

Maths Questions By Topic:

Exponentials \& Logarithms Mark Scheme

A-Level Edexcel

\#www.expert-tuition.co.uk
\square online.expert-tuition.co.uk

- enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 Page 1Paper 2

Page 32
Old Spec
Core 1 ... Page 48
Core 2 ... Page 63
Core 3 Page 82

Question	Scheme	Marks	AOs
1 (a)	265 thousand	B1	3.4
		(1)	
(b)	Attempts $\frac{\mathrm{d} N_{b}}{\mathrm{~d} t}=11 \mathrm{e}^{0.05 t}$	M1	1.1b
	Substitutes $t=10$ into their $\frac{\mathrm{d} N_{b}}{\mathrm{~d} t}$	M1	3.4
	$\frac{\mathrm{d} N_{b}}{\mathrm{~d} t}=$ awrt 18.1 which is approximately 18 thousand per year *	A1*	2.1
		(3)	
(c)	Sets $45+220 \mathrm{e}^{0.05 t}=10+800 \mathrm{e}^{-0.05 t} \Rightarrow 220 \mathrm{e}^{0.05 t}+35-800 \mathrm{e}^{-0.05 t}=0$	M1	3.1 b
	Correct quadratic equation $\Rightarrow 220\left(\mathrm{e}^{0.05 t}\right)^{2}+35 \mathrm{e}^{0.05 t}-800=0$	A1	1.1b
	$\mathrm{e}^{0.05 t}=1.829,(-1.988) \Rightarrow 0.05 t=\ln (1.829)$	M1	2.1
	$T=12.08$	A1	1.1b
		(4)	
(8 marks)			
Notes:			

(a) May be seen in the question so watch out.

B1: Accept 265 thousand or 265000 or equivalent such as 265 k but not just 265 .
(b)

M1: Differentiates to a form $k \mathrm{e}^{0.05 t}, k>0, k \neq 220$. Do not be too concerned about the lhs.
M1: Substitutes $t=10$ into a changed function that was formed from an attempt at differentiation.
The left hand side must have implied differentiation. E.g. Rate $=, N^{\prime}, \frac{d N_{b}}{d t}, \frac{d N}{d t}$ or even $\frac{\mathrm{d} y}{\mathrm{~d} x}$
A1*: Full and complete proof that requires

- some correct lhs seen at some point. E.g. "Rate $=, " \frac{d N_{b}}{d t}, \frac{d N}{d t}$ but condone N^{\prime}.
- an intermediate line/answer of either $11 \mathrm{e}^{0.05 \times 10}$ or awrt 18.1 before a minimal conclusion which must be referencing the 18000 or 18 thousand
(c)

M1: Attempts to set both equations equal to each other and simplify the constant terms.
Look for $220 \mathrm{e}^{0.05 t}+35=800 \mathrm{e}^{-0.05 t}$ o.e but condone slips
It is also possible to set $\frac{N-45}{220}=\left(\mathrm{e}^{0.05 t}=\right) \frac{800}{N-10}$ and form an equation in N
A1: Correct quadratic form.
Look for $220\left(\mathrm{e}^{0.05 t}\right)^{2}+35 \mathrm{e}^{0.05 t}-800=0$ or $220 \mathrm{e}^{0.1 t}+35 \mathrm{e}^{0.05 t}-800=0$ but allow with terms in
different order such as $220 \mathrm{e}^{0.1 t}+35 \mathrm{e}^{0.05 t}=800$
FYI the equation in N is $N^{2}-55 N-175550=0$
M1: Full attempt to find the value of t (or a constant multiple of t)
This involves the key step of recognising and solving a 3 TQ in $\mathrm{e}^{0.05 t}$ followed by the use of \ln. If the answers to the quadratic just appear (from a calculator) you will need to check.
Accuracy should be to 3sf.
You may see different variables used such as x

$$
x=\mathrm{e}^{0.05 t}, 220 \mathrm{e}^{0.1 t}+35 \mathrm{e}^{0.05 t}=800 \Rightarrow 220 x^{2}+35 x=800 \Rightarrow x=1.82 \ldots \Rightarrow t=20 \ln 1.82 \ldots
$$

Allow use of calculator for solving the quadratic and for $\mathrm{e}^{0.05 t}=1.82 . . \Rightarrow t=12.08$
Via the N route it will involve substituting the positive solution to their quadratic into either equation to find a value for t / T using same rules as above.
A1: AWRT 12.08

Answers with limited or no working in (b) and (c)
(b) A derivative in the correct form must be seen
(c) Candidates who state $45+220 \mathrm{e}^{0.05 t}=10+800 \mathrm{e}^{-0.05 t}$ followed by awrt 12.08 (presumably from using num-solv on their calculators) can score SC 1100. Rubric on the front of the paper states that "Answers without working may not gain full credit" so we demand a method in this part.

Question	Scheme	Marks	AOs
2(a)	$p=10^{0.5}\left(\right.$ or $\left.\log _{10} p=0.5\right)$ or $q=10^{0.03}\left(\right.$ or $\left.\log _{10} q=0.03\right)$	M1	1.1b
	$p=$ awrt $3.162 \quad$ or $\quad q=$ awrt 1.072	A1	1.1b
	$p=10^{0.5}\left(\right.$ or $\left.\log _{10} p=0.5\right)$ and $q=10^{0.03}\left(\right.$ or $\left.\log _{10} q=0.03\right)$	dM1	3.1a
	$A=3.162 \times 1.072^{t}$	A1	3.3
		(4)	
(b)(i)	The initial mass (in kg) of algae (in the pond).	B1	3.4
(b)(ii)	The ratio of algae from one week to the next.	B1	3.4
		(2)	
(c)(i)	5.5 kg	B1	2.2a
(c)(ii)	$4=" 3.162$ " $\times 1.072$ "t or $\log _{10} 4=0.03 t+0.5$	M1	3.4
	awrt 3.4 (weeks)	A1	1.1b
		(3)	
(d)	- The model predicts unlimited growth. - The weather may affect the rate of growth	B1	3.5b
		(1)	
(10 marks)			

Notes

(a)

M1: A correct equation in p or q. May be implied by a correct value for p or q.
Also score for rearranging the equation to the form $A=10^{0.5} \ldots 10^{0.03 t}$
A1: \quad For $p=$ awrt 3.162 or $q=$ awrt 1.072. May be embedded within the equation.
dM 1 : Correct equations in p and q. Also score for rearranging the equation to the form $A=10^{0.5} \times 10^{0.03 t}$

A1: \quad Complete equation with $p=$ awrt 3.162 and $q=$ awrt 1.072 . Must be seen in (a)
If p and q are just stated but the equation is not written with the values embedded then withhold this mark.
Withhold the final mark if the correct values for p and q result from incorrect working such as $A=10^{0.5}+10^{0.03 t} \Rightarrow A=3.162 \times 1.072^{t}$.
If p and q are stated the wrong way round, take the stated equation as their final answer and isw.
(b)
(i)

B1: Must reference mass of algae and relating to initially/at the start/beginning
Examples of acceptable answers:
The mass of algae originally (in the pond)
p is the mass of algae when $t=0$
Examples of answers we would not accept
p is how much algae there is at the beginning
The relationship between algae and number of weeks
(ii)

B1: Must reference the rate of change/multiplier and the time frame eg per week/every week/each week.

Examples of acceptable answers:

q is the rate at which the mass of algae increases for every week
The amount of algae increases by 7.2% each week (condone amount for mass in ii)
The proportional increase in mass of the algae each week
Examples of answers we would not accept:
q is how much algae will increase when t increases by 1
The amount that grows per unit of time
The rate at which the mass of algae in the small pond increases after t number of weeks The rate in which the algae mass increases
(c)

B1: cao (including units)

M1: \quad Setting up a correct equation to find t using the given equation or their part (a)
Substitution of $A=4$ into their equation for A or the given equation is sufficient for this mark.

A1: awrt 3.4 (weeks). Accept any acceptable method (including trial and improvement) Condone lack of units. isw if they subsequently convert to weeks and days. Allow awrt 3.5 (weeks) following $p=$ awrt 3.16 and $q=$ awrt 1.07 .

An answer of only awrt 3.4 is M1A1, but an answer of 4 (weeks) with no working is MOA0
(d)

B1: Any reason why the rate of change, growth or the mass of algae might change or why the model in not realistic.
Be generous with the awarding of this mark as long as the answer has engaged with the context of the problem or the model

Examples of acceptable answers:

Seasonal changes (which would affect the growth rate)
Overcrowding (as it is a small pond)
Algae may stop growing (the model predicts unlimited growth)
Algae may die / be removed / eaten (so the rate of growth may not continue at the same rate)
Examples of answers we would not accept:
There could be other factors that affect the amount of algae (too vague)
The mass of algae might change

Question	Scheme	Marks	AOs
3(a)	($k=$) 0.8	B1	1.1b
		(1)	
(b)	$1=0.8+1.4 \mathrm{e}^{-0.5 t} \Rightarrow 1.4 \mathrm{e}^{-0.5 t}=0.2$	M1	3.1b
	$-0.5 t=\ln \left(\frac{0.2}{1.4}\right) \Rightarrow t=\ldots$	M1	1.1b
	awrt 3.9 minutes	A1	1.1b
		(3)	
(c)	$\begin{gathered} \left(\frac{\mathrm{d} P}{\mathrm{~d} t}=\right)-0.7 \mathrm{e}^{-0.5 t} \\ \left(\frac{\mathrm{~d} P}{\mathrm{~d} t}\right)_{t=2}=-0.7 \mathrm{e}^{-0.5 \times 2} \end{gathered}$	M1	3.1b
	$=$ awrt $0.258\left(\mathrm{~kg} / \mathrm{cm}^{2}\right.$ per minute)	A1	1.1b
		(2)	
(6 marks)			
Notes			
(a) B1: Completes the equation for the model by obtaining $(k=) 0.8$ or equivalent. (b) *Be aware this could be solved entirely using a calculator which is not acceptable*			
M1: For using the model with $P=1$ and their value for k from (a) and proceeding to $A \mathrm{e}^{ \pm 0.5 t}=B$. Condone if A or B are negative for this mark.			
M1: Uses correct log work to solve an equation of the form $A \mathrm{e}^{ \pm 0.5 t}=B$ leading to a value for t They cannot proceed directly to awrt 3.9 without some intermediate working seen. Eg $t=2 \ln 7$ or $-2 \ln \left(\frac{1}{7}\right)$ is acceptable. Also allow $1.4 \mathrm{e}^{-0.5 t}=0.2 \Rightarrow-0.5 t=-1.9459 \ldots \Rightarrow t=\ldots$ This cannot be scored from an unsolvable equation (eg when their $k \ldots 1$ so that $\mathrm{e}^{ \pm 0.5 t}, 0$).			
	Accept awrt 3.9 minutes or $t=$ awrt 3.9 with correct working seen. eg $1.4 \mathrm{e}^{-0.5 t}=0.2 \Rightarrow t=3.9$ would be M1M0A0		
(c) *	*Be aware this can be solved entirely using a calculator which is not acceptable*		
M1: Links rate of change to gradient and differentiates to obtain an expression of the form $A \mathrm{e}^{-0.5 t}$ and substitutes $t=2$. Do not accept $A t \mathrm{e}^{-0.5 t}$ as the derivative. Beware that substituting $t=2$ and proceeding from e^{-1} to e^{-2} is M0A0			
A1: Obtains awrt 0.258 with differentiation seen. (Units not required) Condone awrt -0.258 Awrt ± 0.258 with no working is M0A0. Isw after a correct answer is seen.			
(Ignore in (c) any spurious notation on the LHS when differentiating such as $P=\ldots$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$)			

Question	Scheme	Marks	AOs
4(a)(i)	$\log _{3}\left(\frac{x}{9}\right)=\log _{3} x-\log _{3} 9=p-2$	B1	1.2
(ii)	$\log _{3}(\sqrt{x})=\frac{1}{2} p$	B1	1.1b
		(2)	
(b)	$2 \log _{3}\left(\frac{x}{9}\right)+3 \log _{3}(\sqrt{x})=-11 \Rightarrow 2 p-4+\frac{3}{2} p=-11 \Rightarrow p=\ldots$	M1	1.1b
	$p=-2$	A1	1.1b
	$\log _{3} x=-2 \Rightarrow x=3^{-2}$	M1	1.1b
	$x=\frac{1}{9}$	A1	1.1b
		(4)	
	Alternative for (b) not using (a):		
	$\begin{aligned} & 2 \log _{3}\left(\frac{x}{9}\right)+3 \log _{3}(\sqrt{x})=-11 \Rightarrow \log _{3}\left(\frac{x}{9}\right)^{2}+\log _{3}(\sqrt{x})^{3}=-11 \\ & \Rightarrow \log _{3} \frac{x^{\frac{7}{2}}}{81}=-11 \end{aligned}$	M1	1.1b
	$\Rightarrow \frac{x^{\frac{7}{2}}}{81}=3^{-11}$ or equivalent eg $x^{\frac{7}{2}}=3^{-7}$	A1	1.1b
	$x^{\frac{7}{2}}=81 \times 3^{-11} \Rightarrow x^{\frac{7}{2}}=3^{4} \times 3^{-11}=3^{-7} \Rightarrow x=\left(3^{-7}\right)^{\frac{2}{7}}=3^{-2}$	M1	1.1b
	$x=\frac{1}{9}$	A1	1.1b
(6 marks)			
Notes			
(a)(i)			
B1: R	Recalls the subtraction law of logs and so obtains $p-2$		
(a)(ii)			
B1: $\quad \frac{1}{2} p$ oe	$\frac{1}{2} p \text { oe }$		
(b) $\quad *$	*Be aware this should be solved by non-calculator methods*		
	Uses their results from part (a) to form a linear equation in p and attempts to solve leading to a value for p. Allow slips in their rearrangement when solving. Allow a misread forming the equation equal to 11 instead of -11		
A1: \quad C	Correct value for p		
M1:	Uses $\log _{3} x=p \Rightarrow x=3^{p}$ following through on what they consider to be their p. It must be a value rather than p		

A1: $\quad(x=) \frac{1}{9}$ cao with correct working seen. Must be this fraction. Do not penalise invisible brackets as long as the intention is clear.

Alternative:

M1: Correct use of \log rules to achieve an equation of the form $\log _{3} \ldots=\log _{3} \ldots$ or $\log _{3} \ldots=$ a number (typically -11). Condone arithmetical slips.

A1: Correct equation with logs removed.
M1: Uses inverse operations to find x. Condone slips but look for proceeding from $x^{\frac{a}{b}}=\ldots \Rightarrow x=\ldots{ }^{\frac{b}{a}}$ where they have to deal with a fractional power.

A1: $\quad(x=) \frac{1}{9}$ cao with correct working seen. Must be this fraction. Do not penalise invisible brackets as long as the intention is clear.

Question	Scheme	Marks	AOs
5(a)	$A=1000$	B1	3.4
	$2000=1000 \mathrm{e}^{5 k}$ or $\mathrm{e}^{5 k}=2$	M1	1.1b
	$\mathrm{e}^{5 k}=2 \Rightarrow 5 k=\ln 2 \Rightarrow k=\ldots$	M1	2.1
	$N=1000 \mathrm{e}^{\left(\frac{1}{5} \ln 2\right) t} \text { or } N=1000 \mathrm{e}^{0139 t}$	A1	3.3
		(4)	
(b)	$\begin{aligned} \frac{\mathrm{d} N}{\mathrm{~d} t} & =1000 \times\left(\frac{1}{5} \ln 2\right) \mathrm{e}^{\left(\frac{1}{5} \ln 2\right) t} \text { or } \frac{\mathrm{d} N}{\mathrm{~d} t}=1000 \times 0.139 \mathrm{e}^{0139 t} \\ \left(\frac{\mathrm{~d} N}{\mathrm{~d} t}\right)_{t=8} & =1000 \times\left(\frac{1}{5} \ln 2\right) \mathrm{e}^{8 \times \frac{1}{5} \ln 2} \text { or }\left(\frac{\mathrm{d} N}{\mathrm{~d} t}\right)_{t=8}=1000 \times 0.139 \mathrm{e}^{0.139 \times 8} \end{aligned}$	M1	3.1b
	$=$ awrt 420	A1	1.1b
		(2)	
(c)	$500 \mathrm{e}^{14 \times\left(\frac{1}{5} \ln 2\right) T}=1000 \mathrm{e}^{\left(\frac{1}{5} \ln 2\right) T} \text { or } 500 \mathrm{e}^{14 \times^{\prime \prime} 0139^{" t} t}=1000 \mathrm{e}^{\mathrm{n0} 0139^{" t}}$	M1	3.4
	Correct method of getting a linear equation in T E.g. $0.08 T \ln 2=\ln 2 \quad$ or $1.4 \times 0.339 " T=\ln 2+" 0.339 " t$	M1	2.1
	$T=12.5$ hours	A1	1.1b
		(3)	
(9 marks)			
Notes			

Mark as one complete question. Marks in (a) can be awarded from (b)
(a)

B1: Correct value of A for the model. Award if equation for model is of the form $N=1000 \mathrm{e}^{t}$
M1: Uses the model to set up a correct equation in k. Award for substituting $N=2000, t=5$
following through on their value for A.
M1: Uses correct ln work to solve an equation of the form $a \mathrm{e}^{5 k}=b$ and obtain a value for k
A1: Correct equation of model. Condone an ambiguous $N=1000 \mathrm{e}^{\frac{1}{5} \ln 2 t}$ unless followed by something incorrect. Watch for $N=1000 \times 2^{\frac{1}{5} t}$ which is also correct
(b)

M1: Differentiates $\alpha \mathrm{e}^{k t}$ to $\beta \mathrm{e}^{k t}$ and substitutes $t=8$ (Condone $\alpha=\beta$ so long as you can see an attempt to differentiate)
A1: For awrt 420 (2sf).
(c)

M1: Uses both models to set up an equation in T using their value for k, but also allow in terms of k
M1: Uses correct processing using lns to obtain a linear equation in T (or t)
A1: Awrt 12.5

Answers to (b) and (c) appearing without working (i.e. from a calculator).
It is important that candidates show sufficient working to make their methods clear.
(b) If candidate has for example $N=1000 \mathrm{e}^{0139 t}$, and then writes at $t=8 \frac{\mathrm{~d} N}{\mathrm{~d} t}=$ awrt 420 award both marks. Just the answer from a correct model equation score SC $1,0$.
(c) The first M1 should be seen E.g $500 \mathrm{e}^{14 \times^{\prime \prime} 0139^{\prime \prime} t}=1000 \mathrm{e}^{\mathrm{"0} 1399^{\prime t}}$

If the answer $T=12.5$ appears without any further working score SC M1 M1 A0

Question	Scheme	Marks	AOs
6	$\frac{9^{x-1}}{3^{y+2}}=81 \Rightarrow \frac{3^{2 x-2}}{3^{y+2}}=3^{4}$ or $\frac{9^{x-1}}{3^{y+2}}=81 \Rightarrow \frac{9^{x-1}}{9^{\frac{1}{2}(y+2)}}=9^{2}$	M1	1.1b
	$\Rightarrow 2 x-2-y-2=4 \Rightarrow y=$ or $\Rightarrow x-1-\frac{1}{2} y-1=2 \Rightarrow y=$	dM1	1.1b
	$\Rightarrow y=2 x-8$	A1	1.1b
		(3)	
Alt	Eg. $\log _{3}\left(\frac{9^{x-1}}{3^{y+2}}\right)=\log _{3} 81$	M1	1.1b
	$\begin{gathered} \Rightarrow(x-1) \log _{3}\left(9^{x-1}\right)-(y+2) \log _{3}\left(3^{y+2}\right)=4 \\ \Rightarrow 2(x-1)-y-2=4 \Rightarrow y= \end{gathered}$	dM1	1.1b
	$\Rightarrow y=2 x-8$	A1	1.1 b
(3 marks)			
Notes M1: Attempts to set 9^{x-1} and 81 as powers of 3. Condone $9^{x-1}=3^{2 x-1}$ and $9^{x-1}=3^{3 x-3}$. Alternatively attempts to write each term as a logarithm of base 3 or 9 . You must see the base written to award this mark. dM1: Attempts to use the addition (or subtraction) index law, or laws or logarithms, correctly and rearranges the equation to reach y in terms of x. Condone slips in their rearrangement. A1: $y=2 x-8$			

Question	Scheme	Marks	AOs
7 (a)	$35\left(\mathrm{~km}^{2}\right)$	B1	3.4
		(1)	
(b)	Sets their $60=80-45 \mathrm{e}^{14 c} \Rightarrow 45 \mathrm{e}^{14 c}=20$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
	$\Rightarrow c=\frac{1}{14} \ln \left(\frac{20}{45}\right)=\cdots-0.0579$	dM1	3.1b
	$A=80-45 \mathrm{e}^{-00579 t}$	A1	3.3
		(4)	
(c)	Gives a suitable answer - The maximum area covered by trees is only $80 \mathrm{~km}^{2}$ - The " 80 " would need to be " 100 " - Substitutes 100 into the equation of the model and shows that the formula fails with a reason eg. you cannot take a \log of a negative number	B1	3.5b
		(1)	
(6 marks)			
(a)	Notes		

B1: Uses the equation of the model to find that $35\left(\mathrm{~km}^{2}\right)$ of the reserve was covered on $1^{\text {st }}$ January 2005. Do not accept eg. $35 \mathrm{~m}^{2}$
(b)

M1: Sets their $60=80-45 \mathrm{e}^{14 c} \Rightarrow A \mathrm{e}^{14 c}=B$
A1: $45 \mathrm{e}^{14 c}=20$ or equivalent.
dM1: A full and careful method using precise algebra, correct log laws and a knowledge that e^{x} and $\ln x$ are inverse functions and proceeds to a value for c.

A1: Gives a complete equation for the model $A=80-45 \mathrm{e}^{-00579 t}$
(c)

B1: Gives a suitable interpretation (See scheme)

Question	Scheme	Marks	AOs
$\mathbf{9}$	$4^{3 p-1}=5^{210} \Rightarrow(3 p-1) \log 4=210 \log 5$	M1	1.1 b
	$\Rightarrow 3 p=\frac{210 \log 5}{\log 4}+1 \Rightarrow p=\ldots$	dM 1	2.1
	$p=\operatorname{awrt} 81.6$	A1	1.1 b
		(3)	
Notes:			

M1: Takes logs of both sides and uses the power law on each side.
Condone a missing bracket on lhs and slips.
Award for any base including ln but the logs must be the same base.
dM1: A full method leading to a value for p.
It is dependent upon the previous M mark and there must be an attempt to change the subject of the equation in the correct order.
Look for $(3 p-1) \log 4=210 \log 5 \Rightarrow 3 p=\frac{210 \log 5}{\log 4} \pm 1 \Rightarrow p=\ldots$ condoning slips.
You may see numerical versions E.g. $(3 p-1) \times 0.60=210 \times 0.7 \Rightarrow 1.8 p-0.6=147 \Rightarrow p=82$
Use of incorrect \log laws would be dM0. E.g $(3 p-1) \log 4=210 \log 5 \Rightarrow 3 p=210 \log \frac{5}{4} \pm 1$
A1: awrt 81.6 following a correct method. Bracketing errors can be recovered for full marks A correct answer with no working scores 0 marks. The demand in the question is clear.

There are alternatives:
E.g. A starting point could be $4^{3 p-1}=5^{210} \Rightarrow \frac{4^{3 p}}{4}=5^{210}$
but the first M mark is still for using the power law correctly on each side
In such a method the dM1 mark is for using all log rules correctly and proceeding to a value for p.
Using base 4 or 5
E.g.
$4^{3 p-1}=5^{210} \Rightarrow(3 p-1)=\log _{4} 5^{210}$
The M mark is not scored until $(3 p-1)=210 \log _{4} 5$

(a) Condone $\log _{10}$ written \log or \lg written throughout the question

B1: Scored for showing that $\log _{10} V=0.072 t+2.379$ can be written in the form $V=a b^{t}$ or vice versa
Either starts with $\log _{10} V=0.072 t+2.379$ (may be implied) and shows lines

$$
V=10^{0072 t+2379} \text { and } V=10^{0072 t} \times 10^{2379}
$$

Or starts with $V=a b^{t}$ (implied) and shows the lines

$$
\log _{10} V=\log _{10} a+\log _{10} b^{t} \text { and } \log _{10} V=\log _{10} a+t \log _{10} b
$$

M1: For a correct equation in a or a correct equation in b
A1: Finds either constant. Allow $a=$ awrt 240 or $b=$ awrt 1.2 following a correct method

A1: Correct solution: Look for $V=239 \times 1.18^{t}$ or $a=239, b=1.18$
Note that this is NOT awrt
(b)

B1: See scheme. Condone not seeing total. Do not allow number of views at the start or similar.
(c)

M1: Substitutes $t=20$ in either their $V=239 \times 1.18^{t}$ or $\log _{10} V=0.072 t+2.379$ and uses a correct method to find V

A1: Awrt 6500 or 6600

Question	Scheme	Marks	AOs
11 (a)	Uses a model $V=A \mathrm{e}^{ \pm t t}$ oe (See next page for other suitable models)	M1	3.3
	Eg. Substitutes $t=0, V=20000 \Rightarrow A=20000$	M1	1.1b
	Eg. Substitutes $t=1, V=16000 \Rightarrow 16000=20000 \mathrm{e}^{-1 k} \Rightarrow k=.$.	dM1	3.1b
	$V=20000 \mathrm{e}^{-0223 t}$	A1	1.1b
		(4)	
(b)	Substitutes $t=10$ in their $V=20000 \mathrm{e}^{-0223 t} \Rightarrow V=(£ 2150)$	M1	3.4
	Eg. The model is reliable as $£ 2150 \approx £ 2000$	A1	3.5a
		(2)	
(c)	Make the " -0.223 " less negative. Alt: Adapt model to for example $V=18000 \mathrm{e}^{-0223 t}+2000$	B1ft	3.3
		(1)	
(7 marks)			

(a) Option 1

M1: For $V=A \mathrm{e}^{ \pm k t}$ Do not allow if k is fixed, eg $k=-0.5$
Condone different variables $V \leftrightarrow y \quad t \leftrightarrow x$ for this mark, but for A1 V and t must be used.
M1: Substitutes $t=0 \Rightarrow A=20000$ into their exponential model
Candidates may start by simply writing $V=20000 \mathrm{e}^{k t}$ which would be M1 M1
dM1: Substitutes $t=1 \Rightarrow 16000=20000 \mathrm{e}^{-1 k} \Rightarrow k=$..via the correct use of logs.
It is dependent upon both previous M's.
A1: $V=20000 \mathrm{e}^{-0223 t}$ (with accuracy to at least 3 sf) or $V=20000 \mathrm{e}^{t \ln 08}$
A correct linking formula with correct constants must be seen somewhere in the question
(b)

M1: Uses a model of the form $V=A \mathrm{e}^{ \pm k t}$ to find the value of V when $t=10$.
Alternatively substitutes $V=2000$ into their model and finds t
A1: This can only be scored from an acceptable model with correct constants with accuracy to at least 2 sf .
Compares $V=(£) 2150$ with $(£) 2000$ and states "reliable as $2150 \approx 2000$ " or "reasonably good as they are close" or ""'OK but a little high".
Allow a candidate to argue that it is unreliable as long as they state a suitable reason. Eg. 'It is too far away from $£ 2000$ '' or ''It is over $£ 100$ away, so it is not good'"
Do not allow 'it is not a good model because it is not the same",
In the alternative it is for comparing their value of t with 10 and making a suitable comment as to the reliability of their model with a reason.
$V=20000 \mathrm{e}^{-0223 t} \Rightarrow 2000=20000 \mathrm{e}^{-0223 t} \Rightarrow t=10.3$ years.
Deduction Reliable model as the time is approximately the same as 10 years. A candidate can argue that the model is unreliable if they can give a suitable reason.
(c)

B1ft: For a correct statement. Eg states that the value of their ' -0.223 ' should become less negative.
Alt states that the value of their ' 0.223 ' should become smaller. If they refer to k then refer to the model and apply the same principles.
Condone the fact that they don't state their -0.223 doesn't lie in the range $(-0.223,0)$
(a) Option 2

M1: For $V=A r^{t}$ or equivalent such as $V=k r^{t-1}$
Condone different variables $V \leftrightarrow y t \leftrightarrow x$ for this mark, but for A1 V and t must be used.
M1: Uses $t=0 \Rightarrow A=20000$ in their model. Alternatively uses $(0,20000)$ and $(1,16000)$ to give $r=\frac{4}{5}$ oe
You may award if one of the number pair $(0,20000)$ or $(1,16000)$ works in an allowable model
dM1: $t=1 \Rightarrow 16000=20000 r^{1} \Rightarrow r=. . \quad$ Dependent upon both previous M's
In the alternative it would be for using $r=\frac{4}{5}$ with one of the points to find $A=20000$
You may award if both number pairs $(0,20000)$ or $(1,16000)$ work in an allowable model
A1: $V=20000 \times 0.8^{t} \quad$ Note that $V=20000 \times 1.25^{-t} \quad V=16000 \times 0.8^{t-1}$ and is also correct
(b)

M1: Uses a model of the form $V=A r^{t}$ oe to find the value of V when $t=10$. Eg. 20000×0.8^{10} Alternatively substitutes $V=2000$ into their model and finds t
A1: This can only be scored from an acceptable model with correct constants also allowing an accuracy to 2 sf. Compares $(\mathfrak{£}) 2147$ with $(\mathfrak{f}) 2000$ and states "reliable as $2147 \approx 2000 "$ or "reasonably good as they are close" or ""OK but a little high".
Allow a candidate to argue that it is unreliable as long as they state a suitable reason. Eg. "It is too far away from $£ 2000$ "' or "It is over $£ 100$ away, so it is not good"'
Do not allow "it is not a good model because it is not the same"
(c)

B1ft: States a value of r in the range $(0.8,1)$ or states would increase the value of " 0.8 "
They do not need to state that " 0.8 " must lie in the range $(0.8,1)$
Condone increase the 0.8 . Also allow decrease the " 1.25 " for $V=20000 \times 1.25^{-t}$

(a) Option 3

M1: They may suggest an exponential model with a lower bound. For example, for $V=A \mathrm{e}^{ \pm k t}+2000$ The bound must be stated but do not allow k to be fixed. Allow as long as the bound <10000
M1: $t=0, V=20000 \Rightarrow A=18000$
dM1: $t=1, V=16000 \Rightarrow 16000=2000+18000 e^{k} \Rightarrow k=. . \quad$ Dependent upon both previous M's
A1: $V=18000 \times \mathrm{e}^{-0251 t}+2000$
(b)

M1: Uses their model to find the value of V when $t=10$.
Alternatively substitutes $V=2000$ into their model and finds t
A1: For $V=18000 \times \mathrm{e}^{-0251 \times 10}+2000=£ 3462.83$ Deduction: Unreliable model as $£ 3462.83$
is not close to $£ 2000$ This can only be scored from an acceptable model with correct constants
(c)

B1: States make the value of k or the -0.251 greater (or less negative) so that it lies in the range $(-0.251,0)$ Condone 'make the value of k or the -0.251 greater (or less negative)'

It is entirely possible that they start part (a) from a differential equation.
M1: $\frac{\mathrm{d} V}{\mathrm{~d} t}=k V \Rightarrow \int \frac{\mathrm{~d} V}{V}=\int k \mathrm{~d} t \Rightarrow \ln V=k t+c \quad \mathrm{M} 1: \ln 20000=c$
dM 1 : Using $t=1, V=16000 \Rightarrow k=.$.
A1: $\ln V=-\ln \left(\frac{5}{4}\right) t+\ln 20000$

Question	Scheme	Marks	AOs
12 (a)	States $\log a-\log b=\log \frac{a}{b}$	B1	1.2
	Proceeds from $\frac{a}{b}=a-b \rightarrow \ldots . . \rightarrow a b-a=b^{2}$	M1	1.1b
	$a b-a=b^{2} \rightarrow a(b-1)=b^{2} \Rightarrow a=\frac{b^{2}}{b-1} *$	A1*	2.1
		(3)	
(b)	States either $b>1$ or $\quad b \neq 1$ with reason $\frac{b^{2}}{b-1}$ is not defined at $b=1$ oe	B1	2.2a
	States $b>1$ and explains that as $a>0 \Rightarrow \frac{b^{2}}{b-1}>0 \Rightarrow b>1$	B1	2.4
		(2)	
(5 marks)			

(a)

B1: States or uses $\log a-\log b=\log \frac{a}{b}$. This may be awarded anywhere in the question and may be implied by a starting line of $\frac{a}{b}=a-b$ oe. Alternatively takes $\log b$ to the rhs and uses the addition law $\log (a-b)+\log b=\log (a-b) b$. Watch out for $\log a-\log b=\frac{\log a}{\log b}=\log \left(\frac{a}{b}\right)$ which could score 010

M1: Attempts to make ' a ' the subject. Awarded for proceeding from $\frac{a}{b}=a-b$ to a point where the two terms in a are on the same side of the equation and the term in b is on the other.
A1*: CSO. Shows clear reasoning and correct mathematics leading to $a=\frac{b^{2}}{b-1}$. Bracketing must be correct. Allow a candidate to proceed from $a b-a=b^{2}$ to $a=\frac{b^{2}}{b-1}$ without the intermediate line.
(b)

B1: For deducing $b \neq 1$ as $a \rightarrow \infty$ oe such as "you cannot divide by 0 " or correctly deducing that $b>1$. They may state that b cannot be less than 1 .
B1: For $b>1$ and explaining that as $a>0 \Rightarrow \frac{b^{2}}{b-1}>0 \Rightarrow b>1$ (as b^{2} is positive)
As a minimum accept that $b>1$ as a cannot be negative.
Note that $a>b>1$ is a correct statement but not sufficient on its own without an explanation.

Alt (a)
Note that it is possible to attempt part (a) by substituting $a=\frac{b^{2}}{b-1}$ into both sides of the given identity.
$\log a-\log b=\log (a-b) \Rightarrow \log \left(\frac{b^{2}}{b-1}\right)-\log b=\log \left(\frac{b^{2}}{b-1}-b\right)$
B1: Score for $\log \left(\frac{b^{2}}{b-1}\right)-\log b=\log \left(\frac{b}{b-1}\right)$
M1: Attempts to write $\frac{b^{2}}{b-1}-b$ as a single fraction $\frac{b^{2}}{b-1}-b=\frac{b^{2}-b(b-1)}{b-1}$
Allow as two separate fractions with the same common denominator
A1*: Achieves lhs and rhs as $\log \left(\frac{b}{b-1}\right)$ and makes a comment such as "hence true"

Question	Scheme	Marks	AOs
13 (a)	(£)18000	B1	3.4
		(1)	
(b)	(i) $\frac{\mathrm{d} V}{\mathrm{~d} t}=-3925 \mathrm{e}^{-0.25 t}$	M1	3.1b 1.1 b
	Sets $-3925 \mathrm{e}^{-0.25 T}=-500 \Rightarrow 3925 \mathrm{e}^{-0.25 T}=500 \quad * \quad$ cso	A1*	3.4
	(ii) $\mathrm{e}^{-0.25 T}=0.127 \ldots \Rightarrow-0.25 T=\ln 0.127 \ldots$	M1	1.1 b
	$T=8.24$ (awrt)	A1	1.1b
	8 years 3 months	A1	3.2a
		(6)	
(c)	2300	B1	1.1b
		(1)	
(d)	Any suitable reason such as - Other factors affect price such as condition/mileage - If the car has had an accident it will be worth less than the model predicts - The price may go up in the long term as it becomes rare - $£ 2300$ is too large a value for a car's scrap price. Most cars scrap for around $£ 400$	B1	3.5b
		(1)	
(9 marks)			
Notes			
(a) B1: £18 000 There is no requirement to have the units (b)(i) M1: Award for making the link between gradient and rate of change. Score for attempting to differentiate V to $\frac{\mathrm{d} V}{\mathrm{~d} t}=k \mathrm{e}^{-0.25 t}$ An attempt at both sides are required. For the left hand side you may condone attempts such as $\frac{\mathrm{d} y}{\mathrm{~d} x}$ A1: Achieves $\frac{\mathrm{d} V}{\mathrm{~d} t}=-3925 \mathrm{e}^{-0.25 t}$ or $\frac{\mathrm{d} V}{\mathrm{~d} t}=15700 \times-0.25 \mathrm{e}^{-0.25 t}$ with both sides correct A1*: Sets $-3925 \mathrm{e}^{-0.25 T}=-500$ oe and proceeds to $3925 \mathrm{e}^{-0.25 T}=500$ This is a given answer and to achieve this mark, all aspects must be seen and be correct. t must be changed to T at some point even if just at the end of their solution/proof SC: Award SC 110 candidates who simply write $-3925 \mathrm{e}^{-0.25 T}=-500 \Rightarrow 3925 \mathrm{e}^{-0.25 T}=500 \text { without any mention or reference to } \frac{\mathrm{d} V}{\mathrm{~d} t}$ Or $15700 \times-0.25 \mathrm{e}^{-0.25 t}=-500 \Rightarrow 3925 \mathrm{e}^{-0.25 T}=500$ without any mention or reference to $\frac{\mathrm{d} V}{\mathrm{~d} t}$ (b)(ii) M1: Proceeds from $\mathrm{e}^{-0.25 T}=A, A>0$ using \ln 's to $\pm 0.25 T=$.. Alternatively takes \ln first $3925 \mathrm{e}^{-0.25 T}=500 \Rightarrow \ln 3925-0.25 T=\ln 500 \Rightarrow \pm 0.25 T=\ldots$ $\text { but } 3925 \mathrm{e}^{-0.25 T}=500 \Rightarrow \ln 3925 \times-0.25 T=\ln 500 \Rightarrow \pm 0.25 T=\ldots \text { is } \mathrm{M} 0$ A1: $T=$ awrt 8.24 or $-\frac{1}{0.25} \ln \left(\frac{20}{157}\right)$ Allow $t=$ awrt 8.24			

A1: 8 years 3 months. Correct answer and solution only Answers obtained numerically score 0 marks. The M mark must be scored.
(c)

B1: 2300 but condone $£ 2300$
(d)

B1: Any suitable reason. See scheme
Accept "Scrappage" schemes may pay more (or less) than $£ 2300$.
Do not accept "does not take into account inflation"
It asks for a limitation of the model so candidates cannot score marks by suggesting other suitable models " the value may fall by the same amount each year"

Question	Scheme	Marks	AOs
14 (a)	(i) Method to find p Eg. Divides $32000=A p^{4}$ by $50000=A p^{11}$ $p^{7}=\frac{50000}{32000} \Rightarrow p=\sqrt[7]{\frac{50000}{32000}}=\ldots$	M1	3.1a
	$p=1.0658$	A1	1.1 b
	(ii) Substitutes their $p=1.0658$ into either equation and finds A $A=\frac{32000}{11.0658^{\prime 4}} \text { or } A=\frac{50000}{11.0658^{11}}$	M1	1.1b
	$A=24795 \rightarrow 24805 \simeq 24800$ *	A1*	1.1b
		(4)	
(b)	A / (£) 24800 is the value of the car on 1st January 2001	B1	3.4
	$\mathrm{p} / 1.0658$ is the factor by which the value rises each year. Accept that the value rises by 6.6% a year (ft on their p)	B1	3.4
		(2)	
(c)	Attempts $100000=$ '24800' ${ }^{\prime} 1.1 .0658^{t}$		
	${ }^{\prime} 1.0658^{\prime t}=\frac{100000}{24800}$	M1	3.4
	$t=\log _{1.0658}\left(\frac{100000}{24800}\right)$	dM1	1.1b
	$t=21.8$ or 21.9	A1	1.1b
	cso 2022	A1	3.2a
		(4)	
(10 marks)			
(a) (i) M1: Attempts to use both pieces of information within $V=A p^{t}$, eliminates A correctly and solves an equation of the form $p^{n}=k$ to reach a value for p. Allow for slips on the 32000 and 50000 and the values of t. A1: $p=$ awrt 1.0658 Both marks can be awarded from incorrect but consistent interpretations of t. Eg. $32000=A p^{5}, 50000=A p^{12}$ (a)(ii) M1: Substitutes their $p=1.0658$ into either of their equations and finds A Eg $A=\frac{32000}{1.0658^{4}}$ or $A=\frac{50000}{1.0658^{7}}$ but you may follow through on incorrect equations from part (i) A1*: Shows that A is between 24795 and 24805 before you see ' $=24800^{\prime}$ or ' ≈ 24800 '. Accept with or without units. An alternative to (ii) is to start with the given answer. M1: Attempts $24800 \times 1.0658^{\prime 4}=(32000.34)$			

A1: 24800×1.0658^{4}, achieves a value between 31095 and 32005 followed by ≈ 32000 hence A must be ≈ 24800
(b)

B1: States that A is the value of the car on 1st January 2001.
The statement must reference the car, its cost/value, and " 0 " time
Allow 'it is the initial value of the car" "it is the cost of the car at $t=0$ " "it is the cars starting value"
B1: States that p is the rate at which the value of the car rises each year.
The statement must reference a yearly rate and an increase in value or multiplier.
They could reference the 1.0658 Eg "The cars value rises by 6.5% each year."
Allow " p is the rate the cars value is rising each year" "it is the proportional increase in value of the car each year" "the factor by which the value of the car is rising each year" 'its value appreciates by 6.5% per year' Allow ' the value of the car multiplies by p each year'
Do not allow "by how much the value of the car rises each year " or "it is the rate of inflation"
(c)

M1: Uses the model $100000=' 24800^{\prime} \times^{\prime} 1.0658^{t}$ and proceeds to their $1.0658^{\prime t}=k$ Allow use of any inequality here.
dM1: For the complete method of (i) using the information given with their equation of the model and (ii) translating the situation into a correct method to find ' t '
A1: $(t)=$ awrt 21.8 or 21.9 or $\log _{1.0658}\left(\frac{100000}{24800}\right)$ oe
A1: States in the year 2022. A candidate using a GP formula can be awarded full marks
Allow different methods in part (c).
Eg Via GP a formula
M1: $24800 \times 1.0658^{n-1}=100000 \Rightarrow{ }^{\prime} 1.0658^{n-1}=K$
dM1: Uses a correct method to find n.
A2: 2022
Via (trial and improvement)
M1: Uses the model by substituting integer values of t into their $V=A p^{t}$ so that for $t=n, V<100000$ or $t=n+1, V>100000$
(So for the correct A and p this would be scored for $t=21, V \approx £ 95000$ or $t=21, V \approx £ 101000$
dM1: For a complete method showing that this is the least value. So both of the above values
A1: Allow for 22 following correct and accurate results (awrt nearest $£ 1000$ is sufficient accuracy)
A1: As before

Question	Scheme		Marks	AOs
15 (a)	Identifies one of the two errors "You cannot use the subtraction law without dealing with the 2 first" " They undo the logs incorrectly. It should be $x=2^{3}=8$ "		B1	2.3
	Identifies both errors. See above.		B1	2.3
			(2)	
(b)	$\log _{2}\left(\frac{x^{2}}{\sqrt{x}}\right)=3$	$\frac{3}{2} \log _{2}(x)=3$	M1	1.1b
	$x^{\frac{3}{2}}=2^{3}$ or $\frac{x^{2}}{\sqrt{x}}=2^{3}$	$x=2^{2}$	M1	1.1b
	$x=\left(2^{3}\right)^{\frac{2}{3}}=4$	$x=4$	A1	1.1b
			(3)	
(5 marks)				
(a) B1: States one of the two errors. Error One: Either in words states 'They cannot use the subtraction law without dealing with the 2 first' or writes ' that line 2 should be $\log _{2}\left(\frac{x^{2}}{\sqrt{x}}\right) \quad(=3)^{\prime}$ If they rewrite line two it must be correct. Allow 'the coefficient of each log term is different so we cannot use the subtraction law' Allow responses such as 'it must be $\log x^{2}$ before subtracting the logs' Do not accept an incomplete response such as "the student ignored the 2 ". There must be some reference to the subtraction law as well. Error Two: Either in words states 'They undo the log incorrectly' or writes that 'if $\log _{2} x=3$ then $x=2^{3}=8^{\prime}$ If it is rewritten it must be correct. Eg $x=\log _{2} 9$ is B0 B1: States both of the two errors. (See above) (b) M1: Uses a correct method of combining the two log terms. Either uses both the power law and the subtraction law to reach a form $\log _{2}\left(\frac{x^{2}}{\sqrt{x}}\right)=3$ oe. Or uses both the power law and subtraction to reach $\frac{3}{2} \log _{2}(x)=3$ M1: Uses correct work to "undo" the log. Eg moves from $\log _{2}\left(A x^{n}\right)=b \Rightarrow A x^{n}=2^{b}$ This is independent of the previous mark so allow following earlier error. A1: cso $x=4$ achieved with at least one intermediate step shown. Extra solutions would be A0 SC: If the "answer" rather than the "solution" is given score $1,0,0$.				

Question	Scheme	Marks	AOs
16(a)	For a correct equation in p or $q \quad p=10^{4.8}$ or $q=10^{0.05}$	M1	1.1b
	For $p=\operatorname{awrt} 63100$ or $q=\operatorname{awrt} 1.122$	A1	1.1b
	For correct equations in p and $q \quad p=10^{4.8}$ and $q=10^{0.05}$	dM1	3.1a
	For $p=$ awrt 63100 and $q=\operatorname{awrt} 1.122$	A1	1.1b
		(4)	
(b)	(i) The value of the painting on 1st January 1980	B1	3.4
	(ii) The proportional increase in value each year	B1	3.4
		(2)	
(c)	Uses $V=63100 \times 1.122^{30}$ or $\log V=0.05 \times 30+4.8$ leading to $V=$	M1	3.4
	$=\operatorname{awrt}(£) 2000000$	A1	1.1b
		(2)	
(8 marks)			
Notes(a) M1: For a correct equation in p or q This is usually $p=10^{4.8}$ or $q=10^{0.05}$ but may be $\log q=0.05$ or $\log p=4.8$ A1: For $p=$ awrt 63100 or $q=$ awrt 1.122 M1: For linking the two equations and forming correct equations in p and q. This is usually $p=10^{4.8}$ and $q=10^{0.05}$ but may be $\log q=0.05$ and $\log p=4.8$ A1: For $p=$ awrt 63100 and $q=\operatorname{awrt} 1.122 \quad$ Both these values implies M1 M1			
(b)(i) B1: The value of the painting on 1st January 1980 (is $£ 63$ 100) Accept the original value/cost of the painting or the initial value/cost of the painting (b)(ii) B1: The proportional increase in value each year. Eg Accept an explanation that explains that the value of the painting will rise 12.2% a year. (Follow through on their value of q.) Accept "the rate" by which the value is rising/price is changing. "1.122 is the decimal multiplier representing the year on year increase in value" Do not accept "the amount" by which it is rising or "how much" it is rising by If they are not labelled (b)(i) and (b)(ii) mark in the order given but accept any way around as long as clearly labelled " p is. \qquad " and " q is \qquad (c) M1: For substituting $t=30$ into $V=p q^{t}$ using their values for p and q or substituting $t=30$ into $\log _{10} V=0.05 t+4.8$ and proceeds to V A1: For awrt either $£ 1.99$ million or $£ 2.00$ million. Condone the omission of the $£$ sign. Remember to isw after a correct answer			

Question	Scheme	Marks	AOs
17	$2 \log _{4}(2-x)-\log _{4}(x+5)=1$		
	Uses the power law $\log _{4}(2-x)^{2}-\log _{4}(x+5)=1$	M1	1.1b
	Uses the subtraction law $\log _{4} \frac{(2-x)^{2}}{(x+5)}=1$	M1	1.1 b
	$\frac{(2-x)^{2}}{(x+5)}=4 \rightarrow 3 \mathrm{TQ}$ in x	dM1	3.1a
	$x^{2}-8 x-16=0$	A1	1.1 b
	$(x-4)^{2}=32 \Rightarrow x=$	M1	1.1b
	$x=4-4 \sqrt{2}$ oe only	A1	2.3
		(6)	
(6 marks)			

Notes:

M1: Uses the power law of $\operatorname{logs} 2 \log _{4}(2-x)=\log _{4}(2-x)^{2}$
M1: Uses the subtraction law of logs following the above $\log _{4}(2-x)^{2}-\log _{4}(x+5)=\log _{4} \frac{(2-x)^{2}}{(x+5)}$
Alternatively uses the addition law following use of $1=\log _{4} 4$ That is $1+\log _{4}(x+5)=\log _{4} 4(x+5)$
dM1: This can be awarded for the overall strategy leading to a 3TQ in x. It is dependent upon the correct use of both previous M's and for undoing the logs to reach a 3TQ equation in x
A1: For a correct equation in x
M1: For the correct method of solving their $3 \mathrm{TQ}=0$
A1: $x=4-4 \sqrt{2}$ or exact equivalent only. (For example accept $x=4-\sqrt{32}$)

Question	Scheme	Marks	AOs
18(a)	$0.2 \mathrm{~m}^{2}$	B1	3.4
		(1)	
(b)	$A=0.2 \mathrm{e}^{0.3 t}$ Rate of change $=$ gradient $=\frac{\mathrm{d} A}{\mathrm{~d} t}=0.06 \mathrm{e}^{0.3 t}$	M1	3.1b
	At $t=5 \Rightarrow$ Rate of Growth is $0.06 \mathrm{e}^{1.5}=0.269 \mathrm{~m}^{2} /$ day	A1	1.1 b
		(2)	
(c)	$100=0.2 \mathrm{e}^{0.3 t} \Rightarrow \mathrm{e}^{0.3 t}=500$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\Rightarrow t=\frac{\ln (500)}{0.3}=20.7$ days $\quad 20$ days 17 hours	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 3.2 \mathrm{a} \end{aligned}$
		(4)	
	At $t=5 \Rightarrow$ Rate of Growth is $0.06 \mathrm{e}^{1.5}=0.269 \mathrm{~m}^{2} /$ day	A1	1.1 b
		(2)	
(d)	The model given suggests that the pond is fully covered after 20 days 17 hours. Observed data is inconsistent with this as the pond is only 90% covered by the end of one month (28/29/30/31 days). Hence the model is not accurate	B1	3.5a
		(1)	
(8 marks)			

Notes:

(a)

B1: $0.2 \mathrm{~m}^{2}$ oe
(b)

M1: Links rate of change to gradient and differentiates $0.2 \mathrm{e}^{0.3 t} \rightarrow k \mathrm{e}^{0.3 t}$
A1: Correct answer $0.269 \mathrm{~m}^{2} /$ day
(c)

M1: Substitutes $A=100$ and proceeds to $\mathrm{e}^{0.3 t}=k$
A1: $\mathrm{e}^{0.3 t}=500$
M1: Correct method when proceeding from $\mathrm{e}^{0.3 t}=k \Rightarrow t=$..
A1: 20 days 17 hours
(d)

B1: Valid conclusion following through on their answer to (c).

Question 20 continued

Notes:

(a)

M1: Uses a linear equation to relate $\log P$ and t
A1: Correct use of gradient and intercept to give a correct line equation
(b)

M1: Way 1: Uses logs correctly to give log equation; Way 2: Uses powers correctly to "undo" log equation and expresses as product of two powers
M1: Way 1: Identifies $\log b$ or $\log a$ or both; Way 2: Identifies a or b as powers of 10
A1: \quad Correct value for a or b
A1: Correct values for both
(c)(i)

B1: Accept equivalent answers e.g. The population at $t=0$
(c)(ii)

B1: So accept rate at which the population is increasing each year or scale factor 1.01 or increase of 1% per year
(d)(i)

B1: cao
(d)(ii)

M1: As in the scheme
A1ft: On their values of a and b with correct \log work
(e)

B2: As given in the scheme - any two valid reasons

Question	Scheme	Marks	AOs
22 (a)	$N=a T^{b} \Rightarrow \log _{10} N=\log _{10} a+\log _{10} T^{b}$	M1	2.1
	$\Rightarrow \log _{10} N=\log _{10} a+b \log _{10} T$ so $m=b$ and $c=\log _{10} a$	A1	1.1b
		(2)	
(b)	Uses the graph to find either a or $b \quad a=10^{\text {intercept }}$ or $b=$ gradient	M1	3.1b
	Uses the graph to find both a and $b \quad a=10^{\text {intercept }}$ and $b=$ gradient	M1	1.1b
	Uses $T=3$ in $N=a T^{b}$ with their a and b	M1	3.1b
	Number of microbes ≈ 800	A1	1.1b
		(4)	
(c)	$N=1000000 \Rightarrow \log _{10} N=6$	M1	3.4
	We cannot 'extrapolate' the graph and assume that the model still holds	A1	3.5b
		(2)	
(d)	States that ' a ' is the number of microbes 1 day after the start of the experiment	B1	3.2a
		(1)	
(9 marks)			

Question 22 continued
 Notes:

(a)

M1: Takes logs of both sides and shows the addition law
M1: Uses the power law, writes $\log _{10} N=\log _{10} a+b \log _{10} T$ and states $m=b$ and $c=\log _{10} a$
(b)

M1: Uses the graph to find either a or $b a=10^{\text {intercept }}$ or $b=$ gradient. This would be implied by the sight of $b=2.3$ or $a=10^{1.8} \approx 63$
M1: Uses the graph to find both a and $b \quad a=10^{\text {intercept }}$ and $b=$ gradient. This would be implied by the sight of $b=2.3$ and $a=10^{1.8} \approx 63$
M1: Uses $T=3 \Rightarrow N=a T^{b}$ with their a and b. This is implied by an attempt at $63 \times 3^{2.3}$
A1: Accept a number of microbes that are approximately 800. Allow 800 ± 150 following correct work.
There is an alternative to this using a graphical approach.
M1: Finds the value of $\log _{10} T$ from $T=3$. Accept as $T=3 \Rightarrow \log _{10} T \approx 0.48$
M1: Then using the line of best fit finds the value of $\log _{10} N$ from their " 0.48 "
Accept $\log _{10} N \approx 2.9$
M1: Finds the value of N from their value of $\log _{10} N \log _{10} N \approx 2.9 \Rightarrow N=10^{\prime 2.9^{\prime}}$
A1: Accept a number of microbes that are approximately 800. Allow 800 ± 150 following correct work
(c)

M1 For using $N=1000000$ and stating that $\log _{10} N=6$
A1: Statement to the effect that "we only have information for values of $\log N$ between 1.8 and 4.5 so we cannot be certain that the relationship still holds". "We cannot extrapolate with any certainty, we could only interpolate"
There is an alternative approach that uses the formula.
M1: Use $N=1000000$ in their $N=63 \times T^{2.3} \Rightarrow \log _{10} T=\frac{\log _{10}\left(\frac{1000000}{63}\right)}{2.3} \approx 1.83$.
A1: The reason would be similar to the main scheme as we only have $\log _{10} T$ values from 0 to 1.2. We cannot 'extrapolate' the graph and assume that the model still holds
(d)

B1: Allow a numerical explanation $T=1 \Rightarrow N=a 1^{b} \Rightarrow N=a$ giving a is the value of N at $T=1$

Question	Scheme	Marks	AOs
23	$\begin{gathered} \log _{3}(12 y+5)-\log _{3}(1-3 y)=2 \Rightarrow \log _{3} \frac{12 y+5}{1-3 y}=2 \\ \text { or e.g. } \\ 2=\log _{3} 9 \end{gathered}$	B1 M1 on EPEN	1.1b
	$\log _{3} \frac{12 y+5}{1-3 y}=2 \Rightarrow \frac{12 y+5}{1-3 y}=3^{2} \Rightarrow 9-27 y=12 y+5 \Rightarrow y=\ldots$ or e.g. $\log _{3}(12 y+5)=\log _{3}\left(3^{2}(1-3 y)\right) \Rightarrow(12 y+5)=3^{2}(1-3 y) \Rightarrow y=\ldots$	M1	2.1
	$y=\frac{4}{39}$	A1	1.1b
		(3)	
(3 marks)			
Notes			
B1(M1 on EPEN): Applies at least one addition or subtraction law of logs correctly. Can also be awarded for using $2=\log _{3} 9$. This may be implied by e.g. $\log _{3} \ldots=2 \Rightarrow \ldots=9$ M1: A rigorous argument with no incorrect working to remove the log or logs correctly and obtain a correct equation in any form and solve for y. A1: Correct exact value. Allow equivalent fractions.			

Guidance on how to mark particular cases:

$$
\begin{aligned}
& \log _{3}(12 y+5)-\log _{3}(1-3 y)=2 \Rightarrow \frac{\log _{3}(12 y+5)}{\log _{3}(1-3 y)}=2 \\
& \Rightarrow \frac{12 y+5}{1-3 y}=3^{2} \Rightarrow 9-27 y=12 y+5 \Rightarrow y=\frac{4}{39}
\end{aligned}
$$

B1M0A0

$$
\begin{gathered}
\log _{3}(12 y+5)-\log _{3}(1-3 y)=2 \Rightarrow \frac{\log _{3}(12 y+5)}{\log _{3}(1-3 y)}=2 \Rightarrow \log _{3} \frac{12 y+5}{1-3 y}=2 \\
\Rightarrow \frac{12 y+5}{1-3 y}=3^{2} \Rightarrow \\
9-27 y=12 y+5 \Rightarrow y=\frac{4}{39} \\
\text { B1M0A0 }
\end{gathered}
$$

$$
\begin{gathered}
\log _{3}(12 y+5)-\log _{3}(1-3 y)=2 \Rightarrow \frac{12 y+5}{1-3 y}=3^{2} \Rightarrow 9-27 y=12 y+5 \Rightarrow y=\frac{4}{39} \\
\text { B1M1A1 }
\end{gathered}
$$

Question	Scheme	Marks	AOs
24(a)	$T=a l^{b} \Rightarrow \log _{10} T=\log _{10} a+\log _{10} l^{b}$	M1	2.1
	$\begin{aligned} & \Rightarrow \log _{10} T=\log _{10} a+b \log _{10} l^{*} \\ & \text { or } \\ & \Rightarrow \log _{10} T=b \log _{10} l+\log _{10} a^{*} \end{aligned}$	A1*	1.1b
		(2)	
(b)	$b=0.495$ or $b=\frac{45}{91}$	B1	2.2a
	$\begin{gathered} 0=" 0.495 " \times-0.7+\log _{10} a \Rightarrow a=10^{0346} \\ \text { or } \\ 0.45=" 0.495 " \times 0.21+\log _{10} a \Rightarrow a=10^{0346} \end{gathered}$	M1	3.1a
	$T=2.22 l^{0.495}$	A1	3.3
		(3)	
(c)	The time taken for one swing of a pendulum of length 1 m	B1	3.2a
		(1)	
(6 marks)			
Notes			
(a) M1: Takes logs of both sides and shows the addition law. Implied by $T=a l^{b} \Rightarrow \log _{10} a+\log _{10} l^{b}$ A1*: Uses the power law to obtain the given equation with no errors. Allow the bases to be missing in the working but they must be present in the final answer. Also allow t rather than T and A rather than a. Allow working backwards e.g. $\begin{gathered} \log _{10} T=b \log _{10} l+\log _{10} a \Rightarrow \log _{10} T=\log _{10} l^{b}+\log _{10} a \\ \Rightarrow \log _{10} T=\log _{10} a l^{b} \Rightarrow T=a l^{b} * \end{gathered}$ M1: Uses the given answer and uses the power law and addition law correctly A1: Reaches the given equation with no errors as above (b) B1: Deduces the correct value for b (Allow awrt 0.495 or $\frac{45}{91}$) M1: Correct strategy to find the value of a. E.g. substitutes one of the given points and their value for b into $\log _{10} T=\log _{10} a+b \log _{10} l$ and uses correct log work to identify the value of a. Allow slips in rearranging their equation but must be correct log work to find a. Alternatively finds the equation of the straight line and equates the constant to $\log _{10} a$ and uses correct \log work to identify the value of a. E.g. $y-0.45=" 0.495 "(x-0.21) \Rightarrow y=" 0.495 " x+0.346 \Rightarrow a=10^{0346}=\ldots$ A1: Complete equation $T=2.22 l^{0.495}$ or $T=2.22 l^{\frac{45}{91}}$ (Allow awrt 2.22 and awrt 0.495 or $\frac{45}{91}$) Must see the equation not just correct values as it is a requirement of the question. (c) B1: Correct interpretation			

Question	Scheme	Marks	AOs
25(a)	$2 \log (4-x)=\log (4-x)^{2}$	B1	1.2
	$\begin{gathered} 2 \log (4-x)=\log (x+8) \Rightarrow \log (4-x)^{2}=\log (x+8) \\ (4-x)^{2}=(x+8) \end{gathered}$ or $\begin{gathered} 2 \log (4-x)=\log (x+8) \Rightarrow \log (4-x)^{2}-\log (x+8)=0 \\ \frac{(4-x)^{2}}{(x+8)}=1 \end{gathered}$	M1	1.1b
	$16-8 x+x^{2}=x+8 \Rightarrow x^{2}-9 x+8=0 *$	A1*	2.1
		(3)	
	(a) Alternative - working backwards:		
	$x^{2}-9 x+8=0 \Rightarrow(4-x)^{2}-x-8=0$	B1	1.2
	$\begin{gathered} \Rightarrow(4-x)^{2}=x+8 \\ \Rightarrow \log (4-x)^{2}=\log (x+8) \end{gathered}$	M1	1.1b
	$\Rightarrow 2 \log (4-x)=\log (x+8) *$ Hence proved.	A1	2.1
(b)	(i) $(x=) 1,8$	B1	1.1b
	(ii) 8 is not a solution as $\log (4-8)$ cannot be found	B1	2.3
		(2)	
(5 marks)			

Notes:

(a)

B1: States or uses $2 \log (4-x)=\log (4-x)^{2}$
M1: Correct attempt at eliminating the logs to form a quadratic equation in x.
Note that this may be implied by e.g. $\log \frac{(4-x)^{2}}{(x+8)}=0 \Rightarrow(4-x)^{2}=x+8$
A1*: Proceeds to the given answer with at least one line where the $(4-x)^{2}$ has been multiplied out.
There must be no errors or omissions but condone invisible brackets around the arguments of the logs e.g. allow $\log 16-8 x+x^{2}$ for $\log \left(16-8 x+x^{2}\right)$ and $\log x+8$ for $\log (x+8)$

Note we will allow a start of $(4-x)^{2}=x+8$ with no previous work for full marks.

Some examples of how to mark (a) in particular cases:

$$
\begin{gathered}
2 \log (4-x)=\log (x+8) \Rightarrow \log (4-x)^{2}-\log (x+8)=0 \Rightarrow(4-x)^{2}-x-8=0 \\
\Rightarrow 16-8 x+x^{2}-x-8 \Rightarrow x^{2}-9 x+8=0
\end{gathered}
$$

Scores B1M1A1

$$
\begin{aligned}
2 \log (4-x) & =\log (x+8) \Rightarrow \log (4-x)^{2}-\log (x+8)=0 \Rightarrow \frac{\log (4-x)^{2}}{\log (x+8)}=0 \\
& \Rightarrow \frac{(4-x)^{2}}{(x+8)}=1 \Rightarrow 16-8 x+x^{2}=x+8 \Rightarrow x^{2}-9 x+8=0
\end{aligned}
$$

Scores B1M0A0

(a) Alternative:

B1: Writes $x^{2}-9 x+8=0$ as $(4-x)^{2}-x-8=0$ or equivalent
M1: Proceeds correctly to reach $\log (4-x)^{2}=\log (x+8)$
A1: Obtains $2 \log (4-x)=\log (x+8)$ and makes a (minimal) conclusion e.g. hence proved, QED, \#, square etc.
(b)

B1: Writes down $(x=)$ 1, 8
B1: Chooses 8 (no follow through here) and gives a reason why it should be rejected by referring to logs and which \log it is.
They must refer to the 8 as the required value but allow e.g. $x \neq 8$ and there must be a reference to $\log (4-x)$ or \log of lhs or $\log (-4)$ or the $4-8$. Some acceptable reasons are: $\log (-4)$ can't be found/worked out/is undefined, $\log (-4)$ gives math error, $\log (-4)=n /$ a, lhs is \log (negative) so reject, you can't do the \log of a negative number which would happen with 4-8
Do not allow "you can't have a negative log" unless this is clarified further and do not allow "you get a math error" in isolation

There must be no contradictory statements.

Note that this is an independent mark but must have $x=8$ (i.e. may have solved to get $x=-1,8$ for first B mark)

Question	Scheme	Marks	AOs
26	$15-2^{x+1}=3 \times 2^{x}$	B1	1.1b
	$\begin{gathered} \Rightarrow 15-2 \times 2^{x}=3 \times 2^{x} \Rightarrow 2^{x}=3 \\ \text { or e.g. } \\ \Rightarrow \frac{15}{2^{x}}-2=3 \Rightarrow 2^{x}=3 \end{gathered}$	M1	1.1b
	$2^{x}=3 \Rightarrow x=\ldots$	dM1	1.1b
	$x=\log _{2} 3$	A1cso	1.1b
		(4)	
	Alternative		
	$y=3 \times 2^{x} \Rightarrow 2^{x}=\frac{y}{3} \Rightarrow y=15-2 \times \frac{y}{3}$	B1	1.1b
	$3 y+2 y=45 \Rightarrow y=9 \Rightarrow 3 \times 2^{x}=9 \Rightarrow 2^{x}=3$	M1	1.1b
	$2^{x}=3 \Rightarrow x=\ldots$	dM1	1.1b
	$x=\log _{2} 3$	A1cso	1.1b
(4 marks)			

Notes:

B1: Combines the equations to reach $15-2^{x+1}=3 \times 2^{x}$ or equivalent e.g. $15-2^{x+1}-3 \times 2^{x}=0$
M1: Uses $2^{x+1}=2 \times 2^{x}$ oe e.g. $\frac{2^{x+1}}{2^{x}}=2$ to obtain an equation in 2^{x} and attempts to make 2^{x} the subject.
See scheme but e.g. $y=2^{x} \Rightarrow 3 \times 2^{x}=15-2^{x+1} \Rightarrow 3 y=15-2 y \Rightarrow y=\ldots$ is also possible
dM1: Uses logs correctly and proceeds to a value for x from an equation of the form $2^{x}=k$ where $k>1$
e.g. $2^{x}=k \Rightarrow x=\log _{2} k$
or $2^{x}=k \Rightarrow \log 2^{x}=\log k \Rightarrow x \log 2=\log k \Rightarrow x=\ldots$
or $2^{x}=k \Rightarrow \ln 2^{x}=\ln k \Rightarrow x \ln 2=\ln k \Rightarrow x=\ldots$
Depends on the first method mark
This may be implied if they go straight to decimals e.g. $\mathbf{2}^{x}=3$ so $x=1.584$.. but you may need to check
A1cso: $x=\log _{2} 3$ or $\frac{\log 3}{\log 2}$ or $\frac{\ln 3}{\ln 2}$
Ignore any attempts to find the y-coordinate

Alternative

B1: Correct equation in y
M1: Solves their equation in y and attempts to make 2^{x} the subject.
dM1: Uses logs correctly and proceeds to a value for x from an equation of the form $2^{x}=k$ where $k>1$
e.g. $2^{x}=k \Rightarrow x=\log _{2} k$

$$
\text { or } 2^{x}=k \Rightarrow \log 2^{x}=\log k \Rightarrow x \log 2=\log k \Rightarrow x=\ldots
$$

$$
\text { or } 2^{x}=k \Rightarrow \ln 2^{x}=\ln k \Rightarrow x \ln 2=\ln k \Rightarrow x=\ldots
$$

Depends on the first method mark

This may be implied if they go straight to decimals e.g. $2^{x}=3$ so $x=1.584$.. but you may need to check
A1cso: $x=\log _{2} 3$ or $\frac{\log 3}{\log 2}$ or $\frac{\ln 3}{\ln 2}$
Ignore any attempts to find the y-coordinate

Question	Scheme	Marks	AOs
27(a)	$\begin{gathered} t=0, \theta=18 \Rightarrow 18=A-B \\ \text { or } \\ t=10, \theta=44 \Rightarrow 44=A-B \mathrm{e}^{-07} \end{gathered}$	M1	3.1b
	$\begin{gathered} t=0, \theta=18 \Rightarrow 18=A-B \\ \text { and } \\ t=10, \theta=44 \Rightarrow 44=A-B \mathrm{e}^{-07} \Rightarrow \\ \text { and } \\ \Rightarrow A=\ldots, B=\ldots \end{gathered}$	M1	3.1a
	At least one of: $A=69.6, B=51.6$ but allow awrt 70/awrt 52	A1 M1 on EPEN	1.1b
	$\theta=69.6-51.6 \mathrm{e}^{-007 t}$	A1	3.3
		(4)	
(b)	The maximum temperature is " 69.6 " $\left({ }^{\circ} \mathrm{C}\right.$) (according to the model) (The model has an) upper limit of " 69.6 " ${ }^{\circ} \mathrm{C}$) (The model suggests that) the boiling point is " $69.6^{\prime \prime}\left({ }^{\circ} \mathrm{C}\right)$	B1ft	3.4
	Model is not appropriate as $69.6\left({ }^{\circ} \mathrm{C}\right)$ is much lower than $78\left({ }^{\circ} \mathrm{C}\right)$	B1ft	3.5a
		(2)	
(6 marks)			

Notes:

(a)

M1: Makes the first key step in the solution of the problem. Substitutes $t=0$ and $\theta=18$ or $t=10$ and $\theta=44$ into the equation of the model to obtain an equation connecting A and B.
Note that $18=A-B \mathrm{e}^{0}$ scores M0 unless $18=A-B$ is seen or implied later.
If they do not obtain an equation in A and B using the first conditions e.g. they have $18=\mathrm{A}-1$ then they can score this mark if they substitute $A=19$ directly into $44=A-B \mathrm{e}^{-07}$ as an equation in A and B is implied.
M1: Substitutes $t=0$ and $\theta=18$ and $t=10$ and $\theta=44$ to obtain 2 equations connecting A and B and then proceeds to solves their equations in A and B simultaneously to obtain values for both constants. Do not be too concerned with the processing as long as values for A and B are obtained.
A1(M1 on EPEN): For $A=$ awrt 70 or $B=$ awrt 52
A1: For $\theta=69.6-51.6 \mathrm{e}^{-007 t}$ Must be a fully correct equation as shown but allow recovery if seen in (b).
Note that some candidates evaluate e^{0} as 0 and so obtain $A=18$ and then write $44=18-B \mathrm{e}^{-07}$ and solve for B. Such attempts can score M1M0A0A0 only.
(b)

B1ft: Identifies A as the boiling point/maximum temperature in the model. Follow through their A.
B1ft: Makes a valid conclusion (valid/not valid, good/not good etc.) that refers to the 78 and includes a reference to a significant/large difference

Alternative provided their $A<78$

B1ft: $\theta=69.6-51.6 \mathrm{e}^{-007 t}=78 \Rightarrow 51.6 \mathrm{e}^{-007 t}=69.6-78=-8.4$
$\Rightarrow \mathrm{e}^{-007 t}=-\frac{7}{43}$ and $\ln \left(-\frac{7}{43}\right)$ and makes a reference to the fact that the equation cannot be solved or e.g. cannot take log of a negative number. You can condone numerical slips in the calculation.

B1ft: Model is not appropriate as $69.6\left({ }^{\circ} \mathrm{C}\right)$ is much lower than $78\left({ }^{\circ} \mathrm{C}\right)$
Minimum for both marks: The model is not appropriate as " 69.6 " $\left({ }^{\circ} \mathrm{C}\right)$ is much lower than $78\left({ }^{\circ} \mathrm{C}\right)$
Note that these marks are not available if their equation is solvable. Note also that B 0 B 1 is not possible.

Question	Scheme	Marks	AOs
28(a)	$k=\mathrm{e}^{2} \quad$ or $\quad x \neq \mathrm{e}^{2}$	B1	2.2a
		(1)	
(b)	$\mathrm{g}^{\prime}(x)=\frac{(\ln x-2) \times \frac{3}{x}-(3 \ln x-7) \times \frac{1}{x}}{(\ln x-2)^{2}}=\frac{1}{x(\ln x-2)^{2}}$ or $\mathrm{g}^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(3-(\ln (x)-2)^{-1}\right)=(\ln x-2)^{-2} \times \frac{1}{x}=\frac{1}{x(\ln x-2)^{2}}$ or $\mathrm{g}^{\prime}(x)=(\ln x-2)^{-1} \times \frac{3}{x}-(3 \ln x-7)(\ln x-2)^{-2} \times \frac{1}{x}=\frac{1}{x(\ln x-2)^{2}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1.1 \mathrm{~b} \\ 2.1 \end{gathered}$
	As $x>0$ (or $1 / x>0$) AND $\ln x-2$ is squared so $\mathrm{g}^{\prime}(x)>0$	A1cso	2.4
		(3)	
(c)	Attempts to solve either $3 \ln x-7 \ldots 0$ or $\ln x-2 \ldots 0$ or $3 \ln a-7 \ldots 0$ or $\ln a-2 \ldots 0$ where \ldots is "=" or ">" to reach a value for x or a but may be seen as an inequality e.g. $x>\ldots$ or $a>\ldots$	M1	3.1a
	$0<a<\mathrm{e}^{2}, \quad a>\mathrm{e}^{\frac{7}{3}}$	A1	2.2a
		(2)	

(6 marks)

Notes:

(a)

B1: Deduces $k=\mathrm{e}^{2}$ or $x \neq \mathrm{e}^{2} \quad$ Condone $k=$ awrt 7.39 or $x \neq$ awrt 7.39
(b)

M1: Attempts to differentiate via the quotient rule and with $\ln x \rightarrow \frac{1}{x}$ so allow for:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\mathrm{~g}(x))=\frac{(\ln x-2) \times \frac{\alpha}{x}-(3 \ln x-7) \times \frac{\beta}{x}}{(\ln x-2)^{2}}, \beta>0
$$

But a correct rule may be implied by their $u, v, u^{\prime}, v^{\prime}$ followed by applying $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$ etc.
Alternatively attempts to write $\mathrm{g}(x)=\frac{3 \ln (x)-7}{\ln (x)-2}=3-(\ln (x)-2)^{-1}$ and attempts the chain rule so allow for:

$$
3-(\ln (x)-2)^{-1} \rightarrow(\ln (x)-2)^{-2} \times \frac{\alpha}{x}
$$

Alternatively writes $\mathrm{g}(x)=(3 \ln (x)-7)(\ln (x)-2)^{-1}$ and attempts the product rule so allow for:

$$
\mathrm{g}^{\prime}(x)=(\ln x-2)^{-1} \times \frac{\alpha}{x}-(3 \ln x-7)(\ln x-2)^{-2} \times \frac{\beta}{x}
$$

In general condone missing brackets for the M mark. E.g. if they quote $u=3 \ln x-7$ and $v=\ln x-2$ and don't make the differentiation easier, they can be awarded this mark for applying the correct rule. Also allow this mark if they quote the correct quotient rule but only have v rather than v^{2} in the denominator.
A1: $\frac{1}{x(\ln x-2)^{2}}$ Allow $\frac{\frac{1}{x}}{(\ln x-2)^{2}}$ i.e. we need to see the numerator simplified to $\mathbf{1} \mathbf{x}$
Note that some candidates establish the correct numerator and correct denominator independently and provided they obtain the correct expressions, this mark can be awarded.
But allow a correctly expanded denominator.
A1cso: States that as $x>0$ AND $\ln x-2$ is squared so $\mathrm{g}^{\prime}(x)>0$
(c)

M1: Attempts to solve either $3 \ln x-7=0$ or $\ln x-2=0$ or using inequalities e.g. $3 \ln x-7>0$
A1: $0<a<\mathrm{e}^{2}, a>\mathrm{e}^{\frac{7}{3}}$

Question	Scheme	Marks	AOs
29	$2^{x} \times 4^{y}=\frac{1}{2 \sqrt{2}}\left\{=\frac{\sqrt{2}}{4}\right\}$		
Special Case	If 0 marks are scored on application of the mark scheme then allow Special Case B1 M0 A0 (total of 1 mark) for any of - $2^{x} \times 4^{y} \rightarrow 2^{x+2 y}$ - $2^{x} \times 4^{y} \rightarrow 4^{4^{\frac{1}{2}+y}} \quad$ - $\frac{1}{2^{x} 2 \sqrt{2}} \rightarrow 2^{-x-\frac{3}{2}}$ - $\log 2^{x}+\log 4^{y} \rightarrow x \log 2+y \log 4$ or $x \log 2+2 y \log 2$ - $\ln 2^{x}+\ln 4^{y} \rightarrow x \ln 2+y \ln 4$ or $x \ln 2+2 y \ln 2$ - $y=\log \left(\frac{1}{2^{x} 2 \sqrt{2}}\right)$ o.e. $\{$ base of 4 omitted $\}$		
Way 1	$2^{x} \times 2^{2 y}=2^{-\frac{3}{2}}$	B1	1.1 b
	$2^{x+2 y}=2^{-\frac{3}{2}} \Rightarrow x+2 y=-\frac{3}{2} \Rightarrow y=\ldots$	M1	2.1
	E.g. $y=-\frac{1}{2} x-\frac{3}{4}$ or $y=-\frac{1}{4}(2 x+3)$	A1	1.1b
		(3)	
Way 2	$\log \left(2^{x} \times 4^{y}\right)=\log \left(\frac{1}{2 \sqrt{2}}\right)$	B1	1.1b
	$\begin{gathered} \log 2^{x}+\log 4^{y}=\log \left(\frac{1}{2 \sqrt{2}}\right) \\ \Rightarrow x \log 2+y \log 4=\log 1-\log (2 \sqrt{2}) \Rightarrow y=\ldots \end{gathered}$	M1	2.1
	$y=\frac{-\log (2 \sqrt{2})-x \log 2}{\log 4}\left\{\Rightarrow y=-\frac{1}{2} x-\frac{3}{4}\right\}$	A1	1.1 b
		(3)	
Way 3	$\log \left(2^{x} \times 4^{y}\right)=\log \left(\frac{1}{2 \sqrt{2}}\right)$	B1	1.1b
	$\log 2^{x}+\log 4^{y}=\log \left(\frac{1}{2 \sqrt{2}}\right) \Rightarrow \log 2^{x}+y \log 4=\log \left(\frac{1}{2 \sqrt{2}}\right) \Rightarrow y=\ldots$	M1	2.1
	$y=\frac{\log \left(\frac{1}{2 \sqrt{2}}\right)-\log \left(2^{x}\right)}{\log 4} \quad\left\{\Rightarrow y=-\frac{1}{2} x-\frac{3}{4}\right\}$	A1	1.1b
		(3)	
Way 4	$\log _{2}\left(2^{x} \times 4^{y}\right)=\log _{2}\left(\frac{1}{2 \sqrt{2}}\right)$	B1	1.1b
	$\log _{2} 2^{x}+\log _{2} 4^{y}=\log _{2}\left(\frac{1}{2 \sqrt{2}}\right) \Rightarrow x+2 y=-\frac{3}{2} \Rightarrow y=\ldots$	M1	2.1
	E.g. $y=-\frac{1}{2} x-\frac{3}{4}$ or $y=-\frac{1}{4}(2 x+3)$	A1	1.1b
		(3)	

Question	Scheme	Marks	AOs
$30 \text { (a) }$ Way 1	$\left\{d=k V^{n} \Rightarrow\right\} \log _{10} d=\log _{10} k+n \log _{10} V$ or $\log _{10} d=m \log _{10} V+c$ or $\log _{10} d=m \log _{10} V-1.77$ seen or used as part of their argument	M1	2.1
	Alludes to $d=k V^{n}$ and gives a full explanation by comparing their result with a linear model e.g. $Y=M X+C$	A1	2.4
	$\{k=\} 10^{-177}=0.017 \text { or } \log 0.017=-1.77$ linked together in the same part of the question	B1 *	1.1b
		(3)	
30 (a) Way 2	$\begin{gathered} \hline \log _{10} d=m \log _{10} V+c \text { or } \log _{10} d=m \log _{10} V-1.77 \\ \text { or } \log _{10} d=\log _{10} k+n \log _{10} V \\ \text { seen or used as part of their argument } \end{gathered}$	M1	2.1
	$\begin{gathered} \left\{d=k V^{n} \Rightarrow\right\} \log _{10} d=\log _{10}\left(k V^{n}\right) \\ \Rightarrow \log _{10} d=\log _{10} k+\log _{10} V^{n} \Rightarrow \log _{10} d=\log _{10} k+n \log _{10} V \end{gathered}$	A1	2.4
	$\{k=\} 10^{-177}=0.017 \text { or } \log 0.017=-1.77$ linked together in the same part of the question	B1 *	1.1b
		(3)	
$\begin{gathered} \text { (a) } \\ \text { Way } 3 \end{gathered}$	Starts from $\log _{10} d=m \log _{10} V+c$ or $\log _{10} d=m \log _{10} V-1.77$	M1	2.1
	$\begin{gathered} \log _{10} d=m \log _{10} V+c \Rightarrow d=10^{m \log _{10} V+c} \Rightarrow d=10^{c} V^{m} \Rightarrow d=k V^{n} \\ \text { or } \log _{10} d=m \log _{10} V-1.77 \Rightarrow d=10^{m \log _{10} V-177} \\ \Rightarrow d=10^{-177} V^{m} \Rightarrow d=k V^{n} \end{gathered}$	A1	2.4
	$\{k=\} 10^{-177}=0.017 \text { or } \log 0.017=-1.77$ linked together in the same part of the question	B1 *	1.1b
		(3)	
(b)	$\{d=20, V=30 \Rightarrow\} \quad 20=k(30)^{n} \quad$ or $\quad \log _{10} 20=\log _{10} k+n \log _{10} 30$	M1	3.4
	$20=k(30)^{n} \Rightarrow \log 20=\log k+n \log 30 \Rightarrow n=\frac{\log 20-\log k}{\log 30} \Rightarrow n=\ldots$	M1	1.1b
	$\log _{10} 20=\log _{10} k+n \log _{10} 30 \Rightarrow n=\frac{\log _{10} 20-\log _{10} k}{\log _{10} 30} \Rightarrow n=\ldots$		
	$\{n=$ awrt $2.08 \Rightarrow\} d=(0.017) V^{208}$ or $\log _{10} d=-1.77+2.08 \log _{10} V$	A1	1.1b
	Note: You can recover the A1 mark for a correct model equation given in part (c)	(3)	
(c)	$d=(0.017)(60)^{208}$	M1	3.4
	- 13.333... $+84.918 \ldots=98.251 \ldots \Rightarrow$ Sean stops in time	M1	3.1b
	- $100-13.333 \ldots=86.666 \ldots$ \& $d=84.918 \Rightarrow$ Sean stops in time	A1ft	3.2a
		(3)	
(9 marks)			

ADVICE: Ignore labelling (a), (b), (c) when marking this question
Note: Give B0 in (a) for $10^{-177}=0.01698 \ldots$ without reference to 0.017 in the same part

Notes for Question 30	
Note:	In their solution to (a) and/or (b) condone writing log in place of $\log _{10}$
(a)	Way 1
M1:	See scheme
A1:	See scheme
B1*:	See scheme
(a)	Way 2
M1:	See scheme
A1:	Starts from $d=k V^{n}$ (which they do not have to state) and progresses to $\log _{10} d=\log _{10} k+n \log _{10} V$ with an intermediate step in their working.
B1*:	See scheme
(a)	Way 3
M1:	Starts their argument from $\log _{10} d=m \log _{10} V+c$ or $\log _{10} d=m \log _{10} V-1.77$
A1:	Mathematical explanation is seen by showing any of either - $\log _{10} d=m \log _{10} V+c \rightarrow d=10^{c} V^{m}$ or $d=k V^{n}$ - $\log _{10} d=m \log _{10} V-1.77 \rightarrow d=10^{-177} V^{m}$ or $d=k V^{n}$ with no errors seen in their working
B1*:	See scheme
Note:	Allow B1 for $\log _{10} 0.017=-1.77$ or $\log 0.017=-1.77$
(b)	
M1:	Applies $V=30$ and $d=20$ to their model (correct way round)
M1:	Applies $(V, d)=(30,20)$ or (20,30) and applies logarithms correctly leading to $n=\ldots$
A1:	$d=(0.017) V^{208}$ or $\log _{10} d=-1.77+2.08 \log _{10} V$ or $\log _{10} d=\log _{10}(0.017)+2.08 \log _{10} V$
Note:	Allow $k=$ awrt 0.017 and/or $n=$ awrt 2.08 in their final model equation
Note:	M0 M1 A0 is a possible score for (b)
(c)	
M1:	Applies $V=60$ to their exponential model or their logarithmic model
M1:	Uses their model in a correct problem-solving process of either - adding a "thinking distance" to their value of their d to find an overall stopping distance - applying 100 - "thinking distance" and finds their value of d
Note:	$\frac{1}{75}$ or 48 are examples of acceptable thinking distances
A1ft:	Either adds $13.3 \ldots$ to their d to find a total stopping distance and gives a correct ft conclusion or finds their d and a comparative $86.666 \ldots(\mathrm{~m})$ or awrt $87(\mathrm{~m})$ and gives a correct ft conclusion
Note:	The thinking distance must be dimensionally correct for the M1 mark. i.e. $0.8 \times$ their velocity
Note:	A thinking distance of awrt 13 and a value of d in the range [81.5, 88.5] are required for A1ft
Note:	Allow "Sean stops in time" or "Yes he stops in time" or "he misses the puddle" as relevant conclusions.
Note:	A mark of M0 M1 A0 is possible in (c)

Questio	Scheme	Marks	AOs
31 (a)	$\{t=0, \theta=75 \Rightarrow 75=25+A \Rightarrow A=50\} \Rightarrow \theta=25+50 \mathrm{e}^{-003 t}$	B1	3.3
		(1)	
(b)	$\{\theta=60 \Rightarrow\} \Rightarrow 60=25+" 50 " \mathrm{e}^{-003 t} \Rightarrow \mathrm{e}^{-003 t}=\frac{60-25}{" 50}$	M1	3.4
	$t=\frac{\ln (0.7)}{-0.03}=11.8891648=11.9$ minutes (1 dp)	A1	1.1b
		(2)	
(c)	A valid evaluation of the model, which relates to the large values of t. E.g. - As $20.3<25$ then the model is not true for large values of t - $\mathrm{e}^{-003 t}=\frac{20.3-25}{" 50 "}=-0.094$ does not have any solutions and so the model predicts that tea in the room will never be $20.3^{\circ} \mathrm{C}$. So the model does not work for large values of t - $t=120 \Rightarrow \theta=25+50 e^{-003(120)}=26.36 \ldots$ which is not approximately equal to 20.3 , so the model is not true for large values of t	B1	3.5a
		(1)	
(4 marks)			
Question 31 Notes:			
(a) B1: (b) M1: A1 (c) B1	lies $t=0, \theta=75$ to give the complete model $\theta=25+50 \mathrm{e}^{-003 t}$ lies $\theta=60$ and their value of A to the model and rearranges to make $\mathrm{e}^{-003 t}$ Later working can imply this mark. ains 11.9 (minutes) with no errors in manipulation seen. scheme	subject.	

Question	Scheme	Marks	AOs
32(a)	$\frac{\mathrm{d} p}{\mathrm{~d} t} \propto p \Rightarrow \frac{\mathrm{~d} p}{\mathrm{~d} t}=k p$	B1	3.3
	$\int \frac{1}{p} \mathrm{~d} p=\int k \mathrm{~d} t$	M1	1.1b
	$\ln p=k t\{+c\}$	A1	1.1 b
	$\ln p=k t+c \Rightarrow p=\mathrm{e}^{k t+c}=\mathrm{e}^{k t} \mathrm{e}^{c} \Rightarrow p=a \mathrm{e}^{k t} *$	A1 *	2.1
		(4)	
(b)	$p=a \mathrm{e}^{k t} \Rightarrow \ln p=\ln a+k t$ and evidence of understanding that either - \quad gradient $=k$ or " $M^{\prime \prime}=k$ - vertical intercept $=\ln a$ or " $C "=\ln a$	M1	2.1
	gradient $=k=0.14$	A1	1.1b
	vertical intercept $=\ln a=3.95 \Rightarrow a=\mathrm{e}^{395}=51.935=52(2 \mathrm{sf})$	A1	1.1 b
		(3)	
(c)	e.g. - $p=a \mathrm{e}^{k t} \Rightarrow p=a\left(\mathrm{e}^{k}\right)^{t}=a b^{t}$, - $\quad p=52 \mathrm{e}^{014 t} \Rightarrow p=52\left(\mathrm{e}^{014}\right)^{t}$	B1	2.2a
	$b=1.15$ which can be implied by $p=52(1.15)^{t}$	B1	1.1 b
		(2)	
(d)(i)	Initial area (i.e. " 52 " mm^{2}) of bacterial culture that was first placed onto the circular dish.	B1	3.4
(d)(ii)	E.g. - Rate of increase per hour of the area of bacterial culture - The area of bacterial culture increases by " 15% " each hour	B1	3.4
		(2)	
(e)	The model predicts that the area of the bacteria culture will increase indefinitely, but the size of the circular dish will be a constraint on this area.	B1	3.5b
		(1)	
(12 marks)			

Question 32 Notes:

(a)

B1: Translates the scientist's statement regarding proportionality into a differential equation, which involves a constant of proportionality. e.g. $\frac{\mathrm{d} p}{\mathrm{~d} t} \propto p \Rightarrow \frac{\mathrm{~d} p}{\mathrm{~d} t}=k p$
M1: \quad Correct method of separating the variables p and t in their differential equation
A1: $\quad \ln p=k t$, with or without a constant of integration
A1*: Correct proof with no errors seen in working.
(b)

M1: \quad See scheme
A1: \quad Correctly finds $k=0.14$
A1: \quad Correctly finds $a=52$
(c)

B1: Uses algebra to correctly deduce either

- $p=a b^{t}$ from $p=a \mathrm{e}^{k t}$
- $\quad p=" 52 "\left(\mathrm{e}^{0014 "}\right)^{t}$ from $p=" 52 " \mathrm{e}^{014 " t}$

B1: See scheme
(d)(i)

B1: See scheme
(d)(ii)

B1: See scheme
(e)

B1:
Gives a correct long-term limitation of the model for p. (See scheme).

Question	Scheme	Marks	AOs
33(a)	Substitutes $t=0.5$ into $m=25 \mathrm{e}^{-005 t} \Rightarrow m=25 \mathrm{e}^{-005 \times 05}$	M1	3.4
	$\Rightarrow m=24.4 \mathrm{~g}$	A1	1.1b
		(2)	
(b)	States or uses $\frac{\mathrm{d}}{\mathrm{d} t}\left(\mathrm{e}^{-005 t}\right)= \pm C \mathrm{e}^{-005 t}$	M1	2.1
	$\frac{\mathrm{d} m}{\mathrm{~d} t}=-0.05 \times 25 \mathrm{e}^{-005 t}=-0.05 m \Rightarrow k=-0.05$	A1	1.1b
		(2)	
(4 marks)			
Notes:			
(a) M1: Substitutes $t=0.5$ into $m=25 \mathrm{e}^{-005 t} \Rightarrow m=25 \mathrm{e}^{-005 \times 05}$ A1: $\quad m=24.4 \mathrm{~g}$ An answer of $m=24.4 \mathrm{~g}$ with no working would score both marks			
(b) M1: Applies the rule $\frac{\mathrm{d}}{\mathrm{d} t}\left(\mathrm{e}^{k x}\right)=k \mathrm{e}^{k x}$ in this context by stating or using $\frac{\mathrm{d}}{\mathrm{d} t}\left(\mathrm{e}^{-005 t}\right)= \pm C \mathrm{e}^{-005 t}$ A1: $\quad \frac{\mathrm{d} m}{\mathrm{~d} t}=-0.05 \times 25 \mathrm{e}^{-005 t}=-0.05 m \Rightarrow k=-0.05$			

Question Number	Scheme	Marks
34(a)	Replaces$2^{2 x+1}$ with $2^{2 x} \times 2$ or Uses the addition or power law of indices on $2^{2 x}$ or $2^{2 x+1}$. E.g. states $2^{2 x+1}=2^{2 x} \times 2$ $2^{x} \times 2^{x}=2^{2 x}$ or $\left(2^{x}\right)^{2}=2^{2 x}$ or or $2^{2 x+1}=2 \times 2^{2 x}$ or $2^{x+0.5}=2^{x} \times \sqrt{2}$ $\operatorname{states}\left(2^{x}\right)^{2}=2^{2 x}$ or $2^{2 x+1}=\left(2^{x+0.5}\right)^{2}$.	M1
	$2^{2 x+1}-17 \times 2^{x}+8=0$ Cso. Complete proof that includes explicit statements for the addition and power law of indices on $2^{2 x+1}$ with no errors. The equation needs to be as printed including the " $=0 "$. $\|$If they work backwards, they do not need to write down the printed answer first but must end with the version in 2^{x} including ' $=0 \prime$.	A1*
	The following are examples of acceptable proofs.	
	$\begin{aligned} & 2^{2 x+1}=\left(2^{x+0.5}\right)^{2}=\left(2^{x} \sqrt{2}\right)^{2}=(y \sqrt{2})^{2}=2 y^{2} \\ & \Rightarrow 2^{2 x+1}-17\left(2^{x}\right)+8=2 y^{2}-17 y+8=0 \end{aligned}$	
	$\begin{gathered} 2 y^{2}=2 \times 2^{x} \times 2^{x}=2^{2 x+1} \\ \Rightarrow 2^{2 x+1}-17\left(2^{x}\right)+8=2 y^{2}-17 y+8=0 \end{gathered}$	
	$\begin{aligned} & 2 y^{2}-17 y+8=0 \Rightarrow 2\left(2^{x}\right)^{2}-17\left(2^{x}\right)+8=0 \\ \Rightarrow & 2 \times 2^{2 x}-17\left(2^{x}\right)+8=0 \Rightarrow 2^{2 x+1}-17\left(2^{x}\right)+8=0 \end{aligned}$	
	$\begin{gathered} 2^{2 x+1}=2 \times 2^{2 x} \Rightarrow 2 \times 2^{2 x}-17\left(2^{x}\right)+8=0 \\ \Rightarrow 2 y^{2}-17 y+8=0 \end{gathered}$ Scores M1A0 as $2^{2 x}=\left(2^{x}\right)^{2}$ has not been shown explicitly	
	Special Case: $2^{2 x+1}=2^{1} \times\left(2^{x}\right)^{2} \text { or } 2^{2 x+1}=\left(2^{x}\right)^{2} \times 2^{1}$ With or without the multiplication signs and with no subsequent explicit evidence of the power law scores M1A0	
	Example of insufficient working: $2^{2 x+1}=2\left(2^{x}\right)^{2}=2 y^{2}$ scores no marks as neither rule has been shown explicitly.	
		(2)

(b)	$\begin{aligned} & 2 y^{2}-17 y+8=0 \Rightarrow(2 y-1)(y-8)(=0) \Rightarrow y=\ldots \\ & \text { or }= \\ & 2\left(2^{x}\right)^{2}-17\left(2^{x}\right)+8=0 \Rightarrow\left(2\left(2^{x}\right)-1\right)\left(\left(2^{x}\right)-8\right)(=0) \Rightarrow 2^{x}=\ldots \end{aligned}$ Solves the given quadratic either in terms of y or in terms of 2^{x} See General Principles for solving a 3 term quadratic Note that completing the square on e.g. $y^{2}-\frac{17}{2} y+4=0$ requires $\left(y \pm \frac{17}{4}\right)^{2} \pm q \pm 4=0 \Rightarrow y=\ldots$		M1
	$(y=) \frac{1}{2}, 8$ or $\left(2^{x}=\right) \frac{1}{2}, 8$	Correct values	A1
	$\Rightarrow 2^{x}=\frac{1}{2}, 8 \Rightarrow x=-1,3$	M1: Either finds one correct value of x for their 2^{x} or obtains a correct numerical expression in terms of logs e.g. for $k>0$ $2^{x}=k \Rightarrow x=\log _{2} k \text { or } \frac{\log k}{\log 2}$ A1: $x=-1,3$ only. Must be values of x.	M1 A1
			(4)
			(6 marks)

Question Number	Scheme	Notes	Marks
35	$\begin{aligned} & 9^{3 x+1}=\text { for example } \\ & 3^{2(3 x+1)} \text { or }\left(3^{2}\right)^{3 x+1} \text { or }\left(3^{(3 x+1)}\right)^{2} \text { or } 3^{3 x+1} \times 3^{3 x+1} \\ & \text { or }(3 \times 3)^{3 x+1} \text { or } 3^{2} \times\left(3^{2}\right)^{3 x} \text { or }\left(9^{\frac{1}{2}}\right)^{y} \text { or } 9^{\frac{1}{2} y} \\ & \text { or } y=2(3 x+1) \end{aligned}$	Expresses $9^{3 x+1}$ correctly as a power of 3 or expresses 3^{y} correctly as a power of 9 or expresses y correctly in terms of x (This mark is not for just $3^{2}=9$)	M1
	$=3^{6 x+2}$ or $y=6 x+2$ or $a=6, b=2$	Cao (isw if necessary)	A1
	Providing there is no incorrect work, all Correct answer only Special case: $3^{6 x+1}$	w sight of $6 x+2$ to score both marks mplies both marks ly scores M1A0	
			[2]
	Alternative	sing logs	
	$9^{3 x+1}=3^{y} \Rightarrow \log 9^{3 x+1}=\log 3^{y}$		
	$(3 x+1) \log 9=y \log 3$	Use power law correctly on both sides	M1
	$y=\frac{\log 9}{\log 3}(3 x+1)$		
	$y=6 x+2$	cao	A1
			2 marks

Question Number	Scheme		Marks
36(a)	$\left(4^{x}=\right) y^{2}$	Allow y^{2} or $y \times y$ or " y squared" " $4^{x}=$ " not required	B1
	Must be seen in part (a)		
			(1)
(b)	$8 y^{2}-9 y+1=(8 y-1)(y-1)=0 \Rightarrow y=\ldots$ or $\left(8\left(2^{x}\right)-1\right)\left(\left(2^{x}\right)-1\right)=0 \Rightarrow 2^{x}=\ldots$	For attempting to solve the given equation as a 3 term quadratic in y or as a 3 term quadratic in 2^{x} leading to a value of y or 2^{x} (Apply usual rules for solving the quadratic - see general guidance) Allow x (or any other letter) instead of y for this mark e.g. an attempt to solve $8 x^{2}-9 x+1=0$	M1
	$2^{x}($ or $y)=\frac{1}{8}, 1$	Both correct answers of $\frac{1}{8}$ (oe) and 1 for 2^{x} or y or their letter but $\underline{\text { not } \boldsymbol{x}}$ unless 2^{x} (or y) is implied later	A1
	$x=-3 \quad x=0$	M1: A correct attempt to find one numerical value of x from their 2^{x} (or y) which must have come from a 3 term quadratic equation. If logs are used then they must be evaluated.	M1A1
		A1: Both $x=-3$ and/or $x=0$ May be implied by e.g. $2^{-3}=\frac{1}{8} \quad$ and $\quad 2^{0}=1$ and no extra values.	
			(4)
			(5 marks)

Question Number	Scheme	Marks
37.	(a) $32^{\frac{1}{5}}=2$ (b) For 2^{-2} or $\frac{1}{4}$ or $\left(\frac{1}{2}\right)^{2}$ or 0.25 as coefficient of x^{k}, for any value of k including $k=0$ Correct index for x so $A x^{-2}$ or $\frac{A}{x^{2}}$ o.e. for any value of A $=\frac{1}{4 x^{2}} \text { or } 0.25 x^{-2}$	(1) M1 B1 A1 cao (3) 4 Marks

Notes

(a) B1 Answer 2 must be in part (a) for this mark
(b) Look at their final answer

M1 For 2^{-2} or $\frac{1}{4}$ or $\left(\frac{1}{2}\right)^{2}$ or 0.25 in their answer as coefficient of x^{k} for numerical value of k (including $k=0$) so final answer $\frac{1}{4}$ is M1 B0 A0
B1 $A x^{-2}$ or $\frac{A}{x^{2}}$ or equivalent e.g. $A x^{-\frac{10}{5}}$ or $A x^{-\frac{50}{25}}$ i.e. correct power of x seen in final answer May have a bracket provided it is $(A x)^{-2}$ or $\left(\frac{A}{x}\right)^{2}$
A1 $\frac{1}{4 x^{2}}$ or $\frac{1}{4} x^{-2}$ or $0.25 x^{-2}$ oe but must be correct power and coefficient combined correctly and must not be followed by a different wrong answer.

Poor bracketing: $2 x^{-2}$ earns M0 B1 A0 as correct power of x is seen in this solution (They can recover if they follow this with $\frac{1}{4 x^{2}}$ etc)
Special case $(2 x)^{-2}$ as a final answer and $\left(\frac{1}{2 x}\right)^{2}$ can have M0 B1 A0 if the correct expanded answer is not seen The correct answer $\frac{1}{4 x^{2}}$ etc. followed by $\left(\frac{1}{2 x}\right)^{2}$ or $(2 x)^{-2}$, treat $\frac{1}{4 x^{2}}$ as final answer so M1 B1 A1 isw But the correct answer $\frac{1}{4 x^{2}}$ etc clearly followed by the wrong $2 x^{-2}$ or $4 x^{-2}$, gets M1 B1 A0 do not ignore subsequent wrong work here

Question Number	Scheme	Marks
38.(a)	$\begin{aligned} 81^{\frac{3}{2}}=\left(81^{\frac{1}{2}}\right)^{3}=9^{3} \quad \text { or } 81^{\frac{3}{2}}= & \left(81^{3}\right)^{\frac{1}{2}}=(531441)^{\frac{1}{2}} \\ = & 729 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$
(b)	$\left(4 x^{-\frac{1}{2}}\right)^{2}=16 x^{-\frac{2}{2}}$ or $\frac{16}{x} \quad$ or equivalent $x^{2}\left(4 x^{-\frac{1}{2}}\right)^{2}=16 x$	M1 A1
		$\begin{array}{r} (2) \\ (4 \text { marks }) \\ \hline \end{array}$

(a) M1 Dealing with either the 'cube' or the 'square root' first. A correct answer will imply this mark.

Also accept a law of indices approach $81^{\frac{3}{2}}=81^{1} \times 81^{\frac{1}{2}}=81 \times 9$
A1 Cao 729. Accept (\pm) 729
(b) M1 For correct use of power 2 on both 4 and the $x^{-\frac{1}{2}}$ term.

A1 \quad Cao $=16 x$

Question Number	Scheme		Marks
39(a)	$8^{\frac{1}{3}}=2$ or $8^{5}=32768$	A correct attempt to deal with the $\frac{1}{3}$ or the 5 . $8^{\frac{1}{3}}=\sqrt[3]{8} \text { or } 8^{5}=8 \times 8 \times 8 \times 8 \times 8$	M1
	$\left(8^{\frac{5}{3}}=\right) 32$	Cao	A1
	A correct answer with no working scores full marks		
	Alternative$\begin{aligned} 8^{\frac{5}{3}}=8 \times 8^{\frac{2}{3}}=8 \times 2^{2} & =\text { M1 (Deals with the } 1 / 3 \text {) } \\ & =32 \text { A1 } \end{aligned}$		
			(2)
(b)	$\left(2 x^{\frac{1}{2}}\right)^{3}=2^{3} x^{\frac{3}{2}}$	One correct power either 2^{3} or $x^{\frac{3}{2}}$. $\left(2 x^{\frac{1}{2}}\right) \times\left(2 x^{\frac{1}{2}}\right) \times\left(2 x^{\frac{1}{2}}\right)$ on its own is not sufficient for this mark.	M1
	$\frac{8 x^{\frac{3}{2}}}{4 x^{2}}=2 x^{-\frac{1}{2}}$ or $\frac{2}{\sqrt{x}}$	M1: Divides coefficients of x and subtracts their powers of x. Dependent on the previous M1	dM1A1
		A1: Correct answer	
	Note that unless the power of x implies that they have subtracted their powers you would need to see evidence of subtraction. E.g. $\frac{8 x^{\frac{3}{2}}}{4 x^{2}}=2 x^{\frac{1}{2}}$ would score dM0 unless you see some evidence that $3 / 2-2$ was intended for the power of x.		
	Note that there is a misconception that $\frac{\left(2 x^{\frac{1}{2}}\right)^{3}}{4 x^{2}}=\left(\frac{2 x^{\frac{1}{2}}}{4 x^{2}}\right)^{3}$ - this scores $0 / 3$		
			(3)
			[5]

Question Number	Scheme	Notes	Marks
40(a)	$2^{y}=8 \Rightarrow y=3$	Cao (Can be implied i.e. by 2^{3})	B1
	(Alternative: Takes logs base 2: $\log _{2} 2^{y}=\log _{2} 8 \Rightarrow y \log _{2} 2=3 \log _{2} 2 \Rightarrow y=3$)		
			(1)
(b)	$8=2^{3}$	Replaces 8 by 2^{3} (May be implied)	M1
	$4^{x+1}=\left(2^{2}\right)^{x+1}$ or $\left(2^{x+1}\right)^{2}$	Replaces 4 by 2^{2} correctly.	M1
	$2^{3 x+2}=2^{3} \Rightarrow 3 x+2=3 \Rightarrow x=\frac{1}{3}$	M1: Adds their powers of 2 on the lhs and puts this equal to 3 leading to a solution for x.	M1A1
		A1: $x=\frac{1}{3}$ or $x=0 . \dot{3}$ or awrt 0.333	
			(4)
(b) Way 2	$4^{x+1}=4 \times 4^{x}$	Obtains 4^{x+1} in terms of 4^{x} correctly	M1
	$2^{x} \times 4^{x}=8^{x}$	Combines their 2^{x} and 4^{x} correctly	M1
	$4 \times 8^{x}=8 \Rightarrow 8^{x}=2 \Rightarrow x=\frac{1}{3}$	M1: Solves $8^{x}=k$ leading to a solution for x.	M1A1
		A1: $x=\frac{1}{3}$ or $x=0 . \dot{3}$ or awrt 0.333	
			[5]

Question Number	Scheme	Marks
41.	$\left(8^{2 x+3}=\left(2^{3}\right)^{2 x+3}\right)=2^{3(2 x+3)}$ or $2^{a x+b}$ with $a=6$ or $b=9$ $=2^{6 x+9}$ or $=2^{3(2 x+3)}$ as final answer with no errors or $(y=) 6 x+9$ or $3(2 x+3)$	M1 A1 [2]
		2 marks
	Notes	
	M1: Uses $8=2^{3}$, and multiplies powers $3(2 x+3)$. Does not add powers. (Just $8=2^{3}$ or $8^{\frac{1}{3}}=2$ is M0) A1: Either $2^{6 x+9}$ or $=2^{3(2 x+3)}$ or $\quad(y=) 6 x+9$ or $3(2 x+3)$	
	Note: Examples: $2^{6 x+3}$ scores M1A0 $: 8^{2 x+3}=\left(2^{3}\right)^{2 x+3}=2^{3+2 x+3} \text { gets M0A0 }$ Special case: : $\quad=2^{6 x} 2^{9}$ without seeing as single power M1A0 Alternative method using logs: $8^{2 x+3}=2^{y} \Rightarrow(2 x+3) \log 8=y \log 2 \Rightarrow y=\frac{(2 x+3) \log 8}{\log 2}$ So $(y=) 6 x+9$ or $3(2 x+3)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$

Question Number	Scheme		Marks
42. (a)	$\begin{aligned} \left\{(32)^{\frac{3}{5}}\right\} & =(\sqrt[5]{32})^{3} \text { or } \sqrt[5]{(32)^{3}} \text { or } 2^{3} \text { or } \sqrt[5]{32768} \\ & =8 \end{aligned}$		M1 A1 [2]
(b)	$\left\{\left(\frac{25 x^{4}}{4}\right)^{-\frac{1}{2}}\right\}=\left(\frac{4}{25 x^{4}}\right)^{\frac{1}{2}} \text { or }\left(\frac{5 x^{2}}{2}\right)^{-1} \text { or } \frac{1}{\left(\frac{25 x^{4}}{4}\right)^{\frac{1}{2}}}$	See notes below	M1
	$=\frac{2}{5 x^{2}} \text { or } \frac{2}{5} x^{-2}$	See notes for other alternatives	A1
			$[2]$ 4
	Notes		

(a) M1: for a full correct interpretation of the fractional power. Note: $5 \times(32)^{3}$ is M0.

A1: for 8 only.
Note: Award M1A1 for writing down 8.
(b)

M1: For use of $\frac{1}{2}$ OR use of -1
Use of $\frac{1}{2}$: Candidate needs to demonstrate the they have rooted all three elements in their bracket.
Use of -1: Either Candidate has $\frac{1}{\text { Bracket }}$ or $\left(\frac{A x^{C}}{B}\right)$ becomes $\left(\frac{B}{A x^{C}}\right)$.
Allow M1 for...

- $\left(\frac{4}{25 x^{4}}\right)^{\frac{1}{2}}$ or $\left(\frac{5 x^{2}}{2}\right)^{-1}$ or $\frac{1}{\left(\frac{25 x^{4}}{4}\right)^{\frac{1}{2}}}$ or $\sqrt{\left(\frac{4}{25 x^{4}}\right)}$ or $\frac{1}{\sqrt{\left(\frac{25 x^{4}}{4}\right)}}$ or $\left(\frac{\frac{1}{25 x^{4}}}{\frac{1}{4}}\right)^{\frac{1}{2}}$ or $\frac{\frac{1}{5 x^{2}}}{\frac{1}{2}}$ or $\frac{\frac{1}{5} x^{-2}}{\frac{1}{2}}$
or $-\left(\frac{5 x^{2}}{2}\right)$ or $\left(\frac{-5 x^{-2}}{-2}\right)$ or $-\left(\frac{5 x^{-2}}{2}\right)$ or $\frac{5 x^{-2}}{2}$
- $\left(\frac{4}{25 x^{4}}\right)^{K}$ or $\left(\frac{5 x^{2}}{2}\right)^{C}$ where K, C are any powers including 1 .

A1: for either $\frac{2}{5 x^{2}}$ or $\frac{2}{5} x^{-2}$ or $0.4 x^{-2}$ or $\frac{0.4}{x^{2}}$.
Note: $\left(\sqrt{\left(\frac{25 x^{4}}{4}\right)}\right)^{-1}$ is not enough work by itself for the method mark.
Note: A final answer of $\frac{1}{\frac{5}{2} x^{2}}$ or $\frac{1}{2 \frac{1}{2} x^{2}}$ or $\frac{1}{2.5 x^{2}}$ is A0.
Note: Also allow $\pm \frac{2}{5 x^{2}}$ or $\pm \frac{2}{5} x^{-2}$ or $\pm 0.4 x^{-2}$ or $\pm \frac{0.4}{x^{2}}$ for A1.

Question Number	Scheme	Marks
43. (a)	$5 \quad$ (or $\pm 5)$	B1 (1)
(b)	$25^{-\frac{3}{2}}=\frac{1}{25^{\frac{3}{2}}}$ or $25^{\frac{3}{2}}=125$ or better $\frac{1}{125} \text { or } 0.008 \quad \text { (or } \pm \frac{1}{125} \text {) }$	M1 A1 (2)
	Notes (a) Give B1 for 5 or ± 5 Anything else is B0 (including just -5) (b) M: Requires reciprocal OR $25^{\frac{3}{2}}=125$ Accept $\frac{1}{5^{3}}, \frac{1}{\sqrt{15625}}, \frac{1}{2555}, \frac{1}{25 \sqrt{25}}, \frac{1}{\sqrt{25}^{3}}$ for M1 Correct answer with no working (or notation errors in working) scores both marks M1A0 for $-\frac{1}{125}$ without $+\frac{1}{125}$	i.e. M1 A1

Question Number	Scheme	Marks
45	$\begin{aligned} & 32=2^{5} \quad \text { or } \quad 2048=2^{11}, \quad \sqrt{2}=2^{1 / 2} \text { or } \quad \sqrt{2048}=(2048)^{\frac{1}{2}} \\ & a=\frac{11}{2} \quad\left(\begin{array}{ll} \text { or } 5 \frac{1}{2} & \text { or } 5.5) \end{array}\right. \end{aligned}$	$\begin{array}{ll} \text { B1, B1 } & \\ \text { B1 } & \\ & \\ \hline \end{array}$
	$1^{\text {st }}$ B1 for $32=2^{5}$ or $2048=2^{11}$ This should be explicitly seen: $32 \sqrt{2}=2^{a}$ followed by $2^{5} \sqrt{2}=2^{a}$ is OK Even writing $32 \times 2=2^{5} \times 2\left(=2^{6}\right)$ is OK but simply writing $32 \times 2=2^{6}$ is NOT $2^{\text {nd }}$ B1 for $2^{\frac{1}{2}}$ or $(2048)^{\frac{1}{2}}$ seen. This mark may be implied $3^{\text {rd }} \mathrm{B} 1$ for answer as written. Need $\boldsymbol{a}=\ldots$ so $2^{\frac{11}{2}}$ is B0 $a=\frac{11}{2}\left(\right.$ or $5 \frac{1}{2}$ or 5.5$)$ with no working scores full marks. If $a=5.5$ seen then award $3 / 3$ unless it is clear that the value follows from totally incorrect work. Part solutions: e.g. $2^{5} \sqrt{2}$ scores the first B1. Special case: If $\sqrt{2}=2^{1 / 2}$ is not explicitly seen, but the final answer includes $\frac{1}{2}$, e.g. $a=2 \frac{1}{2}, a=4 \frac{1}{2}$, the second B 1 is given by implication.	

Question Number	Scheme	Marks
46 (a)	5 (± 5 is B 0) $\begin{align*} \frac{1}{(\text { their } 5)^{2}} & \text { or }\left(\frac{1}{\text { their } 5}\right)^{2} \tag{1}\\ & =\frac{1}{25} \text { or } 0.04 \quad\left(\pm \frac{1}{25} \text { is } \mathrm{A} 0\right) \end{align*}$	M1 A1 (2) [3]
(b)	M1 follow through their value of 5. Must have reciprocal and square. 5^{-2} is not sufficient to score this mark, unless $\frac{1}{5^{2}}$ follows this. A negative introduced at any stage can score the M1 but not the A1, e.g. $125^{-2 / 3}=\left(-\frac{1}{5}\right)^{2}=\frac{1}{25} \quad$ scores M1 A0 $125^{-2 / 3}=-\left(\frac{1}{5}\right)^{2}=-\frac{1}{25} \quad \text { scores M1 A0. }$ Correct answer with no working scores both marks. Alternative: $\frac{1}{\sqrt[3]{125^{2}}}$ or $\frac{1}{\left(125^{2}\right)^{1 / 3}} \quad \mathrm{M} 1$ (reciprocal and the correct number squared) $\begin{aligned} (& \left.=\frac{1}{\sqrt[3]{15625}}\right) \\ & =\frac{1}{25} \quad \text { A1 } \end{aligned}$	

Question number	Scheme	Marks	
47.	(a) 2 (b) x^{9} seen, or (answer to (a) $)^{3}$ seen, or $\left(2 x^{3}\right)^{3}$ seen. $8 x^{9}$	B1 M1 A1	(1) (2) 3
	(b) M: Look for x^{9} first... if seen, this is M1. If not seen, look for (answer to (a) $)^{3}$, e.g. $2^{3} \ldots$ this would score M1 even if it does not subsequently become 8 . (Similarly for other answers to (a)). In $\left(2 x^{3}\right)^{3}$, the 2^{3} is implied, so this scores the M mark. Negative answers: (a) Allow -2 . Allow ± 2. Allow ' 2 or -2 '. (b) Allow $\pm 8 x^{9}$. Allow ' $8 x^{9}$ or $-8 x^{9}$, N.B. If part (a) is wrong, it is possible to 'restart' in part (b) and to score full marks in part (b).		

Question Number	Scheme	Marks
48. (i)	Use of power rule so $(y-1) \log 1.01=\log 500$ or $(y-1)=\log _{1.01} 500$	M1
	625.56	Al^{A}
(ii) (a)	Ignore labels (a) and (b) in part ii and mark work as seen $\log _{4}(3 x+5)^{2}=$ Applies power law of logarithms Uses $\log _{4} 4=1$ or $4^{1}=4$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$
	Uses quotient or product rule so e.g. $\log (3 x+5)^{2}=\log 4(3 x+8)$ or $\log \frac{(3 x+5)^{2}}{(3 x+8)}=1$	M1
	Obtains with no errors $9 x^{2}+18 x-7=0$ *	A1* cso (4)
(b)	Solves given or "their" quadratic equation by any of the standard methods Obtains $x=\frac{1}{3}$ and $-\frac{7}{3}$ and rejects $-\frac{7}{3}$ to give just $\frac{1}{3}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		(2) [8]
(i) M1: Applies power law of logarithms correctly or changes base (Allow missing brackets) A1: Accept answers which round to 625.56 (This may follow $624.56+1=$ or may follow $y=\log _{1.01} 505$ or $\frac{\log 505}{\log 1.01}$ or may appear with no working)		
(ii) (a)		
M1: Applies power law of $\operatorname{logarithms~}^{2} \log _{4}(3 x+5)=\log _{4}(3 x+5)^{2}$		
M1: Uses $\log _{4} 4=1$ or $4^{1}=4$		
M1: Applying the subtraction or addition law of logarithms correctly to make two log terms into one \log term in x (*see note below)		
followed by a conclusion, such as $9 x^{2}+18 x-7=0$ (ii) (b)		
M1: Solves by factorisation or by completion of the square or by correct use of formula (see general principles)		
A1: Needs to find two answers and reject one to give the correct $\frac{1}{3}$ (This may be indicated by underlining just the $1 / 3$ for example).		
Special case: States $\frac{\log (3 x+5)^{2}}{\log (3 x+8)}=\log \frac{(3 x+5)^{2}}{(3 x+8)}=1$, loses the third M mark in part ii(a) and the A1 cso		

Question Number	Scheme	Marks
49. (i)	Use of power rule so $\log (x+a)^{2}=\log 16 a^{6}$ or $2 \log (x+a)=2 \log 4 a^{3}$ or $\log (x+a)=\log \left(16 a^{6}\right)^{\frac{1}{2}}$	M1
	Removes logs and square roots, or halves then removes logs to give $(x+a)=4 a^{3}$ Or $x^{2}+2 a x+a^{2}-16 a^{6}=0$ followed by factorisation or formula to give $x=\sqrt{16 a^{6}}$	M1
	($x=$) $4 a^{3}-a \quad$ (depends on previous M's and must be this expression or equivalent)	A1cao
(ii) Way 1	$\log _{3} \frac{(9 y+b)}{(2 y-b)}=2$ Applies quotient law of logarithms	M1
	$\frac{(9 y+b)}{(2 y-b)}=3^{2}$ Uses $\log _{3} 3^{2}=2$	M1
	$(9 y+b)=9(2 y-b) \Rightarrow y=\quad \begin{array}{r}\text { Multiplies across and makes } y \text { the } \\ \text { subject }\end{array}$	M1
	$=\frac{10}{9} b$	Alcso (4)
Way 2	Or $: \log _{3}(9 y+b)=\log _{3} 9+\log _{3}(2 y-b) \quad \quad 2^{\text {nd }} \mathrm{M}$ mark	M1
	$\log _{3}(9 y+b)=\log _{3} 9(2 y-b) \quad 1^{\text {st }} \mathrm{M}$ mark	M1
	$(9 y+b)=9(2 y-b) \Rightarrow y=\frac{10}{9} b \quad$ Multiplies across and makes y the subject	M1 A1cso
(i)	Notes ${ }^{\text {st }}$ M1: Apler ${ }^{\text {N }}$	
	$1^{\text {st }} \mathrm{M} 1$: Applies power law of logarithms correctly to one side of the equation M1: Correct log work in correct order. If they square and obtain a quadratic the algebra should be	
	M1: Correct log work in correct order. If they square and obtain a quadratic the algebra should correct. The marks is for $x+a=\sqrt{16 a^{6}}$ isw so allow $x+a= \pm 4 a^{3}$ for Method mark. Also $x+a=4 a^{4}$ or $x+a= \pm 4 a^{5.5}$ or even $x+a=16 a^{3}$ as there is evidence of attempted square May see the correct $x+a=10^{(\log 4+3 \log a)}$ so $x=-a+10^{(\log 4+3 \log a)}$ which gains M1A0 unless by the answer in the scheme.	be allow root. ollowed
(ii)	M1: Applying the subtraction or addition law of logarithms correctly to make two log terms into one log term in y	
	M1: Uses $\log _{3} 3^{2}=2$	
	A1cso: $y=\frac{10}{9} b$ or correct equivalent after completely correct work.	
	$\frac{\log _{3}(9 y+b)}{\log _{3}(2 y-b)}=2$ is M 0 unless clearly crossed out and replaced by the correct $\log _{3} \frac{(9 y+b)}{(2 y-b)}=$	
	Candidates may then write $\frac{(9 y+b)}{(2 y-b)}=3^{2}$ and proceed to the correct answer - allow M0M1M1A0 as	

(ii) Way 4	$2^{2 x+5}=7\left(2^{x}\right) \Rightarrow 2^{x+5}=7$		
	$x+5=\log _{2} 7 \text { or } \frac{\log 7}{\log 2}$	Evidence of $\log _{2}$ and either $2^{x+5} \rightarrow x+5$ or $7 \rightarrow \log _{2} 7$	M1
		$x+5=\log _{2} 7$ oe.	A1
	$x=\log _{2} 7-5$	Rearranges to achieve $x=\ldots$	dM1
	$x=-2.192645 . .$.	awrt -2.19	A1
			[4]
$\begin{gathered} \text { Way } 5 \\ \text { (similar to } \\ \text { Way 3) } \end{gathered}$	$2^{2 x+5}=2^{\log _{2} 7}\left(2^{x}\right)$	7 is replaced by $2^{\log _{2} 7}$	M1
	$2 x+5=\log _{2} 7+x$	$2 x+5=\log _{2} 7+x$ ое.	A1
	$\begin{aligned} & 2 x-x=\log _{2} 7-5 \\ & \Rightarrow x=\log _{2} 7-5 \end{aligned}$	Collects x terms to achieve $x=\ldots$	dM1
	$x=-2.192645 . .$.	awrt -2.19	A1
			[4]
			7

	Question 50 Notes	
(i)	$\mathbf{1}^{\text {st }}$ M1	Applying either the addition or subtraction law of logarithms correctly to combine any two log terms into one log term.
	$2^{\text {nd }}$ M1	For making a correct connection between log base 3 and 3 to a power.
	A1	$b=\frac{1}{9} a-\frac{5}{9}$ or $b=\frac{a-5}{9}$ o.e. e.g. Accept $b=\frac{1}{3}\left(\frac{a}{3}-\frac{5}{3}\right)$ but not $b=\frac{a-2}{9}-\frac{3}{9}$ nor $b=\frac{\left(\frac{a}{3}-\frac{5}{3}\right)}{3}$
(ii)	$1^{\text {st }}$ M1	First step towards solution - an equation with one side or other correct or one term dealt with correctly (see five* possible methods above)
	$\begin{gathered} \mathbf{1}^{\text {st }} \mathbf{A 1} \\ \text { dM1 } \end{gathered}$	Completely correct first step - giving a correct equation as shown above Correct complete method (all log work correct) and working to reach $x=$ in terms of logs reaching a correct expression or one where the only errors are slips solving linear equations
	$2^{\text {nd }} \mathbf{A 1}$ Special Case in (i)	Accept answers which round to -2.19 If a second answer is also given this becomes A0 Writes $\frac{\log _{3}(3 b+1)}{\log _{3}(a-2)}=-1$ and proceeds to $\frac{3 b+1}{a-2}=3^{-1}\left\{=\frac{1}{3}\right\}$ and to correct answer- Give M0M1A1 (special case)
	Common approach to part (ii)	Let $2^{x}=y$ Treat this as Way 1 They get $32 y^{2}-7 y=0$ for M1 and need to reach $y=\frac{7}{32}$ for A1 Then back to Way 1 as before. Any letter may be used for the new variable which I have called y. If they use x and obtain $x=\frac{7}{32}$, this may be awarded M1A0M0A0 Those who get $y^{2}-7 y+32=0$ or $y^{7}-7 y=0$ will be awarded M0,A0,M0,A0
	Common Presentation of Work in ii	Many begin with $\log \left(2^{2 x+5}\right)-\log \left(7\left(2^{x}\right)\right)=0$. It is possible to reach this in two stages correctly so do not penalise this and award the full marks if they continue correctly as in Way 2. If however the solution continues with $(2 x+5) \log 2-x \log 14=0$ or with $(2 x+5) \log 2-7 x \log 2=0$ (both incorrect) then they are awarded M1A0M0A0 just getting credit for the $(2 x+5) \log 2$ term.
	Note	N.B. The answer (+)2.19 results from "algebraic errors solving linear equations" leading to $2^{x}=\frac{32}{7}$ and gets M1A0M1A0

Question Number	Scheme ${ }^{\text {arks }}$
51. (i)	$\begin{aligned} & 8^{2 x+1}=24 \\ & (2 x+1) \log 8=\log 24 \text { or } \\ & (2 x+1)=\log _{8} 24 \\ & x=\frac{1}{2}\left(\frac{\log 24}{\log 8}-1\right) \text { or } x=\frac{1}{2}\left(\log _{8} 24-1\right) \\ & =0.264 \end{aligned}$ or $8^{2 x}=3$ and so $(2 x) \log 8=\log 3$ or $(2 x)=\log _{8} 3$
(ii)	$\begin{array}{l\|l} \log _{2}(11 y-3)-\log _{2} 3-2 \log _{2} y=1 \\ \log _{2}(11 y-3)-\log _{2} 3-\log _{2} y^{2}=1 \\ \log _{2} \frac{(11 y-3)}{3 y^{2}}=1 \quad \text { or } \quad \log _{2} \frac{(11 y-3)}{y^{2}}=1+\log _{2} 3=2.58496501 \\ \log _{2} \frac{(11 y-3)}{3 y^{2}}=\log _{2} 2 \text { or } \log _{2} \frac{(11 y-3)}{y^{2}}=\log _{2} 6 \text { (allow awrt } 6 \text { if replaced by } 6 \text { later) } \\ \text { Obtains } 6 y^{2}-11 y+3=0 \text { o.e. i.e. } 6 y^{2}=11 y-3 \text { for example } \\ \text { Solves quadratic to give } y= \\ y=\frac{1}{3} \text { and } \frac{3}{2} \text { (need both- one should not be rejected) } & \mathrm{B} 1 \\ & \mathrm{~A} 1 \\ \hline \end{array}$
Notes (i)	M1: Takes logs and uses law of powers correctly. (Any log base may be used) Allow lack of brackets. dM1: Make x subject of their formula correctly (may evaluate the log before subtracting 1 and calculate e.g. (1.528-1)/2) A1: Allow answers which round to 0.264 M1: Applies power law of logarithms replacing $2 \log _{2} y$ by $\log _{2} y^{2}$ dM1: Applies quotient or product law of logarithms correctly to the three log terms including term in y^{2}. (dependent on first M mark) or applies quotient rule to two terms and collects constants (allow "triple" fractions) $1+\log _{2} 3$ on RHS is not sufficient - need $\log _{2} 6$ or $2.58 \ldots$ $\text { e.g. } \log _{2}(11 y-3)=\log _{2} 3+\log _{2} y^{2}+\log _{2} 2 \text { becoming } \log _{2}(11 y-3)=\log _{2} 6 y^{2}$ B1: States or uses $\log _{2} 2=1$ or $2^{1}=2$ at any point in the answer so may be given for $\log _{2}(11 y-3)-\log _{2} 3-2 \log _{2} y=\log _{2} 2$ or for $\frac{(11 y-3)}{3 y^{2}}=2$, for example (Sometimes this mark will be awarded before the second M mark, and it is possible to score M1M0B1 in some cases) Or may be given for $\log _{2} 6=2.584962501$.. or $2^{2.584962501 . .}=6$ A1: This or equivalent quadratic equation (does not need to be in this form but should be equation) ddM1: (dependent on the two previous M marks) Solves their quadratic equation following reasonable log work using factorising, completion of square, formula or implied by both answers correct. A1: Any equivalent correct form - need both answers- allow awrt 0.333 for the answer $1 / 3$ *NB: If " $=0$ " is missing from the equation but candidate continues correctly and obtains correct answers then allow the penultimate A1 to be implied (Allow use of x or other varable instead of y throughout)

Question Number	Scheme		Marks
52. (i)	$5^{y}=8$		
	$y \log 5=\log 8$	$y \log 5=\log 8$ or $y=\log _{5} 8$	M1
	$\left\{y=\frac{\log 8}{\log 5}\right\}=1.2920 \ldots$	awrt 1.29	A1
	Allow correct answer only		
			[2]
	$\log _{2}(x+15)-4=\frac{1}{2} \log _{2} x$		
(ii)	$\log _{2}(x+15)-4=\log _{2} x^{\frac{1}{2}}$	Applies the power law of logarithms seen at any point in their working	M1
	$\log _{2}\left(\frac{x+15}{x^{\frac{1}{2}}}\right)=4$	Applies the subtraction or addition law of logarithms at any point in their working	M1
	$\left(\frac{x+15}{x^{\frac{1}{2}}}\right)=2^{4}$	Obtains a correct expression with logs removed and no errors	M1
	$x-16 x^{\frac{1}{2}}+15=0$ or e.g. $x^{2}+225=226 x$	Correct three term quadratic in any form	A1
	$(\sqrt{x}-1)(\sqrt{x}-15)=0 \Rightarrow \sqrt{x}=\ldots$	A valid attempt to factorise or solve their three term quadratic to obtain $\sqrt{x}=\ldots$ or $x=\ldots$ Dependent on all previous method marks.	dddM1
	$\{\sqrt{x}=1,15\}$		
	$x=1,225$	Both $x=1$ and $x=225$ (If both are seen, ignore any other values of $x \leq 0$ from an otherwise correct solution)	A1
			[6]
			Total 8
	Alternative:		
	$2 \log _{2}(x+15)-8=\log _{2} x$		
	$\log _{2}(x+15)^{2}-8=\log _{2} x$	Applies the power law of logarithms	M1
	$\log _{2}\left(\frac{(x+15)^{2}}{x}\right)=8$	Applies the subtraction law of logarithms	M1
	$\frac{(x+15)^{2}}{x}=2^{8}$	Obtains a correct expression with logs removed	M1
	$x^{2}+30 x+225=256 x$		
	$x^{2}-226 x+225=0$	Correct three term quadratic in any form	A1
	$(x-1)(x-225)=0 \Rightarrow x=\ldots$	A valid attempt to factorise or solve their 3TQ to obtain $x=\ldots$ Dependent on all previous method marks.	dddM1
	$x=1,225$	Both $x=1$ and $x=225$ (If both are seen, ignore any other values of $x \leq 0$ from an otherwise correct solution)	A1

Question Number	Scheme	Marks
$\begin{gathered} 53 \text { (i) } \\ \text { Method } 1 \end{gathered}$	$\begin{aligned} & \log _{2}\left(\frac{2 x}{5 x+4}\right)=-3 \text { or } \log _{2}\left(\frac{5 x+4}{2 x}\right)=3, \text { or } \log _{2}\left(\frac{5 x+4}{x}\right)=4 \text { (see special case 2) } \\ & \left(\frac{2 x}{5 x+4}\right)=2^{-3} \text { or }\left(\frac{5 x+4}{2 x}\right)=2^{3} \text { or }\left(\frac{5 x+4}{x}\right)=2^{4} \text { or }\left(\log _{2}\left(\frac{2 x}{5 x+4}\right)\right)=\log _{2}\left(\frac{1}{8}\right) \\ & 16 x=5 x+4 \Rightarrow x=\text { (depends on previous Ms and must be this equation or equivalent) } \\ & \quad x=\frac{4}{11} \text { or exact recurring decimal } 0.3 \dot{6} \text { after correct work } \end{aligned}$	M1 M1 dM1 A1 cso (4)
53(i)	$\log _{2}(2 x)+3=\log _{2}(5 x+4)$ So $\log _{2}(2 x)+\log _{2}(8)=\log _{2}(5 x+4) \quad\left(3\right.$ replaced by $\left.\log _{2} 8\right)$ Then $\log _{2}(16 x)=\log _{2}(5 x+4) \quad$ (addition law of logs) Then final M1 A1 as before	$\begin{aligned} & 2^{\text {nd }} \mathrm{M} 1 \\ & 1^{\text {st }} \mathrm{M} 1 \\ & \mathrm{dM} 1 \mathrm{~A} 1 \end{aligned}$
(ii)	$\begin{aligned} & \log _{a} y+\log _{a} 2^{3}=5 \\ & \log _{a} 8 y=5 \\ & y=\frac{1}{8} a^{5} \end{aligned}$ Applies product law of logarithms. $y=\frac{1}{8} a^{5}$	M1 dM1 A1cao (3) [7]
	Notes for Question 53	
(i) (ii)	$1^{\text {st }} \mathrm{M} 1$: Applying the subtraction or addition law of logarithms correctly to make two \log terms in x into one log term in x $2^{\text {nd }}$ M1: For RHS of either $2^{-3}, 2^{3}, 2^{4}$ or $\log _{2}\left(\frac{1}{8}\right), \log _{2} 8$ or $\log _{2} 16$ i.e. using connection between \log base 2 and 2 to a power. This may follow an earlier error. Use of 3^{2} is M0 $3^{\text {rd }} \mathrm{dM} 1$: Obtains correct linear equation in x. usually the one in the scheme and attempts $x=$ A1: cso Answer of $4 / 11$ with no suspect \log work preceding this. M1: Applies power law of $\operatorname{logarithms~to~replace~} 3 \log _{a} 2$ by $\log _{a} 2^{3}$ or $\log _{a} 8$ dM1: (should not be following M0) Uses addition law of ${\operatorname{logs~to~give~} \log _{a} 2^{3} y=5 \text { or } \log _{a} 8 y=5}$	
(i)	$\begin{aligned} & \text { Special case 1: } \log _{2}(2 x)=\log _{2}(5 x+4)-3 \Rightarrow \frac{\log _{2}(2 x)}{\log _{2}(5 x+4)}=-3 \Rightarrow \frac{2 x}{5 x+4}=2^{-3} \Rightarrow x=\frac{4}{11} \text { or } \\ & \log _{2}(2 x)=\log _{2}(5 x+4)-3 \Rightarrow \frac{\log _{2}(2 x)}{\log _{2}(5 x+4)}=-3 \Rightarrow \log _{2} \frac{2 x}{5 x+4}=-3 \Rightarrow \frac{2 x}{5 x+4}=2^{-3} \Rightarrow x=\frac{4}{11} \text { each } \end{aligned}$ attempt scores M0M1M1A0 - special case	
	Special case 2: $\log _{2}(2 x)=\log _{2}(5 x+4)-3 \Rightarrow \log _{2} 2+\log _{2} x=\log _{2}(5 x+4)-3$, is M0 until the two log terms are combined to give $\log _{2}\left(\frac{5 x+4}{x}\right)=3+\log _{2} 2$. This earns M1 Then $\left(\frac{5 x+4}{x}\right)=2^{4}$ or $\log _{2}\left(\frac{5 x+4}{x}\right)=\log _{2} 2^{4}$ gets second M1. Then scheme as before.	

Question number	Scheme Marks
56	$\begin{gathered} 2 \log x=\log x^{2} \\ \log _{3} x^{2}-\log _{3}(x-2)=\log _{3} \frac{x^{2}}{x-2} \\ \frac{x^{2}}{x-2}=9 \end{gathered}$ Solves $x^{2}-9 x+18=0 \quad$ to give $x=\ldots .$. $x=3, x=6$
	Total 5
Notes	B1 for this correct use of power rule (may be implied) M1: for correct use of subtraction rule (or addition rule) for logs N.B. $2 \log _{3} x-\log _{3}(x-2)=2 \log _{3} \frac{x}{x-2}$ is M0 A1. for correct equation without logs (Allow any correct equivalent including 3^{2} instead of 9.) M1 for attempting to solve $x^{2}-9 x+18=0$ to give $x=$ (see notes on marking quadratics) A1 for these two correct answers
Alternative Method	$\log _{3} x^{2}=2+\log _{3}(x-2) \quad$ is B1, so $\quad x^{2}=3^{2+\log _{3}(x-2)}$ needs to be followed by $\left(x^{2}\right)=9(x-2)$ for M1 A1 Here M1 is for complete method i.e.correct use of powers after logs are used correctly
Common Slips	$2 \log x-\log x+\log 2=2$ may obtain B1 if $\log x^{2}$ appears but the statement is M0 and so leads to no further marks $2 \log _{3} x-\log _{3}(x-2)=2$ so $\log _{3} x-\log _{3}(x-2)=1$ and $\log _{3} \frac{x}{x-2}=1$ can earn M1 for correct subtraction rule following error, but no other marks
Special Case	$\frac{\log x^{2}}{\log (x-2)}=2$ leading to $\frac{x^{2}}{x-2}=9$ and then to $x=3, x=6$, usually earns B1M0A0, but may then earn M1A1 (special case) so $3 / 5$ [This recovery after uncorrected error is very common] Trial and error, Use of a table or just stating answer with both $x=3$ and $x=6$ should be awarded B0M0A0 then final M1A1 i.e. $2 / 5$

Question number	Scheme ${ }^{\text {arks }}$
57. (a) (b)	$\log _{3} 3 x^{2}=\log _{3} 3+\log _{3} x^{2}$ or $\log y-\log x^{2}=\log 3$ or B1 $\log y-\log 3=\log x^{2}$ B1 $\log _{3} x^{2}=2 \log _{3} x$ B1 Using $\log _{3} 3=1$ (3) $3 x^{2}=28 x-9$ M1 Solves $3 x^{2}-28 x+9=0$ to give $x=\frac{1}{3}$ or $x=9$ M1 A1 (3)
Notes (a) (b)	B1 for correct use of addition rule (or correct use of subtraction rule) B1: replacing $\log x^{2}$ by $2 \log x \quad-$ not $\log 3 x^{2}$ by $2 \log 3 x$ this is $\mathbf{B 0}$ These first two B marks are often earned in the first line of working B1. for replacing $\log 3$ by 1 (or use of $3^{1}=3$) If candidate has been awarded 3 marks and their proof includes an error or omission of reference to $\log y$ withhold the last mark. So just B1 B1 B0 These marks must be awarded for work in part (a) only M1 for removing logs to get an equation in x-statement in scheme is sufficient. This needs to be accurate without any errors seen in part (b). M1 for attempting to solve three term quadratic to give $x=$ (see notes on marking quadratics) A1 for the two correct answers - this depends on second M mark only. Candidates often begin again in part (b) and do not use part (a). If such candidates make errors in log work in part (b) they score first M0. The second \mathbf{M} and the A are earned as before. It is possible to get M0M1A1 or M0M1A0.
Alternative to (b) using y	Eliminates x to give $3 y^{2}-730 y+243=0$ with no errors is M1 Solves quadratic to find y, then uses values to find x M1 A1 as before See extra sheet with examples illustrating the scheme.

Question Number	Scheme \quad Marks
58. (a)	$\begin{aligned} & \text { (a) } 5^{x}=10 \text { and (b) } \log _{3}(x-2)=-1 \\ & x=\frac{\log 10}{\log 5} \text { or } x=\log _{5} 10 \\ & x\{=1.430676558 \ldots\}=1.43(3 \mathrm{sf}) \end{aligned}$
(b)	$(x-2)=3^{-1}$ $(x-2)=3^{-1}$ or $\frac{1}{3}$ M1 oe $x\left\{=\frac{1}{3}+2\right\}=2 \frac{1}{3}$ $2 \frac{1}{3}$ or $\frac{7}{3}$ or $2 . \dot{3}$ or awrt 2.33 A1 [2]
(a) (b)	M1: for $x=\frac{\log 10}{\log 5}$ or $x=\log _{5} 10$. Also allow M1 for $x=\frac{1}{\log 5}$ 1.43 with no working (or any working) scores M1A1 (even if left as $5^{1.43}$). Other answers which round to 1.4 with no working score M1A0. Trial \& Improvement Method: M1: For a method of trial and improvement by trialing $\mathrm{f}($ value between 1.4 and 1.43) $=$ Value below 10 and $\mathrm{f}($ value between 1.431 and 1.5$)=$ Value over 10. A1 for 1.43 cao. Note: $x=\log _{10} 5$ by itself is M0; but $x=\log _{10} 5$ followed by $x=1.430676558 . .$. is M1. M1: Is for correctly eliminating log out of the equation. Eg 1: $\log _{3}(x-2)=\log _{3}\left(\frac{1}{3}\right) \Rightarrow x-2=\frac{1}{3}$ only gets M1 when the logs are correctly removed. Eg 2: $\log _{3}(x-2)=-\log _{3}(3) \Rightarrow \log _{3}(x-2)+\log _{3}(3)=0 \Rightarrow \log _{3}(3(x-2))=0$ $\Rightarrow 3(x-2)=3^{0}$ only gets M1 when the logs are correctly removed, but $3(x-2)=0$ would score M0. Note: $\log _{3}(x-2)=-1 \Rightarrow \log _{3}\left(\frac{x}{2}\right)=-1 \Rightarrow \frac{x}{2}=3^{-1}$ would score M0 for incorrect use of logs. Alternative: changing base $\frac{\log _{10}(x-2)}{\log _{10} 3}=-1 \Rightarrow \log _{10}(x-2)=-\log _{10} 3 \Rightarrow \log _{10}(x-2)+\log _{10} 3=0$ $\Rightarrow \log _{10} 3(x-2)=0 \Rightarrow 3(x-2)=10^{0}$. At this point M1 is scored. A correct answer in (b) without any working scores M1A1.

(a) Marks may be awarded if equivalent work is seen in part (b).

1st M: $\log _{3}(x-5)^{2}-\log _{3}(2 x-13)=\frac{\log _{3}(x-5)^{2}}{\log _{3}(2 x-13)}$ is M0

$$
2 \log _{3}(x-5)-\log _{3}(2 x-13)=2 \log \frac{x-5}{2 x-13} \text { is } \mathrm{M} 0
$$

$2^{\text {nd }} \mathrm{M}:$ After the first mistake above, this mark is available only if there is 'recovery' to the required $\log _{3}\left(\frac{P}{Q}\right)=1 \Rightarrow P=3 Q$. Even then the final mark (cso) is lost.
'Cancelling logs', e.g. $\frac{\log _{3}(x-5)^{2}}{\log _{3}(2 x-13)}=\frac{(x-5)^{2}}{2 x-13}$ will also lose the $2^{\text {nd }} M$.
A typical wrong solution:
$\log _{3} \frac{(x-5)^{2}}{2 x-13}=1 \quad \Rightarrow \quad \log _{3} \frac{(x-5)^{2}}{2 x-13}=3 \quad \Rightarrow \frac{(x-5)^{2}}{2 x-13}=3 \quad \Rightarrow \quad(x-5)^{2}=3(2 x-13)$
(Wrong step here)
This, with no evidence elsewhere of $\log _{3} 3=1$, scores B1 M1 B0 M0 A0
However, $\log _{3} \frac{(x-5)^{2}}{2 x-13}=1 \Rightarrow \frac{(x-5)^{2}}{2 x-13}=3$ is correct and could lead to full marks.
(Here $\log _{3} 3=1$ is implied).

No log methods shown:

It is $\underline{\text { not }}$ acceptable to jump immediately to $\frac{(x-5)^{2}}{2 x-13}=3$. The only mark this scores is the $1^{\text {st }} \mathrm{B} 1$ (by generous implication).
(b) M1: Attempt to solve the given quadratic equation (usual rules), so the factors $(x-8)(x-8)$ with no solution is M0.

Question Number	Scheme	Marks
61 (a) (b)	$\begin{aligned} & \log _{x} 64=2 \Rightarrow 64=x^{2} \\ & \log _{2}(11-6 x)=\log _{2}(x-1)^{2}+3 \\ & \log _{2}\left[\frac{11-6 x}{(x-1)^{2}}\right]=3 \\ & \frac{11-6 x}{(x-1)^{2}}=2^{3} \\ &\{11-6 x\left.=8\left(x^{2}-2 x+1\right)\right\} \text { and so } 0=8 x^{2}-10 x-3 \\ & 0=(4 x+1)(2 x-3) \Rightarrow x=\ldots \\ & x=\frac{3}{2},\left[-\frac{1}{4}\right] \end{aligned}$	M1 A1 (2) M1 M1 M1 A1 dM1 A1 (6) [8]
(a) (b)	M1 for getting out of logs A1 Do not need to see $x=-8$ appear and get rejected. Ignore $x=-8$ as extra solution. $x=8$ with no working is M1 A1 $1^{\text {st }}$ M1 for using the $n \log x$ rule $2^{\text {nd }}$ M1 for using the $\log x-\log y$ rule or the $\log x+\log y$ rule as appropriate $3^{\text {rd }}$ M1 for using 2 to the power- need to see 2^{3} or 8 (May see $3=\log _{2} 8$ used) If all three M marks have been earned and logs are still present in equation do not give final M1. So solution stopping at $\log _{2}\left[\frac{11-6 x}{(x-1)^{2}}\right]=\log _{2} 8$ would earn M1M1M0 $1^{\text {st }} \mathrm{A} 1$ for a correct 3 TQ $4^{\text {th }}$ dependent M1 for attempt to solve or factorize their 3TQ to obtain $x=\ldots$ (mark depends on three previous M marks) $2^{\text {nd }} \mathrm{A} 1$ for 1.5 (ignore -0.25) s.c 1.5 only - no working - is 0 marks	
(a)	Alternatives Change base : (i) $\frac{\log _{2} 64}{\log _{2} x}=2$, so $\log _{2} x=3$ and $x=2^{3}$, is M1 or (ii) $\frac{\log _{10} 64}{\log _{10} x}=2, \log x=\frac{1}{2} \log 64$ so $x=64^{\frac{1}{2}}$ is M1 then $x=8$ is A1 BUT $\log x=0.903$ so $x=8$ is M1A0 (loses accuracy mark) (iii) $\log _{64} x=\frac{1}{2}$ so $x=64^{\frac{1}{2}}$ is M1 then $x=8$ is A1	

Question Number	Scheme Marks
62 (a) (b)	
(a)	M1 for getting out of logs correctly. If done by change of base, $\log _{10} y=-0.903 \ldots$ is insufficient for the M1, but $y=10^{-0.003}$ scores M1. A1 for the exact answer, e.g. $\log _{10} y=-0.903 \Rightarrow y=0.12502$.. scores M1 (implied) A0. Correct answer with no working scores both marks. Allow both marks for implicit statements such as $\log _{2} 0.125=-3$. $1^{\text {st }}$ M1 for expressing 32 or 16 or 512 as a power of 2 , or for a change of base enabling evaluation of $\log _{2} 32, \log _{2} 16$ or $\log _{2} 512$ by calculator. (Can be implied by 5, 4 or 9 respectively). $1^{\text {st }} \mathrm{A} 1$ for 9 (exact). $2^{\text {nd }}$ M1 for getting $\left(\log _{2} x\right)^{2}=$ constant. The constant can be a log or a sum of logs. If written as $\log _{2} x^{2}$ instead of $\left(\log _{2} x\right)^{2}$, allow the M mark only if subsequent work implies correct interpretation. $2^{\text {nd }} \mathrm{A} 1$ for 8 (exact). Change of base methods leading to a non-exact answer score A0. $3^{\text {rd }}$ A1ft for an answer of $\frac{1}{\text { their } 8}$. An ft answer may be non-exact. Possible mistakes: $\log _{2}\left(2^{9}\right)=\log _{2}\left(x^{2}\right) \Rightarrow x^{2}=2^{9} \Rightarrow x=\ldots$ scores M1A1(implied by 9)M0A0A0 $\log _{2} 512=\log _{2} x \times \log _{2} x \Rightarrow x^{2}=512 \Rightarrow x=\ldots$ scores M0A0(9 never seen)M1A0A0 $\log _{2} 48=\left(\log _{2} x\right)^{2} \Rightarrow\left(\log _{2} x\right)^{2}=5.585 \Rightarrow x=5.145, x=0.194$ scores M0A0M1A0A1ft No working (or 'trial and improvement'): $x=8$ scores M0 A0 M1 A1 A0

Question Number	Scheme	Marks
63	$\begin{array}{lc} 2 \log _{5} x=\log _{5}\left(x^{2}\right), & \log _{5}(4-x)-\log _{5}\left(x^{2}\right)=\log _{5} \frac{4-x}{x^{2}} \\ \log \left(\frac{4-x}{x^{2}}\right)=\log 5 & 5 x^{2}+x-4=0 \text { or } 5 x^{2}+x=4 \text { o.e. } \\ (5 x-4)(x+1)=0 & x=\frac{4}{5} \end{array} \quad(x=-1) \quad .$	B1, M1 M1 A1 dM1 A1 (6) [6]
Notes	$\mathbf{B} 1$ is awarded for $2 \log x=\log x^{2}$ anywhere. M1 for correct use of $\log A-\log B=\log \frac{A}{B}$ M1 for replacing 1 by $\log _{k} k$. A1 for correct quadratic $\left(\log (4-x)-\log x^{2}=\log 5 \Rightarrow 4-x-x^{2}=5\right.$ is B1M0M1A0 M0A0) dM1 for attempt to solve quadratic with usual conventions. (Only award if previous two M marks have been awarded) A1 for $4 / 5$ or 0.8 or equivalent (Ignore extra answer).	
Alternative 1	$\begin{aligned} & \log _{5}(4-x)-1=2 \log _{5} x \text { so } \log _{5}(4-x)-\log _{5} 5=2 \log _{5} x \\ & \log _{5} \frac{4-x}{5}=2 \log _{5} x \end{aligned}$ then could complete solution with $2 \log _{5} x=\log _{5}\left(x^{2}\right)$ $\left(\frac{4-x}{5}\right)=x^{2} \quad 5 x^{2}+x-4=0$ Then as in first method $(5 x-4)(x+1)=0 \quad x=\frac{4}{5} \quad(x=-1)$	M1 M1 B1 A1 dM1 A1 (6) [6]
Special cases	Complete trial and error yielding 0.8 is M3 and $\mathbf{B 1}$ for 0.8 A1, A1 awarded for each of two tries evaluated. i.e. 6/6 Incomplete trial and error with wrong or no solution is $0 / 6$ Just answer 0.8 with no working is B1	

Question number	Scheme	Marks
64.	(a) $x=\frac{\log 7}{\log 5}$ or $x=\log _{5} 7 \quad$ (i.e. correct method up to $x=\ldots$) $1.21 \quad$ Must be this answer (3 s.f.) (b) $\left(5^{x}-7\right)\left(5^{x}-5\right) \quad$ Or another variable, e.g. $(y-7)(y-5)$, even $(x-7)(x-5)$ $\left(5^{x}=7\right.$ or $\left.5^{x}=5\right) \quad x=1.2$ (awrt) ft from the answer to (a), if used $x=1 \quad$ (allow 1.0 or 1.00 or 1.000)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 A1 } \\ & \text { A1ft } \\ & \text { B1 } \end{aligned}$
	(a) 1.21 with no working: M1 A1 (even if it left as $5^{1.21}$). Other answers which round to 1.2 with no working: M1 A0. (b) M: Using the correct quadratic equation, attempt to factorise $\left(5^{x} \pm 7\right)\left(5^{x} \pm 5\right)$, or attempt quadratic formula. Allow $\log _{5} 7$ or $\frac{\log 7}{\log 5}$ instead of 1.2 for A1ft. No marks for simply substituting a decimal answer from (a) into the given equation (perhaps showing that it gives approximately zero). However, note the following special case: Showing that $5^{x}=7$ satisfies the given equation, therefore 1.21 is a solution scores $0,0,1,0$ (and could score full marks if the $x=1$ were also found). e.g. If $5^{x}=7$, then $5^{2 x}=49$, and $5^{2 x}-12\left(5^{x}\right)+35=49-84+35=0$, so one solution is $x=1.21$ ('conclusion' must be seen). To score this special case mark, values substituted into the equation must be exact. Also, the mark would not be scored in the following case: e.g. If $5^{x}=7,5^{2 x}-84+35=0 \Rightarrow 5^{2 x}=49 \Rightarrow x=1.21$ (Showing no appreciation that $5^{2 x}=\left(5^{x}\right)^{2}$) B1: Do not award this mark if $x=1$ clearly follows from wrong working.	

65.	Method 1 (Substituting $\mathrm{a}=3 \mathrm{~b}$ into second equation at some stage) Using a law of logs correctly (anywhere) Substitution of $3 b$ for a (or $a / 3$ for b) $\begin{aligned} & \text { e.g. } \log _{3} a b=2 \\ & \text { e.g. } \quad \log _{3} 3 b^{2}=2 \end{aligned}$ Using base correctly on correctly derived $\log _{3} p=q \quad$ e.g. $3 b^{2}=3^{2}$ First correct value $b=\sqrt{ } 3\left(\text { allow } 3^{1 / 2}\right)$ Correct method to find other value (dep. on at least first M mark) Second answer $a=3 b=3 \sqrt{ } 3 \text { or } \sqrt{ } 27$ Method 2 (Working with two equations in $\log _{3} a$ and $\log _{3} b$) " Taking logs" of first equation and " separating" $\begin{aligned} & \log _{3} a=\log _{3} 3+\log _{3} b \\ & \left(=1+\log _{3} b\right) \end{aligned}$ Solving simultaneous equations to find $\log _{3} a$ or $\log _{3} b$ $\left[\log _{3} a=11 / 2, \quad \log _{3} b=1 / 2\right]$ Using base correctly to find a or b Correct value for a or b $a=3 \sqrt{ } 3 \text { or } b=\sqrt{ } 3$ Correct method for second answer, dep. on first M; correct second answer [Ignore negative values]	M1 M1 A1 M1 A1 M1 M1 M1 A1 $M 1 ; A 1[6] ~$
Notes:	Answers must be exact; decimal answers lose both A marks There are several variations on Method 1, depending on the stage at which $a=3 b$ is used, but they should all mark as in scheme. In this method, the first three method marks on Epen are for (i) First M1: correct use of log law, (ii) Second M1: substitution of $a=3 b$, (iii) Third M1: requires using base correctly on correctly derived $\log _{3} \mathrm{p}=\mathrm{q}$	

Question Number	Scheme	Marks
66(a)	$A=1500$	B1 (1)
(b)	Sub $t=2, V=13500 \Rightarrow 16000 \mathrm{e}^{-2 k}=12000$	M1
	$\Rightarrow e^{-2 k}=\frac{3}{4} \quad 0.75 \mathrm{oe}$	A1
	$\Rightarrow k=-\frac{1}{2} \ln \frac{3}{4},=\ln \sqrt{\frac{4}{3}}=\ln \left(\frac{2}{\sqrt{3}}\right)$	dM1, A1*
		(4)
(c)	Sub $6000=16000 \mathrm{e}^{-\ln \left(\frac{2}{\sqrt{3}}\right) T}+{ }^{\prime} 15000^{\prime} \Rightarrow \mathrm{e}^{-\ln \left(\frac{2}{\sqrt{3}}\right) T}=C$	M1
	$\Rightarrow \mathrm{e}^{-\ln \left(\frac{2}{\sqrt{3}}\right)^{T}}=\frac{45}{160}=0.28125$	A1
	$\Rightarrow T=-\frac{\ln \left(\frac{45}{160}\right)}{\ln \left(\frac{2}{\sqrt{3}}\right)}=8.82$	M1 A1
		(4)
		(9 marks)
Alt (b)	Sub $t=2, V=13500 \Rightarrow 13500=16000 \mathrm{e}^{-2 k}+' 1500 ' \Rightarrow 1600 e^{-2 k}=1200$$\begin{aligned} & \Rightarrow \ln 1600-2 k=\ln 1200 \\ & \Rightarrow k=-\frac{1}{2} \ln \frac{1200}{1600},=\ln \sqrt{\frac{4}{3}}=\ln \left(\frac{2}{\sqrt{3}}\right) \end{aligned}$	M1
		A1
		dM A1*
		(4)

You may mark parts (a) and (b) together
(a)

B1: Sight of $A=1500$
(b)

M1: Substitutes $t=2, V=13500 \Rightarrow 13500=16000 \mathrm{e}^{-2 k}+$ 'their 1500 ' and proceeds to $P \mathrm{e}^{-2 k}=\ldots$ or $Q \mathrm{e}^{2 k}=\ldots$ Condone slips, for example, V may be 1350 . It is for an attempt to make $\mathrm{e}^{ \pm 2 k}$ the subject.
A1: $e^{-2 k}=\frac{3}{4} \quad 0.75 \quad$ or $e^{2 k}=\frac{4}{3} \quad(1 . \dot{3})$ oe
dM1: For taking ln's and proceeding to $k=\ldots \quad$ For example $k=-\frac{1}{2} \ln \frac{3}{4}$ oe
May be implied by the correct decimal answer awrt 0.144 . This mark cannot be awarded from impossible to solve equations, that is ones of the type $\Rightarrow e^{ \pm 2 k}=c, \quad c \leqslant 0$

A1*: cso $k=\ln \left(\frac{2}{\sqrt{3}}\right)$ (brackets not required) with a correct intermediate line of either

$$
\frac{1}{2} \ln \frac{4}{3}, \frac{1}{2} \ln 4-\frac{1}{2} \ln 3, \ln \sqrt{\frac{4}{3}} \text { or } \ln \left(\frac{3}{4}\right)^{-\frac{1}{2}}
$$

Note: $\mathrm{e}^{-2 k}=\frac{3}{4} \Rightarrow \mathrm{e}^{2 k}=\frac{4}{3} \Rightarrow \mathrm{e}^{k}=\frac{2}{\sqrt{3}}$ are perfectly acceptable steps
See scheme for alternative method when \ln 's are taken before $e^{-2 k}$ is made the subject.
It is also possible to substitute $k=\ln \left(\frac{2}{\sqrt{3}}\right)$ into $13500=16000 \mathrm{e}^{-k \times 2}+1500$ and show that $12000=12000$ or similar. This is fine as long as a minimal conclusion (eg \checkmark)is given for the A1*.
(c)

M1: Sub $V=6000 \Rightarrow 6000=16000 \mathrm{e}^{ \pm k T}+$ 'their 1500 ' and proceeds to $\mathrm{e}^{ \pm k T}=c, \quad c>0$
Allow candidates to write $k=$ awrt 0.144 or leave as ' k '. Condone slips on k. Eg $k=2 \ln \left(\frac{2}{\sqrt{3}}\right)$
Allow this when the $=$ sign is replaced by any inequality.
If the candidate attempts to simplify the exponential function score for $\left(\frac{2}{\sqrt{3}}\right)^{ \pm T}=c, \quad c>0$
A1: $\quad \mathrm{e}^{-\ln \left(\frac{2}{\sqrt{3}}\right)^{T}}=\frac{45}{160}=0.28125, \mathrm{e}^{-k T}=\frac{45}{160}$ or $\left(\frac{2}{\sqrt{3}}\right)^{-T}=\frac{45}{160} \quad$ Condone inequalities for $=$

$$
\text { Allow solutions from rounded values (3sf). } \quad \text { Eg. } \mathrm{e}^{-0.144 T}=0.281
$$

M1: Correct order of operations using ln's and division leading to a value of T. It is implied by awrt 8.8

$$
\left(\frac{2}{\sqrt{3}}\right)^{-T}=\frac{45}{160} \Rightarrow-T=\log _{\frac{2}{\sqrt{3}}} \frac{45}{160} \text { is equivalent work for this } \mathrm{M} \text { mark. }
$$

A1: cso 8.82 only following correct work. Note that this is not awrt
Allow a solution using an inequality as long as it arrives at the solution 8.82 .

There may be solutions using trial and improvement. Score (in this order) as follows
M1: Trial at value of $V=16000 \mathrm{e}^{-0.144 t}+1500$ (oe) at either $t=8$ or $t=9$ and shows evidence $V_{t=8}=a w r t 6500 V_{t=9}=a w r t 5900$ This may be implied by the subsequent M1
M1: Trial at value of $V=16000 \mathrm{e}^{-0.144 t}+1500$ (oe) at either $t=8.81$ or $t=8.82$ and shows evidence.
(See below for answers. Allow to 2sf)
A1: Correct answers for V at both $t=8.81$ and $t=8.82 V_{t=8.81}=a w r t 6006 V_{t=8.82}=a w r t 5999$
A1: Correctly deduces 8.82 with all evidence.
Hence candidates who just write down 8.82 will score 1, 1, 0,0

Question Number	Scheme	Marks
67(a)	$\begin{aligned} \mathrm{e}^{3 x-9}=8 & \Rightarrow 3 x-9=\ln 8 \\ & \Rightarrow x=\frac{\ln 8+9}{3},=\ln 2+3 \end{aligned}$	M1 $\mathrm{A} 1, \mathrm{~A} 1$
(b)	$\begin{aligned} & \ln (2 y+5)=2+\ln (4-y) \\ & \ln \left(\frac{2 y+5}{4-y}\right)=2 \end{aligned}$	M1
	$\begin{align*} & \left(\frac{2 y+5}{4-y}\right)=\mathrm{e}^{2} \\ & 2 y+5=\mathrm{e}^{2}(4-y) \Rightarrow 2 y+\mathrm{e}^{2} y=4 \mathrm{e}^{2}-5 \Rightarrow y=\frac{4 \mathrm{e}^{2}-5}{2+\mathrm{e}^{2}} \tag{4} \end{align*}$	M1 $\mathrm{dM} 1, \mathrm{~A} 1$
		7 marks

(a)

M1 Takes In's of both sides and uses the power law. You may even accept candidates taking logs of both sides
A1 A correct unsimplified answer $\frac{\ln 8+9}{3}$ or equivalent such as $\frac{\ln 8 \mathrm{e}^{9}}{3}, 3+\ln (\sqrt[3]{8}), \frac{\log 8}{3 \log \mathrm{e}}+3$ or even 3.69
A1 cso $\ln 2+3$. Accept $\ln 2 \mathrm{e}^{3}$
Alt I (a)
$\mathrm{e}^{3 x-9}=8 \Rightarrow \frac{\mathrm{e}^{3 x}}{\mathrm{e}^{9}}=8 \Rightarrow \mathrm{e}^{3 x}=8 \mathrm{e}^{9} \Rightarrow 3 x=\ln \left(8 \mathrm{e}^{9}\right)$ for M1 (Condone slips on index work and lack of bracket)
Alt II (a)
$\mathrm{e}^{x-3}=\sqrt[3]{8} \Rightarrow x-3=\ln (\sqrt[3]{8})$ for M1 (Condone slips on the 9. Eg $^{x-9}=2 \Rightarrow x-9=\ln 2$)
(b)

M1 Uses a correct method to combine two terms to create a single \ln term.
Eg. Score for $2+\ln (4-y)=\ln \left(\mathrm{e}^{2}(4-y)\right)$ or $\ln (2 y+5)-\ln (4-y)=\ln \left(\frac{2 y+5}{4-y}\right)$
Condone slips on the signs and coefficients of the terms, but not on the e^{2}
M1 Scored for an attempt to undo the ln's to get an equation in y This must be awarded after an attempt to combine the \ln terms. Award for $\ln (\mathrm{g}(y))=2 \Rightarrow \mathrm{~g}(y)=\mathrm{e}^{2}$ and can be scored eg where $\mathrm{g}(y)=2 y+5-(4-y)$
It cannot be awarded for just $2 y+5=\mathrm{e}^{2}+4-y$ where the candidate attempts to undo term by term
dM1 Dependent upon both previous M's. It is for making y the subject. Expect to see both terms in y collected and factorised (may be implied) before reaching $y=$. Condone slips, for eg, on signs. $y=2.615$ scores this.
A1 $y=\frac{4 \mathrm{e}^{2}-5}{2+\mathrm{e}^{2}}$ or equivalent such as $y=4-\frac{13}{2+\mathrm{e}^{2}} \quad$ ISW after you see the correct answer.

Special Case: $\ln (2 y+5)-\ln (4-y)=2 \Rightarrow \frac{\ln (2 y+5)}{\ln (4-y)}=2 \Rightarrow \frac{2 y+5}{4-y}=\mathrm{e}^{2} \Rightarrow$ Correct answer score M0 M1 M1 A0

Question	Scheme	Marks
68(a)	Subs $D=15$ and $t=4 \quad x=15 \mathrm{e}^{-0.2 \times 4}=6.740(\mathrm{mg})$	M1A1
(b)	$15 \mathrm{e}^{-0.2 \times 7}+15 \mathrm{e}^{-0.2 \times 2}=13.754(\mathrm{mg})$	(2) M1A1*
		(2)
(c)	$\begin{aligned} & 15 \mathrm{e}^{-0.2 \times T}+15 \mathrm{e}^{-0.2 \times(T+5)}=7.5 \\ & 15 \mathrm{e}^{-0.2 \times T}+15 \mathrm{e}^{-0.2 \times T} \mathrm{e}^{-1}=7.5 \end{aligned}$	M1
	$15 \mathrm{e}^{-0.2 \times T}\left(1+\mathrm{e}^{-1}\right)=7.5 \Rightarrow \mathrm{e}^{-0.2 \times T}=\frac{7.5}{15\left(1+\mathrm{e}^{-1}\right)}$	dM1
	$\mathrm{T}=-5 \ln \left(\frac{7.5}{15\left(1+\mathrm{e}^{-1}\right)}\right)=5 \ln \left(2+\frac{2}{\mathrm{e}}\right)$	$\mathrm{A} 1, \mathrm{~A} 1$
		$\begin{array}{r} (4) \\ (8 \mathrm{marks}) \\ \hline \end{array}$

(a)

M1 Attempts to substitute both $D=15$ and $t=4$ in $x=D \mathrm{e}^{-0.2 t}$
It can be implied by sight of $15 \mathrm{e}^{-0.8}, 15 \mathrm{e}^{-0.2 \times 4}$ or awrt 6.7
Condone slips on the power. Eg you may see -0.02
A1 CAO $6.740(\mathrm{mg})$ Note that $6.74(\mathrm{mg})$ is A0
(b)

M1 \quad Attempt to find the sum of two expressions with $D=15$ in both terms with t values of 2 and 7 Evidence would be $15 \mathrm{e}^{-0.2 \times 7}+15 \mathrm{e}^{-0.2 \times 2}$ or similar expressions such as $\left(15 \mathrm{e}^{-1}+15\right) \mathrm{e}^{-0.2 \times 2}$
Award for the sight of the two numbers awrt $\mathbf{3 . 7 0}$ and awrt 10.05, followed by their total awrt 13.75 Alternatively finds the amount after 5 hours, $15 \mathrm{e}^{-1}=$ awrt 5.52 adds the second dose $=\mathbf{1 5}$ to get a total of awrt $\mathbf{2 0 . 5 2}$ then multiplies this by $\mathrm{e}^{-0.4}$ to get awrt $\mathbf{1 3 . 7 5}$.
Sight of $5.52+15=20.52 \rightarrow 13.75$ is fine.
A1* cso so both the expression $15 \mathrm{e}^{-0.2 \times 7}+15 \mathrm{e}^{-0.2 \times 2}$ and $13.754(\mathrm{mg})$ are required Alternatively both the expression $\left(15 \mathrm{e}^{-0.2 \times 5}+15\right) \times \mathrm{e}^{-0.2 \times 2}$ and $13.754(\mathrm{mg})$ are required. Sight of just the numbers is not enough for the A1*

M1 Attempts to write down a correct equation involving T or t. Accept with or without correct bracketing Eg. accept $15 \mathrm{e}^{-0.2 \times T}+15 \mathrm{e}^{-0.2 \times(T \pm 5)}=7.5$ or similar equations $\left(15 \mathrm{e}^{-1}+15\right) \mathrm{e}^{-0.2 \times T}=7.5$
dM1 Attempts to solve their equation, dependent upon the previous mark, by proceeding to $\mathrm{e}^{-0.2 \times T}=\ldots$. An attempt should involve an attempt at the index law $x^{m+n}=x^{m} \times x^{n}$ and taking out a factor of $\mathrm{e}^{-0.2 \times T}$ Also score for candidates who make $\mathrm{e}^{+0.2 \times T}$ the subject using the same criteria
A1 Any correct form of the answer, for example, $-5 \ln \left(\frac{7.5}{15\left(1+\mathrm{e}^{-1}\right)}\right)$
A1 CSO $\mathrm{T}=5 \ln \left(2+\frac{2}{\mathrm{e}}\right)$ Condone t appearing for T throughout this question.

Alt (c) using lns

You may see numerical attempts at part (c).
Such an attempt can score a maximum of two marks.
This can be achieved either by
Method One

1st Mark (Method): $\quad 15 \mathrm{e}^{-0.2 \times T}+$ awrt $5.52 \mathrm{e}^{-0.2 \times T}=7.5 \Rightarrow \mathrm{e}^{-0.2 \times T}=$ awrt 0.37
2nd Mark (Accuracy): $\quad \mathrm{T}=-5 \ln$ (awrt 0.37) or awrt 5.03 or $\mathrm{T}=-5 \ln \left(\frac{7.5}{\text { awrt } 20.52}\right)$

Method Two
1st Mark (Method): $\quad 13.754 \mathrm{e}^{-0.2 \times T}=7.5 \Rightarrow T=-5 \ln \left(\frac{7.5}{13.754}\right)$ or equivalent such as 3.03
2nd Mark (Accuracy): $\quad 3.03+2=5.03$ Allow $-5 \ln \left(\frac{7.5}{13.754}\right)+2$

Method Three (by trial and improvement)
1st Mark (Method): $\quad 15 \mathrm{e}^{-0.2 \times 5}+15 \mathrm{e}^{-0.2 \times 10}=7.55$ or $15 \mathrm{e}^{-0.2 \times 5.1}+15 \mathrm{e}^{-0.2 \times 10.1}=7.40$ or any value between 2nd Mark (Accuracy): \quad Answer $T=5.03$.

(a)

B1 Sight of $(\theta=) 20$
(b)

M1 Sub $t=40, \theta=70 \mathrm{P} \quad 70=120-100 e^{-40 \lambda}$ and proceed to $e^{ \pm 40 \lambda}=A$ where A is a constant. Allow sign slips and copying errors.
A1 $e^{-40)}=0.5$, or $\mathrm{e}^{40 \lambda}=2$ or exact equivalent
M1 For undoing the e's by taking \ln 's and proceeding to $\lambda=$..
May be implied by the correct decimal answer awrt 0.017 or $\lambda=\frac{\ln 0.5}{-40}$
A1 \quad cso $\quad \lambda=\frac{\ln 2}{40}$
Accept equivalents in the form $\frac{\ln a}{b}, a, b \hat{\mathrm{I}} \mathrm{Z}$ such as $\lambda=\frac{\ln 4}{80}$
(c)

M1 Substitutes $\theta=100$ and their numerical value of λ into $\theta=120-100 e^{-\lambda t}$ and proceed to $T= \pm \frac{\ln 0.2}{\text { their' } \lambda^{\prime}}$ or $T= \pm \frac{\ln 5}{\text { their }^{\prime} \lambda^{\prime}}$ Allow inequalities here.

A1 awrt $T=93$
Watch for candidates who lose the minus sign in (b) and use $\lambda=\frac{\ln 1 / 2}{40}$ in (c). Many then reach $T=-93$ and ignore the minus. This is M1 A0

Question Number	Scheme	Marks
70(a)	$\begin{aligned} & 2^{x+1}-3=17-x \text { P } 2^{x+1}=20-x \\ & \qquad \begin{array}{rl} (x+1) \ln 2=\ln (20-x) \mathrm{P} & x=\ldots \\ x & =\frac{\ln (20-x)}{\ln 2}-1 \end{array} \end{aligned}$	M1 dM1 A1* (3)
70(a)Alt	$\begin{aligned} & 2^{x+1}-3=17-x \mathrm{P} \quad 2^{x}=\frac{20-x}{2} \\ & x \ln 2=\ln \frac{20-x}{2} \mathrm{P} \quad x=\ldots \\ & x=\frac{\ln (20-x)}{\ln 2}-1 \end{aligned}$	M1 dM1 $\mathrm{A} 1^{*}$
$\begin{gathered} \mathbf{7 0 (a)} \\ \text { backwards } \end{gathered}$	$\begin{gather*} x=\frac{\ln (20-x)}{\ln 2}-1 \Rightarrow(x+1) \ln 2=\ln (20-x) \tag{3}\\ \text { P } 2^{x+1}=20-x \end{gather*}$ Hence $\quad y=2^{x+1}-3$ meets $y=17-x$	M1 dM1 A1* (3)

M1 Setting equations in x equal to each other and proceeding to make 2^{x+1} the subject
dM1 Take \ln 's or logs of both sides, use the power law and proceed to $x=$..
A1* This is a given answer and all aspects must be correct including \ln or $\log _{\mathrm{e}}$ rather than $\log _{10}$ Bracketing on both $(x+1)$ and $\ln (20-x)$ must be correct.

$$
\mathrm{Eg} x+1 \ln 2=\ln (20-x) \mathrm{P} \quad x=\frac{\ln (20-x)}{\ln 2}-1 \text { is } \mathrm{A} 0^{*}
$$

Special case: Students who start from the point $2^{x+1}=20-x$ can score M1 dM1A0*

Question Number	Scheme	Marks
71(a) (b)	$\begin{gathered} 2 \ln (2 x+1)-10=0 \Rightarrow \ln (2 x+1)=5 \Rightarrow 2 x+1=e^{5} \Rightarrow x=. . \\ \Rightarrow x=\frac{\mathrm{e}^{5}-1}{2} \\ 3^{x} \mathrm{e}^{4 x}=\mathrm{e}^{7} \Rightarrow \ln \left(3^{x} \mathrm{e}^{4 x}\right)=\ln \mathrm{e}^{7} \\ \ln 3^{x}+\ln \mathrm{e}^{4 x}=\ln \mathrm{e}^{7} \Rightarrow x \ln 3+4 x \ln \mathrm{e}=7 \ln \mathrm{e} \\ x(\ln 3+4)=7 \Rightarrow x=\ldots \\ x=\frac{7}{(\ln 3+4)} \end{gathered}$	M1 A1 (2) M1,M1 dM1 A1 (4) 6 marks
$\begin{gathered} \hline \text { Alt } 1 \\ 71(b) \end{gathered}$	$\begin{gathered} 3^{x} \mathrm{e}^{4 x}=\mathrm{e}^{7} \Rightarrow 3^{x}=\frac{\mathrm{e}^{7}}{\mathrm{e}^{4 x}} \\ 3^{x}=\mathrm{e}^{7-4 x} \Rightarrow x \ln 3=(7-4 x) \ln \mathrm{e} \\ x(\ln 3+4)=7 \Rightarrow x=\ldots \\ x=\frac{7}{(\ln 3+4)} \end{gathered}$	M1,M1 dM1 A1 (4)
Alt 2 71(b) Using logs	$\begin{aligned} 3^{x} \mathrm{e}^{4 x}=\mathrm{e}^{7} \Rightarrow & \log \left(3^{x} \mathrm{e}^{4 x}\right)=\log \mathrm{e}^{7} \\ & \log 3^{x}+\log \mathrm{e}^{4 x}=\log \mathrm{e}^{7} \Rightarrow x \log 3+4 x \log \mathrm{e}=7 \log \mathrm{e} \\ & x(\log 3+4 \log \mathrm{e})=7 \log \mathrm{e} \Rightarrow x=\ldots \\ & x=\frac{7 \log \mathrm{e}}{(\log 3+4 \log \mathrm{e})} \end{aligned}$	$\begin{aligned} & \text { M1, M1 } \\ & \text { dM1 } \\ & \text { A1 } \end{aligned}$
Alt 3 71(b) Using $\log _{3}$	$\begin{gathered} 3^{x} \mathrm{e}^{4 x}=\mathrm{e}^{7} \Rightarrow 3^{x}=\frac{\mathrm{e}^{7}}{\mathrm{e}^{4 x}} \\ 3^{x}=\mathrm{e}^{7-4 x} \Rightarrow x=(7-4 x) \log _{3} \mathrm{e} \\ x\left(1+4 \log _{3} \mathrm{e}\right)=7 \log _{3} \mathrm{e} \Rightarrow x=\ldots \\ x=\frac{7 \log _{3} \mathrm{e}}{\left(1+4 \log _{3} \mathrm{e}\right)} \end{gathered}$	M1,M1 dM1 A1
Alt 4 71(b) Using $3^{x}=\mathrm{e}^{x \ln 3}$	$\begin{aligned} & 3^{x} \mathrm{e}^{4 x}=\mathrm{e}^{7} \Rightarrow \Rightarrow \mathrm{e}^{x \ln 3} \mathrm{e}^{4 x}=\mathrm{e}^{7} \\ & \Rightarrow \mathrm{e}^{x \ln 3+4 x}=\mathrm{e}^{7}, \Rightarrow x \ln 3+4 x=7 \\ & x(\ln 3+4)=7 \Rightarrow x=\ldots \quad x=\frac{7}{(\ln 3+4)} \end{aligned}$	$\begin{gathered} \text { M1,M1 } \\ \text { dM1 A1 } \end{gathered}$
		(4)

(a)

M1 Proceeds from $2 \ln (2 x+1)-10=0$ to $\ln (2 x+1)=5$ before taking exp's to achieve x in terms of e^{5} Accept for M1 $2 \ln (2 x+1)-10=0 \Rightarrow \ln (2 x+1)=5 \Rightarrow x=\mathrm{f}\left(\mathrm{e}^{5}\right)$
Alternatively they could use the power law before taking exp's to achieve x in terms of $\sqrt{\mathrm{e}^{10}}$ $2 \ln (2 x+1)=10 \Rightarrow \ln (2 x+1)^{2}=10 \Rightarrow(2 x+1)^{2}=\mathrm{e}^{10} \Rightarrow x=\mathrm{g}\left(\sqrt{\mathrm{e}^{10}}\right)$
A1 cso. Accept $x=\frac{\mathrm{e}^{5}-1}{2}$ or other exact simplified alternatives such as $x=\frac{\mathrm{e}^{5}}{2}-\frac{1}{2}$. Remember to isw. The decimal answer of 73.7 will score M1A0 unless the exact answer has also been given.
The answer $\frac{\sqrt{\mathrm{e}^{10}}-1}{2}$ does not score this mark unless simplified. $x=\frac{ \pm \mathrm{e}^{5}-1}{2}$ is M1A0
(b)

M1 Takes ln's or logs of both sides and applies the addition law.
$\ln \left(3^{x} \mathrm{e}^{4 x}\right)=\ln 3^{x}+\ln \mathrm{e}^{4 x}$ or $\ln \left(3^{x} \mathrm{e}^{4 x}\right)=\ln 3^{x}+4 x$ is evidence for the addition law If the $\mathrm{e}^{4 x}$ was 'moved' over to the right hand side score for either $\mathrm{e}^{7-4 x}$ or the subtraction law. $\ln \frac{\mathrm{e}^{7}}{\mathrm{e}^{4 x}}=\ln \mathrm{e}^{7}-\ln \mathrm{e}^{4 x}$ or $3^{x} \mathrm{e}^{4 x}=\mathrm{e}^{7} \Rightarrow 3^{x}=\frac{\mathrm{e}^{7}}{\mathrm{e}^{4 x}} \Rightarrow 3^{x}=\mathrm{e}^{7-4 x}$ is evidence of the subtraction law
M1 Uses the power law of logs (seen at least once in a term with x as the index $\operatorname{Eg} 3^{x}, \mathrm{e}^{4 x}$ or $\mathrm{e}^{7-4 x}$). $\ln 3^{x}+\ln \mathrm{e}^{4 x}=\ln \mathrm{e}^{7} \Rightarrow x \ln 3+4 x \ln \mathrm{e}=7 \ln \mathrm{e}$ is an example after the addition law $3^{x}=\mathrm{e}^{7-4 x} \Rightarrow x \log 3=(7-4 x) \log \mathrm{e}$ is an example after the subtraction law.
It is possible to score M0M1 by applying the power law after an incorrect addition/subtraction law For example $3^{x} \mathrm{e}^{4 x}=\mathrm{e}^{7} \Rightarrow \ln \left(3^{x}\right) \times \ln \left(\mathrm{e}^{4 x}\right)=\ln \mathrm{e}^{7} \Rightarrow x \ln 3 \times 4 x \ln \mathrm{e}=7 \ln \mathrm{e}$
dM1 This is dependent upon both previous M's. Collects/factorises out term in x and proceeds to $x=$. Condone sign slips for this mark. An unsimplified answer can score this mark.
A1 If the candidate has taken \ln 's then they must use $\ln \mathrm{e}=1$ and achieve $x=\frac{7}{(\ln 3+4)}$ or equivalent. If the candidate has taken log's they must be writing log as oppose to \ln and achieve $x=\frac{7 \log \mathrm{e}}{(\log 3+4 \log \mathrm{e})}$ or other exact equivalents such as $x=\frac{7 \log \mathrm{e}}{\log 3 \mathrm{e}^{4}}$.

Question Number	Scheme	Marks
72(a)	$P=\frac{800 \mathrm{e}^{0}}{1+3 \mathrm{e}^{0}},=\frac{800}{1+3}=200$	M1,A1
(b)	$\begin{gathered} 250=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}} \\ 250\left(1+3 \mathrm{e}^{0.1 t}\right)=800 \mathrm{e}^{0.1 t} \Rightarrow 50 \mathrm{e}^{0.1 t}=250, \Rightarrow \mathrm{e}^{0.1 t}=5 \end{gathered}$	M1,A1
	$\begin{aligned} & t=\frac{1}{0.1} \ln (5) \\ & t=10 \ln (5) \end{aligned}$	M1 A1
(c)	$P=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}} \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} t}=\frac{\left(1+3 \mathrm{e}^{0.1 t}\right) \times 800 \times 0.1 \mathrm{e}^{0.1 t}-800 \mathrm{e}^{0.1 t} \times 3 \times 0.1 \mathrm{e}^{0.1 t}}{\left(1+3 \mathrm{e}^{0.1 t}\right)^{2}}$	(4) M1,A1
	At $t=10$ $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{(1+3 \mathrm{e}) \times 80 \mathrm{e}-240 \mathrm{e}^{2}}{(1+3 \mathrm{e})^{2}}=\frac{80 \mathrm{e}}{(1+3 \mathrm{e})^{2}}$	M1,A1
(d)	$P=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}}=\frac{800}{\mathrm{e}^{-0.1 t}+3} \Rightarrow P_{\max }=\frac{800}{3}=266 \text {. Hence } \mathrm{P} \text { cannot be } 270$	(4) B1
		$\begin{array}{r} (1) \\ \text { (11 marks) } \end{array}$

(a)

M1 Sub $t=0$ into P and use $\mathrm{e}^{0}=1$ in at least one of the two cases. Accept $P=\frac{800}{1+3}$ as evidence
A1 200. Accept this for both marks as long as no incorrect working is seen.
(b)

M1 Sub $P=250$ into $P=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}}$, cross multiply, collect terms in $\mathrm{e}^{0.1 t}$ and proceed to $A e^{0.1 t}=B$

Condone bracketing issues and slips in arithmetic.
If they divide terms by $\mathrm{e}^{0.1 t}$ you should expect to see $C \mathrm{e}^{-0.1 t}=D$
A1 $e^{0.1 t}=5$ or $e^{-0.1 t}=0.2$

M1 Dependent upon gaining $\mathrm{e}^{0.1 t}=E$, for taking \ln 's of both sides and proceeding to $t=\ldots$

Accept $\mathrm{e}^{0.1 t}=E \Rightarrow 0.1 t=\ln E \Rightarrow t=\ldots$ It could be implied by $t=$ awrt 16.1
A1 $\quad t=10 \ln (5)$
Accept exact equivalents of this as long as a and b are integers. Eg. $t=5 \ln (25)$ is fine.
(c)

M1 Scored for a full application of the quotient rule and knowing that
$\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{e}^{0.1 t}=k \mathrm{e}^{0.1 t}$ and NOT $k t e^{0.1 t}$
If the rule is quoted it must be correct.
It may be implied by their $u=800 \mathrm{e}^{0.1 t}, v=1+3 \mathrm{e}^{0.1 t}, u^{\prime}=p \mathrm{e}^{0.1 t}, v^{\prime}=q \mathrm{e}^{0.1 t}$
followed by $\frac{v u u^{\prime}-u v^{\prime}}{v^{2}}$.
If it is neither quoted nor implied only accept expressions of the form
$\frac{\left(1+3 e^{0.1 t}\right) \times p \mathrm{e}^{0.1 t}-800 \mathrm{e}^{0.1 t} \times q \mathrm{e}^{0.1 t}}{\left(1+3 \mathrm{e}^{0.1 t}\right)^{2}}$
Condone missing brackets.
You may see the chain or product rule applied to
For applying the product rule see question 1 but still insist on $\frac{d}{d t} e^{0.1 t}=k e^{0.1 t}$

For the chain rule look for

$P=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}}=\frac{800}{\mathrm{e}^{-0.1 t}+3} \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} t}=800 \times\left(\mathrm{e}^{-0.1 t}+3\right)^{-2} \times-0.1 \mathrm{e}^{-0.1 t}$
A1 A correct unsimplified answer to
$\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{\left(1+3 \mathrm{e}^{0.1 t}\right) \times 800 \times 0.1 \mathrm{e}^{0.1 t}-800 \mathrm{e}^{0.1 t} \times 3 \times 0.1 \mathrm{e}^{0.1 t}}{\left(1+3 \mathrm{e}^{0.1 t}\right)^{2}}$
M1 For substituting $t=10$ into their $\frac{\mathrm{d} P}{\mathrm{~d} t}$, NOT P
Accept numerical answers for this. 2.59 is the numerical value if $\frac{\mathrm{d} P}{\mathrm{~d} t}$ was correct
A1 $\quad \frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{80 \mathrm{e}}{(1+3 \mathrm{e})^{2}}$ or equivalent such as $\frac{\mathrm{d} P}{\mathrm{~d} t}=80 \mathrm{e}(1+3 \mathrm{e})^{-2}, \frac{80 \mathrm{e}}{1+6 \mathrm{e}+9 \mathrm{e}^{2}}$

Note that candidates who substitute $t=10$ before differentiation will score 0 marks
(d)

B1 Accept solutions from substituting $\mathrm{P}=270$ and showing that you get an unsolvable equation

Eg. $\quad 270=\frac{800 e^{0.1 t}}{1+3 e^{0.1 t}} \Rightarrow-27=e^{0.1 t} \Rightarrow 0.1 t=\ln (-27)$ which has no answers.
Eg. $\quad 270=\frac{800 e^{0.1 t}}{1+3 e^{0.1 t}} \Rightarrow-27=e^{0.1 t} \Rightarrow e^{0.1 t} / e^{x}$ is never negative

Accept solutions where it implies the max value is 266.6 or 267 . For example accept sight of $\frac{800}{3}$, with a comment 'so it cannot reach 270 ', or a large value of $t(t>99)$ being substituted in to get 266.6 or 267 with a similar statement, or a graph drawn with an asymptote marked at 266.6 or 267
Do not accept exp's cannot be negative or you cannot ln a negative number without numerical evidence.

Look for both a statement and a comment

Question Number	Scheme	Marks
73(a)	$\ln (4-2 x)(9-3 x),=\ln (x+1)^{2}$	M1, M1
	So $36-30 x+6 x^{2}=x^{2}+2 x+1$ and $5 x^{2}-32 x+35=0$	A1
	Solve $5 x^{2}-32 x+35=0$ to give $x=\frac{7}{5}$ oe (Ignore the solution $x=5$)	M1A1
		(5)
(b)	Take loge's to give $\ln 2^{x}+\ln \mathrm{l}^{3 x+1}=\ln 10$	M1
	$x \ln 2+(3 x+1) \ln \mathrm{e}=\ln 10$	M1
	$x(\ln 2+3 \ln \mathrm{e})=\ln 10-\ln \mathrm{e} \Rightarrow x=.$.	dM1
	and uses lne $=1$	M1
	$x=\frac{-1+\ln 10}{2+\ln 2}$	A1
		(5)
	Note that the $4^{\text {th }} \mathrm{M}$ mark may occur on line 2	
		(10 marks)

Notes for Question 73

(a)

M1 Uses addition law on lhs of equation. Accept slips on the signs. If one of the terms is taken over to the rhs it would be for the subtraction law.

M1 Uses power rule for logs write the $2 \ln (x+1)$ term as $\ln (x+1)^{2}$. Condone invisible brackets

A1 Undoes the logs to obtain the $3 T Q=0.5 x^{2}-32 x+35=0$. Accept equivalences. The equals zero may be implied by a subsequent solution of the equation.

M1 Solves a quadratic by any allowable method.
The quadratic cannot be a version of $(4-2 x)(9-3 x)=0$ however.

A1 Deduces $x=1.4$ or equivalent. Accept both $x=1.4$ and $x=5$. Candidates do not have to eliminate $x=5$. You may ignore any other solution as long as it is not in the range $-1<x<2$. Extra solutions in the range scores A0.

Notes for Question 73 Continued

(b)

M1 Takes logs of both sides and splits LHS using addition law. If one of the terms is taken to the other side it can be awarded for taking logs of both sides and using the subtraction law.

M1 Taking both powers down using power rule. It is not wholly dependent upon the first M1 but logs of both sides must have been taken. Below is an example of M0M1

$$
\ln 2^{x} \times \ln e^{3 x+1}=\ln 10 \Rightarrow x \ln 2 \times(3 x+1) \ln e=\ln 10
$$

dM1 This is dependent upon both previous two M's being scored. It can be awarded for a full method to solve their linear equation in x. The terms in x must be collected on one side of the equation and factorised. You may condone slips in signs for this mark but the process must be correct and leading to $x=$...

M1 Uses $\ln \mathrm{e}=1$. This could appear in line 2, but it must be part of their equation and not just a statement.

Another example where it could be awarded is $\mathrm{e}^{3 x+1}=\frac{10}{2^{x}} \Rightarrow 3 x+1=\ldots$
A1 Obtains answer $x=\frac{-1+\ln 10}{3+\ln 2}=\left(\frac{\ln 10-1}{3+\ln 2}\right)=\left(\frac{\log _{\mathrm{e}} 10-1}{3+\log _{\mathrm{e}} 2}\right)$ oe. DO NOT ISW HERE
Note 1: If the candidate takes $\log _{10}$'s of both sides can score M1M1dM1M0A0 for 3 out of 5 .

$$
\text { Answer }=x=\frac{-\log \mathrm{e}+\log 10}{3 \log \mathrm{e}+\log 2}=\left(\frac{-\log \mathrm{e}+1}{3 \log \mathrm{e}+\log 2}\right)
$$

Note 2: If the candidate writes $x=\frac{-1+\log 10}{3+\log 2}$ without reference to natural logs then award M4 but with hold the last A1 mark, scoring 4 out of 5 .

Question Number	Scheme	Marks
74.(a)	$\begin{equation*} t=0 \Rightarrow P=\frac{8000}{1+7}=1000 \tag{сао} \end{equation*}$	M1A1
(b)	$t \rightarrow \infty \quad P \rightarrow \frac{8000}{1}=8000$	(2) B1
		(1)
(c)	$\begin{aligned} & t=3, P=2500 \Rightarrow 2500=\frac{8000}{1+7 e^{-3 k}} \\ & e^{-3 k}=\frac{2.2}{7}=(0.31 . .) \quad \text { oe } \end{aligned}$	B1
		M1,A1
	$k=-\frac{1}{3} \ln \left(\frac{2.2}{7}\right)=\text { awrt } 0.386$	M1A1
		(5)
(d)	Sub t=10 into $\quad P=\frac{8000}{1+7 e^{-0.386 t}} \Rightarrow P=6970 \quad$ cao	M1A1
		(2)
(e)	$\begin{aligned} \frac{\mathrm{d} P}{\mathrm{~d} t}= & -\frac{8000}{\left(1+7 e^{-k t}\right)^{2}} \times-7 k e^{-k t} \\ \left.\frac{\mathrm{~d} P}{\mathrm{~d} t}\right\|_{t=10} & =346 \end{aligned}$	M1,A1
		A1
		(3)
		(13 marks)

Notes for Question 74

(a)

M1 Sets $t=0$, giving $e^{-k \times 0}=1$. Award if candidate attempts $\frac{8000}{1+7 \times 1}, \frac{8000}{8}$
A1 Correct answer only 1000. Accept 1000 for both marks as long as no incorrect working is seen.
(b)

B1 8000 . Accept $P<8000$. Condone $P \leqslant 8000$ but not $P>8000$
(c)

B1 Sets both $t=3$, and $P=2500 \Rightarrow 2500=\frac{8000}{1+7 e^{-3 k}}$
This may be implied by a subsequent correct line.
M1 Rearranges the equation to make $e^{ \pm 3 k}$ the subject. They need to multiply by the $1+7 e^{-3 k}$ term, and proceed to $e^{ \pm 3 k}=A, \quad A>0$

A1 The correct intermediate answer of $e^{-3 k}=\frac{2.2}{7}, \frac{11}{35}$ or equivalent. Accept awrt 0.31 ..
Alternatively accept $e^{3 k}=\frac{35}{11}, 3.18 .$. or equivalent.
M1 Proceeds from $e^{ \pm 3 k}=A, \quad A>0$ by correctly taking \ln 's and then making k the subject of the formula.
Award for $e^{-3 k}=A \Rightarrow-3 k=\ln (A) \Rightarrow k=\frac{\ln (A)}{-3}$
If $e^{3 k}$ was found accept $e^{3 k}=C \Rightarrow 3 k=\ln C \Rightarrow k=\frac{\ln C}{3}$ As with method $1, C>0$
A1 Awrt $k=0.386$ 3dp
(d)

M1 Substitutes $\mathrm{t}=10$ into $P=\frac{8000}{1+7 e^{-k t}}$ with their numerical value of k to find P
A1 $(P=) 6970$ or other exact equivalents like 6.97×10^{3}
(e)

M1 Differentiates using the chain rule to a form $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{C}{\left(1+7 e^{-k t}\right)^{2}} \times e^{-k t}$
Accept an application of the quotient rule to achieve $\frac{\left(1+7 e^{-k t}\right) \times 0-C \times-e^{-k t}}{\left(1+7 e^{-k t}\right)^{2}}$
A1 A correct un simplified $\frac{\mathrm{d} P}{\mathrm{~d} t}=-\frac{8000}{\left(1+7 e^{-k t}\right)^{2}} \times-7 k e^{-k t}$.
The derivative can be given in terms of k. If a numerical value is used you may follow through on incorrect values.

A1 Awrt 346. Note that M1 must have been achieved. Just the answer scores 0

Question Number	Scheme	Marks
75.	(a) (£) 19500	B1
	(b) $\begin{aligned} & 9500=17000 e^{-0.25 t}+2000 e^{-0.5 t}+500 \\ & 17 e^{-0.25 t}+2 e^{-0.5 t}=9 \\ & \left(\times e^{0.5 t}\right) \Rightarrow 17 e^{0.25 t}+2=9 e^{0.5 t} \end{aligned}$	
	$0=9 e^{0.5 t}-17 e^{0.25 t}-2$	M1
	$0=\left(9 e^{0.25 t}+1\right)\left(e^{0.25 t}-2\right)$	M1
	$e^{0.25 t}=2$	A1
	$t=4 \ln (2) o e$	A1
	(c) $\left(\frac{\mathrm{d} V}{\mathrm{~d} t}\right)=-4250 e^{-0.25 t}-1000 e^{-0.5 t}$ When $t=8$ Decrease $=593$ ($£$ /year)	(4)
		M1A1
		M1A1
		(4)
		(9 marks)

(a) B1 19500. The $£$ sign is not important for this mark
(b) M1 Substitute $\mathrm{V}=9500$, collect terms and set on 1 side of an equation $=0$. Indices must be correct Accept $17000 e^{-0.25 t}+2000 e^{-0.5 t}-9000=0$ and $17000 x+2000 x^{2}-9000=0$ where $x=e^{-0.25 t}$
M1 Factorise the quadratic in $e^{0.25 t}$ or $e^{-0.25 t}$
For your information the factorised quadratic in $e^{-0.25 t}$ is $\left(2 e^{-0.25 t}-1\right)\left(e^{-0.25 t}+9\right)=0$
Alternatively let ' x ' $=e^{0.25 t}$ or otherwise and factorise a quadratic equation in x
A1 Correct solution of the quadratic. Either $e^{0.25 t}=2$ or $e^{-0.25 t}=\frac{1}{2}$ oe.
A1 Correct exact value of t. Accept variations of $4 \ln (2)$, such as $\ln (16), \frac{\ln \left(\frac{1}{2}\right)}{-0.25}, \frac{\ln (2)}{0.25},-4 \ln \left(\frac{1}{2}\right)$
.(c) M1 Differentiates $V=17000 e^{-0.25 t}+2000 e^{-0.5 t}+500$ by the chain rule.
Accept answers of the form $\left(\frac{\mathrm{d} V}{\mathrm{~d} t}\right)= \pm A e^{-0.25 t} \pm B e^{-0.5 t} \quad A, B$ are constants $\neq 0$
A1 Correct derivative $\left(\frac{\mathrm{d} V}{\mathrm{~d} t}\right)=-4250 e^{-0.25 t}-1000 e^{-0.5 t}$.
There is no need for it to be simplified so accept

$$
\left(\frac{\mathrm{d} V}{\mathrm{~d} t}\right)=17000 \times-0.25 e^{-0.25 t}+2000 \times-0.5 e^{-0.5 t} \quad o e
$$

M1 Substitute $t=8$ into their $\frac{\mathrm{d} V}{\mathrm{~d} t}$.
This is not dependent upon the first M1 but there must have been some attempt to differentiate. Do not accept $t=8$ in V

A1 \pm 593. Ignore the sign and the units. If the candidate then divides by 8, withhold this mark. This would not be isw. Be aware that sub $t=8$ into V first and then differentiating can achieve 593. This is M0A0M0A0.

Question No	Scheme	Marks	
76	(a) $20\left(\mathrm{~mm}^{2}\right)$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \hline \end{array}$	(1)
	(b) $\begin{gathered} \text { Correct order } 1.5 t=\ln ^{\prime} 2^{\prime} \rightarrow \quad t=\frac{\ln c}{1.5} \\ t=\frac{\ln 2}{1.5}=(\text { awrt } 0.46) \\ 12.28 \text { or } 28 \text { (minutes }) \end{gathered}$	A1 M1 A1 A1	(5) (6 marks)

(a)

B1 Sight of 20 relating to the value of A at $\mathrm{t}=0$. Do not worry about (incorrect) units. Accept its sight in (b)
(b)

M1 Substitutes $\mathrm{A}=40$ or twice their answer to (a) and proceeds to $e^{1.5 t}=$ constant. Accept non numerical answers.
A1 $\quad e^{1.5 t}=\frac{40}{20}$ or 2
M1 Correct ln work to find t . Eg $e^{1.5 t}=$ constant $\rightarrow 1.5 t=\ln ($ constant $) \rightarrow t=$ The order must be correct. Accept non numerical answers. See below for correct alternatives
A1 Achieves either $\frac{\ln (2)}{1.5}$ or awrt 0.46 2sf
A1 Either 12:28 or 28 (minutes). Cao

Alternatives in (b)

Alt 1- taking In's of both sides on line 1

M1 Substitutes $A=40$, or twice (a) takes \ln 's of both sides and proceeds to $\ln \left({ }^{\prime} 40^{\prime}\right)=\ln 20+\ln e^{1.5 t}$
A1 $\quad \ln (40)=\ln 20+1.5 t$
M1 Make the subject with correct \ln work.

$$
\ln \left({ }^{\prime} 40^{\prime}\right)-\ln 20=1.5 t \text { or } \ln \left(\frac{140^{\prime}}{20}\right)=1.5 t \rightarrow t=
$$

A1,A1 are the same

Alt 2- trial and improvement-hopefully seen rarely

M1 Substitutes $t=0.46$ and $t=0.47$ into $20 e^{1.5 t}$ to obtain A at both values. Must be to at least 2 dp but you may accept tighter interval but the interval must span the correct value of 0.46209812
A1 Obtains $\mathrm{A}(0.46)=39.87$ AND $\mathrm{A}(0.47)=40.47$ or equivalent
M1 Substitutes $\mathrm{t}=0.462$ and $\mathrm{t}=0.4625$ into $40 e^{1.5 t}$
A1 Obtains $\mathrm{A}(0.462)=39.99$ AND $\mathrm{A}(0.4625)=40.02$ or equivalent and states $\mathrm{t}=0.462$ (3sf)
A1 AS ABOVE

No working leading to fully correct accurate answer (3sf or better) send/escalate to team leader

Question Number	Scheme		Marks
(a)	$\begin{aligned} & \theta=20+A \mathrm{e}^{-k t} \quad\left(\mathrm{eqn}^{*}\right) \\ & \{t=0, \theta=90 \Rightarrow\} \quad 90=20+A \mathrm{e}^{-k(0)} \\ & 90=20+A \Rightarrow A=70 \end{aligned}$	Substitutes $t=0$ and $\theta=90$ into eqn * $A=70$	M1 A1 (2)
(b)	$\begin{aligned} & \theta=20+70 \mathrm{e}^{-k t} \\ & \{t=5, \theta=55 \Rightarrow\} \begin{array}{c} \\ 55=20+70 \mathrm{e}^{-k(5)} \\ \frac{35}{70}=\mathrm{e}^{-5 k} \\ \ln \left(\frac{35}{70}\right)=-5 k \\ -5 k=\ln \left(\frac{1}{2}\right) \\ -5 k=\ln 1-\ln 2 \Rightarrow-5 k=-\ln 2 \Rightarrow k=\frac{1}{5} \ln 2 \end{array} \end{aligned}$	Substitutes $t=5$ and $\theta=55$ into eqn * and rearranges eqn $*$ to make $\mathrm{e}^{ \pm 5 \mathrm{k}}$ the subject. Takes 'lns' and proceeds to make ' $\pm 5 k$ ' the subject. Convincing proof that $k=\frac{1}{5} \ln 2$	M1 dM1 A1 * (3)
(c)	$\begin{aligned} \theta & =20+70 \mathrm{e}^{-\frac{-}{5} \ln 2} \\ \frac{\mathrm{~d} \theta}{\mathrm{~d} t} & =-\frac{1}{5} \ln 2 .(70) \mathrm{e}^{-\frac{1}{5} \ln 2} \end{aligned}$ When $t=10, \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=-14 \ln 2 \mathrm{e}^{-2 \ln 2}$ $\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-\frac{7}{2} \ln 2=-2.426015132 \ldots$ Rate of decrease of $\theta=2.426{ }^{\circ} \mathrm{C} / \mathrm{min}(3 \mathrm{dp}$.)	$\begin{array}{r} \pm \alpha \mathrm{e}^{-k t} \quad \text { where } k=\frac{1}{5} \ln 2 \\ -14 \ln 2 \mathrm{e}^{-\frac{-1}{5} \ln 2} \end{array}$ awrt ± 2.426	M1 A1 oe A1 (3) [8]

Question Number	Scheme	Marks
79. (a) (b)	$\begin{align*} & \frac{(x+5)(2 x-1)}{(x+5)(x-3)}=\frac{(2 x-1)}{(x-3)} \\ & \ln \left(\frac{2 x^{2}+9 x-5}{x^{2}+2 x-15}\right)=1 \tag{3}\\ & \frac{2 x^{2}+9 x-5}{x^{2}+2 x-15}=\mathrm{e} \\ & \frac{2 x-1}{x-3}=\mathrm{e} \Rightarrow \quad 3 \mathrm{e}-1=x(\mathrm{e}-2) \\ & \Rightarrow x=\frac{3 \mathrm{e}-1}{\mathrm{e}-2} \end{align*}$	M1 B1 A1 aef M1 dM1 M1 A1 aef cso
	(a) M1: An attempt to factorise the numerator. B1: Correct factorisation of denominator to give $(x+5)(x-3)$. Can be seen anywhere. (b) M1: Uses a correct law of logarithms to combine at least two terms. This usually is achieved by the subtraction law of logarithms to give $\ln \left(\frac{2 x^{2}+9 x-5}{x^{2}+2 x-15}\right)=1$ The product law of logarithms can be used to achieve $\ln \left(2 x^{2}+9 x-5\right)=\ln \left(e\left(x^{2}+2 x-15\right)\right)$ The product and quotient law could also be used to achieve $\ln \left(\frac{2 x^{2}+9 x-5}{\mathrm{e}\left(x^{2}+2 x-15\right)}\right)=0$ dM1: Removing ln's correctly by the realisation that the anti-ln of 1 is e. Note that this mark is dependent on the previous method mark being awarded. M1: Collect x terms together and factorise. Note that this is not a dependent method mark. A1: $\frac{3 e-1}{e-2}$ or $\frac{3 e^{1}-1}{e^{1}-2}$ or $\frac{1-3 e}{2-e}$. aef Note that the answer needs to be in terms of e . The decimal answer is $9.9610559 \ldots$ Note that the solution must be correct in order for you to award this final accuracy mark. Note: See Appendix for an alternative method of long division.	

Question Number	Scheme	Marks
$\mathbf{8 2 .}$	(a)	$\mathrm{e}^{2 x+1}=2$
$2 x+1=\ln 2$		
	$x=\frac{1}{2}(\ln 2-1)$	M1
		A1

