

Maths Questions By Topic:

Data Presentation \& Interpretation

Mark Scheme

A-Level Edexcel

© www.expert-tuition.co.uk
\square online.expert-tuition.co.uk
enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 2 (AS) ... Page 1
Paper 3 (A2) ... Page 16
Old Spec
Statistics 1 ... Page 27

Qu	Scheme	Marks	AO
1. (a)	Negative (since gradient of regression line is negative)	$\begin{array}{\|l\|l\|} \hline \text { B1 } \\ & \\ \hline \end{array}$	1.2
(b)	$\mathrm{cm} /$ day (o.e. e.g. $\mathrm{cm} \mathrm{day}^{-1}$)	B1 (1)	2.2a
(c)	$3 \times[\pm] 1.1 \quad=\text { decrease of } 3.3[\mathrm{~cm}]$	M1 A1 (2)	3.4 1.1 b
(d)	19 is (well) outside the range [1,10] or involves extrapolation (o.e.) so (possibly) unreliable/ inaccurate (o.e.)	B1 (1) (5 mark	2.4
	Notes		
(a)	Answers may be written within the question. B1 for stating "negative". Allow a correct interpretation e.g. as t increases then p decreases (o.e.) [ignore any values] B0 for contradictory statements e.g. "negative correlation since as t increases p increases" B1 for a correct description of the units (allow fraction, /, or "per" and allow "d" for "day") M1 for attempt at a calculation (allow use of $t=x$ and $t=x+3$ followed by subtraction that should lead to 3.3) A1 for correct description must include word "decrease" (o.e.) and value " 3.3 " Just seeing: $22-1.1 \times 3=18.7$ is M0A0 BUT going on to subtract 18.7 from 22 scores M1 Reaching 3.3 and stating "decrease" or "reduced" (o.e.) will score the A1 too An answer of -3.3 without a word describing decrease (o.e.) will just score M1A0 B1 for stating "unreliable" (o.e.) and giving a suitable reason based on idea of extrapolation Must have both statement about reliability and suitable reason e.g. $t=19$ is too big or (Model is based on) t between 1 and 10 (only) [since this implies $t=19$ is too big] Allow e.g. (model) "may not work" because of "extrapolation" Just saying "no" since "extrapolation" is B0 but "unreliable"(o.e.) since "extrapolation" is B1		
(b)			
(c)			
(d)			

	Scheme	Marks	AO
3. (a)	Accept 990 to 1030 inclusive	B1 (1)	1.1b
(b)	Any range between 10 and 50 inclusive	B1 (1)	1.1 b
		(2 marks)	
	Notes		
(a)	B1 (Median pressures usually around 1000~1020)		S mark]
(b)	B1 Any answer in this range Allow answers in the form $a \sim b$ where $\|b-a\|$ is between 10 and 50 Also allow the case where both a and b are in $[10,50]$		mark]

Qu	Scheme	Marks	AO
4. (a)	From [5,20) fd $=3$ or 1 large square $=2.5$ passengers o.e.	M1	2.2a
	Correct bar above [0, 5)	A1	1.1 b
	Correct bar above [20, 40)	A1	1.1 b
		(3)	
(b)	For $[40,65) \underline{\mathbf{1 3 0}}$ passengers or for $[65,80) \underline{\mathbf{6 0}}$ passengers	M1	2.1
	For attempt to find total number of passengers $=\underline{\mathbf{3 3 1}}$	A1ft	1.1 b
	$[\text { Median }=] 40+\frac{\frac{1}{2}(" 331 ")-140}{" 130 "} \times 25 \text { or } 65-\frac{270-\frac{1}{2}(" 331 ")}{" 130 "} \times 25 \text { (o.e.) }$	M1	1.1b
	$=44.9038 \ldots=$ awrt $\underline{44.9}$	A1	1.1 b
		(4)	
(c)	Upper outlier limit $=58.9+1.5 \times(58.9-27.3)=106(.3)>90$ So oldest passenger is not an outlier	M1	2.4
	So oldest passenger is not an outlier	A1	
		(9 marks)	
	Notes		
(a)	M1 for attempt at fd or a suitable method to deduce the scale for the	gram	
	May be implied by one correct bar.		
	$1^{\text {st }}$ A1 for first bar $[0,5)$ with $\mathrm{fd}=1$ or 2 large squares high		
	$2^{\text {nd }} \mathrm{A} 1$ for third bar with $\mathrm{fd}=4.5$ or 9 large squares high		
(b)	$1^{\text {st }} \mathrm{M} 1$ for an attempt using their fd to find the missing frequencies.	ay be in tab	
	$1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a clear attempt to find the total number of passengers (ft	r 130 and 60)	
	$2^{\text {nd }} \mathrm{M} 1 \quad$ for any expression/equation leading to correct Q_{2} Must be usi	40-65 class	
	$2^{\text {nd }} \mathrm{A} 1 \quad$ for awrt 44.9 (allow ($n+1$) leading to 45)		
(c)	M1 for finding the upper outlier limit (expression or awrt 106) and stat A1 dep on M1 seen for deducing NOT an outlier	g or implying	>90

Question	Scheme	Marks	AOs
$\mathbf{5}$	1 square is $\frac{78}{12 \times 3+3 \times 4+2 \times 2}=\left[\frac{78}{52}=1.5\right]$ and $(8 \times 1+1 \times 8) \times " 1.5 "$	M1	3.1 a
	24 students took less than 11 minutes	A1	1.1 b
	Percentage of students $=\frac{24 "}{78+" 24 "+1 \times 8 \times " 1.5 "+3 \times 4 \times " 1.5 "} \times 100$	M1	3.1 b
	$=18.18 \ldots$	awrt 18%	A1
	1.1 b		

Total 4

Notes

5	M1:	For clear use of frequency density to establish the fd scale and then use the area to find frequency of <11 minutes. Allow maximum of 3 errors in either the heights or widths in total if working shown. They may calculate the area using other size squares. Allow for realising they need to find the total number of squares (88) maximum of 4 errors in either the heights or widths and number <11 minutes(16) - must have a maximum of 1 error in either the heights or widths (and not use the 78 as part of calulation)
	A1:	For correct values seen. Allow for 88 and 16
	M1:	For realising the need to find the total and calculating a percentage. (with "their 24 " as the numerator). Allow $(8 \times 1+2 \times 8) \times$ " 1.5 " instead of " $24 "+1 \times 8 \times 1.5$ " If working shown can allow maximum of 2 errors in either the heights or widths in the calculation of the total. Allow "their 24" / 132 oe
	A1:	awrt 18

Question		Scheme	Marks	AOs
6(a)		0 to 500 m	B1	1.2
			(1)	
(b)		$1100+1600+1.5 \times 1600$ [$=5100$]	M1	2.1
		$5300>5100$ therefore outlier	A1	1.1b
			(2)	
(c)		As the humidity increases the mean visibility decreases	B1	2.4
			(1)	
(d)		(Hours of) sunshine	B1	2.2b
			(1)	
(5 marks)				
Notes				
(a)	B1:	For realising it is the maximum distance and distance given with correct units. Allow 0 to 50 dm or $<500 \mathrm{~m}$ or $<50 \mathrm{dm}$		
(b)	M1:	Attempt to find Q_{3} and the upper limit		
	A1:	5100 , if a value for the point is stated it must be above 5100 otherwise it is A0. For a statement comparing and conclusion it is an outlier or it is above $\mathrm{Q}_{3}+1.5 \mathrm{IQR}$. Allow accept the point circled is greater than 5100 oe		
(c)	B1:	For a suitable interpretation of a negative correlation mentioning humidity and visibility		
(d)	B1:	A correct deduction that the unlabelled variable is the hours of sunshine. Condone missing hours. Do not allow if more than one variable given. Must be quantative variable Not cloud cover since values bigger than 8 Not wind speed since values not integers Not daily mean temperature since mean temperature near to zero are unlikely in June		

Question		Scheme	Marks	AOs
7(a)		$\sigma=\sqrt{\frac{3053}{160}-\left(\frac{692}{160}\right)^{2}}$	M1	1.1b
		$=0.6129 \ldots$ awrt 0.613	A1	1.1 b
			(2)	
(b)(i)		This would have no effect as the piece of data would remain in the same class	B1	2.2a
(ii)		This would increase the standard deviation as change in mean is small and $6.4-4.6 \approx 3 \sigma$ therefore estimate of standard deviation will increase	B1	2.2a
			(2)	
(4 marks)				
Notes				
(a)	M1:	A correct expression for σ		
	A1:	Awrt 0.613 allow $s=$ awrt 0.615		
(b)	B1:	Correct deduction with suitable explanation Allow range for class. Do not allow there is no differences		
	B1:	Correct deduction with suitable explanation. so would increase the standard deviation and a suitable reason. Allow the value is bigger than any others in the table oe		

Question	Scheme	Marks	AOs
8(a)	Increase by 2.8 marks	B1	3.4
		(1)	
(b)	e.g. 'the best performance is predicted for the students who never wake up'	B1	3.5b
		(1)	
(2 marks)			
Notes			

(a) 'Increase by approximately 3 marks' is B0 but isw if 2.8 is seen

B1: Using the gradient of the regression equation must include increase(o.e.) and $\underline{2.8}$ $5.6 \div 2$ is not sufficient
B1: for any suitable limitation of the model
e.g. the idea that the longer you sleep the better performance in the test or only valid between 0 and 24 hours (within range of the data) or only applicable to the amount of sleep the night before the test or only takes sleep into consideration/does not include other variables (factors)
(b) or cannot score below 26.1 marks on the test or the model might not be linear over the entire range or the model might predict more than the maximum mark

B0: e.g. might not be correlation between s and p or individual student performance may vary

Question	Scheme	Marks	AOs
9 (a)	$\operatorname{Tr}($ ace) (data needs to be converted to numbers before the calculation can be carried out)	B1	2.4
		(1)	
(b)	$[1+]^{\frac{138-131}{24}} \times 4$	M1	2.1
	$=2.1666 \ldots . \quad$ awrt $\underline{\text { 2.17 }}$	A1	1.1b
		(2)	
(c)	$\sigma=\sqrt{\frac{7704.1875}{184}-\left(\frac{539.75}{184}\right)^{2}}=5.7676 \ldots \quad \sigma=$ awrt 5.77	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(d)(i)	Using class midpoints to estimate the mean assumes that the values are uniformly distributed within the class(es).	B1	2.4
 (iii)	This is not the case here as the majority of the data (in the first class) are 0 .	B1	2.3
	The actual mean is likely to be smaller than the estimate (since the first group has more values at 0 and close to 0)	dB1	2.2b
		(3)	
(8 marks)			
Notes			
(a)	B1: Identifying $\operatorname{tr}(\mathrm{ace})$ data Ignore comments about n / a, missing data, anomalies, etc.		
(b)	M1: Correct fraction $\frac{7}{24} \times 4$ allow working down [5] $-\frac{155-138}{24} \times 4$ allow a correct equation leading to a correct fraction e.g. $\frac{x-1}{5-1}=\frac{138-131}{155-131}$ for M1 Use of $(n+1)$ with 138.75 allow $\frac{775}{24} \times 4$ A1: awrt 2.17 (condone $\frac{13}{6}$) awrt 2.29 from $(n+1)$ (condone $\frac{55}{24}$)		
(c)	M1: Correct expression for standard deviation (allow mean $=$ awrt 2.93) A1: awrt 5.77 correct answer only scores M1A1 (allow $s=5.78$) SC: 5.76 with no working scores M1A0		
(d)(i)	B1: Explaining that data assumed to be spread evenly across each class (o.e.) e.g. The midpoint of each class is the mean of each class or all the values in the class are located at the midpoint condone normally distributed within each class		
Mark together (ii)\&(iii)	B1: Demonstrating an understanding of the LDS that the majority of data values (in the first class) are at 0 or close to 0 (trace). dB1: (dependent upon $2^{\text {nd }} \mathrm{B} 1$) Correct inference based on knowledge of the LDS SC: If B1 is scored in (i) for 'The data are spread evenly across each class,' then in (ii) 'The data are not evenly distributed in the classes' scores B1 but in (iii) 'the actual mean is smaller' with no further justification scores B0		

Choosing \boldsymbol{A} or \boldsymbol{E} is M0

Incorrect/false statements score M0 e.g. $Q_{3}=($ mean $+\sigma)$ or identify $Q_{2}=$ mean
or Y has small spread
ALT Use of outliers: outlier is (mean $+3 \sigma)(B=19.9),(C=18.95),(D=20.2)$ Must see at least one of these values and compare to Y 's outlier[leads to D or B]

A1 for suitable inference i.e. B (accept D or B or D) M1 must be scored

Question	Scheme	Marks	AOs
12(a)	$\left[Q_{2}=\right](5+) \frac{12}{15} \times 5 \quad$ or $($ use of $(n+1))(5+) \frac{12.5}{15} \times 5$	M1	1.1a
	$=9 \quad$ or $9.166 \ldots$ awrt 9.17	A1	1.1b
		(2)	
(b)	$\left[\sigma_{x}=\right] \sqrt{\frac{5675}{30}-\left(\frac{355}{30}\right)^{2}}=\sqrt{49.14 \ldots}$	M1	1.1a
	$=\underline{\text { awrt } 7.01}$	A1	1.1b
	Accept $\left(s_{x}=\sqrt{\frac{5675-30\left(\frac{355}{30}\right)^{2}}{29}}=7.1294 \ldots\right)$	(2)	
(c)	$x=\frac{t-15}{2}$ or $t=2 x+15$	M1	3.16
	Median $=2^{\prime}{ }^{\prime \prime} 9$ "+ $15=33$ (allow awrt 33.3 from "9.17" in (a))	A1ft	1.1 b
	Sd $=2^{\prime}$ "7.01" $=14.02 \ldots$ (awrt 14.0) [allow awrt 14.3 if s used]	A1ft	1.1b
		(3)	
(d)	The median time is " 33 " and " 33 " <35 so 50% (30) should finish in 35 minutes. ALT Probability of being $<35 \mathrm{mins}$ is $\frac{18}{30} \backslash \frac{18}{30}, 60=36$ applicants to choose from.	M1	2.4
	It is likely that they will fill all 25 positions [providing those offered accept]	A1	2.2b
		(2)	
Notes:		(9 marks)	
(a) M1: For a suitable fraction $\times 5$ (ignore end points) A1: For 9 or awrt 9.17 if using $n+1$			
(b) M1: For a correct expression for \bar{x} and s_{x} or s_{x} A1: For awrt $s_{x}=7.01$ or $s_{x}=$ awrt 7.13			
(c) M1: For realising $x=\frac{t-15}{2}$ and then rearranging to get a correct equation with t as the subject May be implied by a correct answer for the median of t. A1ft: ft their median A1ft: ft their s_{x} or s_{x}. NB using s gives awrt14.3			
(d) M1: For a suitable comparison following through their value for the median of t. A1: A correct conclusion in context following through their value for the median of t.			

Question	Scheme	Marks	AOs
13	$\begin{aligned} {\left[\bar{t}=\frac{374}{20}\right.} & =18.7] \\ \sigma_{t} & =\sqrt{\frac{7600}{20}-\bar{t}^{2}} \quad[=\sqrt{30.31}] \end{aligned}$	M1	1.1a
	$\quad=5.5054 \ldots$ awrt $\underline{\mathbf{5 . 5 1}}$ (Accept use of $s_{t}=\sqrt{\frac{7600-20 \bar{t}^{2}}{19}}=5.6484 \ldots$)	A1	1.1b
(2 marks)			
Notes:			
M1: For a correct expression for \bar{t} and σ_{t} or s_{t} ft an incorrect evaluation of \bar{t} A1: For $\sigma_{t}=$ awrt 5.51 or $s_{t}=$ awrt 5.65			

Question	Scheme	Marks	AOs
14	$17+45+\frac{1}{3} \times 9 \quad[=65]$	M1	2.2a
	$(7-8) \underline{\mathbf{1 4}}$ or $(16-20) \underline{\mathbf{5}}$ [Values may be seen in the table]	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Percentage of motorists is $\frac{\text { "65" }}{6+14 "+17+45+9+" 5 "} \times 100$	M1	3.1b
	$=\underline{67.7 \%}$	A1	1.1b
(5 marks)			
Notes:			
M1: For a fully correct expression for the number of motorists in the interval M1: For clear use of frequency density in (4-6) or (13-15) cases to establish the fd scale. Then use of area to find frequency in one of the missing cases A1: For both correct values seen M1: For realising that total is required and attempting a correct expression for $\%$ A1: For awrt 67.7\%	For a fully correct expression for the number of motorists in the interval For clear use of frequency density in (4-6) or (13-15) cases to establish the fd scale. Then use of area to find frequency in one of the missing cases For both correct values seen For realising that total is required and attempting a correct expression for $\%$ For awrt 67.7\%		

Question	Scheme	Marks	AOs
15(a)	$\mathrm{IQR}=2.3$ and $20.6 \gg 2.4+1.5 \times 2.3(=5.85)$ (Compare correct values)	B1	1.1b
		(1)	
(b)(i)	e.g. It is a piece of data and we should consider all the data o.e.	B1	2.4
(ii)	e.g. It is an extreme value and could unduly influence the analysis or It could be a mistake	B1	2.4
		(2)	
(c)	e.g. "as humidity increases rainfall increases"	B1	2.2b
		(1)	
(d)	e.g. a 10% increase in humidity gives rise to a 1.5 mm increase in rainfall or represents 0.15 mm of rainfall per percentage of humidity	B1	3.4
		(1)	
(5 marks)			

Question		Scheme	Marks	AOs
16(a)		tr	B1	1.2
			(1)	
(b)(i) (ii)		$\mu=\frac{174.9}{31}=5.6419 \ldots \quad$ awrt 5.64	B1	1.1b
		$\sigma_{r}=\sqrt{\frac{3523.283}{31}-\mu^{2}}$	M1	1.1b
		$=9.04559 \ldots$ awrt 9.05	A1	1.1b
			(3)	
(c)		Leuchars is in the North and Camborne is in the South	M1	2.4
		The mean is smaller for Leuchars than Camborne therefore there is no evidence that Dian's belief is true	A1ft	2.2b
			(2)	(6 marks)
Notes:				
(a)	B1	Allow Tr or trace or Trace		
(b) (i)	B1	For a correct mean awrt 5.64		
(ii)	M1	For a correct expression for sd including the $\sqrt{ } \mathrm{Ft}$ their mean		
	A1	awrt 9.05 (Allow $s=9.1932 \ldots$ awrt 9.19) NB awrt to 9.05 or 9.19 with no working is M1 A1		
(c)	M1	For stating Leuchars is North of Camborne oe eg Camborne is further south		
	A1ft	M1 must be awarded. A correct conclusion and correct comment about the means ft their mean in (b) Allow No		
	SC	for No and there are only 2 places used so there is insufficient data. Mark as M0A1 on epen		

Qu 18	Scheme Marks $^{\text {a }}$ AO
(a) (b)	Negative B1 1.2 Marc's suggestion is compatible because it's negative correlation (1) 2.4 B1 (1) 2.2
	Notes
(a) (b)	B1 for "negative" Allow "slight" or "weak" etc Allow a description e.g. "as x increases y decreases" or in context e.g. "people with longer last names tend to have shorter first names" A comment of "negative skew" is B0 Need to see distinct or separate responses for (a) and (b) B1 for a comment that suggests data is compatible with the suggestion and a suitable reason such as "there is negative correlation" or a description in x and y or in context or the points lie close to a line with negative gradient or draw line $y=x$ and state that more points below the line so supports (or is compatible with) his suggestion A reason based on just a single point is B0 e.g. " 11 letters in last name has only 5 in first name"

Qu 19	Scheme	Marks	AO
(a)	Hectopascal or hPa	B1	1.2
(b)	$\bar{x}=\bar{y}+1010 \quad \text { or } \quad \frac{214}{30}+1010$	M1	1.1b
	$=1017.1333 \ldots \text { awrt } \underline{1017}$	A1 (2)	1.1b
(c)	$\sigma_{x}=\sigma_{y}$ (or statement that standard deviation is not affected by this type of coding)	M1	3.1b
	$\left[\sigma_{y}=\right] \sqrt{\frac{5912}{30}-(" 7.13[33 \ldots] ")^{2}} \text { or } \sqrt{146.1822 . .}$	M1	1.1b
	$\text { 12.0905... awrt } 12.1$	A1 (3)	1.1b
(d)	High pressure (since approx. mean +sd) so clockwise Locations are (from North to South): Leuchars, Heathrow, Hurn	B1	2.4
	Wind direction is direction wind blows from So: Heathrow (NE) Hurn (E) Leuchars (W)		2.2a
		(8 marks)	
	Notes		
FYI	$1 \mathrm{hPa}=100 \mathrm{~Pa} ; 10 \mathrm{hPa}=1 \mathrm{kPa} ; 1 \mathrm{~Pa}=$		
(a)	B1 for "hectopascal" or hPa (condone pascals, allow millibars or mb) o.e. Do NOT allow kPa or kilopascals or Pa on its own		
(b)	M1 for a strategy to find \bar{x} Allow an attempt to find $\sum x$ that gets as far as $\sum x=\sum y-30 \times 1010[=30514]$ A1 for awrt 1017 (accept 1020) [Ignore incorrect units]		
(c)		correct fin ct) 46 for 146 swer to (b)	ans) 1822..
$\begin{array}{r} \text { Final } \\ \text { answer } \end{array}$	Final ans of awrt 12.1 scores 3/3 but if they then adjust for x e.g. add 1010 (M0M1A1)		
(d)	$1^{\text {st }} \mathrm{B} 1$ for at least one of these reasons (these 2 lines) clearly stated (may see diagram) Need "high pressure" and "clockwise" to score on $1^{\text {st }}$ line Contradictory statements B0 e.g. correct N~S list but say "anticlockwise" $2^{\text {nd }} \mathrm{B} 1$ (indep of $1^{\text {st }} \mathrm{B} 1$) for deducing the 3 correct directions either in the table or stated as above If the answers in table and text are different we take the table (as question says)		

Qu 21	Scheme	Marks	AO
(a)	[68-7 =] $6 \underline{1}$ (only)		1.1b
		(1)	
(b)	$[25-14]=\underline{\mathbf{1 1}}$		1.1b
		(1)	
(c)	$\left[\mu \text { or } \bar{x}=\frac{607.5}{27}=\right]=\underline{\mathbf{2 2 . 5}}$	B1	1.1b
		(1)	
(d)	$\sigma=\sqrt{\underline{17623.25}-" 22.5^{\prime 2}}$ or $\sqrt{146.4629}$		
	$\sigma=\sqrt{\frac{1}{27}-" 22.5^{2}} \text { or } \sqrt{146.4629 \ldots}$	M1	1.1b
	$=12.10218 \ldots$ awrt $\underline{\mathbf{1 2 . 1}}$		1.1b
		(2)	
(e)	$\mu+3 \sigma=$ "22.5"+3×"12.1..." = awrt 59 so only one outlier	B1ft	1.1b
		(1)	
(f)	Median increases implies that both values must be > 20	M1	3.1b
	Mean is the same means that $a+b=45$	M1	1.1b
	So possible values are: e.g. $b=21$ and $a=24$ (o.e.)	A1	2.2b
		(3)	
(g)	Both values will be less than 1 standard deviation from the mean and so the standard deviation of all 29 values will be smaller		2.4
		(1)	
		(10 marks)	
	Notes		
(a)	B1 for correctly interpreting the box plot to find the range (more than 1 answer is B0)		
(b)	B1 for correct understanding of IQR and answer of 11		
(c)	B1 for 22.5 only (or exact equivalent such as $\frac{45}{2}$). Allow 22 mins and 30 secs.		
(d)	M1 for a correct expression including square root. Allow $\sqrt{146}$ or better. Ft their mean A1 for awrt 12.1 NB Allow use of $s=12.3327 \ldots$ or awrt 12.3		
(e)	B1ft for a correct calculation or value based on their μ and σ and compatible conclusion		
(f)	$1^{\text {st }}$ M1 Correct start to the problem and a correct statement about the values based on median Allow if their final two values are both >20		
	$2^{\text {nd }} \mathrm{M} 1$ for a correct explanation leading to equation $a+b=45$ (o.e. e.g. equidistant from mean) Allow if their final two values sum to 45		
	A1 for a correct pair of values (both > 20 with a sum of 45) and at least some attempt to explain how their values satisfy at least one of the conditions (both >20 or $a+b=45$). Ignore $a=$ or $b=$ labels The values for a and b do not need to be integers.		
NB			
(g)	B1 for a correct explanation. Must mention that both values are less than 1 sd (ft their answer to (d)) from the mean		

Question	Scheme	Marks	AOs
22(a)	$\mathrm{IQR}=26.6-19.4[=7.2]$	B1	2.1
	$19.4-1.5 \times$ ' 7.2 ' [=8.6] or $26.6+1.5 \times$ ' 7.2 ' [= 37.4]	M1	1.1b
	Plotting one upper whisker to 32.5 and one lower whisker to 8.6 or 9.1	A1	1.1b
	Plotting 7.6 and 8.1 as the only two outliers	A1	1.1b
		(4)	
(b)	October (since it is the month with the coldest temperatures between May and October in Beijing)	B1	2.4
		(1)	
(c)	$\left[\sigma=\sqrt{\frac{4952.906}{184}} \quad\right.$ or e.g. $[\sigma=] \sqrt{\frac{S_{x x}}{n}}=5.188 . . . \quad\left[=5.19^{*}\right]$	B1cso*	1.1b
	(1)		
(6 marks)			
Notes			
(a)	B1: for a correct calculation for the IQR (implied by 10.8 or 8.6 or 37.4 seen) M1: for a complete method for either lower outlier limit or upper outlier limit (allow ft on their IQR) (may be implied by the $1^{\text {st }}$ A1 or a lower whisker at 8.6) A1: both whiskers plotted correctly (allow $1 / 2$ square tolerance) A1: only two outliers plotted, 7.6 and 8.1 (must be disconnected from whisker) NOTE: A fully correct box plot with no incorrect working scores $4 / 4$		
(c)	B1cso*: Correct expression with square root or correct formula and 5.188 or better Allow a complete correct method finding $\sum x^{2}=$ awrt 98720 and $\sigma=\sqrt{\frac{987159 . \ldots}{184}-\left(\frac{4153.6}{184}\right)^{2}}$		

Qu 23	Scheme	Marks	AO
(a)	[$58-26=] \underline{\mathbf{3 2}}(\mathrm{min})$	B1	1.1 b
(b)	$\begin{aligned} & \mu=\frac{4133}{95}=43.505263 \ldots \\ & \sigma_{x}=\sqrt{\frac{202294}{95}-\mu^{2}}=\sqrt{236.7026 \ldots} \end{aligned}$	B1	1.1 b
		M1	1.1 b
		A1	1.1 b
(c)	There are outliers in the data (or data is skew) which will affect mean and sd Therefore use median and IQR		2.4
			2.4
(d)	Value of 20, LQ at 26 and outliers will not change or state that median and upper quartile are the values that do change More values now below 40 than above so Q_{2} or Q_{3} will change and be lower Both Q_{2} and Q_{3} will be lower	B1	1.1 b
		M1	2.1
		A1	2.4
		(3)	
		(9 marks)	
	Notes		
(b)	B1 for a correct mean (awrt 43.5)		
	M1 for a correct expression for the sd (including $\sqrt{ }$)ft their mean A1 for awrt 15.4 (Allow $s=15.4667 \ldots$ awrt 15.5)		
(c)	"extreme values"/"anomalies" OK May be implied by saying median and IQR not affected by.. We need to see mention of "outliers", "skewness" and the problem so "data is skewed so use median and IQR" is B0 unless mention that they are not affected by extreme values or mean and standard deviation can be "inflated" by the positive skew etc $2^{\text {nd }} \mathrm{dB} 1$ dep on $1^{\text {st }} \mathrm{B} 1$ for therefore choosing median and IQR		
(d)	B1 for identifying 2 of these 3 groups of unchanged values or stating only Q_{2} and Q_{3} change M1 for explaining that median or UQ should be lower. E.g. the 2 values have moved to below 40 (or 58) and therefore more than 50% below 40 or (more than 75% below 58) or an argument to show that the other 3 values are the same. (o.e.) Allow arrows on box plot provided statement in words about increased $\%$ below 40 or 58 etc A1 for stating median and UQ are both lower with clear evidence of M1 scored [If lots of values on 40 then median might not change but, since two values do change then UQ would change. If this meant that 92 became an outlier then we would have a new value for upper whisker and an extra outlier so effectively 3 values are altered. So median changes]		

Notes:

(a) B1: for correct width

M1: for clear attempt to relate the area to frequency. May be implied by their height \times their width $=7.2$
A1: for height $=3.6 \mathrm{~cm}$
(b) M1: for $\frac{22}{35} \times 4$ or $\frac{22.5}{35} \times 4$

A1: awrt 250.5 or 250.6
(c) B1: awrt 250.4

M1: for a correct expression for σ or \boldsymbol{s}, can ft their mean
A1: awrt 4.0 (allow $s=$ awrt 4.0)

Question	Scheme	Marks	AOs
25(a)	Not suitable with a correct reason eg the points do not lie close to a straight line. there appear to be two populations if G and H were removed it appears to be a negative correlation	B1 (1)	1.2
(b)	Beijing and Jacksonville	B1	2.2a
		(1)	
(c)	Beijing and Jacksonville are the closest to the equator	B1	2.4
		(1)	
(d)	Use data from one place.	B1	2.4
		(1)	
(4 marks)			
Notes:			
(a) B1: for a correct statement using the data in the table			
(b) B1: both Beijing and Jacksonville - they do not need to be attached to G and H correctly.			
(c) B1: for the idea they are near the equator dependent only Beijing or Jacksonville being given in part(c)			

Question	Scheme	Marks	AOs
26(a)	Area $=8 \times 1.5=12 \mathrm{~cm}^{2}$ Frequency $=8$ so $1 \mathrm{~cm}^{2}=\frac{2}{3}$ hour (0.e.)	M1	3.1a
	Frequency of 12 corresponds to area of 18 so height $=18 \div 2.5=7.2(\mathrm{~cm})$	A1	1.1b
	Width $=5 \times 0.5=2.5(\mathrm{~cm})$	B1cao	1.1b
		(3)	
(b)	$[\bar{y}=] \frac{205.5}{31}=$ awrt 6.63	B1cao	1.1b
	$\begin{aligned} & {\left[\sigma_{y}=\right] \sqrt{\frac{1785.25}{31}-\bar{y}^{2}}=\sqrt{13.644641}=\text { awrt } 3.69} \\ & \text { allow }[s=] \sqrt{\frac{1785.25-31 \bar{y}^{2}}{30}}=\text { awrt } 3.75 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(3)	
(c)	Mean of Heathrow is higher than Hurn and standard deviation smaller suggesting Heathrow is more reliable	M1	2.4
	Hurn is South of Heathrow so does not support his belief	A1	2.2b
		(2)	
(d)	$\bar{x}+\sigma \approx 10.3$ so number of days is e.g. $\frac{(11-" 10.3 ")}{3} \times 8(+5)$	M1	1.1b
	$=6.86$ so 7 days	A1	1.1b
		(2)	
(10 marks)			
Notes:			
(a) M1: for clear attempt to relate the area to frequency. Can also award if their height \times their width $=18$ A1: \quad for height $=7.2(\mathrm{~cm})$			
(b) M1: for a correct expression for σ or s, can ft their value for mean A1: \quad awrt 3.69 (allow $s=3.75$)			
(c) M1: for a suitable comparison of standard deviations to comment on reliability. A1: for stating Hurn is south of Heathrow and a correct conclusion			
(d) M1: for a correct expression - ft their $\bar{x}+\sigma \approx 10.3$ A1: for 7 days but accept 6 (rounding down) following a correct expression			

Question Number	Scheme	Marks
27. (a)	($3-6$) mins has width 4 and is 2 cm , ($11-15$) mins has width 5 so is $\underline{\mathbf{2 . 5}(c m)}$ ($3-6$) mins has frequency of 38 and area of $19 \mathrm{~cm}^{2}$ so 2 people(per cm^{2})(o.e.) or frequency density $=\frac{38}{4}=9.5=$ height $(11-15)$ mins has area of $2.5 \times h \mathrm{~cm}^{2}$ so $h=\frac{12}{2 \times 2.5}=\underline{\mathbf{2 . 4}}(\mathrm{cm})$ allow $\frac{12}{5}$	$\begin{array}{ll}\text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \\ & \\ \end{array}$
(b)	$\begin{aligned} Q_{2}=(6.5)+\frac{12}{25} \times 2 \text { or }(8.5)-\frac{13}{25} \times 2 & \\ & =\quad \text { awrt } \underline{\mathbf{7 . 4 6}} \end{aligned}$	M1 A1
(c)	$\begin{equation*} \sum \mathrm{f} x=38 \times 4.5+\ldots+7 \times 18=811.5 \text { and } \bar{x}=\frac{811.5}{100},=\operatorname{awrt} \underline{\mathbf{8 . 1 2}} \tag{2} \end{equation*}$	M1, A1 (2)
(d)	$\begin{equation*} \sigma=\sqrt{\frac{8096.25}{100}-\bar{x}^{2}}=\sqrt{80.9625-" 65.85 \ldots . . "}=\sqrt{15.1(0) \ldots},=\operatorname{awrt} \underline{\mathbf{3 . 8 9}} \tag{2} \end{equation*}$	M1, A1 [Tot 9]
	Notes	
(a)	B1 for width of 2.5 (cm) allow $\underset{\underset{2}{5}}{5}$ M1 for 2 people per cm^{2} or a correct numerical equ'n for h or their width \times height $=6$ A1 for height of 2.4 (cm) [If just see 2.4 and 2.5 it must be clear which is h and which w]	
(b)	M1 for a correct expr'n with sign (ignoring end point). Condone 12.5 for use of ($n+1$) A1 for awrt 7.46 (or 7.5 if using $(n+1)$ but must see evidence of $(n+1)$ approach)	
(c)	M1 for an attempt at $\Sigma \mathrm{fx}$ (i.e. full expression or $650<\Sigma \mathrm{f} x<950$) and division by 100 $\Sigma \mathrm{f} x$ may be in the table. A1 for 8.115 or awrt 8.12 (allow 8.11) [May be in (d) but must be labelled e.g. $\bar{x}=\ldots$...]	
(d)	M1 for a correct expression (ft their mean) including $\sqrt{ }$. Allow s leading to $\sqrt{15.26 \ldots}$ A1 for awrt 3.89 Allow use of $s=$ awrt 3.91 [Correct ans. only to (c) or (d) full marks]	

Question Number	Scheme	Marks
28. (a)	$\begin{array}{r} \text { Width }(w)=\underline{\mathbf{4}} \underline{\mathrm{cm}} \\ \text { Areas: } 16 \mathrm{~cm}^{2} \text { represents } 32 \text { offices (o.e.) or their } h=\frac{6}{\text { their } w}(3 \mathrm{sf}) \underline{\text { or }} \frac{8}{3.2} \times 0.6 \\ \text { So height }(h)=\underline{\mathbf{1} .5} \mathrm{~cm} \end{array}$	B1 M1 A1
(b)	$\text { e.g. }(45)+\frac{20}{25} \times 5 \text { or }(50)-\frac{5}{25} \times 5 \quad \text { (o.e.); } \quad=(\mathfrak{£}) \underline{49}$	M1; A1
(c)	$\frac{\sum \mathrm{fy}}{90}=\frac{4420}{90}, \quad=(£) \underline{49.11} \quad$ (or better) \quad (Allow $\frac{442}{9}$ or $49 \frac{1}{9}$)	(2) M1, A1
(d)	$\sqrt{\frac{226687.5}{90}-\bar{x}^{2}}=\sqrt{106.8487 \ldots}, \quad=10.3367 \quad=\operatorname{awrt}(£) \underline{\mathbf{1 0 . 3}}$	(2) M1, A1
		$[9]^{(2)}$
	Notes	
(a)	M1 for a correct calculation of areas $1 \mathrm{~cm}^{2}=2$ offices (o.e.) A1 for $h=1.5 \mathrm{~cm}$ (Correct answer only 2/2)	
(b)	M1 for a correct expression without end point. Allow " $n+1$ " so e.g. (45) $+\frac{20.5}{25} \times 5$ A1 for 49 or, if $(n+1)$ used, allow 49.1 (Correct answer of 49 only 2/2)	
(c)	M1 for an attempt at $\frac{\sum_{90} \mathrm{fy}}{90}$ with at least 3 correct products of $\sum \mathrm{fy}$ or $4000 \leq \sum \mathrm{fy} \leq 5000$ A1 for 49.11 (Allow 49.1 from correct working) (Correct answer only $2 / 2,49.1$ only M1A0)	
(d)	M1 for a correct expression including $\sqrt{ }$, ft their mean. Allow use of s A1 for awrt 10.3 Allow $s=$ awrt 10.4 if clearly used. [NB use of 49.1 gives $10.389 \Rightarrow$ A0 (Correct answer of 10.3 with no working is $2 / 2$)	

Question Number	Scheme	Marks
31	$\begin{aligned} \text { mean } & =\frac{60.8+20}{1.4} \quad \text { or } \quad 60.8=1.4 x-20 \quad \text { (o.e.) } \\ & =57.7142 \ldots \end{aligned} \quad \begin{aligned} \text { awrt } 57.7 \end{aligned} \quad \begin{aligned} \text { standard deviation } & =\frac{6.60}{1.4} \quad \text { or } \quad 6.60=1.4 x \\ & =4.7142 \ldots \end{aligned} \quad \text { awrt } 4.71 .$	M1 A1 M1 A1 (4) Total 4
	Notes	
	$1^{\text {st }}$ M1 sub. 60.8 for y into a correct equation. Allow use of x or any other letter or expression for mean $1^{\text {st }}$ A1 for awrt 57.7 or $\frac{404}{7}$ (o.e.). Correct answer only is $2 / 2$ $2^{\text {nd }}$ M1 sub. 6.60 or 6.6 for y and ignoring the 20 Allow use of x or any other letter or expression for st. dev. $6.60^{2}=1.4^{2} x^{2}$ is M0 until we see them take a square root. $2^{\text {nd }}$ A1 for awrt 4.71 or $\frac{33}{7}$ (o.e.). Correct answer only is $2 / 2$	

Question	Scheme	Marks
34. (a)	$\sum \mathrm{ft}=4837.5$ (allow 4838 or 4840)	B
	$\text { Mean }=\frac{" 4837.5 "}{200}=24.1875 \quad \text { awrt } \quad \underline{\mathbf{2 4 . 2}} \text { or } \frac{387}{16}$	M1 A1
	$\sigma=\sqrt{\frac{134281.25}{200}-\left(\frac{4837.5}{200}\right)^{2}}$	M1
	$=9.293 \ldots \ldots . . \quad$ (accept $s=9.32) \quad$ awrt $\underline{\text { 9.29 }}$	A1 (5)
(b)	$\mathrm{Q}_{2}=[20.5]+\frac{(100 / 100.5-62)}{88} \times 5=22.659 \ldots . \quad \text { awrt } \underline{\mathbf{2 2 . 7}}$	M1 A1
		(2)
(c)	$\mathrm{Q}_{1}=10.5+\frac{(50 / 50.25)}{62} \times 10[=18.56] \quad(*) \quad(n+1 \text { gives } 18.604 \ldots)$	B1 cso
		(1)
(d)	$\mathrm{Q}_{3}=25.5$ (Use of $n+1$ gives 25.734...)	B1 B1 ft
	IQR = 6.9 (Use of $n+1$ gives 7.1)	(2)
(e)	The data is skewed	B1
(f)	Mean decreases and st. dev. remains the same. [Must mention mean and st. dev.] (from(a))	B1
	The median and quartiles would decrease. [Must refer to median and at least Q_{1}.] (b)(c))	
	The IQR would remain unchanged (from (d))	$\begin{aligned} & \text { B1 (3) } \\ & \text { (14 marks) } \end{aligned}$
Notes		
(a)	Correct answers only score full marks in each part except (c)	
	B1 for 4837.5 or 4838 or 4840 seen.	
	If no $\sum \mathrm{ft}$ seen (or attempt at $\sum \mathrm{ft}$ seen), B1 can be implied by a correct mean	$\text { wrt } 24.2$
	$1^{\text {st }}$ M1 for attempt at their $\frac{\sum^{\mathrm{ft}}}{\sum^{\mathrm{f}}}$ allow 1 sf so $\sum \mathrm{f}=$ awrt 200 and $\sum \mathrm{ft}=$ awrt Or award M1 for a clear attempt at mean where at least 4 correct products of \sum $2^{\text {nd }} \mathrm{M} 1 \quad$ for correct expression including square root seen. Follow through their m Allow a transcription error in 134281.25 but not an incorrect re-calculatio	000. are seen n.
(b)	M1	
(c)	B1cso for a fully correct expression including end point. NB Answer is given. Allow use of $(n+1)$ giving $50.25 \ldots$ but use of 50.5 scores B0	
(d)	$1^{\text {st }} \mathrm{B} 1 \quad$ for 25.5 (or awrt 25.7 using $n+1$) $2^{\text {nd }}$ B1ft for their Q_{3} - their Q_{1} (or 18.6) (provided >0) Accept awrt 2sf. Correct ans.	scores $2 / 2$
(e)(f)	B1 Must mention that the data is skewed or not symmetrical. Do not award for "outliers"	
	$\begin{aligned} & 1^{\text {st }} \text { B1 } \\ & 2^{\text {nd }} \text { B1 } \\ & \text { for one correct comment from the above. May refer to parts (a), (b), (c) or (c } \\ & 3^{\text {rd }} \text { B1 } \\ & \text { for all } 3 \text { correct comments from the above } \\ & \end{aligned}$	

Question Number	Scheme	Marks
$39 \text { (a) }$ (b)	14, 5	M1 A1 (2)
	$21+45+3=69$	M1 A1
		(2)
		Total 4
NOTES		
(a)	M1 for 2×7 or 14 or 5×1 or 5	
	A1 for both 14 and 5	
(b)	M1 for 21+45+(0<frequency <9)	
	A1 for 69 only.	
	69 no working, award M1A1 Incorrect answer with no working M0A0	

Question Number	Scheme ${ }^{\text {S }}$ Marks
40. (a) (b) (c)	
	Notes
(a) (b) (c)	In parts (a) to (c) a correct answer with no working scores full marks for that value. B1 for 10.5 which may be in the table M1 for a correct ratio and times 3, ignore the lower boundary for this mark A1 for awrt 15.9 (if $n=30$ used) or awrt 16.1 (if $n+1=31$ is used) $1^{\text {st }}$ M1 for attempt at $\sum \mathrm{f} x$ (this may be seen in the table as $\mathrm{f} x$: $10,73.5,70,136,82,106$ [condone 1 slip] or awrt 500) and use of $\frac{\sum \mathrm{f} x}{\sum \mathrm{f}}$ or a correct expression for mean. $1^{\text {st }}$ A1 for awrt 15.9 $2^{\text {nd }}$ M1 for an attempt at σ or σ^{2}, can ft their mean, condone mis-labelling $\sigma^{2}=\sqrt{\ldots}$ etc Allow use of their $\sum \mathrm{f} x^{2}$ (awrt 9000) $2^{\text {nd }}$ A1ft for a correct expression including square root, ft their mean but not their $\sum \mathrm{f} x^{2}$. No label or correct label is OK but wrong label (e.g. $\sigma^{2}=\sqrt{\ldots}$) is A0 $3^{\text {rd }}$ A1 for awrt 5.78 , allow $s=$ awrt 5.88. SC Allow M1A1A0 for awrt 5.79 if \bar{x} correct

Question Number	Scheme Marks
42 (a) (b) (c) (d)	2.75 or $2 \frac{3}{4}, 5.5$ or 5.50 or $5 \frac{1}{2}$ B1 B1 (2) Mean birth weight $=\frac{4841}{1500}=3.2273$ awrt 3.23 M1 A1 (2) Standard deviation $=\sqrt{\frac{15889.5}{1500}-\left(\frac{4841}{1500}\right)^{2}}=0.421093 \ldots$ or $s=0.4212337 \ldots$ M1 A1ft A1 $Q_{2}=3.00+\frac{403}{820} \times 0.5=3.2457 \ldots$ (allow $403.5 \ldots \ldots \rightarrow 3.25)$ M1 A1 (3) Total [9]
(b) (c) (d)	M1 for a correct expression for mean. Answer only scores both. M1 for a correct expression (ft their mean) for sd or variance. Condone mis-labelling eg sd=... with no square root or no labelling $1^{\text {st }}$ A1ft for a correct expression (ft their mean) including square root and no mis-labelling Allow $1^{\text {st }} \mathrm{A} 1$ for $\sigma^{2}=0.177 \ldots \rightarrow \sigma=0.42 \ldots$ $2^{\text {nd }} A 1$ for awrt 0.421 . Answer only scores $3 / 3$ M1 for a correct expression (allow 403.5 i.e. use of $n+1$) but must have 3.00, 820 and 0.5 A1 for awrt 3.25 provided M1 is scored. NB 3.25 with no working scores $0 / 2$ as some candidates think mode is 3.25 .

Question Number	Scheme	Marks
(a) (b)	$1(\mathrm{~cm})$ cao $10 \mathrm{~cm}^{2}$ represents 15 $10 / 15 \mathrm{~cm}^{2}$ represents 1 or $1 \mathrm{~cm}^{2}$ represents 1.5 Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5}$ Require $\mathrm{x} \frac{2}{3}$ or $\div 1.5$ $\text { height }=6(\mathrm{~cm})$	B1 M1 A1
Notes	If 3(a) and 3(b) incorrect, but their (a) x their (b)=6 then award B0M1A0 3(b) Alternative method: $\mathrm{f} / \mathrm{cw}=15 / 6=2.5$ represented by 5 so factor x 2 award M1 So $\mathrm{f} / \mathrm{cw}=9 / 3=3$ represented by $3 \times 2=6$. Award A1.	[3]

Question Number	Scheme	Marks
(a) (b)		M1 A1 (2) B1 B1 M1 B1 M1 A1 (6)
Notes	4(a) Statement of $17+\frac{\text { freq into class }}{\text { class freq }} \times \mathrm{cw}$ and attempt to sub or $\frac{m-17}{19-17}=\frac{60(.5)-58}{87-58}$ or equivalent award M1 $\mathrm{cw}=2$ or 3 required for M1. 17.2 from $\mathrm{cw}=3$ award A0. 4(b) Correct $\sum \mathrm{f} x$ and $\sum \mathrm{f} x^{2}$ can be seen in working for both B1s Midpoints seen in table and used in calculation award M1 Require complete correct formula including use of square root and attempt to sub for M1. No formula stated then numbers as above or follow from (b) for M1 $\left(\sum f x\right)^{2}, \sum(f x)^{2}$ or $\sum f^{2} x$ used instead of $\sum f x^{2}$ in sd award M0 Correct answers only with no working award $2 / 2$ and $6 / 6$	

48.	Width 1 1 4 2 3 5 3 12 Freq. Density 6 7 2 6 5.5 2 1.5 0.5 0.5×12 or 6 Total area is $(1 \times 6)+(1 \times 7)+(4 \times 2)+\ldots .,=70$ $(90.5-78.5) \times \frac{1}{2} \times \frac{140}{\text { their } 70}$ "70 seen anywhere" Number of runners is 12	M1 A1 M1 B1 A1 (5) Total 5 marks
	$1^{\text {st }}$ M1 for attempt at width of the correct bar $(90.5-78.5)$ [Maybe on histogram or in table] for 0.5×12 or 6 (may be seen on the histogram. Must be related to the area of the bar above $78.5-90.5$. $1^{\text {st }}$ A1$2^{\text {nd }}$ M1 \quadfor attempting area of correct bar $\times \frac{140}{\text { their } 70}$ B1 $2^{\text {nd }}$ A1 for 70 seen anywhere in their working for correct answer of 12. Minimum working required is $2 \times 0.5 \times 12$ where the 2 should come from $\frac{140}{70}$ Beware $90.5-78.5=12$ (this scores M1A0M0B0A0)Common answer is $0.5 \times 12=6$ (this scores M1A1M0B0A0)If unsure send to review e.g. $2 \times 0.5 \times 12=12$ without 70 being seen	

