

Maths Questions By Topic:

Coordinate geometry in the (\mathbf{x}, y) plane

Mark Scheme

A-Level Edexcel

\& 02070604494
\# www.expert-tuition.co.uk
\square online.expert-tuition.co.uk
《enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 .. Page 1
Paper 2
Page 40
Old Spec
Core 1 ... Page 54
Core 2
Page 82
Core 4 Page 106

Question	Scheme	Marks	AOs
1 (a)	(i) $x^{2}+y^{2}-10 x+16 y=80 \Rightarrow(x-5)^{2}+(y+8)^{2}=\ldots$	M1	1.1b
	Centre (5, -8)	A1	1.1b
	(ii) Radius 13	A1	1.1b
		(3)	
(b)	Attempts $\sqrt{45 "^{2}+" 8 "^{2}}+" 13 "$	M1	3.1a
	$13+\sqrt{89} \quad$ but ft on their centre and radius	A1ft	1.1b
		(2)	
(5 marks)			
Notes:			

(a)(i)

M1: Attempts to complete the square on both x and y terms.
Accept $(x \pm 5)^{2}+(y \pm 8)^{2}=\ldots$ or imply this mark for a centre of $(\pm 5, \pm 8)$
Condone $(x \pm 5)^{2} \ldots .(y \pm 8)^{2}=\ldots$ where the first \ldots could be , or even -
A1: Correct centre $(5,-8)$.
Accept without brackets. May be written $x=5, y=-8$
(a)(ii)

A1: 13. The M mark must have been awarded, so it can be scored following a centre of $(\pm 5, \pm 8)$. Do not allow for $\sqrt{169}$ or ± 13
(b)

M1: Attempts $\sqrt{" 5^{n^{2}+" 8 "^{2}}}+$ "13" for their centre $(5,-8)$ and their radius 13.
Award when this is given as a decimal, e.g. 22.4 for correct centre and radius. Look for $\sqrt{a^{2}+b^{2}}+r$ where centre is $(\pm a, \pm b)$ and radius is r

A1ft: $13+\sqrt{89}$ Follow through on their $(5,-8)$ and their 13 leading to an exact answer. ISW for example if they write $13+\sqrt{89}=22.4$

There are more complicated attempts which could involve finding P by solving $y="-\frac{8}{5} x$ " and $x^{2}+y^{2}-10 x+16 y=80$ simultaneously and choosing the coordinate with the greatest modulus. The method is only scored when the distance of the largest coordinate from O is attempted. Such methods are unlikely to result in an exact value but can score 1 mark for the method. Condone slips

FYI. Solving $y=-\frac{8}{5} x$ and $x^{2}+y^{2}-10 x+16 y=80 \Rightarrow 89 x^{2}-890 x-2000=0 \Rightarrow P=(11.89,-19.02)$ Hence $O P=\sqrt{" 11.89 "^{2}+" 19.02 n^{2}}(=22.43)$ scores M1 A0 but $O P=\sqrt{258+26 \sqrt{89}}$ is M1 A1

A1: $\left(\frac{6}{5},-\frac{18}{5}\right)$ or equivalent eg $(1.2,-3.6)$
They do not have to be written as coordinates and may be seen within their working rather than explicitly stated. They may also be written on the diagram.
dM1: Fully correct strategy for finding the required distance e.g. correct use of Pythagoras to find the distance between their centre and their intersection and then completes the problem by subtracting their radius. Condone a sign slip subtracting their $-\frac{18}{5}$.
It is dependent on the previous method mark.
Alternatively, they solve simultaneously their $y=2 x-6$ with the equation of the circle and then find the distance between this intersection point and the point of intersection between l and the normal. They must choose the smaller positive root of the solution to their quadratic.
Eg
$(x-5)^{2}+(2 x-6-4)^{2}=9 \Rightarrow 5 x^{2}-50 x+125=9$
$x=\frac{25-3 \sqrt{5}}{5}, y=\frac{20-6 \sqrt{5}}{5}$
Distance between two points:
$\sqrt{\left(\left[\frac{25-3 \sqrt{5}}{5} "-" \frac{6}{5} n\right)^{2}+\left(" \frac{20-6 \sqrt{5}}{5} "+" \frac{18}{5} n\right)^{2}\right.}$
A1: Correct value e.g. $\sqrt{\frac{361}{5}}-3$ or $\frac{19 \sqrt{5}-15}{5}$). Also allow awrt 5.50 Isw after a correct answer is seen.

Alt (b) Be aware they may use vector methods:

B1M1: Attempts to find the perpendicular distance between their $(5,4)$ and $x+2 y+6=0$ by substituting the values into the formula to find the distance between a point (x, y) and a line $a x+b y+c=0$
$\Rightarrow \frac{|a x+b y+c|}{\sqrt{a^{2}+b^{2}}}=\frac{|" 5 " \times 41++4 " \times " 2 "+" 6 "|}{\sqrt{11^{2}+{ }^{2} 2^{2}}}$
A1: $\quad \frac{|5 \times 1+4 \times 2+6|}{\sqrt{1^{2}+2^{2}}}\left(=\frac{19}{\sqrt{5}}\right)$
dM1: Distance $=" \frac{19 \sqrt{5}}{5} "-3$
A1: $\frac{19 \sqrt{5}-15}{5}$

Question	Scheme	Marks	AOs
3(a)(i)	$(x-5)^{2}+(y+2)^{2}=\ldots$	M1	1.1b
	$(5,-2)$	A1	1.1b
(ii)	$r=\sqrt{" 5^{\prime 2}+"-2^{\prime 2}-11}$	M1	1.1b
	$r=3 \sqrt{2}$	A1	1.1b
		(4)	
(b)	$\begin{aligned} & y=3 x+k \Rightarrow x^{2}+(3 x+k)^{2}-10 x+4(3 x+k)+11=0 \\ & \Rightarrow x^{2}+9 x^{2}+6 k x+k^{2}-10 x+12 x+4 k+11=0 \end{aligned}$	M1	2.1
	$\Rightarrow 10 x^{2}+(6 k+2) x+k^{2}+4 k+11=0$	A1	1.1b
	$b^{2}-4 a c=0 \Rightarrow(6 k+2)^{2}-4 \times 10 \times\left(k^{2}+4 k+11\right)=0$	M1	3.1a
	$\Rightarrow 4 k^{2}+136 k+436=0 \Rightarrow k=\ldots$	M1	1.1b
	$k=-17 \pm 6 \sqrt{5}$	A1	2.2a
		(5)	
(9 marks)			
Notes			

(a)(i)

M1: Attempts to complete the square on by halving both x and y terms.
Award for sight of $(x \pm 5)^{2},(y \pm 2)^{2}=\ldots$ This mark can be implied by a centre of $(\pm 5, \pm 2)$.
A1: Correct coordinates. (Allow $x=5, y=-2$)
(a)(ii)

M1: Correct strategy for the radius or radius ${ }^{2}$. For example award for $r=\sqrt{" \pm 5^{\prime 2}+" \pm 2^{12}-11}$ or an attempt such as $(x-a)^{2}-a^{2}+(y-b)^{2}-b^{2}+11=0 \Rightarrow(x-a)^{2}+(y-b)^{2}=k \Rightarrow r^{2}=k$
A1: $r=3 \sqrt{2}$. Do not accept for the A1 either $r= \pm 3 \sqrt{2}$ or $\sqrt{18}$
The A1 can be awarded following sign slips on $(5,-2)$ so following $r^{2}=" \pm 5^{\prime 2}+" \pm 2^{\prime 2}-11$
(b) Main method seen

M1: Substitutes $y=3 x+k$ into the given equation (or their factorised version) and makes progress by attempting to expand the brackets. Condone lack of $=0$
A1: Correct 3 term quadratic equation.
The terms must be collected but this can be implied by correct a, b and c
M1: Recognises the requirement to use $b^{2}-4 a c=0$ (or equivalent) where both b and c are expressions in k. It is dependent upon having attempted to substitute $y=3 x+k$ into the given equation
M1: Solves 3TQ in k. See General Principles.
The 3TQ in k must have been found as a result of attempt at $b^{2}-4 a c \ldots 0$
A1: Correct simplified values
Look carefully at the method used. It is possible to attempt this using gradients

(b) Alt 1	$x^{2}+y^{2}-10 x+4 y+11=0 \Rightarrow 2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-10+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\begin{aligned} & \text { Sets } \frac{\mathrm{d} y}{\mathrm{~d} x}=3 \Rightarrow x+3 y+1=0 \text { and combines with equation for } C \\ & \Rightarrow 5 x^{2}-50 x+44=0 \quad \text { or } \quad 5 y^{2}+20 y+11=0 \\ & \Rightarrow x=\ldots \quad \text { or } \quad y=\ldots \end{aligned}$	M1	3.1a
	$x=\frac{25 \pm 9 \sqrt{5}}{5}, y=\frac{-10 \pm 3 \sqrt{5}}{5}, k=y-3 x \Rightarrow k=\ldots$	M1	1.1b
	$k=-17 \pm 6 \sqrt{5}$	A1	2.2a

M1: Differentiates implicitly condoning slips but must have two $\frac{\mathrm{d} y}{\mathrm{~d} x}$'s coming from correct terms
A1: Correct differentiation.
M1: Sets $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$, makes y or x the subject, substitutes back into C and attempts to solve the resulting quadratic in x or y.
M1: Uses at least one pair of coordinates and l to find at least one value for k. It is dependent upon having attempted both M's
A1: Correct simplified values

(b) Alt 2	$x^{2}+y^{2}-10 x+4 y+11=0 \Rightarrow 2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-10+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} \hline 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	Sets $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \Rightarrow x+3 y+1=0$ and combines with equation for l $y=3 x+k, x+3 y=1$ $\Rightarrow x=\ldots$ and $y=\ldots$ in terms of k	M1	3.1a
	$x=\frac{-3 k-1}{10}, y=\frac{k-3}{10}, x^{2}+y^{2}-10 x+4 y+11=0 \Rightarrow k=\ldots$	M1	1.1b
	$k=-17 \pm 6 \sqrt{5}$	A1	2.2a

Very similar except it uses equation for l instead of C in mark 3
M1 A1: Correct differentiation (See alt 1)
M1: Sets $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$, makes y or x the subject, substitutes back into l to obtain x and y in terms of k
M1: Substitutes for x and y into C and solves resulting 3TQ in k
A1: Correct simplified values

(b) Alt 3 | | $y=3 x+k \Rightarrow m=3 \Rightarrow m_{r}=-\frac{1}{3}$ | M1 |
| :---: | :---: | :---: |
| | $y+2=-\frac{1}{3}(x-5)$ | A1 |
| | $(x-5)^{2}+(y+2)^{2}=18, y+2=-\frac{1}{3}(x-5)$ | |
| $\Rightarrow \frac{10}{9}(x-5)^{2}=18 \Rightarrow x=\ldots$ or $\Rightarrow 10(y+2)^{2}=18 \Rightarrow y=\ldots$ | M1 | |
| ${$$}{5} }, y=\frac{-10 \pm 3 \sqrt{5}}{5}, k=y-3 x \Rightarrow k=\ldots }$ | A1 | |

M1: Applies negative reciprocal rule to obtain gradient of radius
A1: Correct equation of radial line passing through the centre of C
M1: Solves simultaneously to find x or y
Alternatively solves " $y=-\frac{1}{3} x-\frac{1}{3}$ " and $y=3 x+k$ to get x in terms of k which they substitute in $x^{2}+(3 x+k)^{2}-10 x+4(3 x+k)+11=0$ to form an equation in k.
M1: Applies $k=y-3 x$ with at least one pair of values to find k
A1: Correct simplified values

Question	Scheme	Marks	AOs
$\mathbf{4}$	$(x-3)^{2}+y^{2}=\left(\frac{t^{2}+5}{t^{2}+1}-3\right)^{2}+\left(\frac{4 t}{t^{2}+1}\right)^{2}$	M1	3.1a
	$=\frac{\left(2-2 t^{2}\right)^{2}+16 t^{2}}{\left(t^{2}+1\right)^{2}}=\frac{4+8 t^{2}+4 t^{4}}{\left(t^{2}+1\right)^{2}}$	dM1	1.1 b
	$\frac{4\left(t^{4}+2 t^{2}+1\right)}{\left(t^{2}+1\right)^{2}}=\frac{4\left(t^{2}+1\right)^{2}}{\left(t^{2}+1\right)^{2}}=4^{*}$	A1*	2.1

M1: Attempts to substitute the given parametric forms into the Cartesian equation or the lhs of the
Cartesian equation. There may have been an (incorrect) attempt to multiply out the $(x-3)^{2}$ term. dM1: Attempts to combine (at least the lhs) using correct processing into a single fraction, multiplies out and collects terms on the numerator.
A1*: Fully correct proof showing all key steps

Question	Scheme	Marks	AOs
Alt	$\begin{aligned} & x=\frac{t^{2}+5}{t^{2}+1} \Rightarrow x t^{2}+x=t^{2}+5 \Rightarrow t^{2}=\frac{5-x}{x-1} \\ & y=\frac{4 t}{t^{2}+1} \Rightarrow y^{2}=\frac{16 t^{2}}{\left(t^{2}+1\right)^{2}}=\frac{16\left(\frac{5-x}{x-1}\right)}{\left(\frac{5-x}{x-1}+1\right)^{2}} \end{aligned}$	M1	3.1a
	$y^{2}=\frac{16\left(\frac{5-x}{x-1}\right)}{\left(\frac{5-x}{x-1}+1\right)^{2}}=16\left(\frac{5-x}{x-1}\right) \times\left(\frac{(x-1)}{5-x+x-1}\right)^{2} \Rightarrow y^{2}=(5-x)(x-1)$	dM1	1.1b
	$\begin{gathered} y^{2}=(5-x)(x-1) \Rightarrow y^{2}=6 x-x^{2}-5 \\ \Rightarrow y^{2}=4-(x-3)^{2} \text { or other intermediate step } \\ \Rightarrow(x-3)^{2}+y^{2}=4^{*} \end{gathered}$	A1*	2.1
		(3)	
(3 marks)			
Notes			

M1: Adopts a correct strategy for eliminating t to obtain an equation in terms of x and y only. See scheme.
Other methods exist which also lead to an appropriate equation. E.g using $t=\frac{y}{x-1}$
dM1: Uses correct processing to eliminate the fractions and start to simplify
A1*: Fully correct proof showing all key steps

Question	Scheme	Marks	AOs
5(a)	Attempts to find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=2$	M1	1.1b
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x \Rightarrow$ gradient of tangent at P is 12	A1	1.1b
		(2)	
(b)	Gradient $P Q=\frac{3(2+h)^{2}-2-10}{(2+h)-2}$ oe	B1	1.1b
	$=\frac{3(2+h)^{2}-12}{(2+h)-2}=\frac{12 h+3 h^{2}}{h}$	M1	1.1b
	$=12+3 \mathrm{~h}$	A1	2.1
		(3)	
(c)	Explains that as $h \rightarrow 0,12+3 h \rightarrow 12$ and states that the gradient of the chord tends to the gradient of (the tangent to) the curve	B1	2.4
		(1)	
(6 marks)			

Notes

(a)

M1: Attempts to differentiate, allow $3 x^{2}-2 \rightarrow \ldots x$ and substitutes $x=2$ into their answer
A1: cso $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x \Rightarrow$ gradient of tangent at P is 12
(b)

B1: Correct expression for the gradient of the chord seen or implied.
M1: Attempts $\frac{\delta y}{\delta x}$, condoning slips, and attempts to simplify the numerator. The denominator must be h

A1: cso $12+3 h$
(c)

B1: Explains that as $h \rightarrow 0,12+3 h \rightarrow 12$ and states that the gradient of the chord tends to the gradient of the curve

Question	Scheme	Marks	AOs
6(a)	Deduces the line has gradient " -3 " and point $(7,4)$ $\operatorname{Eg} \quad y-4=-3(x-7)$	M1	2.2a
	$y=-3 x+25$	A1	1.1b
		(2)	
(b)	Solves $y=-3 x+25$ and $y=\frac{1}{3} x$ simultaneously	M1	3.1a
	$P=\left(\frac{15}{2}, \frac{5}{2}\right)$ oe	A1	1.1b
	Length $P N=\sqrt{\left(\frac{15}{2}-7\right)^{2}+\left(4-\frac{5}{2}\right)^{2}}=\left(\sqrt{\frac{5}{2}}\right)$	M1	1.1b
	Equation of C is $(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$ o.e.	A1	1.1b
		(4)	
(c)	Attempts to find where $y=\frac{1}{3} x+k$ meets C using vectors $\text { Eg: }\binom{7.5}{2.5}+2 \times\binom{-0.5}{1.5}$	M1	3.1a
	Substitutes their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y=\frac{1}{3} x+k$ to find k	M1	2.1
	$k=\frac{10}{3}$	A1	1.1b
		(3)	
(9 marks)			
(c)	Attempts to find where $y=\frac{1}{3} x+k$ meets C via simultaneous equations proceeding to a 3 TQ in x (or y) $\text { FYI } \frac{10}{9} x^{2}+\left(\frac{2}{3} k-\frac{50}{3}\right) x+k^{2}-8 k+\frac{125}{2}=0$	M1	3.1a
	Uses $b^{2}-4 a c=0$ oe and proceeds to $k=\ldots$	M1	2.1
	$k=\frac{10}{3}$	A1	1.1b
		(3)	

Notes:

(a)

M1: Uses the idea of perpendicular gradients to deduce that gradient of $P N$ is -3 with point $(7,4)$ to find the equation of line $P N$
So sight of $y-4=-3(x-7)$ would score this mark
If the form $y=m x+c$ is used expect the candidates to proceed as far as $c=\ldots$ to score this mark.
A1: Achieves $y=-3 x+25$
(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point P. ie for an attempt at solving their $y=-3 x+25$ and $y=\frac{1}{3} x$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates.

A1: $P=\left(\frac{15}{2}, \frac{5}{2}\right)$
M1: Uses Pythagoras' Theorem to find the radius or radius ${ }^{2}$ using their $P=\left(\frac{15}{2}, \frac{5}{2}\right)$ and $(7,4)$. There must be an attempt to find the difference between the coordinates in the use of Pythagoras

A1: Full and careful work leading to a correct equation. $\operatorname{Eg}(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$ or its expanded form. Do not accept $(x-7)^{2}+(y-4)^{2}=\left(\sqrt{\frac{5}{2}}\right)^{2}$
(c)

M1: Attempts to find where $y=\frac{1}{3} x+k$ meets C using a vector approach
M1: For a full method leading to k. Scored for substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y=\frac{1}{3} x+k$
A1: $k=\frac{10}{3}$ only

Alternative I

M1: For solving $y=\frac{1}{3} x+k$ with their $(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$ and creating a quadratic eqn of the form $a x^{2}+b x+c=0$ where both \boldsymbol{b} and \boldsymbol{c} are dependent upon \boldsymbol{k}. The terms in x^{2} and x must be collected together or implied to have been collected by their correct use in " $b^{2}-4 a c$ "
FYI the correct quadratic is $\frac{10}{9} x^{2}+\left(\frac{2}{3} k-\frac{50}{3}\right) x+k^{2}-8 k+\frac{125}{2}=0$ oe
M1: For using the discriminant condition $b^{2}-4 a c=0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.
Award if you see use of correct formula but it would be implied by \pm correct roots
A1: $k=\frac{10}{3}$ only
\qquad

Alternative II

M1: For solving $y=-3 x+25$ with their $(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$, creating a 3TQ and solving.
M1: For substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ into $y=\frac{1}{3} x+k$ and finding k
A1: $k=\frac{10}{3}$ only

Question	Scheme	Marks	AOs
7 (a)	Solves $x^{2}+y^{2}=100$ and $(x-15)^{2}+y^{2}=40$ simultaneously to find x or y E.g. $(x-15)^{2}+100-x^{2}=40 \Rightarrow x=\ldots$	M1	3.1a
	Either Or $\begin{array}{r} \Rightarrow-30 x+325=40 \Rightarrow x=9.5 \\ y=\frac{\sqrt{39}}{2}=\mathrm{awrt} \pm 3.12 \end{array}$	A1	1.1b
	Attempts to find the angle $A O B$ in circle C_{1} Eg Attempts $\cos \alpha=\frac{" 9.5 "}{10}$ to find α then $\times 2$	M1	3.1a
	Angle $A O B=2 \times \operatorname{arcos}\left(\frac{9.5}{10}\right)=0.635 \mathrm{rads}(3 \mathrm{sf}) *$	A1*	2.1
		(4)	
(b)	Attempts $10 \times(2 \pi-0.635)=56.48$	M1	1.1b
	Attempts to find angle $A X B$ or $A X O$ in circle C_{2} (see diagram) E.g. $\quad \cos \beta=\frac{15-" 9.5^{"}}{\sqrt{40}} \Rightarrow \beta=\ldots \quad$ (Note $A X B=1.03$ rads)	M1	3.1a
	Attempts $10 \times(2 \pi-0.635)+\sqrt{40} \times(2 \pi-2 \beta)$	dM1	2.1
	$=89.7$	A1	1.1b
		(4)	
(8 marks)			
Notes:			

(a)

M1: For the key step in an attempt to find either coordinate for where the two circles meet.
Look for an attempt to set up an equation in a single variable leading to a value for x or y.
A1: $x=9.5$ (or $y=\frac{\sqrt{39}}{2}=\operatorname{awrt} \pm 3.12$)

M1: Uses the radius of the circle and correct trigonometry in an attempt to find angle $A O B$ in circle C_{1}
E.g. Attempts $\cos \alpha=\frac{" 9.5 "}{10}$ to find α then $\times 2$

Alternatives include $\tan \alpha=\frac{\sqrt{100-" 9.5 "^{2}}}{" 9.5 "}=(0.3286 \ldots)$ to find α then $\times 2$
And $\cos A O B=\frac{10^{2}+10^{2}-(\sqrt{39})^{2}}{2 \times 10 \times 10}=\frac{161}{200}$
A1*: Correct and careful work in proceeding to the given answer. Condone an answer with greater accuracy.
Condone a solution where the intermediate value has been truncated, provided the trig equation is correct.
E.g. $\sin \alpha=\frac{\sqrt{39}}{20} \Rightarrow \alpha=0.317 \Rightarrow A O B=2 \alpha=0.635$

Condone a solution written down from awrt 36.4° (without the need to shown any calculation.)
E
(b)

M1: Attempts to use the formula $s=r \theta$ with $r=10$ and $\theta=2 \pi-0.635$
The formula may be embedded. You may see $\underline{\underline{2 \pi 10}}+2 \pi \sqrt{40} \underline{\underline{-10 \times 0.635} \ldots}$.. which is fine for this M1
M1: Attempts to use a correct method in order to find angle $A X B$ or $A X O$ in circle C_{2}
Amongst many other methods are $\tan \beta=\frac{" 3.12 " "}{15-9.5}$ and $\cos A X B=\frac{40+40-(\sqrt{39})^{2}}{2 \times \sqrt{40} \times \sqrt{40}}=\frac{41}{80}$
Note that many candidates believe this to be 0.635 . This scores M0 dM0 A0
dM1: A full and complete attempt to find the perimeter of the region.
It is dependent upon having scored both M's.
A1: awrt 89.7

(a)

M1: For the key step in attempting to find all lengths in triangle $O A X$, condoning slips
A1: All three lengths correct
M1: Attempts cosine rule to find α then $\times 2$
A1*: Correct and careful work in proceeding to the given answer

Question	Scheme	Marks	AOs
8(a)	Attempts $A=m n+c$ with either $(0,190)$ or $(8,169)$ Or attempts gradient eg $m= \pm \frac{190-169}{8}(=-2.625)$	M1	3.3
	Full method to find a linear equation linking A with n E.g. Solves $190=0 n+c$ and $169=8 n+c$ simultaneously	dM1	3.1b
	$A=-2.625 n+190$	A1	1.1b
		(3)	
(b)	Attempts $A=-2.625 \times 19+190=\ldots$	M1	3.4
	$A=140.125 \mathrm{~g} \mathrm{~km}^{-1}$	A1	1.1b
	It is predicting a much higher value and so is not suitable	B1ft	3.5a
		(3)	
(6 marks)			

Notes

(a)

M1: Attempts $A=m n+c$ with either $(0,190)$ or $(8,169)$ considered.
Eg Accept sight of $190=0 n+c$ or $169=8 m+c$ or $A-169=m(n-8)$ or $A=190+m n$ where m could be a value.
Also accept an attempt to find the gradient $\pm \frac{190-169}{8}$ or sight of ± 2.625 or $\pm \frac{21}{8}$ oe
dM1: A full method to find both constants of a linear equation
Method 1: Solves $190=0 n+c$ and $169=8 n+c$ simultaneously
Method 2: Uses gradient and a point Eg $m= \pm \frac{190-169}{8}(=-2.625)$ and $c=190$
Condone different variables for this mark. Eg. y in terms of x.
A1: $\quad A=-2.625 n+190$ or $A=-\frac{21}{8} n+190$ oe
(b)

M1: Attempts to substitute " n " $=19$ into their linear model to find A. They may call it $x=19$ Alternatively substitutes $A=120$ into their linear model to find n.

A1: $\quad A=140.125$ from $n=19$ Allow $A=140$
or $n=26 / 27$ following $A=120$
B1ft: Requires a correct calculation for their model, a correct statement and a conclusion E.g For correct (a) $A=140$ is (much) higher than 120 so the model is not suitable/appropriate.
Follow through on a correct statement for their equation. As a guide allow anything within $[114,126]$ to be regarded as suitable. Anything less than 108 or more than 132 should be justified as unsuitable.

Note B0 Recorded value is not the same as/does not equal/does not match the value predicted

Question	Scheme	Marks	AOs
9(i)	$x^{2}+y^{2}+18 x-2 y+30=0 \Rightarrow(x+9)^{2}+(y-1)^{2}=\ldots$	M1	1.1b
	Centre ($-9,1$)	A1	1.1b
	Gradient of line from $P(-5,7)$ to " $(-9,1)$ " $=\frac{7-1}{-5+9}=\left(\frac{3}{2}\right)$	M1	1.1b
	Equation of tangent is $y-7=-\frac{2}{3}(x+5)$	dM1	3.1a
	$3 y-21=-2 x-10 \Rightarrow 2 x+3 y-11=0$	A1	1.1b
		(5)	
(ii)	$x^{2}+y^{2}-8 x+12 y+k=0 \Rightarrow(x-4)^{2}+(y+6)^{2}=52-k$	M1	1.1b
	Lies in Quadrant 4 if radius $<4 \Rightarrow " 52-k "<4^{2}$	M1	3.1a
	$\Rightarrow k>36$	A1	1.1b
	Deduces $52-k>0 \Rightarrow$ Full solution $36<k<52$	A1	3.2a
		(4)	
(9 marks)			

Notes

(i)

M1: Attempts $(x \pm 9)^{2} \ldots .(y \pm 1)^{2}=\ldots$ It is implied by a centre of $(\pm 9, \pm 1)$

A1: \quad States or uses the centre of C is $(-9,1)$
M1: A correct attempt to find the gradient of the radius using their $(-9,1)$ and P. E.g. $\frac{7-" 1 "}{-5-"-9 "}$
dM1: For the complete strategy of using perpendicular gradients and finding the equation of the tangent to the circle. It is dependent upon both previous M's. $y-7=-\frac{1}{\text { gradient } C P}(x+5)$ Condone a sign slip on one of the -7 or the 5 .
A1: $\quad 2 x+3 y-11=0$ oe such as $k(2 x+3 y-11)=0, k \in \mathrm{Z}$
Attempt via implicit differentiation. The first three marks are awarded
M1: Differentiates $x^{2}+y^{2}+18 x-2 y+30=0 \Rightarrow \ldots x+\ldots y \frac{\mathrm{~d} y}{\mathrm{~d} x}+18-2 \frac{\mathrm{~d} y}{\mathrm{~d} x} \ldots=0$
A1: Differentiates $x^{2}+y^{2}+18 x-2 y+30=0 \Rightarrow 2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+18-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
M1: Substitutes $P(-5,7)$ into their equation involving $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(ii)

M1: For reaching $(x \pm 4)^{2}+(y \pm 6)^{2}=P-k$ where P is a positive constant. Seen or implied by centre coordinates $(\mp 4, \mp 6)$ and a radius of $\sqrt{P-k}$

M1: Applying the strategy that it lies entirely within quadrant if "their radius" <4 and proceeding to obtain an inequality in k only (See scheme). Condone ...,, 4 for this mark.

A1: Deduces that $k>36$
A1: A rigorous argument leading to a full solution. In the context of the question the circle exists so that as well as $k>3652-k>0 \Rightarrow 36<k<52 \quad$ Allow $36<k$, 52
$\left.\begin{array}{|c|c|c|c|}\hline \text { Question } & \text { Scheme } & \text { Marks } & \text { AOs } \\ \hline \mathbf{1 0 (a)} & \begin{array}{c}2 x+4 y-3=0 \Rightarrow y=\mp \frac{2}{4} x+\ldots \\ \end{array} & \text { Gradient of perpendicular }= \pm \frac{4}{2}\end{array}\right)$
(a)

M1: Attempts to set given equation in the form $y=a x+b$ with $a=\mp \frac{2}{4}$ oe such as $\mp \frac{1}{2}$ AND deduces that $m=-\frac{1}{a}$ Condone errors on the " $+b$ "
An alternative method is to find both intercepts to get gradient $l_{1}= \pm \frac{0.75}{1.5}$ and use the perpendicular gradient rule.
A1: Correct answer. Accept either $m=2$ or $y=2 x+7$
This must be simplified and not left as $m=\frac{4}{2}$ or $m=2 x$ unless you see $y=2 x+7$.

Watch: There may be candidates who look at $\mathbf{2} x+4 y-3=0$ and incorrectly state that the gradient is 2 and use the perpendicular rule to get $m=-\frac{1}{2}$ They will score M0 A0 in (a) and also no marks in (b) as the lines would be parallel. In a case like this don't allow an equation to be "altered" Candidates who state $m=2$ or $\quad y=2 x+7$ with no incorrect working can score both marks
(b)

M1: Substitutes their $y=m x+7$ into $2 x+4 y-3=0$, condoning slips, in an attempt to form and solve an equation in x. Alternatively equates their $y=-\frac{1}{2} x+\frac{3}{4}$ with their $y=m x+7$ in an attempt to form and solve, condoning slips, an equation in x. Don't be too concerned by the mechanics of the candidates attempt to solve. (E.g. allow solutions from their calculators). You may see $2 x+4 y-3=2 x-y+7$ with y being found before the value of x appears It cannot be awarded from "unsolvable" equations (e.g. lines that are parallel).
A1: $x=-2.5$
The answer alone can score both marks as long as both equations are correct and no incorrect working is seen.
Remember to isw after the correct answer and ignore any y coordinate

Question	Scheme	Marks	AOs
11(a)	Attempts $H=m t+c$ with both $(3,2.35)$ and ($6,3.28$)	M1	3.3
	Method to find both m and c	dM1	3.1a
	$H=0.31 t+1.42$ oe	A1	1.1b
		(3)	
(b)	Uses the model and states that the initial height is their ' b '	B1ft	3.4
	Compares 140 cm with their $1.42(\mathrm{~m})$ and makes a valid comment. In the case where $H=0.31 t+1.42$ it should be this fact supports the use of the linear model as the values are close.	B1ft	3.5a
		(2)	
(5 marks)			
Notes			

Mark parts (a) and (b) as one

(a)

M1: For creating a linear model with both pieces of information given.
Eg. Accept sight of $2.35=3 m+c$ and $3.28=6 m+c$ Condone slips on the 2.35 and 3.28.
Allow for an attempt at the "gradient" $m=\frac{3.28-2.35}{6-3}(=0.31)$ or the intercept.
Allow for a pair of simultaneous in any variable even x and y
dM1: A full method to find both constants. For simultaneous equations award if they arrive at values for m and c.
If they attempted the gradient it would be for attempting to find " c " using $y=m x+c$ with their m and one of the points $(3,2.35)$ or $(6,3.28)$
A1: A correct model using allowable/correct variables. $H=0.31 t+1.42$ Condone $h \leftrightarrow H, t \leftrightarrow T$

Allow equivalents such as $H=\frac{31}{100} t+\frac{142}{100}, t=\frac{H-1.42}{0.31}$ but not $\quad H=\frac{0.93}{3} t+1.42$
Do not allow $H=0.31 t+1.42 \mathrm{~m}$ (with the units)
(b) To score any marks in (b) the model must be of the form $H=m t+b$ where $m>0, b>0$

B1ft: States or implies that 1.42 (with or without units) or 142 cm (including the units) is the original height or the height when $t=0$
You should allow statements such as $c=1.42$ or original height $=1.42(\mathrm{~m})$
Follow through on their value of ' c ', so for $H=0.25 t+1.60$ it is scored for stating the initial height is $1.60(\mathrm{~m})$ or 160 cm . Do not follow through if $c \leqslant 0$

B1ft: Compares 140 cm with their $1.42(\mathrm{~m})$ and makes a valid comment.
In the case where $H=0.31 t+1.42$ it should be this fact supports the use of the linear model as the values are close or approximately the same. Allow $1.42 \mathrm{~m} \approx 1.4 \mathrm{~m}$ or similar In the case of $H=0.25 t+1.60$ it would be for stating that the fact that it does not support the use of the model as the values are too different. If they state $1.60>1.40$ this is insufficient. They cannot just state that they are not the same. It must be implied that there is a significant difference.
As a rule of thumb use "good model" for between 135 cm and 145 cm .

This requires a correct calculation for their H, a correct statement with an appreciation shown for the units and a correct conclusion.

Notes on Question 11 continue
SC B1 B0 Award SC for incomplete answers which suggest the candidate knows what to do.
Eg. In (b) $H=0.31 t+1.42$ followed by in (c) It supports the model as when $t=0$ it is approximately 140 cm

Question	Scheme	Marks	AOs
12(a)	$x^{2}+y^{2}-4 x+8 y-8=0$		
	Attempts $(x-2)^{2}+(y+4)^{2}-4-16-8=0$	M1	1.1b
	(i) Centre $(2,-4)$	A1	1.1b
	(ii) Radius $\sqrt{28}$ oe Eg $2 \sqrt{7}$	A1	1.1b
		(3)	
(b)	 Attempts to add/subtract ' r ' from '2' $k=2 \pm \sqrt{28}$	M1	3.1a
		A1ft	1.1b
		(2)	
(5 marks)			
Notes			

(a)

M1: Attempts to complete the square. Look for $(x \pm 2)^{2}+(y \pm 4)^{2} \ldots$
If a candidate attempts to use $x^{2}+y^{2}+2 g x+2 f y+c=0$ then it may be awarded for a centre of $(\pm 2, \pm 4)$ Condone $a= \pm 2, b= \pm 4$
A1: Centre $(2,-4)$ This may be written separately as $x=2, y=-4$ BUT $a=2, b=-4$ is A0
A1: Radius $\sqrt{28}$ or $2 \sqrt{7}$ isw after a correct answer
(b)

M1: Attempts to add or subtract their radius from their 2.
Alternatively substitutes $y=-4$ into circle equation and finds x / k by solving the quadratic equation by a suitable method.
A third (and more difficult) method would be to substitute $x=k$ into the equation to form a quadratic eqn in $y \Rightarrow y^{2}+8 y+k^{2}-4 k-8=0$ and use the fact that this would have one root. E.g. $b^{2}-4 a c=0 \Rightarrow 64-4\left(k^{2}-4 k-8\right)=0 \Rightarrow k=$.. Condone slips but the method must be sound.

A1ft: $k=2+\sqrt{28}$ and $k=2-\sqrt{28}$ Follow through on their 2 and their $\sqrt{28}$
If decimals are used the values must be calculated. $\mathrm{Eg} k=2 \pm 5.29 \rightarrow k=7.29, k=-3.29$
Accept just $2 \pm \sqrt{28}$ or equivalent such as $2 \pm 2 \sqrt{7}$
Condone $x=2+\sqrt{28}$ and $x=2-\sqrt{28}$ but not $y=2+\sqrt{28}$ and $y=2-\sqrt{28}$

Question	Scheme	Marks	AOs
13(a)	Deduces that gradient of PA is $-\frac{1}{2}$	M1	2.2a
	Finding the equation of a line with gradient " $-\frac{1}{2}$ " and point $(7,5)$ $y-5=-\frac{1}{2}(x-7)$	M1	1.1b
	Completes proof $\quad 2 y+x=17$ *	A1*	1.1b
		(3)	
(b)	Solves $2 y+x=17$ and $y=2 x+1$ simultaneously	M1	2.1
	$P=(3,7)$	A1	1.1b
	Length $P A=\sqrt{(3-7)^{2}+(7-5)^{2}}=(\sqrt{20})$	M1	1.1b
	Equation of C is $(x-7)^{2}+(y-5)^{2}=20$	A1	1.1b
		(4)	
(c)	Attempts to find where $y=2 x+k$ meets C using $\overrightarrow{O A}+\overrightarrow{P A}$	M1	3.1a
	Substitutes their $(11,3)$ in $y=2 x+k$ to find k	M1	2.1
	$k=-19$	A1	1.1b
		(3)	
(10 marks)			
(c)	Attempts to find where $y=2 x+k$ meets C via simultaneous equations proceeding to a 3 TQ in x (or y) FYI $5 x^{2}+(4 k-34) x+k^{2}-10 k+54=0$	M1	3.1a
	Uses $b^{2}-4 a c=0$ oe and proceeds to $k=\ldots$	M1	2.1
	$k=-19$	A1	1.1b
		(3)	
M1: Uses the idea of perpendicular gradients to deduce that gradient of $P A$ is $-\frac{1}{2}$. Condone $-\frac{1}{2} x$ if followed by correct work. You may well see the perpendicular line set up as $y=-\frac{1}{2} x+c$ which scored this mark M1: Award for the method of finding the equation of a line with a changed gradient and the point $(7,5)$			
So sight of $y-5=\frac{1}{2}(x-7)$ would score this mark			

A1*: Completes proof with no errors or omissions $2 y+x=17$
(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point P. ie for an attempt at solving $2 y+x=17$ and $y=2 x+1$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates. Do not allow where they start $17-x=2 x+1$ as they have set $2 y=y$ but condone bracketing errors, eg $2 \times 2 x+1+x=17$
A1: $P=(3,7)$
M1: Uses Pythagoras' Theorem to find the radius or radius ${ }^{2}$ using their $P=(3,7)$ and $(7,5)$. There must be an attempt to find the difference between the coordinates in the use of Pythagoras
A1: $(x-7)^{2}+(y-5)^{2}=20$. Do not accept $(x-7)^{2}+(y-5)^{2}=(\sqrt{20})^{2}$
(c)

M1: Attempts to find where $y=2 x+k$ meets C.
Awarded for using $\overrightarrow{O A}+\overrightarrow{P A}$. $(11,3)$ or one correct coordinate of $(11,3)$ is evidence of this award.
M1: For a full method leading to k. Scored for either substituting their $(11,3)$ in $y=2 x+k$ or, in the alternative, for solving their $(4 k-34)^{2}-4 \times 5 \times\left(k^{2}-10 k+54\right)=0 \Rightarrow k=\ldots$ Allow use of a calculator here to find roots. Award if you see use of correct formula but it would be implied by \pm correct roots
A1: $k=-19$ only

Alternative I

M1: For solving $y=2 x+k$ with their $(x-7)^{2}+(y-5)^{2}=20$ and creating a quadratic eqn of the form $a x^{2}+b x+c=0$ where both \boldsymbol{b} and \boldsymbol{c} are dependent upon \boldsymbol{k}. The terms in x^{2} and x must be collected together or implied to have been collected by their correct use in " $b^{2}-4 a c$ "
FYI the correct quadratic is $5 x^{2}+(4 k-34) x+k^{2}-10 k+54=0$
M1: For using the discriminant condition $b^{2}-4 a c=0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.
$(4 k-34)^{2}-4 \times 5 \times\left(k^{2}-10 k+54\right)=0 \Rightarrow k=\ldots$ Allow use of a calculator here to find roots.
Award if you see use of correct formula but it would be implied by \pm correct roots
A1: $k=-19$ only

Alternative II

M1: For solving $2 y+x=17$ with their $(x-7)^{2}+(y-5)^{2}=20$, creating a 3 TQ and solving.
M1: For substituting their $(11,3)$ into $y=2 x+k$ and finding k
A1: $k=-19$ only
Other method are possible using trigonometry.

Question	Scheme	Marks	AOs
14(a)	Either $3 y^{2} \rightarrow A y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $2 x y \rightarrow 2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y$	M1	2.1
	$2 x-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y+6 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	A1	1.1b
	$(6 y-2 x) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 y-2 x$	M1	2.1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y-2 x}{6 y-2 x}=\frac{y-x}{3 y-x}$ *	A1*	1.1b
		(4)	
(b)	$\left(\right.$ At P and $\left.Q \frac{\mathrm{~d} y}{\mathrm{~d} x} \rightarrow \infty \Rightarrow\right)$ Deduces that $3 y-x=0$	M1	2.2a
	Solves $y=\frac{1}{3} x$ and $x^{2}-2 x y+3 y^{2}=50$ simultaneously	M1	3.1a
	$\Rightarrow x=(\pm) 5 \sqrt{3}$ OR $\Rightarrow y=(\pm) \frac{5}{3} \sqrt{3}$	A1	1.1b
	Using $\quad y=\frac{1}{3} x \Rightarrow x=.$. AND $y=.$.	dM1	1.1b
	$P=\left(-5 \sqrt{3},-\frac{5}{3} \sqrt{3}\right)$	A1	2.2a
		(5)	
(c)	Explains that you need to solve $y=x$ and $x^{2}-2 x y+3 y^{2}=50$ simultaneously and choose the positive solution	B1ft	2.4
		(1)	
(10 marks)			
Notes: (a) M1: For selecting the appropriate method of differentiating either $3 y^{2} \rightarrow A y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $2 x y \rightarrow 2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y$ It may be quite difficult awarding it for the product rule but condone $-2 x y \rightarrow-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y$ unless you see evidence that they have used the incorrect law $v u^{\prime}-u v^{\prime}$ A1: Fully correct derivative $2 x-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y+6 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ Allow attempts where candidates write $2 x \mathrm{~d} x-2 x \mathrm{~d} y-2 y \mathrm{~d} x+6 y \mathrm{~d} y=0$ but watch for students who write $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y+6 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ This, on its own, is A0 unless you are convinced that this is just their notation. $\operatorname{Eg} \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y+6 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$			

M1: For a valid attempt at making $\frac{\mathrm{d} y}{\mathrm{~d} x}$ the subject. with two terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ coming from $3 y^{2}$ and $2 x y$ Look for $(\ldots \pm \ldots) \frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots \ldots$. It is implied by $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y-2 x}{6 y-2 x}$
This cannot be scored from attempts such as $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y+6 y$ which only has one correct term.
A1*: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y-x}{3 y-x}$ with no errors or omissions.
The previous line $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y-2 x}{6 y-2 x}$ or equivalent must be seen.
(b)

M1: Deduces that $3 y-x=0$ oe
M1: Attempts to find either the x or y coordinates of P and Q by solving their $y=\frac{1}{3} x$ with $x^{2}-2 x y+3 y^{2}=50$ simultaneously. Allow for finding a quadratic equation in x or y and solving to find at least one value for x or y.
This may be awarded when candidates make the numerator $=0$ ie using $y=x$
A1: $\Rightarrow x=(\pm) 5 \sqrt{3} \quad$ OR $\Rightarrow y=(\pm) \frac{5}{3} \sqrt{3}$
dM1: Dependent upon the previous M, it is for finding the y coordinate from their x (or vice versa)
This may also be scored following the numerator being set to 0 ie using $y=x$
A1: Deduces that $P=\left(-5 \sqrt{3},-\frac{5}{3} \sqrt{3}\right)$ OE. Allow to be $x=\ldots \quad y=\ldots$
(c)

B1ft: Explains that this is where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and so you need to solve $y=x$ and $x^{2}-2 x y+3 y^{2}=50$ simultaneously and choose the positive solution (or larger solution).
Allow a follow through for candidates who mix up parts (b) and (c)
Alternatively candidates could complete the square $(x-y)^{2}+2 y^{2}=50$ and state that y would reach a maximum value when $x=y$ and choose the positive solution from $2 y^{2}=50$

Question	Scheme		Marks	AOs
15(a)	Attempts to use $\cos 2 t=1-2 \sin ^{2} t \Rightarrow \frac{y-4}{2}=1-2\left(\frac{x-3}{2}\right)^{2}$	M1	2.1	

A1*: Proceeds to $y=6-(x-3)^{2}$ without any errors
Allow a proof where they start with $y=6-(x-3)^{2}$ and substitute the parametric coordinates. M1 is scored for a correct $\cos 2 t=1-2 \sin ^{2} t$ but A1 is only scored when both sides are seen to be the same AND a comment is made, hence proven, or similar .
(b)

M1: For sketching a \bigcap parabola with a maximum in quadrant one. It does not need to be symmetrical A1: For sketching a \bigcap parabola with a maximum in quadrant one and with end coordinates of $(1,2)$ and $(5,2)$
B1: Any suitable explanation as to why C does not include all points of $y=6-(x-3)^{2}, \quad x \in \mathbb{R}$
This should include a reference to the limits on \sin or \cos with a link to a restriction on \boldsymbol{x} or \boldsymbol{y}. For example
'As $-1 \leq \sin t \leq 1$ then $1 \leqslant x \leqslant 5$ ' Condone in words ' x lies between 1 and 5 ' and strict inequalities
'As $\sin t \leq 1$ then $x \leqslant 5$ ' Condone in words ' x is less than 5 '
'As $-1 \leq \cos (2 t) \leq 1$ then $2 \leqslant y \leqslant 6 \quad$ ' Condone in words ' y lies between 2 and 6 '
Withhold if the statement is incorrect Eg "because the domain is $2 \leqslant x \leqslant 5$ "
Do not allow a statement on the top limit of y as this is the same for both curves
(c)

B1: Deduces either

- the correct that the lower value of $k=7$ This can be found by substituting into $(5,2)$

$$
\begin{aligned}
& x+y=k \Rightarrow k=7 \text { or substituting } x=5 \text { into } x^{2}-7 x+(k+3)=0 \Rightarrow 25-35+k+3=0 \\
& \Rightarrow k=7
\end{aligned}
$$

- or deduces that $k<\frac{37}{4}$ This may be awarded from later work

M1: For an attempt at the upper value for k.
Finds where $x+y=k$ meets $y=6-(x-3)^{2}$ once by using an appropriate method.
Eg. Sets $k-x=6-(x-3)^{2}$ and proceeds to a 3 TQ
A1: Correct 3TQ $x^{2}-7 x+(k+3)=0$ The $=0$ may be implied by subsequent work
M1: Uses the "discriminant" condition. Accept use of $b^{2}=4 a c$ oe or $b^{2} \ldots 4 a c$ where \ldots is any inequality leading to a critical value for k. Eg. one root $\Rightarrow 49-4 \times 1 \times(k+3)=0 \Rightarrow k=\frac{37}{4}$
A1: Range of values for $k=\left\{k: 7 \leqslant k<\frac{37}{4}\right\}$ Accept $k \in\left[7, \frac{37}{4}\right)$ or exact equivalent

ALT	As above	B1	2.2 a
	Finds where $x+y=k$ meets $y=6-(x-3)^{2}$ once by using an appropriate method. Eg. Sets gradient of $y=6-(x-3)^{2}$ equal to -1	M1	3.1 a
	$-2 x+6=-1 \Rightarrow x=3.5$ $y=6-(3.5-3)^{2}=5.75$ Hence using $k=3.5+5.75=9.25$	M1	2.1
	Finds point of intersection and uses this to find upper value of k.		
	Range of values for $k=\{k: 7 \leqslant k<9.25\}$	A1	2.5

Question	Scheme	Marks	AOs
$\mathbf{1 6}$	States gradient of $4 y-3 x=10$ is $\frac{3}{4}$ oe or rewrites as $y=\frac{3}{4} x+\ldots$	B 1	1.1 b
	Attempts to find gradient of line joining $(5,-1)$ and $(-1,8)$	M1 $\frac{-1-8}{5-(-1)}=-\frac{3}{2}$	1.1 b
	States neither with suitable reasons	A1	1.1 b
		A1	2.4
		(4)	

(4 marks)

Notes

B1: States that the gradient of line l_{1} is $\frac{3}{4}$ or writes l_{1} in the form $y=\frac{3}{4} x+\ldots$

M1: Attempts to find the gradient of line l_{2} using $\frac{\Delta y}{\Delta x} \quad$ Condone one sign error Eg allow $\frac{9}{6}$
A1: For the gradient of $l_{2}=\frac{-1-8}{5-(-1)}=-\frac{3}{2}$ or the equation of $l_{2} y=-\frac{3}{2} x+\ldots$
Allow for any equivalent such as $-\frac{9}{6}$ or -1.5

A1: CSO (on gradients)

Explains that they are neither parallel as the gradients not equal nor perpendicular as $\frac{3}{4} \times-\frac{3}{2} \neq-1$ oe
Allow a statement in words "they are not negative reciprocals " for a reason for not perpendicular and "they are not equal" for a reason for not being parallel

Question	Scheme	Marks	AOs
17 (a)	Attempts to complete the square $(x \pm 3)^{2}+(y \pm 5)^{2}=$ (i) Centre $(3,-5)$	M1 A1	1.1 b 1.1 b
	(ii) Radius 5	A1	1.1b
		(3)	
(b)	Uses a sketch or otherwise to deduce $k=0$ is a critical value	B1	2.2a
	Substitute $y=k x$ in $x^{2}+y^{2}-6 x+10 y+9=0$	M1	3.1a
	Collects terms to form correct 3TQ $\left(1+k^{2}\right) x^{2}+(10 k-6) x+9=0$	A1	1.1b
	Attempts $b^{2}-4 a c \ldots 0$ for their a, b and c leading to values for k $"(10 k-6)^{2}-36\left(1+k^{2}\right) \ldots 0 " \rightarrow k=\ldots, \ldots \quad\left(0 \text { and } \frac{15}{8}\right)$	M1	1.1b
	Uses $b^{2}-4 a c>0$ and chooses the outside region (see note) for their critical values (Both a and b must have been expressions in k)	dM1	3.1a
	Deduces $k<0, k>\frac{15}{8}$ oe	A1	2.2a
		(6)	
(9 marks)			
Notes (a) M1: Attempts $(x \pm 3)^{2}+(y \pm 5)^{2}=.$. This mark may be implied by candidates writing down a centre of $(\pm 3, \pm 5)$ or $r^{2}=25$ (i) A1: Centre $(3,-5)$ (ii) A1: Radius 5. Do not accept $\sqrt{25}$ Answers only (no working) scores all three marks (b) B1: Uses a sketch or their subsequent quadratic to deduce that $k=0$ is a critical value. You may award for the correct $k<0$ but award if $k \leqslant 0$ or even with greater than symbols M1: Substitutes $y=k x$ in $x^{2}+y^{2}-6 x+10 y+9=0$ or their to form an equation in just x and k. It is possible to substitute $x=\frac{y}{k}$ into their circle equation to form an equation in just y and k. A1: Correct 3TQ $\left(1+k^{2}\right) x^{2}+(10 k-6) x+9=0$ with the terms in x collected. The " $=0$ " can be implied by subsequent work. This may be awarded from an equation such as $x^{2}+k^{2} x^{2}+(10 k-6) x+9=0$ so long as the correct values of a, b and c are used in $b^{2}-4 a c \ldots 0$. FYI The equation in y and k is $\left(1+k^{2}\right) y^{2}+\left(10 k^{2}-6 k\right) y+9 k^{2}=0$ oe M1: Attempts to find two critical values for k using $b^{2}-4 a c \ldots 0$ or $b^{2} \ldots 4 a c$ where \ldots could be "=" or any inequality. dM1: Finds the outside region using their critical values. Allow the boundary to be included. It is dependent upon all previous M marks and both a and b must have been expressions in k. Note that it is possible that the correct region could be the inside region if the coefficient of k^{2} in $4 a c$ is larger than the coefficient of k^{2} in b^{2} Eg. $b^{2}-4 a c=(k-6)^{2}-4 \times\left(1+k^{2}\right) \times 9>0 \Rightarrow-35 k^{2}-12 k>0 \Rightarrow k(35 k+12)<0$			

A1: Deduces $k<0, k>\frac{15}{8}$. This must be in terms of k.
Allow exact equivalents such as $k<0 \bigcup k>1.875$
but not allow $0>k>\frac{15}{8}$ or the above with AND, $\&$ or \cap between the two inequalities

Alternative using a geometric approach with a triangle with vertices at $(0,0)$, and $(3,-5)$

Alt (b)	Uses a sketch or otherwise to deduce $k=0$ is a critical value	B 1	2.2 a
	Distance from $(a, k a)$ to $(0,0)$ is $3 \Rightarrow a^{2}\left(1+k^{2}\right)=9$	M 1	3.1 a
	Tangent and radius are perpendicular $\Rightarrow k \times \frac{k a+5}{a-3}=-1 \Rightarrow a\left(1+k^{2}\right)=3-5 k$	M 1	3.1 a
	Solve simultaneously, (dependent upon both M's)	dM 1	1.1 b
	$k=\frac{15}{8}$	A 1	1.1 b
	Deduces $k<0, k>\frac{15}{8}$	A 1	2.2 a

Question	Scheme	Marks	AOs
18(a)	Uses or implies that $V=a t+b$	B1	3.3
	Uses both $4=24 a+b$ and $2.8=60 a+b$ to get either a or b	M1	3.1b
	Uses both $4=24 a+b$ and $2.8=60 a+b$ to get both a and b	M1	1.1b
	$\Rightarrow V=-\frac{1}{30} t+4.8$	A1	1.1b
		(4)	
(b)	(i) States that the initial volume is $4.8 \mathrm{~m}^{3}$	B1 ft	3.4
	(ii) Attempts to solve $0=-\frac{1}{30} t+4.8$	M1	3.4
	States 144 minutes	A1	1.1b
		(3)	
(c)	States any logical reason - The tank will leak more quickly at the start due to the greater water pressure - The hole will probably get larger and so will start to leak more quickly - Sediment could cause the leak to be plugged and so the tank would not empty.	B1	3.5b
		(1)	

(8 marks)

Notes:

(a)

B1: Uses or implies that $V=a t+b$
You may award this at their final line but it must be $V=\mathrm{f}(t)$
M1: Awarded for translating the problem in context and starting to solve. It is scored when both $4=24 a+b$ and $2.8=60 a+b$ are written down and the candidate proceeds to find either a or b. You may just see a line $\pm \frac{4-2.8}{60-24}$
M1: Uses $4=24 a+b$ and $2.8=60 a+b$ to find both a and b
A1: $V=-\frac{1}{30} t+4.8$ or exact equivalent. Eg $30 V+t=144$
(b)(i)

B1ft: Follow through on their ' b '
(b)(ii)

M1: States that $V=0$ and finds t by attempting to solve their $0=-\frac{1}{30} t+4.8$
A1: States 144 minutes
(c)

B1: States any logical reason. There must be a statement and a reason that matches See scheme

Question	Scheme	Marks	AOs
19(a)	Attempts to find the radius $\sqrt{(2--2)^{2}+(5-3)^{2}}$ or radius ${ }^{2}$	M1	1.1b
	Attempts $(x-2)^{2}+(y-5)^{2}=r^{\prime 2}$	M1	1.1b
	Correct equation $(x-2)^{2}+(y-5)^{2}=20$	A1	1.1b
		(3)	
(b)	Gradient of radius $O P$ where O is the centre of $C=\frac{5-3}{2--2}=\left(\frac{1}{2}\right)$	M1	1.1b
	Equation of l is $-2=\frac{y-3}{x+2}$	dM1	3.1a
	Any correct form $y=-2 x-1$	A1	1.1b
	Method of finding k Substitute $x=2$ into their $y=-2 x-1$	M1	2.1
	$k=-5$	A1	1.1b
		(5)	
(8 marks)			

Notes:

(a)

M1: As scheme or states form of circle is $(x-2)^{2}+(y-5)^{2}=r^{\prime 2}$
M1: As scheme or substitutes $(-2,3)$ into $(x-2)^{2}+(y-5)^{2}=' r^{\prime 2}$
A1: For a correct equation
If students use $x^{2}+y^{2}+2 f x+2 g y+c=0 \mathbf{M 1}: f=2, g=5 \mathbf{M 1}$: substitutes $(2,5)$ to find value of c
A1: $x^{2}+y^{2}-4 x-10 y+9=0$
(b)

M1: Attempts to find the gradient of $O P$ where O is the centre of C
dM1: For a complete strategy of finding the equation of l using the perpendicular gradient to $O P$ and the point $(-2,3)$..
A1: Any correct form of l Eg $y=-2 x-1$
M1: Scored for the key step of finding k. In this method they are required to substitute $(2, k)$ in their $y=-2 x-1$ and solve for k.
A1: $k=-5$
Alt using Pythagoras' theorem
M1: Attempts Pythagoras to find both $P Q$ and $O Q$ in terms of k (where O is centre of C)
dM1: For the complete strategy of using Pythagoras theorem on triangle $P O Q$ to form an equation in k
A1: A correct equation in k Eg. $20+(k-3)^{2}+16=(k-5)^{2}$
M1: Scored for a correct attempt to solve their quadratic to find k.
A1: $k=-5$

Question		Scheme	Marks	AOs	
20					
		$x+y=4\left(\cos t \cos \left(\frac{1}{6}\right) \quad \sin t \sin \left(\frac{1}{6}\right)\right)^{\prime}+2 \sin t$	M1	3.1a	
		M1	1.1b		
		$x+y=2 \sqrt{3} \cos t$	A1	1.1b	
		$\left(\frac{x+y}{2 \sqrt{3}}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1$	M1	3.1a	
		$\frac{(x+y)^{2}}{12}+\frac{y^{2}}{4}=1$			
		$(x+y)^{2}+3 y^{2}=12$	A1	2.1	
			(5)		
$\begin{gathered} 20 \\ \text { Alt } 1 \end{gathered}$					
			M1	3.1a	
		M1	1.1b		
		$=(2 \sqrt{3} \cos t)^{2}$ or $12 \cos ^{2} t$	A1	1.1b	
		So, $(x+y)^{2}=12\left(1 \sin ^{2} t\right)=12 \quad 12 \sin ^{2} t=12 \quad 12\left(\frac{y}{2}\right)^{2}$	M1	3.1a	
		$(x+y)^{2}+3 y^{2}=12$	A1	2.1	
			(5)		
				(5 marks)	
Question 20 Notes:					
M1: ${ }^{\text {L }}$	Looks ahead to the final result and uses the compound angle formula in a full attempt to write down an expression for $x+y$ which is in terms of t only.				
M1: A	Applies the compound angle formula on their term in x. E.g.$\cos \left(t+\frac{1}{6^{\prime}} \rightarrow \cos t \cos \left(\frac{1}{6^{\prime}} \pm \sin t \sin \left(\frac{1}{6^{\prime}}\right)\right.\right.$				
A1: U	Uses correct algebra to find $x+y=2 \sqrt{3} \cos t$				
M1: \quad C	Complete strategy of applying $\cos ^{2} t+\sin ^{2} t=1$ on a rearranged $x+y=" 2 \sqrt{3} \cos t ", y=2 \sin t$ to achieve an equation in x and y only				
A1: \quad C	Correctly proves $(x+y)^{2}+a y^{2}=b$ with both $a=3, b=12$, and no errors seen				

Question 20 Notes Continued:

Alt 1
M1:
M1: Apply in the same way as in the main scheme
A1: Uses correct algebra to find $(x+y)^{2}=(2 \sqrt{3} \cos t)^{2}$ or $(x+y)^{2}=12 \cos ^{2} t$
M1: Complete strategy of applying $\cos ^{2} t+\sin ^{2} t=1$ on $(x+y)^{2}=(" 2 \sqrt{3} \cos t ")^{2}$ to achieve an equation in x and y only

A1:
Correctly proves $(x+y)^{2}+a y^{2}=b$ with both $a=3, b=12$, and no errors seen

Question	Scheme	Marks	AOs
21 Way 1	Uses $y=m x+c$ with both $(3,1)$ and $(4,-2)$ and attempt to find m or c	M1	1.1b
	$m=-3$	A1	1.1b
	$c=10$ so $y=-3 x+10$ o.e.	A1	1.1b
		(3)	
Or Way 2	Uses $\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ with both $(3,1)$ and $(4,-2)$	M1	1.1b
	Gradient simplified to -3 (may be implied)	A1	1.1b
	$y=-3 x+10$ o.e.	A1	1.1b
		(3)	
Or Way 3	Uses $a x+b y+k=0$ and substitutes both $x=3$ when $y=1$ and $x=$ 4 when $y=-2$ with attempt to solve to find a, b or k in terms of one of them	M1	1.1b
	Obtains $a=3 b, k=-10 b$ or $3 k=-10 a$	A1	1.1b
	Obtains $a=3, b=1, k=-10$ Or writes $3 x+y-10=0$ o.e.	A1	1.1b
		(3)	
(3 marks)			
Notes:			
M1: Need correct use of the given coordinates A1: Need fractions simplified to -3 (in ways 1 and 2) A1: Need constants combined accurately N.B. Answer left in the form $(y-1)=-3(x-3)$ or $(y-(-2))=-3(x-4)$ is awarded M1A1A0 as answers should be simplified by constants being collected Note that a correct answer implies all three marks in this question			

Question	Scheme	Marks	AOs
22	Finds $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-6$	M1	3.1a
	Gradient of curve at P is -2	M1	1.1b
	Normal gradient is $-\frac{1}{m}=\frac{1}{2}$	M1	1.1b
	So equation of normal is $(y-2)=\frac{1}{2}\left(x-\frac{1}{2}\right)$ or $4 y=2 x+7$	A1	1.1b
	Eliminates y between $y=\frac{1}{2} x+\ln (2 x)$ and their normal equation to give an equation in x	M1	3.1a
	Solves their $\ln 2 x=\frac{7}{4}$ so $x=\frac{1}{2} \mathrm{e}^{\frac{7}{4}}$	M1	1.1b
	Substitutes to give value for y	M1	1.1b
	Point Q is $\left(\frac{1}{2} \mathrm{e}^{\frac{7}{4}}, \frac{1}{4} \mathrm{e}^{\frac{7}{4}}+\frac{7}{4}\right)$	A1	1.1b
(8 marks)			
Notes:			
M1: Differentiates correctly M1: Substitutes $x=\frac{1}{2}$ to find gradient (may make a slip) M1: Uses negative reciprocal gradient A1: Correct equation for normal M1: Attempts to eliminate y to find an equation in x M1: Attempts to solve their equation using exp M1: Uses their x value to find y A1: Any correct exact form			

Question	Scheme		Marks	AOs
23 (a)	Way 1: Finds circle equation $\begin{aligned} & (x \pm 2)^{2}+(y \mp 6)^{2}= \\ & \quad(10 \pm(-2))^{2}+(11 \mp 6)^{2} \end{aligned}$	Way 2: Finds distance between $(-2,6)$ and $(10,11)$	M1	3.1a
	Checks whether $(10,1)$ satisfies their circle equation	Finds distance between $(-2,6)$ and (10,1)	M1	1.1b
	Obtains $(x+2)^{2}+(y-6)^{2}=13^{2}$ and checks that $(10+2)^{2}+(1-6)^{2}=13^{2} \text { so }$ states that $(10,1)$ lies on C^{*}	Concludes that as distance is the same $(10,1)$ lies on the circle C *	A1*	2.1
			(3)	
(b)	Finds radius gradient $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)} \quad(m)$		M1	3.1a
	Finds gradient perpendicular to their radius using $-\frac{1}{m}$		M1	1.1b
	Finds (equation and) y intercept of tangent (see note below)		M1	1.1b
	Obtains a correct value for y intercept of their tangent i.e. 35 or -23		A1	1.1 b
	Way 1: Deduces gradient of second tangent	Way 2: Deduces midpoint of $P Q$ from symmetry $(0,6)$	M1	1.1b
	Finds (equation and) y intercept of second tangent	Uses this to find other intercept	M1	1.1b
	So obtains distance $P Q=35+23=58 *$		A1*	1.1 b
			(7)	
(10 marks)				

Question 23 continued

Notes:

(a) Way 1 and Way 2:

M1: Starts to use information in question to find equation of circle or radius of circle
M1: Completes method for checking that $(10,1)$ lies on circle
A1*: Completely correct explanation with no errors concluding with statement that circle passes through $(10,1)$
(b)

M1: Calculates $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)}$ (m)
M1: Finds $-\frac{1}{m}$ (correct answer is $-\frac{12}{5}$ or $\frac{12}{5}$). This is referred to as m^{\prime} in the next note M1: Attempts $y-11=$ their $\left(-\frac{12}{5}\right)(x-10)$ or $y-1=$ their $\left(\frac{12}{5}\right)(x-10)$ and puts $x=0$, or uses vectors to find intercept e.g. $\frac{y-11}{10}=-m^{\prime}$
A1: One correct intercept 35 or -23

Way 1:

M1: Uses the negative of their previous tangent gradient or uses a correct $-\frac{12}{5}$ or $\frac{12}{5}$
M1: Attempts the second tangent equation and puts $x=0$ or uses vectors to find intercept e.g. $\frac{11-y}{10}=m^{\prime}$

Way 2:

M1: Finds midpoint of $P Q$ from symmetry. (This is at $(0,6)$)
M1: Uses this midpoint to find second intercept or to find difference between midpoint and first intercept. e.g. $35-6=29$ then $6-29=-23$ so second intercept is at $(-23,0)$

Ways 1 and 2:

A1*: Obtain 58 correctly from a valid method

24(a)	Attempts $(x-2)^{2}+(y+5)^{2}=\ldots$.	M1	1.1b
	Centre (2, -5)	A1	1.1b
		(2)	
(b)	Sets $k+2^{2}+5^{2}>0$	M1	2.2a
	$\Rightarrow k>-29$	A1ft	1.1b
		(2)	
(4 marks)			
Notes:			
(a) M1: Attempts to complete the square so allow $(x-2)^{2}+(y+5)^{2}=\ldots$. A1: States the centre is at $(2,-5)$. Also allow written separately $x=2, y=-5$ $(2,-5)$ implies both marks			
(b) M1: Deduces that the right hand side of their $(x \pm \ldots)^{2}+(y \pm \ldots)^{2}=\ldots$ is >0 or $\geqslant 0$ A1ft: $k>-29$ Also allow $k \geqslant-29$ Follow through on their rhs of $(x \pm \ldots)^{2}+(y \pm \ldots)^{2}=\ldots$			

Question	Scheme	Marks	AOs
25	Attempts to substitute $=\frac{x+1}{2}$ into $y \Rightarrow y=4\left(\frac{x+1}{2}\right)-7+\frac{6}{(x+1)}$	M1	2.1
	Attempts to write as a single fraction $y=\frac{(2 x-5)(x+1)+6}{(x+1)}$	M1	2.1
	$y=\frac{2 x^{2}-3 x+1}{x+1} \quad a=-3, b=1$	A1	1.1b
(3 marks)			
Notes:			
M1: Score for an attempt at substituting $t=\frac{x+1}{2}$ or equivalent into $y=4 t-7+\frac{3}{t}$ M1: Award this for an attempt at a single fraction with a correct common denominator. Their $4\left(\frac{x+1}{2}\right)-7$ term may be simplified first			
A1:	t answer only $y=\frac{2 x^{2}-3 x+1}{x+1} \quad a=-3, b=1$		

Question	Scheme	Marks	AOs
26(a)	Attempts $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t}$	M1	1.1b
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{3} \sin 2 t}{\sin t} \quad(=2 \sqrt{3} \cos t)$	A1	1.1b
		(2)	
(b)	Substitutes $t=\frac{2 \pi}{3}$ in $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{3} \sin 2 t}{\sin t}=(-\sqrt{3})$	M1	2.1
	Uses gradient of normal $=-\frac{1}{\mathrm{~d} y / \mathrm{d} x}=\left(\frac{1}{\sqrt{3}}\right)$	M1	2.1
	Coordinates of $P=\left(-1,-\frac{\sqrt{3}}{2}\right)$	B1	1.1b
	Correct form of normal $y+\frac{\sqrt{3}}{2}=\frac{1}{\sqrt{3}}(x+1)$	M1	2.1
	Completes proof $\Rightarrow 2 x-2 \sqrt{3} y-1=0$ *	A1*	1.1b
		(5)	
(c)	Substitutes $x=2 \cos t$ and $y=\sqrt{3} \cos 2 t$ into $2 x-2 \sqrt{3} y-1=0$	M1	3.1a
	Uses the identity $\cos 2 t=2 \cos ^{2} t-1$ to produce a quadratic in $\cos t$	M1	3.1a
	$\Rightarrow 12 \cos ^{2} t-4 \cos t-5=0$	A1	1.1b
	Finds $\cos t=\frac{5}{6},->\frac{\chi}{2}$	M1	2.4
	Substitutes their $\cos t=\frac{5}{6}$ into $x=2 \cos t, y=\sqrt{3} \cos 2 t$,	M1	1.1b
	$Q=\left(\frac{5}{3}, \frac{7}{18} \sqrt{3}\right)$	A1	1.1b
		(6)	
(13 marks)			

Question 26 continued

Notes:

(a)

M1: Attempts $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t}$ and achieves a form $k \frac{\sin 2 t}{\sin t}$ Alternatively candidates may apply the double angle identity for $\cos 2 t$ and achieve a form $k \frac{\sin t \cos t}{\sin t}$
A1: Scored for a correct answer, either $\frac{\sqrt{3} \sin 2 t}{\sin t}$ or $2 \sqrt{3} \cos t$

(b)

M1: For substituting $t=\frac{2 \pi}{3}$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ which must be in terms of t
M1: Uses the gradient of the normal is the negative reciprocal of the value of $\frac{d y}{d x}$. This may be seen in the equation of l.
B1: States or uses (in their tangent or normal) that $P=\left(-1,-\frac{\sqrt{3}}{2}\right)$
M1: Uses their numerical value of $-1 / \frac{\mathrm{d} y}{\mathrm{~d} x}$ with their $\left(-1,-\frac{\sqrt{3}}{2}\right)$ to form an equation of the normal at P
A1*: This is a proof and all aspects need to be correct. Correct answer only $2 x-2 \sqrt{3} y-1=0$
(c)

M1: For substituting $x=2 \cos t$ and $y=\sqrt{3} \cos 2 t$ into $2 x-2 \sqrt{3} y-1=0$ to produce an equation in t. Alternatively candidates could use $\cos 2 t=2 \cos ^{2} t-1$ to set up an equation of the form $y=A x^{2}+B$.
M1: Uses the identity $\cos 2 t=2 \cos ^{2} t-1$ to produce a quadratic equation in $\cos t$
In the alternative method it is for combining their $y=A x^{2}+B$ with $2 x-2 \sqrt{3} y-1=0$ to get an equation in just one variable
A1: For the correct quadratic equation $12 \cos ^{2} t-4 \cos t-5=0$
Alternatively the equations in x and y are $3 x^{2}-2 x-5=0 \quad 12 \sqrt{3} y^{2}+4 y-7 \sqrt{3}=0$
M1: Solves the quadratic equation in $\cos t$ (or x or y) and rejects the value corresponding to P.
M1: Substitutes their $\cos t=\frac{5}{6}$ or their $t=\arccos \left(\frac{5}{6}\right)$ in $x=2 \cos t$ and $y=\sqrt{3} \cos 2 t$ If a value of x or y has been found it is for finding the other coordinate.
A1: $\quad Q=\left(\frac{5}{3}, \frac{7}{18} \sqrt{3}\right)$. Allow $x=\frac{5}{3}, y=\frac{7}{18} \sqrt{3}$ but do not allow decimal equivalents.

Question	Scheme	Marks	AOs
27(a)	Attempts $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}=\frac{4 \sec ^{2} t \tan t}{2 \sec ^{2} t}(=2 \tan t)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	At $t=\frac{\pi}{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=2, x=3, y=7$	M1	2.1
	Attempts equation of normal $y-7=-\frac{1}{2}(x-3)$	M1	1.1b
	$y=-\frac{1}{2} x+\frac{17}{2} \quad *$	A1*	2.1
		(5)	
(b)	Attempts to use $\sec ^{2} t=1+\tan ^{2} t \Rightarrow \frac{y-3}{2}=1+\left(\frac{x-1}{2}\right)^{2}$	M1	3.1a
	$\Rightarrow y-3=2+\frac{(x-1)^{2}}{2} \Rightarrow y=\frac{1}{2}(x-1)^{2}+5 *$	A1*	2.1
		(2)	
	(b) Alternative 1:		
	$\begin{aligned} y= & \frac{1}{2}(x-1)^{2}+5=\frac{1}{2}(2 \tan t+1-1)^{2}+5 \\ & =\frac{1}{2} 4 \tan ^{2} t+5=2\left(\sec ^{2} t-1\right)+5 \end{aligned}$	M1	3.1a
	$=2 \sec ^{2} t+3=y^{*}$	A1	2.1
	(b) Alternative 2:		
	$\begin{aligned} x=2 \tan t+1 & \Rightarrow t=\tan ^{-1}\left(\frac{x-1}{2}\right) \Rightarrow y=2 \sec ^{2}\left(\tan ^{-1}\left(\frac{x-1}{2}\right)\right)+3 \\ & \Rightarrow y=2\left(1+\tan ^{2}\left(\tan ^{-1}\left(\frac{x-1}{2}\right)\right)\right)+3 \end{aligned}$	M1	3.1a
	$\Rightarrow y=2\left(1+\left(\frac{x-1}{2}\right)^{2}\right)+3=\frac{1}{2}(x-1)^{2}+5^{*}$	A1	2.1
	(b) Alternative 3:		
	$\begin{gathered} \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \tan t=x-1 \Rightarrow y=\int(x-1) \mathrm{d} x=\frac{x^{2}}{2}-x+c \\ (3,7) \rightarrow 7=\frac{3^{2}}{2}-3+c \Rightarrow c=\frac{11}{2} \end{gathered}$	M1	3.1a
	$\frac{x^{2}}{2}-x+\frac{11}{2}=\frac{1}{2}\left(x^{2}-2 x\right)+\frac{11}{2}=\frac{1}{2}(x-1)^{2}-\frac{1}{2}+\frac{11}{2}=\frac{1}{2}(x-1)^{2}+5 *$	A1	2.1

(c)	Attempts the lower limit for \boldsymbol{k} : $\begin{gathered} \frac{1}{2}(x-1)^{2}+5=-\frac{1}{2} x+k \Rightarrow x^{2}-x+(11-2 k)=0 \\ b^{2}-4 a c=1-4(11-2 k)=0 \Rightarrow k=\ldots \end{gathered}$	M1	2.1
	$(k=) \frac{43}{8}$	A1	1.1b
	Attempts the upper limit for \boldsymbol{k} : $\begin{gathered} (x, y)_{t=-\frac{\pi}{4}}: t=-\frac{\pi}{4} \Rightarrow x=2 \tan \left(-\frac{\pi}{4}\right)+1=-1, y=2 \sec ^{2}\left(-\frac{\pi}{4}\right)+3=7 \\ (-1,7), y=-\frac{1}{2} x+k \Rightarrow 7=\frac{1}{2}+k \Rightarrow k=\ldots \end{gathered}$	M1	2.1
	$(k=) \frac{13}{2}$	A1	1.1b
	$\frac{43}{8}<k \leqslant \frac{13}{2}$	A1	2.2a
		(5)	
(12 marks)			
Notes:			

(a) Must use parametric differentiation to score any marks in this part and not e.g. Cartesian form parameters however poor and divide the right way round so using $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}$ scores M0.
This may be implied by e.g. $\frac{\mathrm{d} x}{\mathrm{~d} t}=2 \sec ^{2} t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=4 \sec ^{2} t \tan t, t=\frac{\pi}{4} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} t}=4, \frac{\mathrm{~d} y}{\mathrm{~d} t}=8 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2$
A1: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \sec ^{2} t \tan t}{2 \sec ^{2} t}$. Correct expression in any form. May be implied as above.
Condone the confusion with variables as long as the intention is clear e.g.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}=\frac{4 \sec ^{2} x \tan x}{2 \sec ^{2} x}(=2 \tan x)$ and allow subsequent marks if this is interpreted correctly
M1: For attempting to find the values of x, y and the gradient at $t=\frac{\pi}{4}$ AND getting at least two correct.
Follow through on their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ so allow for any two of $x=3, y=7, \frac{\mathrm{~d} y}{\mathrm{~d} x}=2\left(\right.$ or their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $t=\frac{\pi}{4}$)
Note that the $x=3, y=7$ may be seen as e.g. $(3,7)$ on the diagram. There must be a non-trivial $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for this mark e.g. they must have a $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to substitute into.

M1: For a correct attempt at the normal equation using their x and y at $t=\frac{\pi}{4}$ with the negative reciprocal of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $t=\frac{\pi}{4}$ having made some attempt at $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and all correctly placed. For attempts using $y=m x+c$ they must reach as far as a value for c using their x and y at $t=\frac{\pi}{4}$ with the negative reciprocal of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $t=\frac{\pi}{4}$ all correctly placed.
A1*: Proceeds with a clear argument to the given answer with no errors.
(b)

M1: Attempts to use $\sec ^{2} t=1+\tan ^{2} t$ oe to obtain an equation involving y and $(x-1)^{2}$
E.g. as above or e.g. $y=2 \sec ^{2} t+3=2\left(1+\tan ^{2} t\right)+3=2\left(1+\left(\frac{x-1}{2}\right)^{2}\right)+3$ for M1 and then $y=\frac{1}{2}(x-1)^{2}+5 *$ for A1
A1*: Proceeds with a clear argument to the given answer with no errors

Alternative 1:

M1: Uses the given result, substitutes for x and attempts to use $\sec ^{2} t=1+\tan ^{2} t$ oe
A1: Proceeds with a clear argument to the y parameter and makes a (minimal) conclusion e.g. " $=y$ " QED, hence proven etc.

Alternative 2:

M1: Uses the x parameter to obtain t in terms of arctan, substitutes into y and attempts to use $\sec ^{2} t=1+\tan ^{2} t$ oe
A1: Proceeds with a clear argument to the given answer with no errors

Alternative 3:

M1: Uses $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from part (a) to express $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x, integrates and uses $(3,7)$ to find " c " to reach a Cartesian equation.
A1: Proceeds with a clear argument to the given answer with no errors
Allow the marks for (b) to score anywhere in their solution e.g. if they find the Cartesian equation in part (a)
(c)

M1: A full attempt to find the lower limit for k.
$\frac{1}{2}(x-1)^{2}+5=-\frac{1}{2} x+k \Rightarrow x^{2}-x+(11-2 k)=0 \Rightarrow b^{2}-4 a c=1-4(11-2 k)=0 \Rightarrow k=\ldots$
Score M1 for setting $\frac{1}{2}(x-1)^{2}+5=-\frac{1}{2} x+k$, rearranging to 3TQ form and attempts $b^{2}-4 a c \ldots 0$
e.g. $b^{2}-4 a c>0$ or e.g. $b^{2}-4 a c<0$ correctly to find a value for k.

A1: $k=\frac{43}{8}$ oe. Look for this value e.g. may appear in an inequality e.g. $k>\frac{43}{8}, k<\frac{43}{8}$

An alternative method using calculus for lower limit:

$$
\begin{gathered}
y=\frac{1}{2}(x-1)^{2}+5 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=x-1, x-1=-\frac{1}{2} \Rightarrow x=\frac{1}{2} \\
x=\frac{1}{2} \Rightarrow y=\frac{1}{2}\left(\frac{1}{2}-1\right)^{2}+5=\frac{41}{8} \\
y=-\frac{1}{2} x+k \Rightarrow \frac{41}{8}=-\frac{1}{4}+k \Rightarrow k=\ldots
\end{gathered}
$$

Score M1 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ "a linear expression in $x "$, sets $=-\frac{1}{2}$, solves a linear equation to find x and then substitutes into the given result in (b) to find y and then uses $y=-\frac{1}{2} x+k$ to find a value for k. A1: $k=\frac{43}{8}$ oe. Look for this value e.g. may appear in an inequality e.g. $k>\frac{43}{8}, k<\frac{43}{8}$

An alternative method using parameters for lower limit:

$$
\begin{gathered}
y=-\frac{1}{2} x+k \Rightarrow 2 \sec ^{2} t+3=-\frac{1}{2}(2 \tan t+1)+k \\
\Rightarrow 2\left(1+\tan ^{2} t\right)+3=-\frac{1}{2}(2 \tan t+1)+k \Rightarrow 2 \tan ^{2} t+\tan t+5.5-k=0 \\
b^{2}-4 a c=0 \Rightarrow 1-4 \times 2(5.5-k)=0 \Rightarrow k=\frac{43}{8}
\end{gathered}
$$

Score M1 for substituting parametric form of x and y into $y=-\frac{1}{2} x+k$, uses $\sec ^{2} t=1+\tan ^{2} t$ rearranges to 3TQ form and attempts $b^{2}-4 a c \ldots 0$ or e.g. $b^{2}-4 a c>0$ or $b^{2}-4 a c<0$ correctly to find a value for k.
A1: $k=\frac{43}{8}$ oe. Look for this value e.g. may appear in an inequality e.g. $k>\frac{43}{8}, k<\frac{43}{8}$

M1: A full attempt to find the upper limit for k. This requires an attempt to find the value of x and the value of y using $t=-\frac{\pi}{4}$, the substitution of these values into $y=-\frac{1}{2} x+k$ and solves for k.
A1: $k=\frac{13}{2}$. Look for this value e.g. may appear in an inequality.
A1: Deduces the correct range for $k: \frac{43}{8}<k \leqslant \frac{13}{2}$
Allow equivalent notation e.g. $\left(k \leqslant \frac{13}{2}\right.$ and $\left.k>\frac{43}{8}\right),\left(k \leqslant \frac{13}{2} \cap k>\frac{43}{8}\right),\left(\frac{43}{8}, \frac{13}{2}\right]$ But not e.g. $\left(k \leqslant \frac{13}{2}, k>\frac{43}{8}\right),\left(k \leqslant \frac{13}{2} \cup k>\frac{43}{8}\right),\left(k \leqslant \frac{13}{2}\right.$ or $\left.k>\frac{43}{8}\right)$ and do not allow if in terms of x.
Allow equivalent exact values for $\frac{43}{8}, \frac{13}{2}$
There may be other methods for finding the upper limit which are valid. If you are in any doubt if a method deserves credit then use Review.

Question	Scheme	Marks	AOs
28 (a)	C is $(x-r)^{2}+(y-r)^{2}=r^{2} \text { or } x^{2}+y^{2}-2 r x-2 r y+r^{2}=0$	B1	2.2a
	$\begin{gathered} y=12-2 x, x^{2}+y^{2}-2 r x-2 r y+r^{2}=0 \\ \Rightarrow x^{2}+(12-2 x)^{2}-2 r x-2 r(12-2 x)+r^{2}=0 \end{gathered}$ or $\begin{aligned} y= & 12-2 x,(x-r)^{2}+(y-r)^{2}=r^{2} \\ & \Rightarrow(x-r)^{2}+(12-2 x-r)^{2}=r^{2} \end{aligned}$	M1	1.1b
	$\begin{gathered} x^{2}+144-48 x+4 x^{2}-2 r x-24 r+4 r x+r^{2}=0 \\ \Rightarrow 5 x^{2}+(2 r-48) x+\left(r^{2}-24 r+144\right)=0 * \end{gathered}$	A1*	2.1
		(3)	
(b)	$b^{2}-4 a c=0 \Rightarrow(2 r-48)^{2}-4 \times 5 \times\left(r^{2}-24 r+144\right)=0$	M1	3.1a
	$r^{2}-18 r+36=0$ or any multiple of this equation	A1	1.1b
	$\Rightarrow(r-9)^{2}-81+36=0 \Rightarrow r=\ldots$	dM1	1.1b
	$r=9 \pm 3 \sqrt{5}$	A1	1.1b
		(4)	
(7 marks)			

Notes:

(a)

B1: Deduces the correct equation of the circle
M1: Attempts to form an equation with terms of the form x^{2}, x, r^{2}, and $x r$ only using $y=12 \pm 2 x$ and their circle equation which must be of an appropriate form. I.e. includes or implies an x^{2}, y^{2}, r^{2} such as $x^{2}+y^{2}=r^{2}$ If their circle equation starts off as e.g. $(x \pm a)^{2}+(y \pm b)^{2}=r^{2}$ then the B mark and the M mark can be awarded when the " a " and " b " are replaced by r or $-r$ as appropriate for their circle equation.
A1*: Uses correct and accurate algebra leading to the given solution.
(b)

M1: Attempts to use $b^{2}-4 a c \ldots 0$ o.e. with $a=5, b=2 r-48, c=r^{2}-24 r+144$ and where \ldots is " $=$ " or any inequality Allow minor slips when copying the a, b and c provided it does not make the work easier and allow their a, b and c if they are similar expressions.
FYI $(2 r-48)^{2}-4 \times 5 \times\left(r^{2}-24 r+144\right)=4 r^{2}-192 r+2304-20 r^{2}+480 r-2880=-16 r^{2}+288 r-576$
A1: Correct quadratic equation in r (or inequality). Terms need not be all one side but must be collected.
E.g. allow $r^{2}-18 r=-36$ and allow any multiple of this equation (or inequality).
dM1: Correct attempt to solve their 3TQ in r. Dependent upon previous M
A1: Careful and accurate work leading to both answers in the required form (must be simplified surds)

Question	Scheme	Marks	AOs
29	$C_{1}: x=10 \cos t, y=4 \sqrt{2} \sin t, \quad 0 \leq t<2 \pi ; \quad C_{2}: x^{2}+y^{2}=66$		
Way 1	$(10 \cos t)^{2}+(4 \sqrt{2} \sin t)^{2}=66$	M1	3.1a
	$100\left(1-\sin ^{2} t\right)+32 \sin ^{2} t=66$	M1	2.1
		A1	1.1 b
	$\begin{array}{c\|c} \hline 100-68 \sin ^{2} t=66 \Rightarrow \sin ^{2} t=\frac{1}{2} & 68 \cos ^{2} t+32=66 \Rightarrow \cos ^{2} t=\frac{1}{2} \\ \Rightarrow \sin t=\ldots & \Rightarrow \cos t=\ldots \end{array}$	dM1	1.1b
	Substitutes their solution back into the relevant original equation(s) to get the value of the x-coordinate and value of the corresponding y-coordinate. Note: These may not be in the correct quadrant	M1	1.1 b
	$S=(5 \sqrt{2},-4)$ or $x=5 \sqrt{2}, y=-4$ or $S=($ awrt $7.07,-4)$	A1	3.2 a
		(6)	
Way 2	$\left\{\cos ^{2} t+\sin ^{2} t=1 \Rightarrow\right\}\left(\frac{x}{10}\right)^{2}+\left(\frac{y}{4 \sqrt{2}}\right)^{2}=1 \quad\left\{\Rightarrow 32 x^{2}+100 y^{2}=3200\right\}$	M1	3.1a
	$x^{2}+66-x^{2}$ c $100-y^{2}+y^{2}$	M1	2.1
	$\overline{100}+\frac{32}{32}=100{ }^{\text {a }}+\frac{y^{2}}{32}=1$	A1	1.1 b
	$32 x^{2}+6600-100 x^{2}=3200$ $2112-32 y^{2}+100 y^{2}=3200$ $x^{2}=50 \Rightarrow x=\ldots$ $y^{2}=16 \Rightarrow y=\ldots$	dM1	1.1 b
	Substitutes their solution back into the relevant original equation(s) to get the value of the corresponding x-coordinate or y-coordinate. Note: These may not be in the correct quadrant	M1	1.1 b
	$S=(5 \sqrt{2},-4)$ or $x=5 \sqrt{2}, y=-4$ or $S=($ awrt $7.07,-4)$	A1	3.2a
		(6)	
Way 3	$\begin{gathered} \left\{C_{2}: x^{2}+y^{2}=66 \Rightarrow\right\} \quad x=\sqrt{66} \cos \alpha, y=\sqrt{66} \sin \alpha \\ \left\{C_{1}=C_{2} \Rightarrow\right\} \quad 10 \cos t=\sqrt{66} \cos \alpha, \quad 4 \sqrt{2} \sin t=\sqrt{66} \sin \alpha \\ \left\{\cos ^{2} \alpha+\sin ^{2} \alpha=1 \Rightarrow\right\} \quad\left(\frac{10 \cos t}{\sqrt{66}}\right)^{2}+\left(\frac{4 \sqrt{2} \sin t}{\sqrt{66}}\right)^{2}=1 \end{gathered}$	M1	3.1a
	then continue with applying the mark scheme for Way 1		
Way 4	$(10 \cos t)^{2}+(4 \sqrt{2} \sin t)^{2}=66$	M1	3.1a
	$100\left(\frac{1+\cos 2 t}{2}\right)+32\left(\frac{1-\cos 2 t}{2}\right)=66$	M1	2.1
	$100\left(\frac{1+\cos 2 t}{2}\right)+32\left(\frac{1-\cos 2 t}{2}\right)=66$	A1	1.1 b
	$\begin{gathered} 50+50 \cos 2 t+16-16 \cos 2 t=66 \Rightarrow 34 \cos 2 t+66=66 \\ \Rightarrow \cos 2 t=\ldots \end{gathered}$	dM1	1.1 b
	Substitutes their solution back into the original equation(s) to get the value of the x-coordinate and value of the y-coordinate. Note: These may not be in the correct quadrant	M1	1.1 b
	$S=(5 \sqrt{2},-4)$ or $x=5 \sqrt{2}, y=-4$ or $S=($ awrt $7.07,-4)$	A1	3.2a
		(6)	
	Note: Give final A0 for writing $x=5 \sqrt{2}, y=-4$ followed by $S=(-4,5 \sqrt{2})$		
(6 marks)			
Notes for Question 29			

	Way 1
M1:	Begins to solve the problem by applying an appropriate strategy. E.g. Way 1: A complete process of combining equations for C_{1} and C_{2} by substituting the parametric equation into the Cartesian equation to give an equation in one variable (i.e. t) only.
M1:	Uses the identity $\sin ^{2} t+\cos ^{2} t \equiv 1$ to achieve an equation in $\sin ^{2} t$ only or $\cos ^{2} t$ only
A1:	A correct equation in $\sin ^{2} t$ only or $\cos ^{2} t$ only
dM1:	dependent on both the previous M marks Rearranges to make $\sin t=\ldots$ where $-1 \leq \sin t \leq 1$ or $\cos t=\ldots$ where $-1 \leq \cos t \leq 1$
Note:	Condone $3^{\text {rd }} \mathrm{M} 1$ for $\sin ^{2} t=\frac{1}{2} \Rightarrow \sin t=\frac{1}{4}$
M1:	See scheme
A1:	Selects the correct coordinates for S Allow either $S=(5 \sqrt{2},-4)$ or $S=($ awrt 7.07, -4)
	Way 2
M1:	Begins to solve the problem by applying an appropriate strategy. E.g. Way 2: A complete process of using $\cos ^{2} t+\sin ^{2} t \equiv 1$ to convert the parametric equation for C_{1} into a Cartesian equation for C_{1}
M1:	Complete valid attempt to write an equation in terms of x only or y only not involving trigonometry
A1:	A correct equation in x only or y only not involving trigonometry
dM1: Note:	dependent on both the previous M marks Rearranges to make $x=\ldots$ or $y=\ldots$ their x^{2} or their y^{2} must be >0 for this mark
M1: Note:	See scheme their x^{2} and their y^{2} must be >0 for this mark
A1:	Selects the correct coordinates for S Allow either $S=(5 \sqrt{2},-4)$ or $S=(\operatorname{awrt} 7.07,-4)$ or $S=(\sqrt{50},-4)$ or $S=\left(\frac{10}{\sqrt{2}},-4\right)$
	Way 3
M1:	Begins to solve the problem by applying an appropriate strategy. E.g. Way 3: A complete process of writing C_{2} in parametric form, combining the parametric equations of C_{1} and C_{2} and applying $\cos ^{2} \alpha+\sin ^{2} \alpha \equiv 1$ to give an equation in one variable (i.e. t) only.
	then continue with applying the mark scheme for Way 1
	Way 4
M1:	Begins to solve the problem by applying an appropriate strategy. E.g. Way 4: A complete process of combining equations for C_{1} and C_{2} by substituting the parametric equation into the Cartesian equation to give an equation in one variable (i.e. t) only.
M1: Note:	Uses the identities $\cos 2 t \equiv 2 \cos ^{2} t-1$ and $\cos 2 t \equiv 1-2 \sin ^{2} t$ to achieve an equation in $\cos 2 t$ only At least one of $\cos 2 t \equiv 2 \cos ^{2} t-1$ or $\cos 2 t \equiv 1-2 \sin ^{2} t$ must be correct for this mark.
A1:	A correct equation in $\cos 2 t$ only
dM1:	dependent on both the previous M marks Rearranges to make $\cos 2 t=\ldots$ where $-1 \leq \cos 2 t \leq 1$
M1:	See scheme
A1:	Selects the correct coordinates for S Allow either $S=(5 \sqrt{2},-4)$ or $S=($ awrt $7.07,-4)$ or $S=(\sqrt{50},-4)$ or $S=\left(\frac{10}{\sqrt{2}},-4\right)$

29	$C_{1}: x=10 \cos t, y=4 \sqrt{2} \sin t, 0 \leq t<2 \pi ; C_{2}: x^{2}+y^{2}=66$		
Way 5	$(10 \cos t)^{2}+(4 \sqrt{2} \sin t)^{2}=66$	M1	3.1a
	$(10 \cos t)^{2}+(4 \sqrt{2} \sin t)^{2}=66\left(\sin ^{2} t+\cos ^{2} t\right)$	M1	2.1
	$(10 \cos t)^{2}+(4 \sqrt{2} \sin t)^{2}=66\left(\sin ^{2} t+\cos ^{2} t\right)$	A1	1.1b
	$\begin{gathered} 100 \cos ^{2} t+32 \sin ^{2} t=66 \sin ^{2} t+66 \cos ^{2} t \Rightarrow 34 \cos ^{2} t=34 \sin ^{2} t \\ \Rightarrow \tan t=\ldots \end{gathered}$	dM1	1.1b
	Substitutes their solution back into the relevant original equation(s) to get the value of the x-coordinate and value of the corresponding y-coordinate. Note: These may not be in the correct quadrant	M1	1.1b
	$S=(5 \sqrt{2},-4)$ or $x=5 \sqrt{2}, y=-4$ or $S=($ awrt $7.07,-4)$	A1	3.2a
		(6)	
	Way 5		
M1:	Begins to solve the problem by applying an appropriate strategy. E.g. Way 5: A complete process of combining equations for C_{1} and C_{2} by substituting the parametric equation into the Cartesian equation to give an equation in one variable (i.e. t) only.		
M1:	Uses the identity $\sin ^{2} t+\cos ^{2} t \equiv 1$ to achieve an equation in $\sin ^{2} t$ only and $\cos ^{2} t$ only with no constant term		
A1:	A correct equation in $\sin ^{2} t$ and $\cos ^{2} t$ containing no constant term		
dM1:	dependent on both the previous M marks Rearranges to make $\tan t=\ldots$		
M1:	See scheme		
A1:	Selects the correct coordinates for S Allow either $S=(5 \sqrt{2},-4)$ or $S=($ awrt $7.07,-4)$ or $S=(\sqrt{50},-4)$ or $S=\left(\frac{10}{\sqrt{2}},-4\right)$		

Question	Scheme	Marks	AOs
30	$£ y$ is the total cost of making x bars of soap Bars of soap are sold for $£ 2$ each		
(a)	$y=k x+c \quad$ \{where k and c are constants\}	B1	3.3
	Note: Work for (a) cannot be recovered in (b) or (c)	(1)	
(b) Way 1	Either - $x=800 \Rightarrow y=2(800)-500\{=1100 \Rightarrow(x, y)=(800,1100)\}$ - $x=300 \Rightarrow y=2(300)+80\{=680 \Rightarrow(x, y)=(300,680)\}$	M1	3.1b
	Applies (800, their 1100) and (300, their 680) to give two equations $1100=800 k+c$ and $680=300 k+c \Rightarrow k, c=\ldots$	dM1	1.1b
	Solves correctly to find $k=0.84, c=428$ and states $y=0.84 x+428 *$	A1*	2.1
	Note: the answer $y=0.84 x+428$ must be stated in (b)	(3)	
$\begin{gathered} \text { (b) } \\ \text { Way } 2 \end{gathered}$	Either - $x=800 \Rightarrow y=2(800)-500\{=1100 \Rightarrow(x, y)=(800,1100)\}$ - $x=300 \Rightarrow y=2(300)+80\{=680 \Rightarrow(x, y)=(300,680)\}$	M1	3.1b
	Complete method for finding both $k=\ldots$ and $c=\ldots$ $\begin{gathered} \text { e.g. } k=\frac{1100-680}{800-300}\{=0.84\} \\ (800,1100) \Rightarrow 1100=800(0.84)+c \Rightarrow c=\ldots \end{gathered}$	dM1	1.1b
	Solves to find $k=0.84, c=428$ and states $y=0.84 x+428$ *	A1*	2.1
	Note: the answer $y=0.84 x+428$ must be stated in (b)	(3)	
(b) Way 3	Either $\begin{aligned} & \text { - } x=800 \Rightarrow y=2(800)-500\{=1100 \Rightarrow(x, y)=(800,1100)\} \\ & \text { - } x=300 \Rightarrow y=2(300)+80\{=680 \Rightarrow(x, y)=(300,680)\} \end{aligned}$	M1	3.1 b
	$\begin{array}{ll} \{y=0.84 x+428 \Rightarrow\} & x=800 \Rightarrow y=(0.84)(800)+428=1100 \\ & x=300 \Rightarrow y=(0.84)(300)+428=680 \end{array}$	dM1	1.1b
	Hence $y=0.84 x+428$ *	A1*	2.1
		(3)	
(c)	Allow any of $\{0.84$, in $£ s\}$ represents - the cost of \{making\} each extra bar \{of soap\} - the direct cost of \{making\} a bar \{of soap\} - the marginal cost of \{making\} a bar \{of soap\} - the cost of \{making\} a bar \{of soap\} (Condone this answer) Note: Do not allow - $\{0.84$, in $£ s\}$ is the profit per bar \{of soap $\}$ - $\{0.84$, in $£ s\}$ is the (selling) price per bar \{of soap\}	B1	3.4
		(1)	
$\begin{gathered} \text { (d) } \\ \text { Way } 1 \end{gathered}$	\{Let n be the least number of bars required to make a profit\}		
	$\begin{gathered} 2 n=0.84 n+428 \Rightarrow n=\ldots \\ \text { (Condone } 2 x=0.84 x+428 \Rightarrow x=\ldots \text {) } \end{gathered}$	M1	3.4
	Answer of 369 \{bars\}	A1	3.2a
		(2)	
(d) Way 2	- Trial 1: $n=368 \Rightarrow y=(0.84)(368)+428 \Rightarrow y=737.12$ \{revenue $=2(368)=736$ or loss $=1.12\}$	M1	3.4
	\{revenue $=2(369)=738$ or profit $=0.04\}$ leading to an answer of 369 \{bars\}	A1	3.2a
		(2)	
(7 marks)			

Notes for Question 30	
(a)	
B1:	Obtains a correct form of the equation. E.g. $y=k x+c ; k \neq 0, c \neq 0$. Note: Must be seen in (a)
Note:	Ignore how the constants are labelled - as long as they appear to be constants. e.g. k, c, m etc.
(b)	Way 1
M1:	Translates the problem into the model by finding either - $y=2(800)-500$ for $x=800$ - $y=2(300)+80$ for $x=300$
dM1:	dependent on the previous M mark See scheme
A1:	See scheme - no errors in their working
Note	Allow $1^{\text {st }}$ M1 for any of - $1600-y=500$ - $600-y=-80$
(b)	Way 2
M1:	Translates the problem into the model by finding either $\begin{aligned} & y=2(800)-500 \text { for } x=800 \\ & y=2(300)+80 \text { for } x=300 \end{aligned}$
dM1:	dependent on the previous M mark See scheme
A1:	See scheme - no error in their working
(b)	Way 3
M1:	Translates the problem into the model by finding either $\begin{aligned} & y=2(800)-500 \text { for } x=800 \\ & y=2(300)+80 \text { for } x=300 \end{aligned}$
dM1:	dependent on the previous M mark Uses the model to test both points (800, their 1100) and (300, their 680)
A1:	Confirms $y=0.84 x+428$ is true for both $(800,1100)$ and $(300,680)$ and gives a conclusion
Note:	Conclusion could be " $y=0.84 x+428$ " or "QED" or "proved"
Note:	Give $1^{\text {st }} \mathrm{M} 0$ for $500=800 k+c, 80=300 k+c \Rightarrow k=\frac{500-80}{800-300}=0.84$
(c)	
B1:	see scheme
Note:	Also condone B1 for "rate of change of cost", "cost of \{making\} a bar", "constant of proportionality for cost per bar of soap" or "rate of increase in cost",
Note:	Do not allow reasons such as "price increase or decrease", "rate of change of the bar of soap" or "decrease in cost"
Note:	Give B0 for incorrect use of units. E.g. Give B0 for "the cost of making each extra bar of soap is $£ 84$ " Condone the use of $£ 0.84$ p

Notes for Question 30 Continued	
(d)	Way 1
M1:	Using the model and constructing an argument leading to a critical value for the number of bars of soap sold. See scheme.
A1:	369 only. Do not accept decimal answers.
(d)	Way 2
M1:	Uses either 368 or 369 to find the cost $y=\ldots$
A1:	Attempts both trial 1 and trial 2 to find both the cost $y=\ldots$ and arrives at an answer of 369 only. Do not accept decimal answers.
Note:	You can ignore inequality symbols for the method mark in part (d)
Note:	Give M1 A1 for no working leading to 369 \{bars $\}$
Note:	Give final A0 for $x>369$ or $x>368$ or $x \geq 369$ without $x=369$ or 369 stated as their final answer
Note:	Condone final A1 for in words "at least 369 bars must be made/sold"
Note:	Special Case: Assuming a profit of $£ 1$ is required and achieving $x=370$ scores special case M1A0

Question	Scheme	Marks	AOs
31(a)	E.g. midpoint $P Q=\left(\frac{-9+15}{2}, \frac{8-10}{2}\right)$	M1	1.1b
	$=(3,-1)$, which is the centre point A, so $P Q$ is the diameter of the circle.	A1	2.1
		(2)	
(a) Alt 1	$m_{P Q}=\frac{-10-8}{15--9}=-\frac{3}{4} \Rightarrow P Q: y-8=-\frac{3}{4}(x--9)$	M1	1.1b
	$\begin{aligned} P Q: y= & -\frac{3}{4} x+\frac{5}{4} . \text { So } x=3 \Rightarrow y=-\frac{3}{4}(3)+\frac{5}{4}=-1 \\ & \text { so } P Q \text { is the diameter of the circle. } \end{aligned}$	A1	2.1
		(2)	
(a) Alt 2	$P Q=\sqrt{(-9-15)^{2}+(8--10)^{2}}\{=\sqrt{900}=30\}$ and either - $A P=\sqrt{(3--9)^{2}+(-1-8)^{2}}\{=\sqrt{225}=15\}$ - $A Q=\sqrt{(3-15)^{2}+(-1--10)^{2}}\{=\sqrt{225}=15\}$	M1	1.1 b
	e.g. as $P Q=2 A P$, then $P Q$ is the diameter of the circle.	A1	2.1
		(2)	
(b)	Uses Pythagoras in a correct method to find either the radius or diameter of the circle.	M1	1.1b
	$(x-3)^{2}+(y+1)^{2}=225\left(\right.$ or $\left.(15)^{2}\right)$	M1	1.1b
		A1	1.1b
		(3)	
(c)	Distance $=\sqrt{(" 15 ")}{ }^{2}-(10)^{2} \quad$ or $=\frac{1}{2} \sqrt{(2(" 15 "))^{2}-(2(10))^{2}}$	M1	3.1a
	$\{=\sqrt{125}\}=5 \sqrt{5}$	A1	1.1b
		(2)	
(d)	$\sin (A \hat{R} Q)=\frac{20}{2(" 15 ")}$ or $\quad A \hat{R} Q=90-\cos ^{-1}\left(\frac{10}{115 "}\right)$	M1	3.1a
	$A \hat{R} Q=41.8103 \ldots=41.8^{\circ}$ (to 0.1 of a degree)	A1	1.1b
		(2)	
(9 marks)			

Question 31 Notes:

(a)

M1: Uses a correct method to find the midpoint of the line segment $P Q$
A1: Completes proof by obtaining $(3,-1)$ and gives a correct conclusion.
(a)

Alt 1
M1: Full attempt to find the equation of the line $P Q$
A1: \quad Completes proof by showing that $(3,-1)$ lies on $P Q$ and gives a correct conclusion.
(a)

Alt 2
M1:
Attempts to find distance $P Q$ and either one of distance $A P$ or distance $A Q$
A1: \quad Correctly shows either

- $P Q=2 A P$, supported by $P Q=30, A P=15$ and gives a correct conclusion
- $P Q=2 A Q$, supported by $P Q=30, A Q=15$ and gives a correct conclusion
(b)

M1:

Either

- uses Pythagoras correctly in order to find the radius. Must clearly be identified as the radius. E.g. $r^{2}=(-9-3)^{2}+(8+1)^{2}$ or $r=\sqrt{(-9-3)^{2}+(8+1)^{2}}$ or $r^{2}=(15-3)^{2}+(-10+1)^{2}$ or $r=\sqrt{(15-3)^{2}+(-10+1)^{2}}$
or
- uses Pythagoras correctly in order to find the diameter. Must clearly be identified as the diameter. E.g. $d^{2}=(15+9)^{2}+(-10-8)^{2}$ or $d=\sqrt{(15+9)^{2}+(-10-8)^{2}}$

Note: This mark can be implied by just 30 clearly seen as the diameter or 15 clearly seen as the radius (may be seen or implied in their circle equation)
M1: Writes down a circle equation in the form $(x \pm " 3 ")^{2}+(y \pm "-1 ")^{2}=(\text { their } r)^{2}$
$(x-3)^{2}+(y+1)^{2}=225$ or $(x-3)^{2}+(y+1)^{2}=15^{2}$ or $x^{2}-6 x+y^{2}+2 y-215=0$
(c)

M1: Attempts to solve the problem by using the circle property "the perpendicular from the centre to a chord bisects the chord" and so applies Pythagoras to write down an expression of the form $\sqrt{(\text { their " } 15 \text { " })^{2}-(10)^{2}}$.

A1: $\quad 5 \sqrt{5}$ by correct solution only
(d)

M1: Attempts to solve the problem by e.g. using the circle property "the angle in a semi-circle is a right angle" and writes down either $\sin (A \hat{R} Q)=\frac{20}{2(\text { their "15") }}$ or $A \hat{R} Q=90-\cos ^{-1}\left(\frac{10}{\text { their "15" }}\right)$ Note: Also allow $\cos (A \hat{R} Q)=\frac{15^{2}+(2(5 \sqrt{5}))^{2}-15^{2}}{2(15)(2(5 \sqrt{5}))}\left\{=\frac{\sqrt{5}}{3}\right\}$

A1: $\quad 41.8$ by correct solution only

Question Number	Scheme			Marks	
33(a)	$\frac{5}{4} \text { oe }$		$\frac{5}{4}$ or exact equivalents such as 1.25 but not $\frac{5}{4} x$.	B1	
					(1)
(b)	$y=\frac{5}{4} x+c \quad \left\lvert\, \begin{aligned} & \text { Uses a line with a parallel gradient } \\ & \frac{5}{4} \text { oe or their gradient from part (a). } \\ & \text { Evidence is } y=" \frac{5}{4} " x+c \text { or similar. } \end{aligned}\right.$			M1	
	$12,5 \Rightarrow 5={ }^{\prime} \frac{5}{4} \times 12+c \Rightarrow c=. .$		Method of finding an equation of a line with numerical gradient and passing through 12,5 . Score even for the perpendicular line. Must be seen in part (a).	M1	
	$y=\frac{5}{4} x-10$		Correct equation. Allow $-\frac{40}{4}$ for -10	A1	
					(3)
(c)	$B=0,-10$	$B=0,-10$ Follow through on their ' c '. Allow also if -10 is marked in the correct place on the diagram. Allow $x=0, y=-10$ (the $x=0$ may be seen "embedded" but not just $y=-10$ with no evidence that $x=0$)		B1ft	
	$C=8,0$	$C=8,0$ Correct coordinates. Allow also if 8 is marked in the correct place on the diagram. Allow y $=0, x=8$ (the $y=0$ may be seen "embedded" but not just $x=8$ with no evidence that $y=0$)		B1	
	Do not penalise lack of " 0 " twice so penalise it at the first occurrence but check the diagram if necessary.			(2)	

$\begin{gathered} \text { (d) } \\ \text { Way } 1 \end{gathered}$	Area of Parallelogram $=$ $3+{ }^{\prime} 10^{\prime} \times{ }^{\prime} 8^{\prime}$	Uses area of parallelogram $=$ $b h=3+10^{\prime} \times{ }^{\prime \prime} 8^{\prime \prime}$ Follow through on their 10 and their 8	M1
	$=104$	cao	A1
	Correct answer only scores both marks		(2)
$\begin{gathered} \text { (d) } \\ \text { Way } 2 \end{gathered}$	$\begin{aligned} & \text { Trapezium } A O C D+\text { Triangle } O C B \\ & =\frac{1}{2} 3+3+10^{\prime} \times{ }^{\prime} 8^{\prime}+\frac{1}{2} \times \times^{\prime} 8^{\prime} \times^{\prime} 10^{\prime} \end{aligned}$	A correct method using their values for $A O C D+O C B$.	M1
	$=104$	cao	A1
	$\begin{aligned} & \text { 2 Triangles + Rectangle } \\ & =2 \times \frac{1}{2} '^{\prime} \times \times^{\prime} 10^{\prime}++^{\prime} \times 3 \end{aligned}$		(2)
$\begin{gathered} \text { (d) } \\ \text { Way } 3 \end{gathered}$		A correct method using their values for $2 \mathrm{x} O B C+$ rectangle.	M1
	$=104$	cao	A1
			(2)
(d) Way 4	Triangle $A C D+$ Triangle $A C B$ $=2 \times \frac{1}{2}{ }^{\prime} 10^{\prime}+3 \times^{\prime} 8^{\prime}$	A correct method using their values for $A C D+A B C$.	M1
	$=104$	cao	A1
			(2)
			(8 marks)

34(b)	$y=0 \Rightarrow 5 x+4(0)-49=0 \Rightarrow x=. .$ or $y=0 \Rightarrow 5(0)=4 x+10 \Rightarrow x=\ldots$	Substitutes $y=0$ into their l_{2} to find a value for x or substitutes $y=0$ into l_{1} or their rearrangement of l_{1} to find a value for x. This may be implied by a correct value on the diagram.	M1
	$y=0 \Rightarrow 5 x+4(0)-49=0 \Rightarrow x=. .$ and $y=0 \Rightarrow 5(0)=4 x+10 \Rightarrow x=\ldots$	Substitutes $y=0$ into their l_{2} to find a value for x and substitutes $y=0$ into l_{1} or their rearrangement of l_{1} to find a value for x. This may be implied by correct values on the diagram.	M1
	(Note that at $T, x=9.8$ and at $S, x=-2.5$)		
	Fully correct method using their with vertices at points of the form Attempts to use integration sh Method $\frac{1}{2} \times\left({ }^{\prime} 9.8^{\prime}-\right.$ Method $\begin{array}{r} \frac{1}{2} \times \sqrt{\left(5-\text { ' }^{2}-2.5^{\prime}\right)^{2}+\left(6^{\prime}\right)} \\ \left(=\frac{1}{2} \times \frac{3 \sqrt{41}}{2}\right. \end{array}$ Note that if the method is correct any of the calculations, the m Method $\frac{1}{2} \times\left(5+{ }^{\prime} 2.5^{\prime}\right) \times{ }^{\prime} 6^{\prime}+$ Method 4: $\left.\frac{1}{2}\left\|\begin{array}{cccc} 5 & 9.8 & -2.5 & 5 \\ 6 & 0 & 0 & 6 \end{array}\right\|=\frac{1}{2} \right\rvert\,(0+0-$ (must see a correct calculation determin Method 5: Trap $\frac{1}{2} \times\left({ }^{\prime} 2.5 \text { ' }\right) \times{ }^{\prime} 2^{\prime}+\frac{1}{2}(" 2 "+" 6$	alues to find the area of triangle $S P T$, " 6 "), $(p, 0)$ and $(q, 0)$ where $p \neq q$ uld be sent to your team leader $\frac{1}{2} S T \times 4 "$ $\left.2.5^{\prime}\right) \times{ }^{\prime} 6^{\prime}=. .$. $\begin{aligned} & \frac{1}{2} S P \times P T \\ & \times \sqrt{\left(' 9.8^{\prime}-5\right)^{2}+\left('^{\prime}\right)^{2}}=\ldots \\ & \left.\times \frac{6 \sqrt{41}}{5}\right) \end{aligned}$ ut slips are made when simplifying hod mark can still be awarded 2 Triangles $\frac{1}{2} \times\left({ }^{\prime} 9.8^{\prime}-5\right) \times{ }^{\prime} 6^{\prime}=\ldots$ oelace method $5) \left.-(58.8+0+0)\left\|=\frac{1}{2}\right\|-73.8 \right\rvert\,=\ldots$ e. the middle expression for this t method) ium +2 triangles $\times 5+\frac{1}{2} \times\left(" 9.8^{\prime \prime}-5^{\prime}\right) \times \times^{\prime} 6^{\prime}=\ldots$	ddM1
	$=36.9$	$\begin{aligned} & 36.9 \text { cso oe e.g } \frac{369}{10}, 36 \frac{9}{10}, \frac{738}{20} \\ & \text { but not e.g. } \frac{73.8}{2} \end{aligned}$	A1
	Note that the final mark is cso so beware of any errors that have fortuitously resulted in a correct area.		
			(8 marks)

Question Number	Scheme		Notes		Marks
35(a)	l_{1} : passes through $(0,2)$ and $(3,7) l_{2}$: goes through $(3,7)$ and is perpendicular to l_{1}				
	Gradient of l_{1} is $\frac{7-2}{3-0}\left(=\frac{5}{3}\right)$		$m\left(l_{1}\right)=\frac{7-2}{3-0}$. Allow un-simplified. May be implied.		B1
	$m\left(l_{2}\right)=-1 \div$ their $\frac{5}{3}$		Correct application of perpendicular gradient rule		M1
	$\begin{aligned} y-7 & ="-\frac{3}{5} "(x-3) \\ & \text { or } \\ y="^{-\frac{3}{5}}{ }^{\prime \prime} x+c, 7 & ="-\frac{3}{5} "(3)+c \Rightarrow c=\frac{44}{5} \end{aligned}$		M1: Uses $y-7=m(x-3)$ with their changed gradient or uses $y=m x+c$ with $(3,7)$ and their changed gradient to find a value for c A1ft: Correct ft equation for their perpendicular gradient (this is dependent on both \mathbf{M} marks)		M1A1ft
	$3 x+5 y-44=0$		Any positive or negative integer multiple. Must be seen in (a) and must include " $=0$ ".		A1
					[5]
(b)	When $y=0 \quad x=\frac{44}{3}$		M1: Puts $y=0$ and finds a value for x from their equation		M1 A1
			A1: $x=\frac{44}{3}\left(\right.$ or $14 \frac{2}{3}$ or 14.6$)$ or exact equivalent. ($y=0$ not needed)		
	Condone $3 x-5 y-44=0$ only leading to the correct answer and condone coordinates written as ($0,44 / 3$) but allow recovery in (c)				
					[2]
(c)		GENERAL APPROACH:			
	Correct attempt at finding the area of any one of the triangles or one of the trapezia but not just one rectangle. The correct pair of 'base' and 'height' must be used for a triangle and the correct formula used for a trapezium. If Pythagoras is required, then it must be used correctly with the correct end coordinates. Note that the first three marks apply to their calculated coordinates e.g. their $\frac{44}{3}, \frac{44}{5},-\frac{6}{5}$ etc. But the given coordinates must be correct e.g. $(0,2)$ and $(3,7)$.				M1
	A correct numerical expression for the area of one triangle or one trapezium for their coordinates.				A1ft
	Combines the correct areas together correctly for their chosen "way". Note that if correct numerical expressions for areas have been incorrectly simplified before combining them, then this M1 may still be given. Dependent on the first method mark.				dM1
	Correct numerical expression for the area of $O R Q P$. The expressions must be fully correct for this mark i.e. no follow through.				A1
	Correct exact area e.g. $54 \frac{1}{3}, \frac{163}{3}, \frac{326}{6}, 54 . \dot{3}$ or any exact equivalent				A1
	Shape	Vertices	Numerical Expression	Exact Area	
	Triangle	TRQ	$\frac{1}{2} \times 7 \times\left(\frac{44}{3}-3\right)$	$\frac{245}{6}$	
	Triangle	SPO	$\frac{1}{2} \times \frac{6}{5} \times 2$	$\frac{6}{5}$	
	Triangle	PWQ	$\frac{1}{2} \times\left(\frac{44}{5}-2\right) \times 3$	$\frac{51}{5}$	
	Triangle	PVQ	$\frac{1}{2} \times(7-2) \times 3$	$\frac{15}{2}$	

	Triangle	VWQ	$\frac{1}{2} \times\left(\frac{44}{5}-7\right) \times 3$	$\frac{27}{10}$	
	Triangle	QUR	$\frac{1}{2} \times\left(\frac{44}{3}-3\right) \times 7$	$\frac{245}{6}$	
	Triangle	PQR	$\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$	$\frac{119}{3}$	
	Triangle	PNQ	$\frac{1}{2} \times \frac{34}{3} \times 5$	$\frac{85}{3}$	
	Triangle	OPQ	$\frac{1}{2} \times 2 \times 3$	3	
	Triangle	OQR	$\frac{1}{2} \times \frac{44}{3} \times 7$	$\frac{154}{3}$	
	Triangle	OWR	$\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$	$\frac{968}{15}$	
	Triangle	SQR	$\frac{1}{2} \times\left(\frac{44}{3}+\frac{6}{5}\right) \times 7$	$\frac{833}{15}$	
	Triangle	OPR	$\frac{1}{2} \times \frac{44}{3} \times 2$	$\frac{44}{3}$	
	Trapezium	OPQT	$\frac{1}{2}(2+7) \times 3$	$\frac{27}{2}$	
	Trapezium	OPNR	$\frac{1}{2} \times\left(\frac{34}{3}+\frac{44}{3}\right) \times 2$	26	
	Trapezium	OVQR	$\frac{1}{2} \times\left(3+\frac{44}{3}\right) \times 7$	$\frac{371}{6}$	
	EXAMPLES				
(c)	WAY 1				
	$\begin{gathered} \text { or } \\ T R Q=\frac{1}{2} \times 7 \times\left(\frac{44}{3}-3\right) \end{gathered}$		M1: Correct method f $\begin{aligned} & \text { A1ft: } O P Q T=\frac{1}{2}(2+7 \\ & T R Q=\frac{1}{2} \times 7 \times\left(\frac{44}{3}-3\right) \end{aligned}$		M1A1ft
	$\frac{1}{2}(2+7) \times 3+\frac{1}{2} \times 7 \times\left(\frac{44}{3}-3\right)$		dM1: Correct numerical combination of areas that have been calculated correctly		dM1A1
	$54 \frac{1}{3}$		Any exact equivalent e.g. $\frac{163}{3}, \frac{326}{6}, 54.3$		A1

$$
\begin{aligned}
& \frac{1}{2} \times(7+2) \times 3+\frac{1}{2} \times \frac{" 35 "}{3} \times 7 \\
& =\frac{27}{2}+\frac{245}{6}=\frac{326}{6}
\end{aligned}
$$

	WAY 2		
	$\begin{gathered} P Q R=\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34} \\ \text { or } \\ O P R=\frac{1}{2} \times \frac{44}{3} \times 2 \end{gathered}$	M1: Correct method for $P Q R$ or $O P R$	
		A1ft: $P Q R=\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$ or $O P R=\frac{1}{2} \times \frac{44}{3} \times 2$	M1A1ft
	$\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}+\frac{1}{2} \times \frac{44}{3} \times 2$	dM 1 : Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area $O R Q P$	dM1A1
	$54 \frac{1}{3}$	Any exact equivalent e.g. $\frac{163}{3}, \frac{326}{6}, 54 . \dot{3}$	A1

$$
\begin{aligned}
& \frac{1}{2} \times \frac{" 44 "}{3} \times 2+\frac{1}{2} \times \sqrt{34} \times n \frac{7}{3} \sqrt{34} " \\
& =\frac{88}{6}+\frac{238}{6}=\frac{326}{6}
\end{aligned}
$$

	WAY 3		
	$\begin{gathered} S Q R=\frac{1}{2} \times 7 \times \frac{238}{15} \\ \text { or } \\ S P O=\frac{1}{2} \times \frac{6}{5} \times 2 \end{gathered}$	M1: Correct method for SQR or SPO	M1A1ft
		A1ft: $S Q R=\frac{1}{2} \times 7 \times \frac{238}{15}$ or $S P O=\frac{1}{2} \times \frac{6}{5} \times 2$	
	$\frac{1}{2} \times 7 \times \frac{238}{15}-\frac{1}{2} \times \frac{6}{5} \times 2$	dM 1 : Correct numerical combination of areas that have been calculated correctly	M1
	$\frac{1}{2} \times 7 \times \frac{15}{15}-\frac{1}{2} \times \frac{6}{5} \times 2$	A1: Fully Correct numerical expression for the area $O R Q P$,
	$54 \frac{1}{3}$	Any exact equivalent e.g. $\frac{163}{3}, \frac{326}{6}, 54 . \dot{3}$	A1

$$
\begin{aligned}
& \frac{1}{2} \times \frac{" 238 "}{15} \times 7-\frac{1}{2} \times \frac{" 6 "}{5} \times 2 \\
& =\frac{1666}{30}-\frac{6}{5}=\frac{1630}{30}
\end{aligned}
$$

	WAY 4		
	$P V Q=\frac{1}{2} \times 5 \times 3$	M1: Correct method for PVQ or QUR	M1A1ft
	or	A1ft: $P V Q=\frac{1}{2} \times 5 \times 3$	
	$Q U R=\frac{1}{2} \times 7 \times \frac{35}{3}$	$\text { or } Q U R=\frac{1}{2} \times 7 \times \frac{35}{3}$	
	OVUR 7×44	dM1: Correct numerical combination of areas that have been calculated correctly	dM1A1
	$\frac{3}{3}-\frac{1}{2} \times 5 \times 3-\frac{1}{2} \times 7 \times \frac{35}{3}$	A1: Fully Correct numerical expression for the area ORQP	
	$54 \frac{1}{3}$	Any exact equivalent e.g. $\frac{163}{3}, \frac{326}{6}, 54 . \dot{3}$	A1

$$
\begin{aligned}
& 7 \times \frac{44 "}{3}-\frac{1}{2} \times 5 \times 3-\frac{1}{2} \times \frac{35 "}{3} \times 7 \\
& =\frac{308}{3}-\frac{15}{2}-\frac{245}{6}=\frac{326}{6}
\end{aligned}
$$

	WAY 5		
	$O W R=\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$ or $P W Q=\frac{1}{2} \times\left(\frac{44}{5}-2\right) \times 3$	M1: Correct method for OWR or PWQ	M1A1ft
		A1ft: $O W R=\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$ or $P W Q=\frac{1}{2} \times\left(\frac{44}{5}-2\right) \times 3$	
	$\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}-\frac{1}{2} \times\left(\frac{44}{5}-2\right) \times 3$	dM1: Correct numerical combination of areas that have been calculated correctly	dM1A1
		A1: Fully Correct numerical expression for the area $O R Q P$	
	$54 \frac{1}{3}$	Any exact equivalent e.g. $\frac{163}{3}, \frac{326}{6}, 54 . \dot{3}$	A1

$$
\begin{aligned}
& \frac{1}{2} \times \frac{44}{5} \times \frac{44 "}{3}-\frac{1}{2} \times\left(\frac{44}{5}-2\right) \times 3 \\
& =\frac{968}{15}-\frac{51}{5}=\frac{163}{3}
\end{aligned}
$$

	WAY 6		
	1 (34	M1: Correct method for OPNR or PNQ	
	$\begin{gathered} O P N R=\frac{1}{2} \times\left(\frac{04}{3}+\frac{44}{3}\right) \times 2 \\ \quad \text { or } \\ P N Q=\frac{1}{2} \times \frac{34}{3} \times 5 \end{gathered}$	A1ft: $O P N R=\frac{1}{2} \times\left(\frac{34}{3}+\frac{44}{3}\right) \times 2$ or $P N Q=\frac{1}{2} \times \frac{34}{3} \times 5$	M1A1ft
	$\frac{1}{2} \times\left(\frac{34}{3}+\frac{44}{3}\right) \times 2+\frac{1}{2} \times \frac{34}{3} \times 5$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area ORQP	dM1A1
	$54 \frac{1}{3}$	Any exact equivalent e.g. $\frac{163}{3}, \frac{326}{6}, 54 . \dot{3}$	A1

$$
\begin{aligned}
& \frac{1}{2} \times\left(\frac{34 "}{3}+\frac{" 44 "}{3}\right) \times 2+\frac{1}{2} \times \frac{" 34 "}{3} \times 5 \\
& =\frac{156}{6}+\frac{170}{6}=\frac{326}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \times 3 \times 2+\frac{1}{2} \times \frac{44 "}{3} \times 7 \\
& =3+\frac{308}{6}=\frac{326}{6}
\end{aligned}
$$

	WAY 8		
	$\frac{1}{2}\left\|\begin{array}{ccccc}0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0\end{array}\right\|$	M1: Uses the vertices of the quadrilateral to form a determinant $\left\|\begin{array}{lllll}0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0\end{array}\right\|$	M1A1ft
		A1ft: $\frac{1}{2}\left\|\begin{array}{ccccc}0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0\end{array}\right\|$	
	$\frac{1}{2}\left(\frac{44}{3} \times 7+3 \times 2\right)$	dM1: Fully correct determinant method with no errors	dM1A1
		A1: Fully Correct numerical expression for the area $O R Q P$	
	$54 \frac{1}{3}$	Any exact equivalent e.g. $\frac{163}{3}, \frac{326}{6}, 54 . \dot{3}$	A1

There will be other ways but the same approach to marking should be applied.

Notes

(a) M1 Complete method for finding gradient. (This may be implied by later correct answers.)
e.g. Rearranges $2 x+3 y=26 \Rightarrow y=m x+c$ so $m=$

Or finds coordinates of two points on line and finds gradient e.g. $(13,0)$ and $(1,8)$ so $m=\frac{8-0}{1-13}$
A1 States or implies that gradient $=-\frac{2}{3} \quad-$ condone $-\frac{2}{3} x$ if they continue correctly. Ignore errors in constant term in straight line equation

M1 Uses $m_{1} \times m_{2}=-1$ to find the gradient of l_{2}. This can be implied by the use of $\overline{\text { their gradient }}$
A1 $y=\frac{3}{2} x$ or $2 y-3 x=0$ Allow $y=\frac{3}{2} x+0$ Also accept $2 y=3 x, y=39 / 26 x$ or even $y-0=\frac{3}{2}(x-0)$ and isw

Notes Continued

(b) M1 Eliminates variable between their $y=\frac{3}{2} x$ and their (possibly rearranged) $2 x+3 y=26$ to form an equation in x or y. (They may have made errors in their rearrangement)
dM1 (Depends on previous M mark) Attempts to solve their equation to find the value of x or y
A1 $x=4$ or equivalent or $y=6$ or equivalent
B1 y coordinate of B is $\frac{26}{3}$ (stated or implied) - isw if written as $\left(\frac{26}{3}, 0\right)$. Must be used or stated in (b)
dM1 (Depends on previous M mark) Complete method to find area of triangle $O B C$ (using their values of x and/or y at point C and their 26/3)
A1 Cao $\frac{52}{3}$ or $\frac{104}{6}$ or $\frac{1352}{78}$ o.e

Method 1:

Uses the area of a triangle formula $1 / 2 \times O B \times(x$ coordinate of $C)$
Alternative methods: Several Methods are shown below. The only mark which differs from Method 1 is the last M mark and its use in each case is described below:

Method 2 in 9 (b) using $\frac{1}{2} \times B C \times O C$
dM1 Uses the area of a triangle formula $1 / 2 \times B C \times O C$ Also finds $O C(=\sqrt{52})$ and $B C=\left(\frac{4}{3} \sqrt{13}\right)$
Method 3 in 9 (b) using $\frac{1}{2}\left|\begin{array}{llll}0 & 4 & 0 & 0 \\ 0 & 6 & \frac{26}{3} & 0\end{array}\right|$
dM1 States the area of a triangle formula $\left.\frac{1}{2}\left|\begin{array}{lll}0 & 4 & 0 \\ 0 & 6 & \frac{26}{3}\end{array}\right| \right\rvert\,$ or equivalent with their values
Method 4 in 9 (b) using area of triangle $O B X$ - area of triangle $O C X$ where X is point $(13,0)$
dM1 Uses the correct subtraction $\frac{1}{2} \times 13 \times=\frac{26}{3} "-\frac{1}{2} \times 13 \times 16 "$
Method 5 in $9(\mathrm{~b})$ using area $=1 / 2(6 \times 4)+1 / 2(4 \times 8 / 3)$ drawing a line from C parallel to the x axis and dividing triangle into two right angled triangles
dM1 for correct method area $=1 / 2(" 6 " \times 4$ " $)+1 / 2(" 4 " \times[" 26 / 3 "-" 6 "])$

Method 6 Uses calculus

dM1 $\int_{0}^{4} " \frac{26}{3} "-\frac{2 x}{3}-\frac{3 x}{2} \mathrm{~d} x=\left[\frac{26}{3} x-\frac{x^{2}}{3}-\frac{3 x^{2}}{4}\right]_{0}^{4}$

(a) M1 Uses the gradient formula with points L and M i.e. quote gradient $=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ and attempt to substitute correct numbers. Formula may be implied by the correct $\frac{2-(-4)}{-1-7}$ or equivalent.
A1 Any correct single fraction gradient i.e $\frac{6}{-8}$ or equivalent
M1 Uses their gradient with either $(-1,2)$ or $(7,-4)$ to form a linear equation
Eg $y-2=$ their ${ }^{\prime}-\frac{3}{4} '^{\prime}(x+1)$ or $y+4=$ their ${ }^{\prime}-\frac{3}{4} '(x-7)$ or $y=$ their ${ }^{\prime}-\frac{3}{4} '^{\prime} x+c$ then find a value for c by substituting $(-1,2)$ or $(7,-4)$ in the correct way(not interchanging x and y)
A1 Accept $\pm k(4 y+3 x-5)=0$ with k an integer (This implies previous M1)
(b) M1 Attempts to use gradient $L M \times$ gradient $M N=-1$. ie. $-\frac{3}{4} \times \frac{p+4}{16-7}=-1$ (allow sign errors)

Or Attempts Pythagoras correct way round (allow sign errors)
M1 An attempt to solve their linear equation in ' p '. A1 cao $p=8$
(c) M1 For using their numerical value of p and adding 6 . This may be done by any complete method (vectors, drawing, perpendicular straight line equations through L and N) or by no method. Assuming $x=7$ is M0
A1 Accept 14 for both marks as long as no incorrect working seen (Ignore left hand side - allow k) . If there is wrong working resulting fortuitously in 14 give M0A0. Allow $(8,14)$ as the answer.

Question Number	Scheme		Marks
38	$(-1,3),(11,12)$		
(a)	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{12-3}{11-(-1)},=\frac{3}{4}$	M1:Correct method for the gradient A1: Any correct fraction or decimal	M1,A1
	$\begin{gathered} y-3=3 / 4(x+1) \text { or } y-12=3 / 4(x-11) \\ \text { or } y=3 / 4 x+c \text { with attempt at } \\ \text { substitution to find } c \end{gathered}$	Correct straight line method using either of the given points and a numerical gradient.	M1
	$4 y-3 x-15=0$	Or equivalent with integer coefficients (= 0 is required)	A1
	This A1 should only be awarded in (a)		
			(4)
(a) Way 2	$\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}} \Rightarrow \frac{y-3}{12-3}=\frac{x+1}{11+1}$	M1: Use of a correct formula for the straight line	M1A1
		A1: Correct equation	
	$12(y-3)=9(x+1)$	Eliminates fractions	M1
	$4 y-3 x-15=0$	Or equivalent with integer coefficients (= 0 is required)	A1
			(4)
(b)	Solves their equation from part (a) and L_{2} simultaneously to eliminate one variable	Must reach as far as an equation in x only or in y only. (Allow slips in the algebra)	M1
	$x=3$ or $y=6$	One of $x=3$ or $y=6$	A1
	Both $x=3$ and $y=6$	Values can be un-simplified fractions.	A1
	Fully correct answers with no working can score 3/3 in (b)		
			(3)
(b) Way 2	$\begin{aligned} & (-1,3) \rightarrow-a+3 b+c=0 \\ & (11,12) \rightarrow 11 a+12 b+c=0 \end{aligned}$	Substitutes the coordinates to obtain two equations	M1
	$\therefore a=-\frac{3}{4} b, b=-\frac{4}{15} c$	Obtains sufficient equations to establish values for a, b and c	A1
	e.g. $c=1 \Rightarrow b=-\frac{4}{15}, a=\frac{3}{15}$	Obtains values for a, b and c	M1
	$\frac{3}{15} x-\frac{4}{15} y+1=0 \Rightarrow 4 y-3 x-15=0$	Correct equation	A1
			(4)
			[7]

Question Number	Scheme	Notes	Marks
39(a)	$4 x+2 y-3=0 \Rightarrow y=-2 x+\frac{3}{2}$	Attempt to write in the form $y=$	M1
	\Rightarrow gradient $=-2$	Accept any un-simplified form and allow even with an incorrect value of "c"	A1
(a) Way 2	Alternative: $4+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	Attempt to differentiate Allow $p \pm q \frac{\mathrm{~d} y}{\mathrm{~d} x}=0, p, q \neq 0$	M1
	\Rightarrow gradient $=-2$	Accept any un-simplified form	A1
	Answer only scores M1A1		
			[2]
(b)	Using $m_{N}=-\frac{1}{m_{T}}$	$\begin{array}{\|l} \hline \text { Attempt to use } m_{N}= \\ -\frac{1}{\text { gradient from (a) }} \end{array}$	M1
	$y-5=\frac{1}{2}(x-2) \text { or }$ Uses $y=m x+c$ in an attempt to find c	Correct straight line method using a 'changed' gradient and the point $(2,5)$	M1
	$y=\frac{1}{2} x+4$	Cao (Isw)	A1
			(3)
			[5]

Question Number	Scheme	Notes	Marks
40(a)	$y=x+2 \Rightarrow x^{2}+4(x+2)^{2}-2 x=35$	Substitute $y= \pm x \pm 2$ into $x^{2}+4 y^{2}-2 x=35$ to obtain an equation in x only.	M1
	Alternative: $\frac{2 x-x^{2}+35}{4}=(x+2)^{2}$ or $\sqrt{\frac{2 x-x^{2}+35}{4}}=(x+2)$		
	$5 x^{2}+14 x-19=0$	Multiply out and collects terms producing 3 term quadratic in any form.	M1
	$(5 x+19)(x-1)=0 \Rightarrow x=.$.	Solves their quadratic, usual rules, as far as $x=\ldots$ Dependent on the first M1 i.e. a correct method for eliminating y (or x - see below)	dM1
	$x=-\frac{19}{5}, x=1$	Both correct	A1 for both
	$y=-\frac{9}{5}, y=3$	M1: Substitutes back into either given equation to find a value for y	M1
	Coordinates are ($-\frac{\mathbf{1 9}}{\mathbf{5}},-\frac{\mathbf{9}}{\mathbf{5}}$) and (1, 3)	Correct matching pairs. Coordinates need not be given explicitly but it must be clear which x goes with which y	A1
			(6)
Alternative to part (a)	$x=y-2 \Rightarrow(y-2)^{2}+4 y^{2}-2(y-2)=$	$\begin{aligned} & \text { Substitutes } x= \pm y \pm 2 \text { into } \\ & x^{2}+4 y^{2}-2 x=35 \end{aligned}$	M1
	$5 y^{2}-6 y-27=0$	Multiply out, collect terms producing 3 term quadratic in any form.	M1
	$(5 y+9)(y-3)=0 \Rightarrow y=.$.	Solves their quadratic, usual rules, as far as $y=\ldots$ Dependent on the first M1 i.e. a correct method for eliminating x	dM1
	$y=-\frac{9}{5}, y=3$	Both correct	A1 for both
	$x=-\frac{19}{5}, x=1$	M1: Substitutes back into either given equation to find a value for x	M1
	Coordinates are $\left(-\frac{19}{5},-\frac{9}{5}\right)$ and $(1,3)$	Correct matching pairs as above.	A1
(b)	$\begin{gathered} d^{2}=\left(1--\frac{19}{5}\right)^{2}+\left(3--\frac{9}{5}\right)^{2} \text { or } \\ d=\sqrt{\left(1--\frac{19}{5}\right)^{2}+\left(3--\frac{9}{5}\right)^{2}} \end{gathered}$	M1: Use of $\begin{aligned} & d^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \text { or } \\ & d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \end{aligned}$ where neither $\left(x_{1}-x_{2}\right)$ nor $\left(y_{1}-y_{2}\right)$ are zero. A1ft: Correct ft expression for d or d^{2} (may be un-simplified)	M1A1ft
	$d=\frac{24}{5} \sqrt{2}$	Allow $4.8 \sqrt{2}$	A1cao
			(3)
			[9]

Question Number	Scheme	Marks
41.(a)	Gradient of l_{2} is $\quad \frac{1}{2}$ or 0.5 or $\frac{-1}{-2}$	B1
	Either $y-6=" \frac{1}{2} "(x-5) \quad$ or $y=\frac{1}{2} " x+c$ and $6=" \frac{1}{2} "(5)+c \Rightarrow c=\left(" \frac{7}{2} "\right)$ $x-2 y+7=0$ or $-x+2 y-7=0$ or $k(x-2 y+7)=0$ with \boldsymbol{k} an integer	M1 A1 [3]
	Puts $x=0$, or $y=0$ in their equation and solves to find appropriate co-ordinate	M1
(b)	x-coordinate of A is -7 and y-coordinate of B is $\frac{7}{2}$.	A1 cao [2]
(c)	Area $O A B=\frac{1}{2}(7)\left(\frac{7}{2}\right)=\frac{49}{4}(\text { units })^{2} \quad$ Applies $\pm \frac{1}{2}$ (base)(height)	M1 A1cso
		[2]
		7 marks
	Notes	
(a) (b) (c)	B1: Must have $1 / 2$ or 0.5 or $\frac{-1}{-2}$ o.e. stated and stops, or used in their line equation M1: Full method to obtain an equation of the line through $(5,6)$ with their " m ". So $y-6=m(x-5)$ with their gradient or uses $y=m x+c$ with $(5,6)$ and their gradient to find c. Allow any numerical gradient here including -2 or -1 but not zero. (Allow $(6,5)$ as a slip if $y-y_{1}=m\left(x-x_{1}\right)$ is quoted first) A1: Accept any multiple of the correct equation, provided that the coefficients are integers and equation $=0$ e.g. $-x+2 y-7=0$ or $k(x-2 y+7)=0$ or even $2 y-x-7=0$ M1: Either one of the x or y coordinates using their equation A1: Needs both correct values. Accept any correct equivalent.. Need not be written as co-ordinates. Even just -7 and 3.5 with no indication which is which may be awarded the A1. M1: Any correct method for area of triangle $A O B$, with their values for co-ordinates of A and B (may include negatives) Method usually half base times height but determinants could be used. A1: Any exact equivalent to 49/4, e.g. 12.25. (negative final answer is A0 but replacing by positive is A1) Do not need units. c.s.o. implies if A0 is scored in (b) then A0 is scored in (c) as well. However if candidate has correct line equation in (a) of wrong form may score A0 in (a) and A1 in (b) and (c)	
	Note: Special cases: $\frac{1}{2}(-7)\left(+\frac{7}{2}\right)=-\frac{49}{4}(\text { units })^{2}$ is M1 A0 but changing sign to area $=+\frac{49}{4}$ gets M1A1 (recovery) N.B. Candidates making sign errors in (b) and obtaining +7 and $-\frac{7}{2}$. may also get $\frac{49}{4}$ as their answer following previous errors. They should be awarded A0 as this answer is not ft and is for correct solution only Special Case: In (a) and (b): Produces parallel line instead of perpendicular line: So uses $m=-2$ This is not treated as a misread as it simplifies the question. The marks will usually be B0 M1 A0, M1 A0, M1 A0 i.e. maximum of 3/7	

Note: Writing down $m\left(L_{2}\right)=-2$ with no earlier incorrect working gains M1A1B1
$\mathbf{2}^{\text {nd }}$ M1: for applying $y-4= \pm \lambda(x-2)$ where λ is a numerical value, $\lambda \neq 0$. or full method of $y=m x+c$, with $x=2, y=4$ and (their $\pm \lambda$) to find c.
$\mathbf{2}^{\text {nd }} \mathbf{A 1 :} 2 x+y-8=0$ or $-2 x-y+8=0$ or $y+2 x-8=0$ or $4 x+2 y-16=0$ or $2 x+1 y-8=0$ etc. Must be " $=0$ ". So do not allow $2 x+y=8$ etc.
Note: Condone the error of incorrectly rearranging L_{1} to give $y=\frac{1}{2} x-3 \Rightarrow m\left(L_{1}\right)=\frac{1}{2}$.
(c) \quad M1: for an attempt to solve. Must form a linear equation in one variable.
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for $x=3.5$ (correct solution only).
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for $y=1 \quad$ (correct solution only).
Note: If $x=3.5, y=1$ is found from no working, then send to review.
Note: Use of trial and error to find one of x or y and then substitution into one of L_{1} or L_{2} can achieve M1A1A1.
(d) M1: for an attempt at $C D^{2}$ - ft their point D. Eg: $(" 3.5 "-2)^{2}+(" 1 "-4)^{2}$ or simplified. This mark can be implied by finding $C D$.
$\mathbf{1}^{\text {st }} \mathbf{A 1 f t}$: for finding their $C D-\mathrm{ft}$ their point D. Eg: $\sqrt{(" 3.5 "-2)^{2}+(" 1 "-4)^{2}}$ or correctly simplified. $\mathbf{2}^{\text {nd }} \mathbf{A 1}$:cso for no incorrect working seen.
Note: A candidate initially writing down $\sqrt{1.5^{2}+3^{2}}$ can be awarded M1A1.

Alternatives part (d): Final accuracy

1. $\left\{\sqrt{1.5^{2}+3^{2}}=\right\} \sqrt{\frac{9}{4}+9}=\sqrt{\frac{9}{4}+\frac{36}{4}}=\sqrt{\frac{45}{4}}=\frac{3 \sqrt{5}}{2}$
2. $\left\{\sqrt{1.5^{2}+3^{2}}=\right\} \sqrt{11.25}=\sqrt{2.25} \sqrt{5}=1.5 \sqrt{5}$
(e) M1: for an attempt at finding the area of either triangle $A B C$ or triangle $A B E$.

B1: Correct method for removing a square root. Eg: $\sqrt{80} \sqrt{5}=\sqrt{400}=20$ or $\sqrt{5} \times 4 \sqrt{5}=20$
Note: This mark can be implied.
A1: for 45 only.
Alternative 1 to part (e): \quad Area $=\frac{1}{2}\left(\frac{3}{2} \sqrt{5}+3 \sqrt{5}\right)(\sqrt{80})=\frac{1}{2}(30+60)=45$
M1: $\frac{1}{2}(A B)(C E)$. B1: Evidence of correct surd removal. A1: for 45.
Note: Multiplying the diagonals (usually to find 90) is M0, B1 if surds are removed correctly, A0.

Alternative 2 to part (e):

Area $=$ triangle $D A C+$ triangle $D C B+$ triangle $D E A+$ triangle $D B E$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times \frac{3}{2} \sqrt{5} \times \sqrt{45}\right)+\left(\frac{1}{2} \times \frac{3}{2} \sqrt{5} \times(\sqrt{80}-\sqrt{45})\right)+\left(\frac{1}{2} \times 3 \sqrt{5} \times \sqrt{45}\right)+\left(\frac{1}{2} \times 3 \sqrt{5} \times(\sqrt{80}-\sqrt{45})\right) \\
& =\left(\frac{1}{2} \times \frac{3}{2}(15)\right)+\left(\frac{1}{2} \times \frac{3}{2}(5)\right)+\left(\frac{1}{2} \times 3(15)\right)+\left(\frac{1}{2} \times 3(5)\right) \\
& =\left(\frac{45}{4}\right)+\left(\frac{15}{4}\right)+\left(\frac{45}{2}\right)+\left(\frac{15}{2}\right) \\
& =45
\end{aligned}
$$

M1: For finding the area of one of the four triangles. B1: Evidence of correct surd removal. A1: for 45.

Alternative 3 to part (e):

$$
\left\{C E=C D+D E=\frac{3}{2} \sqrt{5}+3 \sqrt{5}=\frac{9}{2} \sqrt{5}\right\}, \quad\{B D=D A+\underline{A B}=3 \sqrt{5}+\underline{4 \sqrt{5}}=7 \sqrt{5}\}
$$

Area $=$ triangle $B C E-$ triangle $A C E=\frac{1}{2}(C E)(B D)-\frac{1}{2}(C E)(B D)$ $=\frac{1}{2} \times \frac{9}{2} \sqrt{5} \times 7 \sqrt{5}-\frac{1}{2} \times \frac{9}{2} \sqrt{5} \times 3 \sqrt{5} \quad$ M1: for an attempt at the area of triangle $B C E$ or triangle $A C E$.
$=\frac{63(5)}{4}-\frac{27(5)}{4}=\frac{36(5)}{4}=9(5) \quad$ B1: Evidence of correct surd removal.
$=45$
A1: for 45 only.

Question	Scheme	Marks
43. (a)	$(m=) \frac{2}{3} \quad$ (or exact equivalent)	B1 (1)
(b)	$B:(0,4) \quad$ [award when first seen - may be in (c)]	B1
	Gradient: $\frac{-1}{m}=-\frac{3}{2}$	M1
	$y-4=-\frac{3 x}{2} \quad$ or equiv. e.g. $\left(y=-\frac{3 x}{2}+4, \quad 3 x+2 y-8=0\right)$	A1 (3)
(c)	A: $(-6,0) \quad$ [award when first seen - may be in (b)]	B1
	$C: \frac{3 x}{2}=4 \quad \Rightarrow \quad x=\frac{8}{3} \quad$ [award when first seen - may be in (b)]	B1ft
	Area: Using $\frac{1}{2}\left(x_{C}-x_{A}\right) y_{B}$	M1
	$=\frac{1}{2}\left(\frac{8}{3}+6\right) 4=\frac{52}{3}\left(=17 \frac{1}{3}\right)$	A1 cso (4)
ALT	$B C=\frac{4}{6} \sqrt{52}$ (from similar triangles) (or possibly using C)	$2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$
	Area: Using $\frac{1}{2}(A B \times B C) \quad$ N.B. $A B=\sqrt{6^{2}+4^{2}}=\sqrt{52}$	M1
	$=\frac{1}{2} \times \sqrt{52} \times\left(\frac{2}{3} \sqrt{52}\right)=\frac{52}{3}\left(=17 \frac{1}{3}\right)$	A1
		8 marks
	Notes	
(a)	B1 for $\frac{2}{3}$ seen. Do not award for $\frac{2}{3} x$ and must be in part (a)	
(b)	B1 for coordinates of B. Accept 4 marked on y-axis (clearly labelled) M1 for use of perpendicular gradient rule. Follow through their value for m A1 for a correct equation (any form, need not be simplified). Answer only $3 / 3$	
(c)	$1^{\text {st }}$ B1 for the coordinates of A (clearly labelled). Accept -6 marked on x-axis $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ for the coordinates of C (clearly labelled) or $A C=\frac{26}{3}$. Accept $x=\frac{8}{3}$ marked on x-axis. Follow through from l_{2} if >0	
	A1 cso for $\frac{52}{3}$ or exact equivalent seen but must be a single fraction or $17 \frac{1}{3}$ or $17 \frac{2}{6}$ etc $17 \frac{1}{3}$ on its own can only score full marks if A, B and C are all correct.	
ALT	$2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ If they use this approach award this mark for C (if seen) or $B C$	
Use of Det	$2^{\text {nd }}$ M1 must get as far as: $\frac{1}{2}\left\|x_{A} \times y_{B}-x_{C} \times y_{B}\right\|$	

Question Number	Scheme \quad Marks
44.	Mid-point of $P Q$ is $(4,3)$ $P Q . m=\frac{0-6}{9-(-1)},\left(=-\frac{3}{5}\right)$ B1 Gradient perpendicular to $P Q=-\frac{1}{m} \quad\left(=\frac{5}{3}\right)$ $y-3=\frac{5}{3}(x-4)$ $5 x-3 y-11=0$ or $3 y-5 x+11=0$ or multiples e.g. $10 x-6 y-22=0$ M1 M1
	Notes B1: correct midpoint. B1: correct numerical expression for gradient - need not be simplified $1^{\text {st }} \mathrm{M}$: Negative reciprocal of their numerical value for m $2^{\text {nd }} \mathrm{M}$: Equation of a line through their $(4,3)$ with any gradient except 0 or ∞. If the 4 and 3 are the wrong way round the $2^{\text {nd }} \mathrm{M}$ mark can still be given if a correct formula (e.g. $y-y_{1}=m\left(x-x_{1}\right)$) is seen, otherwise M0. If $(4,3)$ is substituted into $y=m x+c$ to find c, the $2^{\text {nd }} \mathrm{M}$ mark is for attempting this. A1: Requires integer form with an = zero (see examples above)

Question Number	Scheme	Marks
45. (a)	$(8-3-k=0)$ so $\underline{k=5}$	B1 (1)
(b)	$\begin{aligned} 2 y & =3 x+k \\ y & =\frac{3}{2} x+\ldots \text { and so } m=\frac{3}{2} \quad \text { o.e. } \end{aligned}$	M1 A1 (2)
(c)	$\text { Perpendicular gradient }=-\frac{2}{3}$ Equation of line is: $\quad y-4=-\frac{2}{3}(x-1)$ $3 y+2 x-14=0 \quad \text { o.e. }$	B1ft M1A1ft A1
(d)	$y=0, \quad$ or $\quad \underline{x=7} \quad x=7$ or $-\frac{c}{a}$	M1A1ft (2)
(e)	$\begin{aligned} & A B^{2}=(7-1)^{2}+(4-0)^{2} \\ & A B=\sqrt{52} \text { or } 2 \sqrt{13} \end{aligned}$	M1 A1 (2) 11
	Notes	
(b)	M1 for an attempt to rearrange to $y=\ldots$ A1 for clear statement that gradient is 1.5, can be $m=1.5$ o.e.	
(c)	B1ft for using the perpendicular gradient rule correctly on their "1.5" M1 for an attempt at finding the equation of the line through A using their gradient. Allow a sign slip $1^{\text {st }}$ A1ft for a correct equation of the line follow through their changed gradient $2^{\text {nd }}$ A1 as printed or equivalent with integer coefficients - allow $3 y+2 x=14 \text { or } 3 y=14-2 x$	
(d)	M1 for use of $y=0$ to find $x=\ldots$ in their equation A1ft for $x=7$ or $-\frac{c}{a}$	
(e)	M1 for an attempt to find $A B$ or $A B^{2}$ A1 for any correct surd form- need not be simplified	

Question number	Scheme	Marks
47	(a) Putting the equation in the form $y=m x(+c)$ and attempting to extract the m or $m x$ (not the c), or finding 2 points on the line and using the correct gradient formula. $\text { Gradient }=-\frac{3}{5} \quad \text { (or equivalent) }$	M1 A1 (2)
	(b) Gradient of perp. line $=\frac{-1}{(-3 / 5) "} \quad$ (Using $-\frac{1}{m}$ with the m from part (a)) $y-1="\left(\frac{5}{3}\right) "(x-3)$ $y=\frac{5}{3} x-4$ (Must be in this form... allow $y=\frac{5}{3} x-\frac{12}{3}$ but not $y=\frac{5 x-12}{3}$) This A mark is dependent upon both M marks.	M1 M1 A1 [5]
	(a) Condone sign errors and ignore the c for the M mark, so... both marks can be scored even if c is wrong (e.g. $c=-\frac{2}{5}$) or omitted. Answer only: $-\frac{3}{5}$ scores M1 A1. Any other answer only scores M0 A0. $y=-\frac{3}{5} x+\frac{2}{5}$ with no further progress scores M0 A0 (m or $m x$ not extracted). (b) 2nd M: For the equation, in any form, of a straight line through $(3,1)$ with any numerical gradient (except 0 or ∞). (Alternative is to use $(3,1)$ in $y=m x+c$ to find a value for c, in which case $y=\frac{5}{3} x+c$ leading to $c=-4$ is sufficient for the A1). (See general principles for straight line equations at the end of the scheme).	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\(A B: m=\frac{2-7}{8-6},\left(=-\frac{5}{2}\right)\) \\
Using \(m_{1} m_{2}=-1: m_{2}=\frac{2}{5}\)
\[
y-7=\frac{2}{5}(x-6), \quad 2 x-5 y+23=0
\] \\
(o.e. with integer coefficients) \\
Using \(x=0\) in the answer to (a), \(y=\frac{23}{5}\) or 4.6 \\
Area of triangle \(=\frac{1}{2} \times 8 \times \frac{23}{5}=\frac{92}{5}\) (o.e) e.g. \(\left(18 \frac{2}{5}, 18.4, \frac{184}{10}\right)\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1, A1 (4) \\
M1, A1ft (2) \\
M1 A1 \\
(2) \\
[8]
\end{tabular} \\
\hline (a)
(b)

(c) \& | B1 for an expression for the gradient of $A B$. Does not need the $=-2.5$ |
| :--- |
| $1^{\text {st }} \mathrm{M} 1$ for use of the perpendicular gradient rule. Follow through their m |
| $2^{\text {nd }}$ M1 for the use of $(6,7)$ and their changed gradient to form an equation for l. |
| Can be awarded for $\frac{y-7}{x-6}=\frac{2}{5}$ o.e. |
| Alternative is to use $(6,7)$ in $y=m x+c$ to find a value for c. Score when |
| $c=\ldots$ is reached . |
| A1 for a correct equation in the required form and must have " $=0$ " and integer coefficients |
| M1 for using $x=0$ in their answer to part (a) e.g. $-5 y+23=0$ |
| A1ft for $y=\frac{23}{5}$ provided that $x=0$ clearly seen or $C(0,4.6)$. Follow through their equation in (a) |
| If $x=0, y=4.6$ are clearly seen but C is given as $(4.6,0)$ apply ISW and award the mark. |
| This A mark requires a simplified fraction or an exact decimal |
| Accept their 4.6 marked on diagram next to C for M1A1ft |
| M1 for $\frac{1}{2} \times 8 \times y_{C}$ so can follow through their y coordinate of C. |
| A1 for 18.4 (o.e.) but their y coordinate of C must be positive |
| Use of 2 triangles or trapezium and triangle |
| Award M1 when an expression for area of $O C B$ only is seen |
| Determinant approach |
| Award M1 when an expression containing $\frac{1}{2} \times 8 \times y_{C}$ is seen | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
49 (a) (b) (c) (d)	$y-5=-\frac{1}{2}(x-2) \quad$ or equivalent, e.g. $\frac{y-5}{x-2}=-\frac{1}{2}, \quad y=-\frac{1}{2} x+6$ $x=-2 \Rightarrow y=-\frac{1}{2}(-2)+6=7$ (therefore B lies on the line) (or equivalent verification methods) $\left(A B^{2}=\right)(2--2)^{2}+(7-5)^{2}, \quad=16+4=20, \quad A B=\sqrt{20}=2 \sqrt{5}$ C is $\left(p,-\frac{1}{2} p+6\right)$, so $\quad A C^{2}=(p-2)^{2}+\left(-\frac{1}{2} p+6-5\right)^{2}$ Therefore $\quad 25=p^{2}-4 p+4+\frac{1}{4} p^{2}-p+1$ $25=1.25 p^{2}-5 p+5$ or $100=5 p^{2}-20 p+20$ (or better, RHS simplified to 3 terms) Leading to: $\quad 0=p^{2}-4 p-16$	M1A1, Alcao (3) B1 (1) M1, A1, A1 (3) M1 M1 A1 Alcso (4) [11]
(a) (b) (c) (d)	M1 A1 The version in the scheme above can be written down directly (for 2 marks), and M1 A0 can be allowed if there is just one slip (sign or number). If the 5 and 2 are the wrong way round the M mark can still be given if a correct formula (e.g. $y-y_{1}=m\left(x-x_{1}\right)$) is seen, otherwise M0. If $(2,5)$ is substituted into $y=m x+c$ to find c, the M mark is for attempting this and the $1^{\text {st }} \mathrm{A}$ mark is for $c=6$. Correct answer without working or from a sketch scores full marks. A conclusion/comment is not required, except when the method used is to establish that the line through $(-2,7)$ with gradient $-\frac{1}{2}$ has the same eqn. as found in part (a), or to establish that the line through $(-2,7)$ and $(2,5)$ has gradient $-\frac{1}{2}$. In these cases a comment 'same equation' or 'same gradient' or 'therefore on same line' is sufficient. M1 for attempting $A B^{2}$ or $A B$. Allow one slip (sign or number) inside a bracket, i.e. do not allow $(2--2)^{2}-(7-5)^{2}$. $1^{\text {st }} \mathrm{A} 1$ for 20 (condone bracketing slips such as $-2^{2}=4$) $2^{\text {nd }} \mathrm{A} 1$ for $2 \sqrt{5}$ or $k=2$ (Ignore \pm here). $1^{\text {st }} \mathrm{M} 1$ for $(p-2)^{2}+(\text { linear function of } p)^{2}$. The linear function may be unsimplified but must be equivalent to $a p+b, a \neq 0, b \neq 0$. $2^{\text {nd }} \mathrm{M} 1$ (dependent on $1^{\text {st }} \mathrm{M}$) for forming an equation in p (using 25 or 5) and attempting (perhaps not very well) to multiply out both brackets. $1^{\text {st }}$ A1 for collecting like p terms and having a correct expression. $2^{\text {nd }} \mathrm{A} 1$ for correct work leading to printed answer. Alternative, using the result: Solve the quadratic $(p=2 \pm 2 \sqrt{5})$ and use one or both of the two solutions to find the length of $A C^{2}$ or $C_{1} C_{2}^{2}$: e.g. $A C^{2}=(2+2 \sqrt{5}-2)^{2}+(5-\sqrt{5}-5)^{2}$ scores $1^{\text {st }} \mathrm{M} 1$, and $1^{\text {st }} \mathrm{A} 1$ if fully correct. Finding the length of $A C$ or $A C^{2}$ for both values of p, or finding $C_{1} C_{2}$ with some evidence of halving (or intending to halve) scores the $2^{\text {nd }} \mathrm{M} 1$. Getting $A C=5$ for both values of p, or showing $\frac{1}{2} C_{1} C_{2}=5$ scores the $2^{\text {nd }} \mathrm{A} 1$ (cso).	

Question number	Scheme	Marks
50. (a) (b) (c) (d)	$\begin{aligned} Q R & =\sqrt{(7-1)^{2}+(0-3)^{2}} \\ & =\sqrt{36+9} \text { or } \sqrt{45} \\ & =3 \sqrt{5} \text { or } a=3 \end{aligned}$ (condone \pm) ($\pm 3 \sqrt{5}$ etc is A0) Gradient of $Q R\left(\right.$ or $\left.l_{1}\right)=\frac{3-0}{1-7}$ or $\frac{3}{-6},=-\frac{1}{2}$ Gradient of l_{2} is $-\frac{1}{-\frac{1}{2}}$ or 2 Equation for l_{2} is: $\quad y-3=2(x-1)$ or $\frac{y-3}{x-1}=2 \quad$ [or $\left.y=2 x+1\right]$ P is $(0,1)$ (allow " $x=0, y=1$ " but it must be clearly identifiable as P) $\begin{aligned} & P Q=\sqrt{\left(1-x_{P}\right)^{2}+\left(3-y_{P}\right)^{2}} \\ & P Q=\sqrt{1^{2}+2^{2}}=\sqrt{5} \end{aligned}$ Determinant Method e.g(0+0+7) - $(1+21+0)$ $\text { = - } 15 \text { (о.е.) }$ Area $=\frac{1}{2}\|-15\|,=7.5$	M1 A1 A1 (3) M1, A1 M1 M1 A1ft (5) B1 (1) M1 A1 dM1, A1 (4)
(a) (b) (d)	Rules for quoting formula: For an M mark, if a correct formula is quoted and some correct then M1 can be awarded, if no values are correct then M0. If no correct formula is seen th scored for a fully correct expression. M1 for attempting $Q R$ or $Q R^{2}$. May be implied by $6^{2}+3^{2}$ $1^{\text {st }} \mathrm{A} 1$ for as printed or better. Must have square root. Condone \pm $1^{\text {st }} \mathrm{M} 1$ for attempting gradient of $Q R$ $1^{\text {st }} \mathrm{A} 1$ for -0.5 or $-\frac{1}{2}$, can be implied by gradient of $l_{2}=2$ $2^{\text {nd }} \mathrm{M} 1$ for an attempt to use the perpendicular rule on their gradient of $Q R$. $3^{\text {rd }}$ M1 for attempting equation of a line using Q with their changed gradient. $2^{\text {nd }} \mathrm{A} 1 \mathrm{ft} \quad$ requires all 3 Ms but can ft their gradient of $Q R$. $1^{\text {st }} \mathrm{M} 1$ for attempting $P Q$ or $P Q^{2}$ follow through their coordinates of P $1^{\text {st }} \mathrm{A} 1$ for $P Q$ as one of the given forms. $2^{\text {nd }} \mathrm{dM} 1$ for correct attempt at area of the triangle. Follow through their value of a This M mark is dependent upon the first M mark $2^{\text {nd }} \mathrm{A} 1$ for 7.5 or some exact equivalent. Depends on both Ms. Some working must	ct substitutions seen hen M1 can only be $y=2 x+1$ with no working. Send to review. a and their $P Q$. st be seen.
ALT	Use $Q S$ where S is $(1,0)$ $1^{\text {st }} \mathrm{M} 1$ for attempting area of $O P Q S$ and $Q S R$ and $O P R$. Need all 3. $1^{\text {st }} \mathrm{A} 1$ for $O P Q S=\frac{1}{2}(1+3) \times 1=2, Q S R=9, O P R=\frac{7}{2}$ $2^{\text {nd }} \mathrm{dM} 1$ for $O P Q S+Q S R-O P R=\ldots$ Follow through their values. $2^{\text {nd }}$ A1 for 7.5 Determin M1 for attemp value in each b A1 if correct M1 for corre A1 for 7.5	nant Method pt -at least one bracket correct . $t(\pm 15)$ ct area formula
MR	Misreading x-axis for y-axis for P. Do NOT use MR rule as this oversimplifies the They can only get M marks in (d) if they use $P Q$ and $Q R$.	question.

\begin{tabular}{|c|c|c|}
\hline Question number \& Scheme \& Marks

\hline $\mathbf{5 2}$
(a)
(b)
(c)

(d) \& \begin{tabular}{l}
You may mark (a) and (b) together $x^{2}+y^{2}-2 x+14 y=0$

Obtain LHS as $\underline{(x \pm 1)^{2}}+(y \pm 7)^{2}=\ldots$

Centre is $(1,-7)$.

Uses $r^{2}=a^{2}+b^{2}$ or $r=\sqrt{a^{2}+b^{2}}$ where their centre was at $(\pm a, \pm b)$ $r=\sqrt{ } 50$ or $5 \sqrt{ } 2$

Substitute $x=0$ in either form of equation of circle and solve resulting quadratic to give $y=$
$$
y^{2}+14 y=0 \text { so } y=0 \text { and }-14 \text { or } \quad(y \pm 7)^{2}-49=0 \text { so } y=0 \text { and }-14
$$

Gradient of radius joining centre to $(2,0)$ is $\frac{"-7 "-0}{" 1 "-2}(=7)$

Gradient of tangent is $\frac{-1}{m}\left(=-\frac{1}{7}\right)$

So equation is $y-0=-\frac{1}{7}(x-2)$ and so $x+7 y-2=0$

 \&

M1 \&

A1 \&

M1 \& (2)

A1 \& (2)

M1 \&

A1 \&

\& \&

M1 \&

M1 \&

M1, A1 \&

\multicolumn{2}{r}{ (10 marks) }
\end{tabular}

\hline \& Alternative Methods which may be seen \&

\hline | (a) |
| :--- |
| (b) |
| (d) | \& | Method 2: Comparing with $x^{2}+y^{2}+2 g x+2 f y+c=0$ to write down centre $(-g,-f)$ directly. Condone sign errors for this M mark. Centre is $(1,-7)$. |
| :--- |
| Method 2: Using $\sqrt{g^{2}+f^{2}-c}$. So $r=\sqrt{ } 50$ or $5 \sqrt{ } 2$ |
| Method 3: Using Implicit Differentiation $\begin{aligned} & 2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-2+14 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \text { or } 2(x-1)+2(y+7) \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots\left(\frac{2-2 x}{14+2 y}=\frac{-2}{14}\right) \end{aligned}$ |
| So equation is $y-0=-\frac{1}{7}(x-2)$ and so $x+7 y-2=0$ |
| Method 4: Making y the subject of the formula and differentiating $\begin{aligned} & y=-7 \pm \sqrt{\left\{50-(x-1)^{2}\right\}} \text { so } \frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{1}{2} \times-2(x-1)\left\{50-(x-1)^{2}\right\}^{-\frac{1}{2}} \\ & \text { At } x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mp \frac{1}{7} \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| (2) |
| M1 A1 |
| (2) |
| M1 |
| M1 |
| M1, A1 |
| (4) |
| M1 |
| M1 |
| (contd next page) |

\hline
\end{tabular}

	So equation is $y-0=\mp \frac{1}{7}(x-2)$	M1
Chooses $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{7}$ and so $x+7 y-2=0$	A1	
Notes		

M1: as in scheme and can be implied by $(\pm 1, \pm 7)$ even if this follows some poor working.
A1: $(1,-7)$
(b)

M1: Uses $r^{2}=a^{2}+b^{2}$ or $r=\sqrt{a^{2}+b^{2}}$ where their centre was at $(\pm a, \pm b)$
A1: $\sqrt{ } 50$ or $5 \sqrt{ } 2 \quad$ not 50 only
Special case: if centre is given as $(-1,-7)$ or $(1,7)$ or $(-1,7)$ or coordinates given wrong way roundallow M1A1 for $r=5 \sqrt{ } 2$ worked correctly. $r^{2}=" 1 "+49 "$
If they get $r=5 \sqrt{ } 2$ after wrong statements such as $r^{2}="-1 "+"-49$ " then this is M0A0 $r=5 \sqrt{ } 2$ with no working earns M1A1 as there is no wrong work.
(c)

M1: As in the scheme - allow for just one value of y
A1: Accept $(0,0),(0,-14)$ or $y=0, y=-14$ or just 0 and -14
(d) Method 1:

M1: Correct method for gradient - if no method shown answer must be correct to earn this mark
If x and y coordinates are confused and fraction is upside down this is M0 even if the formula is quoted as there is no evidence of understanding.
M1: Correct negative reciprocal of their gradient
M1: Line equation through $(2,0)$ with changed gradient so if they use $y=m x+c$ they need to use $(2,0)$ to find c
A1: For any multiple of the answer in the scheme. (The answer must be an equation so if " $=0$ " is missing this is A0)
(d) Method 3:

M1: Correct implicit differentiation (no errors)
M1: Rearranges their differentiated expression and substitutes $x=2, y=0$ to obtain gradient - allow
slips. (It should be $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2-2 x}{14+2 y}=\left(\frac{-2}{14}\right)$)
If there is no y term this mark may be earned for substitution of $x=2$ as $y=0$ is not needed
M1: Line equation through $(2,0)$ with their obtained gradient so if they use $y=m x+c$ they need to use $(2,0)$ to find c
A1: For any multiple of the answer in the scheme (The answer must be an equation so if " $=0$ " is missing this is A0)
Method 4:
M1: Correct rearrangement and differentiation (no errors)
M1: Substitutes $x=2$ to obtain gradient - allow minus and plus.
M1: Line equation through $(2,0)$ with their obtained gradient so if they use $y=m x+c$ they need to use $(2,0)$ to find c
A1: For any multiple of the answer in the scheme (The answer must be an equation so if " $=0$ " is missing this is awarded A0)

	Notes
(a)	Parts (a) and (b) can be marked together M1 as in scheme and can be implied by ($\pm 5, \pm 3$) May be awarded for writing LHS as
	or by comparing with to write down centre $(-g,-f)$ directly A1: $(5,-3)$. This correct answer implies M1A1
(b)	M1 for a full correct method leading to $r=\ldots$, or $r^{2}=$ with their 5 , their -3 , their 25 and their 9 and their " -30 ". Completion of square method errors result in M0 here. Usually $r=$ 4 or $r=16$ imply M0A0 A1 2 cao Do not accept $r= \pm 2$ unless it is followed by $(r=) 2$ The correct answer with no wrong work seen implies M1A1
	Special case: if centre is given as $(-5,-3)$ or $(5,3)$ or $(-5,3)$ allow M1A1 for $r=2$ worked correctly. i.e. $r^{2}=" 25 "+$ " $9 "-30$
(c)	M1: Way 1: Use $x=4$ in a circle equation (may have wrong centre and/or radius) to obtain an equation in y only dM1: (needs first method mark) Solve their quadratic in y or Way 2. Uses their h and their y coordinate correctly A1: cao

Question Number	Scheme	Marks
55 (a)	Way 1 Way 2 $(x \mathrm{~m} 2)^{2}+(y \pm 1)^{2}=k, k>0$ $x^{2}+y^{2} \mathrm{~m} 4 x \pm 2 y+c=0$ Attempts to use $r^{2}=(4-2)^{2}+(-5+1)^{2}$ $4^{2}+(-5)^{2}-4 \times 4+2 \times-5+c=0$ Obtains $(x-2)^{2}+(y+1)^{2}=20$ $x^{2}+y^{2}-4 x+2 y-15=0$ N.B. Special case: $(x-2)^{2}-(y+1)^{2}=20$ is not a circle equation but earns M0M1A0	M1 M1 A1 (3)
(b) Way 1	Gradient of radius from centre to $(4,-5)=-2 \quad$ (must be correct) $\text { Tangent gradient }=-\frac{1}{\text { their numerical gradient of radius }}$ Equation of tangent is $(y+5)='^{\prime}(x-4)$ So equation is $x-2 y-14=0$ (or $2 y-x+14=0$ or other integer multiples of this answer)	B1 M1 M1 A1
b)Way 2	Quotes $x x^{\prime}+y y^{\prime}-2\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)-15=0$ and substitutes $(4,-5)$ $4 x-5 y-2(x+4)+(y-5)-15=0$ so $2 x-4 y-28=0($ or alternatives as in Way 1$)$	\qquad B1 M1,M1A1 (4)
b)Way 3	Use differentiation to find expression for gradient of circle Either $2(x-2)+2(y+1) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$ or states $y=-1-\sqrt{20-(x-2)^{2}}$ so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x-2)}{\sqrt{20-(x-2)^{2}}}$ Substitute $x=4, y=-5$ after valid differentiation to give gradient $=$ Then as Way 1 above $(y+5)='^{\prime}(x-4)$ so $x-2 y-14=0$	B1 M1 M1 A1 (4)

Notes

(a) M1: Uses centre to write down equation of circle in one of these forms. There may be sign slips as shown.

M1: Attempts distance between two points to establish r^{2} (independent of first M1)- allow one sign slip only using distance formula with -5 or -1 , usually $(-5-1)$ in $2^{\text {nd }}$ bracket. Must not identify this distance as diameter.
This mark may alternatively (e.g. way 2) be given for substituting ($4,-5$) into a correct circle equation with one unknown Can be awarded for $r=\sqrt{20}$ or for $r^{2}=20$ stated or implied but not for $r^{2}=\sqrt{20}$ or $r=20$ or $r=\sqrt{5}$

A1: Either of the answers printed or correct equivalent e.g. $(x-2)^{2}+(y+1)^{2}=(2 \sqrt{5})^{2}$ is A1 but $2 \sqrt{5}^{2}$ (no bracket) is A0 unless there is recovery
Also $(x-2)^{2}+(y-(-1))^{2}=(2 \sqrt{5})^{2}$ may be awarded M1M1A1as a correct equivalent.
N.B. $(x-2)^{2}+(y+1)^{2}=40$ commonly arises from one sign error evaluating r and earns M1M1A0
(b) Way 1:

B1: Must be correct answer -2 if evaluated (otherwise may be implied by the following work)
M1: Uses negative reciprocal of their gradient
M1: Uses $y-y_{1}=m\left(x-x_{1}\right)$ with $(4,-5)$ and their changed gradient or uses $y=m x+c$ and $(4,-5)$ with their changed gradient (not gradient of radius) to find c
A1: answers in scheme or multiples of these answers (must have " $=0$ "). NB Allow $1 x-2 y-14=0$
N.B. $(y+5)={ }^{\prime} \frac{1}{2}(x-4)$ following gradient of is $1 / 2$ after errors leads to $x-2 y-14=0$ but is worth B0M0M0A0

Way 2: Alternative method (b) is rare.
Way 3: Some may use implicit differentiation to differentiate- others may attempt to make y the subject and use chain rule
B1: the differentiation must be accurate and the algebra accurate too. Need to take $(-)$ root not $(+)$ root in the alternative
M1: Substitutes into their gradient function but must follow valid accurate differentiation
M1: Must use "their" tangent gradient and $y+5=m(x-4)$ but allow over simplified attempts at differentiation for this mark.
A1: As in Way 1

Question Number	Scheme		Marks
	Mark (a) and (b) together		
56. (a)	$O Q^{2}=(6 \sqrt{5})^{2}+4^{2} \text { or } O Q=\sqrt{(6 \sqrt{5})^{2}+4^{2}} \quad\{=14\}$	Uses the addition form of Pythagoras on $6 \sqrt{5}$ and 4. Condone missing brackets on $(6 \sqrt{5})^{2}$ (Working or 14 may be seen on the diagram)	M1
	$y_{Q}=\sqrt{14^{2}-11^{2}}$	$y_{Q}=\sqrt{(\text { their } O Q)^{2}-11^{2}}$ Must include $\sqrt{ }$ and is dependent on the first M1 and requires OQ > 11	dM1
	$=\sqrt{75}$ or $5 \sqrt{3}$	$\sqrt{75}$ or $5 \sqrt{3}$	A1cso
			[3]
(b)	$(x-11)^{2}+(y-5 \sqrt{3})^{2}=16$	M1: $(x \pm 11)^{2}+(y \pm \text { their } k)^{2}=4^{2}$ Equation must be of this form and must use x and y not other letters. k could be their last answer to part (a). Allow their $k \neq 0$ or just the letter k.	
		A1: $(x-11)^{2}+(y-5 \sqrt{3})^{2}=16$ or $(x-11)^{2}+(y-5 \sqrt{3})^{2}=4^{2}$ NB $5 \sqrt{3}$ must come from correct work in (a) and allow awrt 8.66	
	Allow in expanded form for the final A1 e.g. $x^{2}-22 x+121+y^{2}-10 \sqrt{3} y+75=16$		
			[2]
			Total 5
	Watch out for:		
	(a) $\begin{gathered} O Q=\sqrt{(6 \sqrt{5})^{2}+4^{2}}=\sqrt{46} \mathrm{M} 1 \\ y_{Q}=\sqrt{46-11^{2}} \mathrm{M} 0(\mathrm{OQ}<11) \\ y_{Q}=\sqrt{75} \mathrm{~A} 0 \end{gathered}$ (b) $(x-11)^{2}+(y-5 \sqrt{3})^{2}=16$ M1A0		

Question Number	Scheme		Marks
57(a)	$A\left(\frac{-9+15}{2}, \frac{8-10}{2}\right)=A(3,-1)$	M1: A correct attempt to find the midpoint between P and Q. Can be implied by one of x or y-coordinates correctly evaluated.	M1A1
		A1: $(3,-1)$	
			[2]
(b)	$\begin{aligned} & (-9-3)^{2}+(8+1)^{2} \text { or } \sqrt{(-9-3)^{2}+(8+1)^{2}} \\ & \text { or }(15-3)^{2}+(-10+1)^{2} \text { or } \sqrt{(15-3)^{2}+(-10+1)^{2}} \end{aligned}$ Uses Pythagoras correctly in order to find the radius. Must clearly be identified as the radius and may be implied by their circle equation. Or $(15+9)^{2}+(-10-8)^{2} \text { or } \sqrt{(15+9)^{2}+(-10-8)^{2}}$ Uses Pythagoras correctly in order to find the diameter. Must clearly be identified as the diameter and may be implied by their circle equation. This mark can be implied by just 30 clearly seen as the diameter or 15 clearly seen as the radius (may be seen or implied in their circle equation) Allow this mark if there is a correct statement involving the radius or the diameter but must be seen in (b)		M1
	$(x-3)^{2}+(y+1)^{2}=225\left(\right.$ or $\left.(15)^{2}\right)$	$(x \pm \alpha)^{2}+(y \pm \beta)^{2}=k^{2}$ where $A(\alpha, \beta)$ and k is their radius.	M1
	$(x-3)^{2}+(y+1)^{2}=225$	Allow $(x-3)^{2}+(y+1)^{2}=15^{2}$	A1
	Accept correct answer only		
			[3]
	Alternative using $x^{2}+2 a x+y^{2}+2 b y+c=0$		
	$\begin{gathered} \text { Uses } A(\pm \alpha, \pm \beta) \text { and } x^{2}+2 a x+y^{2}+2 b y+c=0 \\ \text { e.g. } x^{2}+2(-3) x+y^{2}+2(1) y+c=0 \end{gathered}$		M1
	Uses P or Q and $x^{2}+2 a x+y^{2}+2 b y+c=0$ e.g. $(-9)^{2}+2(-3)(-9)+(8)^{2}+2(1)(8)+c=0 \Rightarrow c=-215$		M1
	$x^{2}-6 x+y^{2}+2 y-215=0$		A1
(c)	Distance $=\sqrt{15^{2}-10^{2}}$	$=\sqrt{(\text { their } r)^{2}-10^{2}}$ or a correct method for the distance e.g. their $r \times \cos \left[\sin ^{-1}\left(\frac{10}{\text { their } r}\right)\right]$	M1
	$\{=\sqrt{125}\}=5 \sqrt{5}$	$5 \sqrt{5}$	A1
			[2]

Question Number	Scheme		Marks
(d)	$\begin{aligned} & \sin (A \hat{R} Q)=\frac{20}{30} \text { or } \\ & A \widehat{R} Q=90-\cos ^{-1}\left(\frac{10}{15}\right) \end{aligned}$	$\begin{aligned} & \sin (A \hat{R} Q)=\frac{20}{(2 \times \text { their } r)} \text { or } \frac{10}{\text { their } r} \\ & \text { or } A \hat{R} Q=90-\cos ^{-1}\left(\frac{10}{\text { their } r}\right) \\ & \text { or } A \hat{R} Q=\cos ^{-1}\left(\frac{\text { Part }(c)}{\text { their } r}\right) \\ & \text { or } A \hat{R} Q=90-\sin ^{-1}\left(\frac{\text { Part }(c)}{\text { their } r}\right) \end{aligned}$ $\text { or } 20^{2}=15^{2}+15^{2}-2 \times 15 \times 15 \cos (2 A R Q)$ or $15^{2}=15^{2}+(10 \sqrt{5})^{2}-2 \times 15 \times 10 \sqrt{5} \cos (A R Q)$ A fully correct method to find $A \hat{R} Q$, where their $r>10$. Must be a correct statement involving angle $A R Q$	M1
	$A \widehat{R} Q=41.8103 .$.	awrt 41.8	A1
			[2]
			Total 9

Question Number	Scheme	Marks
58. (a)	Equation of form $(x \pm 5)^{2}+(y \pm 9)^{2}=k, \quad k>0$ Equation of form $(x-a)^{2}+(y-b)^{2}=5^{2}$, with values for a and b $(x+5)^{2}+(y-9)^{2}=25=5^{2}$ $P(8,-7) . \text { Let centre of circle }=X(-5,9)$ $P X^{2}=(8-"-5 ")^{2}+(-7-" 9 ")^{2} \text { or } P X=\sqrt{(8--5)^{2}+(-7-9)^{2}}$ $(P X=\sqrt{425}$ or $5 \sqrt{17}) \quad P T^{2}=(P X)^{2}-5^{2}$ with numerical $P X$ $P T\{=\sqrt{400}\}=20 \quad \text { (allow 20.0) }$	
Alternative 2 for (a)	Equation of the form $x^{2}+y^{2} \pm 10 x \pm 18 y+c=0$ Uses $a^{2}+b^{2}-5^{2}=c$ with their a and b or substitutes $(0,9)$ giving $+9^{2} \pm 2 b \times 9+c=0$ $x^{2}+y^{2}+10 x-18 y+81=0$	M1 M1 A1 (3)
Alternative 2 for (b)	An attempt to find the point T may result in pages of algebra, but solution needs to reach $(-8,5)$ or $\left(\frac{-8}{17}, 11 \frac{2}{17}\right)$ to get first M1 (even if gradient is found first) M1: Use either of the correct points with $P(8,-7)$ and distance between two points formula A1: 20	M1 dM1 A1cso (3)
Alternative 3 for (b)	Substitutes (8, -7) into circle equation so $P T^{2}=8^{2}+(-7)^{2}+10 \times 8-18 \times(-7)+81$ Square roots to give $P T\{=\sqrt{400}\}=20$	M1 dM1A1 (3)
	Notes for Question 58	
(a) (b)	The three marks in (a) each require a circle equation - (see special cases which are not circles) M1: Uses coordinates of centre to obtain LHS of circle equation (RHS must be r^{2} or $k>0$ or a positive value) M1: Uses $r=5$ to obtain RHS of circle equation as 25 or 5^{2} A1: correct circle equation in any equivalent form Special cases $(x \pm 5)^{2}+(x \pm 9)^{2}=\left(5^{2}\right)$ is not a circle equation so M0M0A0 Also $(x \pm 5)^{2}+(y-9)=\left(5^{2}\right)$ And $(x \pm 5)^{2}-(y \pm 9)^{2}=\left(5^{2}\right)$ are not circles and gain M0M0A0 But $(x-0)^{2}+(y-9)^{2}=5^{2}$ gains M0M1A0 M1: Attempts to find distance from their centre of circle to P (or square of this value). If this is called $P T$ and given as answer this is M0. Solution may use letter other than X, as centre was not labelled in the question. N.B. Distance from $(0,9)$ to $(8,-7)$ is incorrect method and is M0, followed by M0A0. dM1: Applies the subtraction form of Pythagoras to find $P T$ or $P T^{2}$ (depends on previous method mark for distance from centre to \boldsymbol{P}) or uses appropriate complete method involving trigonometry A1: 20 cso	

Question number	Scheme	Marks
$\mathbf{6 1}$	The equation of the circle is $(x+1)^{2}+(y-7)^{2}=\left(r^{2}\right)$ The radius of the circle is $\sqrt{(-1)^{2}+7^{2}}=\sqrt{50}$ or $5 \sqrt{2}$ or $r^{2}=50$ So $(x+1)^{2}+(y-7)^{2}=50$ or equivalent	M1 A1
Notes	M1 is for this expression on left hand side- allow errors in sign of 1 and 7. A1 correct signs (just LHS $)$	
M1 is for Pythagoras or substitution into equation of circle to give r or r^{2} Giving this value as diameter is M0 A1, cao for cartesian equation with numerical values but allow $(\sqrt{ } 50)^{2}$ or $(5 \sqrt{2})^{2}$ or any exact equivalent A correct answer implies a correct method - so answer given with no working earns all four marks for this question.		
Alternative method	Equation of circle is $x^{2}+y^{2} \pm 2 x \pm 14 y+c=0$ Equation of circle is $x^{2}+y^{2}+2 x-14 y+c=0$ Uses $(0,0)$ to give $c=0$, or finds $r=\sqrt{(-1)^{2}+7^{2}}=\sqrt{50}$ or $5 \sqrt{2}$ or $r^{2}=50$ So $x^{2}+y^{2}+2 x-14 y=0$ or equivalent	M1

Question Number	Scheme		Marks
$62 .$ (a)	$\begin{aligned} & x^{2}+y^{2}+4 x-2 y-11=0 \\ & \left\{\underline{(x+2)^{2}-4}+\underline{\left.\underline{(y-1)^{2}-1}-11=0\right\}}\right. \end{aligned}$ Centre is $(-2,1)$.	$(\pm 2, \pm 1)$, see notes. $(-2,1)$	M1 A1 cao [2]
(b)	$\begin{aligned} & (x+2)^{2}+(y-1)^{2}=11+1+4 \\ & \text { So } r=\sqrt{11+1+4} \Rightarrow r=4 \end{aligned}$	$\begin{array}{r} r=\sqrt{11 \pm " 1 " \pm " 4 "} \\ 4 \text { or } \sqrt{16} \quad(\text { Award A0 for } \pm 4) \end{array}$	M1 A1 [2]
(c)	When $x=0, y^{2}-2 y-11=0$ $y=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-11)}}{2(1)}\left\{=\frac{2 \pm \sqrt{48}}{2}\right\}$ So, $y=1 \pm 2 \sqrt{3}$	Putting $x=0$ in C or their C. $y^{2}-2 y-11=0$ or $(y-1)^{2}=12$, etc Attempt to use formula or a method of completing the square in order to find $\begin{gathered} y=\ldots \\ 1 \pm 2 \sqrt{3} \end{gathered}$	M1 A1 aef M1 A1 cao cso [4]

Note: Please mark parts (a) and (b) together. Answers only in (a) and/or (b) get full marks.

Note in part (a) the marks are now M1A1 and not B1B1 as on ePEN.

M1: for $(\pm 2, \pm 1)$. Otherwise, M1 for an attempt to complete the square eg. $\underline{(x \pm 2)^{2} \pm \alpha, \alpha \neq 0}$ or $\underline{\underline{(y \pm 1)^{2} \pm \beta}}, \beta \neq 0$. M1A1: Correct answer of $(-2,1)$ stated from any working gets M1A1.
(b) M1: to find the radius using $11, " 1 "$ and "4", ie. $r=\sqrt{11 \pm " 1 " \pm " 4 " . ~ B y ~ a p p l y i n g ~ t h i s ~ m e t h o d ~ c a n d i d a t e s ~}$ will usually achieve $\sqrt{16}, \sqrt{6}, \sqrt{8}$ or $\sqrt{14}$ and not $16,6,8$ or 14.
Note: $(x+2)^{2}+(y-1)^{2}=-11-5=-16 \Rightarrow r=\sqrt{16}=4$ should be awarded M0A0.
Alternative: M1 in part (a): For comparing with $x^{2}+y^{2}+2 g x+2 f y+c=0$ to write down centre $(-g,-f)$ directly. Condone sign errors for this M mark. M1 in part (b): For using $r=\sqrt{g^{2}+f^{2}-c}$. Condone sign errors for this method mark.
$(x+2)^{2}+(y-1)^{2}=16 \Rightarrow r=8$ scores M0A0, but $r=\sqrt{16}=8$ scores M1A1 isw.
(c) $\quad 1^{\text {st }} \mathrm{M} 1:$ Putting $x=0$ in either $x^{2}+y^{2}+4 x-2 y-11=0$ or their circle equation usually given in part (a) or part (b). $\quad 1^{\text {st }} \mathrm{A} 1$ for a correct equation in y in any form which can be implied by later working.
$2^{\text {nd }} \mathrm{M} 1$: See rules for using the formula. Or completing the square on a 3TQ to give $y=a \pm \sqrt{b}$, where \sqrt{b} is a surd, $b \neq$ their 11 and $b>0$. This mark should not be given for an attempt to factorise. $2^{\text {nd }}$ A1: Need exact pair in simplified surd form of $\{y=\} 1 \pm 2 \sqrt{3}$. This mark is also cso.
Do not need to see $(0,1+2 \sqrt{3})$ and $(0,1-2 \sqrt{3})$. Allow $2^{\text {nd }}$ A1 for bod $(1+2 \sqrt{3}, 0)$ and $(1-2 \sqrt{3}, 0)$. Any incorrect working in (c) gets penalised the final accuracy mark. So, beware: incorrect $(x-2)^{2}+(y-1)^{2}=16$ leading to $y^{2}-2 y-11=0$ and then $y=1 \pm 2 \sqrt{3}$ scores M1A1M1A0.
Special Case for setting $y=0$: Award SC: M0A0M1A0 for an attempt at applying the formula

$$
x=\frac{-4 \pm \sqrt{(-4)^{2}-4(1)(-11)}}{2(1)}\left\{=\frac{-4 \pm \sqrt{60}}{2}=-2 \pm \sqrt{15}\right\}
$$

Award SC: M0A0M1A0 for completing the square to their equation in x which will usually be $x^{2}+4 x-11=0$ to give $a \pm \sqrt{b}$, where \sqrt{b} is a surd, $b \neq$ their 11 and $b>0$.
Special Case: For a candidate not using \pm but achieving one of the correct answers then award
SC: M1A1 M1A0 for one of either $y=1+2 \sqrt{3}$ or $y=1-2 \sqrt{3}$ or $y=1+\sqrt{12}$ or $y=1-\sqrt{12}$.

Question Number	Scheme	Marks
63. $\begin{array}{rr} \\ & \text { (a) } \\ & \text { (b) }\end{array}$	$\begin{array}{lr} C\left(\frac{-2+8}{2}, \frac{11+1}{2}\right)=C(3,6) \text { AG } & \begin{array}{r} \text { Correct method (no errors) for finding } \\ \text { the mid-point of } A B \text { giving }(3,6) \end{array} \\ (8-3)^{2}+(1-6)^{2} \text { or } \sqrt{(8-3)^{2}+(1-6)^{2}} \text { or } & \begin{array}{r} \text { Applies distance formula in } \\ \text { order to find the radius. } \\ \text { Correct application of } \\ \text { formula. } \end{array} \\ (-2-3)^{2}+(11-6)^{2} \text { or } \sqrt{(-2-3)^{2}+(11-6)^{2}} & (x \pm 3)^{2}+(y \pm 6)^{2}=k, \\ k \text { is a positive value. } \end{array} \quad \begin{aligned} & (x-3)^{2}+(y-6)^{2}=50\left(\text { or }(\sqrt{50})^{2} \text { or }(5 \sqrt{2})^{2}\right) \end{aligned} \begin{array}{r} \left.(y-6)^{2}=50 \text { (Not } 7.07^{2}\right) \end{array}$	(1) M1 A1 M1 A1 (4)
(c)	$\{$ For $(10,7),\} \quad \underline{(10-3)^{2}+(7-6)^{2}=50}$,	(1)
(d)	$\begin{array}{lr} \text { \{Gradient of radius }\}=\frac{7-6}{10-3} \text { or } \frac{1}{7} & \text { This must be seen in part }(\mathrm{d}) . \\ \text { Gradient of tangent }=\frac{-7}{1} & \text { Using a perpendicular gradient method. } \\ y-7=-7(x-10) & \begin{array}{rl} y-7=(\text { their gradient })(x-10) \\ y=-7 x+77 & y=-7 x+77 \text { or } y=77-7 x \end{array} \end{array}$	B1 M1 M1 A1 cao (4) [10]
	Notes	
(a)	Alternative method: $C\left(-2+\frac{8--2}{2}, 11+\frac{1-11}{2}\right)$ or $C\left(8+\frac{-2-8}{2}, 1+\frac{11-1}{2}\right)$	
(b)	You need to be convinced that the candidate is attempting to work out the radius and not the diameter of the circle to award the first M1. Therefore allow $1^{\text {st }} \mathrm{M} 1$ generously for $\frac{(-2-8)^{2}+(11-1)^{2}}{2}$ Award $1^{\text {st }}$ M1A1 for $\frac{(-2-8)^{2}+(11-1)^{2}}{4}$ or $\frac{\sqrt{(-2-8)^{2}+(11-1)^{2}}}{2}$. Correct answer in (b) with no working scores full marks.	
(c)	B1 awarded for correct verification of $(10-3)^{2}+(7-6)^{2}=50$ with no errors. Also to gain this mark candidates need to have the correct equation of the circle either from part (b) or re-attempted in part (c). They cannot verify (10,7) lies on C without a correct C. Also a candidate could either substitute $x=10$ in C to find $y=7$ or substitute $y=7$ in C to find $x=10$.	

Question Number	Scheme ${ }^{\text {S }}$
(d)	$2^{\text {nd }}$ M1 mark also for the complete method of applying $7=$ (their gradient)(10) $+c$, finding c. Note: Award $2^{\text {nd }} \mathrm{M} 0$ in (d) if their numerical gradient is either 0 or ∞. Alternative: For first two marks (differentiation): $2(x-3)+2(y-6) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$ (or equivalent) scores B1. $1^{\text {st }}$ M1 for substituting both $x=10$ and $y=7$ to find a value for $\frac{\mathrm{d} y}{\mathrm{~d} x}$, which must contain both x and y. (This M mark can be awarded generously, even if the attempted "differentiation" is not "implicit".) Alternative: $(10-3)(x-3)+(7-6)(y-6)=50$ scores B1M1M1 which leads to $y=-7 x+77$.

Question Number	Scheme	Marks
64	(a) $(10-2)^{2}+(7-1)^{2}$ or $\sqrt{(10-2)^{2}+(7-1)^{2}}$ $(x \pm 2)^{2}+(y \pm 1)^{2}=k \quad(k$ a positive value $)$ $(x-2)^{2}+(y-1)^{2}=100 \quad$ (Accept 10^{2} for 100) (Answer only scores full marks)	M1 A1 M1 A1 (4)
	(b) (Gradient of radius $=) \frac{7-1}{10-2}=\frac{6}{8}$ (or equiv.) Must be seen in part (b) Gradient of tangent $=\frac{-4}{3} \quad$ (Using perpendicular gradient method) $y-7=m(x-10) \quad$ Eqn., in any form, of a line through $(10,7)$ with any numerical gradient (except 0 or ∞) $y-7=\frac{-4}{3}(x-10)$ or equiv (ft gradient of radius, dep. on both M marks) $\{3 y=-4 x+61\}$ (N.B. The A1 is only available as $\underline{\mathrm{ft}}$ after B0) The unsimplified version scores the A mark (isw if necessary... subsequent mistakes in simplification are not penalised here. The equation must at some stage be exact, not, e.g. $y=-1.3 x+20.3$	B1 M1 M1 A1ft (4)
	(c) $\sqrt{r^{2}-\left(\frac{r}{2}\right)^{2}}$ Condone sign slip if there is evidence of correct use of Pythag. $=\sqrt{10^{2}-5^{2}}$ or numerically exact equivalent $P Q(=2 \sqrt{75})=10 \sqrt{3} \quad$ Simplest surd form $10 \sqrt{3}$ required for final mark	M1 A1 A1 (3) 11
	(b) $2^{\text {nd }} \mathrm{M}$: Using $(10,7)$ to find the equation, in any form, of a straight line through (10,7), with any numerical gradient (except 0 or ∞). Alternative: $2^{\text {nd }} \mathrm{M}$: Using $(10,7)$ and an m value in $y=m x+c$ to find a value of c. (b) Alternative for first 2 marks (differentiation): $2(x-2)+2(y-1) \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \quad \text { or equiv. }$ Substitute $x=10$ and $y=7$ to find a value for $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad$ M1 (This M mark can be awarded generously, even if the attempted 'differentiation' is not 'implicit'). (c) Alternatives: To score M1, must be a fully correct method to obtain $\frac{1}{2} P Q$ or $P Q$. $1^{\text {st }} \mathrm{A} 1$: For alternative methods that find $P Q$ directly, this mark is for an exact numerically correct version of $P Q$.	

Question Number	Scheme Marks
(a) (b) (c)	
(a)	$1^{\text {st }} \mathrm{M} 1$ for attempt to complete square. Allow $(x \pm 3)^{2} \pm k$, or $(y \pm 2)^{2} \pm k, k \neq 0$. $1^{\text {st }}$ A1 x-coordinate 3, $2^{\text {nd }}$ A1 y-coordinate -2 $2^{\text {nd }}$ M1 for a full method leading to $r=\ldots$, with their 9 and their 4, $3^{\text {rd }}$ A1 5 or $\sqrt{25}$ The $1^{\text {st }} \mathrm{M}$ can be implied by $(\pm 3, \pm 2)$ but a full method must be seen for the $2^{\text {nd }} \mathrm{M}$. Where the 'diameter' in part (b) has clearly been used to answer part (a), no marks in (a), but in this case the M1 (not the A1) for part (b) can be given for work seen in (a). Alternative $1^{\text {st }}$ M1 for comparing with $x^{2}+y^{2}+2 g x+2 f y+c=0$ to write down centre $(-g,-f)$ directly. Condone sign errors for this M mark. $2^{\text {nd }} \mathrm{M} 1$ for using $r=\sqrt{g^{2}+f^{2}-c}$. Condone sign errors for this M mark. $1^{\text {st }} \mathrm{M} 1$ for setting $x=0$ and getting a 3TQ in y by using eqn. of circle. $2^{\text {nd }} \mathrm{M} 1$ (dep.) for attempt to solve a 3TQ leading to at least one solution for y. Alternative 1: (Requires the B mark as in the main scheme) $1^{\text {st }} \mathrm{M}$ for using $(3,4,5)$ triangle with vertices $(3,-2),(0,-2),(0, y)$ to get a linear or quadratic equation in y (e.g. $\left.3^{2}+(y+2)^{2}=25\right)$. $2^{\text {nd }} \mathrm{M}$ (dep.) as in main scheme, but may be scored by simply solving a linear equation. Alternative 2: (Not requiring realisation that R is on the circle) B1 for attempt at $m_{P R} \times m_{Q R}=-1$, (NOT $m_{P Q}$) or for attempt at Pythag. in triangle $P Q R$. $1^{\text {st }}$ M1 for setting $x=0$, i.e. $(0, y)$, and proceeding to get a 3TQ in y. Then main scheme. Alternative 2 by 'verification': B1 for attempt at $m_{P R} \times m_{Q R}=-1$, (NOT $m_{P Q}$) or for attempt at Pythag. in triangle $P Q R$. M1 for trying (0,2). $2^{\text {nd }} \mathrm{M} 1$ (dep.) for performing all required calculations. A1 for fully correct working and conclusion.

Question Number	Scheme	Marks
67 (a)		M1
(b)	$\begin{equation*} m_{1} m_{2}=-1: \quad \frac{8}{12} \times \frac{6}{9-a}=-1 \quad a=13 \tag{*} \end{equation*}$	M1 A1 (3)
Alt for (a)	(a) Alternative method (Pythagoras) Finds all three of the following $(9-(-3))^{2}+(10-2)^{2}, \quad(i . e .208), \quad(9-a)^{2}+(10-4)^{2}, \quad(a-(-3))^{2}+(4-2)^{2}$	M1
	Using Pythagoras (correct way around) e.g. $a^{2}+6 a+9=240+a^{2}-18 a+81$ to form equation Solve (or verify) for $a, a=13\left(^{*}\right)$ (b) Centre is at $(5,3)$	M1 A1 (3)
		M1 A1 M1 A1 (5)
Alt for (b)	Uses $(x-a)^{2}+(y-b)^{2}=r^{2}$ or $x^{2}+y^{2}+2 g x+2 f y+c=0$ and substitutes $(-3,2),(9,10)$ and $(13,4)$ then eliminates one unknown Eliminates second unknown	M1 M1
	Obtains $g=-5, f=-3, c=-31$ or $\quad a=5, b=3, \quad r^{2}=65$	A1, A1, Blcao (5)
Notes		
(a)	M1-considers gradients of $P Q$ and $Q R$-must be y difference / x difference (or considers three lengths as in alternative method) M1 Substitutes gradients into product $=-1$ (or lengths into Pythagoras’ Theorem correct way round) A1 Obtains $a=13$ with no errors by solution or verification. Verification can sco	the re $3 / 3$.
(b)	Geometrical method: B1 for coordinates of centre - can be implied by use in part (b)	
	M1 for attempt to find r^{2}, d^{2}, r or d (allow one slip in a bracket).	
	A1 cao. These two marks may be gained implicitly from circle equation	
	M1 for $(x \pm 5)^{2}+(y \pm 3)^{2}=k^{2}$ or $(x \pm 3)^{2}+(y \pm 5)^{2}=k^{2}$ ft their $(5,3)$ Allow k^{2} non numerical.	
	A1 cao for whole equation and rhs must be 65 or $(\sqrt{65})^{2}$, (similarly B1 must be 65 or	

Question Number	Scheme	Marks
Further alternatives	(i) A number of methods find gradient of $\mathrm{PQ}=2 / 3$ then give perpendicular gradient is $-3 / 2$ This is M1 They then proceed using equations of lines through point Q or by using gradient $Q R$ to obtain equation such as $\frac{4-10}{a-9}=-\frac{3}{2} \mathbf{M} 1$ (may still have x in this equation rather than a and there may be a small slip) They then complete to give $(a)=13$ A1 (ii) A long involved method has been seen finding the coordinates of the centre of the circle first. This can be done by a variety of methods Giving centre as ($c, 3$) and using an equation such as $(c-9)^{2}+7^{2}=(c+3)^{2}+1^{2}$ (equal radii) or $\frac{3-6}{c-3}=-\frac{3}{2} \mathbf{M 1}$ (perpendicular from centre to chord bisects chord) Then using $c(=5)$ to find a is M1 Finally $a=13$ A1 (iii) Vector Method: States $\mathbf{P Q} . \mathbf{Q R}=0$, with vectors stated $12 \mathrm{i}+8 \mathrm{j}$ and $(9-a) \mathbf{i}+\mathbf{6 j}$ is $\mathbf{M 1}$ Evaluates scalar product so $108-12 a+48=0$ (M1) solves to give $a=13$ (A1)	M1 M1 A1 M1 M1 A1 M1 M1 A1

Question number	Scheme	Marks
68.		M1 A1 M1 A1 B1 M1 M1 A1ft A1 $\begin{aligned} & (5) \\ & \mathbf{9} \end{aligned}$
	(a) For the M mark, condone one slip inside a bracket, e.g. $(8-3)^{2}+(3+1)^{2}$, $(8-1)^{2}+(1-3)^{2}$ The first two marks may be gained implicitly from the circle equation. (b) $2^{\text {nd }} \mathrm{M}$: Eqn. of line through $(8,3)$, in any form, with any grad.(except 0 or ∞). If the 8 and 3 are the 'wrong way round', this M mark is only given if a correct general formula, e.g. $y-y_{1}=m\left(x-x_{1}\right)$, is quoted. Alternative: $2^{\text {nd }} \mathrm{M}$: Using $(8,3)$ and an m value in $y=m x+c$ to find a value of c. A1ft: as in main scheme. (Correct substitution of 8 and 3 , then a wrong c value will still score the A1ft) (b) Alternatives for the first 2 marks: (but in these 2 cases the $1^{\text {st }} \mathrm{A}$ mark is not ft) (i) Finding gradient of tangent by implicit differentiation $2(x-3)+2(y-1) \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \quad$ (or equivalent) Subs. $x=8$ and $y=3$ into a 'derived' expression to find a value for $\mathrm{d} y / \mathrm{d} x$ (ii) Finding gradient of tangent by differentiation of $y=1+\sqrt{20+6 x-x^{2}}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(20+6 x-x^{2}\right)^{-\frac{1}{2}}(6-2 x) \quad$ (or equivalent) Subs. $x=8$ into a 'derived' expression to find a value for $\mathrm{d} y / \mathrm{d} x$ Another alternative: $\begin{array}{ll} \text { Using } x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0 \\ x^{2}+y^{2}-6 x-2 y-19=0 & \text { B1 } \\ 8 x+3 y,-3(x+8)-(y+3)-19=0 & \text { M1, M1 A1ft (ft from circle eqn.) } \\ 5 x+2 y-46=0 & \text { A1 } \end{array}$	

Question Number	Scheme		Notes	Marks
70.	$x=1+t-5 \sin t, y=2-4 \cos t,-\pi \leqslant t \leqslant \pi ; A(k, 2), k>0$, lies on C			
(a)	$\begin{aligned} & \{\text { When } y=2,\} 2=2-4 \cos t \Rightarrow t=-\frac{\pi}{2}, \frac{\pi}{2} \\ & k(\text { or } x)=1+\frac{\pi}{2}-5 \sin \left(\frac{\pi}{2}\right) \text { or } k(\text { or } x)=1-\frac{\pi}{2}-5 \sin \left(-\frac{\pi}{2}\right) \end{aligned}$		Sets $y=2$ to find t and some evidence of using their t to find $x=\ldots$	M1
	$\left\{\right.$ When $\left.t=-\frac{\pi}{2}, k>0,\right\}$ so $k=6-\frac{\pi}{2}$ or $\frac{12-\pi}{2}$		$k($ or $x)=6-\frac{\pi}{2}$ or $\frac{12-\pi}{2}$	A1
				[2]
(b)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=1 \quad 5 \cos t, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=4 \sin t$		At least one of $\frac{\mathrm{d} x}{\mathrm{~d} t}$ or $\frac{\mathrm{d} y}{\mathrm{~d} t}$ correct (Can be implied)	B1
			Both $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ are correct (Can be implied)	B1
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \sin t}{1-5 \cos t} \\ & \text { at } t=-\frac{\pi}{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4 \sin \left(-\frac{\pi}{2}\right)}{1-5 \cos \left(-\frac{\pi}{2}\right)} \quad\{=-4\} \end{aligned}$		Applies their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ divided by their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and substitutes their t into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Note: their t can lie outside $-\pi \leqslant t \leqslant \pi$ for this mark	M1
	- $y-2=-4\left(x-\left(6-\frac{\pi}{2}\right)\right)$ - $2=(-4)\left(6-\frac{\pi}{2}\right)+c \Rightarrow y=-4 x+2+4\left(6-\frac{\pi}{2}\right)$		rrect straight line method for n equation of a tangent where $\left.m_{N}\right)$ is found using calculus Note: their k (or x) must be in terms of π and correct ting must be used or implied	M1
	$\{y-2=-4 x+24-2 \pi \Rightarrow\} \quad y=-4 x+26-2 \pi$		dependent on all previous marks in part (b) $y=-4 x+26-2 \pi$	A1 cso
			$(p=-4, q=26-2 \pi)$	[5]
				7
	Question 70 Notes			
5. (a)	Note	M1 can be implied by either x or $k=6-\frac{\pi}{2}$ or awrt 4.43 or x or $k=\frac{\pi}{2}-4$ or awrt -2.43		
	Note	An answer of $4.429 \ldots$ without reference to a correct exact answer is A0		
	Note	M1 can be earned in part (a) by working in degrees		
	Note	Give M0 for not substituting their t back into x. E.g. $2=2-4 \cos t \Rightarrow t=-\frac{\pi}{2} \Rightarrow k=-\frac{\pi}{2}$		
	Note	If two values for k are found, they must identify the correct answer for A1		
	Note	Condone M1 for $2=2-4 \cos t \Rightarrow t=-\frac{\pi}{2}, \frac{\pi}{2} \Rightarrow x$	$\frac{\pi}{2}-5 \sin \left(\frac{\pi}{2}\right)$	
(b)	Note	The $1^{\text {st }} \mathrm{M}$ mark may be implied by their value for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ e.g. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \sin t}{1-5 \cos t}$, followed by an answer of -4 (from $t=-\frac{\pi}{2}$) or 4 (from $t=\frac{\pi}{2}$)		
	Note	Give $1^{\text {st }} \mathrm{M} 0$ for applying their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ divided by their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ even if they state $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$		
	$\mathbf{2}^{\text {nd }} \mathrm{M} 1$	- applies $y-2=\left(\right.$ their $\left.m_{T}\right)(x-($ their $k))$, - applies $2=\left(\right.$ their $\left.m_{T}\right)($ their $k)+c$ leading to $y=\left(\right.$ their $\left.m_{T}\right) x+($ their $c)$ where k must be in terms of π and $m_{T}\left(\neq m_{N}\right)$ is a numerical value found using calculus		
	Note	Correct bracketing must be used for $2^{\text {nd }} \mathrm{M} 1$, but this mark can be implied by later working		

	Question 70 Notes Continued	
70. (b)	Note	The final A mark is dependent on all previous marks in part (b) being scored. This is because the correct answer can follow from an incorrect $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	Note	The first 3 marks can be gained by using degrees in part (b)
	Note	Condone mixing a correct t with an incorrect x or an incorrect t with a correct x for the M marks
	Note	Allow final A1 for any answer in the form $y=p x+q$ E.g. Allow final A1 for $y=-4 x+26-2 \pi, y=-4 x+2+4\left(6-\frac{\pi}{2}\right)$ or $y=-4 x+\left(\frac{52-4 \pi}{2}\right)$
	Note	Do not apply isw in part (b). So, an incorrect answer following from a correct answer is A0
	Note	Do not allow $y=2(-2 x+13-\pi)$ for A1
	Note	$y=-4 x+26-2 \pi$ followed by $y=2(-2 x+13-\pi)$ is condoned for final A1

Question Number	Scheme	Marks
71.	$x=4 \cos \left(t+\frac{\pi}{6}\right), \quad y=2 \sin t$	
(a)	Main Scheme $x=4\left(\cos t \cos \left(\frac{\pi}{6}\right)-\sin t \sin \left(\frac{\pi}{6}\right)\right)$ $\cos \left(t+\frac{\pi}{6}\right) \rightarrow \cos t \cos \left(\frac{\pi}{6}\right) \pm \sin t \sin \left(\frac{\pi}{6}\right)$ So, $\begin{aligned} \{x+y\} & =4\left(\cos t \cos \left(\frac{\pi}{6}\right)-\sin t \sin \left(\frac{\pi}{6}\right)\right)+2 \sin t \\ & =4\left(\left(\frac{\sqrt{3}}{2}\right) \cos t-\left(\frac{1}{2}\right) \sin t\right)+2 \sin t \\ & =2 \sqrt{3} \cos t * \end{aligned}$ Correct proof	M1 oe dM1 A1 * [3]
(a)	Alternative Method 1 $\begin{aligned} x & =4\left(\cos t \cos \left(\frac{\pi}{6}\right)-\sin t \sin \left(\frac{\pi}{6}\right)\right) \quad \cos \left(t+\frac{\pi}{6}\right) \rightarrow \cos t \cos \left(\frac{\pi}{6}\right) \pm \sin t \sin \left(\frac{\pi}{6}\right) \\ & =4\left(\left(\frac{\sqrt{3}}{2}\right) \cos t-\left(\frac{1}{2}\right) \sin t\right)=2 \sqrt{3} \cos t-2 \sin t \end{aligned}$ $\text { So, } x=2 \sqrt{3} \cos t-y$ Forms an equation in x, y and t. $x+y=2 \sqrt{3} \cos t *$ Correct proof	M1 oe dM1 A1 * [3]
(b)	Main Scheme $\begin{aligned} & \left(\frac{x+y}{2 \sqrt{3}}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1 \\ & \Rightarrow \frac{(x+y)^{2}}{12}+\frac{y^{2}}{4}=1 \\ & \Rightarrow(x+y)^{2}+3 y^{2}=12 \end{aligned}$ Applies $\cos ^{2} t+\sin ^{2} t=1$ to achieve an equation containing only x 's and $y^{\prime} s$. $\begin{array}{r} (x+y)^{2}+3 y^{2}=12 \\ \{a=3, b=12\} \\ \hline \end{array}$	M1 A1 [2]
(b)	$\begin{aligned} & \frac{\text { Alternative Method 1 }}{(x+y)^{2}=12 \cos ^{2} t=12\left(1-\sin ^{2} t\right)=12-12 \sin ^{2} t} \\ & \text { So, }(x+y)^{2}=12-3 y^{2} \\ & \Rightarrow(x+y)^{2}+3 y^{2}=12 \end{aligned}$ Applies $\cos ^{2} t+\sin ^{2} t=1$ to achieve an equation containing only x 's and y 's. $(x+y)^{2}+3 y^{2}=12$	M1 A1 [2]
(b)	Alternative Method 2 $(x+y)^{2}=12 \cos ^{2} t$ As $12 \cos ^{2} t+12 \sin ^{2} t=12$ then $(x+y)^{2}+3 y^{2}=12$	$\begin{array}{\|r} \hline \text { M1, A1 } \\ {[2]} \\ \hline \end{array}$

	Question 71 Notes	
71. (a)	$\begin{gathered} \text { M1 } \\ \text { Note } \end{gathered}$	$\cos \left(t+\frac{\pi}{6}\right) \rightarrow \cos t \cos \left(\frac{\pi}{6}\right) \pm \sin t \sin \left(\frac{\pi}{6}\right) \quad \text { or } \quad \cos \left(t+\frac{\pi}{6}\right) \rightarrow\left(\frac{\sqrt{3}}{2}\right) \cos t \pm\left(\frac{1}{2}\right) \sin t$ If a candidate states $\cos (A+B)=\cos A \cos B \pm \sin A \sin B$, but there is an error in its application then give M1. Awarding the dM1 mark which is dependent on the first method mark
Main	dM1 Note	Adds their expanded x (which is in terms of t) to $2 \sin t$ Writing $x+y=\ldots$ is not needed in the Main Scheme method.
Alt 1	dM1	Forms an equation in x, y and t.
(b)	A1* Note M1 A1 SC Note Note Note	Evidence of $\cos \left(\frac{\pi}{6}\right)$ and $\sin \left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors. $\{x+y\}=4 \cos \left(t+\frac{\pi}{6}\right)+2 \sin t$, by itself is M0M0A0. Applies $\cos ^{2} t+\sin ^{2} t=1$ to achieve an equation containing only x 's and y 's. leading $(x+y)^{2}+3 y^{2}=12$ Award Special Case B1B0 for a candidate who writes down either - $(x+y)^{2}+3 y^{2}=12$ from no working - $a=3, b=12$, but does not provide a correct proof. Alternative method 2 is fine for M1 A1 Writing $(x+y)^{2}=12 \cos ^{2} t$ followed by $12 \cos ^{2} t+a\left(4 \sin ^{2} t\right)=b \Rightarrow a=3, b=12$ is SC: B1B0 Writing $(x+y)^{2}=12 \cos ^{2} t$ followed by $12 \cos ^{2} t+a\left(4 \sin ^{2} t\right)=b$ - states $a=3, b=12$ - and refers to either $\cos ^{2} t+\sin ^{2} t=1$ or $12 \cos ^{2} t+12 \sin ^{2} t=12$ - and there is no incorrect working would get M1A1

Question Number	Scheme	Marks
72.	$x=27 \sec ^{3} t, \quad y=3 \tan t, \quad 0 \leqslant t \leqslant \frac{\pi}{3}$	
$\begin{cases}\left\{1+\tan ^{2} t=\sec ^{2} t\right\} \Rightarrow 1+\left(\frac{y}{3}\right)^{2}=\left(\sqrt[3]{\left(\frac{x}{27}\right)}\right)^{2}=\left(\frac{x}{27}\right)^{\frac{2}{3}} \\ \Rightarrow 1+\frac{y^{2}}{9}=\frac{x^{\frac{2}{3}}}{9} \Rightarrow 9+y^{2}=x^{\frac{2}{3}} \Rightarrow y=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}} * \\ a=27 \text { and } b=216 & \text { or } 27 \leqslant x \leqslant 216\end{cases}$	M1	

Notes for Question 72 Continued

Note: Please check that their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ is differentiated correctly.
Eg. Note that $x=27 \sec ^{3} t=27(\cos t)^{-3} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} t}=-81(\cos t)^{-2}(-\sin t)$ is correct.
M1: Either:

- Applying a correct trigonometric identity (usually $1+\tan ^{2} t=\sec ^{2} t$) to give a Cartesian equation in x and y only.
- Starting from the RHS and goes on to achieve $\sqrt{9 \tan ^{2} t}$ by using a correct trigonometric identity.
- Starts from the LHS and goes on to achieve $\sqrt{9 \sec ^{2} t-9}$ by using a correct trigonometric identity.

A1*: For a correct proof of $y=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}$.
Note this result is printed on the Question Paper, so no incorrect working is allowed.
B1: Both $a=27$ and $b=216$. Note that $27 \leqslant x \leqslant 216$ is also fine for B1.

Notes for Question 72 Continued

Notes for Question 72 Continued			
72. Way 2	Alternative responses for M1A1: STARTING FROM THE RH $\begin{gathered} \{\text { RHS }=\}\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}=\sqrt{\left(27 \sec ^{3} t\right)^{\frac{2}{3}}-9}=\sqrt{9 \sec ^{2} t-9}=\sqrt{9 \tan ^{2} t} \\ =3 \tan t=y\{=\text { LHS }\} \text { cso } \end{gathered}$ M1: Starts from the RHS and goes on to achieve $\sqrt{9 \tan ^{2} t}$ by usi	For applying $1+\tan ^{2} t=\sec ^{2} t$ oe to achieve $\sqrt{9 \tan ^{2} t}$ Correct proof from $\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}$ to y. a correct trigonometric identity.	M1 A1*
72. Way 3	Alternative responses for M1A1 in part (b): STARTING FROM $\begin{aligned} \{\text { LHS }=\} y & =3 \tan t=\sqrt{\left(9 \tan ^{2} t\right)}=\sqrt{9 \sec ^{2} t-9} \\ & =\sqrt{9\left(\frac{x}{27}\right)^{\frac{2}{3}}-9}=\sqrt{9\left(\frac{x^{\frac{2}{3}}}{9}\right)-9}=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}} \text { cso } \end{aligned}$ M1: Starts from the LHS and goes on to achieve $\sqrt{9 \sec ^{2} t-9}$	HE LHS For applying $1+\tan ^{2} t=\sec ^{2} t$ oe to achieve $\sqrt{9 \sec ^{2} t-9}$ Correct proof from y to $\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}$. ing a correct trigonometric identity.	M1 A1*

Question Number	Scheme	Marks
$73 .$ (a)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{t}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 t$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 t^{2}$ Using $m m^{\prime}=-1$, at $t=3$ $\begin{aligned} m^{\prime} & =-\frac{1}{18} \\ y-7 & =-\frac{1}{18}(x-\ln 3) \end{aligned}$	M1 A1 M1 A1 M1 A1 (6)
(b)	$x=\ln t \Rightarrow t=\mathrm{e}^{x}$ $y=\mathrm{e}^{2 x}-2$	B1 M1 A1 (3)

Question Number	Scheme	Marks
74	(a) $\begin{gathered} y=0 \Rightarrow t\left(9-t^{2}\right)=t(3-t)(3+t)=0 \\ t=0,3,-3 \quad \text { Any one correct value } \end{gathered}$ At $t=0, \quad x=5(0)^{2}-4=-4$ Method for finding one value of x At $t=3, \quad x=5(3)^{2}-4=41$ $\left(\text { At } t=-3, \quad x=5(-3)^{2}-4=41\right)$ At $A, x=-4$; at $B, x=41$ Both	B1 M1 A1 (3)

