T EXPERT TUITION

Maths Questions By Topic:

Data Presentation & Interpretation

Mark Scheme

A-Level Edexcel

ر*ب* 0207 060 4494

www.expert-tuition.co.uk

💻 online.expert-tuition.co.uk

≥ enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents
New Spec
Paper 2 (AS) Page 1
Paper 3 (A2) Page 16
<u>Old Spec</u>
Statistics 1 Page 27

Qu	Scheme	Marks	AO
1. (a)	Negative (since gradient of regression line is negative)	B1	1.2
		(1)	
(b)	cm/day (o.e. e.g. $cm day^{-1}$)	B1	2.2a
		(1)	
(c)	$3 \times [+]1.1$	M1	34
	= decrease of 2.2 [cm]		J. T 1 1h
	= decrease of 3.3 [cm]	$\frac{A1}{2}$	1.10
		(2)	
(d)	19 is (well) outside the range $[1, 10]$ or involves extrapolation (o.e.)		
(4)	so (possibly) unreliable/ inaccurate (o.e.)	B1	2.4
		(1)	
		(5 mark	(s)
	Notes		
	Answers may be written within the question.		
(a)	B1 for stating "negative".		
	Allow a correct interpretation e.g. as t increases then p decreases (o.e.) [ig	gnore any	values]
	B0 for contradictory statements e.g. "negative correlation since as <i>t</i> increa	ses p incr	eases"
(D)	B1 for a correct description of the units (allow fraction, /, or "per" and allow	"d" for "d	iay")
(a)	M1 for attempt at a calculation (allow use of $t = r$ and $t = r + 3$ followed by s	ubtraction	n
(0)	that should lead to 3.3)	ubtraction	1
	A1 for correct description must include word "decrease" (o.e.) and value "3.	3"	
	Just seeing: $22-1.1 \times 3 = 18.7$ is M0A0 BUT going on to subtract 18.7 fr	rom 22 sc	ores M1
	Reaching 3.3 and stating "decrease" or "reduced" (o.e.) will score the A1	too	
	An answer of -3.3 without a word describing decrease (o.e.) will just sco	ore M1A0	1
(d)	B1 for stating "unreliable" (o.e.) and giving a suitable reason based on idea of	of extrapo	lation
	Must have both statement about reliability and suitable reason e.g. $t = 19$	is too bi	g <u>or</u>
	(Model is based on) t between 1 and 10 (only) [since this implies $t = 19$ is	s too big]	
	Allow e.g. (model) "may not work" because of "extrapolation"	·	
	Just saying "no" since "extrapolation" is BU but "unreliable" (o.e.) since "ex	trapolatio	$5n^{11}$ is B1

Qu	Scheme	Mark	AO	
2. (a)	Class Frequency Cum. Fr	equency		
	0-1 15 1	5 M1	2.1	
	1-2 35 5	0		
	2-3.5 75 12	.5 A1	1.1b	
	3.5 - 4.5 55 18	0		
	$\left[(0, -1)(3, 5) + \frac{256}{2} - (125) \times (4, 5, -3, 5) \right]$ or $(4, 5) - (4, 5)$	$180'' - \frac{256}{2} \times 1$ M1	2.1	
	$\begin{bmatrix} [\mathcal{Q}_2 -](3.5)^+ & [55]'' \\ [55]'' & [4.5 - 3.5)' & \underline{0!} \\ [4.5] & [4.5]^{-1} \end{bmatrix}$	"55"	2.1	
	= 3.5545 awrt <u>3.55</u>	A1	1.1b	
(h)	(8)	(4)		
(0)	Need area under curve to be 256 so $\int kx(8-x)^2 kx(8-x)$	dx = 256 M1	3.1a	
		,		
	$\begin{bmatrix} x^3 \end{bmatrix}^{(8)}$			
	$\begin{vmatrix} k \end{vmatrix} 4x^2 - \frac{\pi}{3} \end{vmatrix} = 256$	M1	1.1b	
	$\left\{k\left\lfloor4\times8^2-\frac{8}{3}\times8^2\right\rfloor=256=\right.$	$\Rightarrow \} \underline{k=3} \qquad \qquad A1$	1.1b	
		(3)		
(c)	[By symmetry median =] $\underline{4}$		2.2a	
		(1) (8 ma	rks)	
	Note	\$ \$	115)	
(a)	1 st M1 for an attempt to form frequency table (at	least 1 st 4 rows and freq or cum free	seen	
	must have the frequency of 75 correct and can condone one error/omission in 15, 35, 55)			
	Frequencies or cum freq may be seen on bars of the histogram			
	1° A1 for identifying class, freq and cum freq (i.e. highlighted values from the table) or sight of 3.5-4.5 freq of 55 and "128" = 125 or $180 = "128"$			
	or diagram with 125, "128", 180, 3.5 & 4.5			
	May be implied by values in 2^{nd} M1expression			
	2^{nd} M1 for a correct calculation for Q_2 (condone error in end point e.g. 3.45 or 3.49 etc)			
	Can ft their "125" (provided > 100) and their "55"			
	Allow use of $(n + 1)$, usually see $128.5 - \dots$ leading to $3.5636\dots$ or awrt 3.56			
	2 A1 awit 5.55 but 5.555 is life (allow 5.50 ll	$(n + 1)$ being used need sight of $\frac{1}{2}$	$\frac{1}{2}$ etc)	
		500165 4/4		
(b)	1 st M1 for identifying the need to find the area un	der the curve by integrating		
	2^{nd} M1 for correct integration and = 256 (condone	missing limits)		
	A1 for $k = 3$ [May see use of calculator for	or the integration so score 2 nd M1A1	together]	
(a)	NP The answer to next (a) may h	a writton within the question		
	B1 for 4 (Independent of their value of k but	must be their "x" value)		
	NB when $k = 0.25$ and $x = 4$ gives $y = 4$ so must be clear they intend median = 4			
	The statement in part (c) " $k = 4$ " is B0	-		

	Scheme	Marks	AO
3. (a)	Accept 990 to 1030 inclusive	B1	1.1b
(b)	Any range between 10 and 50 inclusive	(1) B1	1.1b
		(1)	
		(2 mark	s)
	Notes		
(a)	B1 (Median pressures usually around 1000~1020)	[LD	S mark]
(b)	B1 Any answer in this range	[LD	S mark]
	Allow answers in the form $a \sim b$ where $ b-a $ is between 10 and 50		
	Also allow the case where <u>both</u> a and b are in [10, 50]		

4. (a)From [5,20) fd = 3 or 1 large square = 2.5 passengers o.e.M12.4Correct bar above [0, 5)A11.1Correct bar above [20, 40)A11.1(b)For [40, 65) 130 passengers or for [65, 80) 60 passengersM12.1For attempt to find total number of passengers = 331A1ft1.1[Median =] $40 + \frac{\frac{1}{2}("331") - 140}{"130"} \times 25$ or $65 - \frac{270 - \frac{1}{2}("331")}{"130"} \times 25$ (o.e.)M11.1[Median =] $40 + \frac{\frac{1}{2}("331") - 140}{"130"} \times 25$ or $65 - \frac{270 - \frac{1}{2}("331")}{"130"} \times 25$ (o.e.)M11.1(c)Upper outlier limit = $58.9 + 1.5 \times (58.9 - 27.3) = 106$ (.3) > 90M12.4M1So oldest passenger is not an outlierA12.4(a)M1for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar.1st A11st A1for first bar [0, 5) with fd = 1 or 2 large squares high 2 nd A1for third bar with fd = 4.5 or 9 large squares high	AO		
Correct bar above $[0, 5)$ A11.Correct bar above $[20, 40)$ A11.(3)(3)(b)For $[40, 65)$ 130 passengers or for $[65, 80)$ 60 passengersM1For attempt to find total number of passengers = 331 A1ft1. $[Median =]$ $40 + \frac{\frac{1}{2}("331") - 140}{"130"} \times 25$ or $65 - \frac{270 - \frac{1}{2}("331")}{"130"} \times 25$ (o.e.)M11. $[Median =]$ $40 + \frac{\frac{1}{2}("331") - 140}{"130"} \times 25$ or $65 - \frac{270 - \frac{1}{2}("331")}{"130"} \times 25$ (o.e.)M11. (c) Upper outlier limit = $58.9 + 1.5 \times (58.9 - 27.3) = 106$ (.3) > 90M12.So oldest passenger is not an outlierA12. (c)	.2a		
Correct bar above [20, 40)A11.1(3)(3)(b)For [40, 65) <u>130</u> passengers <u>or</u> for [65, 80) <u>60</u> passengersM1For attempt to find total number of passengers = <u>331</u> A1ft[Median =] $40 + \frac{\frac{1}{2}("331") - 140}{"130"} \times 25$ or $65 - \frac{270 - \frac{1}{2}("331")}{"130"} \times 25$ (o.e.)M1(a)(b)(c)Upper outlier limit = $58.9 + 1.5 \times (58.9 - 27.3) = 106$ (.3) > 90M1(c)Upper outlier limit = $58.9 + 1.5 \times (58.9 - 27.3) = 106$ (.3) > 90M1(c)QM1Q2(c)Image: Constraint of the passenger is not an outlierM1(c)M1for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar.1st A1for first bar [0, 5) with fd = 1 or 2 large squares high2 nd A1for third bar with fd = 4.5 or 9 large squares high	.1b		
(b) For [40, 65) <u>130</u> passengers <u>or</u> for [65, 80) <u>60</u> passengers <u>M1</u> (3) For attempt to find total number of passengers = <u>331</u> A1ft 1.7 [Median =] $40 + \frac{\frac{1}{2}("331") - 140}{"130"} \times 25$ <u>or</u> $65 - \frac{270 - \frac{1}{2}("331")}{"130"} \times 25$ (o.e.) M1 1.7 = 44.9038 = awrt <u>44.9</u> A1 1.7 (c) Upper outlier limit = 58.9 + 1.5 × (58.9 - 27.3) = 106 (.3) > 90 M1 2.4 So oldest passenger is <u>not</u> an outlier (2) (9 marks) (2) (9 marks) (2) M1 for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar. 1 st A1 for first bar [0, 5) with fd = 1 <u>or</u> 2 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 3 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 3 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high 3 nd A1 for third bar with 4 nd A1 for	.1b		
(b) For [40, 65) <u>130</u> passengers <u>or</u> for [65, 80) <u>60</u> passengers M1 2. For attempt to find total number of passengers = <u>331</u> A1ft 1. [Median =] $40 + \frac{\frac{1}{2}("331") - 140}{"130"} \times 25$ <u>or</u> $65 - \frac{270 - \frac{1}{2}("331")}{"130"} \times 25$ (o.e.) M1 1. = 44.9038 = awrt <u>44.9</u> A1 (1) (c) Upper outlier limit = 58.9 + 1.5 × (58.9 - 27.3) = 106 (.3) > 90 M1 2.4 So oldest passenger is <u>not</u> an outlier (2) (9 marks) (2) (9 marks) (3) M1 for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar. 1 st A1 for first bar [0, 5) with fd = 1 <u>or</u> 2 large squares high 2 nd A1 for third bar with fd = 4.5 <u>or</u> 9 large squares high			
For attempt to find total number of passengers = <u>331</u> $[Median =] 40 + \frac{\frac{1}{2}("331") - 140}{"130"} \times 25 \text{ or } 65 - \frac{270 - \frac{1}{2}("331")}{"130"} \times 25 \text{ (o.e.)}$ $M1$ 1.7 $= 44.9038 = awrt 44.9$ $A1$ (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (5) (9 marks) (6 marks) (7) (9 marks) (8) $M1$ $for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar.$ $1^{st} A1$ $for first bar [0, 5)$ with fd = 1 or 2 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 2 nd A1 for third bar with fd = 4.5 or 9 large squares high 3 nd A1 for third bar with fd = 4.5 or 9 large squares high 3 nd A1 for third bar with fd = 4.5 or 9 large squares high 3 nd A1 for third bar with fd = 4.5 or 9 large squares high 3 nd A1 for third bar with fd = 4.5 or 9 large squares high 3 nd A1 for third bar with fd = 4.5 or 9 large squares high 3 nd A1 for third bar with fd = 4.5 or 9 large squares high 3 nd A1 for third bar bar dot 4 nd A1 for third bar dot 4 nd A	.1		
$\begin{bmatrix} Median = \end{bmatrix} 40 + \frac{\frac{1}{2} ("331") - 140}{"130"} \times 25 \text{ or } 65 - \frac{270 - \frac{1}{2} ("331")}{"130"} \times 25 \text{ (o.e.)} & M1 & 1.1 \\ = 44.9038 = awrt 44.9 & A1 & 1.1 \\ (4) & (4) \\ (5) & Upper outlier limit = 58.9 + 1.5 \times (58.9 - 27.3) = 106 (.3) > 90 & M1 & 2.4 \\ So oldest passenger is not an outlier & A1 & 2.4 \\ (2) & (9 \text{ marks}) \\ \hline \\ $.1b		
$= 44.9038 = awrt \underline{44.9}$ (c) Upper outlier limit = 58.9 + 1.5 × (58.9 - 27.3) = 106 (.3) > 90 So oldest passenger is <u>not</u> an outlier (d) $M1$ $A1$ (2) (2) (9 marks) (e) $Notes$ (a) M1 for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar. $1^{st} A1$ for first bar [0, 5) with fd = 1 <u>or</u> 2 large squares high $2^{nd} A1$ for third bar with fd = 4.5 <u>or</u> 9 large squares high	.1b		
(c)Upper outlier limit = $58.9 + 1.5 \times (58.9 - 27.3) = 106 (.3) > 90$ So oldest passenger is not an outlier(4) M1 A1 M2.2(2) (9 marks)(2) (9 marks)Notes(a)M1 for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar. 1^{st} A1 for first bar [0, 5) with fd = 1 or 2 large squares high 2^{nd} A1 for third bar with fd = 4.5 or 9 large squares high	.1b		
(c)Upper outlier limit = $58.9 + 1.5 \times (58.9 - 27.3) = 106 (.3) > 90$ M12.4So oldest passenger is not an outlierA12.3(2)(9 marks)(2)(2)(9 marks)(3)M1for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar. 1^{st} A1 for first bar [0, 5) with fd = 1 or 2 large squares high 2^{nd} A1 for third bar with fd = 4.5 or 9 large squares high			
So oldest passenger is <u>not</u> an outlierA12.2(2) (9 marks)Notes(a) M1 for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar. 1^{st} A1 for first bar [0, 5) with fd = 1 or 2 large squares high 2^{nd} A1 for third bar with fd = 4.5 or 9 large squares high	.4		
Image: Notes Notes (a) M1 for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar. 1 st A1 for first bar [0, 5) with fd = 1 or 2 large squares high 2 nd A1 2 nd A1 for third bar with fd = 4.5 or 9 large squares high	.2a		
Notes (a) M1 for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar. 1 st A1 for first bar [0, 5) with fd = 1 or 2 large squares high 2 nd A1 2 nd A1 for third bar with fd = 4.5 or 9 large squares high			
 (a) M1 for attempt at fd or a suitable method to deduce the scale for the histogram May be implied by one correct bar. 1st A1 for first bar [0, 5) with fd = 1 or 2 large squares high 2nd A1 for third bar with fd = 4.5 or 9 large squares high 			
May be implied by one correct bar. 1^{st} A1 for first bar [0, 5) with fd = 1 or 2 large squares high 2^{nd} A1 for third bar with fd = 4.5 or 9 large squares high			
2^{nd} A1 for third bar with fd = 4.5 or 9 large squares high	May be implied by one correct bar. $1^{st} \wedge 1$ for first her [0, 5] with fd = 1 or 2 large squares high		
(b) 1 st M1 for an attempt using their fd to find the missing frequencies. May be in table			
2^{nd} M1 for a clear attempt to find the total number of passengers (if their 130 and 60) 2^{nd} M1 for any expression/equation leading to correct O_2 Must be using 40.65 class			
2^{nd} A1 for awrt 44.9 (allow ($n + 1$) leading to 45)			
(c) M1 for finding the upper outlier limit (expression or awrt 106) and stating or implying > 9	90		
A1 dep on M1 seen for deducing NO1 an outlier			

Que	estion	Scheme	Marks	AOs
5		1 square is $\frac{78}{12 \times 3 + 3 \times 4 + 2 \times 2} = \left[\frac{78}{52} = 1.5\right]$ and $(8 \times 1 + 1 \times 8) \times "1.5"$	M1	3.1a
		24 students took less than 11 minutes	A1	1.1b
		Percentage of students = $\frac{"24"}{78 + "24" + 1 \times 8 \times "1.5" + 3 \times 4 \times "1.5"} \times 100$	M1	3.1b
		= 18.18 awrt 18%	A1	1.1b
			(4)	
Total 4			Total 4	
		Notes		
5	M1:	For clear use of frequency density to establish the fd scale and then use the area to find frequency of <11 minutes. Allow maximum of 3 errors in either the heights or widths in total if working shown. They may calculate the area using other size squares. Allow for realising they need to find the total number of squares (88) maximum of 4 errors in either the heights or widths and number < 11 minutes(16) - must have a maximum of 1 error in either the heights or widths (and not use the 78 as part of calulation)		
	A1:	For correct values seen. Allow for 88 and 16		
	M1:	For realising the need to find the total and calculating a percentage. (with numerator). Allow $(8 \times 1 + 2 \times 8) \times "1.5"$ instead of "24"+1×8×"1.5" If we allow maximum of 2 errors in either the heights or widths in the calculation Allow "their 24" / 132, oe	"their 24" orking sho on of the to	' as the wn can tal.
	A1:	awrt 18		

Que	estion	Scheme	Marks	AOs
6	6(a)	0 to 500 m	B1	1.2
			(1)	
(b)		$1100 + 1600 + 1.5 \times 1600 = 5100$	M1	2.1
		5300 > 5100 therefore outlier	A1	1.1b
			(2)	
	(c)	As the humidity increases the mean visibility decreases	B1	2.4
			(1)	
	(d)	(Hours of) sunshine	B1	2.2b
			(1)	
(5 marks)				
Notes				
(a)	B1:	For realising it is the maximum distance and distance given with correct unit	S.	
(")	<i>D</i> 11	Allow 0 to 50dm or $<$ 500m or $<$ 50dm		
(b)	M1:	Attempt to find Q_3 and the upper limit		
		5100, if a value for the point is stated it must be above 5100 otherwise it is A	0. For a	
	A1:	statement comparing and conclusion it is an outlier or it is above Q ₃ +1.5IQI	R. Allow a	ccept
		the point circled is greater than 5100 oe		
(c)	B1:	For a suitable interpretation of a negative correlation mentioning humidity and	nd visibilit	<u>y</u>
		A correct deduction that the unlabelled variable is the hours of sunshine. Con	ndone miss	sing
		hours. Do not allow if more than one variable given.		
(d)	B1:	Must be quantative variable		
		Not cloud cover since values bigger than 8		
		Not wind speed since values not integers	· .	
		Not daily mean temperature since mean temperature near to zero are unlikely	y in June	

·

Que	estion	Scheme	Marks	AOs
7	'(a)	$\sigma = \sqrt{\frac{3053}{160} - \left(\frac{692}{160}\right)^2}$	M1	1.1b
		= 0.6129 awrt 0.613	A1	1.1b
			(2)	
(b)(i)	This would have no effect as the piece of data would remain in the same class	B1	2.2a
(ii)		This would increase the standard deviation as change in mean is small and $6.4-4.6 \approx 3\sigma$ therefore estimate of standard deviation will increase	B1	2.2a
			(2)	
	(4 marks)			
		Notes		
(a)	M1:	A correct expression for σ		
	A1:	Awrt 0.613 allow $s = awrt 0.615$		
		Correct deduction with suitable explanation		
(b)	B1:	Allow range for class.		
		Do not allow there is no differences	daviation	anda
	B1:	suitable reason. Allow the value is bigger than any others in the table of	deviation	and a

Question	Scheme	Marks	AOs
8(a)	Increase by 2.8 marks	B1	3.4
		(1)	
(b)	e.g. 'the best performance is predicted for the students who never wake up'	B1	3.5b
		(1)	
		(2	2 marks)
	Notes		
(a)	 B1: Using the gradient of the regression equation must include <u>increase(o.e.)</u> and <u>2.8</u> 'Increase by approximately 3 marks' is B0 but isw if 2.8 is seen 5.6 ÷ 2 is not sufficient 		
(b)	 B1: for any suitable limitation of the model e.g. the idea that the longer you sleep the better performance in the test or only valid between 0 and 24 hours (within range of the data) or only applicable to the amount of sleep the night before the test or only takes sleep into consideration/does not include other variables (factors) or cannot score below 26.1 marks on the test or the model might not be linear over the entire range or the model might predict more than the maximum mark B0: e.g. might not be correlation between <i>s</i> and <i>p</i> or individual student performance may vary 		

Question	Scheme	Marks	AOs	
9 (a)	$\underline{\text{Tr}}(\text{ace})$ (data needs to be converted to numbers before the calculation can be carried out)	B1	2.4	
		(1)		
(b)	$[1+]\frac{138-131}{24} \times 4$	M1	2.1	
	= 2.1666 awrt <u>2.17</u>	A1	1.1b	
		(2)		
(c)	$\sigma = \sqrt{\frac{7704.1875}{184} - \left(\frac{539.75}{184}\right)^2} = 5.7676 \sigma = \text{awrt } \underline{5.77}$	M1 A1	1.1b 1.1b	
		(2)		
(d)(i)	Using class midpoints to estimate the mean assumes that the values are uniformly distributed within the class(es) .	B1	2.4	
(ii)& (iii)	This is not the case here as the majority of the data (in the first class) are 0.	B1	2.3	
	The actual mean is likely to be <u>smaller</u> than the estimate (since the first group has more values at 0 and close to 0)	dB1	2.2b	
		(3)		
(8 marks)				
Notes				
(a)	B1: Identifying tr(ace) data Ignore comments about n/a, missing data, anomalies, etc			
(b)	M1: Correct fraction $\frac{7}{24} \times 4$ allow working down $[5] - \frac{155-138}{24} \times 4$ allow a correct equation leading to a correct fraction e.g. $\frac{x-1}{5-1} = \frac{138-131}{155-131}$ for M1 Use of $(n + 1)$ with 138.75 allow $\frac{7.75}{24} \times 4$ A1: awrt 2 17 (condone $\frac{13}{2}$) awrt 2 29 from $(n + 1)$ (condone $\frac{55}{2}$)			
(c)	M1: Correct expression for standard deviation (allow mean = awrt 2.93) A1: awrt 5.77 correct answer only scores M1A1 (allow $s = 5.78$) SC: 5.76 with no working scores M1A0			
(d)(i)	B1: Explaining that data assumed to be spread evenly across each class (o.e.) e.g. The midpoint of each class is the mean of each class or all the values in the class are located at the midpoint condone normally distributed within each class			
Mark together (ii)&(iii)	condone normally distributed within each classB1: Demonstrating an understanding of the LDS that the majority of data values (in the first class) are at 0 or close to 0 (trace).ark etherdB1: (dependent upon 2 nd B1) Correct inference based on knowledge of the LDS ether&(iii)SC: If B1 is scored in (i) for 'The data are spread evenly across each class,' then in (ii) 'The data are not evenly distributed in the classes' scores B1 but in (iii) 'the actual mean is smaller' with no further justification scores B0			

Qu	Scheme	Marks	AO
10 (a)	Positive (correlation)	B1	1.2
		(1)	
(b)	Every extra point gives $\pounds 4.5(0)$ more on pay (o.e.)	B1 (1)	3.4
(α)	α = α = For points < 11 it would give pay < 0 which is ridiculous	(1) R1	24
(0)	e.g. For points < 11 it would give pay < 0 which is fidiculous	(1)	2.4
		(3 ma	rks)
	Notes		/
(a)	B1 for "positive".		
	Allow an interpretation e.g. "as points increase pay increase	s" is B1	
	Read whole answer: contradictory comments such as "posit	ive correl	ation,
	as points increase pay decreases" scores B0		
(1-)		1 : 1 1:	
(6)	BI for any correct comment conveying idea of <u>ts per point</u> and		g a
	4 5	u sign. A	ccept
	e g "every 10 points earns an extra (or increase) of £45" is I	31	
	BUT "every point earns $\pounds 4.5(0)$ " is B0 doesn't have idea of ra	te	
(c)	B1 for a suitable comment mentioning "points" or "pay" (o.e.	e.g. "amo	unt")
	or commenting on "small sample" or "range of points" use	ed to find	line
	The following examples would score B1		
	Can say that <i>n</i> points (for $n < 10.4$) would give <u>negative pay</u> so not suitable		
	Any comment suggesting that some jobs would end up with	<u>negative</u>	pay
	A small sample of size 8 may not be representative to cover	<u>ine</u>	
	A sman sample of size of may not be representative to cover	an joos	
	B0 for a focus on "qualifications" or "hours" worked only		
	The following examples would score B0		
	Some jobs require no (or low) skills or qualifications (need	l negative	e pay)

Qu	Scheme	Marks	AO	
11 (a)	$\bar{x} = 10.2 (2222)$ awrt	B1	1.1b	
	<u>10.2</u>			
		(1)	1 11	
(b)	$\sigma_x = 3.17(20227)$ awrt	BIft	I.Ib	
	$\frac{3.17}{3.17}$	D1	1.0	
	Sight of Knots <u>or</u> Kn ^{**} (condone knots/s	BI	1.2	
	etc)	(2)		
(c)	October since	B1	2.2b	
	it is windier in the autumn or month of the hurricane or	D1	2.4	
	latest month in the year	DI	2.4	
		(2)	1.0	
(d)(1)	They represent <u>outliers</u>	BI	1.2	
(ii)	Y has low median so expect lowish mean (but outlier so > 7)			
(11)	and	M1	2.4	
	<i>Y</i> has big range/IQR or spread so expect larger st.dev			
	Suggests B	A1	2.2b	
		(3)		
		(8 mark	(S)	
	Notes			
NB	$\bar{r} = \frac{184}{2062}$ and $\sigma = \frac{2062}{2062} - \bar{r}^2$			
1.12	18 18 $\sqrt{18}$			
(a)	B1 for $\bar{x} = 10.2$ (allow exact fraction)			
(b)	1^{st} B1ft allow 3.2 from a correct ever' accent $s = 3.26(3084)^{-1}$) [ft us	e of	
(0)	n/a) [It us		
	Treating n/a as 0 May see $n = 31$ or $\bar{x} = 5.9354$ which is B0 in (a) but here			
	in			
	(b) it gives $\sigma_x = 5.59(34)$ or $s = 5.6858(awrt 5.69)$ and scores 1^{st}			
	B1			
	2 nd B1 accept kn accept in (a) or (b) (allow nautical miles/hou	ur)		
(c)	1 st B1, choosing October but accent September			
(0)	2^{nd} B1 for stating that (Camborne) is windier in autumn/winter	months		
	"because it is winter/autumn/windier/colder in "month" " Sep	≤ "month	n" ≼	
	Mar			
	scores B1B1 for "month" = Sep or Oct and B0B1 for other	months in	n	
	range			
(1)(1)		,		
(d)(1)	B1 for outlier or the idea of an extreme value allow "anomaly"			
(ii)	M1 for a comment relating to location that mentions both medi	an and m	ean	
(11)	and a comment relating to spread that mentions both range/IOF	and stan	dard	
	deviation and leads to choosing B , C or D			

	Choosing A or E is M0
	Incorrect/false statements score M0 e.g. $Q_3 = (\text{mean} + \sigma)$ or identify $Q_2 =$
	mean
	or Y has small spread
ALT	Use of outliers: outlier is $(\text{mean} + 3\sigma)$ $(B = 19.9)$, $(C = 18.95)$, $(D = 20.2)$
	Must see at least one of these values and compare to <i>Y</i> 's outlier[leads to <i>D</i> or
	<i>B</i>]
	A1 for suitable inference i.e. B (accept $D \text{ or } B$ or D) M1 must be scored

Question	Scheme	Marks	AOs	
12(a)	$[Q_2 =] (5+) \frac{12}{15} \times 5$ or (use of $(n+1)$) $(5+) \frac{12.5}{15} \times 5$	M1	1.1a	
	= 9 or 9.166 awrt 9.17	A1	1.1b	
		(2)		
(b)	$\left[\sigma_{x}=\right]\sqrt{\frac{5675}{30}-\left(\frac{355}{30}\right)^{2}}=\sqrt{49.14}$	M1	1.1a	
	= <u>awrt 7.01</u>	Al	1.1b	
	Accept $s_x = \sqrt{\frac{5675 - 30\left(\frac{355}{30}\right)^2}{29}} = 7.1294$			
(0)	<i>t</i> - 15	(2)		
	$x = \frac{1}{2}$ or $t = 2x + 15$	M1	3.1b	
	Median = 2^{\prime} "9"+ 15 = 33 (allow awrt 33.3 from "9.17" in (a))	Alft	1.1b	
	Sd = 2' "7.01" = 14.02 (awrt 14.0) [allow awrt 14.3 if s used]	A1ft	1.1b	
		(3)		
(d)	The median time is "33" and "33" < 35 so 50% (30) should finish in 35 minutes.		2.4	
	ALT Probability of being < 35 mins is $\frac{18}{30} \setminus \frac{18}{30}$, $60 = 36$	IVI I	2.4	
	applicants to choose from.			
	It is likely that they will fill all 25 positions [providing those offered accept]	A1	2.2b	
		(2)		
Notes:		(9 m	arks)	
(a) M1: Fo	r a suitable fraction $\times 5$ (ignore end points)			
Al: Fo	r 9 or awrt 9.17 if using $n + 1$			
(b) M1: Fo	(b) M1: For a correct expression for \overline{x} and s_x or s_x A1: For evert $s_x = 7.01$ or $s_x = evert 7.12$			
AI. 10	At for a with $s_x = 7.0101 s_x = a with 7.15$			
(c) M1: Fo	(c) M1: For realising $x = \frac{t^2 + t_0}{2}$ and then rearranging to get a correct equation with t as the subject			
M	May be implied by a correct answer for the median of t .			
Alft: ft	their s_x or s_x . NB using s gives awrt14.3			
(d) M1: Fo	r a suitable comparison following through their value for the median of	t.		
A1: A c	A1: A correct conclusion in context following through their value for the median of <i>t</i> .			

Question	Scheme	Marks	AOs
13	$\begin{bmatrix} \overline{t} = \frac{374}{20} = 18.7 \end{bmatrix}$ $\sigma_t = \sqrt{\frac{7600}{20} - \overline{t}^2} [=\sqrt{30.31}]$	M1	1.1a
	$= 5.5054 \text{ awrt } \underline{5.51}$ (Accept use of $s_t = \sqrt{\frac{7600 - 20\overline{t}^2}{19}} = 5.6484)$	A1	1.1b
		(2 n	narks)
Notes:			
M1: Fo ft a A1: Fo	a correct expression for \overline{t} and σ_t or s_t in incorrect evaluation of \overline{t} $\sigma_t = awrt 5.51$ or $s_t = awrt 5.65$		

Question	Scheme		Marks	AOs
14	$17 + 45 + \frac{1}{3} \times 9$ [= 65]		M1	2.2a
	(7-8) <u>14</u> <u>or</u> $(16-20)$ <u>5</u>		M1	3.1a
	[Values may be seen in the table]		A1	1.1b
	Percentage of motorists is $\frac{"65"}{6+"14"+17+45+9+"5"} \times 100$		M1	3.1b
		= <u>67.7%</u>	A1	1.1b
			(5 n	narks)

Notes:

M1: For a fully correct expression for the number of motorists in the interval

- M1: For clear use of frequency density in (4- 6) or (13- 15) cases to establish the fd scale. Then use of area to find frequency in one of the missing cases
- A1: For both correct values seen
- M1: For realising that total is required and attempting a correct expression for %
- A1: For awrt 67.7%

Question	Scheme	Marks	AOs
15(a)	IQR = 2.3 and 20.6 \gg 2.4 + 1.5 \times 2.3 (= 5.85) (Compare correct values)	B1	1.1b
		(1)	
(b)(i)	e.g. It is a piece of data and we should consider all the data o.e.	B1	2.4
(ii)	e.g. It is an extreme value and could unduly influence the analysis or It could be a mistake	B1	2.4
		(2)	
(c)	e.g. "as humidity increases rainfall increases"	B1	2.2b
		(1)	
(d)	e.g. a 10% increase in humidity gives rise to a 1.5 mm increase in rainfallor represents 0.15mm of rainfall per percentage of humidity	B1	3.4
		(1)	
	1	(5 n	narks)

Que	stion	Scheme	Marks	AOs	
1	6(a)	tr	B1	1.2	
			(1)		
(b)(i)	$\mu = \frac{174.9}{31} = 5.6419$ awrt 5.64	B1	1.1b	
(ii)	$\sigma_r = \sqrt{\frac{3523.283}{31} - \mu^2}$	M1	1.1b	
		= 9.04559 awrt 9.05	A1	1.1b	
			(3)		
((c)	Leuchars is in the North and Camborne is in the South	M1	2.4	
		The mean is smaller for Leuchars than Camborne therefore there is no evidence that Dian's belief is true	Alft	2.2b	
			(2)	(6 marks)	
		Notes:			
(a)	B 1	Allow Tr or trace or Trace			
(b) (i)	B1	For a correct mean awrt 5.64			
(ii)	M1	For a correct expression for sd including the $$ Ft their mean			
	A1	$\frac{1}{10} = \frac{1}{100} 1$			
(c)	M1	For stating Leuchars is North of Camborne oe eg Camborne is further	south		
	A1ft	M1 must be awarded. A correct conclusion and correct comment about the means ft their mean in (b) Allow No			
	SC	for No and there are only 2 places used so there is insufficient data. N epen	Iark as M	0A1 on	

Que	estior	Sche	eme	Marks	AOs
17(a) eg As the number of minutes <u>exercise</u> (m) increases the resting <u>h</u> (h) decreases or the gradient of the curve is becoming flatter with increasing m : di effect of each additional minute of exercise		(<i>m</i>) increases the resting <u>heart rate</u> latter with increasing <i>m</i> : diminishing <u>rcise</u>	B1	2.4	
				(1)	
(b)	$\log_{10} h = -0.05 \log_{10} m + 1.92$	$h = am^k \rightarrow \log_{10} h = \log_{10} am^k$	M1	1.1b
		$\log_{10} h = -\log_{10} m^{0.05} + 1.92 \text{ or}$ $\log_{10} h = \log_{10} m^{-0.05} + 1.92 \text{ or}$ $h = 10^{1.92 - 0.05 \log_{10} m} \text{ oe}$	$\log_{10} h = \log_{10} a + \log_{10} m^k$ or $\log_{10} a = 1.92$	M1	2.1
		$\log_{10} hm^{0.05} = 1.92 \text{ or}$ $\log_{10} \left(\frac{h}{m^{-0.05}}\right) = 1.92 \text{ or}$ $h = 10^{1.92} \times 10^{-0.05 \log_{10} m} \text{ oe}$	$\log_{10} h = \log_{10} a + k \log_{10} m$	M1	1.1b
		$hm^{0.05} = 10^{1.92}$ or $\frac{h}{m^{-0.05}} = 10^{1.92}$ or $h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}}$	$\log_{10} a = 1.92$ and $k = -0.05$	M1	1.1b
		$h = 10^{1.92} m^{-0.05}$ or $h = 83.17m^{-0.05}$ or	a = awrt 83.17 and $k = -0.05$	A1	1.1b
				(5)	
			Notes:	(6	marks)
(a)	B1	eg Idea as one increases the other decreases decreases. Do not allow negative correlation Allow there is a negative correlation/associa and resting heart rate (h) oe	is (in context). Allow use of <i>m</i> and <i>h</i> eg As in with no context or $\rho < 0$ ation/relationship/exponential between min	<i>m</i> increases	s h i <u>se(</u> m)
(b)		In this part once M0 is scored	no more marks can be scored. Condone	no base	
	M1	May be implied by 2nd M1 mark Method 1: Correct substitution for both x and	nd y Method 2 : Taking the log of both side	les	
	M1	May be implied by 3rd M1 mark Method 1: Correct use of the power log rule or making h the subject Method 2 : Correct use of the addition/subtraction log rule			
	M1	This line implies M1M1M1 Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in the form $h = 10^{1.92} \times 10^{-0.05 \log m}$ Method 2: A second correct step for correct use of the power log rule			5,77
	M1	This line implies M1M1M1M1 Method 1: Correct removal of logs or $h =$	$10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log <i>a</i> (or <i>a</i>)	and k corre	ect
	A1	Allow $h = \text{awrt } 83.2m^{-0.05}$ NB award 5/5 for $a = \text{awrt } 83.2$ and $k = -$	0.05 or $h = \text{awrt } 83.2m^{-0.05}$ or $h = 10^1$	$^{.92} m^{-0.05}$	

Qu 18	Scheme	Marks	AO		
(a)	Negative	B1	1.2		
		(1)			
(b)	Marc's suggestion is compatible because it's negative correlation	B1	2.4		
		(1)			
		(2 mark	s)		
	Notes				
(a)	B1 for "negative" Allow "slight" or "weak" etc				
	Allow a description e.g. "as x increases y decreases" or in context e.g. "people with longer				
	last names tend to have shorter first names"				
	A comment of "negative skew" is B0				
	Need to see distinct or separate responses for (a) and (b)				
(b)	B1 for a comment that suggests data is compatible with the suggestion and a such as "there is negative correlation" <u>or</u> a description in x and y or in co or the points lie close to a line with <u>negative gradient</u> or draw line $y = x$ and state that <u>more points below the line</u> so <u>supports (or is</u> with) his suggestion A reason based on just a single point is B0 e.g. "11 letters in last name has only 5 in first name"	a suitable r ontext <u>compatib</u>	eason le		

Qu 19	Scheme	Marks	AO
(a)	Hectopascal or hPa	B1	1.2
		(1)	
(b)	$\overline{x} = \overline{y} + 1010$ or $\frac{214}{30} + 1010$	M1	1.1b
	= 1017.1333 awrt <u>1017</u>	A1 (2)	1.1b
(c)	$\sigma_x = \sigma_y$ (or statement that standard deviation is not affected by this type of coding)	M1	3.1b
	$\left[\sigma_{y}=\right]\sqrt{\frac{5912}{30}-\left("7.13[33]"\right)^{2}} \underline{\text{or}} \sqrt{146.1822}$	M1	1.1b
	= 12.0905 awrt <u>12.1</u>	A1 (3)	1.1b
(d)	High pressure (since approx. mean + sd) so clockwise Locations are (from North to South): Leuchars, Heathrow, Hurn	B1	2.4
	Wind direction is direction wind blows <u>from</u> So: Heathrow (NE) Hurn (E) Leuchars (W)	B1 (2)	2.2a
		(8 mark	s)
	Notes	(•	
FYI	$1 \text{ hPa} = 100 \text{ Pa}; 10 \text{ hPa} = 1 \text{ kPa}; 1 \text{ Pa} = 1 \text{ Nm}^{-2}$		
(a)	B1 for "hectopascal" <u>or</u> hPa (condone pascals, allow millibars <u>or</u> mb) Do NOT allow kPa <u>or</u> kilopascals <u>or</u> Pa on its own	o.e.	
(b)	M1 for a strategy to find \overline{x}		
	Allow an attempt to find $\sum x$ that gets as far as $\sum x = \sum y - 30 \times 1010$ [= 30 514]		
	A1 for awrt 1017 (accept 1020) [Ignore incorrect units]		
(c)	1 st M1 for an overall strategy using the fact $\sigma_x = \sigma_y$ (can be implied by	correct <u>fin</u>	<u>al</u> ans)
	or for $\sum x = 30514$ and $\sum x^2 = 31041192$ (both seen and corrected)	ect)	
	2^{nd} M1 for a correct expression (with $\sqrt{}$)(ft their \overline{v} to 3sf) allow awrt 1	46 for 146	.1822
	or for correct expression in x can ft their $\sum x > 30000$ or their at	iswer to (h))
	$\Delta 1$ (dep on 2 nd M1) for awrt 12.1 [Ignore incorrect units]	15 01 00 (0	,
Final	Final and of event 12.1 accurace $2/2$ but if they then adjust for $u = a$ add	1010 (110	N / 1 A 1 \
answer	Final and of awrt 12.1 scores $5/5$ but if they then adjust for x e.g. add	1010 (MO	WIAI)
(d)	1 st B1 for at least one of these reasons (these 2 lines) clearly stated (may Need "high pressure" and "clockwise" to score on 1 st line Contradictory statements B0 e.g. correct N~S list but say "anticlosed"	7 see diagr	am)
	2 nd B1 (indep of 1 st B1) for deducing the 3 correct directions either in the as above	e table or s	stated
	If the answers in table and text are different we take the table (as a	juestion sa	ys)

Qu 20	Scheme	Marks	AO
(a)	Negative	B1	1.2
(b)(i) (ii)	Rainfall mm or Pressure hPa or Pascals or hectopascals or mb or millibars	(1) B1 B1ft (2)	2.2b 1.1b
(c)	Humidity is high and there is evidence of correlation and $r < 0$ So expect amount of sunshine to be <u>lower</u> than the <u>average</u> for Heathrow(oe)	B1 (1)	2.2b
		(4 mark	s)
	Notes		
(a)	B1 for stating negative. "Negative skew" is B0 though		
(b)(i) (ii)	B1 for mentioning "rainfall" (allow "rain" <u>or</u> "precipitation") <u>or</u> "pressure" (if more than 1 answer both must be correct) NB the other quantitative variable for Perth is: Daily Mean Wind Speed and scores B0 [Not allowed "wind speed" since $r = +0.15$ and in winter might expect wind to raise temp] B1ft for giving the correct units. If Daily Mean Wind Speed (kn) or knots "Wind speed" and "knots" would score B0B1 but any other variable scores B0B0		
(c)	 B1 for stating low amount of sunshine (o. e.) and some reference to r < 0 or for Check for the following 2 features: (i) low sunshine: allow ≤ 5 hrs (LDS mean for 2015 is 5.3, humidity 97% is 4 (ii) negative correlation may be described in words e.g. "high humidity gives or fog (LDS says >95% humidity is foggy) so less 	og 4.1, $\geq 97\%$ s low sunsl sunshine	6 is 3.1) nine"

Qu 21	Scheme	Marks	AO
(a)	[68 - 7 =] <u>61</u> (only)	B1	1.1b
(b)	[25 14] - 11	(1) R1	1 1h
(0)	[2J - 14] - 11	(1)	1.10
(c)	$\begin{bmatrix} u & \text{or } \overline{x} = \frac{607.5}{2} \end{bmatrix} = 22.5$	D1	1 11
	$\begin{bmatrix} \mu & 0I & x = -\frac{1}{27} \end{bmatrix} = \frac{22.5}{27}$	DI	1.10
		(1)	
(a)	$\sigma = \sqrt{\frac{17\ 623.25}{27}} - "22.5"^2 \text{or} \sqrt{146.4629}$	M1	1.1b
	$\sqrt{27}$ – 12 10218 awrt 12 1	Δ1	1 1b
	– 12.10210 awit <u>12.1</u>	(2)	1.10
(e)	$\mu + 3\sigma = "22.5" + 3 \times "12.1" = awrt 59$ so only <u>one</u> outlier	B1ft	1.1b
(6)		(1)	2 11
(1)	Median increases implies that both values must be > 20 Mean is the same means that $a + b = 45$	M1 M1	3.10 1.1b
	So possible values are: e.g. $b = 21$ and $a = 24$ (o.e.)	A1	2.2b
		(3)	
(g)	Both values will be less than 1 standard deviation from the mean and so the standard deviation of all 20 values will be smaller	B1	2.4
	standard deviation of an 27 values will be smaller	(1)	
	Natar	(10 ma	rks)
(9)	R1 for correctly interpreting the box plot to find the range (more than 1 answe	r is B())	
(4)	bi for concerty interpreting the box plot to find the funge (inore than 1 answe	I 13 D 0)	
(b)	B1 for correct understanding of IQR and answer of 11		
(c)	B1 for 22.5 only (or exact equivalent such as 45). Allow 22 mins and 30 sees	,	
(0)	BT for 22.5 only (of exact equivalent such as $\frac{1}{2}$). Anow 22 mins and 50 sees		
(d)	M1 for a correct expression including square root. Allow $\sqrt{146}$ or better. Ft th	neir mean	
	A1 for awrt 12.1 NB Allow use of $s = 12.3327$ or av	vrt 12.3	
		1 .	
(e)	Bill for a correct calculation or value based on their μ and σ and compatible	conclusio	n
(f)	1 st M1 Correct start to the problem and a correct statement about the values bas	sed on me	dian
	Allow if their final two values are both >20		、 、
	2 nd M1 for a correct explanation leading to equation $a + b = 45$ (o.e. e.g. equidi- Allow if their final two values sum to 45	istant from	n mean)
	A1 for a correct pair of values (both > 20 with a sum of 45) and at least som	ne attemp	t to
	explain how their values satisfy at least one of the conditions (both > 20	$\underline{\text{or}} a + b$	= 45).
ND	Ignore $a = \text{or } b = \text{labels}$		
NR	The values for a and b do not need to be integers.		
(g)	B1 for a correct explanation.		
	Must mention that both values are less than 1 sd (ft their answer to (d)) from	m the me	an

Question	Scheme	Marks	AOs	
22(a)	IQR = 26.6 - 19.4 [= 7.2]	B1	2.1	
	$19.4 - 1.5 \times `7.2' [= 8.6]$ or $26.6 + 1.5 \times `7.2' [= 37.4]$	M1	1.1b	
	Plotting one upper whisker to 32.5 and one lower whisker to 8.6 or 9.1	A1	1.1b	
	Plotting 7.6 and 8.1 as the only two outliers	A1	1.1b	
		(4)		
(b)	October (since it is the month with the coldest temperatures between May and October in Beijing)	B1	2.4	
		(1)		
(c)	$[\sigma =]\sqrt{\frac{4952.906}{184}}$ or e.g. $[\sigma =]\sqrt{\frac{S_{xx}}{n}} = 5.188$ $[=5.19*]$	B1cso*	1.1b	
		(1)		
		(6	marks)	
	Notes			
(a)	 (a) B1: for a correct calculation for the IQR (implied by 10.8 or 8.6 or 37.4 seen) M1: for a complete method for either lower outlier limit or upper outlier limit (allow ft on their IQR) (may be implied by the 1st A1 or a lower whisker at 8.6) A1: both whiskers plotted correctly (allow ½ square tolerance) A1: only two outliers plotted, 7.6 and 8.1 (must be disconnected from whisker) NOTE: A fully correct box plot with no incorrect working scores 4/4 			
(c)	B1cso*: Correct expression with square root or correct formula a Allow a complete correct method finding $\sum x^2 = awrt 98720$ and σ	and 5.188 or = $\sqrt{\frac{98715.9}{184}}$ -	$\frac{4153.6}{\left(\frac{4153.6}{184}\right)^2}$	

Qu 23	Scheme	Marks	AO	
(a)	[58 - 26 =] <u>32</u> (min)	B1 (1)	1.1b	
(b)	$\mu = \frac{4133}{95} = 43.505263 \text{awrt} \underline{43.5} (\text{min})$	B1	1.1b	
	$\sigma_x = \sqrt{\frac{202\ 294}{95} - \mu^2} = \sqrt{236.7026}$	M1	1.1b	
	= 15.385 awrt <u>15.4</u> (min)	A1 (2)	1.1b	
(c)	There are outliers in the data (or data is skew) which will affect mean and sd Therefore use median and IQR	$ \begin{array}{c} (3)\\ B1\\ dB1\\ (2) \end{array} $	2.4 2.4	
(d)	Value of 20, LQ at 26 and outliers will not change or state that median and upper quartile are the values that <u>do</u> change	B1	1.1b	
	<u>More values now below 40 than above</u> so Q_2 or Q_3 will change and be lower Both Q_2 and Q_3 will be lower	M1 A1 (2)	2.1 2.4	
		(3) (9 marks	5)	
	Notes		/	
(b)	B1 for a correct mean (awrt 43.5) M1 for a correct expression for the sd (including $$)ft their mean A1 for awrt 15.4 (Allow <i>s</i> = 15.4667 awrt 15.5)			
(C)	 1st B1 for acknowledging <u>outliers</u> or <u>skewness</u> are a problem for <u>mean and sd</u> "extreme values"/"anomalies" OK May be implied by saying median and IQR not affected by We need to see mention of "outliers", "skewness" and the problem so "data is skewed so use median and IQR" is B0 unless mention that they are not affected by extreme values <u>or</u> mean and standard deviation can be "inflated" by the positive skew etc 2nd dB1 dep on 1st B1 for therefore choosing <u>median and IQR</u> 			
(d)	 B1 for identifying 2 of these 3 groups of unchanged values or stating only Q₂ and Q₃ change M1 for <u>explaining</u> that median or UQ should be lower. E.g. the 2 values have moved to below 40 (or 58) and therefore more than 50% below 40 or (more than 75% below 58) <u>or</u> an argument to show that the other 3 values are the same. (o.e.) Allow arrows on box plot provided statement in words about increased % below 40 or 58 etc A1 for stating median <u>and</u> UQ are both lower with clear evidence of M1 scored 			
	[If lots of values on 40 then median might not change but, since two values <u>do</u> change then UQ would change. If this meant that 92 became an outlier then we would have a new value for upper whisker and an extra outlier so effectively 3 values are altered. So median changes]			

Question	Scheme	Marks	AOs
24(a)	Width = $0.4 \times 5 = 2$ (cm)	B1	3.1a
	Area = 12 cm ² Frequency = 15 so 1 cm ² = $\frac{5}{4}$ packet o.e	M1	1.1b
	Frequency of 9 corresponds to area of 7.2 Height = $7.2 \div 2 = 3.6$ (cm)	A1	1.1b
		(3)	
(b)	$[Q_2 =] (248+) \frac{22}{35} \times 4$ or (use of $(n+1)$) $(248+) \frac{22.5}{35} \times 4$	M1	1.1a
	= awrt 250.5 (g) or 250.6	A1	1.1b
		(2)	
(c)	Mean = awrt 250.4 (g)	B1	1.1b
	$\left[\sigma_{x}=\right]\sqrt{\frac{5644171.75}{90}-\left(\frac{22535.5}{90}\right)^{2}} = \sqrt{15.64}$	M1	1.1b
	= awrt 4.0 (g)	A1	1.1b
	Accept $\left(s_x = \sqrt{\frac{5644171.75 - 90\left(\frac{22535.5}{90}\right)^2}{89}} = 3.977\right)$	(3)	
	•	(8 ma	arks)
Notes:			
(a) B1: for c	correct width		

M1: for clear attempt to relate the area to frequency.

May be implied by their height \times their width = 7.2

A1: for height = 3.6 cm

(b) M1: for
$$\frac{22}{35} \times 4$$
 or $\frac{22.5}{35} \times 4$

(c) B1: awrt 250.4

M1: for a correct expression for σ or s , can ft their mean

A1: awrt 4.0 (allow s = awrt 4.0)

Question	Scheme		AOs
25(a)	Not suitable with a correct reason eg the points do not lie close to a straight line. there appear to be two populations if <i>G</i> and <i>H</i> were removed it appears to be a negative correlation	B1	1.2
		(1)	
(b)	Beijing and Jacksonville	B1	2.2a
		(1)	
(c)	Beijing and Jacksonville are the closest to the equator	B1	2.4
		(1)	
(d)	Use data from one place.	B1	2.4
		(1)	
	(4 marks)		
Notes:			
(a) B1: for a	a correct statement using the data in the table		
(b) B1: both Beijing and Jacksonville – they do not need to be attached to G and H correctly.			
(c)B1: for the idea they are near the equator dependent only Beijing or Jacksonville being given in part(c)			

Question	Scheme	Marks	AOs
26(a)	Area = $8 \times 1.5 = 12 \text{ cm}^2$ Frequency = 8 so $1 \text{ cm}^2 = \frac{2}{3}$ hour (o.e.)	M1	3.1a
	Frequency of 12 corresponds to area of 18 so height = $18 \div 2.5 = 7.2$ (cm)	A1	1.1b
	Width = $5 \times 0.5 = 2.5$ (cm)	Blcao	1.1b
		(3)	
(b)	$[\overline{y} =] \frac{205.5}{31} = \text{awrt } 6.63$	B1cao	1.1b
	$\left[\sigma_{y}=\right]\sqrt{\frac{1785.25}{31}-\overline{y}^{2}} = \sqrt{13.644641} = \text{awrt } 3.69$		
	$178525-31\overline{v}^2$	M1	1.1a
	allow $[s=] \sqrt{\frac{1763.25}{30}} = $ awrt 3.75	AI	1.10
		(3)	
(c)	Mean of Heathrow is higher than Hurn and standard deviation smaller suggesting Heathrow is more reliable	M1	2.4
	Hurn is South of Heathrow so does <u>not</u> support his belief	A1	2.2b
		(2)	
(d)	$\overline{x} + \sigma \approx 10.3$ so number of days is e.g. $\frac{(11 - "10.3")}{3} \times 8 (+5)$	M1	1.1b
	= 6.86 so 7 days	A1	1.1b
		(2)	
		(10 n	narks)
Notes:			
(a)			
M1: for	clear attempt to relate the area to frequency. Can also award if		
the	ir height \times their width = 18 height = 7.2 (cm)		
$\begin{array}{ c c } AI: & IOI \\ \hline \\ $	neight $- 1.2$ (cm)		
(D) M1. for	a correct expression for σ or s can ft their value for mean		
$\begin{array}{c c} \mathbf{M1} & 10 \\ \mathbf{A1} & \mathbf{a} \\ \mathbf{W} \end{array}$	a concert expression for σ or s , can it then value for mean rt 3 69 (allow $s = 3.75$)		
(c)			
M1: for	a suitable comparison of standard deviations to comment on reliability.		
A1: for	stating Hurn is south of Heathrow and a correct conclusion		
(d)			
M1: for	a correct expression – ft their $\overline{x} + \sigma \approx 10.3$		
A1: for	7 days but accept 6 (rounding down) following a correct expression		

Scheme	Marks	
(3-6) mins has width 4 and is 2cm, $(11-15)$ mins has width 5 so is 2.5 (cm)	B1	
(3-6) mins has frequency of 38 and area of 19 cm ² so <u>2 people(per cm²)(o.e.)</u> or frequency density = $\frac{38}{4}$ = 9.5 = height	M1	
(11 – 15) mins has area of 2.5× <i>h</i> cm ² so $h = \frac{12}{2 \times 2.5} = 2.4$ (cm) allow $\frac{12}{5}$	A1	
$Q_2 = (6.5) + \frac{12}{25} \times 2 \text{ or } (8.5) - \frac{13}{25} \times 2$	(3) M1	
= awrt <u>7.46</u>	A1 (2)	
$\sum fx = 38 \times 4.5 + \dots + 7 \times 18 = 811.5$ and $\overline{x} = \frac{811.5}{100}$, = awrt <u>8.12</u>	M1, A1	
	(2)	
$\sigma = \sqrt{\frac{8096.25}{100} - \overline{x}^2} = \sqrt{80.9625 - "65.85"} = \sqrt{15.1(0)}, = \text{awrt } \underline{3.89}$	M1, A1	
	(2)	
	[Tot 9]	
$\frac{\text{Notes}}{25 \text{ (am) allow }^5}$		
B1 for width of 2.5 (cm) allow $\frac{5}{2}$ M1 for 2 people per cm ² or a correct numerical equ'n for <i>h</i> or their width×height = 6 A1 for height of 2.4 (cm) [If just see 2.4 and 2.5 it must be clear which is <i>h</i> and which <i>w</i>]		
M1 for a correct expr'n with sign (ignoring end point). Condone 12.5 for use of	of $(n + 1)$	
A1 for awrt 7.46 (or 7.5 if using $(n + 1)$ but must see evidence of $(n + 1)$ appr	oach)	
M1 for an attempt at Σ fx (i.e. <u>full</u> expression or $650 < \Sigma$ fx < 950) <u>and</u> divisio Σ fx may be in the table.	n by 100	
A1 for 8.115 or awrt 8.12 (allow 8.11) [May be in (d) but must be labelled e.g	$\overline{x} = \dots$]	
M1 for a correct expression (ft their mean) including $$. Allow <i>s</i> leading to	√15.26	
	Scheme (3 - 6) mins has width 4 and is 2cm, (11 - 15) mins has width 5 so is 2.5(cm) (3 - 6) mins has frequency of 38 and area of 19 cm ² so 2 people(per cm ²)(o.e.) or frequency density = $\frac{38}{4}$ = 9.5 = height (11 - 15) mins has area of $2.5 \times h$ cm ² so $h = \frac{12}{2 \times 2.5} = 2.4$ (cm) allow $\frac{12}{5}$ $Q_2 = (6.5) + \frac{12}{25} \times 2$ or $(8.5) - \frac{13}{25} \times 2$ = awrt 7.46 $\sum fx = 38 \times 4.5 + + 7 \times 18 = 811.5$ and $\overline{x} = \frac{811.5}{100}$, = awrt 8.12 $\sigma = \sqrt{\frac{8096.25}{100} - \overline{x}^2} = \sqrt{80.9625 - "65.85"} = \sqrt{15.1(0)}$, = awrt 3.89 Notes B1 for width of 2.5 (cm) allow $\frac{5}{2}$ M1 for 2 people per cm ² or a correct numerical equ'n for h or their width×h A1 for height of 2.4 (cm) [If just see 2.4 and 2.5 it must be clear which is h and M1 for a correct expr'n with sign (ignoring end point). Condone 12.5 for use of A1 for an attempt at Σ fx (i.e. full expression or 650 < Σ fx < 950) and divisio Σ fx may be in the table. A1 for 8.115 or awrt 8.12 (allow 8.11) [May be in (d) but must be labelled e.g M1 for a correct expression (ft their mean) including $$. Allow <i>s</i> leading to	

Question Number	Scheme	Marks
28. (a)	Width (w) = $\underline{4}$ cm	B1
	<u>Areas</u> : 16 cm ² represents 32 offices (o.e.) <u>or</u> their $h = \frac{6}{\text{their } w} (3\text{sf}) \underline{\text{or}} \frac{8}{3.2} \times 0.6$	M1
	So height $(h) = \underline{1.5}$ cm	A1
		(3)
(b)	e.g. $(45) + \frac{20}{25} \times 5$ or $(50) - \frac{5}{25} \times 5$ (o.e.); = (£) <u>49</u>	M1; A1
		(2)
(c)	$\frac{\sum fy}{90} = \frac{4420}{90}, \qquad = (f) \underline{49.11} (\text{or better}) (\text{Allow } \frac{442}{9} \text{ or } 49\frac{1}{9})$	M1, A1
		(2)
(d)	$\sqrt{\frac{226687.5}{90} - \overline{x}^2} = \sqrt{106.8487}$, = 10.3367 = awrt (£) <u>10.3</u>	M1, A1
		(2)
		[9]
	Notes	
(a)	M1 for a correct calculation of areas $1 \text{ cm}^2 = 2 \text{ offices (o.e.)}$ A1 for $h = 1.5 \text{ cm}$ (Correct answer only 2/2)	
(b)	M1 for a correct expression without end point. Allow " $n + 1$ " so e.g. $(45) + \frac{2}{2}$ A1 for 49 or, if ($n + 1$) used, allow 49.1 (Correct answer of 49 only 2/2)	$\frac{0.5}{25} \times 5$
(c)	M1 for an attempt at $\frac{\sum fy}{90}$ with at least 3 correct products of $\sum fy$ or $4000 \le \sum fy$	fy≤5000
	A1 for 49.11 (Allow 49.1 from correct working) (Correct answer only 2/2, 49.1	only M1A0)
(d)	M1 for a correct expression including $$, ft their mean. Allow use of s A1 for awrt 10.3 Allow $s = awrt 10.4$ if clearly used. [NB use of 49.1 gives 10 (Correct answer of 10.3 with no working is 2/2)	$0.389 \Rightarrow A0$
	(Correct answer of 10.3 with no working is $2/2$)	

Question Number	Scheme	Marks
29.(a)	Width = $\underline{0.5}$ (cm)	B1
	e.g 4 [cm ²] represents 8 babies <u>or</u> frequency densities are 8 <u>and</u> 34	M1
	$\text{Height} = \underline{17} (\text{cm})$	Al
	(25, 0) (25, 24)	(3)
(b)	$[Q_2 =] \{3\} + \frac{(25-9)}{(26-9)} \times 0.5, \text{ or } \{3.5\} - \frac{(25-24)}{(41-24)} \times 0.5 = \text{ awrt } \underline{3.47} \text{ (allow)} $	M1, A1
		(2)
(c)(i)	$\sum fx = 1 \times 1 + 2.5 \times 8 + 3.25 \times 17 + 3.75 \times 17 + 4.5 \times 7 = 171.5, \ \overline{x} = \frac{171.5}{50} = (3.43) \ (*)$	B1cso
(ii)	$\sqrt{\frac{611.375}{50} - 3.43^2}$,= 0.680147 = awrt <u>0.680</u> (Accept 0.68)	M1, A1
		(3)
		[8 marks]
	Notes	
(a)	M1 for clear representation of area with frequency <u>or</u> height \times width = 8.5	_
	A1 for 17 (cm) [Must be clear it is height not frequency] (Ans only must sati	sfy $h \times w = 8.5$)
(b)	M1 for $\frac{16}{17} \times 0.5$ or if using $n + 1$ for $\frac{16.5}{17} \times 0.5$ May see $-\frac{1}{17} \times 0.5$ if working	g down
	A1 for awrt 3.47 (or $\frac{59}{17}$) [check from correct working] or (if using $(n + 1)$ for 3.48	5 or awrt 3.49)
	17	
(c)(i)	B1cso for Σfx (at least 3 correct & no incorrect products seen) and correct $\frac{\sum_{x=1}^{n}}{50}$	$\frac{fx}{2}$ or $\frac{171.5}{50}$
(ii)	M1 for a correct expression including square root. Must use 3.43 no ft	
	A1 for awrt 0.680 (accept 0.68). Allow use of $s = awrt 0.687$ (Ans only 2/	2)

Question	Scheme	Marks		
30.	[Range = 48 - 9] = 39	B1		
(a)		(1)		
(b)	[IQR = 25 - 12] = 13	B1 (1)		
		(1)		
(c)	Median = $65 + \frac{[9]}{5} \times 5 = \frac{890}{5} = $ awrt 68.5 ° Condone: $65 + \frac{[9.5]}{5} \times 5 = 68.7$	M1 A1		
	13 13 13	(2)		
(d)	Lower Quartile = $60 + \frac{9}{15} \times 5 = 63$ (*)	M1 A1cso		
	15	(2)		
(e)(i)	$63 - 1.5 \times (75 - 63) = 45$	M1A1		
	$75 + 1.5 \times (75 - 63) = 93$			
	No data above 93 and no data below 45 $\underline{\text{or}}$ 55>45 etc $\underline{\text{or}}$ there are no outliers.	Al		
		2.64		
(ii)		MI		
(11)		A1ft		
	40 50 60 70 80 90			
(f)	Median for the 70° angle is closer (to 70°)[than the 20° median is to 20°]	(5) B1		
(1)	The range/IQR for the 70° angle box plot is smaller/shorter	B1 B1		
	Therefore, students were more accurate at drawing the 70° angle.	dB1		
		(3) (14 marks)		
	Notes	(14 marks)		
(c)		4] _		
	M1 for an attempt (should have 65 or 70, 13 and 5)NB working down: $70-1$	$\frac{-1}{13} \times 5$		
	Allow any correct method leading to $\frac{890}{13}$, the "5" may be implied by 65 and 70 seen			
	A1 awrt 68.5 (condone 68.7 if $(n+1)$ is used). Ans only of 68.5 is $2/2$ but 68.7 n	eeds M1		
(a)	M1 for correct expression for the lower quartile (condone 9.25 if $(n+1)$ used) 6 $60+65$			
	Watch out for working down e.g. $65 - \frac{6}{15} \times 5$ (M1) but e.g. $\frac{60 + 65}{2} = 62.5 = 63$ is M0			
	A1 for correct solution with no incorrect working seen (condone $(n+1)$ giving	g 63.08)		
(e)(i)	M1 for either correct calculation (may be implied by one correct limit)			
	A1 for 45 and 93 and conclusion			
(ii)	M1 for a box with 1 whisker drawn on each side (must see the line drawn)			
	A1ft their median $63 < Q_2 < 75$ but quartiles (63 and 75), 55 and 84 must be correct.			
Accuracy	Use 0.5 sq. accuracy so condone median on 68 or 69 if 68.5 seen			
(ቶ	$1^{st} \mathbf{B} 1$ for correct comparison of their modions (62 < (a) < 75) to true value			
(1)	2^{nd} B1 for correct comparison of their range or IOR ("spread" is B0)			
	Allow saying IQRs of 12 and 13 are similar. Ignore mention of "skewness" or "outliers"			
	3 rd dB1 dependent upon at least one previous B1 being scored for choosing 7	0°		

Question Number	Scheme	Marks
31	mean $= \frac{60.8 + 20}{1.4}$ <u>or</u> $60.8 = 1.4x - 20$ (o.e.)	M1
	= 57.7142 awrt 57.7	A1
	standard deviation = $\frac{6.60}{1.4}$ <u>or</u> $6.60 = 1.4x$	M1
	= 4.7142 awrt 4.71	A1
		(4)
		Total 4
	Notes	
	1^{st} M1 sub. 60.8 for y into a correct equation. Allow use of x or any other letter or expression for mean	
	1 st A1 for awrt 57.7 or $\frac{404}{7}$ (o.e.). Correct answer only is 2/2	
	2^{nd} M1 sub. 6.60 or 6.6 for y and ignoring the 20 Allow use of x or any other letter or expression for st. dev. $6.60^2 = 1.4^2 x^2$ is M0 until we see them take a square root.	
	2^{nd} A1 for awrt 4.71 or $\frac{33}{7}$ (o.e.). Correct answer only is 2/2	

Question Number	Scheme	Marks
32 (a)	70 – 80 group - width 0.5 (cm)	B1
	1.5 cm ² is 10 customers or 3.75 cm ² is 25 customers or $0.5c = 3.75$ or $\frac{2.5}{\frac{1}{3}}$	M1
	70 – 80 group - height 7.5 (cm)	A1
		(3)
(b)	Median = $(70) + \frac{13.5}{25} \times 10$ allow $(n + 1) = (70) + \frac{14}{25} \times 10$	M1
	= 75.4 (or if using $(n + 1)$ allow 75.6)	A1
		(2)
(c)	$\left[\text{Mean } = \frac{6460}{85} \right] = 76$	B1
	$\sigma = \sqrt{\frac{529400}{85} - 76^2}$	M1
	= 21.2658 (<i>s</i> = 21.3920) awrt 21.3	A1
		(3)
		Total 8
	Notes	
(a)	B1 for 0.5	
	M1 for one of the given statements <u>or</u> any method where "their width" × "their height' Correct height scores M1A1 independent of width so B0M1A1 is possible.	' = 3.75
(b)	M1 for a correct fraction: $+\frac{k}{25} \times 10$ where $k = 13.5$ or 14 for $(n + 1)$ case.	
	NB may work down so look out for (80) $-\frac{11.5}{25} \times 10$ etc Beware: $69.5 + \frac{13.5}{25} \times 11 = 75.44$	(but M0)
(c)	M1 for a correct expression with square root, ft their meanA1 for awrt 21.3 or, if clearly using <i>s</i> allow awrt 21.4. Must be evaluatedno surds.	

Question Number	Scheme	Marks	
33. (a)	4.5	B1 (1)	
(b)	$ \begin{array}{ c c c } \hline Time & Frequency \\ \hline density \\ \hline 2-4 & 5 \\ \hline 5-6 & 4.5 \\ \hline 7 & 6 \\ \hline \end{array} $	M1 A1	
	8249-10711-152.4f.d = 24 is represented as 6cm, sof.d = 7 is represented as 1.75(cm)	A1 (3)	
(c)	$\frac{1}{3} \times 15 + 9 + \frac{1}{2} \times 6, = 17$	M1, A1	
(d)	40-30 1 7 01 666	(2)	
	Median = $7.5 + \frac{24}{24} \times 1 = 7.91666$ awrt 7.92 or 7.93(75)	M1 A1	
	$Q_1 = 4.5 + \frac{20 - 15}{9} \times 2 = 5.6111111$ awrt 5.61 or 5.66(666)	A1	
	$Q_3 = 8.5 + \frac{60 - 54}{14} \times 2 = 9.357142$ awrt 9.36 or 9.46(4285)	A1	
		(4) [Total 10]	
	Notes		
(a) (b)	B1 for 4.5 (o.e.) only. NB 1.5~4.5 is B0 M1 for evidence of f/w (at least 3 f.d. found). May be implied by a corre A1 for identifying 9-10 as 2^{nd} highest bar from correct working e.g. $24x$ A1 for 1.75(cm). Correct answer only 3/3	ct answer. = 6×7	
(c)	M1 for a correct expression. May interpolate e.g. $\left[24 + \frac{1}{2} \times 6 - \frac{2}{3} \times 15\right]$ or A1 for 17	(27 – 10)	
(d)	M1 for one correct fraction in an expression for Q_1 , Q_2 or Q_3 1 st A1 for Q_2 awrt 7.92 (or 7.94 if $(n + 1)$ used – look for 40.5 instead of 2 nd A1 for Q_1 awrt 5.61 (or 5.67 if $(n + 1)$ used – look for 20.25 instead of 3 rd A1 for Q_3 awrt 9.36 (or 9.46 if $(n + 1)$ used – look for 60.75 instead of	E 40) of 20) of 60)	
NB watch out for working down e.g. $8.5 - \frac{14}{24} \times 1$ for Q_2			

Question	Scheme	Marks	
34. (a)	$\sum ft = 4837.5$ (allow 4838 or 4840)	B1	
	Mean = $\frac{"4837.5"}{200}$ = 24.1875 awrt <u>24.2</u> or $\frac{387}{16}$	M1 A1	
	$\sigma = \sqrt{\frac{134281.25}{200} - \left(\frac{4837.5}{200}\right)^2}$	M1	
	= 9.293 (accept s =9.32) awrt <u>9.29</u>	A1 (5))
(b)	$Q_2 = [20.5] + \frac{(100/100.5 - 62)}{88} \times 5 = 22.659$ awrt <u>22.7</u>	M1 A1)
(c)	$Q_1 = 10.5 + \frac{(50/50.25)}{62} \times 10 [= 18.56]$ (*) $(n + 1 \text{ gives } 18.604)$	B1 cso	,
(d)	$Q_3 = 25.5$ (Use of $n + 1$ gives 25.734) IQR = 6.9 (Use of $n + 1$ gives 7.1)	(1) B1 B1 ft)
(e)	The data is skewed (condone "negative skew")	(2) B1)
(f)	Mean decreases and st. dev. remains the same. [Must mention mean and st. dev.] (from(a)) The median and quartiles would decrease. [Must refer to median <u>and</u> at least Q_1 .] ((b)(c)) The IOP would remain unchanged. (from (d))	(1) B1 B1 P1 (3))
	The IQK would remain unchanged (from (d))	(14 marks)))
	Notes		
(a)	Correct answers only score full marks in each part except (c) B1 for 4837.5 or 4838 or 4840 seen. If no $\sum ft$ seen (or attempt at $\sum ft$ seen), B1 can be implied by a correct mean of	f awrt 24.2	
	1 st M1 for attempt at their $\frac{\sum ft}{\sum f}$ allow 1sf so $\sum f = awrt 200$ and $\sum ft = awrt 5$	000.	
	Or award M1 for a clear attempt at mean where at least 4 correct products of $\sum ft$	are seen	
	2 nd M1 for correct expression including square root seen. Follow through their mea Allow a transcription error in 134281.25 but not an incorrect re-calculation.	an.	
(b)	M1 for a correct fraction $\times 5$. Ignore end point but must be +. Allow use of $(n + 1)$ giving 100.5		
(c)	B1cso for a fully correct expression including end point. NB Answer is given. Allow use of $(n + 1)$ giving 50.25but use of 50.5 scores B0		
(d)	1 st B1 for 25.5 (or awrt 25.7 using $n + 1$) 2 nd B1ft for their Q_3 – their Q_1 (or 18.6) (provided > 0) Accept awrt 2sf. Correct ans. on	ly scores 2/2	
(e)	B1 Must mention that the data is skewed or not symmetrical. Do not award for '	'outliers"	
(f)	1^{st} B1for one correct comment from the above. May refer to parts (a), (b), (c) or (a 2^{nd} B1for two correct comments from the above 3^{rd} B1for all 3 correct comments from the above	d)	

Question	Scheme	Marks	
35. (a)	Width = $2 \times 1.5 = 3$ (cm)	B1	
	Area = $8 \times 1.5 = 12$ cm ² Frequency = 24 so 1 cm ² = 2 plants (o.e.)	M1	
	Frequency of 12 corresponds to area of 6 so height = 2 (cm)	A1 (3)	
(b)	$[Q_2 =] (5+) \frac{19}{24} \times 5$ or (use of $(n+1)$) $(5+) \frac{19.5}{24} \times 5$	M1	
	= 8.9583 <u>awrt 8.96</u> or 9.0625 awrt 9.06	A1 (2)	
(c)	$[\bar{x} =] \frac{755}{70}$ or awrt 10.8	B1	
	$[\sigma_x =] \sqrt{\frac{12037.5}{70} - \bar{x}^2} = \sqrt{55.6326}$	M1A1ft	
	$= \underline{awrt \ 7.46} (Accept \ s = awrt \ 7.51)$	A1 (4)	
		[9]	
	Notes		
(a)	M1 for forming a relationship between area and no. of plants or their width×their height = 6 A1 for height of 2 (cm). Make sure the 2 refers to height and not plants!		
(b)	M1 for a suitable fraction $\times 5$ (ignore end points)		
	A1 for awrt 8.96 (or $\frac{215}{24}$ or $8\frac{23}{24}$) or 9.06 (or $\frac{145}{16}$ or $9\frac{1}{16}$) if using $(n + 1)$		
(c)	B1 for a correct mean. Accept exact fraction or awrt 10.8 M1 for a correct expression for σ or σ^2 . Condone mixed up labelling- ft their mean A1ft for a correct expression – ft their mean but must have square root A1 for awrt 7.46 (use of <i>s</i> = awrt 7.51). Condone correct working and answer called variance.		

Question Number	Scheme	Marks	
36. (a)	Width = 4 (cm)	B1	
	Area of 14 cm ^{2} represents frequency 28 and area of 4 <i>h</i> represents 18	M1	
	Or $\frac{4h}{18} = \frac{14}{28}$ (o.e.) $h = \underline{2.25}$ (cm)	A1	
			(3)
(b)	$m = (240) + \frac{10}{22} \times 80$ (o.e.)	M1	
	$= 276.36 (\frac{3040}{11}) \qquad ((\pounds)\underline{276} \le m < (\pounds)276.5)$	A1	
			(2)
(c)	$\sum fy = 31600$ leading to $y = 316$	M1A1	
	$\sigma_y = \sqrt{\frac{12452800}{100} - (\bar{y})^2} = 157.07 \text{ (awrt } \underline{157}\text{)}$ Allow $s = 157.86$	M1A1	
			(4)
			0
(2)	Notes		,
(a)	M1 for clear method using area and frequency <u>or</u> their width × their height = 9 e.g. seeing both fd of 0.7 and 0.225 (may see fd in the table) [Must use correct	ct interval]	
(b)	M1 for $\frac{10}{22} \times 80$ or $\frac{10.5}{22} \times 80$ (o.e.). Allow use of $(n + 1)$ leading to £278.18	or [278, 278.5	5)
	A1 Do not award if incorrect end-point seen but answer only is 2/2		
(c)	1^{st} M1 attempt at $\sum fy$ with at least 3 correct products or ans. that rounds to 30 000 (to 1 sf) &/100		
	2 nd M1 for correct expression including $$. Follow through \overline{y} . Need $\sum fy^2$ correct but		
	condone a minor transcription error e.g. 12458200.		

Question	Scho	eme	Marks
38. (a)	One large square = $\frac{450}{"22.5"}$ or one small	square = $\frac{450}{562.5''}$ (o.e. e.g. $\frac{562.5''}{450}$)	M1
	One large square = $20 \text{ cars } \underline{\text{or}}$ one small No. > 35 mph is: $4.5 \times 20^{\circ}$ or $112.5 \times 20^{\circ}$	square = 0.8 cars <u>or</u> 1 car = 1.25 squares '0.8" (or equivalent e.g. using fd) = <u>90</u> (cars)	A1 dM1 A1 (4)
(b)	$[\overline{x}] = \frac{30 \times 12.5 + 240 \times 25 + 90 \times 32.5 + 302}{450}$	$\times 37.5 + 60 \times 42.5 \left[= \frac{12975}{450} \right]$	M1 M1
		$= 28.83 \text{ or } \frac{173}{6} \text{ awrt } \underline{28.8}$	A1 (3)
(c)	$[Q_2 =] 20 + \frac{195}{240} \times 10$ (o.e.) [Allow us	e of $(n + 1)$ giving 195.5 instead of 195]	M1
	= 28.125 [Use of (<i>n</i> +	1) gives 28.145] awrt <u>28.1</u>	AI (2)
(d)	$Q_2 < \overline{x}$ So <u>positive skew</u>	[Condone $Q_2 \approx \overline{x}$] [so (almost) <u>symmetric</u>]	B1ft dB1ft (2)
(0)	[If chose skew in (d)] median (O)	[If chose symmetric in (d)] mean (\overline{x})	R 1
(e)	Since the data is skewed or median not officiated by avtrame values.	Since it uses all the data (x)	dB1 (2)
	median not affected by extreme values		[13]
	No	tes	
(a)	1 st M1 for attempt to count squares (ac use 450 to obtain a measure of	ccept "22.5" in [22, 23] and "562.5" in [55 scale. [If using fd must use 450 to obtain s	0, 575]) and cale factor]
	1 st A1 for a correct calc. for 20 or 0.8 or 1.25 etc		
	[May be fd = 4 to 1 large sq. or 0.8 to 1 small sq. May be on the diagram.] $2^{nd} dM_1$ dop on $1^{st} M_1$ for correctly counting sources for > 25 mph and forming suitable over?		
	2^{nd} A1 for 90 with no incorrect working seen.		
	e.g. $\frac{4.5}{22.5} \times 450$ scores M1A1M1 and A1 when = 90 is seen. Answer only is 4/4		
(b)	1 st M1 for clear, sensible use of mid-poi 2 nd M1 for an expression for \overline{x} (at least 3	nts at least 3 of (12.5, 25, 32.5, 37.5, 42.5) 3 correct terms on num' and a compatible	seen
	denominator)		
	Follow through their frequencies		``
	You may see these fractions: $\frac{100000}{562.5}$ (small 4.1 for awrt 28.8 (answer only is $3/3$)	1 squares), $\frac{1275}{450}$ (frequencies), $\frac{16176}{22.5}$ (large	squares)
	$\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $,	
(c)	M1 for a full expression for median (using their frequencies). May see e.g. 25+	$\frac{75}{120}$ ×5 etc
	Do nor accept boundaries of 19.5 or 20.5, these are M0A0 A1 for awrt 28.1 (answer only is $2/2$) [For use of $(n + 1)$ accept 28.15 but not 28.2]		
/ 1 \	1 st B1ft for a correct statement about t	heir Q_2 and \overline{x} [Condone $Q_2 \approx \overline{x}$ only if $ q q q q q q q q q $	$Q_2 - \overline{x} < 1$]
(d)	Do not accept an argument based on the shape of the graph alone.		
	2^{na} dB1ft dependent on 1^{st} B1 for a <u>comp</u>	batible description of skewness. F.t. their	values
Quartiles	If $Q_1 = 23.4$ and $Q_3 = 33.7 \sim 33.8$ are see	n allow comparison of quartiles for 1 st B1	ın (d)
(e)	1^{st} B1 for a correct choice based on their s	kewness comment in (d). If no choice made in	n (d) only Q_2
	2 nd dB1 for a suitable compatible comme	ent	

Question Number	Scheme	Marks
39 (a)	14, 5	M1 A1
		(2)
(b)	21 + 45 + 3 = 69	M1 A1
		(2)
		Total 4
NOTES		
(-)		
(a)	M1 for $2x/$ or 14 or $5x1$ or 5	
	A1 for both 14 and 5	
(b)	M1 for 21+45+(0 <frequency <9)<="" td=""><td></td></frequency>	
	A1 for 69 only.	
	69 no working, award M1A1 Incorrect answer with no working M0A0	

Question Number	Scheme	Marks	
10			
40. (a)	<u>10.5</u>	B1 (1)	
(b)	$(Q_2 =)$ (15.5+) $\frac{\frac{1}{2} \times 30 - 14}{8} \times 3$ or $\frac{\frac{1}{2} \times 31 - 14}{8} \times 3$	M1	
	= <u>15.875 or 16.0625</u>	A1 (2)	
(c)	$\overline{x} = \frac{477.5}{30} = \underline{15.9}$ (15.918) [Accept $\frac{191}{12}$ or $15\frac{11}{12}$]	M1, A1	
	$\sigma = \sqrt{\frac{8603.75}{30} - \overline{x}^2} ,= \underline{5.78} (\text{accept } s = 5.88)$	M1A1ft, A1	
		(5)	
		(8 marks)	
	Notes	(o marks)	
	In narts (a) to (c) a correct answer with no working scores full marks for	or that value	
(a)	B1 for 10.5 which may be in the table	or that value.	
(b)	M1 for a correct ratio and times 3, ignore the lower boundary for this matrix A1 for awrt 15.9 (if $n = 30$ used) or awrt 16.1 (if $n+1 = 31$ is used)	ark	
(c)	1 st M1 for attempt at $\sum fx$ (this may be seen in the table as fx: 10, 73.5, 70, 136, 82, 106		
	[condone 1 slip] or awrt 500) and use of $\frac{\sum fx}{\sum f}$ or a correct expression for mean.		
	1 st A1 for awrt 15.9		
	2^{nd} M1 for an attempt at σ or σ^2 , can ft their mean, condone mis-labelling $\sigma^2 = $ etc		
	Allow use of their $\sum fx^2$ (awrt 9000)		
	2^{nd} A1ft for a correct expression including square root, ft their mean but not their $\sum fx^2$.		
	No label or correct label is OK but wrong label (e.g. $\sigma^2 = $) is A0		
	3^{rd} A1 for awrt 5.78, allow $s = awrt 5.88$. SC Allow M1A1A0 for awrt 5	5.79 if \overline{x} correct	

Quest Numb	tion ber	Scheme	Marks	
41	(a)	23, 35.5 (may be in the table)	B1 B1	(2)
	(b)	Width of 10 units is 4 cm so width of 5 units is <u>2 cm</u>	B1	
		Height = $2.6 \times 4 = 10.4$ cm	M1 A1	(3)
	(C)	$\sum fx = 1316.5 \Longrightarrow \overline{x} = \frac{1316.5}{56} = \text{awrt } \underline{23.5}$	M1 A1	
		$\sum fx^2 = 37378.25$ can be implied	B1	
		So $\sigma = \sqrt{\frac{37378.25}{56} - \overline{x}^2} = \text{awrt}\underline{10.7}$ allow $s = 10.8$	M1 A1	(5)
	(d)	$Q_2 = (20.5) + \frac{(28-21)}{11} \times 5 = 23.68$ awrt <u>23.7 or 23.9</u>	M1 A1	(2)
			Tota	l 12
	(b)	M1 for their width x their height=20.8. Without labels assume width first, height second and award marks accordingly.	1	
	(C)	1 st M1 for reasonable attempt at $\sum x$ and /56		
		2 nd M1 for a method for σ or s , $$ is required Typical errors $\sum (fx)^2 = 354806.3 \text{ M0}, \sum f^2 x = 13922.5 \text{ M0 and } (\sum fx)^2 = 1733172$	M0	
		Correct answers only, award full marks.		
	(d)	Use of $\sum f(x - \bar{x})^2 = \text{awrt } 6428.75 \text{ for } B1$		
		lcb can be 20, 20.5 or 21, width can be 4 or 5 and the fraction part of the formula correct for 28.5 in fraction that gives awrt 23.9 for M1A1	M1 - Allo	W

Ques Num	stion ber	Scheme	Marks
42	(a)	2.75 or $2\frac{3}{4}$, 5.5 or 5.50 or $5\frac{1}{2}$	B1 B1 (2)
	(b)	Mean birth weight = $\frac{4841}{1500} = 3.227\dot{3}$ awrt 3.23	M1 A1 (2)
	(C)	Standard deviation = $\sqrt{\frac{15889.5}{1500} - \left(\frac{4841}{1500}\right)^2} = 0.421093$ or $s = 0.4212337$	M1 A1ft A1 (3)
	(d)	$Q_2 = 3.00 + \frac{403}{820} \times 0.5 = 3.2457$ (allow 403.5 \rightarrow 3.25)	M1 A1 (2)
			Total [9]
	(b)	M1 for a correct expression for mean. Answer only scores both.	
	(C)	M1 for a correct expression (ft their mean) for sd or variance. Condone mis-labelling eg sd= with no square root or no labelling 1^{st} A1ft for a correct expression (ft their mean) including square root and no mis-labelling Allow 1^{st} A1 for $\sigma^2 = 0.177 \rightarrow \sigma = 0.42$ 2^{nd} A1 for awrt 0.421. Answer only scores 3/3	
	(d)	M1 for a correct expression (allow 403.5 i.e. use of $n + 1$) but must have 3.00, 820 and 0.5 A1 for awrt 3.25 provided M1 is scored. NB 3.25 with no working scores 0/2 as some candidates think mode is 3.25.	

Ques Num	stion ber	Scheme	Marks
43	(a)	1(cm) cao	B1
	(b)	10 cm^2 represents 15 $10/15 \text{ cm}^2$ represents 1or 1 cm^2 represents 1.5	
		Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5}$ Require $x \frac{2}{3}$ or $\div 1.5$ height = 6(cm)	M1 A1
			[3]
Note	S	If 3(a) and 3(b) incorrect, but their (a) x their (b)=6 then award B0M1A0 3(b) Alternative method: f/cw=15/6=2.5 represented by 5 so factor x2 award M1 So f/cw=9/3=3 represented by 3x2=6. Award A1.	

Question Number	Scheme	Mark	S
44 (a)	$Q_2 = 17 + \left(\frac{60 - 58}{29}\right) \times 2$	M1	
	= 17.1 (17.2 if use 60.5) awrt 17.1 (or17.2)	A1	(2)
(b)	$\sum fx = 2055.5$ $\sum fx^2 = 36500.25$ Exact answers can be seen below or implied	B1 B1	()
	by correct answers. Evidence of attempt to use midpoints with at least one correct	M1	
	Mean = 17.129 awrt 17.1	B1	
	$\sigma = \sqrt{\frac{36500.25}{120} - \left(\frac{2055.5}{120}\right)^2}$	M1	
	$= 3.28 (s = 3.294) \qquad \text{awrt } 3.3$	A1	(6)
			[8]
Notes	4(a) Statement of $17 + \frac{\text{freq into class}}{\text{class freq}} \times \text{cw}$ and attempt to sub or $\frac{m-17}{19-17} = \frac{60(.5)-58}{87-58}$ or equivalent award M1 cw=2 or 3 required for M1. 17.2 from cw=3 award A0. 4(b) Correct $\sum fx$ and $\sum fx^2$ can be seen in working for both B1s Midpoints seen in table and used in calculation award M1 Require complete correct formula including use of square root and attempt to sub for M1. No formula stated then numbers as above or follow from (b) for M1 $(\sum fx)^2, \sum (fx)^2 or \sum f^2 x$ used instead of $\sum fx^2$ in sd award M0 Correct answers only with no working award 2/2 and 6/6		

Ques Num	tion ber	Scheme	Marks
45	(a)	$Q_2 = 53, Q_1 = 35, Q_3 = 60$	B1, B1, B1
	(b)	$Q_3 - Q_1 = 25 \Longrightarrow Q_1 - 1.5 \times 25 = -2.5$ (no outlier)	(3) M1
	(c)	$Q_3 + 1.5 \times 25 = 97.5$ (so 110 is an outlier)	A1 (2)
	(0)		M1
			A1ft
		0 10 20 30 40 30 60 70 80 90 100 110 120	A1ft (3)
	(d)	$\sum y = 461, \sum y^2 = 24\ 219$ $\therefore \ S_{yy} = 24219 - \frac{461^2}{10}, = 2966.9 \ (*)$	B1, B1, B1cso (3)
			[11]
	(a)	1 st B1 for median 2 nd B1 for lower quartile	
		3 rd B1 for upper quartile	
	(b)	M1 for attempt to find one limitA1 for both limits found and correct. No explicit comment about outliers needed.	
	(C)	 M1 for a box and two whiskers 1st A1ft for correct position of box, median and quartiles. Follow through their values. 2nd A1ft for 17 and 77 or "their" 97.5 and *. If 110 is not an outlier then score A0 here Penalise no gap between end of whisker and outlier. Must label outlier, needn't be wine Accuracy should be within the correct square so 97 or 98 will do for 97.5 	e. th *.
	(d)	1 st B1 for $\sum y$ N.B. $(\sum y)^2 = 212521$ and can imply this mark	
		2 nd B1 for $\sum y^2$ or at least three correct terms of $\sum (y - \overline{y})^2$ seen.	
		3 rd B1 for complete correct expression seen leading to 2966.9. So all 10 terms of $\sum ($	$(y-\overline{y})^2$

Ques Num	tion ber	Scheme	Mar	⁻ ks
46	(a)	8-10 hours: width = $10.5 - 7.5 = 3$ represented by 1.5cm 16-25 hours: width = $25.5 - 15.5 = 10$ so represented by 5 cm 8- 10 hours: height = fd = $18/3 = 6$ represented by 3 cm 16-25 hours: height = fd = $15/10 = 1.5$ represented by <u>0.75 cm</u>	B1 M1 A1	(3)
	(b)	$Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	M1 A1	
		$Q_1 = 5.5 + \frac{(26-20)}{16} \times 2[=6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2[=6.3]$	A1	
		$Q_3 = 10.5 + \frac{(78 - 54)}{25} \times 5[=15.3] \text{or } 10.5 + \frac{(78.75 - 54)}{25} \times 5[=15.45 \ \text{(}15.5]]$ IQR = (15.3 - 6.3) = <u>9</u>	A1 A1ft	(5)
	(C)	$\sum fx = 1333.5 \Rightarrow \overline{x} = \frac{1333.5}{104} = $ AWRT <u>12.8</u>	M1 A1	
		$\sum fx^2 = 27254 \Longrightarrow \sigma_x = \sqrt{\frac{27254}{104} - \bar{x}^2} = \sqrt{262.05 - \bar{x}^2} \qquad \text{AWRT } \underline{9.88}$	M1 A1	(4)
			<u> </u>	[1 2]
	(a)	M1 For attempting both frequency densities $\frac{18}{3}$ (= 6) and $\frac{15}{10}$, and $\frac{15}{10} \times SF$, where $SF \neq$	1	
	(b)	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores M	[1A0	
		M1 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$. Condone 52.5	5 or 53	
		1^{st} A1 for 10.2 for median. Using $(n + 1)$ allow awrt 10.3		
		2^{nd} A 1 for a correct supression for either Q_{1} or Q_{2} (allow 26.25 and 78.75) Mu	<u>NB</u> :	
		2 At for a correct expression for each Q_1 of Q_3 (anow 20.25 and 78.75) Mu	<u>st see</u>	
	(C)	5 A1 for correct expressions for both Q_1 and Q_3 A^{th} A 1ft for IOP ft their quartiles. Using $(n+1)$ gives 6.28 and 15.45	some	
	. ,	1^{st} M1 for attempting $\sum fx$ and \overline{x}	eniou	
		2 nd M1 for attempting $\sum fx^2$ and σ_x , $$ is needed for M1. Allow $s = awrt 9.93$		

Question Number	Scheme	Marks
47.		
(a)	mean is $\frac{2757}{12}$, = 229.75 AWRT 230	M1, A1
	sd is $\sqrt{\frac{724961}{12} - (229.75)^2}$, = 87.34045 AWRT 87.3	M1, A1
	[Accept s = AWRT 91.2]	
(b)	Ordered list is: 125, 160, 169, 171, 175, 186, 210, 243, 250, 258, 390, 420	(4)
	$Q_2 = \frac{1}{2}(186 + 210) = 198$	B1
	$Q_1 = \frac{1}{2} (169 + 171) = 170$	B 1
	$Q_3 = \frac{1}{2} (250 + 258) = 254$	B1
(c)	$Q_3 + 1.5(Q_3 - Q_1) = 254 + 1.5(254 - 170), = 380$ Accept AWRT (370-392)	(3) M1, A1
	Patients $F(420)$ and $B(390)$ are outliers.	B1ft B1ft
		(4)
		Total 11 marks
(a)	1 st M1 for using $\frac{\sum x}{n}$ with a credible numerator and $n = 12$.	
	2^{nd} M1 for using a correct formula, root required but can ft their mean	
NB	Use of $s = \sqrt{8321.84} = 91.22$ is OK for M1A1 here.	
	Answers only from a calculator in (a) can score full marks	
(b)	1^{st} B1 for median= 198 only, 2^{nd} B1 for lower quartile 3^{rd} B1 for upper quartile	
S.C.	If all Q_1 and Q_3 are incorrect but an ordered list (with ≥ 6 correctly placed) is seen	
	and used then award B0B1 as a special case for these last two marks.	
(c)	M1 for a clear attempt using their quartiles in given formula, A1 for any value in the range $370 - 392$ 1 st B1ft for any one correct decision about <i>B</i> or <i>F</i> - ft their limit in range (258, 420) 2 nd B1ft for correct decision about both <i>F</i> and <i>B</i> - ft their limit in range (258, 420) If more points are given score B0 here for the second B mark. (Can score M0A0B1B1 here)	

48.	Width Freq. Density	1 6	1 7	4 2	2 6	3 5.5	5 2 0	3 1.5 .5 × 12	12 0.5 or 6		M1 A1
	Total area is $(1 \times 6) + (1 \times 7) + (4 \times 2) + \dots, = 70$ $(90.5 - 78.5) \times \frac{1}{2} \times \frac{140}{\text{their } 70}$ "70 seen anywhere"Number of runners is 121 st M1 for attempt at width of the correct bar $(90.5 - 78.5)$ [Maybe on histogram or in table]1 st A1 for 0.5×12 or 6 (may be seen on the histogram. Must be related to the area of the bar above $78.5 - 90.5$.2 nd M1 for attempting area of correct bar $\times \frac{140}{\text{their } 70}$ B1 for 70 seen anywhere in their working 2^{nd} A1 for correct answer of 12.Minimum working required is $2 \times 0.5 \times 12$ where the 2 should come from $\frac{140}{70}$ Beware $90.5 - 78.5 = 12$ (this scores M1A0M0B0A0) Common answer is $0.5 \times 12 = 6$ (this scores M1A1M0B0A0)If unsure send to review e.g. $2 \times 0.5 \times 12 = 12$ without 70 being seen										M1 B1 A1 (5) Total 5 marks

