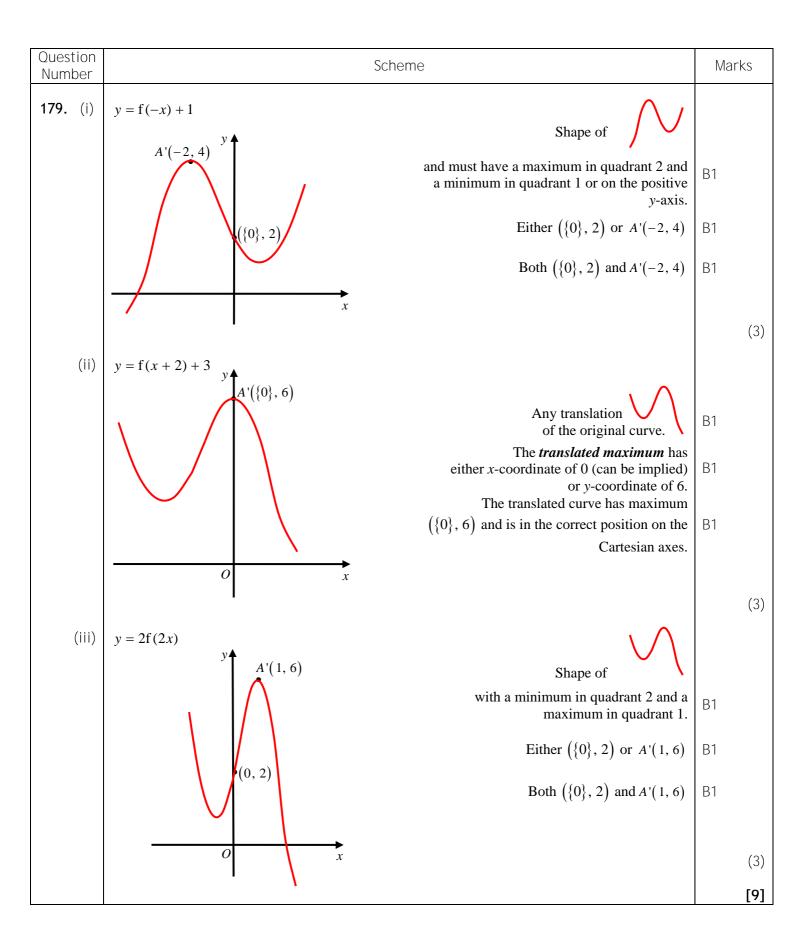
Question Number	Scheme		N	larks
173. (a)	$\frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)}$			
	$= \frac{(4x-1)(2x-1) - 3}{2(x-1)(2x-1)}$ $8x^2 - 6x - 2$	An attempt to form a single fraction Simplifies to give a correct	M1	
	$= \frac{8x^2 - 6x - 2}{\{2(x-1)(2x-1)\}}$	quadratic numerator over a correct quadratic denominator	A1	aef
	$= \frac{2(x-1)(4x+1)}{\{2(x-1)(2x-1)\}}$	An attempt to factorise a 3 term quadratic numerator	M1	
	$=\frac{4x+1}{2x-1}$		A1	(4)
(b)	$f(x) = \frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)} - 2, x \ge \frac{3}{2(x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)(2x-1)} - \frac{3}{2(x-1)(2x-1)(2x-1)(2x-1)(2x-1)}$	>1		
	$f(x) = \frac{(4x+1)}{(2x-1)} - 2$			
	$= \frac{(4x+1) - 2(2x-1)}{(2x-1)}$	An attempt to form a single fraction	M1	
	$= \frac{4x+1-4x+2}{(2x-1)}$			
	$=\frac{3}{(2x-1)}$	Correct result	A1	* (2)

Question Number	Scheme	Marks
174. (a)	$y = \frac{3-2x}{x-5} \Rightarrow y(x-5) = 3-2x$ Attempt to make x (or swapped y) the subject	M1
	xy - 5y = 3 - 2x $\Rightarrow xy + 2x = 3 + 5y \Rightarrow x(y + 2) = 3 + 5y$ Collect <i>x</i> terms together and factorise.	M1
	$\Rightarrow x = \frac{3+5y}{y+2} \qquad \therefore f^{-1}(x) = \frac{3+5x}{x+2} \qquad \qquad \frac{3+5x}{x+2}$	A1 oe (3)
(b)	Range of g is $-9 \le g(x) \le 4$ or $-9 \le y \le 4$ Correct Range	B1 (1)
(c)	Deduces that g(2) is 0. Seen or implied.	M1
	g g(2)=g (0) = -6, from sketch6	A1 (2)
(d)	fg(8) = f(4) Correct order g followed by f	M1
	$=\frac{3-4(2)}{4-5} = \frac{-5}{-1} = 5$	A1 (2)



Question Number	Scheme	Marks
(e)(ii)	y Correct shape	B1
	$-6 \qquad x \qquad $	B1 (4)
(f)	Domain of g^{-1} is $-9 \le x \le 4$ Either correct answer or a follow through from part (b) answer	B1 (1) [13]

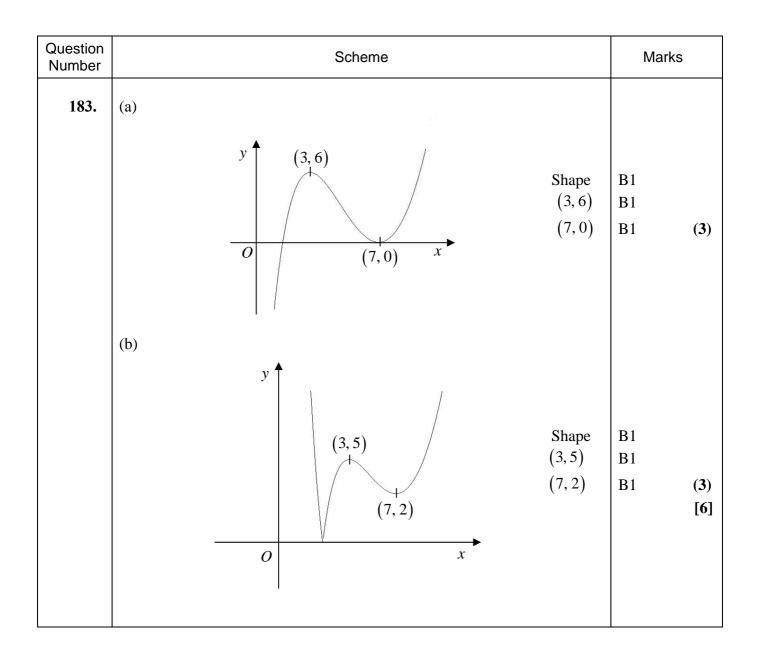
Question Number	Scheme	Marks	
175. (a)	$(0, 5)$ $(0, 5)$ $(0, 5)$ $(\frac{5}{2}, 0)$ x	M1A1	
(b)	$\frac{x = 20}{2x - 5} = -(15 + x) \ ; \implies \frac{x = -\frac{10}{3}}{2x - 5}$	(2 B1 M1;A1 oe.	
(C)	fg(2) = f(-3) = 2(-3) - 5 ; = -11 = 11	(3 M1;A1 (2	
(d)	$g(x) = x^2 - 4x + 1 = (x - 2)^2 - 4 + 1 = (x - 2)^2 - 3$. Hence $g_{\min} = -3$ Either $g_{\min} = -3$ or $g(x) \ge -3$	M1	-)
	or $g(5) = 25 - 20 + 1 = 6$	B1	
	$\underline{-3 \leqslant g(x) \leqslant 6}$ or $\underline{-3 \leqslant y \leqslant 6}$	A1	
		(3 [10	
	(a) M1: V or graph with vertex on the <i>x</i> -axis.		
	A1: $(\frac{5}{2}, \{0\})$ and $(\{0\}, 5)$ seen and the graph appears in both the first and second quadrants. (b) M1: Either $2x-5 = -(15+x)$ or $-(2x-5) = 15+x$ (c) M1: <i>Full method</i> of inserting g(2) into $f(x) = 2x - 5 $ or for inserting $x = 2$ into $ 2(x^2 - 4x + 1) - 5 $. There must be evidence of the modulus being applied.		
	(d) M1: Full method to establish the minimum of g. Eg: $(x \pm \alpha)^2 + \beta$ leading to $g_{\min} = \beta$. Or for candidate to differentiate the quadratic, set the result equal to zero, find x and insert this value of x back into $f(x)$ in order to find the minimum. B1: For either finding the correct minimum value of g (can be implied by $g(x) \ge -3$ or $g(x) > -3$) or for stating that $g(5) = 6$. A1: $-3 \le g(x) \le 6$ or $-3 \le y \le 6$ or $-3 \le g \le 6$. Note that: $-3 \le x \le 6$ is A0. Note that: $-3 \le f(x) \le 6$ is A0. Note that: $-3 \ge g(x) \ge 6$ is A0. Note that: $g(x) \ge -3$ or $g(x) > -3$ or $x \ge -3$ or $x > -3$ with no working gains M1B1A0. Note that for the final Accuracy Mark: If a candidate writes down $-3 < g(x) < 6$ or $-3 < y < 6$, then award M1B1A0. If, however, a candidate writes down $g(x) \ge -3$, $g(x) \le 6$, then award A0. If a candidate writes down $g(x) \ge -3$ or $g(x) \le 6$, then award A0.		



Question Number	Scheme	Marks
177.	$\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$ $= \frac{x+1}{3(x^2-1)} - \frac{1}{3x+1}$	
	$= \frac{x+1}{3(x+1)(x-1)} - \frac{1}{3x+1}$ $x^{2} - 1 \rightarrow (x+1)(x-1) \text{ or } 3x^{2} - 3 \rightarrow (x+1)(3x-3) \text{ or } 3x^{2} - 3 \rightarrow (3x+3)(x-1) o$	Award below
	$=\frac{1}{3(x-1)} - \frac{1}{3x+1}$	
	$= \frac{3x + 1 - 3(x - 1)}{3(x - 1)(3x + 1)}$ Attempt to combine	. M1
	or $\frac{3x+1}{3(x-1)(3x+1)} - \frac{3(x-1)}{3(x-1)(3x+1)}$ Correct result	. A1
	Decide to award M1 here!	M1
	Either $\frac{4}{3(x-1)(3x+1)}$ = $\frac{4}{3(x-1)(3x+1)}$ or $\frac{4}{3}$ or $\frac{4}{(3x-3)(3x+1)}$ or $\frac{4}{(3x-3)(3x+1)}$ or $\frac{4}{9x^2-6x-3}$	A1 aef
		[4]

Question Number	Scheme	
178.	$y = \ln x $	
	Right-hand branch in quadrants 4 and 1. Correct shape.	B1
	(-1,0) O $(1,0)$ x Left-hand branch in quadrants 2 and 3. Correct shape.	B1
	Completely correct sketch and both $(-1, \{0\})$ and $(1, \{0\})$	B1
		(3)
		[3]

Question Number	Scheme		Marks
180 (a)	$f(x) = e^{2x} + 3, x \in \square$ $y = e^{2x} + 3 \implies y - 3 = e^{2x}$ $\implies \ln(y - 3) = 2x$ $\implies \frac{1}{2}\ln(y - 3) = x$	Attempt to make x (or swapped y) the subject Makes e^{2x} the subject and takes ln of both sides	M1 M1
(b)	Hence $f^{-1}(x) = \frac{1}{2}\ln(x-3)$ $f^{-1}(x)$: Domain: $x > 3$ or $(3, \infty)$ $g(x) = \ln(x-1), x \in \Box, x > 1$	$\frac{\frac{1}{2}\ln(x-3)}{\text{or } \ln\sqrt{(x-3)}} \text{ or } \frac{\ln\sqrt{(x-3)}}{\sqrt{(x-3)}}$ or $\underline{f^{-1}(y)} = \frac{1}{2}\ln(y-3)}$ (see appendix) Either $\underline{x > 3}$ or $\underline{(3, \infty)}$ or $\underline{\text{Domain} > 3}$.	<u>A1</u> cao B1 (4)
	fg(x) = e ^{2ln(x-1)} + 3 {= (x − 1) ² + 3} fg(x): Range: y > 3 or (3, ∞) Eith	An attempt to put function g into function f. $e^{2\ln(x-1)} + 3$ or $(x-1)^2 + 3$ or $x^2 - 2x + 4$. er $y > 3$ or $(3, \infty)$ or Range > 3 or fg(x) > 3.	M1 A1 isw B1
			(3)



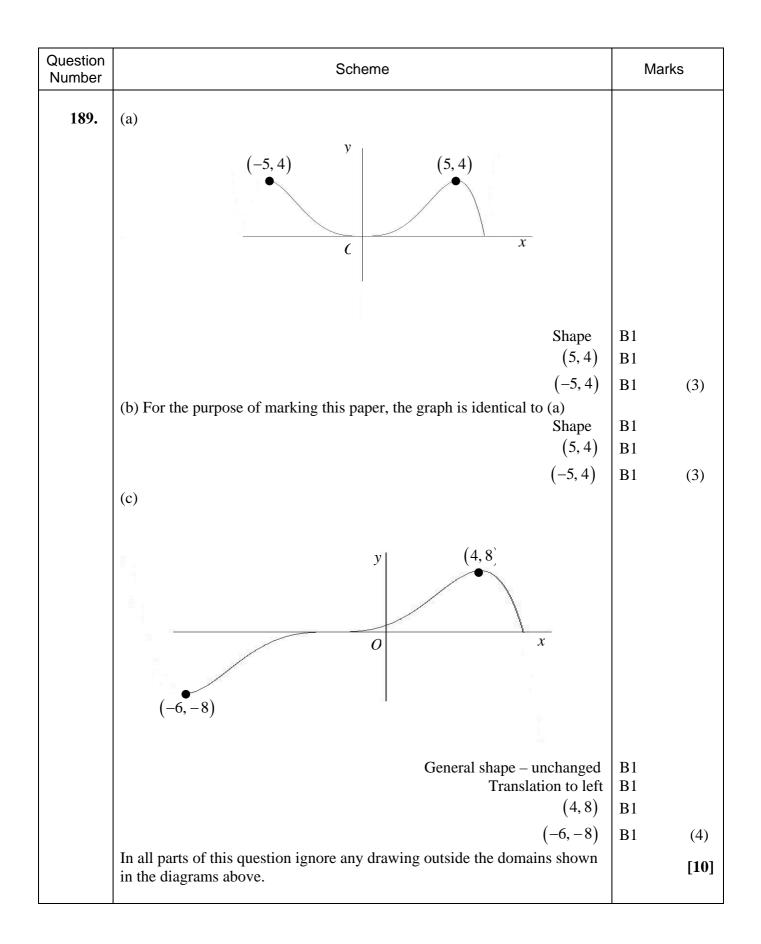
Question Number	Scheme	Mark	(S
181 (a)	y Curve retains shape when $x > \frac{1}{2} \ln k$	B1	
	(0, k-1) Curve reflects through the <i>x</i> -axis when $x < \frac{1}{2} \ln k$	B1	
	$O \qquad \left(\frac{1}{2}\ln k, 0\right) \qquad x \qquad \left(0, k-1\right) \text{ and } \left(\frac{1}{2}\ln k, 0\right) \text{ marked} \\ \text{ in the correct positions.}$	B1	(3)
(b)	y Correct shape of curve. The curve should be contained in quadrants 1, 2 and 3 (Ignore asymptote)	B1	
	$(1-k,0) \text{ and } (0,\frac{1}{2}\ln k)$	B1	
(c)	Range of f: $\underline{f(x) > -k}$ or $\underline{y > -k}$ or $(\underline{-k, \infty})$ Either $\underline{f(x) > -k}$ or $\underline{y > -k}$ or $(\underline{-k, \infty})$ or $\underline{f > -k}$ or $\underline{Range > -k}$.	B1	(2)
(d)	$y = e^{2x} - k \Rightarrow y + k = e^{2x}$ $\Rightarrow \ln(y+k) = 2x$ $\Rightarrow \frac{1}{2}\ln(y+k) = x$ Attempt to make x (or swapped y) the subject and takes ln of both sides	M1 M1	(1)
	Hence $f^{-1}(x) = \frac{1}{2}\ln(x+k)$ or $\frac{\ln\sqrt{x+k}}{\sqrt{x+k}}$	<u>A1</u> cao	(3)
(e)	f ⁻¹ (x): Domain: $\underline{x > -k}$ or $(\underline{-k, \infty})$ f ⁻¹ (x): Domain: $\underline{x > -k}$ or $(\underline{-k, \infty})$ or Domain $> -k$ or x "ft one sided inequality" their part (c) RANGE answer	Β1√	(1)
			[10]

Question Number	Scheme	Marks
182.	$\frac{2x+2}{x^2-2x-3} - \frac{x+1}{x-3} = \frac{2x+2}{(x-3)(x+1)} - \frac{x+1}{x-3}$ $= \frac{2x+2-(x+1)(x+1)}{(x-3)(x+1)}$ $= \frac{(x+1)(1-x)}{(x-3)(x+1)}$ $1-x$	M1 A1 M1
	$=\frac{1-x}{x-3}$ Accept $-\frac{x-1}{x-3}, \frac{x-1}{3-x}$	A1 (4)
	Alternative $\frac{2x+2}{x^2-2x-3} = \frac{2(x+1)}{(x-3)(x+1)} = \frac{2}{x-3}$ 2 x+1 2 = (x+1)	M1 A1 M1
	$\frac{2}{x-3} - \frac{x+1}{x-3} = \frac{2 - (x+1)}{x-3}$ $= \frac{1-x}{x-3}$	A1 (4)

Question Number	Scheme	Marks
184.	$x = \cos(2y + \pi)$ $\frac{dx}{dy} = -2\sin(2y + \pi)$ $\frac{dy}{dx} = -\frac{1}{2\sin(2y + \pi)}$ Follow through their $\frac{dx}{dy}$ before or after substitution At $y = \frac{\pi}{4}$, $\frac{dy}{dx} = -\frac{1}{2\sin\frac{3\pi}{2}} = \frac{1}{2}$ $y - \frac{\pi}{4} = \frac{1}{2}x$ $y = \frac{1}{2}x + \frac{\pi}{4}$	M1 A1 A1ft B1 M1 A1 (6) [6]

Question Number	Scheme	Marks
185.	(a) $g(x) \ge 1$	B1 (1)
	(b) $fg(x) = f(e^{x^2}) = 3e^{x^2} + \ln e^{x^2}$ = $x^2 + 3e^{x^2} $ $(fg: x \mapsto x^2 + 3e^{x^2})$	M1 A1 (2)
	(c) $fg(x) \ge 3$	B1 (1)
	(d) $\frac{d}{dx}(x^2+3e^{x^2})=2x+6xe^{x^2}$	M1 A1
	$2x + 6x e^{x^{2}} = x^{2} e^{x^{2}} + 2x$ $e^{x^{2}} (6x - x^{2}) = 0$ $e^{x^{2}} \neq 0, \qquad 6x - x^{2} = 0$ $x = 0, 6$	M1 A1 A1 A1 (6) [10]

107		Mark	S
186.	(a) y	B1 B1	(2)
	(b) y shape y Vertex and intersections y with axes correctly placed	B1 B1	(2)
	(c) $P:(-1,2)$ Q:(0,1) R:(1,0)	B1 B1 B1	(3)
	(d) $x > -1;$ $2-x-1 = \frac{1}{2}x$ Leading to $x = \frac{2}{3}$ $x < -1;$ $2+x+1 = \frac{1}{2}x$ Leading to $x = -6$	M1 A1 A1 M1 A1	(5) [12]



Question Number	Scheme	Marks
187.	(a) $x^2 - 2x - 3 = (x - 3)(x + 1)$ $f(x) = \frac{2(x - 1) - (x + 1)}{(x - 3)(x + 1)} \left(or \frac{2(x - 1)}{(x - 3)(x + 1)} - \frac{x + 1}{(x - 3)(x + 1)} \right)$	B1 M1 A1
	$=\frac{x-3}{(x-3)(x+1)} = \frac{1}{x+1} * $ cso	A1 (4)
	(b) $\left(0,\frac{1}{4}\right)$ Accept $0 < y < \frac{1}{4}, \ 0 < f(x) < \frac{1}{4}$ etc.	B1 B1 (2)
	(c) Let $y = f(x)$ $y = \frac{1}{x+1}$ $x = \frac{1}{y+1}$ yx + x = 1	
	$y = \frac{1-x}{x}$ or $\frac{1}{x} - 1$ $f^{-1}(x) = \frac{1-x}{x}$	M1 A1
	Domain of f^{-1} is $\left(0, \frac{1}{4}\right)$ ft their part (b)	B1 ft (3)
	(d) $fg(x) = \frac{1}{2x^2 - 3 + 1}$ $\frac{1}{2x^2 - 2} = \frac{1}{8}$ $x^2 = 5$	M1
	$x^{2} = 5$ $x = \pm \sqrt{5}$ both	A1 A1 (3) [12]

Question Number	Scheme	Marks
188.	$x^{2}-1$ $x^{2}-1$ $2x^{4} - 3x^{2} + x + 1$ $2x^{4} - 2x^{2}$ $-x^{2} + x + 1$ $-x^{2} + 1$ x $a = 2 \text{ stated or implied}$ $2x^{2}-1+\frac{x}{x^{2}-1}$ $a = 2, b = 0, c = -1, d = 1, e = 0$ $d = 1 \text{ and } b = 0, e = 0 \text{ stated or implied}$	M1 A1 A1 A1

Question Number	Scheme	Marks
190.	(a) $x = 1 - 2y^3 \implies y = \left(\frac{1 - x}{2}\right)^{\frac{1}{3}} \text{ or } \sqrt[3]{\frac{1 - x}{2}}$	M1 A1 (2)
	$f^{-1}: x \mapsto \left(\frac{1-x}{2}\right)^{\frac{1}{3}}$ Ignore domain	
	(b) $gf(x) = \frac{3}{1-2x^3} - 4$	M1 A1
	$=\frac{3-4(1-2x^{3})}{1-2x^{3}}$	M1
	$=\frac{8x^3-1}{1-2x^3}$ * cso	A1 (4)
	$gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}$ Ignore domain	
	(c) $8x^3 - 1 = 0$ Attempting solution of numerator = 0	M1
	$x = \frac{1}{2}$ Correct answer and no additional answers	A1 (2)
		[8]

Question Number	Scheme	Marks
191.	$x = 2\sin t$, $y = 1 - \cos 2t$ $\{= 2\sin^2 t\}$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$	
(a)	$y = 1 - \cos 2t = 1 - (1 - 2\sin^2 t)$ = $2\sin^2 t$	M1
	So, $y = 2\left(\frac{x}{2}\right)^2$ or $y = \frac{x^2}{2}$ or $y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$ $y = \frac{x^2}{2}$ or equivalent.	A1 cso isw
	Either $k = 2$ or $-2 \le x \le 2$	B1
(b)	Range: $0 \le f(x) \le 2$ or $0 \le y \le 2$ or $0 \le f \le 2$ See notes	[3] B1 B1 [2] 5

		Notes for Q	uestion 191			
191. (a)	M1: Uses the	e correct double angle formula c	$\cos 2t = 1 - 2\sin^2 t$ or $\cos 2t = 2\cos^2 t - 1$ or			
	$\cos 2t =$	$=\cos^2 t - \sin^2 t$ in an attempt to g	get y in terms of $\sin^2 t$ or get y in terms of $\cos^2 t$			
	or get y	in terms of $\sin^2 t$ and $\cos^2 t$.	Writing down $y = 2\sin^2 t$ is fine for M1.			
	Al: Achieve	A1: Achieves $y = \frac{x^2}{2}$ or un-simplified equivalents in the form $y = f(x)$. For example:				
	$y = \frac{2x^2}{4}$	x^{2} or $y = 2\left(\frac{x}{2}\right)^{2}$ or $y = 2$	$2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$ or $y = 1 - \frac{4 - x^2}{4} + \frac{x^2}{4}$			
	and you can ignore subsequent working if a candidate states a correct version of the Cartesian equation. IMPORTANT: Please check working as this result can be fluked from an incorrect method. Award A0 if there is a $+c$ added to their answer.					
	B1: Either k	k = 2 or a candidate writes down	$-2 \le x \le 2$. Note: $-2 \le k \le 2$ unless k stated as 2 is B0.			
(b)		alues of 0 and/or 2 need to be ev	1			
			hit, using acceptable notation. Eg: $f(x) \ge 0$ or $f(x) \le 2$			
		$0 \leq 2$ or $0 \leq y \leq 2$ or $0 \leq f \leq 0$				
	=		< 2 or 0 < f < 2 or 0 < y < 2 or (0, 2)			
	Special Case: SC: B1B0 for $0 \le x \le 2$. IMPORTANT: Note that: Therefore candidates can use either <i>y</i> or f in place of $f(x)$					
	Examples:	$0 \le x \le 2$ is SC: B1B0	0 < x < 2 is B0B0			
		$x \ge 0$ is B0B0	$x \leq 2$ is B0B0			
		f(x) > 0 is B0B0	f(x) < 2 is B0B0			
		x > 0 is B0B0	x < 2 is B0B0			
		$0 \ge f(x) \ge 2$ is B0B0	$0 < f(x) \le 2 \text{ is B1B0}$			
		$0 \leq f(x) < 2$ is B1B0.	$f(x) \ge 0$ is B1B0			
		$f(x) \leq 2$ is B1B0	$f(x) \ge 0$ and $f(x) \le 2$ is B1B1. Must state AND {or} \cap			
		$2 \leq f(x) \leq 2$ is B0B0	$f(x) \ge 0$ or $f(x) \le 2$ is B1B0.			
		$ \mathbf{f}(x) \leq 2$ is B1B0	$ \mathbf{f}(x) \ge 2$ is B0B0			
		$1 \leq f(x) \leq 2$ is B1B0	1 < f(x) < 2 is B0B0			
		$0 \leq f(x) \leq 4$ is B1B0	0 < f(x) < 4 is B0B0			
		$0 \leq \text{Range} \leq 2$ is B1B0	Range is in between 0 and 2 is B1B0			
		0 < Range < 2 is B0B0.	Range ≥ 0 is B1B0			
		Range ≤ 2 is B1B0	Range ≥ 0 and Range ≤ 2 is B1B0.			
		[0, 2] is B1B1	(0, 2) is SC B1B0			

	Notes for Question 191 Continued				
Aliter 191. (a)	$y = 1 - \cos 2t = 1 - (2\cos^2 t - 1)$		M1		
Way 2	$y = 2 - 2\cos^2 t \implies \cos^2 t = \frac{2 - y}{2} \implies 1 - \sin^2 t = \frac{2 - y}{2}$				
	$1 - \left(\frac{x}{2}\right)^2 = \frac{2 - y}{2}$		(Must be in the form	$\mathbf{m} \ y = \mathbf{f}(x) \mathbf{)}.$	
	$y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$		A1		
Aliter 191.	$x = 2\sin t \implies t = \sin^{-1}\left(\frac{x}{2}\right)$				
(a) Way 3	$\begin{pmatrix} & & \\ & & \end{pmatrix}$	-	b make <i>t</i> the subject tes the result into <i>y</i> .	M1	
way 5	So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$		$-\cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	A1 oe	
Aliter 191.	$y = 1 - \cos 2t \implies \cos 2t = 1 - y \implies t = \frac{1}{2}\cos^{-1}(1 - y)$				
(a) Way 4	So, $x = \pm 2\sin\left(\frac{1}{2}\cos^{-1}(1-y)\right)$	Rearranges to make <i>t</i> the subject and substitutes the result into <i>y</i> .		M1	
	So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	<i>y</i> = 1	$-\cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	A1 oe	
Aliter 191.	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin t = x \implies y = \frac{1}{2}x^2 + c$	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	$\frac{\mathrm{d}y}{\mathrm{d}x} = x \implies y = \frac{1}{2}x^2 + c$		
(a) Way 5	Eg: when eg: $t = 0$ (nb: $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$),	Full method	of finding $y = \frac{1}{2}x^2$. 1	
Way 5	$x = 0, y = 1 - 1 = 0 \Rightarrow c = 0 \Rightarrow y = \frac{1}{2}x^2$		ue of $t: -\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$	A1	
	Note: $\frac{dy}{dx} = 2\sin t = x \Rightarrow y = \frac{1}{2}x^2$, with no attempt to find	<i>c</i> is M1A0.			

Question Number	Scheme		Marks	
192.	$\frac{5x+3}{(2x+1)(x+1)^2} \equiv \frac{A}{(2x+1)} + \frac{B}{(x+1)} + \frac{C}{(x+1)^2}$ At least one of "A" or "C" are correct. Breaks up their partial fraction correctly into three terms and			
	A = 2, C = 2	both " A " = 2 and " C " = 2.	B1 cso	
	$5x + 3 \equiv A(x + 1)^{2} + B(2x + 1)(x + 1) + C(2x + 1)$ $x = -1 \Longrightarrow -2 = -C \Longrightarrow C = 2$ $x = -\frac{1}{2} \Longrightarrow -\frac{5}{2} + 3 = \frac{1}{4}A \implies \frac{1}{2} = \frac{1}{4}A \implies A = 2$	Writes down <i>a correct identity</i> and attempts to find the value of either one " <i>A</i> " or " <i>B</i> " or " <i>C</i> ".	M1	
	Either $x^2: 0 = A + 2B$, constant: $3 = A + B + C$ x: 5 = 2A + 3B + 2C	Correct value for " <i>B</i> " which is found		
	leading to $B = -1$	using a correct identity and follows from their partial fraction decomposition.	A1 cso [4] 4	
	So, $\frac{5x+3}{(2x+1)(x+1)^2} \equiv \frac{2}{(2x+1)} - \frac{1}{(x+1)} + \frac{2}{(x+1)^2}$		-	
	Notes for Question			
	BE CAREFUL! Candidates will assign <i>their own</i> "A, BB1: At least one of "A" or "C" are correct.B1: Breaks up their partial fraction correctly into three to the set of the s	-		
	M1: Writes down <i>a correct identity</i> (although this can be one of "<i>A</i>" or "<i>B</i>" or "<i>C</i>".This can be achieved by <i>either</i> substituting values		e of either	
	comparing coefficients and solving the resulting eA1: Correct value for "B" which is found using a correct decomposition.	quations simultaneously.	fraction	
	 Note: If a candidate does not give partial fraction of the 2nd B1 mark can follow from a correct i the final A1 mark can be awarded for a corr 	dentity.	eir partial	
	fractions at the end. Note: The correct partial fraction from no working scor Note: A number of candidates will start this problem by find " A " or " B " or " C ". Therefore the B1 marks	writing out the correct identity and then	n attempt to	

Question Number	Scheme		Marks
193.	Method 1: Using one identity		
	$\overline{\frac{9x^2 + 20x - 10}{(x+2)(3x-1)}} = A + \frac{B}{(x+2)} + \frac{C}{(3x-1)}$		
	$\begin{pmatrix} (x+2)(3x-1) & (x+2) & (3x-1) \\ A = 3 & \\ \end{pmatrix}$	their constant term $= 3$	D1
	$9x^{2} + 20x - 10 \equiv A(x+2)(3x-1) + B(3x-1) + C(x+2)$	Forming a correct identity.	B1 B1
	$\int x^{2} + 26x^{2} + 10 = A(x + 2)(3x^{2} + 1) + B(3x^{2} + 1) + C(x + 2)$ $= x^{2}: 9 = 3A, x: 20 = 5A + 3B + C$	<i>.</i> .	DI
	Either constant: $-10 = -2A - B + 2C$ or	Attempts to find the value of either one of their <i>B</i> or their <i>C</i> from their identity.	M1
	$x = -2 \Longrightarrow 36 - 40 - 10 = -7B \Longrightarrow -14 = -7B \Longrightarrow B = 2$	· · · · · · · · · · · · · · · ·	
	$x = \frac{1}{3} \Rightarrow 1 + \frac{20}{3} - 10 = \frac{7}{3}C \Rightarrow -\frac{7}{3} = \frac{7}{3}C \Rightarrow C = -1$	Correct values for their <i>B</i> and their <i>C</i> , which are found using a correct identity.	A1
	$\frac{\text{Method 2: Long Division}}{9x^2 + 20x - 10} = 3 + \frac{5x - 4}{(x + 2)(3x - 1)}$ So, $\frac{5x - 4}{(x + 2)(3x - 1)} = \frac{B}{(x + 2)} + \frac{C}{(3x - 1)}$	their constant term = 3	[4 B1
	$5x - 4 \equiv B(3x - 1) + C(x + 2)$	Forming a correct identity.	B1
	Either x: $5 = 3B + C$, constant: $-4 = -B + 2C$ or $x = -2 \Rightarrow -10 - 4 = -7B \Rightarrow -14 = -7B \Rightarrow B = 2$	Attempts to find the value of either one of their B or their C from their identity.	M1
	$x = \frac{1}{3} \Rightarrow \frac{5}{3} - 4 = \frac{7}{3}C \Rightarrow -\frac{7}{3} = \frac{7}{3}C \Rightarrow C = -1$	Correct values for their <i>B</i> and their <i>C</i> , which are found using $5x - 4 \equiv B(3x - 1) + C(x + 2)$	A1
	So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$		[4
	1st B1: Their constant term must be equal to 3 for this mark 2nd B1 (M1 on epen): Forming a correct identity. This can M1 (A1 on epen): Attempts to find the value of either one be achieved by <i>either</i> substituting values into their identity of resulting equations simultaneously. A1: Correct values for their <i>B</i> and their <i>C</i> , which are found Note : $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv \frac{A}{(x+2)} + \frac{B}{(3x-1)}$, leading to 9. A = 2 and $B = -1$ will gain a maximum of B0B0M1A0	be implied by later working. of their <i>B</i> or their <i>C</i> from their idention or comparing coefficients and solvin using a correct identity.	g the

193. ctd	Note: You can imply the 2^{nd} B1 from either $\frac{9x}{3}$	$\frac{x^{2} + 20x - 10}{(x + 2)(3x - 1)} = \frac{A(x + 2)(3x - 1) + B(3x - 1) + C(x + 2)}{(x + 2)(3x - 1)}$
	(x	(x+2)(3x-1) (x+2)(3x-1)
	or $\frac{5x-4}{(x+2)(3x-1)} \equiv \frac{B(3x-1)+C(x+2)}{(x+2)(3x-1)}$	2)
	(x+2)(3x-1) $(x+2)(3x-1)$	
	Alternative Method 1: Initially dividing by (x	+ 2)
	$\frac{9x^2 + 20x - 10}{"(x+2)"(3x-1)} \equiv \frac{9x+2}{(3x-1)} - \frac{14}{(x+2)(3x-1)}$	
	$\equiv 3 + \frac{5}{(3x-1)} - \frac{14}{(x+2)(3x-1)}$	$\frac{1}{1}$ B1: their constant term = 3
	So, $\frac{-14}{(x+2)(3x-1)} \equiv \frac{B}{(x+2)} + \frac{C}{(3x-1)}$	
	$-14 \equiv B(3x-1) + C(x+2)$	B1: Forming a correct identity.
	$\Rightarrow B = 2, C = -6$	M1: Attempts to find either one of their <i>B</i> or their <i>C</i> from their identity.
	So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} = 3 + \frac{5}{(3x-1)} + \frac{2}{(x+2)} - \frac{3}{(x+2)}$	$\frac{6}{(2-1)}$
		(3x-1)
	and $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$	A1: Correct answer in partial fractions.
	Alternative Method 2. Initially dividing by (2)	~ 1)
	Alternative Method 2: Initially dividing by $(3x)$ $9x^2 + 20x - 10$ $3x + \frac{23}{7}$	(- 1)
	$\frac{9x^2 + 20x - 10}{(x+2)''(3x-1)''} = \frac{3x + \frac{23}{3}}{(x+2)} - \frac{\frac{7}{3}}{(x+2)(3x-1)}$	
	$\equiv 3 + \frac{\frac{5}{3}}{(x+2)} - \frac{\frac{7}{3}}{(x+2)(3x-1)}$	B1: their constant term = 3
	So, $\frac{-\frac{7}{3}}{(x+2)(3x-1)} \equiv \frac{B}{(x+2)} + \frac{C}{(3x-1)}$	
	(n+2)(3n+1) $(n+2)$ $(3n+1)$	
	$-\frac{7}{3} \equiv B(3x-1) + C(x+2)$	B1: Forming a correct identity.
	$\Rightarrow B = \frac{1}{3}, C = -1$	M1: Attempts to find either one of their B or their C from their identity.
	So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{\frac{5}{3}}{(x+2)} + \frac{\frac{1}{3}}{(x+2)} - \frac{1}{3}$	$\frac{1}{3x-1}$
	and $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$	A1: Correct answer in partial fractions.

Question Number	Scheme			Marks	
194.	$9x^{2} = A(x-1)(2x+1) + B(2x+1) + C(x-1)^{2}$			B1	
	$x \rightarrow 1$	$9 = 3B \implies B = 3$		M1	
	$x \rightarrow -\frac{1}{2}$	$\frac{9}{4} = \left(-\frac{3}{2}\right)^2 C \implies C = 1$	Any two of <i>A</i> , <i>B</i> , <i>C</i>	A1	
	x^2 terms	$9 = 2A + C \implies A = 4$	All three correct	A1	(4)
	Alternatives for finding A.			[4]	
		$0 = -A + 2B - 2C \implies A = 4$ ns $0 = -A + B + C \implies A = 4$			

Ques Num		Scheme		neme Marks		rks
195	(a)	Use of	$\cos 2t = 1 - 2\sin^2 t$ $\cos 2t = \frac{x}{2}, \ \sin t = \frac{y}{6}$		M1	
		Leading to	$\frac{x}{2} = 1 - 2\left(\frac{y}{6}\right)^2$ $y = \sqrt{(18 - 9x)} \left(= 3\sqrt{(2 - x)}\right)$	cao	M1 A1	
	(b)		$-2 \le x \le 2$ $0 \le f(x) \le 6$ either $0 \le f(x)$ o Fully correct. Accept $0 \le y$		B1 B1 B1	(4) (2)
						[6]

Question Number	Scheme		Mark	S
196.	$x^{3}-4y^{2} = 12xy (\text{ eqn } *)$ $x = -8 \implies -512-4y^{2} = 12(-8)y$ $-512-4y^{2} = -96y \checkmark$ Substitutes $x = -8$ (at least once obtain a three term quadrum Condone the low	ratic in y. N	M1	
	$4y^{2}-96y+512 = 0$ $y^{2}-24y+128 = 0$ (y-16)(y-8) = 0 $y = \frac{24 \pm \sqrt{576-4(128)}}{2}$ An attempt to solve the quadrate either factorising or by the form <i>completing the</i>	nula or by d	dM1	
	y = 16 or $y = 8$. Both $y = 16$ and or $(-8, 8)$ and	nd $\underline{y=8}$. (-8, 16).	A1	[3]
		3	3 mark	s

Question Number	Scheme		Marks
	$x = \ln(t+2), \qquad y = \frac{1}{t+1}$		
197. (a)	$e^x = t + 2 \implies t = e^x - 2$	Attempt to make $t =$ the subject giving $t = e^x - 2$	M1 A1
	$y = \frac{1}{e^x - 2 + 1} \implies y = \frac{1}{e^x - 1}$	Eliminates <i>t</i> by substituting in <i>y</i> giving $y = \frac{1}{e^x - 1}$	dM1 A1 [4]
Aliter	$t+1=\frac{1}{y} \implies t=\frac{1}{y}-1 \text{ or } t=\frac{1-y}{y}$	Attempt to make $t =$ the subject	M1
197. (a) Way 2	$y(t+1) = 1 \implies yt + y = 1 \implies yt = 1 - y \implies t = \frac{1-y}{y}$	Giving either $t = \frac{1}{y} - 1$ or $t = \frac{1 - y}{y}$	A1
	$x = \ln\left(\frac{1}{y} - 1 + 2\right)$ or $x = \ln\left(\frac{1 - y}{y} + 2\right)$	Eliminates <i>t</i> by substituting in <i>x</i>	dM1
	$x = \ln\left(\frac{1}{y} + 1\right)$		
	$e^x = \frac{1}{y} + 1$		
	$e^x - 1 = \frac{1}{y}$		
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1 [4]
(b)	Domain : $\underline{x > 0}$	$\underline{x > 0}$ or just > 0	
			5 marks

Question Number	Scheme		Mark	S
<i>Aliter</i> 197. (a) Way 3	$e^x = t + 2 \implies t + 1 = e^x - 1$	Attempt to make $t + 1 =$ the subject giving $t + 1 = e^{x} - 1$	M1 A1	
	$y = \frac{1}{t+1} \implies y = \frac{1}{e^x - 1}$	Eliminates <i>t</i> by substituting in <i>y</i> giving $y = \frac{1}{e^x - 1}$	dM1 A1	[4]
<i>Aliter</i> 197. (a) Way 4	$t+1 = \frac{1}{y} \implies t+2 = \frac{1}{y}+1 \text{ or } t+2 = \frac{1+y}{y}$	Attempt to make $t + 2 =$ the subject Either $t + 2 = \frac{1}{y} + 1$ or $t + 2 = \frac{1+y}{y}$	M1 A1	
	$x = \ln\left(\frac{1}{y} + 1\right)$ or $x = \ln\left(\frac{1+y}{y}\right)$	Eliminates <i>t</i> by substituting in <i>x</i>	dM1	
	$x = \ln\left(\frac{1}{y} + 1\right)$			
	$e^x = \frac{1}{y} + 1 \implies e^x - 1 = \frac{1}{y}$			
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1	[4]

