

**Maths Questions By Topic:** 

**Exponentials & Logarithms** 

**A-Level Edexcel** 

- **Q** 0207 060 4494
- www.expert-tuition.co.uk
- $\square$  online.expert-tuition.co.uk
- ⊠ enquiries@expert-tuition.co.uk
- The Foundry, 77 Fulham Palace Road, W6 8JA

## **Table Of Contents**

## New Spec

| Paper 1  | Page 1   |
|----------|----------|
| Paper 2  | Page 65  |
| Old Spec |          |
| Core 1   | Page 94  |
| Core 2   | Page 109 |
| Core 3   | Page 134 |

| 1. | A scientist is studying the number of bees and the number of wasps on an island.                                                                        |     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | The number of bees, measured in thousands, $N_b$ , is modelled by the equation                                                                          |     |
|    | $N_b = 45 + 220 \mathrm{e}^{0.05t}$                                                                                                                     |     |
|    | where $t$ is the number of years from the start of the study.                                                                                           |     |
|    | According to the model,                                                                                                                                 |     |
|    | (a) find the number of bees at the start of the study,                                                                                                  | (1) |
|    | (b) show that, exactly 10 years after the start of the study, the number of bees was increasing at a <b>rate</b> of approximately 18 thousand per year. | (2) |
|    |                                                                                                                                                         | (3) |
|    | The number of wasps, measured in thousands, $N_w$ , is modelled by the equation                                                                         |     |
|    | $N_{w} = 10 + 800 \mathrm{e}^{-0.05t}$                                                                                                                  |     |
|    | where <i>t</i> is the number of years from the start of the study.                                                                                      |     |
|    | When $t = T$ , according to the models, there are an equal number of bees and wasps.                                                                    |     |
|    | (c) Find the value of <i>T</i> to 2 decimal places.                                                                                                     | (4) |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |
|    |                                                                                                                                                         |     |

1

| Question 1 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 1 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 1 continued     |          |  |
|--------------------------|----------|--|
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
|                          |          |  |
| (Total for Question 1 is | 8 marks) |  |



| 2. | The mass, A kg, of algae in a small pond, is modelled by the equation                                           |     |
|----|-----------------------------------------------------------------------------------------------------------------|-----|
|    | $A=pq^t$                                                                                                        |     |
|    | where $p$ and $q$ are constants and $t$ is the number of weeks after the mass of algae was first recorded.      |     |
|    | Data recorded indicates that there is a linear relationship between $t$ and $\log_{10} A$ given by the equation |     |
|    | $\log_{10} A = 0.03t + 0.5$                                                                                     |     |
|    | (a) Use this relationship to find a complete equation for the model in the form                                 |     |
|    | $A = pq^t$                                                                                                      |     |
|    | giving the value of $p$ and the value of $q$ each to 4 significant figures.                                     | (4) |
|    | (b) With reference to the model, interpret                                                                      |     |
|    | (i) the value of the constant $p$ ,                                                                             |     |
|    | (ii) the value of the constant $q$ .                                                                            | (2) |
|    | (c) Find, according to the model,                                                                               |     |
|    | (i) the mass of algae in the pond when $t = 8$ , giving your answer to the nearest $0.5 \mathrm{kg}$            | 5,  |
|    | (ii) the number of weeks it takes for the mass of algae in the pond to reach 4kg.                               | (3) |
|    | (d) State one reason why this may not be a realistic model in the long term.                                    | (1) |
|    |                                                                                                                 |     |
|    |                                                                                                                 |     |
|    |                                                                                                                 |     |
|    |                                                                                                                 |     |
|    |                                                                                                                 |     |
|    |                                                                                                                 |     |
|    |                                                                                                                 |     |
|    |                                                                                                                 |     |
|    |                                                                                                                 |     |
|    |                                                                                                                 |     |

| Question 2 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 2 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 2 continued |                             |  |
|----------------------|-----------------------------|--|
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
|                      |                             |  |
| (Total f             | for Question 2 is 10 marks) |  |



| 3. | In this question you must show all stages of your working.                                                                                                                                                                  |     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | Solutions relying entirely on calculator technology are not acceptable.                                                                                                                                                     |     |
|    | The air pressure, $P \text{ kg/cm}^2$ , inside a car tyre, $t$ minutes from the instant when the tyre developed a puncture is given by the equation                                                                         |     |
|    | $P = k + 1.4e^{-0.5t} \qquad t \in \mathbb{R} \qquad t \geqslant 0$                                                                                                                                                         |     |
|    | where $k$ is a constant.                                                                                                                                                                                                    |     |
|    | Given that the initial air pressure inside the tyre was 2.2 kg/cm <sup>2</sup>                                                                                                                                              |     |
|    | (a) state the value of $k$ .                                                                                                                                                                                                | (1) |
|    | From the instant when the tyre developed the puncture,                                                                                                                                                                      |     |
|    | (b) find the time taken for the air pressure to fall to 1 kg/cm <sup>2</sup> Give your answer in minutes to one decimal place.                                                                                              | (3) |
|    | (c) Find the rate at which the air pressure in the tyre is decreasing exactly 2 minutes from the instant when the tyre developed the puncture.  Give your answer in kg/cm <sup>2</sup> per minute to 3 significant figures. |     |
|    | Give your answer in kg/cm per inmute to 3 significant figures.                                                                                                                                                              | (2) |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |
|    |                                                                                                                                                                                                                             |     |

| Question 3 continued                    |   |  |
|-----------------------------------------|---|--|
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         |   |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         | _ |  |
|                                         |   |  |
| (Total for Question 3 is 6 marks)       | - |  |
| , , , , , , , , , , , , , , , , , , , , | - |  |



| 4. | (a) Given that $p = \log_3 x$ , where $x > 0$ , find in simplest form in terms of $p$ , |     |
|----|-----------------------------------------------------------------------------------------|-----|
|    | (i) $\log_3\left(\frac{x}{9}\right)$                                                    |     |
|    | (ii) $\log_3(\sqrt{x})$                                                                 | (2) |
|    | (b) Hence, or otherwise, solve                                                          | ( ) |
|    | $2\log_3\left(\frac{x}{9}\right) + 3\log_3\left(\sqrt{x}\right) = -11$                  |     |
|    | giving your answer as a simplified fraction.                                            |     |
|    | Solutions relying on calculator technology are not acceptable.                          | (4) |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |

| Question 4 continued              |   |
|-----------------------------------|---|
|                                   | _ |
|                                   |   |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   |   |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   |   |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   |   |
|                                   | _ |
|                                   | _ |
| (Total for Question 4 is 6 marks) | _ |



| 5. | A scientist is studying the growth of two different populations of bacteria.                                                                                                                             |     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | The number of bacteria, $N$ , in the <b>first</b> population is modelled by the equation                                                                                                                 |     |
|    | $N = Ae^{kt}$ $t \geqslant 0$                                                                                                                                                                            |     |
|    | where $A$ and $k$ are positive constants and $t$ is the time in hours from the start of the study                                                                                                        |     |
|    | <ul> <li>Given that</li> <li>there were 1000 bacteria in this population at the start of the study</li> <li>it took exactly 5 hours from the start of the study for this population to double</li> </ul> |     |
|    | (a) find a complete equation for the model.                                                                                                                                                              | (4) |
|    | (b) Hence find the rate of increase in the number of bacteria in this population exactly 8 hours from the start of the study. Give your answer to 2 significant figures.                                 | (2) |
|    | The number of bacteria, $M$ , in the <b>second</b> population is modelled by the equation                                                                                                                |     |
|    | $M = 500e^{1.4kt} \qquad t \geqslant 0$                                                                                                                                                                  |     |
|    | where $k$ has the value found in part (a) and $t$ is the time in hours from the start of the stu                                                                                                         | dy. |
|    | Given that <i>T</i> hours after the start of the study, the number of bacteria in the two different populations was the same,                                                                            |     |
|    |                                                                                                                                                                                                          |     |
|    | (c) find the value of $T$ .                                                                                                                                                                              | (3) |
|    | (c) find the value of <i>T</i> .                                                                                                                                                                         | (3) |
|    | (c) find the value of <i>T</i> .                                                                                                                                                                         | (3) |
|    | (c) find the value of T.                                                                                                                                                                                 | (3) |
|    | (c) find the value of <i>T</i> .                                                                                                                                                                         | (3) |
|    | (c) find the value of T.                                                                                                                                                                                 | (3) |
|    | (c) find the value of T.                                                                                                                                                                                 | (3) |
|    | (c) find the value of T.                                                                                                                                                                                 | (3) |
|    | (c) find the value of T.                                                                                                                                                                                 | (3) |
|    | (c) find the value of T.                                                                                                                                                                                 | (3) |
|    | (c) find the value of T.                                                                                                                                                                                 | (3) |

| Question 5 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 5 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 5 continued              |   |
|-----------------------------------|---|
|                                   |   |
|                                   |   |
|                                   |   |
|                                   |   |
|                                   |   |
|                                   | _ |
|                                   |   |
|                                   |   |
|                                   |   |
|                                   |   |
|                                   | _ |
|                                   | _ |
|                                   |   |
|                                   |   |
|                                   |   |
|                                   |   |
|                                   |   |
|                                   | _ |
|                                   |   |
|                                   |   |
|                                   |   |
|                                   | _ |
|                                   | _ |
|                                   | _ |
|                                   | _ |
| (Total for Question 5 is 9 marks) | _ |



| 6. | In this question you should show all stages of your working.            |  |
|----|-------------------------------------------------------------------------|--|
|    | Solutions relying on calculator technology are not acceptable.          |  |
|    | Given                                                                   |  |
|    | $\mathbf{o}^{x-1}$                                                      |  |
|    | $\frac{9^{x-1}}{3^{y+2}} = 81$                                          |  |
|    | express $y$ in terms of $x$ , writing your answer in simplest form.     |  |
|    | express $y$ in terms of $x$ , writing your answer in simplest form. (3) |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |
|    |                                                                         |  |

| Question 6 continued |                                   |
|----------------------|-----------------------------------|
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      | (Total for Question 6 is 3 marks) |



| 7. | The owners of a nature reserve decided to increase the area of the reserve covered by tree                                                          | es. |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | Tree planting started on 1st January 2005.                                                                                                          |     |
|    | The area of the nature reserve covered by trees, $A \text{ km}^2$ , is modelled by the equation                                                     |     |
|    | $A = 80 - 45e^{ct}$                                                                                                                                 |     |
|    | where $c$ is a constant and $t$ is the number of years after 1st January 2005.                                                                      |     |
|    | Using the model,                                                                                                                                    |     |
|    | (a) find the area of the nature reserve that was covered by trees just before tree planting started.                                                |     |
|    |                                                                                                                                                     | (1) |
|    | On 1st January 2019 an area of $60  \text{km}^2$ of the nature reserve was covered by trees.                                                        |     |
|    | (b) Use this information to find a complete equation for the model, giving your value of <i>c</i> to 3 significant figures.                         |     |
|    |                                                                                                                                                     | (4) |
|    | On 1st January 2020, the owners of the nature reserve announced a long-term plan to have $100\mathrm{km}^2$ of the nature reserve covered by trees. |     |
|    | (c) State a reason why the model is not appropriate for this plan.                                                                                  | (4) |
|    |                                                                                                                                                     | (1) |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |
|    |                                                                                                                                                     |     |

| Question 7 continued |                                   |
|----------------------|-----------------------------------|
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      | (Total for Question 7 is 6 marks) |



8.



Figure 2

The resting heart rate, h, of a mammal, measured in beats per minute, is modelled by the equation

$$h = pm^q$$

where p and q are constants and m is the mass of the mammal measured in kg.

Figure 2 illustrates the linear relationship between  $\log_{10} h$  and  $\log_{10} m$ 

The line meets the vertical  $\log_{10} h$  axis at 2.25 and has a gradient of -0.235

(a) Find, to 3 significant figures, the value of p and the value of q.

**(3)** 

A particular mammal has a mass of 5kg and a resting heart rate of 119 beats per minute.

(b) Comment on the suitability of the model for this mammal.

**(3)** 

(c) With reference to the model, interpret the value of the constant p.

| -   | 1 | 1 | 1 |  |
|-----|---|---|---|--|
| - ( |   | J |   |  |

| Question 8 continued |  |
|----------------------|--|
| Question o continueu |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| Question 8 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 8 continued |                                   |
|----------------------|-----------------------------------|
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      | (Total for Question 8 is 7 marks) |



| 9. | . By taking logarithms of both sides, solve the equation |     |
|----|----------------------------------------------------------|-----|
|    | $4^{3p-1} = 5^{210}$                                     |     |
|    | giving the value of $p$ to one decimal place.            | (3) |
|    |                                                          |     |
|    |                                                          |     |
|    |                                                          |     |
|    |                                                          |     |
|    |                                                          |     |
|    |                                                          |     |
|    |                                                          |     |
|    |                                                          |     |
|    |                                                          |     |
|    |                                                          |     |
|    |                                                          |     |
|    |                                                          |     |
| _  |                                                          |     |
|    |                                                          |     |

| Question 9 continued |                                   |
|----------------------|-----------------------------------|
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      | (Total for Question 9 is 3 marks) |



| The equation $\log_{10}V = 0.072t + 2.379 \qquad 1 \leqslant t \leqslant 30, t \in \mathbb{N}$ is used to model the total number of views of the advert, $V$ , in the first $t$ days after the advert went live.  (a) Show that $V = ab^t$ where $a$ and $b$ are constants to be found.  Give the value of $a$ to the nearest whole number and give the value of $b$ to 3 significant figures.  (4)  (b) Interpret, with reference to the model, the value of $ab$ .  (1)  Using this model, calculate  (c) the total number of views of the advert in the first 20 days after the advert went live. Give your answer to 2 significant figures.  (2) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| is used to model the total number of views of the advert, <i>V</i> , in the first <i>t</i> days after the advert went live.  (a) Show that $V = ab^t$ where <i>a</i> and <i>b</i> are constants to be found.  Give the value of <i>a</i> to the nearest whole number and give the value of <i>b</i> to 3 significant figures.  (4)  (b) Interpret, with reference to the model, the value of <i>ab</i> .  (1)  Using this model, calculate  (c) the total number of views of the advert in the first 20 days after the advert went live. Give your answer to 2 significant figures.                                                                  |
| <ul> <li>(a) Show that V = ab<sup>t</sup> where a and b are constants to be found.</li> <li>Give the value of a to the nearest whole number and give the value of b to 3 significant figures.</li> <li>(4)</li> <li>(b) Interpret, with reference to the model, the value of ab.</li> <li>(1)</li> <li>Using this model, calculate</li> <li>(c) the total number of views of the advert in the first 20 days after the advert went live. Give your answer to 2 significant figures.</li> </ul>                                                                                                                                                       |
| Give the value of <i>a</i> to the nearest whole number and give the value of <i>b</i> to 3 significant figures.  (4)  (b) Interpret, with reference to the model, the value of <i>ab</i> .  (1)  Using this model, calculate  (c) the total number of views of the advert in the first 20 days after the advert went live. Give your answer to 2 significant figures.                                                                                                                                                                                                                                                                                |
| 3 significant figures.  (4)  (b) Interpret, with reference to the model, the value of <i>ab</i> .  (1)  Using this model, calculate  (c) the total number of views of the advert in the first 20 days after the advert went live. Give your answer to 2 significant figures.                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>(b) Interpret, with reference to the model, the value of ab.</li> <li>(1)</li> <li>Using this model, calculate</li> <li>(c) the total number of views of the advert in the first 20 days after the advert went live. Give your answer to 2 significant figures.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |
| (c) the total number of views of the advert in the first 20 days after the advert went live. Give your answer to 2 significant figures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Give your answer to 2 significant figures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Question 10 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



| Question 10 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |



| Question 10 continued |                                    |
|-----------------------|------------------------------------|
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       | (Total for Question 10 is 7 marks) |



| 11. In a simple model, the value, £ $V$ , of a car depends on its age, $t$ , in years.                                      |     |
|-----------------------------------------------------------------------------------------------------------------------------|-----|
| The following information is available for car A                                                                            |     |
| <ul> <li>its value when new is £20 000</li> <li>its value after one year is £16 000</li> </ul>                              |     |
| (a) Use an exponential model to form, for car $A$ , a possible equation linking $V$ with $t$ .                              | (4) |
| The value of car $A$ is monitored over a 10-year period. Its value after 10 years is £2 000                                 |     |
| (b) Evaluate the reliability of your model in light of this information.                                                    | (2) |
| The following information is available for car B                                                                            |     |
| <ul> <li>it has the same value, when new, as car A</li> <li>its value depreciates more slowly than that of car A</li> </ul> |     |
| (c) Explain how you would adapt the equation found in (a) so that it could be used to model the value of car <i>B</i> .     | (1) |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |
|                                                                                                                             |     |

| Question 11 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



| Question 11 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



| Question 11 continued |                                 |
|-----------------------|---------------------------------|
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
| (То                   | tal for Question 11 is 7 marks) |
| (10                   | (                               |



| 12. | Given that $a > b > 0$ and that $a$ and $b$ satisfy the equation                                  |            |
|-----|---------------------------------------------------------------------------------------------------|------------|
|     | $\log a - \log b = \log(a - b)$                                                                   |            |
|     | (a) show that $a = \frac{b^2}{b-1}$                                                               |            |
|     | b-1                                                                                               | (3)        |
|     | (b) Write down the full restriction on the value of b, explaining the reason for this restriction | etion. (2) |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |
|     |                                                                                                   |            |

| Question 12 continued |                                      |  |
|-----------------------|--------------------------------------|--|
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       |                                      |  |
|                       | Total for Question 12 is 5 marks)    |  |
|                       | iotai ioi Questioli 12 is 3 lilaiks) |  |



| 13. The value of a car, £ $V$ , can be modelled by the equation                                                           |     |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| $V = 15700e^{-0.25t} + 2300 \qquad t \in \mathbb{R}, \ t \geqslant 0$                                                     |     |
| where the age of the car is t years.                                                                                      |     |
| Using the model,                                                                                                          |     |
| (a) find the initial value of the car.                                                                                    | (1) |
| Given the model predicts that the value of the car is decreasing at a rate of £500 per year at the instant when $t = T$ , |     |
| (b) (i) show that                                                                                                         |     |
| $3925e^{-0.25T} = 500$                                                                                                    |     |
| (ii) Hence find the age of the car at this instant, giving your answer in years and months to the nearest month.          |     |
| (Solutions based entirely on graphical or numerical methods are not acceptable.)                                          | (6) |
| The model predicts that the value of the car approaches, but does not fall below, £A.                                     |     |
| (c) State the value of A.                                                                                                 | (1) |
| (d) State a limitation of this model.                                                                                     |     |
|                                                                                                                           | (1) |
|                                                                                                                           | (1) |
|                                                                                                                           | (1) |
|                                                                                                                           | (1) |
|                                                                                                                           | (1) |
|                                                                                                                           | (1) |
|                                                                                                                           | (1) |
|                                                                                                                           | (1) |
|                                                                                                                           | (1) |
|                                                                                                                           | (1) |
|                                                                                                                           |     |
|                                                                                                                           |     |

| Question 13 continued |  |  |  |
|-----------------------|--|--|--|
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |



| Question 13 continued |  |  |
|-----------------------|--|--|
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |



| Question 13 continued |                                    |  |
|-----------------------|------------------------------------|--|
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       |                                    |  |
|                       | (Total for Question 13 is 9 marks) |  |
|                       | (Total for Ancetion 12 is 5 marks) |  |



| <b>14.</b> The value, £ $V$ , of a vintage car $t$ years after it was first valued on 1st January 200 modelled by the equation | 01, is           |
|--------------------------------------------------------------------------------------------------------------------------------|------------------|
| $V = Ap^t$ where A and p are constants                                                                                         |                  |
| Given that the value of the car was £32000 on 1st January 2005 and £50000 on                                                   | 1st January 2012 |
| (a) (i) find p to 4 decimal places,                                                                                            |                  |
| (ii) show that A is approximately 24 800                                                                                       | (4)              |
| (b) With reference to the model, interpret                                                                                     |                  |
| (i) the value of the constant $A$ ,                                                                                            |                  |
| (ii) the value of the constant $p$ .                                                                                           | (2)              |
| Using the model,                                                                                                               |                  |
| (c) find the year during which the value of the car first exceeds £100000                                                      | (4)              |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |
|                                                                                                                                |                  |

| Question 14 continued |  |  |
|-----------------------|--|--|
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |



| Question 14 continued |  |  |
|-----------------------|--|--|
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |



| Question 14 continued |                                     |  |
|-----------------------|-------------------------------------|--|
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       |                                     |  |
|                       | (Total for Question 14 is 10 marks) |  |



15. A student's attempt to solve the equation  $2\log_2 x - \log_2 \sqrt{x} = 3$  is shown below.  $2\log_2 x - \log_2 \sqrt{x} = 3$  $2\log_2\left(\frac{x}{\sqrt{x}}\right) = 3$ using the subtraction law for logs  $2\log_2\left(\sqrt{x}\right) = 3$ simplifying  $\log_2 x = 3$ using the power law for logs  $x = 3^2 = 9$ using the definition of a log (a) Identify two errors made by this student, giving a brief explanation of each. **(2)** (b) Write out the correct solution. (3)

| Question 15 continued |                                 |  |
|-----------------------|---------------------------------|--|
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       |                                 |  |
|                       | 4-16 O                          |  |
| (10                   | tal for Question 15 is 5 marks) |  |



**16.** 



Figure 3

The value of a rare painting, £V, is modelled by the equation  $V = pq^t$ , where p and q are constants and t is the number of years since the value of the painting was first recorded on 1st January 1980.

The line l shown in Figure 3 illustrates the linear relationship between t and  $\log_{10} V$  since 1st January 1980.

The equation of line l is  $log_{10}V = 0.05t + 4.8$ 

(a) Find, to 4 significant figures, the value of p and the value of q.

(4)

- (b) With reference to the model interpret
  - (i) the value of the constant p,
  - (ii) the value of the constant q.

(2)

(c) Find the value of the painting, as predicted by the model, on 1st January 2010, giving your answer to the nearest hundred thousand pounds.

**(2)** 

| Question 16 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



| Question 16 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |



| Question 16 continued |                                    |
|-----------------------|------------------------------------|
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       | (Total for Question 16 is 8 marks) |



| 17. Find any real values of x such that |                                  |     |
|-----------------------------------------|----------------------------------|-----|
|                                         | $2\log_4(2-x) - \log_4(x+5) = 1$ | (6) |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |
|                                         |                                  |     |

| Question 17 continued |                                  |
|-----------------------|----------------------------------|
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
| СТС                   | otal for Question 17 is 6 marks) |
|                       |                                  |



| 18. | The growth of pond weed on the surface of a pond is being investigated.                                                                          |           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | The surface area of the pond covered by the weed, $A\mathrm{m}^2$ , can be modelled by the equation                                              |           |
|     | $A = 0.2e^{0.3t}$                                                                                                                                |           |
|     | where $t$ is the number of days after the start of the investigation.                                                                            |           |
|     | (a) State the surface area of the pond covered by the weed at the start of the investigation                                                     | ·<br>(1)  |
|     | (b) Find the rate of increase of the surface area of the pond covered by the weed, in m²/da exactly 5 days after the start of the investigation. | y,<br>(2) |
|     | Given that the pond has a surface area of 100 m <sup>2</sup> ,                                                                                   |           |
|     | (c) find, to the nearest hour, the time taken, according to the model, for the surface of the pond to be fully covered by the weed.              | (4)       |
|     | The pond is observed for one month and by the end of the month 90% of the surface area of the pond was covered by the weed.                      |           |
|     | (d) Evaluate the model in light of this information, giving a reason for your answer.                                                            | (1)       |
|     |                                                                                                                                                  |           |
|     |                                                                                                                                                  |           |
|     |                                                                                                                                                  |           |
|     |                                                                                                                                                  |           |
|     |                                                                                                                                                  |           |
|     |                                                                                                                                                  |           |
|     |                                                                                                                                                  |           |

| Question 18 continued |                                  |
|-----------------------|----------------------------------|
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
| /T                    | otal for Question 18 is 8 marks) |
|                       | oran for Ancerron to 12 o marks) |



| 19. A student was asked to give the exact solution to the equation |                             |     |  |
|--------------------------------------------------------------------|-----------------------------|-----|--|
|                                                                    | $2^{2x+4} - 9(2^x) = 0$     |     |  |
| The student's attempt is shown below:                              |                             |     |  |
|                                                                    | $2^{2x+4} - 9(2^x) = 0$     |     |  |
|                                                                    | $2^{2x} + 2^4 - 9(2^x) = 0$ |     |  |
|                                                                    | Let $2^x = y$               |     |  |
|                                                                    | $y^2 - 9y + 8 = 0$          |     |  |
|                                                                    | (y-8)(y-1)=0                |     |  |
|                                                                    | y = 8  or  y = 1            |     |  |
|                                                                    | So $x = 3$ or $x = 0$       |     |  |
|                                                                    |                             |     |  |
| (a) Identify the two errors made by the                            | student.                    | (2) |  |
| (b) Find the exact solution to the equation                        | ion.                        |     |  |
|                                                                    |                             | (2) |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |
|                                                                    |                             |     |  |

| Question 19 continued |                                    |
|-----------------------|------------------------------------|
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       | (Total for Question 19 is 4 marks) |
|                       | (                                  |



20.



Figure 2

A town's population, P, is modelled by the equation  $P = ab^t$ , where a and b are constants and t is the number of years since the population was first recorded.

The line l shown in Figure 2 illustrates the linear relationship between t and  $\log_{10} P$  for the population over a period of 100 years.

The line *l* meets the vertical axis at (0, 5) as shown. The gradient of *l* is  $\frac{1}{200}$ .

(a) Write down an equation for l.

(2)

(b) Find the value of a and the value of b.

**(4)** 

- (c) With reference to the model interpret
  - (i) the value of the constant a,
  - (ii) the value of the constant b.

**(2)** 

- (d) Find
  - (i) the population predicted by the model when t = 100, giving your answer to the nearest hundred thousand,
  - (ii) the number of years it takes the population to reach 200 000, according to the model.

(3)

(e) State two reasons why this may not be a realistic population model.

**(2)** 

| Question 20 continued               |   |
|-------------------------------------|---|
|                                     |   |
|                                     | _ |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     | _ |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     | _ |
|                                     | _ |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     |   |
|                                     | _ |
|                                     |   |
|                                     |   |
|                                     |   |
| (Total for Question 20 is 13 marks) | _ |



21. A company plans to extract oil from an oil field.

The daily volume of oil V, measured in barrels that the company will extract from this oil field depends upon the time, t years, after the start of drilling.

The company decides to use a model to estimate the daily volume of oil that will be extracted. The model includes the following assumptions:

- The initial daily volume of oil extracted from the oil field will be 16000 barrels.
- The daily volume of oil that will be extracted exactly 4 years after the start of drilling will be 9000 barrels.
- The daily volume of oil extracted will decrease over time.

The diagram below shows the graphs of two possible models.



- (a) (i) Use model A to estimate the daily volume of oil that will be extracted exactly 3 years after the start of drilling.
  - (ii) Write down a limitation of using model A.

**(2)** 

- (b) (i) Using an exponential model and the information given in the question, find a possible equation for model *B*.
  - (ii) Using your answer to (b)(i) estimate the daily volume of oil that will be extracted exactly 3 years after the start of drilling.

**(5)** 

| Question 21 continued |                                    |
|-----------------------|------------------------------------|
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       | (Total for Question 21 is 7 marks) |
|                       |                                    |



**22.** In a controlled experiment, the number of microbes, N, present in a culture T days after the start of the experiment were counted.

N and T are expected to satisfy a relationship of the form

 $N = aT^b$ , where a and b are constants

(a) Show that this relationship can be expressed in the form

$$\log_{10} N = m \log_{10} T + c$$

giving m and c in terms of the constants a and/or b.

**(2)** 



Figure 3 shows the line of best fit for values of  $\log_{10} N$  plotted against values of  $\log_{10} T$ 

(b) Use the information provided to estimate the number of microbes present in the culture 3 days after the start of the experiment.

(4)

(c) Explain why the information provided could not reliably be used to estimate the day when the number of microbes in the culture first exceeds 1000000.

**(2)** 

(d) With reference to the model, interpret the value of the constant a.

(1)

| Question 22 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



| Question 22 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



| Question 22 continued |                                     |
|-----------------------|-------------------------------------|
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       | (Total for Question 22 is 9 marks)  |
|                       | ( Total for Question 22 is 7 marks) |



| 23. | 23. Using the laws of logarithms, solve the equation |                                          |     |
|-----|------------------------------------------------------|------------------------------------------|-----|
|     |                                                      | $\log_3 (12y + 5) - \log_3 (1 - 3y) = 2$ |     |
|     |                                                      |                                          | (3) |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |
|     |                                                      |                                          |     |

| Question 23 continued              |
|------------------------------------|
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
| (Total for Question 23 is 3 marks) |



**24.** The time, T seconds, that a pendulum takes to complete one swing is modelled by the formula

$$T = al^b$$

where l metres is the length of the pendulum and a and b are constants.

(a) Show that this relationship can be written in the form

$$\log_{10} T = b \log_{10} l + \log_{10} a$$
 (2)



Figure 3

A student carried out an experiment to find the values of the constants a and b.

The student recorded the value of *T* for different values of *l*.

Figure 3 shows the linear relationship between  $\log_{10} l$  and  $\log_{10} T$  for the student's data. The straight line passes through the points (-0.7, 0) and (0.21, 0.45)

Using this information,

(b) find a complete equation for the model in the form

$$T = al^b$$

giving the value of a and the value of b, each to 3 significant figures.

**(3)** 

(c) With reference to the model, interpret the value of the constant a.

**(1)** 

| Question 24 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



| Question 24 continued |  |  |  |
|-----------------------|--|--|--|
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |



| Question 24 continued |                                    |  |  |
|-----------------------|------------------------------------|--|--|
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       |                                    |  |  |
|                       | (Total for Question 24 is 6 marks) |  |  |



| 25. | . (a) Given that                                                    |     |
|-----|---------------------------------------------------------------------|-----|
|     | $2\log(4-x) = \log(x+8)$                                            |     |
|     | show that                                                           |     |
|     | $x^2 - 9x + 8 = 0$                                                  |     |
|     |                                                                     | (3) |
|     | (b) (i) Write down the roots of the equation                        |     |
|     | $x^2 - 9x + 8 = 0$                                                  |     |
|     | (ii) State which of the roots in (b)(i) is <b>not</b> a solution of |     |
|     | $2\log(4-x) = \log(x+8)$                                            |     |
|     | giving a reason for your answer.                                    | (2) |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |
|     |                                                                     |     |

| Question 25 continued |                                    |
|-----------------------|------------------------------------|
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       | (Total for Question 25 is 5 marks) |



| find, using algebra, the exact $x$ coordinate of $P$ . | (4) |
|--------------------------------------------------------|-----|
|                                                        | ( ) |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |
|                                                        |     |

| Question 26 continued |                                        |
|-----------------------|----------------------------------------|
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       |                                        |
|                       | (Total for Question 26 is 4 marks)     |
|                       | (10tal lui Vuestiuli 20 is 4 iliai ks) |



| 27. | A quantity of ethanol was heated until it reached boiling point.                                                  |     |
|-----|-------------------------------------------------------------------------------------------------------------------|-----|
|     | The temperature of the ethanol, $\theta$ °C, at time $t$ seconds after heating began, is modelled by the equation |     |
|     | $	heta = A - B\mathrm{e}^{-0.07t}$                                                                                |     |
|     | where $A$ and $B$ are positive constants.                                                                         |     |
|     | Given that                                                                                                        |     |
|     | • the initial temperature of the ethanol was 18°C                                                                 |     |
|     | • after 10 seconds the temperature of the ethanol was 44 °C                                                       |     |
|     | (a) find a complete equation for the model, giving the values of <i>A</i> and <i>B</i> to 3 significant figures.  |     |
|     |                                                                                                                   | (4) |
|     | Ethanol has a boiling point of approximately 78°C                                                                 |     |
|     | (b) Use this information to evaluate the model.                                                                   | (2) |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |
|     |                                                                                                                   |     |

| Question 27 continued |                                    |
|-----------------------|------------------------------------|
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       |                                    |
|                       | (Total for Question 27 is 6 marks) |



| <b>28.</b> The function g is defined by                   |     |
|-----------------------------------------------------------|-----|
| $g(x) = \frac{3\ln(x) - 7}{\ln(x) - 2}$ $x > 0$ $x \ne k$ |     |
| where $k$ is a constant.                                  |     |
| (a) Deduce the value of $k$ .                             | (1) |
| (b) Prove that                                            | (1) |
| g'(x) > 0                                                 |     |
| for all values of x in the domain of g.                   | (3) |
| (c) Find the range of values of a for which               |     |
| g(a) > 0                                                  |     |
|                                                           | (2) |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |
|                                                           |     |

| Question 28 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |



| Question 28 continued |  |  |  |
|-----------------------|--|--|--|
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |



| Question 28 continued |                                  |
|-----------------------|----------------------------------|
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
| /T-                   | tal fan Quastian 20 is 6 martis) |
| (10                   | tal for Question 28 is 6 marks)  |



| <b>29.</b> Giver | n                            | $2^x \times 4^y = \frac{1}{2}$ | $\frac{1}{2\sqrt{2}}$ |     |
|------------------|------------------------------|--------------------------------|-----------------------|-----|
| express          | s $y$ as a function of $x$ . |                                |                       | (3) |
|                  |                              |                                |                       |     |
|                  |                              |                                |                       |     |
|                  |                              |                                |                       |     |
|                  |                              |                                |                       |     |
|                  |                              |                                |                       |     |
|                  |                              |                                |                       |     |
|                  |                              |                                |                       |     |
|                  |                              |                                |                       |     |
|                  |                              |                                |                       |     |
|                  |                              |                                |                       |     |
|                  |                              |                                |                       |     |

| Question 29 continued |                                   |
|-----------------------|-----------------------------------|
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       |                                   |
|                       | Total for Question 29 is 3 marks) |
|                       | Total for Question 27 is 3 marks) |



**30.** A research engineer is testing the effectiveness of the braking system of a car when it is driven in wet conditions.

The engineer measures and records the braking distance, d metres, when the brakes are applied from a speed of  $V \text{ km h}^{-1}$ .

Graphs of d against V and  $\log_{10} d$  against  $\log_{10} V$  were plotted.

The results are shown below together with a data point from each graph.





Figure 5

Figure 6

(a) Explain how Figure 6 would lead the engineer to believe that the braking distance should be modelled by the formula

 $d = kV^n$  where k and n are constants

with 
$$k \approx 0.017$$

**(3)** 

Using the information given in Figure 5, with k = 0.017

(b) find a complete equation for the model giving the value of n to 3 significant figures.

**(3)** 

Sean is driving this car at  $60 \,\mathrm{km}\,\mathrm{h}^{-1}$  in wet conditions when he notices a large puddle in the road  $100 \,\mathrm{m}$  ahead. It takes him 0.8 seconds to react before applying the brakes.

(c) Use your formula to find out if Sean will be able to stop before reaching the puddle.

**(3)** 

| Question 30 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |



| Question 30 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



| Question 30 continued |                                       |
|-----------------------|---------------------------------------|
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       |                                       |
|                       | Total for Question 30 is 9 marks)     |
|                       | iotai ioi Questioli 30 is 7 iliai ks) |



| 31. | . A cup of hot tea was placed on a table. At time $t$ minutes after the cup was placed on the table, the temperature of the tea in the cup, $\theta$ °C, is modelled by the equation |     |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
|     | $\theta = 25 + Ae^{-0.03t}$                                                                                                                                                          |     |  |  |
|     | where <i>A</i> is a constant.                                                                                                                                                        |     |  |  |
|     | The temperature of the tea was 75 °C when the cup was placed on the table.                                                                                                           |     |  |  |
|     | (a) Find a complete equation for the model.                                                                                                                                          | (1) |  |  |
|     | (b) Use the model to find the time taken for the tea to cool from 75 °C to 60 °C, giving your answer in minutes to one decimal place.                                                | (2) |  |  |
|     | Two hours after the cup was placed on the table, the temperature of the tea was measured as $20.3^{\circ}\text{C}$ .                                                                 |     |  |  |
|     | Using this information,                                                                                                                                                              |     |  |  |
|     | (c) evaluate the model, explaining your reasoning.                                                                                                                                   | (1) |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |
|     |                                                                                                                                                                                      |     |  |  |

| Question 31 continued              |
|------------------------------------|
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
| (Total for Question 31 is 4 marks) |



| 32. | 2. A bacterial culture has area $p \text{ mm}^2$ at time $t$ hours after the culture was placed onto a circular dish.                                             |     |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|     | A scientist states that at time <i>t</i> hours, the rate of increase of the area of the culture can be modelled as being proportional to the area of the culture. |     |  |
|     | (a) Show that the scientist's model for $p$ leads to the equation                                                                                                 |     |  |
|     | $p = ae^{kt}$                                                                                                                                                     |     |  |
|     | where $a$ and $k$ are constants.                                                                                                                                  | (4) |  |
|     | The scientist measures the values for $p$ at regular intervals during the first 24 hours after the culture was placed onto the dish.                              |     |  |
|     | She plots a graph of $\ln p$ against $t$ and finds that the points on the graph lie close to a straight line with gradient 0.14 and vertical intercept 3.95       |     |  |
|     | (b) Estimate, to 2 significant figures, the value of $a$ and the value of $k$ .                                                                                   | (3) |  |
|     | (c) Hence show that the model for $p$ can be rewritten as                                                                                                         |     |  |
|     | $p = ab^t$                                                                                                                                                        |     |  |
|     | stating, to 3 significant figures, the value of the constant $b$ .                                                                                                | (2) |  |
|     | With reference to this model,                                                                                                                                     |     |  |
|     | (d) (i) interpret the value of the constant a,                                                                                                                    |     |  |
|     | (ii) interpret the value of the constant b.                                                                                                                       | (2) |  |
|     | (e) State a long term limitation of the model for $p$ .                                                                                                           | (1) |  |
|     |                                                                                                                                                                   |     |  |
|     |                                                                                                                                                                   |     |  |
|     |                                                                                                                                                                   |     |  |
|     |                                                                                                                                                                   |     |  |
|     |                                                                                                                                                                   |     |  |
|     |                                                                                                                                                                   |     |  |
|     |                                                                                                                                                                   |     |  |

| Question 32 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



| Question 32 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |



| Question 32 continued |                                     |
|-----------------------|-------------------------------------|
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       | (Total for Question 32 is 12 marks) |



| 33. | The mass, $m$ grams, of a radioactive substance, $t$ years after first being observed, is modelled by the equation |        |
|-----|--------------------------------------------------------------------------------------------------------------------|--------|
|     | $m = 25e^{-0.05t}$                                                                                                 |        |
|     | According to the model,                                                                                            |        |
|     | (a) find the mass of the radioactive substance six months after it was first observed,                             | (2)    |
|     | (b) show that $\frac{dm}{dt} = km$ , where k is a constant to be found.                                            | (2)    |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     |                                                                                                                    |        |
|     | (Total for Question 33 is 4 r                                                                                      | narks) |

| <b>34.</b> (a) | Given $y =$ | $2^x$ | show | that |
|----------------|-------------|-------|------|------|
|----------------|-------------|-------|------|------|

$$2^{2x+1} - 17(2^x) + 8 = 0$$

can be written in the form

$$2y^2 - 17y + 8 = 0$$

**(2)** 

(b) Hence solve

$$2^{2x+1} - 17(2^x) + 8 = 0$$

**(4)** 

|                       | Leave |
|-----------------------|-------|
| Question 34 continued | blank |
| Question 54 continued |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
| (Total 6 marks)       |       |



| (2)         |
|-------------|
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
| <del></del> |
|             |
|             |
|             |
|             |
|             |
|             |



| 36. | Given that $y = 2^x$ ,              |     |
|-----|-------------------------------------|-----|
|     | (a) express $4^x$ in terms of $y$ . |     |
|     |                                     | (1) |
|     | (b) Hence, or otherwise, solve      |     |
|     | $8(4^x) - 9(2^x) + 1 = 0$           | (4) |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |
|     |                                     |     |

(Total 5 marks)

(Total 4 marks)

(Total 4 marks)

| (a) Find the value of $8^{\frac{5}{3}}$ (b) Simplify fully $\frac{\left(2x^{\frac{1}{2}}\right)^3}{4x^2}$ | (2) |
|-----------------------------------------------------------------------------------------------------------|-----|
| $4x^2$                                                                                                    | (3) |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |
|                                                                                                           |     |

| (a) $2^y = 8$                |     |
|------------------------------|-----|
| (4) 2 0                      | (1) |
| (b) $2^x \times 4^{x+1} = 8$ |     |
|                              | (4) |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |
|                              |     |

(Total 5 marks)

| Express $8^{2x+3}$ in the form $2^y$ , stating y in terms of x. | (2) |
|-----------------------------------------------------------------|-----|
|                                                                 | (-) |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |



| (2) |
|-----|
| (2) |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

| (a) $25^{\frac{1}{2}}$  |     |
|-------------------------|-----|
|                         | (1) |
| (b) $25^{-\frac{3}{2}}$ |     |
|                         | (2) |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |

|                                               |        | Leave |
|-----------------------------------------------|--------|-------|
| $\frac{1}{2}$                                 |        | Olam  |
| 44. (a) Find the value of $16^{-\frac{1}{4}}$ | (2)    |       |
| 1,4                                           | (2)    |       |
| (b) Simplify $x(2x^{-\frac{1}{4}})^4$         |        |       |
|                                               | (2)    |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
|                                               |        |       |
| (Total 4                                      | marks) |       |

| <b>45.</b> Given that $32\sqrt{2}=2^a$ , find the value of a. |          | Leave blank |
|---------------------------------------------------------------|----------|-------------|
|                                                               | (3)      |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
|                                                               |          |             |
| (Total                                                        | 3 marks) |             |

|    |                                                   |     | Le |
|----|---------------------------------------------------|-----|----|
|    | (a) Write down the value of $125^{\frac{1}{3}}$ . |     | bl |
| 6. | (a) Write down the value of 125 <sup>3</sup> .    | (1) |    |
|    | (b) Find the value of $125^{-\frac{2}{3}}$ .      | (-) |    |
|    | (b) Find the value of 125 <sup>3</sup> .          | (2) |    |
|    |                                                   | (2) |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |
|    |                                                   |     |    |

|     |     |                                               | Leave |
|-----|-----|-----------------------------------------------|-------|
| 4.5 | ( ) | Write down the value of $16^{\frac{1}{4}}$ .  |       |
| 47. | (a) | Write down the value of 16 <sup>4</sup> . (1) |       |
|     |     |                                               |       |
|     | (b) | Simplify $(16x^{12})^{\frac{3}{4}}$ . (2)     |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     |                                               |       |
|     |     | (Total 3 marks)                               |       |

**48.** (i) Find the value of y for which

$$1.01^{y-1} = 500$$

Give your answer to 2 decimal places.

**(2)** 

(ii) Given that

$$2\log_4(3x+5) = \log_4(3x+8) + 1, \qquad x > -\frac{5}{3}$$

(a) show that

$$9x^2 + 18x - 7 = 0$$

**(4)** 

(b) Hence solve the equation

$$2\log_4(3x+5) = \log_4(3x+8) + 1, \qquad x > -\frac{5}{3}$$
 (2)

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |

| uestion 48 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| uestion 48 continued | 1 |
|----------------------|---|
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |



| Question 48 continued | L |
|-----------------------|---|
| guestion 40 continueu |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |



| <b>).</b> (i) | $2\log(x+a) = \log(16a^6)$ , where a is a positive constant            |     |
|---------------|------------------------------------------------------------------------|-----|
| Fin           | dx in terms of $a$ , giving your answer in its simplest form.          | (3) |
| (ii)          | $\log_3(9y + b) - \log_3(2y - b) = 2$ , where b is a positive constant |     |
| Fin           | dy in terms of $b$ , giving your answer in its simplest form.          | (4) |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |
|               |                                                                        |     |

| uestion 49 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

$$\log_3(3b+1) - \log_3(a-2) = -1, \quad a > 2$$

express b in terms of a.

(3)

**(4)** 

## (ii) Solve the equation

$$2^{2x+5} - 7(2^x) = 0$$

giving your answer to 2 decimal places. (Solutions based entirely on graphical or numerical methods are not acceptable.)

| (Total 7 marks) |
|-----------------|

|                 | al places.                                                       | (3) |
|-----------------|------------------------------------------------------------------|-----|
| (ii) Find the v | values of y such that                                            |     |
|                 | $\log_2(11y - 3) - \log_2 3 - 2\log_2 y = 1,  y > \frac{3}{11}$  |     |
|                 | $\log_2(11y - 3) - \log_2 3 - 2 \log_2 y - 1,  y > \frac{1}{11}$ | (6) |
|                 |                                                                  | (0) |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |
|                 |                                                                  |     |

| Question 51 continued | I t             |
|-----------------------|-----------------|
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       |                 |
|                       | (Total 9 marks) |



| <i>5</i> 7 | (i) | Colvic |
|------------|-----|--------|
| 52.        | (i) | Solve  |
|            |     |        |

$$5^{y} = 8$$

giving your answer to 3 significant figures.

**(2)** 

(ii) Use algebra to find the values of x for which

$$\log_2(x+15) - 4 = \frac{1}{2}\log_2 x$$

(6)

| 53. | (i) | Find | the | exact | value | of x | for | which |
|-----|-----|------|-----|-------|-------|------|-----|-------|
|     |     |      |     |       |       |      |     |       |

$$\log_2(2x) = \log_2(5x + 4) - 3$$

**(4)** 

(ii) Given that

$$\log_a y + 3\log_a 2 = 5$$

express y in terms of a.

Give your answer in its simplest form.

(3)

Given that  $\log_3 x = a$ , find in terms of a, **54.** (a)  $\log_3 (9x)$ **(2)** (b)  $\log_3\left(\frac{x^5}{81}\right)$ **(3)** giving each answer in its simplest form. (c) Solve, for x,  $\log_3(9x) + \log_3\left(\frac{x^5}{81}\right) = 3$ giving your answer to 4 significant figures. **(4)** 

| uestion 54 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| 55. Given that   | $2\log_2(x+15) - \log_2 x = 6$ |     |
|------------------|--------------------------------|-----|
| (a) Show that    | $x^2 - 34x + 225 = 0$          | (5) |
| (b) Hence, or ot | herwise, solve the equation    |     |
|                  | $2\log_2(x+15) - \log_2 x = 6$ | (2) |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |
|                  |                                |     |

| $2\log_3 x - \log_3(x - 2) = 2$ |     |
|---------------------------------|-----|
| C <sub>3</sub> C <sub>3</sub> , | (5) |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |
|                                 |     |

| (a) show that $\log_3 y = 1 + 2\log_3 x$    |    |
|---------------------------------------------|----|
|                                             | (3 |
| (b) Hence, or otherwise, solve the equation |    |
| $1 + 2\log_3 x = \log_3(28x - 9)$           |    |
|                                             | (; |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |
|                                             |    |

| 58. | Find, giving your answer to 3 significant figures where appropriate, the value of which | for |
|-----|-----------------------------------------------------------------------------------------|-----|
|     | (a) $5^x = 10$ ,                                                                        | (2) |
|     | (b) $\log_3(x-2) = -1$ .                                                                | (2) |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     |                                                                                         |     |
|     | (Total 4 ms                                                                             |     |

| $2\log_3(x-5) - \log_3(2x-13) = 1$ ,                                |     |
|---------------------------------------------------------------------|-----|
| show that $x^2 - 16x + 64 = 0$ .                                    |     |
| show that $x - 16x + 64 = 0$ .                                      | (5) |
|                                                                     | ,   |
| (b) Hence, or otherwise, solve $2\log_3(x-5) - \log_3(2x-13) = 1$ . | (2) |
|                                                                     | (-) |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |
|                                                                     |     |

| Leave |  |
|-------|--|
| hlank |  |

| 60. | The adult population of a town is 25 000 at the end of Year 1.                                                                                                                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | A model predicts that the adult population of the town will increase by 3% each year, forming a geometric sequence.                                                                                    |
|     | (a) Show that the predicted adult population at the end of Year 2 is 25750. (1)                                                                                                                        |
|     | (b) Write down the common ratio of the geometric sequence. (1)                                                                                                                                         |
|     | The model predicts that Year $N$ will be the first year in which the adult population of the town exceeds $40000$ .                                                                                    |
|     | (c) Show that                                                                                                                                                                                          |
|     | $(N-1)\log 1.03 > \log 1.6$ (3)                                                                                                                                                                        |
|     | (d) Find the value of $N$ . (2)                                                                                                                                                                        |
|     | At the end of each year, each member of the adult population of the town will give £1 to a charity fund.                                                                                               |
|     | Assuming the population model,                                                                                                                                                                         |
|     | <ul><li>(e) find the total amount that will be given to the charity fund for the 10 years from the end of Year 1 to the end of Year 10, giving your answer to the nearest £1000.</li><li>(3)</li></ul> |
|     |                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                        |
| _   |                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                        |

|                       | Leave |
|-----------------------|-------|
| Overtion (0 continued | blank |
| Question 60 continued |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
| (Total 10 marks)      |       |



|    | Leave<br>blank |
|----|----------------|
| 2) |                |
| 5) |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |
| _  |                |

|                   | $\log_x 64 = 2$                                    | (2  |
|-------------------|----------------------------------------------------|-----|
|                   |                                                    | (2  |
| (b) Solve for $x$ |                                                    |     |
|                   | $\log_2(11 - 6x) = 2\log_2(x - 1) + 3$             |     |
|                   | $\log_2(11 - 0\lambda) = 2\log_2(\lambda - 1) + 3$ | (6  |
|                   |                                                    | · · |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |
|                   |                                                    |     |

|     | Leave<br>blank |  |
|-----|----------------|--|
| (2) |                |  |
| (5) |                |  |
|     |                |  |
|     |                |  |
|     |                |  |
|     |                |  |
| _   |                |  |
|     |                |  |

| $\log_2 y = -3$                                     | (2) |
|-----------------------------------------------------|-----|
| (b) Find the values of x such that                  |     |
| $\frac{\log_2 32 + \log_2 16}{\log_2 x} = \log_2 x$ |     |
|                                                     | (5) |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |
|                                                     |     |

| find the value of $x$ . | $\log_5(4-x) - 2\log_5 x = 1,$ |     |
|-------------------------|--------------------------------|-----|
|                         |                                | (6) |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |
|                         |                                |     |

| a=3b,                               |     |
|-------------------------------------|-----|
| $\log_3 a + \log_3 b = 2.$          |     |
| Give your answers as exact numbers. |     |
|                                     | (6) |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |

| 66. | The  | value | of a | car | is | modelled | bv    | the | formu    | la |
|-----|------|-------|------|-----|----|----------|-------|-----|----------|----|
| 00. | 1110 | varue | OI a | Cai | 13 | moderica | $v_y$ | uic | IOIIIIu. | IU |

$$V = 16000e^{-kt} + A, \qquad t \geqslant 0, t \in \mathbb{R}$$

where V is the value of the car in pounds, t is the age of the car in years, and k and A are positive constants.

Given that the value of the car is £17500 when new and £13500 two years later,

(a) find the value of A,

(1)

(b) show that  $k = \ln\left(\frac{2}{\sqrt{3}}\right)$ 

**(4)** 

(c) Find the age of the car, in years, when the value of the car is  $\pounds 6000$ 

Give your answer to 2 decimal places.

**(4)** 

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |

| uestion 66 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| estion 66 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



|                       | Leave |
|-----------------------|-------|
|                       | blank |
| Question 66 continued |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
| (Total 9 marks)       |       |



| 7. | Find the exact solutions, in their simplest form, to the equations |     |  |  |
|----|--------------------------------------------------------------------|-----|--|--|
|    | (a) $e^{3x-9} = 8$                                                 | (3) |  |  |
|    | (b) $\ln(2n + 5) = 2 + \ln(4 - n)$                                 |     |  |  |
|    | (b) $ln(2y + 5) = 2 + ln(4 - y)$                                   | (4) |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
| _  |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
| _  |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |
|    |                                                                    |     |  |  |

| uestion 67 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| 68. | The amount of an antibiotic in the bloodstream, from a given dose, is modelled by the formula                                                                                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $x = D e^{-0.2t}$                                                                                                                                                                 |
|     | where $x$ is the amount of the antibiotic in the bloodstream in milligrams, $D$ is the dose given in milligrams and $t$ is the time in hours after the antibiotic has been given. |
|     | A first dose of 15 mg of the antibiotic is given.                                                                                                                                 |
|     | (a) Use the model to find the amount of the antibiotic in the bloodstream 4 hours after the dose is given. Give your answer in mg to 3 decimal places.  (2)                       |
|     | A second dose of 15 mg is given 5 hours after the first dose has been given. Using the same model for the second dose,                                                            |
|     | (b) show that the <b>total</b> amount of the antibiotic in the bloodstream 2 hours after the second dose is given is 13.754 mg to 3 decimal places. (2)                           |
|     | No more doses of the antibiotic are given. At time <i>T</i> hours after the second dose is given, the total amount of the antibiotic in the bloodstream is 7.5 mg.                |
|     | (c) Show that $T = a \ln \left( b + \frac{b}{e} \right)$ , where a and b are integers to be determined.                                                                           |
|     | (4)                                                                                                                                                                               |
|     |                                                                                                                                                                                   |
|     |                                                                                                                                                                                   |
|     |                                                                                                                                                                                   |
|     |                                                                                                                                                                                   |
|     |                                                                                                                                                                                   |
|     |                                                                                                                                                                                   |
|     |                                                                                                                                                                                   |
|     |                                                                                                                                                                                   |
|     |                                                                                                                                                                                   |
|     |                                                                                                                                                                                   |

| uestion 68 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| 69. | Water is being heated in an electric kettle. The temperature, $\theta$ °C, of the water $t$ seconds after the kettle is switched on, is modelled by the equation |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\theta = 120 - 100e^{-\lambda t}, \qquad 0 \leqslant t \leqslant T$                                                                                             |
|     | (a) State the value of $\theta$ when $t = 0$ (1)                                                                                                                 |
|     | Given that the temperature of the water in the kettle is $70^{\circ}$ C when $t = 40$ ,                                                                          |
|     | (b) find the exact value of $\lambda$ , giving your answer in the form $\frac{\ln a}{b}$ , where $a$ and $b$ are integers.                                       |
|     | (4)                                                                                                                                                              |
|     | When $t = T$ , the temperature of the water reaches 100 °C and the kettle switches off.                                                                          |
|     | (c) Calculate the value of <i>T</i> to the nearest whole number. (2)                                                                                             |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     |                                                                                                                                                                  |
|     | When $t = T$ , the temperature of the water reaches 100 °C and the kettle switches off.  (c) Calculate the value of $T$ to the nearest whole number.             |



Figure 1

Figure 1 is a sketch showing part of the curve with equation  $y = 2^{x+1} - 3$  and part of the line with equation y = 17 - x.

The curve and the line intersect at the point A.

(a) Show that the x coordinate of A satisfies the equation

$$x = \frac{\ln(20 - x)}{\ln 2} - 1$$

**(3)** 

| estion 70 continued |   |
|---------------------|---|
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     | _ |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |

| (a) $2\ln(2x+1) - 10 = 0$ | (2) |
|---------------------------|-----|
| (b) $3^x e^{4x} = e^7$    |     |
|                           | (4) |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |

72. A rare species of primrose is being studied. The population, P, of primroses at time t years after the study started is modelled by the equation

$$P = \frac{800e^{0.1t}}{1 + 3e^{0.1t}}, \quad t \geqslant 0, \quad t \in \mathbb{R}$$

(a) Calculate the number of primroses at the start of the study.

**(2)** 

(b) Find the exact value of t when P = 250, giving your answer in the form  $a \ln(b)$  where a and b are integers.

(4)

- (c) Find the exact value of  $\frac{dP}{dt}$  when t = 10. Give your answer in its simplest form. (4)
- (d) Explain why the population of primroses can never be 270

**(1)** 

| nestion 72 continued | <br> |
|----------------------|------|
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      | <br> |
|                      | <br> |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |
|                      |      |



| 73  | Find | algebraically | the | exact | solutions | tο | the | equations |
|-----|------|---------------|-----|-------|-----------|----|-----|-----------|
| 13. | THIU | aigeoraicany  | une | CXaci | Solutions | ш  | uic | equations |

(a) 
$$ln(4-2x) + ln(9-3x) = 2ln(x+1),$$
  $-1 < x < 2$ 

**(5)** 

(b) 
$$2^x e^{3x+1} = 10$$

Give your answer to (b) in the form  $\frac{a + \ln b}{c + \ln d}$  where a, b, c and d are integers.

**(5)** 

(Total 10 marks)

74.



Figure 3

The population of a town is being studied. The population P, at time t years from the start of the study, is assumed to be

$$P = \frac{8000}{1 + 7e^{-kt}}, \qquad t \geqslant 0,$$

where k is a positive constant.

The graph of *P* against *t* is shown in Figure 3.

Use the given equation to

(a) find the population at the start of the study,

**(2)** 

(b) find a value for the expected upper limit of the population.

**(1)** 

Given also that the population reaches 2500 at 3 years from the start of the study,

(c) calculate the value of k to 3 decimal places.

**(5)** 

Using this value for k,

(d) find the population at 10 years from the start of the study, giving your answer to 3 significant figures.

**(2)** 

(e) Find, using  $\frac{dP}{dt}$ , the rate at which the population is growing at 10 years from the start of the study.

**(3)** 

| Question 74 continued |                  | Leav<br>blan |
|-----------------------|------------------|--------------|
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       |                  |              |
|                       | (Total 13 marks) |              |



| 75. The value of Bob's car can be calculated from the formula                                                                      |                      |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| $V = 17000e^{-0.25t} + 2000e^{-0.5t} + 500$                                                                                        |                      |
| where $V$ is the value of the car in pounds $(£)$ and $t$ is the age in years.                                                     |                      |
| (a) Find the value of the car when $t = 0$                                                                                         | (4)                  |
|                                                                                                                                    | (1)                  |
| (b) Calculate the exact value of $t$ when $V = 9500$                                                                               | (4)                  |
| (c) Find the rate at which the value of the car is decreasing at the ins Give your answer in pounds per year to the nearest pound. | stant when $t = 8$ . |
| orve your answer in pounds per your to the nearest pound.                                                                          | (4)                  |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |
|                                                                                                                                    |                      |

| nestion 75 continued |                 |
|----------------------|-----------------|
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      |                 |
|                      | (Total 9 marks) |



| $A=20e^{1.5t},  t\geqslant 0$                                                                                  |           |
|----------------------------------------------------------------------------------------------------------------|-----------|
| (a) Write down the area of the culture at midday.                                                              | (1)       |
| (b) Find the time at which the area of the culture is twice its area at midday. Conswer to the nearest minute. | Bive your |
|                                                                                                                | (5)       |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |
|                                                                                                                |           |

| 7. The mass, $m$ grams, of a leaf $t$ days after it has been picked from a tre $m = p e^{-kt}$ | e is given by       |
|------------------------------------------------------------------------------------------------|---------------------|
| where $k$ and $p$ are positive constants.                                                      |                     |
| When the leaf is picked from the tree, its mass is 7.5 grams and 4 day 2.5 grams.              | vs later its mass i |
| (a) Write down the value of $p$ .                                                              | (1                  |
| (b) Show that $k = \frac{1}{4} \ln 3$ .                                                        | (4                  |
| (c) Find the value of t when $\frac{dm}{dt} = -0.6 \ln 3$ .                                    | (6                  |
|                                                                                                |                     |
|                                                                                                |                     |
|                                                                                                |                     |
|                                                                                                |                     |
|                                                                                                |                     |
|                                                                                                |                     |

(Total 11 marks)

| 78. | Joan brings a cup of hot tea into a room and places the cup on a table. At time $t$ minutes after Joan places the cup on the table, the temperature, $\theta$ °C, of the tea is modelled by the equation |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\theta = 20 + Ae^{-kt},$                                                                                                                                                                                |
|     | where $A$ and $k$ are positive constants.                                                                                                                                                                |
|     | Given that the initial temperature of the tea was 90°C,                                                                                                                                                  |
|     | (a) find the value of A. (2)                                                                                                                                                                             |
|     | The tea takes 5 minutes to decrease in temperature from 90°C to 55°C.                                                                                                                                    |
|     | (b) Show that $k = \frac{1}{5} \ln 2$ . (3)                                                                                                                                                              |
|     | <ul> <li>(c) Find the rate at which the temperature of the tea is decreasing at the instant when t = 10. Give your answer, in °C per minute, to 3 decimal places.</li> </ul>                             |
|     |                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                          |

| restion 78 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| <b>79.</b> | (a) | Simplify fully |   |
|------------|-----|----------------|---|
|            |     |                | 2 |
|            |     |                | χ |

 $\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}$ 

(3)

Given that

$$ln(2x^2 + 9x - 5) = 1 + ln(x^2 + 2x - 15), \quad x \neq -5,$$

| (0) | find x in terms of e. |     |
|-----|-----------------------|-----|
|     |                       | (4) |

(Total 7 marks)

(Total 8 marks)

| 81. | Rabbits were introduced onto an island. | The number of rabbits, | P, t years | after they | were |
|-----|-----------------------------------------|------------------------|------------|------------|------|
|     | introduced is modelled by the equation  |                        |            |            |      |

$$P = 80e^{\frac{1}{5}t}, \qquad t \in \mathbb{R}, \ t \geqslant 0$$

(a) Write down the number of rabbits that were introduced to the island.

(1)

(b) Find the number of years it would take for the number of rabbits to first exceed 1000.

**(2)** 

(c) Find  $\frac{dP}{dt}$ .

**(2)** 

(d) Find *P* when  $\frac{dP}{dt} = 50$ .

(3)

(Total 8 marks)

| $y = 4e^{2x+1}.$ The y-coordinate of P is 8.                       |     |
|--------------------------------------------------------------------|-----|
|                                                                    |     |
| (a) Find, in terms of ln 2, the <i>x</i> -coordinate of <i>P</i> . | (2) |
|                                                                    | (2) |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |

| $R = 1000e^{-ct}, 	 t \geqslant 0.$                                                |     |
|------------------------------------------------------------------------------------|-----|
| where $R$ is the number of atoms at time $t$ years and $c$ is a positive constant. |     |
| (a) Find the number of atoms when the substance started to decay.                  | (1) |
| It takes 5730 years for half of the substance to decay.                            |     |
| (b) Find the value of $c$ to 3 significant figures.                                | (4  |
| (c) Calculate the number of atoms that will be left when $t = 22 920$ .            | (2  |
| (d) In the space provided on page 13, sketch the graph of $R$ against $t$ .        | (2  |
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |