EXPERT TUITION

Maths Questions By Topic:

Integration Mark Scheme

A-Level Edexcel

ر 0207 060 4494

www.expert-tuition.co.uk

online.expert-tuition.co.uk

🖂 enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents	
<u>New Spec</u>	
Paper 1	Page 1
Paper 2	Page 36
<u>Old Spec</u>	
Core 1	Page 70
Core 2	Page 105
Core 4	Page 133

Question	Scheme	Marks	AOs
1 (a)	$\lim_{\delta x \to 0} \sum_{x=2.1}^{6.3} \frac{2}{x} \delta x = \int_{2.1}^{6.3} \frac{2}{x} \mathrm{d}x$	B1	1.2
		(1)	
(b)	$= \left[2\ln x\right]_{2.1}^{6.3} = 2\ln 6.3 - 2\ln 2.1$	M1	1.1b
	$= \ln 9$ CSO	A1	1.1b
		(2)	
			(3 marks)
Notes:			

Mark (a) and (b) as one

(a)

B1: States that $\int_{2.1}^{6.3} \frac{2}{x} dx$ or equivalent such as $2 \int_{2.1}^{6.3} x^{-1} dx$ but must include the limits and the dx. Condone $dx \leftrightarrow \delta x$ as it is very difficult to tell one from another sometimes (b) M1: Know that $\int \frac{1}{x} dx = \ln x$ and attempts to apply the limits (either way around) Condone $\int \frac{2}{x} dx = p \ln x$ (including p = 1) or $\int \frac{2}{x} dx = p \ln qx$ as long as the limits are applied. Also be aware that $\int \frac{2}{x} dx = \ln x^2$, $\int \frac{2}{x} dx = 2\ln |x| + c$ and $\int \frac{2}{x} dx = 2\ln cx$ o.e. are also correct $[p \ln x]_{2.1}^{6.3} = p \ln 6.3 - p \ln 2.1$ is sufficient evidence to award this mark A1: CSO ln 9. Also answer = $\ln 3^2$ so k = 9 is fine. Condone $\ln |9|$

The method mark must have been awarded. Do not accept answers such as $\ln \frac{39.69}{4.41}$

Note that solutions appearing from "rounded" decimal work when taking lns should not score the final mark. It is a "show that" question

E.g. $[2 \ln x]_{2.1}^{6.3} = 2 \ln 6.3 - 2 \ln 2.1 = 2.197 = \ln k \implies k = e^{2.197} = 8.998 = 9$

Question	Scheme	Marks	AOs
2	$\int x^{3} \ln x dx = \frac{x^{4}}{4} \ln x - \int \frac{x^{4}}{4} \times \frac{1}{x} dx$	M1	1.1b
	$x^4 x^4 $	M1	1.1b
	$=\frac{\pi}{4}\ln x - \frac{\pi}{16}(+c)$	A1	1.1b
	$\int_{1}^{e^{2}} x^{3} \ln x dx = \left[\frac{x^{4}}{4} \ln x - \frac{x^{4}}{16}\right]_{1}^{e^{2}} = \left(\frac{e^{8}}{4} \ln e^{2} - \frac{e^{8}}{16}\right) - \left(-\frac{1^{4}}{16}\right)$	M1	2.1
	$=\frac{7}{16}e^8+\frac{1}{16}$	A1	1.1b
		(5)	
			(5 marks)
Notes:			

M1: Integrates by parts the right way round.

Look for $kx^4 \ln x - \int kx^4 \times \frac{1}{x} dx$ o.e. with k > 0. Condone a missing dx

M1: Uses a correct method to integrate an expression of the form $\int kx^4 \times \frac{1}{x} dx \rightarrow c x^4$

A1:
$$\int x^3 \ln x \, dx = \frac{x^4}{4} \ln x - \frac{x^4}{16} (+c)$$
 which may be left unsimplified

M1: Attempts to substitute 1 and e^2 into an expression of the form $\pm px^4 \ln x \pm qx^4$, subtracts and uses $\ln e^2 = 2$ (which may be implied).

A1: $\frac{7}{16}e^8 + \frac{1}{16}$ o.e. Allow $0.4375e^8 + 0.0625$ or uncancelled fractions. NOT ISW: $7e^8 + 1$ is A0

You may see attempts where substitution has been attempted.

E.g.
$$u = \ln x \Longrightarrow x = e^{u}$$
 and $\frac{dx}{du} = e^{u}$

M1: Attempts to integrate the correct way around condoning slips on the coefficients

$$\int x^{3} \ln x \, dx = \int e^{4u} u \, du = \frac{e^{4u}}{4} u - \int \frac{e^{4u}}{4} \, du$$

M1 A1: $\int x^3 \ln x \, dx = \frac{e}{4} u - \frac{e}{16} (+c)$

M1 A1: Substitutes 0 and 2 into an expression of the form $\pm pue^{4u} \pm qe^{4u}$ and subtracts

.....

It is possible to use integration by parts "the other way around"

To do this, candidates need to know or use $\int \ln x \, dx = x \ln x - x$ FYI $I = \int x^3 \ln x \, dx = x^3 (x \ln x - x) - \int (x \ln x - x) \times 3x^2 \, dx = x^3 (x \ln x - x) - 3I + \frac{3}{4}x^4$ Hence $4I = x^4 \ln x - \frac{1}{4}x^4 \Rightarrow I = \frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$

Score M1 for a full attempt at line 1 (condoning bracketing and coefficient slips) followed by M1 for line 2 where terms in *I* o.e. to form the answer.

Question	Scheme	Marks	AOs
3 (a)	Attempts $y \cdot \frac{dx}{dt} = (2\sin 2t + 3\sin t) \times 16\sin t \cos t$ and uses $\sin 2t = 2\sin t \cos t$	M1	2.1
	Correct expanded integrand. Usually for one of $(R) = \int \underbrace{48 \sin^2 t \cos t + 16 \sin^2 2t}_{(R)} dt$ $(R) = \int \underbrace{48 \sin^2 t \cos t + 64 \sin^2 t \cos^2 t}_{(R)} dt$ $(R) = \int \underbrace{24 \sin 2t \sin t + 16 \sin^2 2t}_{(R)} dt$	A1	1.1b
	Attempts to use $\cos 4t = 1 - 2\sin^2 2t = \left(1 - 8\sin^2 t \cos^2 t\right)$	M1	1.1b
	$R = \int_0^a 8 - 8\cos 4t + 48\sin^2 t \cos t dt *$	A1*	2.1
	Deduces $a = \frac{\pi}{4}$	B1	2.2a
		(5)	
(b)	$\int 8 - 8\cos 4t + 48\sin^2 t \cos t dt = 8t - 2\sin 4t + 16\sin^3 t$	M1 A1	2.1 1.1b
	$\left[8t - 2\sin 4t + 16\sin^3 t\right]_0^{\frac{\pi}{4}} = 2\pi + 4\sqrt{2}$	M1 A1	2.1 1.1b
		(4)	
		(9	marks)
Notes:			

(a) Condone work in another variable, say $\theta \leftrightarrow t$ if used consistently for the first 3 marks M1: For the key step in attempting $y \cdot \frac{dx}{dt} = (2\sin 2t + 3\sin t) \times 16\sin t \cos t$ with an attempt to use $\sin 2t = 2\sin t \cos t$ Condone slips in finding $\frac{dx}{dt}$ but it must be of the form $k \sin t \cos t$ E.g. I $y \cdot \frac{dx}{dt} = (2\sin 2t + 3\sin t) \times k \sin t \cos t = (4\sin t \cos t + 3\sin t) \times k \sin t \cos t$ E.g. II $y \cdot \frac{dx}{dt} = (2\sin 2t + 3\sin t) \times k \sin t \cos t = (2\sin 2t + 3\sin t) \times \frac{k}{2}\sin 2t$

A1: A correct (expanded) integrand in t. Don't be concerned by the absence of \int or dt or limits

$$(R) = \int \underbrace{48\sin^2 t \cos t + 16\sin^2 2t}_{\text{but watch for other correct versions such as}} (R) = \int \underbrace{48\sin^2 t \cos t + 64\sin^2 t \cos^2 t}_{\text{cos}^2 t \sin t + 16\sin^2 2t} dt$$

M1: Attempts to use $\cos 4t = \pm 1 \pm 2 \sin^2 2t$ to get the integrand in the correct form.

If they have the form $P\sin^2 2t$ it is acceptable to write $P\sin^2 2t = \frac{P}{2}(\pm 1 \pm \cos 4t)$

If they have the form $Q\sin^2 t \cos^2 t$ sight and use of $\sin 2t$ and/or $\cos 2t$ will usually be seen first. There are many ways to do this, below is such an example

$$Q\sin^{2} t\cos^{2} t = Q\left(\frac{1-\cos 2t}{2}\right)\left(\frac{1+\cos 2t}{2}\right) = Q\left(\frac{1-\cos^{2} 2t}{4}\right) = Q\left(\frac{1}{4}-\frac{\cos^{2} 2t}{4}\right) = Q\left(\frac{1}{4}-\frac{1+\cos 4t}{8}\right)$$

Allow candidates to start with the given answer and work backwards using the same rules. So expect to see $\cos 4t = \pm 1 \pm 2 \times \sin^2 2t$ or $\cos 4t = \pm 2 \times \cos^2 2t \pm 1$ before double angle identities for $\sin 2t$ or $\cos 2t$ are used.

A1*: Proceeds to the given answer with correct working. The order of the terms is not important. Ignore limits for this mark. The integration sign and the *dt* must be seen on their final answer. If they have worked backwards there must be a concluding statement to the effect that they know that they have shown it. The integration sign and the *dt* must also be seen

E.g. Reaches
$$\int 48\sin^2 t \cos t + 64\sin^2 t \cos^2 t \, dt$$

Answer is
$$\int 8-8\cos 4t + 48\sin^2 t \cos t \, dt$$
$$= \int 8-8(1-2\sin^2 2t) + 48\sin^2 t \cos t \, dt$$
$$= \int 16\sin^2 2t + 48\sin^2 t \cos t \, dt$$
$$= \int 64\sin^2 t \cos^2 t + 48\sin^2 t \cos t \, dt$$
which is the same, \checkmark

B1: Deduces $a = \frac{\pi}{4}$. It may be awarded from the upper limit and can be awarded from (b) **(b)**

M1: For the key process in using a correct approach to integrating the trigonometric terms. May be done separately.

There may be lots of intermediate steps (e.g. let $u = \sin t$).

There are other more complicated methods so look carefully at what they are doing.

 $\int 8 - 8\cos 4t + 48\sin^2 t \cos t \, dt = \dots \pm P\sin 4t \pm Q\sin^3 t \text{ where } P \text{ and } Q \text{ are constants}$ A1: $\int 8 - 8\cos 4t + 48\sin^2 t \cos t \, dt = 8t - 2\sin 4t + 16\sin^3 t (+c)$

If they have written $16\sin^3 t$ as $16\sin t^3$ only award if further work implies a correct answer. Similarly, 8t may be written as 8x. Award if further work implies 8t, e.g. substituting in their limits. Do not penalise this sort of slip at all, these are intermediate answers.

- M1: Uses the limits their *a* and 0 where $a = \frac{\pi}{6}, \frac{\pi}{4}$ or $\frac{\pi}{3}$ in an expression of the form $kt \pm P \sin 4t \pm Q \sin^3 t$ leading to an exact answer. Ignore evidence at lower limit as terms are 0
- A1: CSO $2\pi + 4\sqrt{2}$ or exact simplified equivalent such as $2\pi + \frac{8}{\sqrt{2}}$ or $2\pi + \sqrt{32}$.

Be aware that $\int_{0}^{\frac{\pi}{4}} 8 - 8\cos 4t + 48\sin^{2} t \cos t \, dt = 8t + \lambda \sin 4t + 16\sin^{3} t (+c)$ would lead to the correct answer but would only score M1 A0 M1 A0

Questi	stion Scheme Marks				
4	$x^n \rightarrow x^{n+1}$	M1	1.1b		
	$\int \left(8x^{3} - \frac{3}{2\sqrt{x}} + 5\right) dx = \frac{8x^{4}}{4} \dots + 5x$	A1	1.1b		
	$= \dots - 2 \times \frac{3}{2} x^{\frac{1}{2}} + \dots$	A1	1.1b		
	$=2x^4-3x^{\frac{1}{2}}+5x+c$	A1	1.1b		
		(4)			
		(4	marks)		
	Notes				
M1:	For raising any correct power of x by 1 including $5 \rightarrow 5x$ (not for $+c$) Al $x^3 \rightarrow x^{3+1}$	so allow	eg		
A1:	For 2 correct non-fractional power terms (allow unsimplified coefficients) on separate lines. The indices must be processed. The $+ c$ does not count	For 2 correct non-fractional power terms (allow unsimplified coefficients) and may appear on separate lines. The indices must be processed. The $+ c$ does not count as a correct term			
	here. Condone the 1 appearing as a power or denominator such as $\frac{5x^{1}}{1}$ fo	r this mar	·k.		
A1:	For the correct fractional power term (allow unsimplified) Allow eg $+-2$ 3	$\times 1.5\sqrt{x^1}$			
	Also allow fractions within fractions for this mark such as $\frac{\overline{2}}{\frac{1}{2}}x^{\frac{1}{2}}$				
A1:	All correct and simplified and on one line including + c. Allow $-3\sqrt{x}$ or Do not accept $+-3x^{\frac{1}{2}}$ for this mark.	$-\sqrt{9x}$ fo	$r -3x^{\frac{1}{2}}$.		
	Award once a correct expression is seen and isw but if there is any additional/incorrect notation and no correct expression has been seen on its own, withhold the final mark.				
	Eg. $\int 2x^4 - 3x^{\frac{1}{2}} + 5x + c dx$ or $2x^4 - 3x^{\frac{1}{2}} + 5x + c = 0$ with no correct expression earlier are both A0.	ression se	en		

Questi	on Scheme	Marks	AOs
5(a)	$y = \frac{1}{3}x^2 - 2\sqrt{x} + 3 \Longrightarrow \frac{dy}{dx} = \frac{2}{3}x - x^{-\frac{1}{2}}$	M1 A1	1.1b 1.1b
	$x = 4 \Longrightarrow y = \frac{13}{3}$	B1	1.1b
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=4} = \frac{2}{3} \times 4 - 4^{-\frac{1}{2}} \left(=\frac{13}{6}\right) \therefore \ y - \frac{13}{3} = \frac{13}{6} \left(x - 4\right)$	M1	2.1
	13x - 6y - 26 = 0*	A1*	1.1b
		(5)	
(b)	$\int \left(\frac{x^2}{3} - 2\sqrt{x} + 3\right) dx = \frac{x^3}{9} - \frac{4}{3}x^{\frac{3}{2}} + 3x(+c)$	M1 A1	1.1b 1.1b
	$y = 0 \Longrightarrow x = 2$	B1	2.2a
	Area of <i>R</i> is $\left[\frac{x^3}{9} - \frac{4}{3}x^{\frac{3}{2}} + 3x\right]_0^4 - \frac{1}{2} \times (4 - "2") \times "\frac{13}{3}" = \frac{76}{9} - \frac{13}{3}$	M1	3.1a
	$=\frac{37}{9}$	A1	1.1b
		(5)	
	Nadar	(10	marks)
	INOLES	<u></u>	
(a) Ca	Iculators: If no algebraic differentiation seen then maximum in a) is N $\frac{1}{2}$	10A0B1N	/11A0*
M1:	$x^n \to x^{n-1}$ seen at least once $\dots x^2 \to \dots x^1, \ \dots x^2 \to \dots x^{-2}, \ 3 \to 0$.		
	Also accept on sight of eg $x^{\frac{1}{2}} \rightarrowx^{\frac{1}{2}-1}$		
A1:	$\frac{2}{3}x - x^{-\frac{1}{2}}$ or any unsimplified equivalent (indices must be processed) acc	ept the us	e of
	0.6x but not rounded or ambiguous values eg $0.6x$ or eg $0.66x$		
B1:	Correct y coordinate of P . May be seen embedded in an attempt of the equ	uation of	l
M1:	Fully correct strategy for an equation for <i>l</i> . Look for $y - \frac{13}{3} = \frac{13}{6} (x - x)$	4) where	e their
	$\frac{13}{6}$ is from differentiating the equation of the curve and substituting in x	=4 into tł	heir $\frac{\mathrm{d}y}{\mathrm{d}x}$
	and the <i>y</i> coordinate is from substituting $x = 4$ into the given equation. If they use $y = mx + c$ they must proceed as far as $c =$ to score this mark.		
Do not allow this mark if they use a perpendicular gradient.A1*: Obtains the printed answer with no errors.			
(b) Calculators: If no algebraic integration seen then maximum in b) is M0A0B1M1A0			
M1:	$x^n \rightarrow x^{n+1}$ seen at least once. Eg $x^2 \rightarrowx^3$, $x^{\frac{1}{2}} \rightarrowx^{\frac{3}{2}}$, $3 \rightarrow 3x^1$. Allo	ow eg	
	$x^2 \rightarrowx^{2+1}$ The +c is not a valid term for this mark.		

A1:
$$\frac{x^{3}}{9} - \frac{4}{3}x^{4} + 3x \text{ or any unsimplified equivalent (indices must be processed) accept the use of exact decimals for $\frac{1}{9}$ (0,1) and $-\frac{4}{3}$ (-1,3) but not rounded or ambiguous values.
B1: Deduces the correct value for x for the intersection of / with the x-axis. May be seen indicated on Figure 2.
M1: Fully correct attempt at the area of the triangle using their values (could use integration)
a correct attempt at the area of the triangle using their values (could use integration)
a correct attempt at the area under the curve using 0 and 4 in their integrated expression
the two values subtracted.
Be aware of those who mix up using the y-coordinate of P and the gradient at P which is
M0. The values embedded in an expression is sufficient to score this mark.
A1: $\frac{37}{9}$ or exact equivalent eg $4\frac{1}{9}$ or 4.1 but not 4.111.... isw after a correct answer
He aware of other strategies to find the area R
eg Finding the area under the curve between 0 and 2 and then the difference between the curve
and the straight line between 2 and 4:

$$\int_{0}^{2} \frac{x^{2}}{3} - 2\sqrt{x} + 3 \, dx + \int_{2}^{\frac{1}{2}} \frac{x^{2}}{3} - 2\sqrt{x} - \frac{13}{6}x + \frac{22}{3} \, dx$$
M1 $x^{*} \rightarrow x^{*-1}$ seen at least once on either integral (or on the equation of the line $y = \frac{1}{3}x + 3$)
A1 for correct integration of either integral $\frac{x^{2}}{9} - \frac{4}{3}x^{2} + 3x$ or $\frac{x^{3}}{9} - \frac{4}{3}x^{2} - \frac{13}{12}x^{2} + \frac{22}{3}x$ (may
be unsimplified/uncollected terms but the indices must be processed with/without the +C)
B1 Correct value for x can be seen from the top of the first integral (or bottom value of the
second integral)
M1 Correct strategy for the area g.
 $\left[\frac{x^{3}}{9} - \frac{4}{3}x^{1} + 3x\right]_{0}^{2} + \left[\frac{x^{3}}{9} - \frac{4}{3}x^{2} - \frac{13}{12}x^{2} + \frac{22}{3}x\right]_{2}^{4} = \frac{62}{9} - \frac{4}{3}(2)^{\frac{1}{2}} + \frac{76}{9} - \frac{101}{9} + \frac{4}{3}(2)^{\frac{1}{2}}$
A1: $\frac{37}{9}$ or exact equivalent eg $4\frac{1}{9}$ or 4.1 but not 4.1 or 4.111....
You could also see use of the area of a trapezium and/or the use of the li$$

Г

Question	Scheme	Marks	AOs	
6(a)	h = 0.5	B1	1.1b	
	$A \approx \frac{1}{2} \times \frac{1}{2} \left\{ 0.4805 + 1.9218 + 2 \left(0.8396 + 1.2069 + 1.5694 \right) \right\}$	M1	1.1b	
	= 2.41	A1	1.1b	
		(3)		
(b)	$\int (\ln x)^2 dx = x(\ln x)^2 - \int x \times \frac{2\ln x}{2\ln x} dx$	M1	3.1a	
	$\int (m x)^2 dx = m (m x)^2 \int \frac{1}{x} dx$	A1	1.1b	
	$= x(\ln x)^{2} - 2\int \ln x dx = x(\ln x)^{2} - 2(x\ln x - \int dx)$	dM1	2.1	
	$= x(\ln x) - 2 \int \ln x dx = x(\ln x) - 2x \ln x + 2x$			
	$\int_{2}^{4} (\ln x)^{2} dx = \left[x (\ln x)^{2} - 2x \ln x + 2x \right]_{2}^{4}$			
	$= 4(\ln 4)^{2} - 2 \times 4\ln 4 + 2 \times 4 - (2(\ln 2)^{2} - 2 \times 2\ln 2 + 2 \times 2)$	ddM1	2.1	
	$= 4(2\ln 2)^{2} - 16\ln 2 + 8 - 2(\ln 2)^{2} + 4\ln 2 - 4$			
	$=14(\ln 2)^2 - 12\ln 2 + 4$	A1	1.1b	
		(5)		
	(8 marks)			
Notes				

B1: Correct strip width. May be implied by $\frac{1}{2} \times \frac{1}{2} \{....\}$ or $\frac{1}{4} \times \{....\}$ M1: Correct application of the trapezium rule.

Look for $\frac{1}{2} \times h'' \{ 0.4805 + 1.9218 + 2(0.8396 + 1.2069 + 1.5694) \}$ condoning slips in the digits.

The bracketing must be correct but it is implied by awrt 2.41

A1: 2.41 only. This is not awrt

(b)

M1: Attempts parts the correct way round to achieve $\alpha x (\ln x)^2 - \beta \int \ln x \, dx$ o.e.

May be unsimplified (see scheme). Watch for candidates who know or learn $\ln x$ d

$$\int \ln x \, \mathrm{d}x = x \ln x - x$$

who may write $\int (\ln x)^2 dx = \int (\ln x) (\ln x) dx = \ln x (x \ln x - x) - \int \frac{x \ln x - x}{x} dx$

A1: Correct expression which may be unsimplified

dM1: Attempts parts again to (only condone coefficient errors) to achieve $\alpha x (\ln x)^2 - \beta x \ln x \pm \gamma x$ o.e.

ddM1: Applies the limits 4 and 2 to an expression of the form $\pm \alpha x (\ln x)^2 \pm \beta x \ln x \pm \gamma x$, subtracts and

applies $\ln 4 = 2 \ln 2$ at least once. Both M's must have been awarded A1: Correct answer

It is possible to do $\int (\ln x)^2 dx$ via a substitution $u = \ln x$ but it is very similar.

M1 A1, dM1: $\int u^2 e^u du = u^2 e^u - \int 2u e^u du = u^2 e^u - 2u e^u \pm 2e^u$

ddM1: Applies appropriate limits and uses $\ln 4 = 2\ln 2$ at least once to an expression of the form $u^2 e^u - \beta u e^u \pm \gamma e^u$ Both M's must have been awarded

Question	Scheme	Marks	AOs
7	$\int \frac{3x^4 - 4}{2x^3} \mathrm{d}x = \int \frac{3}{2}x - 2x^{-3} \mathrm{d}x$	M1 A1	1.1b 1.1b
	$=\frac{3}{2} \times \frac{x^{2}}{2} - 2 \times \frac{x^{-2}}{-2} (+c)$	dM1	3.1a
	$=\frac{3}{4}x^{2}+\frac{1}{x^{2}}+c$ o.e	A1	1.1b
		(4)	
		(4 m	1arks)
Notes: (i) M1: Attempts to divide to form a sum of terms. Implied by two terms with one correct index. $\int \frac{3x^4}{2x^3} - \frac{4}{2x^3} dx$ scores this mark.			
A1: $\int \frac{3}{2}x - 2x^{-3} dx$ o.e such as $\frac{1}{2} \int (3x - 4x^{-3}) dx$. The indices must have been processed on both terms. Condone spurious notation or lack of the integral sign for this mark.			
dM1: For the full strategy to integrate the expression. It requires two terms with one correct index. Look for $=ax^{p} + bx^{q}$ where $p = 2$ or $q = -2$			
A1: Correc	t answer $\frac{3}{4}x^2 + \frac{1}{x^2} + c$ o.e. such as $\frac{3}{4}x^2 + x^{-2} + c$		

QuestionMarksAOs8
$$\int_{k}^{9} \frac{6}{\sqrt{x}} dx = \left[ax^{\frac{1}{2}}\right]_{k}^{9} = 20 \Rightarrow 36 - 12\sqrt{k} = 20$$
M11.1bA11.1b1.1bCorrect method of solving Eg. $36 - 12\sqrt{k} = 20 \Rightarrow k = 0$ dM13.1a $a = \frac{16}{9}$ oeA11.1b $a = \frac{16}{9}$ oeA11.1b(4)Notes:Notes:M1: For setting $\left[ax^{\frac{1}{2}}\right]_{k}^{9} = 20$ A1: A correct equation involving p Eg. $36 - 12\sqrt{k} = 20$ dM1: For a whole strategy to find k . In the scheme it is awarded for setting $\left[ax^{\frac{1}{2}}\right]_{k}^{9} = 20$, using both
limits and proceeding using correct index work to find k . It cannot be scored if $k^{\frac{1}{2}} < 0$ A1: $k = \frac{16}{9}$

Question	Scheme	Marks	AOs	
9(a)	$f(x) = -3x^{2} + 12x + 8 = -3(x \pm 2)^{2} + \dots$	M1	1.1b	
	$=-3(x-2)^{2}+$	A1	1.1b	
	$=-3(x-2)^2+20$	A1	1.1b	
		(3)		
(b)	Coordinates of $M = (2, 20)$	B1ft B1ft	1.1b 2.2a	
		(2)		
(c)	$-3x^2 + 12x + 8 dx = -x^3 + 6x^2 + 8x$	M1 A1	1.1b 1.1b	
	Method to find R = their 2×20 - $\int_{0}^{2} (-3x^{2}+12x+8) dx$	M1	3.1a	
	$R = 40 - \left[-2^3 + 24 + 16\right]$	dM1	1.1b	
	= 8	A1	1.1b	
		(5)		
		(10 n	narks)	
Alt(c)	$\int 3x^2 - 12x + 12 \mathrm{d}x = x^3 - 6x^2 + 12x$	M1 A1	1.1b 1.1b	
	Method to find $R = \int_0^2 3x^2 - 12x + 12 dx$	M1	3.1a	
	$R = 2^3 - 6 \times 2^2 + 12 \times 2$	dM1	1.1b	
	= 8	A1	1.1b	
Notes:				
 (a) M1: Attempts to take out a common factor and complete the square. Award for -3(x±2)² + Alternatively attempt to compare -3x² +12x+8 to ax² + 2abx + ab² + c to find values of a and b A1: Proceeds to a form -3(x-2)² + or via comparison finds a = -3, b = -2 				
A1: $-3(x-2) + 20$				

(b) B1ft: One correct coordinate B1ft: Correct coordinates. Allow as x = ..., y = ...Follow through on their (-b, c)(c) M1: Attempts to integrate. Award for any correct index A1: $\int -3x^2 + 12x + 8 \, dx = -x^3 + 6x^2 + 8x \ (+c)$ (which may be unsimplified) M1: Method to find area of *R*. Look for their $2 \times "20" - \int_{0}^{2^*} f(x) \, dx$ dM1: Correct application of limits on their integrated function. Their 2 must be used A1: Shows that area of R = 8

Question	Scheme	Marks	AOs
10 (a)	$x = u^2 + 1 \Longrightarrow dx = 2udu$ oe	B1	1.1b
	Full substitution $\int \frac{3\mathrm{d}x}{(x-1)(3+2\sqrt{x-1})} = \int \frac{3\times 2u\mathrm{d}u}{(u^2+1-1)(3+2u)}$	M1	1.1b
	Finds correct limits e.g. $p = 2, q = 3$	B1	1.1b
	$= \int \frac{3 \times 2 \not u du}{u^2 (3+2u)} = \int \frac{6 du}{u (3+2u)} *$	A1*	2.1
		(4)	
(b)	$\frac{6}{u(3+2u)} = \frac{A}{u} + \frac{B}{3+2u} \Longrightarrow A = \dots, B = \dots$	M1	1.1b
	Correct PF. $\frac{6}{u(3+2u)} = \frac{2}{u} - \frac{4}{3+2u}$	A1	1.1b
	$\int \frac{6 \mathrm{d}u}{u(3+2u)} = 2\ln u - 2\ln(3+2u) \qquad (+c)$	dM1 A1ft	3.1a 1.1b
	Uses limits $u = "3"$, $u = "2"$ with some correct ln work leading to $k \ln b$ E.g. $(2\ln 3 - 2\ln 9) - (2\ln 2 - 2\ln 7) = 2\ln \frac{7}{6}$	M1	1.1b
	$\ln\frac{49}{36}$	A1	2.1
		(6)	
	(10 mai		
Notes: Ma	rk (a) and (b) together as one complete question		

B1: dx = 2udu or exact equivalent. E.g. $\frac{dx}{du} = 2u$, $\frac{du}{dr} = \frac{1}{2}(x-1)^{-\frac{1}{2}}$

M1: Attempts a full substitution of $x = u^2 + 1$, including $dx \rightarrow ...udu$ to form an integrand in terms of u. Condone slips but there should be an attempt to use the correct substitution on the denominator.

B1: Finds correct limits either states p = 2, q = 3 or sight of embedded values as limits to the integral

A1*: Clear reasoning including one fully correct intermediate line, including the integral signs, leading to the given expression ignoring limits. So B1, M1, B0, A1 is possible if the limits are incorrect, omitted or left as 5 and 10.

M1: Uses correct form of PF leading to values of A and B.

A1: Correct $PF\frac{6}{u(3+2u)} = \frac{2}{u} - \frac{4}{3+2u}$ (Not scored for just the correct values of A and B)

dM1: This is an overall problem solving mark. It is for using the correct PF form and integrating using lns. Look for $P \ln u + Q \ln (3 + 2u)$

A1ft: Correct integration for their $\frac{A}{u} + \frac{B}{3+2u} \rightarrow A\ln u + \frac{B}{2}\ln(3+2u)$ with or without modulus signs

- M1: Uses their 2 and 3 as limits, with at least one correct application of the addition law or subtraction law leading to the form $k \ln b$ or $\ln a$. PF's must have been attempted. Condone bracketing slips. Alternatively changing the *u*'s back to *x*'s and use limits of 5 and 10.
- A1: Proceeds to $\ln \frac{49}{36}$. Answers without working please send to review. **T EXPERT** TUITION

Question	Scheme	Marks	AOs
11 (a)	$x^n \to x^{n+1}$	M1	1.1b
	$\int \left(\frac{5}{2\sqrt{x}} + 3\right) dx = 5\sqrt{x} + 3x$	A1	1.1b
	$\left[5\sqrt{x} + 3x\right]_{1}^{k} = 4 \Longrightarrow 5\sqrt{k} + 3k - 8 = 4$	dM1	1.1b
	$3k + 5\sqrt{k} - 12 = 0 $	A1*	2.1
		(4)	
(b)	$3k + 5\sqrt{k} - 12 = 0 \Longrightarrow \left(3\sqrt{k} - 4\right)\left(\sqrt{k} + 3\right) = 0$	M1	3.1a
	$\sqrt{k} = \frac{4}{3}, (-3)$	A1	1.1b
	$\sqrt{k} = \Rightarrow k =$ oe	dM1	1.1b
	$k = \frac{16}{9}, \aleph$	A1	2.3
		(4)	
	(8 marks)		

Notes

(a)

M1: For $x^n \to x^{n+1}$ on correct indices. This can be implied by the sight of either $x^{\frac{1}{2}}$ or x

- A1: $5\sqrt{x} + 3x$ or $5x^{\frac{1}{2}} + 3x$ but may be unsimplified. Also allow with +c and condone any spurious notation.
- **dM1:** Uses both limits, subtracts, and sets equal to 4. They cannot proceed to the given answer without a line of working showing this.
- A1*: Fully correct proof with no errors (bracketing or otherwise) leading to given answer.

(b)

M1: For a correct method of solving. This could be as the scheme, treating as a quadratic in \sqrt{k} and using allowable method to solve including factorisation, formula etc.

Allow values for \sqrt{k} to be just written down, e.g. allow $\sqrt{k} = \pm \frac{4}{3}$, (± 3)

Alternatively score for rearranging to $5\sqrt{k} = 12 - 3k$ and then squaring to get $...k = (12 - 3k)^2$

A1: $\sqrt{k} = \frac{4}{3}, (-3)$

Or in the alt method it is for reaching a correct 3TQ equation $9k^2 - 97k + 144 = 0$

- **dM1:** For solving to find at least one value for k. It is dependent upon the first M mark. In the main method it is scored for squaring their value(s) of \sqrt{k} In the alternative scored for solving their 3TQ by an appropriate method
- A1: Full and rigorous method leading to $k = \frac{16}{9}$ only. The 9 must be rejected.

Question	Scheme	Marks	AOs
12 (a)	$y = x(x+2)(x-4) = x^3 - 2x^2 - 8x$	B1	1.1b
	$\int x^{3} - 2x^{2} - 8x dx \rightarrow \frac{1}{4}x^{4} - \frac{2}{3}x^{3} - 4x^{2}$	M1	1.1b
	Attempts area using the correct strategy $\int_{-2}^{0} y dx$	dM1	2.2a
	$\left[\frac{1}{4}x^4 - \frac{2}{3}x^3 - 4x^2\right]_{-2}^0 = (0) - \left(4 - \frac{-16}{3} - 16\right) = \frac{20}{3} *$	A1*	2.1
		(4)	
(b)	For setting 'their' $\frac{1}{4}b^4 - \frac{2}{3}b^3 - 4b^2 = \pm \frac{20}{3}$	M1	1.1b
	For correctly deducing that $3b^4 - 8b^3 - 48b^2 + 80 = 0$	A1	2.2a
	Attempts to factorise $(1 - 2)(1 - 2)(2l^2 - l - 20)$	M1	1.1b
	$3b^{4} - 8b^{3} - 48b^{2} \pm 80 = (b+2)(b+2)(3b^{2}b20)$		
	Achieves $(b+2)^2 (3b^2 - 20b + 20) = 0$ with no errors	A1*	2.1
		(4)	
(c)			
	States that between $x = -2$ and $x = 5.442$ the area	B1	1.1b
	above the x-axis = area below the x -axis	B1	2.4
		(2)	
		()	lu marks)

B1: Expands x(x+2)(x-4) to $x^3 - 2x^2 - 8x$ (They may be in a different order)

M1: Correct attempt at integration of their cubic seen in at least two terms.

Look for an expansion to a cubic and $x^n \to x^{n+1}$ seen at least twice

dM1: For a correct strategy to find the area of R_1

It is dependent upon the previous M and requires a substitution of -2 into \pm their integrated function.

The limit of 0 may not be seen. Condone
$$\left[\frac{1}{4}x^4 - \frac{2}{3}x^3 - 4x^2\right]_{-2}^0 = \frac{20}{3}$$
 oe for this mark

A1*: For a rigorous argument leading to area of $R_1 = \frac{20}{3}$ For this to be awarded the integration must be correct and the limits must be the correct way around and embedded or calculated values must be seen.

Eg. Look for
$$-\left(4+\frac{16}{3}-16\right)$$
 or $-\left(\frac{1}{4}\left(-2\right)^4-\frac{2}{3}\left(-2\right)^3-4\left(-2\right)^2\right)$ oe before you see the $\frac{20}{3}$

Note: It is possible to do this integration by parts. **(b)**

- **M1:** For setting their $\frac{1}{4}b^4 \frac{2}{3}b^3 4b^2 = \pm \frac{20}{3}$ or $\left[\frac{1}{4}x^4 \frac{2}{3}x^3 4x^2\right]_{-2}^b = 0$
- A1: Deduces that $3b^4 8b^3 48b^2 + 80 = 0$. Terms may be in a different order but expect integer coefficients. It must have followed $\frac{1}{4}b^4 - \frac{2}{3}b^3 - 4b^2 = -\frac{20}{3}$ oe. Do not award this mark for $\frac{1}{4}b^4 - \frac{2}{3}b^3 - 4b^2 + \frac{20}{3} = 0$ unless they attempt the second part of this question by expansion and then divide the resulting expanded expression by 12 M1: Attempts to factorise $3b^4 - 8b^3 - 48b^2 \pm 80 = (b+2)(b+2)(3b^2...b...20)$ via repeated division or inspection. FYI $3b^4 - 8b^3 - 48b^2 + 80 = (b+2)(3b^3 - 14b^2 - 20b + 40)$ Allow an attempt via inspection $3b^4 - 8b^3 - 48b^2 \pm 80 = (b^2 + 4b + 4)(3b^2...b...20)$ but do not allow candidates to just write out
 - $3b^4 8b^3 48b^2 \pm 80 = (b+2)^2 (3b^2 20b + 20)$ which is really just copying out the given answer.

Alternatively attempts to expand $(b+2)^2(3b^2-20b+20)$ achieving terms of a quartic expression

A1*: Correctly reaches $(b+2)^2 (3b^2 - 20b + 20) = 0$ with no errors and must have = 0

In the alternative obtains both equations in the same form and states that they are same. Allow \checkmark QED etc here.

(c) Please watch for candidates who answer this on Figure 2 which is fine

B1: Sketches the curve and a vertical line to the right of 4 (x = 5.442 may not be labelled.)

B1: Explains that (between x = -2 and x = 5.442) the area above the *x*-axis = area below the *x*-axis with appropriate areas shaded or labelled.

Alternatively states that the area between 1.225 and 4 is the same as the area between 4 and 5.442

Another correct statement is that the net area between 0 and 5.442 is $-\frac{20}{3}$

Look carefully at what is written. There are many correct statements/ deductions. Eg. " (area between 0 and 4) - (area between 4 and 5.442) = 20/3". Diagram below for your information.

Question	Scheme	Marks	AOs
13 (a)	(i) Explains $2x - q = 0$ when $x = 2$ oe Hence $q = 4$ *	B1*	2.4
	(ii) Substitutes $\left(3,\frac{1}{2}\right)$ into $y = \frac{p-3x}{(2x-4)(x+3)}$ and solves	M1	1.1b
	$\frac{1}{2} = \frac{p-9}{(2)\times(6)} \Longrightarrow p-9 = 6 \Longrightarrow p = 15*$	A1*	2.1
		(3)	
(b)	Attempts to write $\frac{15-3x}{(2x-4)(x+3)}$ in PF's and integrates using lns between 3 and another value of x.	M1	3.1a
	$\frac{15-3x}{(2x-4)(x+3)} = \frac{A}{(2x-4)} + \frac{B}{(x+3)}$ leading to A and B	M1	1.1b
	$\frac{15-3x}{(2x-4)(x+3)} = \frac{1.8}{(2x-4)} - \frac{2.4}{(x+3)} \text{or } \frac{0.9}{(x-2)} - \frac{2.4}{(x+3)} \text{oe}$	A1	1.1b
	$I = \int \frac{15 - 3x}{(2x - 4)(x + 3)} dx = m \ln(2x - 4) + n \ln(x + 3) + (c)$	— M1	1.1b
	I = $\int \frac{15-3x}{(2x-4)(x+3)} dx = 0.9 \ln(2x-4) - 2.4 \ln(x+3)$ oe	A1ft	1.1b
	Deduces that Area Either $\int_{3}^{5} \frac{15 - 3x}{(2x - 4)(x + 3)} dx$	B1	2.2a
	Or $[]_{3}^{5}$		
	Uses correct ln work seen at least once for $\ln 6 = \ln 2 + \ln 3$ or $\ln 8 = 3 \ln 2$		
	$[0.9\ln(6) - 2.4\ln(8)] - [0.9\ln(2) - 2.4\ln(6)]$	dM1	2.1
	$= 3.3 \ln 6 - 7.2 \ln 2 - 0.9 \ln 2$		
	$=3.3\ln 3 - 4.8\ln 2$	Al	1.1b
		(8)	
		(11marks)

B1*: Is able to link 2x - q = 0 and x = 2 to explain why q = 4

Eg "The asymptote x = 2 is where 2x - q = 0 so $4 - q = 0 \Longrightarrow q = 4$ "

"The curve is not defined when $2 \times 2 - q = 0 \implies q = 4$ "

There **must be some words** explaining why q = 4 and in most cases, you should see a reference to either "the asymptote x = 2", "the curve is not defined at x = 2", 'the denominator is 0 at x = 2"

M1: Substitutes
$$\left(3, \frac{1}{2}\right)$$
 into $y = \frac{p-3x}{(2x-4)(x+3)}$ and solves
Alternatively substitutes $\left(3, \frac{1}{2}\right)$ into $y = \frac{15-3x}{(2x-4)(x+3)}$ and shows $\frac{1}{2} = \frac{6}{(2)\times(6)}$ oe
A1*: Full proof showing all necessary steps $\frac{1}{2} = \frac{p-9}{(2)\times(6)} \Rightarrow p-9 = 6 \Rightarrow p = 15$

In the alternative there would have to be some recognition that these are equal eg \checkmark hence p = 15

(b)

M1: Scored for an overall attempt at using PF's and integrating with lns seen with sight of limits 3 and another value of *x*.

M1:
$$\frac{15-3x}{(2x-4)(x+3)} = \frac{A}{(2x-4)} + \frac{B}{(x+3)}$$
 leading to A and B
A1: $\frac{15-3x}{(2x-4)(x+3)} = \frac{1.8}{(2x-4)} - \frac{2.4}{(x+3)}$, or for example $\frac{0.9}{(x-2)} - \frac{2.4}{(x+3)}$, $\frac{9}{(10x-20)} - \frac{12}{(5x+15)}$ oe
Must be written in PE form not just for correct A and B

n in PF form, not just for correct A and B

M1: Area
$$R = \int \frac{15-3x}{(2x-4)(x+3)} dx = m \ln(2x-4) + n \ln(x+3)$$

OR $\int \frac{15-3x}{(2x-4)(x+3)} dx = m \ln(x-2) + n \ln(x+3)$
Note that $\int \frac{l}{(x-2)} dx \rightarrow l \ln(kx-2k)$ and $\int \frac{m}{(x+3)} dx \rightarrow m \ln(nx+3n)$
A1ft: $= \int \frac{15-3x}{(2x-4)(x+3)} dx = 0.9 \ln(2x-4) - 2.4 \ln(x+3)$ oe. FT on their A and B

B1: Deduces that the limits for the integral are 3 and 5. It cannot just be awarded from 5 being marked on

Figure 4. So award for sight of $\int_{3}^{5} \frac{15-3x}{(2x-4)(x+3)} (dx)$ or $[\dots, \dots, n]_{3}^{5}$ having performed an integral which

may be incorrect

dM1: Uses correct ln work seen at least once eg $\ln 6 = \ln 2 + \ln 3$, $\ln 8 = 3\ln 2$ or $m\ln 6k - m\ln 2k = m\ln 3$ This is an attempt to get either of the above ln's in terms of ln2 and/or ln3

It is dependent upon the correct limits and having achieved $m \ln(2x-4) + n \ln(x+3)$ oe

A1: $= 3.3 \ln 3 - 4.8 \ln 2$ oe

Question	Scheme	Marks	AOs	
14(a)	$x^n \rightarrow x^{n+1}$	M1	1.1b	
	$\int \left(\frac{4}{x^3} + kx\right) dx = -\frac{2}{x^2} + \frac{1}{2}kx^2 + c$	A1 A1	1.1b 1.1b	
		(3)		
(b)	$\left[-\frac{2}{x^2} + \frac{1}{2}kx^2\right]_{0.5}^2 = \left(-\frac{2}{2^2} + \frac{1}{2}k \times 4\right) - \left(-\frac{2}{(0.5)^2} + \frac{1}{2}k \times (0.5)^2\right) = 8$	M1	1.1b	
	$7.5 + \frac{15}{8}k = 8 \Longrightarrow k = \dots$	dM1	1.1b	
	$k = \frac{4}{15}$ oe	A1	1.1b	
		(3)		
	N. /	(6	marks)	
Mark na	Notes			
(a)				
M1: For a Condo A1: Eithe	$x^n \rightarrow x^{n+1}$ for either x^{-3} or x^1 . This can be implied by the sight of eithone "unprocessed" values here. Eg. x^{-3+1} and x^{1+1} r term correct (un simplified).	her x^{-2} or	x^2 .	
	Accept $4 \times \frac{x^{-2}}{-2}$ or $k \frac{x^2}{2}$ with the indices processed.			
Al: Corre	ect (and simplified) with $+c$.	1	1	
Igno	re spurious notation e.g. answer appearing with an $\int sign or with w$	t on the en	Id.	
	Accept $-\frac{2}{x^2} + \frac{1}{2}kx^2 + c$ or exact simplified equivalent such as $-2x$	$k^{-2} + k \frac{x^2}{2} + k x$	- C	
(b)				
M1: For su	ibstituting both limits into their $-\frac{2}{x^2} + \frac{1}{2}kx^2$, subtracting either way	around and	d setting	
equal t award gives t	equal to 8. Allow this when using a changed function. (so the M in part (a) may not have been awarded). Condone missing brackets. Take care here as substituting 2 into the original function gives the same result as the integrated function so you will have to consider both limits.			
dM1: For solving a linear equation in k . It is dependent upon the previous M only Don't be too concerned by the mechanics here. Allow for a linear equation in k leading to $k =$				
A1: $k = \frac{4}{13}$	or exact equivalent. Allow for $\frac{m}{n}$ where <i>m</i> and <i>n</i> are integers and	$\frac{m}{n} = \frac{4}{15}$		
Condo Please	one the recurring decimal 0.26 but not 0.266 or 0.267 e remember to isw after a correct answer			

	Scheme	Marks	AOs
15.	The overall method of finding the x coordinate of A .	M1	3.1a
	$y = 2x^3 - 17x^2 + 40x \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 34x + 40$	B1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow 6x^2 - 34x + 40 = 0 \Longrightarrow 2(3x - 5)(x - 4) = 0 \Longrightarrow x = \dots$	M1	1.1b
	Chooses $x = 4$ $x \neq \frac{5}{3}$	A1	3.2a
	$\int 2x^3 - 17x^2 + 40x dx = \left[\frac{1}{2}x^4 - \frac{17}{3}x^3 + 20x^2\right]$	B1	1.1b
	Area $=\frac{1}{2}(4)^4 - \frac{17}{3}(4)^3 + 20(4)^2$	M1	1.1b
	$=\frac{256}{3}$ *	A1*	2.1
		(7)	
		(7 marks)

Notes

M1: An overall problem -solving method mark to find the minimum point. To score this you need to see

- an attempt to differentiate with at least two correct terms
- an attempt to set their $\frac{dy}{dx} = 0$ and then solve to find x. Don't be overly concerned by the mechanics of this solution
- **B1:** $\left(\frac{dy}{dx}\right) = 6x^2 34x + 40$ which may be unsimplified

M1: Sets their $\frac{dy}{dx} = 0$, which must be a 3TQ in *x*, and attempts to solve via factorisation, formula or calculator. If a calculator is used to find the roots, they must be correct for their quadratic. If $\frac{dy}{dx}$ is correct allow them to just choose the root 4 for M1 A1. Condone $(x-4)\left(x-\frac{5}{3}\right)$ A1: Chooses x=4 This may be awarded from the upper limit in their integral

B1:
$$\int 2x^3 - 17x^2 + 40x \, dx = \left[\frac{1}{2}x^4 - \frac{17}{3}x^3 + 20x^2\right]$$
 which may be unsimplified

M1: Correct attempt at area. There may be slips on the integration but expect two correct terms The upper limit used must be their larger solution of $\frac{dy}{dx} = 0$ and the lower limit used must be 0. So if their roots are 6 and 10, then they must use 10 and 0. If only one value is found then the limits must be 0 to that value.

Expect to see embedded or calculated values.

Don't accept $\int_0^4 2x^3 - 17x^2 + 40x \, dx = \frac{256}{3}$ without seeing the integration and the embedded or calculated values

A1*: Area = $\frac{256}{3}$ with correct notation and no errors. Note that this is a given answer.

Question	Scheme	Marks	AOs
16 (a)	$\int \frac{2}{1-2} dr = \frac{2}{2} \ln(3r - k)$	M1	1.1a
	$\int \frac{1}{(3x-k)} dx = \frac{1}{3} $	A1	1.1b
	$\int_{k}^{3k} \frac{2}{(3x-k)} dx = \frac{2}{3} \ln(9k-k) - \frac{2}{3} \ln(3k-k)$	dM1	1.1b
	$=\frac{2}{3}\ln\left(\frac{8\not k}{2\not k}\right)=\frac{2}{3}\ln 4 \text{ oe}$	A1	2.1
		(4)	
(b)	$\int \frac{2}{(2x-k)^2} dx = -\frac{1}{(2x-k)}$	M1	1.1b
	$\int_{k}^{2k} \frac{2}{(2x-k)^2} dx = -\frac{1}{(4k-k)} + \frac{1}{(2k-k)}$	dM1	1.1b
	$=\frac{2}{3k} \left(\propto \frac{1}{k}\right)$	A1	2.1
		(3)	
		('	7 marks)

(a)
M1:
$$\int \frac{2}{(3x-k)} dx = A \ln(3x-k)$$
 Condone a missing bracket
A1:
$$\int \frac{2}{(3x-k)} dx = \frac{2}{3} \ln(3x-k)$$

Allow recovery from a missing bracket if in subsequent work $A \ln 9k - k \rightarrow A \ln 8k$ dM1: For substituting k and 3k into their $A \ln(3x - k)$ and subtracting either way around

A1: Uses correct ln work and notation to show that I = $\frac{2}{3} \ln \left(\frac{8}{2}\right)$ or $\frac{2}{3} \ln 4$ oe (ie independent of k)

(b)

M1:
$$\int \frac{2}{(2x-k)^2} dx = \frac{C}{(2x-k)}$$

dM1: For substituting k and 2k into their $\frac{C}{(2x-k)}$ and subtracting

A1: Shows that it is inversely proportional to k Eg proceeds to the answer is of the form $\frac{A}{k}$ with $A = \frac{2}{3}$ There is no need to perform the whole calculation. Accept from $-\frac{1}{(3k)} + \frac{1}{(k)} = \left(-\frac{1}{3} + 1\right) \times \frac{1}{k} \propto \frac{1}{k}$

If the calculation is performed it must be correct.

Do not isw here. They should know when they have an expression that is inversely proportional to *k*. You may see substitution used but the mark is scored for the same result. See below

 $u = 2x - k \rightarrow \left[\frac{C}{u}\right]$ for M1 with limits 3k and k used for dM1

Question	Scheme	Marks	AOs
17(a)	$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{H\cos 0.25t}{40} \Longrightarrow \int \frac{1}{H} \mathrm{d}H = \int \frac{\cos 0.25t}{40} \mathrm{d}t$	M1	3.1a
	$1 H = \frac{1}{2} + 0.25 (f_{\rm e})$	M1	1.1b
	$\ln H = \frac{10}{10} \sin \left(0.25t \left(+c\right)\right)$	A1	1.1b
	Substitutes $t = 0, H = 5 \Longrightarrow c = \ln(5)$	dM1	3.4
	$\ln\left(\frac{H}{5}\right) = \frac{1}{10}\sin 0.25t \Longrightarrow H = 5e^{0.1\sin 0.25t} *$	A1*	2.1
		(5)	
(b)	Max height = $5e^{0.1} = 5.53 \text{ m}$ (Condone lack of units)	B1	3.4
		(1)	
(c)	Sets $0.25t = \frac{5\pi}{2}$	M1	3.1b
	31.4	A1	1.1b
		(2)	
		1	(8 marks)

M1: Separates the variables to reach $\int \frac{1}{H} dH = \int \frac{\cos 0.25t}{40} dt$ or equivalent.

The integral signs need to be present on both sides and the dH AND dt need to be in the correct positions. M1: Integrates both sides to reach $\ln H = A \sin 0.25t$ or equivalent with or without the + c

A1: $\ln H = \frac{1}{10} \sin 0.25t + c$ or equivalent with or without the + c. Allow two constants, one either side

If the 40 was on the lhs look for $40 \ln H = 4 \sin 0.25t + c$ or equivalent.

dM1: Substitutes $t = 0, H = 5 \Longrightarrow c = ..$ There needs to have been a single "+ c" to find.

It is dependent upon the previous M mark. You may allow even if you don't explicitly see "t = 0, H = 5" as it may be implied from their previous line

If the candidate has attempted to change the subject and made an error/ slip then condone it for this M but not the final A. Eg. $40 \ln H = 4 \sin 0.25t + c \Longrightarrow H^{40} = e^{4 \sin 0.25t} + e^c \Longrightarrow 5^{40} = 1 + e^c \Longrightarrow c = ...$

Also many students will be attempting to get to the given answer so condone the method of finding c = ...These students will lose the A1* mark

A1*: Proceeds via $\ln H = \frac{1}{10} \sin 0.25t + \ln 5$ or equivalent to the given answer $H = 5e^{0.1 \sin 0.25t}$ with at least one correct intermediate line and no incorrect work.

DO NOT condone c's going to c's when they should be e^{c} or A

Accept as a minimum $\ln H = \frac{1}{10} \sin 0.25t + \ln 5 \Rightarrow H = e^{\frac{1}{10} \sin 0.25t + \ln 5}$ or $H = e^{\frac{1}{10} \sin 0.25t} \times e^{+\ln 5}$ before
sight of the given answer
If the only error was to omit the integration signs on line 1, thus losing the first M1, allow the candidate to have access to this mark following a correct intermediate line (see above).
If they attempt to change the subject first then the constant of integration must have been adapted if the A1*
is to be awarded. $\ln H = \frac{1}{10} \sin 0.25t + c \Longrightarrow H = e^{\frac{1}{10} \sin 0.25t + c} \Longrightarrow H = Ae^{\frac{1}{10} \sin 0.25t}$
The dM1 and A1* under this method are awarded at virtually the same time.
Also, for the final two marks, you may see a proof from $\int_{0}^{H} \frac{40}{H} dH = \int_{5}^{t} \cos 0.25t dt$
There is an alternative via the use of an integrating factor.
There is an alternative via the use of an integrating factor.
There is an alternative via the use of an integrating factor. (b)
There is an alternative via the use of an integrating factor. (b) B1: States that the maximum height is 5.53 m Accept 5e ^{0.1} Condone a lack of units here, but penalise if incorrect units are used.
There is an alternative via the use of an integrating factor. (b) B1: States that the maximum height is 5.53 m Accept 5e ^{0.1} Condone a lack of units here, but penalise if incorrect units are used. (c)
There is an alternative via the use of an integrating factor. (b) B1: States that the maximum height is 5.53 m Accept $5e^{0.1}$ Condone a lack of units here, but penalise if incorrect units are used. (c) M1: For identifying that it would reach the maximum height for the 2nd time when $0.25t = \frac{5\pi}{2}$ or 450

Question	Scheme for	Substitution	Marks	AOs
18	Chooses a suitable method for $\int_0^2 2x\sqrt{x+2} dx$ Award for • Using a valid substitution $u = \dots$, changing the terms to <i>u</i> 's • integrating and using appropriate limts.		M1	3.1a
	Substitution $u = \sqrt{x+2} \Rightarrow \frac{dx}{du} = 2u$ oe	Substitution $u = x + 2 \Longrightarrow \frac{dx}{du} = 1$ oe	B1	1.1b
	$\int 2x\sqrt{x+2} \mathrm{d}x$ $= \int A(u^2 \pm 2)u^2 \mathrm{d}u$	$\int 2x\sqrt{x+2} \mathrm{d}x$ $= \int A(u\pm 2)\sqrt{u} \mathrm{d}u$	M1	1.1b
	$=Pu^5\pm Qu^3$	$=Su^{\frac{5}{2}}\pm Tu^{\frac{3}{2}}$	dM1	2.1
	$=\frac{4}{5}u^5-\frac{8}{3}u^3$	$=\frac{4}{5}u^{\frac{5}{2}}-\frac{8}{3}u^{\frac{3}{2}}$	A1	1.1b
	Uses limits 2 and $\sqrt{2}$ the correct way around	Uses limits 4 and 2 the correct way around	ddM1	1.1b
	$=\frac{32}{15}(2$	$(2+\sqrt{2})$ *	A1*	2.1
			(7)	
				(7 marks)

M1: For attempting to integrate using substitution. Look for

- terms and limits changed to *u*'s. Condone slips and errors/omissions on changing $dx \rightarrow du$
- attempted multiplication of terms and raising of at least one power of *u* by one. Condone slips
- Use of at least the top correct limit. For instance if they go back to x's the limit is 2

B1: For substitution it is for giving the substitution and stating a correct $\frac{dx}{du}$

Eg,
$$u = \sqrt{x+2} \Longrightarrow \frac{dx}{du} = 2u$$
 or equivalent such as $\frac{du}{dx} = \frac{1}{2\sqrt{x+2}}$

M1: It is for attempting to get all aspects of the integral in terms of 'u'.

All terms must be attempted including the dx. You are only condoning slips on signs and coefficients **dM1:** It is for using a correct method of expanding and integrating each term (seen at least once). It is dependent upon the previous M

A1: Correct answer in x or u See scheme

ddM1: Dependent upon the previous M, it is for using the correct limits for their integral, **the correct way around**

A1*: Proceeds correctly to $=\frac{32}{15}(2+\sqrt{2})$. Note that this is a given answer

There must be at one least correct intermediate line between $\left[\frac{4}{5}u^5 - \frac{8}{3}u^3\right]_{-5}^2$ and $\frac{32}{15}\left(2 + \sqrt{2}\right)$

Question Alt	Scheme for by parts	Marks	AOs
18	Chooses a suitable method for $\int_{0}^{2} 2x\sqrt{x+2} dx$ Award for • using by parts the correct way around • and using limits	M1	3.1a
	$\int \left(\sqrt{x+2}\right) dx = \frac{2}{3} \left(x+2\right)^{\frac{3}{2}}$	B1	1.1b
	$\int 2x\sqrt{x+2} \mathrm{d}x = Ax(x+2)^{\frac{3}{2}} - \int B(x+2)^{\frac{3}{2}} (\mathrm{d}x)$	M1	1.1b
	$= Ax(x+2)^{\frac{3}{2}} - C(x+2)^{\frac{5}{2}}$	dM1	2.1
	$=\frac{4}{3}x(x+2)^{\frac{3}{2}}-\frac{8}{15}(x+2)^{\frac{5}{2}}$	A1	1.1b
	Uses limits 2 and 0 the correct way around	ddM1	1.1b
	$=\frac{32}{15}\left(2+\sqrt{2}\right)$	A1*	2.1
		(7)	

M1: For attempting using by parts to solve It is a problem- solving mark and all elements do not have to be correct.

- the formula applied the correct way around. You may condone incorrect attempts at integrating $\sqrt{x+2}$ for this problem solving mark
- further integration, again, this may not be correct, and the use of at least the top limit of 2

B1: For
$$\int (\sqrt{x+2}) dx = \frac{2}{3} (x+2)^{\frac{3}{2}}$$
 oe May be awarded $\int_{0}^{2} 2x\sqrt{x+2} dx \to x^{2} \times \frac{2(x+2)^{\frac{3}{2}}}{3}$

M1: For integration by parts the right way around. Award for $Ax(x+2)^{\frac{3}{2}} - \int B(x+2)^{\frac{3}{2}} (dx)$

dM1: For integrating a second time. Award for $Ax(x+2)^{\frac{3}{2}} - C(x+2)^{\frac{5}{2}}$

A1:
$$\frac{4}{3}x(x+2)^{\frac{3}{2}} - \frac{8}{15}(x+2)^{\frac{5}{2}}$$
 which may be un simplified

ddM1: Dependent upon the previous M, it is for using the limits 2 and 0 the correct way around

A1*: Proceeds to
$$=\frac{32}{15}(2+\sqrt{2})$$
. Note that this is a given answer.

At least one correct intermediate line must be seen. (See substitution). You would condone missing dx's

EXPERT TUITION

Question	Scheme	Marks	AOs	
19	$\int \left(\frac{2}{3}x^3 - 6\sqrt{x} + 1\right) \mathrm{d}x$			
Attempts to integrate awarded for any correct power		M1	1.1a	
	$\int \left(\frac{2}{3}x^3 - 6\sqrt{x} + 1\right) dx = \frac{2}{3} \times \frac{x^4}{4} + \dots + x$	A1	1.1b	
	$= \dots - 6 \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \dots$	Al	1.1b	
	$= \frac{1}{6}x^4 - 4x^{\frac{3}{2}} + x + c$	A1	1.1b	
		(4	marks)	
	Notes			
M1: Allow Award A1: Correc A1: Correc A1: Comp Simpl	 M1: Allow for raising power by one. xⁿ → xⁿ⁺¹ Award for any correct power including sight of 1x A1: Correct two 'non fractional power' terms (may be un-simplified at this stage) A1: Correct 'fractional power' term (may be un-simplified at this stage) A1: Completely correct, simplified and including constant of integration seen on one line. Simplification is expected for full marks. 			
Accep	t correct exact equivalent expressions such as $\frac{x^4}{6} - 4x\sqrt{x} + 1x^1 + c$			
Ассер	pt $\frac{x^4 - 24x^{\frac{3}{2}} + 6x}{6} + c$			
Reme	mber to isw after a correct answer.			
Cond	one poor notation. Eg answer given as $\int \frac{1}{6}x^4 - 4x^{\frac{3}{2}} + x + c$			

Question	Scheme	Marks	AOs
20.	 For the complete strategy of finding where the normal cuts the <i>x</i>-axis. Key points that must be seen are Attempt at differentiation 	M1	3.1a

Attempt at using a changed gradi	ient to find equation of		
normal	ient to find equation of		
Correct attempt to find where not	rmal cuts the x - axis		
32 dy dy	54 o N	11	1.1b
$y = \frac{1}{x^2} + 3x - 8 \Rightarrow \frac{1}{dx} = -\frac{1}{x^2}$	$\frac{1}{x^3} + 3$	1	1.1b
For a correct method of attempting to fin	nd		
Either the equation of the normal: this r	requires substituting		
x = 4 in their $\frac{dy}{dt} = -\frac{64}{64} + 3 = (2)$, then u	sing the perpendicular		
$dx = x^3 + c^2 (2)$, and c	and the berberrane arm		
gradient rule to find the equation of norm	mal $v-6 = "-\frac{1}{2}"(x-4)$		
	$2^{(1)}$ d	M 1	2.1
Or where the equation of the normal at (16) outs the reavise As		
above but may not see equation of normal at (4,0) cuts the x - axis. As		
$0-6 = "-\frac{1}{2}"(x-4) \Longrightarrow x = \dots$ or an attempt	pt using just gradients		
$1 - 6 \rightarrow a -$			
$-\frac{1}{2} = \frac{1}{a-4} \rightarrow a = \dots$			
Normal cuts the x-axis at $x = 1$	16 A	1	1.1b
For the complete strategy of finding the	values of the two key		
For the complete strategy of finding the areas. Points that must be seen are	values of the two key		
For the complete strategy of finding the variance of the strategy of finding the variance of the strategy of t	values of the two key the area under the curve		
 For the complete strategy of finding the rates. Points that must be seen are There must be an attempt to find by integrating between 2 and 4 	values of the two key the area under the curve	11	3.1a
 For the complete strategy of finding the vareas. Points that must be seen are There must be an attempt to find by integrating between 2 and 4 There must be an attempt to find 	values of the two key the area under the curve the area of a triangle	11	3.1a
 For the complete strategy of finding the rareas. Points that must be seen are There must be an attempt to find by integrating between 2 and 4 There must be an attempt to find using ¹/₂ × ('16'-4)×6 or ^{"16'}/" 	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx	11	3.1a
 For the complete strategy of finding the rate areas. Points that must be seen are There must be an attempt to find by integrating between 2 and 4 There must be an attempt to find using ¹/₂×('16'-4)×6 or ^{"16'}/₄" 	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx	11	3.1a
For the complete strategy of finding the variants. Points that must be seen are • There must be an attempt to find by integrating between 2 and 4 • There must be an attempt to find using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16'}$ "	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx	11	3.1a
For the complete strategy of finding the rareas. Points that must be seen are • There must be an attempt to find by integrating between 2 and 4 • There must be an attempt to find using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16'} "(16'-4) \times 6$ or $\int_{4}^{(16'-4)} (16'-4) \times 6$ or $\int_{4}^{(16'-4)} (16'-4) \times 6$ or $\int_{4}^{(16'-4)} (16'-4) \times 6$	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ " dx	11 11 11	3.1a 1.1b 1.1b
For the complete strategy of finding the variable areas. Points that must be seen are • There must be an attempt to find by integrating between 2 and 4 • There must be an attempt to find using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16'}$ "($\int \frac{32}{x^2} + 3x - 8 dx = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx	41 41 1	3.1a 1.1b 1.1b
For the complete strategy of finding the rareas. Points that must be seen are • There must be an attempt to find by integrating between 2 and 4 • There must be an attempt to find using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16'} "($ $\int \frac{32}{x^2} + 3x - 8 dx = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$ Area under curve $= = \left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]$	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx A A A A A A A A	11 11 11	3.1a 1.1b 1.1b
For the complete strategy of finding the variable areas. Points that must be seen are • There must be an attempt to find by integrating between 2 and 4 • There must be an attempt to find using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16'}$ "($\int \frac{32}{x^2} + 3x - 8 dx = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$ Area under curve $= \left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]$	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx $A^{4} = (-16)-(-26)=(10)$ difference of the two key N A A A A A A A A A A A A A A A A A A A	41 41 41 41	3.1a 1.1b 1.1b 1.1b
For the complete strategy of finding the variants. Points that must be seen are • There must be an attempt to find by integrating between 2 and 4 • There must be an attempt to find using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16'}$ " $\int \frac{32}{x^2} + 3x - 8 dx = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$ Area under curve $= \left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]$	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx A A A A A A A A	11 11 11 11 11	3.1a 1.1b 1.1b 1.1b
For the complete strategy of finding the vareas. Points that must be seen are • There must be an attempt to find by integrating between 2 and 4 • There must be an attempt to find using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16'} "(16'-4) \times 6$ or $\int_{4}^{"16'} [(16'-4) \times 6 \times 6] = \frac{32}{x^2} + \frac{3}{2}x^2 - 8x$ Area under curve $= \left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]$ Total area $=10 + 36 = 46 *$	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx $\left(-\frac{1}{2}x+8\right)$ "dx $\left(-\frac{1}{2}x+8\right)$ "dx A A	11 11 11 11 1*	3.1a 1.1b 1.1b 1.1b 2.1
For the complete strategy of finding the vareas. Points that must be seen are • There must be an attempt to find by integrating between 2 and 4 • There must be an attempt to find using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16'} "(16'-4) \times 6$ or $\int_{4}^{"16'} [16'-4] \times 6$ $\int \frac{32}{x^2} + 3x - 8 dx = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$ Area under curve $= \left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]$ Total area $=10 + 36 = 46 *$	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx $A^{4} = (-16) - (-26) = (10)$ A (1)	11 11 11 11 1*	3.1a 1.1b 1.1b 1.1b 2.1
For the complete strategy of finding the vareas. Points that must be seen are • There must be an attempt to find by integrating between 2 and 4 • There must be an attempt to find using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16'}$ "($\int \frac{32}{x^2} + 3x - 8 dx = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$ Area under curve $= \left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]$ Total area $=10 + 36 = 46 *$	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx A A A A A A A A	11 11 11* 0)	3.1a 1.1b 1.1b 1.1b 2.1
For the complete strategy of finding the vareas. Points that must be seen are • There must be an attempt to find by integrating between 2 and 4 • There must be an attempt to find using $\frac{1}{2} \times ('16'-4) \times 6$ or $\int_{4}^{"16'}$ "($\int \frac{32}{x^2} + 3x - 8 dx = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$ Area under curve $= \left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]$ Total area $=10 + 36 = 46 *$	values of the two key the area under the curve the area of a triangle $\left(-\frac{1}{2}x+8\right)$ "dx $A^{4} = (-16)-(-26) = (10)$ A (1)	11 11 11 1* 0) (10	3.1a 1.1b 1.1b 1.1b 2.1) marks)

The first 5 marks are for finding the normal to the curve cuts the x - axis

M1: For the complete strategy of finding where the normal cuts the x- axis. See scheme M1: Differentiates with at least one index reduced by one

$$\mathbf{A1:} \ \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{64}{x^3} + 3$$

dM1: Method of finding

either the equation of the normal at (4, 6).

or where the equation of the normal at (4, 6) cuts the x - axis See scheme. It is dependent upon having gained the M mark for differentiation.

A1: Normal cuts the x-axis at
$$x = 16$$

The next 5 marks are for finding the area R
M1: For the complete strategy of finding the values of two key areas. See scheme
M1: Integrates $\int \frac{32}{x^2} + 3x - 8 \, dx$ raising the power of at least one index
A1: $\int \frac{32}{x^2} + 3x - 8 \, dx = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$ which may be unsimplified
dM1: Area $= \left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]_2^4 = (-16) - (-26) = (10)$
It is dependent upon having scored the M mark for integration, for substituting in both 4 and 2 and
subtracting either way around. The above line shows the minimum allowed working for a correct
answer.
A1*: Shows that the area under curve = 46. No errors or omissions are allowed
A number of candidates are equating the line and the curve (or subtracting the line from the curve)
The last 5 marks are scored as follows.
M1: For the complete strategy of finding the values of the two key areas. Points that must be seen
are
• There must be an attempt to find the area BETWEEN the line and the curve either way
around by integrating between 2 and 4
• There must be an attempt to find the area of a triangle using $\frac{1}{2} \times ('16'-2) \times \left(-\frac{1}{2} \times 2 + 8\right)$ or
via integration $\int_{2}^{16} \left(\frac{-1}{2}x + 8^*\right) dx$
M1: Integrates $\int \left(\frac{*-1}{2}x + 8^*\right) - \left(\frac{32}{x^2} + 3x - 8\right) dx$ either way around and raises the power of at least
one index by one
A1: $\pm \left(-\frac{32}{x} + \frac{7}{4}x^2 - 16x\right)$ must be correct
dM1: Area $= \int_{2}^{4} \left(\frac{*-1}{2}x + 8^*\right) - \left(\frac{32}{x^2} + 3x - 8\right) dx = \dots$...either way around
A1: Area $-49 - 3 = 46$
NB: Watch for candidates who calculate the area under the curve between 2 and 4 = 10 and
subtract this from the large triangle = 56. They will lose both the strategy mark and the answer

mark.

Question	Scheme	Marks	AOs	
21(a)	(i) $\int_{1}^{a} \sqrt{8x} dx = \sqrt{8} \times \int_{1}^{a} \sqrt{x} dx = 10\sqrt{8} = 20\sqrt{2}$	M1 A1	2.2a 1.1b	
	(ii) $\int_{0}^{a} \sqrt{x} dx = \int_{0}^{1} \sqrt{x} dx + \int_{1}^{a} \sqrt{x} dx = \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{0}^{1} + 10 = \frac{32}{3}$	M1 A1	2.1 1.1b	
		(4)		
(b)	$R = \int_{1}^{a} \sqrt{x} \mathrm{d}x = \left[\frac{2}{3} x^{\frac{3}{2}}\right]_{1}^{a}$	M1 A1	1.1b 1.1b	
	$\frac{2}{3}a^{\frac{3}{2}} - \frac{2}{3} = 10 \Longrightarrow a^{\frac{3}{2}} = 16 \Longrightarrow a = 16^{\frac{2}{3}}$	dM1	3.1a	
	$\Rightarrow a = 2^{4 \times \frac{2}{3}} = 2^{\frac{8}{3}}$	A1	2.1	
		(4)		
		(8 n	narks)	
(a)(i)				
M1: For dec	lucing that $\int_{1}^{a} \sqrt{8x} dx = \sqrt{8} \times \int_{1}^{a} \sqrt{x} dx$ attempting to multiply $\int_{1}^{a} \sqrt{x} dx$ by	√8		
A1: 20√2 o	r exact equivalent			
(a)(ii)				
M1: For ide	ntifying and attempting to use $\int_{0}^{a} \sqrt{x} dx = \int_{0}^{1} \sqrt{x} dx + \int_{1}^{a} \sqrt{x} dx$			
A1: For $\frac{32}{3}$	or exact equivalent			
(b)	1 2			
M1: Attemp	ts to integrate, $x^{\frac{1}{2}} \rightarrow x^{\frac{3}{2}}$			
A1: $\int_{1}^{a} \sqrt{2}$	A1: $\int_{1}^{a} \sqrt{x} dx = \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{1}^{a}$			
dM1: For a	whole strategy to find <i>a</i> . In the scheme it is awarded for setting $\left \dots x^{\frac{3}{2}} \right ^{\alpha}$	=10, using	g both	
limits and proceeding using correct index work to find <i>a</i> . Alternatively a candidate could assume				
$a = 2^k$. In such a case it is awarded for setting $\left[\dots x^{\frac{3}{2}} \right]_1^{2^k} = 10$, using both limits and proceeding using				
correct index work to $k=$				
A1: $a = 2^{4 \times \frac{2}{3}}$	A1: $a = 2^{4 \times \frac{2}{3}} = 2^{\frac{8}{3}}$			
In the altern	ative case, a further statement must be seen following $k = \frac{8}{3}$ Hence True	e		

EXPERT TUITION

Question	Scheme	Marks	AOs		
22	$y = (x-2)^{2} (x+3) = (x^{2}-4x+4)(x+3) = x^{3}-1x^{2}-8x+12$	B1	1.1b		
	An attempt to find x coordinate of the maximum point. To score this you must see either • an attempt to expand $(x-2)^2(x+3)$, an attempt to differentiate the result, followed by an attempt at solving $\frac{dy}{dx} = 0$ • an attempt to differentiate $(x-2)^2(x+3)$ by the product rule followed by an attempt at solving $\frac{dy}{dx} = 0$	M1	3.1a		
	$y = x^3 - 1x^2 - 8x + 12 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2x - 8$	M1	1.1b		
	Maximum point occurs when $\frac{dy}{dx} = 0 \Longrightarrow (x-2)(3x+4) = 0$	M1	1.1b		
	$\Rightarrow x = -\frac{4}{3}$	A1	1.1b		
	An attempt to find the area under $y = (x-2)^2 (x+3)$ between two values. To score this you must see an attempt to expand $(x-2)^2 (x+3)$ followed by an attempt at using two limits	M1	3.1a		
	Area = $\int (x^3 - 1x^2 - 8x + 12) dx = \left[\frac{x^4}{4} - \frac{x^3}{3} - 4x^2 + 12x\right]$	M1	1.1b		
	Uses a top limit of 2 and a bottom limit of their $x = -\frac{4}{3} R = \left[\frac{x^4}{4} - \frac{x^3}{3} - 4x^2 + 12x\right]_{-\frac{4}{3}}^2$	M1	2.2a		
	$Uses = \frac{28}{3} - \frac{1744}{81} = \frac{2500}{81}$	A1	2.1		
		(9)			
	(9 marks)				
Notes:					

B1: Expands $(x-2)^2(x+3)$ to $x^3-1x^2-8x+12$ seen at some point in their solution. It may appear just on their integral for example.

M1: This is a problem solving mark for knowing the method of finding the maximum point. You should expect to see the key points used (i) differentiation (ii) solution of their $\frac{dy}{dx} = 0$

M1: For correctly differentiating their cubic with at least two terms correct (for their cubic).

M1: For setting their $\frac{dy}{dx} = 0$ and solves using a correct method (including calculator methods)

A1:
$$\Rightarrow x = -\frac{4}{3}$$

M1: This is a problem solving mark for knowing how integration is used to find the area underneath a curve between two points.

M1: For correctly integrating their cubic with at least two correct terms (for their cubic).

M1: For deducing the top limit is 2, the bottom limit is their $x = -\frac{4}{3}$ and applying these correctly within their integration.

A1: Shows above steps clearly and proceeds to $R = \frac{2500}{81}$

Ques	tion	Scheme	Marks	AOs		
2	3	$f(x) = 2x + 3 + 12 x^{-2}$	B1	1.1b		
		Attempts to integrate	M1	1.1a		
		$\int \left(+2x + 3 + \frac{12}{x^2} \right) dx = x^2 + 3x - \frac{12}{x}$	A1	1.1b		
		$\left((2\sqrt{2})^2 + 3(2\sqrt{2}) - \frac{12(\sqrt{2})}{2\times 2} \right) - (-8)$	M1	1.1b		
		$=16+3\sqrt{2}*$	A1*	1.1b		
	(5 marks)					
Notes:						
B1:	Correct function with numerical powers					
M1:	Allow for raising power by one. $x^n \rightarrow x^{n+1}$					
A1:	Correct three terms					
M1:	Substitutes limits and rationalises denominator					
A1*:	Completely correct, no errors seen					

Ques	tion	Scheme	Marks	AOs		
24	4	Writes $\int \frac{t+1}{t} dt = \int 1 + \frac{1}{t} dt$ and attempts to integrate	M1	2.1		
		$= t + \ln t \ (+c)$	M1	1.1b		
		$(2a+\ln 2a)-(a+\ln a)=\ln 7$	M1	1.1b		
		$a = \ln \frac{7}{2}$ with $k = \frac{7}{2}$	A1	1.1b		
	(4 marks)					
Notes	5:					
M1:	Atte	mpts to divide each term by t or alternatively multiply each term by t^{-1}				
M1:	Integrates each term and knows $\int_{t}^{1} dt = \ln t$. The + <i>c</i> is not required for this mark					
M1:	Subs	Substitutes in both limits, subtracts and sets equal to ln7				
A1:	Proc	eeds to $a = \ln \frac{7}{2}$ and states $k = \frac{7}{2}$ or exact equivalent such as 3.5				

Question	Scheme	Marks	AOs
25	$y = \frac{(x-2)(x-4)}{4\sqrt{x}} = \frac{x^2 - 6x + 8}{4\sqrt{x}} = \frac{1}{4}x^{\frac{3}{2}} - \frac{3}{2}x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}$	M1 A1	1.1b 1.1b
	$\int \frac{1}{4}x^{\frac{3}{2}} - \frac{3}{2}x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}dx = \frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}(+c)$	dM1 A1	3.1a 1.1b
	Deduces limits of integral are 2 and 4 and applies to their $\frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}$	M1	2.2a
	$\left(\frac{32}{10} - 8 + 8\right) - \left(\frac{2}{5}\sqrt{2} - 2\sqrt{2} + 4\sqrt{2}\right) = \frac{16}{5} - \frac{12}{5}\sqrt{2}$ Area $R = \frac{12}{5}\sqrt{2} - \frac{16}{5}\left(\text{or }\frac{16}{5} - \frac{12}{5}\sqrt{2}\right)$	A1	2.1
		(6)	
			(6 marks)
Notes:			

M1: Correct attempt to write $\frac{(x-2)(x-4)}{4\sqrt{x}}$ as a sum of terms with indices.

Look for at least two different terms with the correct index e.g. two of $x^{\frac{3}{2}}$, $x^{\frac{1}{2}}$, $x^{-\frac{1}{2}}$ which have come from the correct places.

The correct indices may be implied later when e.g. \sqrt{x} becomes $x^{\frac{1}{2}}$ or $\frac{1}{\sqrt{x}}$ becomes $x^{-\frac{1}{2}}$

A1:
$$\frac{1}{4}x^{\frac{3}{2}} - \frac{3}{2}x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}$$
 which can be left unsimplified e.g. $\frac{1}{4}x^{2-\frac{1}{2}} - \frac{1}{2}x^{\frac{1}{2}} - x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}$
or as e.g. $\frac{1}{4}\left(x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + 8x^{-\frac{1}{2}}\right)$

The correct indices may be implied later when e.g. \sqrt{x} becomes $x^{\frac{1}{2}}$ or $\frac{1}{\sqrt{x}}$ becomes $x^{-\frac{1}{2}}$

dM1: Integrates $x^n \rightarrow x^{n+1}$ for at least 2 correct indices $\frac{3}{5} \frac{5}{1} \frac{1}{3} \frac{3}{-1} \frac{1}{1}$

i.e. at least 2 of
$$x^{\overline{2}} \rightarrow x^{\overline{2}}$$
, $x^{\overline{2}} \rightarrow x^{\overline{2}}$, $x^{\overline{2}} \rightarrow x^{\overline{2}}$

It is dependent upon the first M so at least two terms must have had a correct index.

A1:
$$\frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}(+c)$$
. Allow unsimplified e.g. $\frac{1}{4} \times \frac{2}{5}x^{\frac{3}{2}+1} - \frac{1}{2} \times \frac{2}{3}x^{\frac{1}{2}+1} - \frac{2}{3}x^{\frac{1}{2}+1} + 2 \times 2x^{\frac{1}{2}}$
or as e.g. $\frac{1}{4}\left(\frac{2}{5}x^{\frac{5}{2}} - 4x^{\frac{3}{2}} + 16x^{\frac{1}{2}}\right)(+c)$.

M1: Substitutes the limits 4 and 2 to their $\frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}$ and subtracts either way round.

There is no requirement to evaluate but 4 and 2 must be substituted either way round with evidence of subtraction, condoning omission of brackets.

E.g. condone
$$\frac{1}{10} \times 4^{\frac{5}{2}} - 4^{\frac{3}{2}} + 4 \times 4^{\frac{1}{2}} - \frac{1}{10} \times 2^{\frac{5}{2}} - 2^{\frac{3}{2}} + 4 \times 2^{\frac{1}{2}}$$

This is an independent mark but the limits must be applied to an expression that is not *y* so they may even have differentiated.

A1: Correct working shown leading to $\frac{12}{5}\sqrt{2} - \frac{16}{5}$ but also allow $\frac{16}{5} - \frac{12}{5}\sqrt{2}$ or exact equivalents Award this mark once one of these forms is reached and isw

See overleaf for integration by parts and integration by substitution.

Integration by parts:

Notes:

M1: Applies integration by parts and reaches the form $\alpha (x-2)(x-4)x^{\frac{1}{2}} \pm \int (px+q)x^{\frac{1}{2}} dx \alpha, p \neq 0$ oe e.g. $\alpha (x^2-6x+8)x^{\frac{1}{2}} \pm \int (px+q)x^{\frac{1}{2}} dx \alpha, p \neq 0$

A1: Correct first application of parts in any form

dM1: Attempts their $\int (px+q)x^{\frac{1}{2}} dx$ by expanding and integrating or may attempt parts again.

E.g.
$$\int (2x-6)x^{\frac{1}{2}} dx = \int \left(2x^{\frac{3}{2}}-6x^{\frac{1}{2}}\right) dx = \dots$$
 or e.g. $\int (2x-6)x^{\frac{1}{2}} dx = \frac{2}{3}x^{\frac{3}{2}}(2x-6)-\frac{4}{3}\int x^{\frac{3}{2}} dx$

If they expand then at least one term requires $x^n \to x^{n+1}$ or if parts is attempted again, the structure must be correct.

A1: Fully correct integration in any form

M1: Substitutes the limits 4 and 2 to their $=\frac{1}{2}(x-2)(x-4)x^{\frac{1}{2}}-\frac{2}{5}x^{\frac{5}{2}}+2x^{\frac{3}{2}}$ and subtracts

either way round. There is no requirement to evaluate but 4 and 2 must be substituted either way round with evidence of subtraction, condoning omission of brackets.

E.g. condone $0 - \frac{16}{3} + \frac{128}{15} - 0 + \frac{4}{3}\sqrt{2} + \frac{16}{15}\sqrt{2}$

This is an independent mark but the limits must be applied to a "changed" function.

A1: Correct working shown leading to $\frac{12}{5}\sqrt{2} - \frac{16}{5}$ but also allow $\frac{16}{5} - \frac{12}{5}\sqrt{2}$ or exact equivalents

Attempts at integration by parts "the other way round" should be sent to review.

Integration by substitution example:

$$u = \sqrt{x} \left(x = u^{2} \right) \Rightarrow \int \frac{(x-2)(x-4)}{4\sqrt{x}} dx = \int \frac{(u^{2}-2)(u^{2}-4)}{4u} \frac{dx}{du} du \qquad M1 \qquad 1.1b$$

$$= \int \frac{(u^{2}-2)(u^{2}-4)}{4u} 2u du \qquad M1 \qquad 1.1b$$

$$= \frac{1}{2} \int \left(u^{4} - 6u^{2} + 8 \right) du = \frac{1}{2} \left(\frac{u^{5}}{5} - \frac{6u^{3}}{3} + 8u \right) (+c) \qquad M1 \qquad 3.1a$$

$$1.1b$$
Deduces limits of integral are $\sqrt{2}$ and 2 and applies to their
$$\frac{1}{2} \left(\frac{u^{5}}{5} - \frac{6u^{3}}{3} + 8u \right) \qquad M1 \qquad 2.2a$$

$$\frac{1}{2} \left(\frac{32}{5} - 16 + 16 - \left(\frac{4\sqrt{2}}{5} - 4\sqrt{2} + 8\sqrt{2} \right) \right)$$

$$Area R = \frac{12}{5} \sqrt{2} - \frac{16}{5} \left(\text{ or } \frac{16}{5} - \frac{12}{5} \sqrt{2} \right) \qquad (6)$$

Notes:

M1: Applies the substitution e.g.
$$u = \sqrt{x}$$
 and attempts $k \int \frac{(u^2 - 2)(u^2 - 4)}{u} \frac{dx}{du} du$

A1: Fully correct integral in terms of *u* in any form e.g. $\frac{1}{2} \int (u^2 - 2)(u^2 - 4) du$

dM1: Expands the bracket and integrates $u^n \to u^{n+1}$ for at least 2 correct indices i.e. at least 2 of $u^4 \to u^5$, $u^2 \to u^3$, $k \to ku$ **A1**: $\frac{1}{2} \left(\frac{u^5}{5} - \frac{6u^3}{3} + 8u \right) (+c)$. Allow unsimplified.

M1: Substitutes the limits 2 and $\sqrt{2}$ to their $\frac{1}{2}\left(\frac{u^5}{5} - \frac{6u^3}{3} + 8u\right)$ and subtracts either way round.

There is no requirement to evaluate but 2 and $\sqrt{2}$ must be substituted either way round with evidence of subtraction, condoning omission of brackets.

E.g. condone
$$\frac{1}{2} \left(\frac{32}{5} - 16 + 16 - \frac{4\sqrt{2}}{5} - 4\sqrt{2} + 8\sqrt{2} \right)$$

Alternatively reverses the substitution and applies the limits 4 and 2 with the same conditions. A1: Correct working shown leading to $\frac{12}{5}\sqrt{2} - \frac{16}{5}$ but also allow $\frac{16}{5} - \frac{12}{5}\sqrt{2}$ or exact equivalents

Award this mark once one of these forms is reached and isw.

There may be other substitutions seen and the same marking principles apply.

Question	Scheme	Marks	AOs
26(a)	$\frac{3}{(2x-1)(x+1)} = \frac{A}{2x-1} + \frac{B}{x+1} \Longrightarrow A = \dots, B = \dots$	M1	1.1b
	Either $A = 2$ or $B = -1$	A1	1.1b
	$\frac{3}{(2x-1)(x+1)} = \frac{2}{2x-1} - \frac{1}{x+1}$	A1	1.1b
		(3)	
(b)	$\int \frac{1}{V} dV = \int \frac{3}{(2t-1)(t+1)} dt$	B1	1.1a
	$\int \frac{2}{2t-1} - \frac{1}{t+1} dt = \dots \ln(2t-1) - \dots \ln(t+1)(+c)$	M1	3.1a
	$\ln V = \ln (2t - 1) - \ln (t + 1) (+c)$	Alft	1.1b
	Substitutes $t = 2, V = 3 \Longrightarrow c = (\ln 3)$	M1	3.4
	$\ln V = \ln (2t - 1) - \ln (t + 1) + \ln 3$		
	$V = \frac{3(2t-1)}{(t+1)} *$	A1*	2.1
		(5)	
	(b) Alternative separation of variables:		
	$\int \frac{1}{3V} dV = \int \frac{1}{(2t-1)(t+1)} dt$	B1	1.1a
	$\frac{1}{3}\int \frac{2}{2t-1} - \frac{1}{t+1}dt = \dots \ln(2t-1) - \dots \ln(t+1)(+c)$	M1	3.1a
	$\frac{1}{3}\ln 3V = \frac{1}{3}\ln (2t-1) - \frac{1}{3}\ln (t+1)(+c)$	Alft	1.1b
	Substitutes $t = 2, V = 3 \Longrightarrow c = \left(\frac{1}{3}\ln 3\right)$	M1	3.4
	$\frac{1}{3}\ln V = \frac{1}{3}\ln(2t-1) - \frac{1}{3}\ln(t+1) + \frac{1}{3}\ln 3$	A 1 *	2.1
	$V = \frac{3(2t-1)}{(t+1)} *$		2.1
	~ /	(5)	
(c)	(i) 30 (minutes)	<u>B1</u>	3.2a
	(ii) $6 (m^3)$	B1	3.4
		(2)	
		(1) marks)
Notes:			

(a) M1: Correct method of partial fractions leading to values for their A and B

E.g. substitution:
$$\frac{3}{(2x-1)(x+1)} = \frac{A}{2x-1} + \frac{B}{x+1} \Longrightarrow 3 = A(x+1) + B(2x-1) \Longrightarrow A = ..., B = ...$$

Or compare coefficients
$$\frac{3}{(2x-1)(x+1)} = \frac{A}{2x-1} + \frac{B}{x+1} \Longrightarrow 3 = x(A+2B) + A - B \Longrightarrow A = ..., B = ...$$

Note that
$$\frac{3}{(2x-1)(x+1)} = \frac{A}{2x-1} + \frac{B}{x+1} \Longrightarrow 3 = A(2x-1) + B(x+1) \Longrightarrow A = ..., B = ...$$
 scores M0
$$\frac{1}{1} \begin{bmatrix} \text{EXPERT} \\ \text{TUITION} \end{bmatrix}$$

A1: Correct value for "*A*" or "*B*"

A1: Correct partial fractions not just values for "A" and "B". $\frac{2}{2x-1} - \frac{1}{x+1}$ or e.g. $\frac{2}{2x-1} + \frac{-1}{x+1}$

Must be seen as **fractions** but if not stated here, allow if the correct fractions appear later. (b)

B1: Separates variables $\int \frac{1}{V} dV = \int \frac{3}{(2t-1)(t+1)} dt$. May be implied by later work.

Condone omission of the integral signs but the dV and dt must be in the correct positions if awarding this mark in isolation but they may be implied by subsequent work.

M1: Correct attempt at integration of the partial fractions.

Look for $...\ln(2t-1)+...\ln(t+1)$ where ... are constants.

Condone missing brackets around the (2t - 1) and/or the (t + 1) for this mark **A1ft**: Fully correct equation following through their *A* and *B* only.

No requirement for +c here.

The brackets around the (2t - 1) and/or the (t + 1) must be seen or implied for this mark

M1: Attempts to find "c" or e.g. "In k" using t = 2, V = 3 following an attempt at integration. Condone poor algebra as long as t = 2, V = 3 is used to find a value of their constant. Note that the constant may be found immediately after integrating or e.g. after the ln's have been combined.

A1*: Correct processing leading to the given answer $V = \frac{3(2t-1)}{(t+1)}$

Alternative:

B1: Separates variables $\int \frac{1}{3V} dV = \int \frac{1}{(2t-1)(t+1)} dt$. May be implied by later work.

Condone omission of the integral signs but the dV and dt must be in the correct positions if awarding this mark in isolation but they may be implied by subsequent work.

M1: Correct attempt at integration of the partial fractions. Look for $...\ln(2t-1)+...\ln(t+1)$ where ... are constants.

Condone missing brackets around the (2t - 1) and/or the (t + 1) for this mark

A1ft: Fully correct equation following through their A and B only.

No requirement for +c here.

The brackets around the (2t-1) and/or the (t+1) must be seen or implied for this mark

M1: Attempts to find "c" or e.g. "In k" using t = 2, V = 3 following an attempt at integration. Condone poor algebra as long as t = 2, V = 3 is used to find a value of their constant. Note that the constant may be found immediately after integrating or e.g. after the ln's have been combined.

A1*: Correct processing leading to the given answer $V = \frac{3(2t-1)}{(t+1)}$

(Note the working may look like this:

$$\frac{1}{3}\ln 3V = \frac{1}{3}\ln(2t-1) - \frac{1}{3}\ln(t+1) + c, \ \frac{1}{3}\ln 9 = \frac{1}{3}\ln(3) - \frac{1}{3}\ln 3 + c, \ c = \frac{1}{3}\ln 9$$
$$\ln 3V = \ln\frac{9(2t-1)}{(t+1)} \Rightarrow 3V = \frac{9(2t-1)}{(t+1)} \Rightarrow V = \frac{3(2t-1)}{(t+1)} *)$$

Note that B0M1A1M1A1 is not possible in (b) as the B1 must be implied if all the other marks have been awarded.

Note also that some candidates may use different variables in (b) e.g.

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3y}{(2x-1)(x+1)} \Longrightarrow \int \frac{1}{y} \mathrm{d}y = \int \frac{3}{(2x-1)(x+1)} \mathrm{d}x \text{ etc. In such cases you should award marks for}$

equivalent work but they must revert to the given variables at the end to score the final mark. Also if e.g. a "t" becomes an "x" within their working but is recovered allow full marks.

(c)

- **B1**: Deduces 30 minutes. Units not required so just look for 30 but allow equivalents e.g. ¹/₂ an hour. If units are given they must be correct so do not allow e.g. 30 hours.
- **B1**: Deduces 6 m³. Units not required so just look for 6. Condone V < 6 or $V \le 6$ If units are given they must be correct so do not allow e.g. 6 m.

Question	Scheme	Marks	AOs
27(a)	$y = x^{3} - 10x^{2} + 27x - 23 \Rightarrow \frac{dy}{dx} = 3x^{2} - 20x + 27$	B1	1.1b
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=5} = 3 \times 5^2 - 20 \times 5 + 27 \left(=2\right)$	M1	1.1b
	y+13=2(x-5)	M1	2.1
	y = 2x - 23	A1	1.1b
		(4)	
(b)	Both <i>C</i> and <i>l</i> pass through $(0, -23)$ and so <i>C</i> meets <i>l</i> again on the <i>y</i> -axis	B1	2.2a
		(1)	
(c)	$\pm \int \left(x^3 - 10x^2 + 27x - 23 - (2x - 23) \right) dx$ $= \pm \left(\frac{x^4}{4} - \frac{10}{3}x^3 + \frac{25}{2}x^2 \right)$	M1 A1ft	1.1b 1.1b
	$\left[\frac{x^4}{4} - \frac{10}{3}x^3 + \frac{25}{2}x^2\right]_0^5$ $= \left(\frac{625}{4} - \frac{1250}{3} + \frac{625}{2}\right)(-0)$	dM1	2.1
	$=\frac{625}{12}$	A1	1.1b
		(4)	
	(c) Alternative:		
	$\pm \int \left(x^3 - 10x^2 + 27x - 23 \right) dx$ $= \pm \left(\frac{x^4}{4} - \frac{10}{3}x^3 + \frac{27}{2}x^2 - 23x \right)$	M1 A1	1.1b 1.1b
	$\left[\frac{x^4}{4} - \frac{10}{3}x^3 + \frac{27}{2}x^2 - 23x\right]_0^5 + \frac{1}{2} \times 5(23 + 13)$ $= -\frac{455}{12} + 90$	dM1	2.1
	$=\frac{625}{12}$	A1	1.1b
		(9	marks)

Notes

(a)

B1: Correct derivative M1: Substitutes x = 5 into their derivative. This may be implied by their value for $\frac{dy}{dx}$ M1: Fully correct straight line method using (5, -13) and their $\frac{dy}{dx}$ at x = 5A1: cao. Must see the full equation in the required form. (b) B1: Makes a suitable deduction. Alternative via equating *l* and *C* and factorising e.g. $x^{3}-10x^{2}+27x-23=2x-23$ $x^3 - 10x^2 + 25x = 0$ $x(x^2-10x+25)=0 \Rightarrow x=0$ So they meet on the *y*-axis (c) M1: For an attempt to integrate $x^n \rightarrow x^{n+1}$ for $\pm C - l^n$ A1ft: Correct integration in any form which may be simplified or unsimplified. (follow through their equation from (a)) If they attempt as 2 separate integrals e.g. $(x^3 - 10x^2 + 27x - 23) dx - (2x - 23) dx$ then award this mark for the correct integration of the curve as in the alternative. If they combine the curve with the line first then the subsequent integration must be correct or a correct ft for their line and allow for \pm "*C* – *l*" dM1: Fully correct strategy for the area. Award for use of 5 as the limit and condone the omission of the "- 0". Depends on the first method mark. A1: Correct exact value Alternative: M1: For an attempt to integrate $x^n \rightarrow x^{n+1}$ for $\pm C$ A1: Correct integration for $\pm C$ dM1: Fully correct strategy for the area e.g. correctly attempts the area of the trapezium and subtracts the area enclosed between the curve and the x-axis. Need to see the use of 5 as the limit condoning the omission of the "-0" and a correct attempt at the trapezium and the subtraction. May see the trapezium area attempted as (2x-23) dx in which case the integration and use of the limits needs to be correct or correct follow through for their straight line equation. Depends on the first method mark. A1: Correct exact value Note if they do l - C rather than C - l and the working is otherwise correct allow full marks if their final answer is given as a positive value. E.g. correct work with l - C leading to $-\frac{625}{12}$ and then e.g. hence area is $\frac{625}{12}$ is acceptable for full marks. If the answer is left as $-\frac{625}{12}$ then score A0

Question	Scheme	Marks	AOs		
28(a)	$u = 1 + \sqrt{x} \Longrightarrow x = (u - 1)^{2} \Longrightarrow \frac{dx}{du} = 2(u - 1)$ or $u = 1 + \sqrt{x} \Longrightarrow \frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$	B1	1.1b		
	$\int \frac{x}{1+\sqrt{x}} dx = \int \frac{(u-1)^2}{u} 2(u-1) du$ or $\int \frac{x}{1+\sqrt{x}} dx = \int \frac{x}{u} \times 2x^{\frac{1}{2}} du = \int \frac{2x^{\frac{3}{2}}}{u} du = \int \frac{2(u-1)^3}{u} du$	M1	2.1		
	$\int_{0}^{16} \frac{x}{1+\sqrt{x}} dx = \int_{1}^{5} \frac{2(u-1)^{3}}{u} du$	A1	1.1b		
		(3)			
(b)	$2\int \frac{u^3 - 3u^2 + 3u - 1}{u} du = 2\int \left(u^2 - 3u + 3 - \frac{1}{u}\right) du = \dots$	M1	3.1a		
	$= (2) \left[\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u \right]$	A1	1.1b		
	$= 2\left[\frac{5^{3}}{3} - \frac{3(5)^{2}}{2} + 3(5) - \ln 5 - \left(\frac{1}{3} - \frac{3}{2} + 3 - \ln 1\right)\right]$	dM1	2.1		
	$=\frac{104}{3}-2\ln 5$	A1	1.1b		
		(4)			
		(7	marks)		
	Notes				
(a)					
B1: Corre	ct expression for $\frac{dx}{dt}$ or $\frac{du}{dt}$ (or u') or dx in terms of du or du in term	ns of dx			
M1: Com	plete method using the given substitution.				
This needs to be a correct method for their $\frac{dx}{dt}$ or $\frac{du}{dt}$ leading to an integral in terms of u					
du dx only (ignore any limits if present) so for each case you need to see:					
$\frac{\mathrm{d}x}{\mathrm{d}u} = f\left(u\right) \rightarrow \int \frac{x}{1+\sqrt{x}} \mathrm{d}x = \int \frac{\left(u-1\right)^2}{u} f\left(u\right) \mathrm{d}u$					
$\frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{g}(x) \to \int \frac{x}{1+\sqrt{x}} \mathrm{d}x = \int \frac{x}{u} \times \frac{\mathrm{d}u}{\mathrm{g}(x)} = \int \mathrm{h}(u) \mathrm{d}u.$ In this case you can condone					
slips with coefficients e.g. allow $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \rightarrow \int \frac{x}{1+\sqrt{x}} dx = \int \frac{x}{u} \times \frac{x^{\frac{1}{2}}}{2} du = \int h(u) du$					
	EXPERT TUITION				

but not
$$\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \rightarrow \int \frac{x}{1+\sqrt{x}} dx = \int \frac{x}{u} \times \frac{x^{-\frac{1}{2}}}{2} du = \int h(u) du$$

A1: All correct with correct limits and no errors. The "du" must be present but may have been omitted along the way but it must have been seen at least once before the final answer. The limits can be seen as part of the integral or stated separately.
(b)
M1: Realises the requirement to cube the bracket and divide through by *u* and makes progress with the integration to obtain at least 3 terms of the required form e.g. 3 from ku^3 , ku^2 , ku , $k \ln u$
A1: Correct integration. This mark can be scored with the "2" still outside the integral or even if it has been omitted. But if the "2" has been combined with the integrand, the integration must be correct.
dM1: Completes the process by applying their "changed" limits and subtracts the right way round **Depends on the first method mark.**
A1: Cao (Allow equivalents for $\frac{104}{3}$ e.g. $\frac{208}{6}$)

$\begin{array}{ c c c c c c }\hline & \frac{dV}{dt} = 0.48 - 0.1h & B1 & \vdots \\ \hline V = 24h \Rightarrow \frac{dV}{dh} = 24 & \text{or} & \frac{dh}{dt} = \frac{1}{24} & B1 & \vdots \\ \hline V = 24h \Rightarrow \frac{dV}{dh} = 24 & \text{or} & \frac{dh}{dt} = \frac{1}{24} & B1 & \vdots \\ \hline \frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dt} = \frac{0.48 - 0.1h}{24} & M1 & B1 & \vdots \\ \hline \frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \Rightarrow 0.48 - 0.1h = 24 \frac{dh}{dt} & M1 & B1 & B1 & B1 & B1 & B1 & B1 & B1$	Question	Scheme	Marks	AOs
$\frac{V = 24h \Rightarrow \frac{dV}{dh} = 24 \text{ or } \frac{dh}{24} = \frac{1}{24}}{24}$ BI : $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV} = \frac{0.48 - 0.1h}{24}$ or e.g. MI $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \Rightarrow 0.48 - 0.1h = 24 \frac{dh}{dt}$ $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \Rightarrow 0.48 - 0.1h = 24 \frac{dh}{dt}$ (4) $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \Rightarrow 0.48 - 0.1h = 24 \frac{dh}{dt}$ $\frac{dV}{dt} = \frac{1200 \frac{dh}{dt} = 24 - 5h} \Rightarrow \int \frac{1200}{24 - 5h} \frac{dh}{dt}$ $\frac{dV}{dt} = 24 - 5h \Rightarrow \int \frac{1200}{24 - 5h} \frac{dh}{dt} = \int \frac{dV}{24 - 5h}$ $\Rightarrow e.g. \alpha \ln (24 - 5h) = t (+c) \text{ oe } \alpha \text{ or } M1$ $\frac{1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. t (+c) = \alpha \ln (24 - 5h) \text{ oe } A1$ $\frac{t = 0.h = 2 \Rightarrow 0 = -240 \ln (24 - 5h) \text{ oe } A1$ $\frac{t = 240 \ln (24 - 5h) (+c) \text{ oe } A1$ $\frac{t = 240 \ln (24 - 5h) (+c) \text{ oe } A1$ $\frac{t = 240 \ln (24 - 5h) (+c) \text{ oe } A1$ $\frac{t = 240 \ln (24 - 5h) \Rightarrow t =}{h = 4.8 - 2.8e^{-\frac{f}{240}} \Rightarrow 0 + \frac{24}{5} - \frac{14}{5}e^{-\frac{14}{24}} + \frac{14}{5}e^{-\frac{14}{5}} + $	29(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.48 - 0.1h$	B1	3.1b
$\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dt} = \frac{0.48 - 0.1h}{24}$ or e.g. MI $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \Rightarrow 0.48 - 0.1h = 24 \frac{dh}{dt}$ $\frac{1200 \frac{dh}{dt} = 24 - 5h^{*} \qquad A1^{*}$ (b) $\frac{1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \int \frac{1200}{24 - 5h} dh = \int dt$ $\Rightarrow e.g. \alpha \ln(24 - 5h) = t(+c) \text{ oe}$ or $1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. t(+c) = \alpha \ln(24 - 5h) \text{ oe}$ $\frac{1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. t(+c) = \alpha \ln(24 - 5h) \text{ oe}$ $\frac{1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. t(+c) = \alpha \ln(24 - 5h) \text{ oe}$ $\frac{1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. t(+c) = \alpha \ln(24 - 5h) \text{ oe}$ $\frac{1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. t(+c) = \alpha \ln(24 - 5h) \text{ oe}$ $\frac{1200 \ln(24 - 5h) (+c) \text{ oe}}{14 - 240 \ln(24 - 5h) \text{ oe}}$ $\frac{1200 \ln(24 - 5h) (+c) \text{ oe}}{14 - 240 \ln(24 - 5h)} = \frac{14}{24 - 5h}$ $\frac{120 \ln(14) - 240 \ln(24 - 5h)}{240 = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{1}{24}} = \frac{14}{24 - 5h}}$ $\frac{1200 \ln(24 - 5h) \Rightarrow h = \dots}{h = 4.8 - 2.8e^{-\frac{1}{260}} = 24 - 5h \Rightarrow h = \dots}$ $\frac{h = 4.8 - 2.8e^{-\frac{1}{260}} = 0.2 \text{ or } \frac{dh}{dt} = 0.2 \text{ or } \frac{dh}{dt$		$V = 24h \Longrightarrow \frac{\mathrm{d}V}{\mathrm{d}h} = 24 \text{ or } \frac{\mathrm{d}h}{\mathrm{d}V} = \frac{1}{24}$	B1	3.1b
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV} = \frac{0.48 - 0.1h}{24}$ or e.g. $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \Longrightarrow 0.48 - 0.1h = 24 \frac{dh}{dt}$	M1	2.1
(b) $1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \int \frac{1200}{24 - 5h} dh = \int dt$ $\Rightarrow e.g. \alpha \ln(24 - 5h) = t(+c) oe$ or $1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. t(+c) = \alpha \ln(24 - 5h) oe$ $t = -240 \ln(24 - 5h) (+c) oe$ A1 $t = 0, h = 2 \Rightarrow 0 = -240 \ln(24 - 10) + c \Rightarrow c =(240 \ln 14)$ M1 $t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{t}{24}} = \frac{14}{24 - 5h}$ ddM1 $\Rightarrow 14e^{-\frac{1}{240}} = 24 - 5h \Rightarrow h =$ $h = 4.8 - 2.8e^{-\frac{1}{240}} oe e.g. h = \frac{24}{5} - \frac{14}{5}e^{-\frac{14}{24}}$ A1 (c) (c) Examples: $As t \to \infty, e^{-\frac{t}{240}} \to 0$ $At = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ M1 $ab = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ M1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ M1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8 + 1, h < 5$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8 + 1, h < 5$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8 + 1, h < 5$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} > 0, h < 4.8 + 1, h < 5$ A1 $bb = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} $		$1200\frac{\mathrm{d}h}{\mathrm{d}t} = 24 - 5h \ast$	A1*	1.1b
(b) $1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \int \frac{1200}{24 - 5h} dh = \int dt$ $\Rightarrow e.g. \ \alpha \ln(24 - 5h) = t(+c) \ oe or \\ 1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. \ t(+c) = \alpha \ln(24 - 5h) \ oe \\ t = 0, h = 2 \Rightarrow 0 = -240 \ln(24 - 5h) \ oe \\ t = 0, h = 2 \Rightarrow 0 = -240 \ln(24 - 10) + c \Rightarrow c =(240 \ln 14) $ M1 $t = 240 \ln(14) - 240 \ln(24 - 5h) $ A1 $t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{1}{34}} = \frac{14}{24 - 5h} $ ddM1 $\Rightarrow 14e^{-\frac{1}{240}} = 24 - 5h \Rightarrow h =$ $h = 4.8 - 2.8e^{-\frac{1}{340}} \ oe \ e.g. \ h = \frac{24}{5} - \frac{14}{5}e^{-\frac{1}{360}} $ A1 (c) (c) Examples: $\cdot \ As \ t \to \infty, e^{\frac{t}{240}} \to 0$ $\cdot \ When \ h > 4.8, \frac{dV}{dt} < 0$ $\cdot \ Flow \ in = flow \ out \ at \ max \ h \ so \ 0.1h = 4.8 \Rightarrow h = 4.8$ $\cdot \ As \ e^{\frac{t}{240}} > 0, \ h < 4.8$ $\cdot \ h = 5 \Rightarrow \frac{dV}{dt} = -0.02 \ or \ \frac{dh}{dt} = -\frac{1}{1200}$ $\cdot \ \frac{dh}{dt} = 0 \Rightarrow h = 4.8$ $\cdot \ h = 5 \Rightarrow 4.8 - 2.8e^{-\frac{\pi}{140}} < 0$ $\cdot \ The limit \ for \ h \ (according \ to \ the \ model) \ is \ 4.8m \ and \ the \ tank \ is \ 5m \ high \ so \ the \ tank \ will \ never \ be \ tot \ 11$ $\cdot \ The equation \ can't \ be \ solved \ when \ h = 5$			(4)	
or $1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. \ t(+c) = \alpha \ln (24 - 5h) \text{ oe}$ $t = -240 \ln (24 - 5h) (+c) \text{ oe}$ 4.1 $t = 0, h = 2 \Rightarrow 0 = -240 \ln (24 - 10) + c \Rightarrow c =(240 \ln 14)$ 11 $t = 240 \ln (14) - 240 \ln (24 - 5h)$ 11 $t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{\pi}{240}} = \frac{14}{24 - 5h}$ $ddM1$ $\Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h =$ $h = 4.8 - 2.8e^{-\frac{\pi}{240}} \Rightarrow 0$ $\cdot \text{ Mhen } h > 4.8, \frac{dV}{dt} < 0$ $\cdot \text{ Flow in = flow out at max } h \approx 0.1h = 4.8 \Rightarrow h = 4.8$ $\cdot \text{ As } e^{\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As } e^{-\frac{t}{240}} > 0, h < 4.8$ $\cdot \text{ As }$	(b)	$1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \int \frac{1200}{24 - 5h} dh = \int dt$ $\Rightarrow e.g. \ \alpha \ln(24 - 5h) = t(+c) \text{ oe}$		
$\frac{t = -240 \ln (24 - 5h)(+c) \text{ oe}}{t = 0, h = 2 \Rightarrow 0 = -240 \ln (24 - 10) + c \Rightarrow c =(240 \ln 14)} \qquad \text{M1}$ $\frac{t = 0, h = 2 \Rightarrow 0 = -240 \ln (24 - 10) + c \Rightarrow c =(240 \ln 14)}{t = 240 \ln (14) - 240 \ln (24 - 5h)} \qquad \text{A1}$ $\frac{t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{1}{360}} = \frac{14}{24 - 5h}}{ddM1}$ $\Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h =$ $h = 4.8 - 2.8e^{-\frac{t}{340}} \text{ oe e.g. } h = \frac{24}{5} - \frac{14}{5}e^{-\frac{t}{340}} \qquad \text{A1}$ (6) (c) $\frac{\text{Examples:}}{(6)}$ (c) $\frac{\text{As } t \to \infty, e^{-\frac{t}{240}} \to 0}{(6)}$ (b) $\frac{\text{As } t \to \infty, e^{-\frac{t}{240}} \to 0}{(6)}$ (c) $\frac{\text{As } t \to \infty, e^{-\frac{t}{240}} \to 0}{(6)}$ (c) $\frac{\text{As } t \to \infty, e^{-\frac{t}{240}} \to 0}{(6)}$ (f) $\frac{\text{As } t \to \infty, e^{-\frac{t}{240}} \to 0}{(6)}$ (g) $\frac{\text{As } t \to \infty, e^{-\frac{t}{240}} \to 0}{(6)}$ (h) $\frac{\text{As } t \to \infty, e^{-\frac{t}{240}} \to 0}{(6)}$ (h) $\frac{\text{As } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{As } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8}{(6)}$ (h) $\frac{\text{A } e^{-\frac{t}{240}} > 0, h < 4.8$		or $1200 \frac{dh}{dt} = 24 - 5h \Longrightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. \ t(+c) = \alpha \ln(24 - 5h) \text{ oe}$	M1	3.1a
$\frac{t = 0, h = 2 \Rightarrow 0 = -240 \ln (24 - 10) + c \Rightarrow c =(240 \ln 14) \qquad M1}{t = 240 \ln (14) - 240 \ln (24 - 5h) \qquad A1}$ $\frac{t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{1}{540}} = \frac{14}{24 - 5h} \qquad ddM1$ $\Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h =$ $h = 4.8 - 2.8e^{-\frac{t}{240}} \text{ oe e.g. } h = \frac{24}{5} - \frac{14}{5}e^{-\frac{t}{560}} \qquad A1$ (6) (c) Examples: (6) (c) (c) (c) Examples: (6) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		$t = -240\ln(24-5h)(+c)$ oe	A1	1.1b
$\frac{t = 240 \ln (14) - 240 \ln (24 - 5h)}{t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{1}{30}} = \frac{14}{24 - 5h}}{ddM1}$ $\Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h = \dots$ $h = 4.8 - 2.8e^{-\frac{t}{240}} \text{ or e.g. } h = \frac{24}{5} - \frac{14}{5}e^{-\frac{t}{30}}$ $A1$ (6) (c) Examples: $As t \rightarrow \infty, e^{-\frac{t}{240}} \rightarrow 0$ $When h > 4.8, \frac{dV}{dt} < 0$ $Flow in = flow out at max h so 0.1h = 4.8 \Rightarrow h = 4.8$ $As e^{-\frac{t}{240}} > 0, h < 4.8$ $h = 5 \Rightarrow \frac{dV}{dt} = -0.02 \text{ or } \frac{dh}{dt} = -\frac{1}{1200}$ $\frac{dh}{dt} = 0 \Rightarrow h = 4.8$ $h = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} = 5 \Rightarrow e^{-\frac{t}{240}} < 0$ $Here in the the the the the the the the the the$		$t = 0, h = 2 \Longrightarrow 0 = -240 \ln (24 - 10) + c \Longrightarrow c =(240 \ln 14)$	M1	3.4
$t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{t}{240}} = \frac{14}{24 - 5h}$ $ddM1$ $\Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h = \dots$ $h = 4.8 - 2.8e^{-\frac{t}{240}} \Rightarrow 0 = e.g. h = \frac{24}{5} - \frac{14}{5}e^{-\frac{t}{240}}$ (6) (c) Examples: (b) (c) Examples: (c) (c) Examples: (c) (c) Examples: (c) (c) Examples: (c)		$t = 240\ln(14) - 240\ln(24 - 5h)$	A1	1.1b
$h = 4.8 - 2.8e^{-\frac{t}{240}} \text{ oe e.g. } h = \frac{24}{5} - \frac{14}{5}e^{-\frac{t}{240}} \text{ A1}$ (6) (c) Examples: (6) (c) Examples: (6) (c) Examples: (6) (6) (c) Examples: (6) (6) (c) Examples: (6) (6) (c) Examples: (6) (6) (c) (c) Examples: (6) (c) (c) (c) (c) (c) Examples: (6) (c) (c) (c) (c) Examples: (c) (c) (c) (c) Examples: (c)		$t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{t}{240}} = \frac{14}{24 - 5h}$ $\Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h = 14$	ddM1	2.1
Image: constraint of the second se		$h = 4.8 - 2.8e^{-\frac{t}{240}}$ or e.g. $h = \frac{24}{5} - \frac{14}{5}e^{-\frac{t}{240}}$	A1	3.3
(c) Examples: • As $t \to \infty$, $e^{\frac{t}{240}} \to 0$ • When $h > 4.8$, $\frac{dV}{dt} < 0$ • Flow in = flow out at max h so $0.1h = 4.8 \Rightarrow h = 4.8$ • As $e^{\frac{t}{240}} > 0$, $h < 4.8$ • $h = 5 \Rightarrow \frac{dV}{dt} = -0.02$ or $\frac{dh}{dt} = -\frac{1}{1200}$ • $\frac{dh}{dt} = 0 \Rightarrow h = 4.8$ • $h = 5 \Rightarrow 4.8 - 2.8e^{\frac{t}{240}} < 0$ • The limit for h (according to the model) is 4.8m and the tank is 5m high so the tank will never become full • If $h = 5$ the tank would be emptying so can never be full • The equation can't be solved when $h = 5$			(6)	
• As $t \rightarrow \infty$, $e^{-t} \rightarrow 0$ • When $h > 4.8$, $\frac{dV}{dt} < 0$ • Flow in = flow out at max h so $0.1h = 4.8 \rightarrow h = 4.8$ • As $e^{-\frac{t}{240}} > 0$, $h < 4.8$ • $h = 5 \Rightarrow \frac{dV}{dt} = -0.02$ or $\frac{dh}{dt} = -\frac{1}{1200}$ • $\frac{dh}{dt} = 0 \Rightarrow h = 4.8$ • $h = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} < 0$ • The limit for h (according to the model) is 4.8m and the tank is 5m high so the tank will never become full • If $h = 5$ the tank would be emptying so can never be full • The equation can't be solved when $h = 5$	(c)	Examples: $As t \to \infty e^{-\frac{t}{240}} \to 0$		
 The limit for <i>h</i> (according to the model) is 4.8m and the tank is 5m high so the tank will never become full If <i>h</i> = 5 the tank would be emptying so can never be full The equation can't be solved when <i>h</i> = 5 		• As $t \to \infty$, $c \to 0$ • When $h > 4.8$, $\frac{dV}{dt} < 0$ • Flow in = flow out at max h so $0.1h = 4.8 \Rightarrow h = 4.8$ • As $e^{-\frac{t}{240}} > 0$, $h < 4.8$ • $h = 5 \Rightarrow \frac{dV}{dt} = -0.02$ or $\frac{dh}{dt} = -\frac{1}{1200}$ • $\frac{dh}{dt} = 0 \Rightarrow h = 4.8$ • $h = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} = 5 \Rightarrow e^{-\frac{t}{240}} < 0$	M1	3.1b
T EVDEDT		 The limit for <i>h</i> (according to the model) is 4.8m and the tank is 5m high so the tank will never become full If <i>h</i> = 5 the tank would be emptying so can never be full The equation can't be solved when <i>h</i> = 5 	A1	3.2a

	(2)	
	(12	marks)
Notes		
(a)		
B1: Identifies the correct expression for $\frac{dV}{dt}$ according to the model		
B1: Identifies the correct expression for $\frac{dV}{dh}$ according to the model		
M1: Applies $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$ or equivalent correct formula with their $\frac{dV}{dt}$ and $\frac{dV}{dt}$	$\frac{\mathrm{d}V}{\mathrm{d}h}$ which	ı may
be implied by their working A1*: Correct equation obtained with no errors		
Note that: $\frac{dV}{dt} = 0.48 - 0.1h \Rightarrow \frac{dh}{dt} = \frac{0.48 - 0.1h}{24} \Rightarrow 1200 \frac{dh}{dt} = 24 - 5h^*$	scores	
B1B0M0A0. There must be clear evidence where the "24" comes from and evide correct chain rule being applied.	ence of th	e
M1: Adopts a correct strategy by separating the variables correctly or rearranges	to obtain	$\frac{\mathrm{d}t}{\mathrm{d}h}$
correctly in terms of h and integrates to obtain $t = \alpha \ln (24-5h)(+c)$ or equivale	nt (condo	ne
missing brackets around the " $24 - 5h$ ") and $+c$ not required for this mark. A1: Correct equation in any form and $+c$ not required. Do not condone missing be they are implied by subsequent work. M1: Substitutes $t = 0$ and $h = 2$ to find their constant of integration (there must has attempt to integrate) A1: Correct equation in any form	orackets u ave been s	some
This depends on <u>both</u> previous method marks.		
A1: Correct equation		
Note that the marks may be earned in a different order e.g.:		
$t + c = -240 \ln (24 - 5h) \Rightarrow -\frac{t}{240} + d = \ln (24 - 5h) \Rightarrow Ae^{-\frac{t}{240}} = 24 - 4$	5h	
$t = 0, h = 2 \Longrightarrow A = 14 \Longrightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Longrightarrow h = 4.8 - 2.8e^{-\frac{t}{240}}$		
Score as M1 A1 as in main scheme then M1: Correct work leading to $Ae^{\alpha t} = 24 - 5h$ (must have a constant "A	")	
$\frac{1}{240} = 24 - 51$		
A1: $Ae^{240} = 24-5h$ ddM1: Uses $t = 0$. $h = 2$ in an expression of the form above to find A		
$\Delta 1: h = 4.8 - 2.8e^{-\frac{1}{240}}$		
(c)		
M1: See scheme for some examples		
A1: Makes a correct interpretation for their method. There must be no incorrect working or contradictory statements		
This is not a follow through mark and if their equation in (b) is used it must be	<u>be cor</u> rect	

Question	Scheme	Marks	AOs
30(a)	$x^{2} + 8x - 3 = (Ax + B)(x + 2) + C \text{ or } Ax(x + 2) + B(x + 2) + C$ $\Rightarrow A =, B =, C =$ or		
	$\frac{x+6}{x+2}\overline{)x^2+8x-3}$ $\frac{x^2+2x}{6x-3}$	M1	1.1b
	$\frac{6x+12}{-15}$		
	Two of $A = 1, B = 6, C = -15$	A1	1.1b
	All three of $A = 1, B = 6, C = -15$	A1	1.1b
		(3)	
30(b)	$\int \frac{x^2 + 8x - 3}{x + 2} \mathrm{d}x = \int x + 6 - \frac{15}{x + 2} \mathrm{d}x = \dots - 15 \ln(x + 2)$	M1	1.1b
	$=\frac{1}{2}x^{2}+6x-15\ln(x+2) (+c)$	A1ft	1.1b
	$\int_{0}^{6} \frac{x^{2} + 8x - 3}{x + 2} \mathrm{d}x = \left[\frac{1}{2}x^{2} + 6x - 15\ln\left(x + 2\right)\right]_{0}^{6}$		
	$= (18 + 36 - 15\ln 8) - (0 + 0 - 15\ln 2)$	M1	2.1
	= $18 + 36 - (15 - 45)\ln 2$ or e.g. $18 + 36 + 15\ln\left(\frac{2}{8}\right)$		
	$= 54 - 30 \ln 2$	A1	1.1b
		(4)	
			(7 marks)

Notes:

(a)

M1: Multiplies by (x + 2) and attempts to find values for *A*, *B* and *C* e.g. by comparing coefficients or substituting values for *x*. If the method is unclear, at least 2 terms must be correct on rhs.

Or attempts to divide $x^2 + 8x - 3$ by x + 2 and obtains a linear quotient and a constant remainder.

This mark may be implied by 2 correct values for A, B or C

- A1: Two of A = 1, B = 6, C = -15. But note that just performing the division correctly is insufficient and they must clearly identify their A, B, C to score any accuracy marks.
- **A1:** All three of A = 1, B = 6, C = -15

This is implied by stating $\frac{x^2 + 8x - 3}{x + 2} = x + 6 - \frac{15}{x + 2}$ or within the integral in (b)

(b)

M1: Integrates an expression of the form $\frac{C}{x+2}$ to obtain $k \ln(x+2)$.

Condone the omission of brackets around the "x + 2"

Alft: Correct integration ft on their $Ax + B + \frac{C}{x+2}$, $(A, B, C \neq 0)$ The brackets should be present around the "x + 2"

unless they are implied by subsequent work.

- M1: Substitutes both limits 0 and 6 into an expression that contains an x or x^2 term or both and a ln term and subtracts either way round WITH fully correct log work to combine two log terms (but allow sign errors when removing brackets) leading to an answer of the form $a + b \ln c$ (a, b and c not necessarily integers) e.g. if they expand to get $-15\ln 8 15\ln 2$ followed by $-15\ln 16$ and reach $a + b \ln c$ then allow the M mark
- e.g. if they expand to get -15in8 15in2 followed by -15in16 and reach a + binc then allow

Examples:
$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{2\sqrt{x}\left(8x+1\right) - \left(4x^2+x\right)x^{-\frac{1}{2}}}{\left(2\sqrt{x}\right)^2}, \ \frac{1}{2}x^{-\frac{1}{2}}\left(8x+1\right) - \frac{1}{4}\left(4x^2+x\right)x^{-\frac{3}{2}}, \ 2 \times \frac{3}{2}x^{\frac{1}{2}} + \frac{1}{2} \times \frac{1}{2}x^{-\frac{1}{2}}$$

A1*: Obtains $\frac{dy}{dx} = \frac{12x^2 + x - 16\sqrt{x}}{4x\sqrt{x}}$ via $3\sqrt{x} + \frac{1}{4\sqrt{x}} - \frac{4}{x}$ or a correct application of the quotient or product rule and with sufficient working shown to reach the printed answer.

There must be no errors e.g. missing brackets.

(b)

M1: Sets $12x^2 + x - 16\sqrt{x} = 0$ and divides by \sqrt{x} or equivalent e.g. divides by x and multiplies by \sqrt{x}

dM1: Makes the term in $x^{\frac{3}{2}}$ the subject of the formula

A1*: A correct and rigorous argument leading to the given solution.

Alternative - working backwards:

$$x = \left(\frac{4}{3} - \frac{\sqrt{x}}{12}\right)^{\frac{2}{3}} \Rightarrow x^{\frac{3}{2}} = \frac{4}{3} - \frac{\sqrt{x}}{12} \Rightarrow 12x^{\frac{3}{2}} = 16 - \sqrt{x} \Rightarrow 12x^{2} = 16\sqrt{x} - x \Rightarrow 12x^{2} - 16\sqrt{x} + x = 0$$

M1: For raising to power of 3/2 both sides. dM1: Multiplies through by \sqrt{x} . A1: Achieves printed answer and makes a minimal comment e.g. tick, #, QED, true etc.

(c)

M1: Attempts to use the iterative formula with $x_1 = 2$. This is implied by sight of $x_2 = \left(\frac{4}{3} - \frac{\sqrt{2}}{12}\right)^{\frac{4}{3}}$ or awrt 1.14

A1: *x*₂ = awrt 1.13894 **A1:** Deduces that *x* = 1.15650

Via firstly integrating

Question	Scheme	Marks	AOs
31	$f'(x) = 6x^2 + ax - 23 \Longrightarrow f(x) = 2x^3 + \frac{1}{2}ax^2 - 23x + c$	M1 A1	1.1b 1.1b
	" <i>c</i> " = -12	B1	2.2a
	$f(-4) = 0 \Longrightarrow 2 \times (-4)^3 + \frac{1}{2}a(-4)^2 - 23(-4) - 12 = 0$	dM1	3.1a
	<i>a</i> = (6)	dM1	1.1b
	$(f(x) =)2x^{3} + 3x^{2} - 23x - 12$ Or Equivalent e.g. $(f(x) =)(x+4)(2x^{2} - 5x - 3) (f(x) =)(x+4)(2x+1)(x-3)$	A1cso	2.1
		(6)	
			(6 marks)

Notes:

M1: Integrates f'(x) with two correct indices. There is no requirement for the + c

A1: Fully correct integration (may be unsimplified). The + c must be seen (or implied by the -12)

B1: Deduces that the constant term is -12

dM1: Dependent upon having done some integration. It is for setting up a linear equation in *a* by using f(-4) = 0May also see long division attempted for this mark. Need to see a complete method leading to a remainder in terms of *a* which is then set = 0.

For reference, the quotient is $2x^2 + \left(\frac{a}{2} - 8\right)x + 9 - 2a$ and the remainder is 8a - 48

May also use $(x + 4)(px^2 + qx + r) = 2x^3 + \frac{1}{2}ax^2 - 23x - 12$ and compare coefficients to find p, q and r and

hence a. Allow this mark if they solve for p, q and r

Note that some candidates use 2f(x) which is acceptable and gives the same result if executed correctly. **dM1:** Solves the linear equation in *a* or uses *p*, *q* and *r* to find *a*.

It is dependent upon having attempted some integration and used $f(\pm 4) = 0$ or long division/comparing coefficients with (x + 4) as a factor.

A1cso: For $(f(x) =)2x^3 + 3x^2 - 23x - 12$ oe. Note that "f(x) =" does not need to be seen and ignore any "= 0"

Question	Scheme	Marks	AOs
31 Alt	$f(r) = (r+4)(Ar^2 + Br + C)$	M1	1.1b
		A1	1.1b
	$f(x) = Ax^{3} + (4A+B)x^{2} + (4B+C)x + 4C \Longrightarrow C = -3$	B1	2.2a
	$f'(x) = 3Ax^2 + 2(4A + B)x + (4B + C)$ and $f'(x) = 6x^2 + ax - 23$	dM1	3.1a
	$\Rightarrow A = \dots$		
	Full method to get A, B and C	dM1	1.1b
	$f(x) = (x+4)(2x^2-5x-3)$	A1cso	2.1
		(6)	
			(6 marks)

Via firstly using factor

Notes:

M1: Uses the fact that f(x) is a cubic expression with a factor of (x + 4)A1: For $f(x) = (x + 4)(Ax^2 + Bx + C)$ B1: Deduces that C = -3

dM1: Attempts to differentiate either by product rule or via multiplication and compares to $f'(x) = 6x^2 + ax - 23$ to find A.

dM1: Full method to get A, B and C Alcso: $f(x) = (x + 4)(2x^2 - 5x - 3)$ or f(x) = (x + 4)(2x + 1)(x - 3)

Question	Scheme	Marks	AOs
32(a)(i)	$y \times \frac{dx}{dt} = 5\sin 2t \times 6\cos t$ or $5 \times 2\sin t\cos t \times 6\cos t$	M1	1.2
	(Area =) $\int 5\sin 2t \times 6\cos t dt = \int 5 \times 2\sin t \cos t \times 6\cos t dt$ or $\int 5\sin 2t \times 6\cos t dt = \int 60\sin t \cos^2 t dt$	dM1	1.1b
	(Area =) $\int_{0}^{\frac{\pi}{2}} 60\sin t \cos^2 t dt *$	A1*	2.1*
		(3)	
(a)(ii)	$\int 60\sin t \cos^2 t \mathrm{d}t = -20\cos^3 t$	M1 A1	1.1b 1.1b
	Area = $\left[-20\cos^3 t\right]_0^{\frac{\pi}{2}} = 0 - (-20) = 20 *$	A1*	2.1
		(3)	
(b)	$5\sin 2t = 4.2 \Longrightarrow \sin 2t = \frac{4.2}{5}$	M1	3.4
	t = 0.4986, 1.072	A1	1.1b
	Attempts to finds the x values at both t values	dM1	3.4
	$t = 0.4986 \Rightarrow x = 2.869$ $t = 1.072 \Rightarrow x = 5.269$	A1	1.1b
	Width of path $= 2.40$ metres	A1	3.2a
		(5)	
			(11 marks)

(a)(i)

Notes:

M1: Attempts to multiply y by $\frac{dx}{dt}$ to obtain $A \sin 2t \cos t$ but may apply $\sin 2t = 2 \sin t \cos t$ here

dM1: Attempts to use $\sin 2t = 2\sin t \cos t$ within an integral which may be implied by

e.g. $A \int \sin 2t \times \cos t \, dt = \int k \sin t \cos^2 t \, dt$

A1*: Fully correct work leading to the given answer.

This must include $\sin 2t = 2 \sin t \cos t$ or e.g. $5 \sin 2t = 10 \sin t \cos t$ seen <u>explicitly</u> in their proof and a correct intermediate line that includes an integral sign and the "dt"

Allow the limits to just "appear" in the final answer e.g. working need not be shown for the limits. (a)(ii)

M1: Obtains $\int 60 \sin t \cos^2 t \, dt = k \cos^3 t$. This may be attempted via a substitution of $u = \cos t$ to obtain

$$\int 60\sin t \cos^2 t \, \mathrm{d}t = ku^3$$

A1: Correct integration $-20\cos^3 t$ or equivalent e.g. $-20u^3$

A1*: Rigorous proof with all aspects correct including the correct limits and the 0 - (-20) and

not just:
$$-20\cos^3\frac{\pi}{2} - (-20\cos^3 0) = 20$$

(b)

M1: Uses the given model and attempts to find value(s) of t when $\sin 2t = \frac{4.2}{5}$. Look for $2t = \sin^{-1}\frac{4.2}{5} \Rightarrow t = ...$ A1: At least one correct value for t, correct to 2 dp. FYI t = 0.4986..., 1.072... or in degrees t = 28.57..., 61.42...

dM1: Attempts to find **TWO** distinct values of *x* when sin $2t = \frac{4.2}{5}$. Condone poor trig work and allow this mark if 2

values of *x* are attempted from 2 values of *t*.

A1: Both values correct to 2 dp. NB x = 2.869..., 5.269...

Or may take Cartesian approach

 $5\sin 2t = 4.2 \Rightarrow 10\sin t\cos t = 4.2 \Rightarrow 10\frac{x}{6}\sqrt{1-\frac{x^2}{36}} = 4.2 \Rightarrow x^4 - 36x^2 + 228.6144 = 0 \Rightarrow x = 2.869..., 5.269...$

M1: For converting to Cartesian form A1: Correct quartic M1: Solves quartic A1: Correct values

A1: 2.40 metres or 240 cm

Allow awrt 2.40 m or allow 2.4m (not awrt 2.4 m) and allow awrt 240 cm. Units are required.

Question S		Scheme	Marks	AOs		
33		States $\left\{\lim_{\delta x \to 0} \sum_{x=4}^{9} \sqrt{x} \ \delta x \text{ is} \right\} \int_{4}^{9} \sqrt{x} \ dx$	B1	1.2		
		$= \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{4}^{9}$	M1	1.1b		
		$= \frac{2}{3} \times 9^{\frac{3}{2}} - \frac{2}{3} \times 4^{\frac{3}{2}} = \frac{54}{3} - \frac{16}{3}$				
		$=\frac{38}{3}$ or $12\frac{2}{3}$ or awrt 12.7	A1	1.1b		
			(3)			
			(.	3 marks)		
		Notes for Question 33				
B1:	Stat	tes $\int_{4}^{9} \sqrt{x} dx$ with or without the 'dx'				
M1:	Inte	Integrates \sqrt{x} to give $\lambda x^{\frac{3}{2}}$; $\lambda \neq 0$				
A1:	See	ee scheme				
Note:	Υοι	You can imply B1 for $\left[\lambda x^{\frac{3}{2}}\right]_{4}^{9}$ or for $\lambda \times 9^{\frac{3}{2}} - \lambda \times 4^{\frac{3}{2}}$				
Note:	Giv	Give B0 for $\int_{1}^{9} \sqrt{x} dx - \int_{1}^{3} \sqrt{x} dx$ or for $\int_{3}^{9} \sqrt{x} dx$ without reference to a correct $\int_{4}^{9} \sqrt{x} dx$				
Note:	Giv	Give B1 M1 A1 for no working leading to a correct $\frac{38}{3}$ or $12\frac{2}{3}$ or awrt 12.7				
Note:	Give B1 M1 A1 for $\int_{4}^{9} \sqrt{x} dx = \frac{38}{3}$ or $12\frac{2}{3}$ or awrt 12.7					
Note:	Give B1 M1 A1 for $\left[\frac{2}{3}x^{\frac{3}{2}} + c\right]_{4}^{9} = \frac{38}{3}$ or $12\frac{2}{3}$ or awrt 12.7					
Note:	Give B1 M1 A1 for no working followed by an answer $\frac{38}{3}$ or $12\frac{2}{3}$ or awrt 12.7					
Note:	Giv	e M0 A0 for use of a trapezium rule method to give an answer of awrt 12.7	,			
	but	allow B1 if $\int_{4}^{9} \sqrt{x} dx$ is seen in a trapezium rule method				
Note:	Oth	erwise, give B0 M0 A0 for using the trapezium rule to give an answer of a	wrt 12.7			

Question	Scheme		AOs
34 (a)	$\{u=4-\sqrt{h} \Rightarrow\} \frac{\mathrm{d}u}{\mathrm{d}h} = -\frac{1}{2}h^{-\frac{1}{2}} \text{ or } \frac{\mathrm{d}h}{\mathrm{d}u} = -2(4-u) \text{ or } \frac{\mathrm{d}h}{\mathrm{d}u} = -2\sqrt{h}$	B1	1.1b
	$\left\{\int \frac{\mathrm{d}h}{4-\sqrt{h}} = \right\} \int \frac{-2(4-u)}{u} \mathrm{d}u$	M1	2.1
	$=\int \left(-\frac{8}{u}+2\right) \mathrm{d}u$	M1	1.1b
	$-8\ln u + 2u + c$	M1	1.1b
	$=$ $\sin u + 2u \left(+ c \right)$	A1	1.1b
	$= -8\ln 4 - \sqrt{h} + 2(4 - \sqrt{h}) + c = -8\ln 4 - \sqrt{h} - 2\sqrt{h} + k *$	A1*	2.1
		(6)	
(b)	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{t^{0.25}(4-\sqrt{h})}{20} = 0 \implies \right\} 4-\sqrt{h} = 0$	M1	3.4
	Deduces any of $0 < h < 16$, $0 \le h < 16$, $0 < h \le 16$, $0 \le h \le 16$, $h < 16$, $h \le 16$ or all values up to 16	A1	2.2a
		(2)	
(c) Way 1	$\int \frac{1}{(4 - \sqrt{h})} dh = \int \frac{1}{20} t^{0.25} dt$	B1	1.1b
	$-8\ln 4-\sqrt{h} - 2\sqrt{h} - \frac{1}{2}t^{125} + c$	M1	1.1b
	$\frac{1}{25} \frac{1}{25} \frac$		1.1b
	$\{t=0, h=1 \Longrightarrow\} -8\ln(4-1) - 2\sqrt{(1)} = \frac{1}{25}(0)^{125} + c$	M1	3.4
	$\Rightarrow c = -8\ln(3) - 2 \Rightarrow -8\ln\left 4 - \sqrt{h}\right - 2\sqrt{h} = \frac{1}{25}t^{125} - 8\ln(3) - 2$ $\{h = 12 \Rightarrow \} -8\ln\left 4 - \sqrt{12}\right - 2\sqrt{12} = \frac{1}{25}t^{125} - 8\ln(3) - 2$	dM1	3.1a
	$t^{125} = 221.2795202 \Rightarrow t = \sqrt[125]{221.2795} \text{ or } t = (221.2795)^{0.8}$	M1	1.1b
	$t = 75.154 \Rightarrow t = 75.2 \text{ (years) } (3 \text{ sf}) \text{ or awrt } 75.2 \text{ (years)}$	A1	1.1b
	Note: You can recover work for part (c) in part (b)	(7)	
(c) Way 2	$\int_{1}^{12} \frac{20}{(4-\sqrt{h})} dh = \int_{0}^{T} t^{0.25} dt$	B1	1.1b
	$\begin{bmatrix} 20(8\ln 4 \sqrt{h} - 2 \sqrt{h}) \end{bmatrix}^{12} - \begin{bmatrix} 4_{125} \end{bmatrix}^{T}$	M1	1.1b
	$\begin{bmatrix} 20(-8\pi) + -\sqrt{n} - 2\sqrt{n} \end{bmatrix}_1 = \begin{bmatrix} -i \\ 5 \end{bmatrix}_0$		1.1b
	$20(-8\ln(4-\sqrt{12})-2\sqrt{12})-20(-8\ln(4-1)-2\sqrt{1})-\frac{4}{7}T^{125}=0$		3.4
	20(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5)	dM1	3.1a
	$T^{125} = 221.2795202 \Rightarrow T = \sqrt[125]{221.2795} \text{ or } T = (221.2795)^{0.8}$	M1	1.1b
	$T = 75.154 \Rightarrow T = 75.2$ (years) (3 sf) or awrt 75.2 (years)	A1	1.1b
	Note: You can recover work for part (c) in part (b)	(7)	
		(1)	5 marks)

Notes for Question 3 4			
(a)			
B1:	See scheme. Allow $du = -\frac{1}{2}h^{-\frac{1}{2}}dh$, $dh = -2(4-u)du$, $dh = -2\sqrt{h}du$ o.e.		
M1:	Complete method for applying $u = 4 - \sqrt{h}$ to $\int \frac{dh}{4 - \sqrt{h}}$ to give an expression of the form		
	$\int \frac{k(4-u)}{u} \mathrm{d}u \; ; \; k \neq 0$		
Note:	Condone the omission of an integral sign and/or du		
M1:	Proceeds to obtain an integral of the form $\int \left(\frac{A}{u} + B\right) \{du\}; A, B \neq 0$		
M1:	$\int \left(\frac{A}{u} + B\right) \{du\} \rightarrow D \ln u + Eu; A, B, D, E \neq 0; \text{ with or without a constant of integration}$		
A1:	$\int \left(-\frac{8}{u}+2\right) \{du\} \rightarrow -8\ln u + 2u; \text{ with or without a constant of integration}$		
A1*:	dependent on all previous marks		
	Substitutes $u = 4 - \sqrt{h}$ into their integrated result and completes the proof by obtaining the		
	printed result $-8\ln 4-\sqrt{h} -2\sqrt{h}+k$.		
	Condone the use of brackets instead of the modulus sign.		
Note:	They must combine 2(4) and their $+c$ correctly to give $+k$		
Note:	Going from $-8\ln 4-\sqrt{h} +2(4-\sqrt{h})+c$ to $-8\ln 4-\sqrt{h} -2\sqrt{h}+k$, with no intermediate		
	working or with no incorrect working is required for the final A1* mark.		
Note:	Allow A1* for correctly reaching $-8\ln \left 4 - \sqrt{h}\right - 2\sqrt{h} + c + 8$ and stating $k = c + 8$		
Note:	Allow A1* for correctly reaching $-8\ln \left 4-\sqrt{h}\right + 2(4-\sqrt{h}) + k = -8\ln \left 4-\sqrt{h}\right - 2\sqrt{h} + k$		
	Alternative (integration by parts) method for the 2 nd M, 3 rd M and 1 st A mark		
	$\left\{\int \frac{-2(4-u)}{u} du = \int \frac{2u-8}{u} du \right\} = (2u-8)\ln u - \int 2\ln u du = (2u-8)\ln u - 2(u\ln u - u) \{+c\}$		
2 nd M1:	Proceeds to obtain an integral of the form $(Au + B)\ln u - \int A\ln u \{du\}$; $A, B \neq 0$		
3 rd M1:	Integrates to give $D\ln u + Eu$; $D, E \neq 0$; which can be simplified or un-simplified		
	with or without a constant of integration.		
Note:	Give 3^{rd} M1 for $(2u-8)\ln u - 2(u\ln u - u)$ because it is an un-simplified form of $D\ln u + Eu$		
1 st A1:	Integrates to give $(2u-8)\ln u - 2(u\ln u - u)$ or $-8\ln u + 2u$ o.e.		
	with or without a constant of integration.		
(b) M1·	Uses the context of the model and has an understanding that the tree keeps growing write		
1411:	dh $-$		
	$\frac{dt}{dt} = 0 \Rightarrow 4 - \sqrt{h} = 0$. Alternatively, they can write $\frac{dt}{dt} > 0 \Rightarrow 4 - \sqrt{h} > 0$		
Note:	Accept $h = 16$ or 16 used in their inequality statement for this mark.		
A1:	See scheme		
Note:	A correct answer can be given M1 A1 from any working.		

Notes for Question 3 4		
(c)	Way 1	
B1:	Separates the variables correctly. dh and dt should not be in the wrong positions, although	
	this mark can be implied by later working. Condone absence of integral signs.	
M1:	Integrates $t^{0.25}$ to give $\lambda t^{1.25}$; $\lambda \neq 0$	
A1:	Correct integration. E.g. $-8\ln 4-\sqrt{h} - 2\sqrt{h} = \frac{1}{25}t^{125}$ or $20(-8\ln 4-\sqrt{h} - 2\sqrt{h}) = \frac{4}{5}t^{125}$	
	$-8\ln\left 4-\sqrt{h}\right +2(4-\sqrt{h}) = \frac{1}{25}t^{125} \text{ or } 20(-8\ln\left 4-\sqrt{h}\right +2(4-\sqrt{h})) = \frac{4}{5}t^{125}$	
	with or without a constant of integration, e.g. k, c or A	
Note:	There is no requirement for modulus signs.	
M1:	Some evidence of <i>applying</i> both $t = 0$ and $h = 1$ to their model (which can be a changed	
	equation) which contains a constant of integration, e.g. k, c or A	
dM1:	dependent on the previous M mark	
	Complete process of finding their constant of integration, followed by applying $h = 12$ and their	
	constant of integration to their changed equation	
M1:	Rearranges their equation to make $t^{\text{iner 125}} = \dots$ followed by a correct method to give $t = \dots$; $t > 0$	
Note:	$t^{\text{their 1 } 25} = \dots$ can be negative, but their ' $t = \dots$ ' must be positive	
Note:	"their 1.25" cannot be 0 or 1 for this mark	
Note:	Do not give this mark if $t^{\text{their 125}} = \dots$ (usually $t^{025} = \dots$) is a result of substituting $t = 12$ (or $t = 11$)	
	into the given $\frac{dh}{dt} = \frac{t^{0.25}(4-\sqrt{h})}{20}$. Note: They will usually write $\frac{dh}{dt}$ as either 12 or 11.	
A1:	awrt 75.2	
(c)	Way 2	
B1:	Separates the variables correctly. dh and dt should not be in the wrong positions, although	
	this mark can be implied by later working.	
Note:	Integral signs and limits are not required for this mark.	
M1:	Same as Way 1 (ignore limits)	
A1:	Same as Way 1 (ignore limits)	
M1:	Applies limits of 1 and 12 to their model (i.e. to their changed expression in <i>h</i>) and subtracts	
dM1	dependent on the previous M mark	
	Complete process of applying limits of 1 and 12 and 0 and T (or 't') appropriately to their	
N/1	changed equation	
MI:	Same as way 1	
AI:	Same as way 1	

Question Scheme		Marks	AOs		
35	$C: y = x \ln x; l \text{ is a normal to } C \text{ at } P(e, e)$				
25	Let x_{A} be the x-coordinate of where l cuts the x-axis				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \ln x + x \left(\frac{1}{x}\right) \{= 1 + \ln x\}$	M1 A1	2.1 1.1b		
	$x = e, m_T = 2 \implies m_N = -\frac{1}{2} \implies y - e = -\frac{1}{2}(x - e)$	M1	3.1a		
	$y = 0 \Longrightarrow -e = -\frac{1}{2}(x-e) \Longrightarrow x =$		5.1u		
	<i>l</i> meets <i>x</i> -axis at $x = 3e$ (allow $x = 2e + e \ln e$)	A1	1.1b		
	{Areas:} either $\int_{1}^{e} x \ln x dx = [\dots]_{1}^{e} = \dots$ or $\frac{1}{2}((\text{their } x_{A}) - e)e$	M1	2.1		
	$\left\{ \int x \ln x dx = \right\} \frac{1}{2} x^2 \ln x - \int \frac{1}{x} \left(\frac{x^2}{2} \right) \{ dx \}$	M1	2.1		
	$\begin{bmatrix} 1 \\ u^2 \ln u \end{bmatrix} \begin{bmatrix} 1 \\ u \\ (du) \end{bmatrix} = \begin{bmatrix} 1 \\ u^2 \ln u \end{bmatrix} \begin{bmatrix} 1 \\ u^2 \end{bmatrix}$	dM1	1.1b		
	$\left\{ = \frac{1}{2}x \ln x - \int \frac{1}{2}x \left\{ dx \right\} \right\} = \frac{1}{2}x \ln x - \frac{1}{4}x$	A1	1.1b		
	Area $(R_1) = \int_1^e x \ln x dx = [\dots]_1^e = \dots;$ Area $(R_2) = \frac{1}{2}((\text{their } x_A) - e)e$	M1	3.1a		
	and so, Area(R) = Area(R ₁) + Area(R ₂) $\{=\frac{1}{4}e^2 + \frac{1}{4} + e^2\}$				
Area $(R) = \frac{5}{4}e^2 + \frac{1}{4}$		A1	1.1b		
		(10)			
M1.	M1: Differentiates by using the product rule to give $\ln x + x$ (their g'(x)), where $g(x) = \ln x$				
A 1.	Correct differentiation of $v = x \ln x$, which can be un-simplified or simplified				
AI. M1·	$\frac{1}{2} = \frac{1}{2} = \frac{1}$				
1711.	Sets $y=0$ in $y-e=m_y(x-e)$ to find $x=$				
Note	2. Sets $y = 0$ in $y = 0 = m_N(x = 0)$ to find $x =$				
A1:	<i>l</i> meets x-axis at $x = 3e$, allowing un-simplified values for x such as $x = 2e + e$	m_T is found by using calculus and $m_N + m_T$ meets x-axis at $r = 3e$ allowing un-simplified values for r such as $r = 2e + e \ln e$			
Note:	Allow $x = awrt 8.15$				
M1:	Scored for either				
	• Area under curve = $\int_{1}^{e} x \ln x dx = \begin{bmatrix} \dots \end{bmatrix}_{1}^{e} = \dots$, with limits of e and 1	• Area under curve = $\int_{1}^{\infty} x \ln x dx = \begin{bmatrix} \dots \end{bmatrix}_{1}^{\infty} = \dots$, with limits of e and 1 and some attempt to			
	J_1 substitute these and subtract				
	• or Area under line $=\frac{1}{2}((\text{their } x_A) - e)e$, with a valid attempt to find x_A				
M1:	Integration by parts the correct way around to give $Ax^2 \ln x - \int B\left(\frac{x^2}{x}\right) \{dx\}; A \neq 0, B > 0$				
dM1:	dependent on the previous M mark				
	Integrates the second term to give $\pm \lambda x^2$; $\lambda \neq 0$	ntegrates the second term to give $\pm \lambda x^2$; $\lambda \neq 0$			
A1:	$\frac{1}{2}x^{2}\ln x - \frac{1}{4}x^{2}$				
M1:	Complete strategy of finding the area of <i>R</i> by finding the sum of two key areas $\frac{5}{2}$	s. See scher	ne.		
A1:	$\frac{2}{4}e^{2} + \frac{1}{4}$				

Notes for Question 35 Continued			
Note:	Area (R_2) can also be found by integrating the line <i>l</i> between limits of e and their x_A		
	i.e. Area $(R_2) = \int_{e}^{\text{their } x_A} \left(-\frac{1}{2}x + \frac{3}{2}e \right) dx = \left[\dots \right]_{e}^{\text{their } x_A} = \dots$		
Note:	Calculator approach with no algebra, differentiation or integration seen:		
	• Finding <i>l</i> cuts through the x-axis at awrt 8.15 is 2^{nd} M1 2^{nd} A1		
	• Finding area between curve and the x-axis between $x = 1$ and $x = e$		
	to give awrt 2.10 is 3 rd M1		
	• Using the above information (must be seen) to apply		
	Area $(R) = 2.0972 + 7.3890 = 9.4862$ is final M1		
	Therefore, a maximum of 4 marks out of the 10 available.		

Question	Scheme	Marks	AOs
36 (a)	$x > \ln\left(\frac{4}{3}\right)$	B1	2.2a
		(1)	
(b)	Attempts to apply $\int y \frac{dx}{dt} dt$	M1	3.1a
	$\left\{\int y \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t = \right\} = \int \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) \mathrm{d}t$	A1	1.1b
	$\frac{1}{(t+1)(t+2)} = \frac{A}{(t+1)} + \frac{B}{(t+2)} \implies 1 \equiv A(t+2) + B(t+1)$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow\}$ gives $\frac{1}{(t+1)} - \frac{1}{(t+2)}$	A1	1.1b
	$\left\{ \int \left(\frac{1}{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{$	M1	1.1b
	$\left[\bigcup \left((t+1) (t+2) \right)^{-1} \right] \qquad $	A1	1.1b
	Area(R) = $\left[\ln(t+1) - \ln(t+2)\right]_0^2 = (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	M1	2.2a
	$= \ln 3 - \ln 4 + \ln 2 = \ln \left(\frac{(3)(2)}{4}\right) = \ln \left(\frac{6}{4}\right)$		
	$=\ln\left(\frac{3}{2}\right)$ *	A1*	2.1
		(8)	
(b) Alt 1	Attempts to apply $\int y dx = \int \frac{1}{e^x - 2 + 1} dx = \int \frac{1}{e^x - 1} dx$,	M1	3.1a
	with a substitution of $u = e^x - 1$		
	$\left\{\int y dx\right\} = \int \left(\frac{1}{u}\right) \left(\frac{1}{u+1}\right) du$	A1	1.1b
	$\frac{1}{u(u+1)} \equiv \frac{A}{u} + \frac{B}{(u+1)} \implies 1 \equiv A(u+1) + Bu$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow\}$ gives $\frac{1}{u} - \frac{1}{(u+1)}$	A1	1.1b
	$\left\{ \int \left(\frac{1}{u} - \frac{1}{u}\right) du = \right\} \ln u - \ln(u+1)$	M1	1.1b
	$\left[\bigcup \left(u - (u+1) \right)^{-1} \right] = \frac{1}{2}$	A1	1.1b
	Area(R) = $[\ln u - \ln(u+1)]_1^3$ = $(\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	M1	2.2a
	$= \ln 3 - \ln 4 + \ln 2 = \ln \left(\frac{(3)(2)}{4}\right) = \ln \left(\frac{6}{4}\right)$		
	$=\ln\left(\frac{3}{2}\right)*$	A1 *	2.1
		(8)	
(9 marks)			

			AOs
36 (b) Alt 2	Attempts to apply $\int y dx = \int \frac{1}{e^x - 2 + 1} dx = \int \frac{1}{e^x - 1} dx$, with a substitution of $y = e^x$.	M1	3.1a
	$\left\{ \int y dx \right\} = \int \left(\frac{1}{v-1}\right) \left(\frac{1}{v}\right) dv$	A1	1.1b
	$\frac{1}{(v-1)v} \equiv \frac{A}{(v-1)} + \frac{B}{v} \implies 1 \equiv Av + B(v-1)$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow \}$ gives $\frac{1}{(v-1)} - \frac{1}{v}$	A1	1.1b
	$\int \left(\begin{array}{cc} 1 & 1 \\ \end{array} \right)_{dy} = \int \ln(y, 1) - \ln y$	M1	1.1b
	$\left(\int \left(\frac{1}{(v-1)} - \frac{1}{v} \right)^{dv} - \int \frac{1}{(v-1)} dv$	A1	1.1b
	Area(R) = $\left[\ln(v-1) - \ln v\right]_{2}^{4} = (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	M1	2.2a
	$= \ln 3 - \ln 4 + \ln 2 = \ln \left(\frac{(3)(2)}{4} \right) = \ln \left(\frac{6}{4} \right)$		
	$=\ln\left(\frac{3}{2}\right)$ *	A1 *	2.1
		(8)	

Question 36 Notes:		
(a)		
B1:	Uses $x = \ln(t+2)$ with $t > -\frac{2}{3}$ to deduce the correct domain, $x > \ln\left(\frac{4}{3}\right)$	
(b)		
M1:	Attempts to solve the problem by either	
	a parametric process or	
	• a Cartesian process with a substitution of either $u = e^x - 1$ or $v = e^x$	
A1:	Obtains	
	• $\int \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) dt$ from a parametric approach	
	• $\int \left(\frac{1}{u}\right) \left(\frac{1}{u+1}\right) du$ from a Cartesian approach with $u = e^x - 1$	
	• $\int \left(\frac{1}{v-1}\right) \left(\frac{1}{v}\right) dv$ from a Cartesian approach with $v = e^x$	
M1:	Applies a strategy of attempting to express either $\frac{1}{(t+1)(t+2)}$, $\frac{1}{u(u+1)}$ or $\frac{1}{(v-1)v}$	
	as partial fractions	
A1:	Correct partial fractions for their method	
M1:	Integrates to give either	
	• $\pm \alpha \ln(t+1) \pm \beta \ln(t+2)$	
	• $\pm \alpha \ln u \pm \beta \ln(u+1); \ \alpha, \beta \neq 0$, where $u = e^x - 1$	
	• $\pm \alpha \ln(v-1) \pm \beta \ln v$; $\alpha, \beta \neq 0$, where $v = e^x$	
A1:	Correct integration for their method	
M1:	Either	
	• Parametric approach: Deduces and applies limits of 2 and 0 in <i>t</i> and subtracts the correct way round	
	• Cartesian approach: Deduces and applies limits of 3 and 1 in u , where $u = e^x - 1$, and subtracts the correct way round	
	• Cartesian approach: Deduces and applies limits of 4 and 2 in v, where $v = e^x$,	
	and subtracts the correct way round	
A1*:	Correctly shows that the area of <i>R</i> is $\ln\left(\frac{3}{2}\right)$, with no errors seen in their working	

Ques	tion	9	Scheme	Marks	AOs
3'	37 $\int (3x^{0.5} + A) dx = 2x^{1.5} + Ax(+c)$		M1 A1	3.1a 1.1b	
		Uses limits and sets = $2A^2 \Rightarrow$	$(2 \times 8 + 4A) - (2 \times 1 + A) = 2A^{2}$	M1	1.1b
		Sets up quadratic and attempts to solve	Sets up quadratic and attempts $b^2 - 4ac$	M1	1.1b
		$\Rightarrow A = -2, \frac{7}{2}$ and states that there are two roots	States $b^2 - 4ac = 121 > 0$ and hence there are two roots	A1	2.4
				(5 n	narks)
Notes	5:				
M1:	Integ	grates the given function and acl	nieves an answer of the form $kx^{15} + Ax$	(+c) when	e k is
	a no	n- zero constant			
A1:	Corr	ect answer but may not be simp	lified		
M1:	Substitutes in limits and subtracts. This can only be scored if $\int A dx = Ax$ and not $\frac{A^2}{2}$				
M1:	1: Sets up quadratic equation in A and either attempts to solve or attempts $b^2 - 4ac$				
A1:	Either $A = -2, \frac{7}{2}$ and states that there are two roots				
	Or states $b^2 - 4ac = 121 > 0$ and hence there are two roots				

Question	Scheme	Marks	AOs
38	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{15}{2}x^{\frac{1}{2}} - 9$	M1 A1	3.1a 1.1b
	Substitutes $x = 4 \Longrightarrow \frac{dy}{dx} = 6$	M1	2.1
	Uses (4, 15) and gradient $\Rightarrow y - 15 = 6(x - 4)$	M1	2.1
	Equation of <i>l</i> is $y = 6x - 9$	A1	1.1b
	Area $R = \int_{0}^{4} \left(5x^{\frac{3}{2}} - 9x + 11 \right) - (6x - 9) dx$	M1	3.1a
	$= \left[2x^{\frac{5}{2}} - \frac{15}{2}x^{2} + 20x(+c)\right]_{0}^{4}$	A1	1.1b
	Uses both limits of 4 and 0		
	$\left[2x^{\frac{5}{2}} - \frac{15}{2}x^{2} + 20x\right]_{0}^{4} = 2 \times 4^{\frac{5}{2}} - \frac{15}{2} \times 4^{2} + 20 \times 4 - 0$	M1	2.1
	Area of $R = 24 *$	A1*	1.1b
	Correct notation with good explanations	A1	2.5
		(10)	
		(10 n	narks)

Question 38 continued

Notes			
	$\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		
M1:	Differentiates $5x^2 - 9x + 11$ to a form $Ax^2 + B$		
A1:	$\frac{dy}{dx} = \frac{15}{2}x^{\frac{1}{2}} - 9$ but may not be simplified		
M1:	Substitutes $x = 4$ in their $\frac{dy}{dx}$ to find the gradient of the tangent		
M1:	Uses their gradient and the point (4, 15) to find the equation of the tangent		
A1:	Equation of <i>l</i> is $y = 6x - 9$		
M1:	Uses Area $R = \int_0^4 \left(5x^{\frac{3}{2}} - 9x + 11\right) - (6x - 9) dx$ following through on their $y = 6x - 9$		
	Look for a form $Ax^{\frac{5}{2}} + Bx^2 + Cx$		
A1:	$= \left[2x^{\frac{5}{2}} - \frac{15}{2}x^{2} + 20x(+c)\right]_{0}^{4}$ This must be correct but may not be simplified		
M1:	Substitutes in both limits and subtracts		
A1*:	Correct area for $R = 24$		
A1:	Uses correct notation and produces a well explained and accurate solution. Look for		
	• Correct notation used consistently and accurately for both differentiation and integration		
	• Correct explanations in producing the equation of <i>l</i> . See scheme.		
	• Correct explanation in finding the area of <i>R</i> . In way 2 a diagram may be used.		
	Alternative method for the area using area under curve and triangles. (Way 2)		
M1:	Area under curve = $\int_{0}^{4} \left(5x^{\frac{3}{2}} - 9x + 11 \right) = \left[Ax^{\frac{5}{2}} + Bx^{2} + Cx \right]_{0}^{4}$		
A1:	$= \left[2x^{\frac{5}{2}} - \frac{9}{2}x^{2} + 11x\right]_{0}^{4} = 36$		
M1:	This requires a full method with all triangles found using a correct method		
	Look for Area $R = \text{their } 36 - \frac{1}{2} \times 15 \times \left(4 - \text{their } \frac{3}{2}\right) + \frac{1}{2} \times \text{their } 9 \times \text{their } \frac{3}{2}$		

Question	Scheme	Marks	AOs
39(a)	Sets $\frac{1}{P(11-2P)} = \frac{A}{P} + \frac{B}{(11-2P)}$	B1	1.1a
	Substitutes either $P = 0$ or $P = \frac{11}{2}$ into $1 = A(11-2P) + BP \Longrightarrow A \text{ or } B$	M1	1.1b
	$\frac{1}{P(11-2P)} = \frac{\frac{1}{11}}{P} + \frac{\frac{2}{11}}{(11-2P)}$	A1	1.1b
		(3)	
(b)	Separates the variables $\int \frac{22}{P(11-2P)} dP = \int 1 dt$	B1	3.1a
	Uses (a) and attempts to integrate $\int \frac{2}{P} + \frac{4}{(11 - 2P)} dP = t + c$	M1	1.1b
	$2\ln P - 2\ln(11 - 2P) = t + c$	A1	1.1b
	Substitutes $t = 0, P = 1 \Longrightarrow t = 0, P = 1 \Longrightarrow c = (-2 \ln 9)$	M1	3.1a
	Substitutes $P = 2 \Longrightarrow t = 2 \ln 2 + 2 \ln 9 - 2 \ln 7$	M1	3.1a
	Time = 1.89 years	A1	3.2a
		(6)	
(c)	Uses ln laws $2\ln P - 2\ln(11 - 2P) = t - 2\ln 9$ $\Rightarrow \ln\left(\frac{9P}{11 - 2P}\right) = \frac{1}{2}t$	M1	2.1
	Makes 'P' the subject $\Rightarrow \left(\frac{9P}{11-2P}\right) = e^{\frac{1}{2}t}$		
	$\Rightarrow 9P = (11 - 2P)e^{\frac{1}{2}t}$	M1	2.1
	$\Rightarrow P = f\left(e^{\frac{1}{2}t}\right) \text{ or } \Rightarrow P = f\left(e^{-\frac{1}{2}t}\right)$		
	$\Rightarrow P = \frac{11}{2 + 9e^{-\frac{1}{2}t}} \Rightarrow A = 11, B = 2, C = 9$	A1	1.1b
		(3)	
		(12 n	narks)

Question 39 continued

Quest			
Notes:			
(a)			
B1 :	Sets $\frac{1}{P(11-2P)} = \frac{A}{P} + \frac{B}{(11-2P)}$		
M1:	Substitutes $P = 0$ or $P = \frac{11}{2}$ into $1 = A(11 - 2P) + BP \Longrightarrow A$ or B		
	Alternatively compares terms to set up and solve two simultaneous equations in A and B		
A1:	$\frac{1}{P(11-2P)} = \frac{\frac{1}{11}}{P} + \frac{\frac{2}{11}}{(11-2P)} \text{ or equivalent } \frac{1}{P(11-2P)} = \frac{1}{11P} + \frac{2}{11(11-2P)}$		
	Note: The correct answer with no working scores all three marks.		
(b)			
B1:	Separates the variables to reach $\int \frac{22}{P(11-2P)} dP = \int 1 dt$ or equivalent		
M1:	Uses part (a) and $\int \frac{A}{P} + \frac{B}{(11-2P)} dP = A \ln P \pm C \ln(11-2P)$		
A1:	Integrates both sides to form a correct equation including a 'c' Eg $2\ln P - 2\ln(11-2P) = t + c$		
M1:	Substitutes $t = 0$ and $P = 1$ to find c		
M1:	Substitutes $P = 2$ to find t. This is dependent upon having scored both previous M's		
A1:	Time = 1.89 years		
(c)			
M1:	Uses correct log laws to move from $2\ln P - 2\ln(11 - 2P) = t + c$ to $\ln\left(\frac{P}{11 - 2P}\right) = \frac{1}{2}t + d$		
	for their numerical 'c'		
	$-\frac{1}{2}t$		
M1:	Uses a correct method to get P in terms of e^2		
	This can be achieved from $\ln\left(\frac{P}{11-2P}\right) = \frac{1}{2}t + d \Rightarrow \frac{P}{11-2P} = e^{\frac{1}{2}t+d}$ followed by cross		
	multiplication and collection of terms in P (See scheme)		
	Alternatively uses a correct method to get P in terms of $e^{-\frac{1}{2}t}$ For example		
	$P = \frac{1}{2^{t+d}} = \frac{11-2P}{11-2P} - \left(\frac{1}{2^{t+d}}\right) = \frac{1}{11} = \frac{-\left(\frac{1}{2^{t+d}}\right)}{11} = \frac{1}{2^{t+d}} = \frac{1}{2^{t+d$		
	$\frac{1}{11-2P} = e^2 \implies P = e^{-(2-p)} \implies P^{-2} \implies P^{-2} = e^{-(2-p)} \implies P^{-2} = e^{-(2-p)$		
A1:	Achieves the correct answer in the form required. $P = \frac{11}{1} \Rightarrow A = 11, B = 2, C = 9$ oe		
	$2 + 9e^{-\frac{1}{2}t}$		

Question Number	Scheme	Marks
40.	$M1: \text{ For } x^{n} \to x^{n+1}$ i.e. $x^{1.5} \text{ or } x^{2} \text{ or } x \text{ seen (not for "+ c")}$ A1: For two out of three terms correct un-simplified or simplified (Ignore + c for this mark) A1: cao $2x^{1.5} - 3x^{2} + 4x + c$. All correct and simplified and on one line including "+ c". Allow $\sqrt{x^{3}}$ for $x^{1.5}$ but not x^{1} for x.	M1A1A1
	Ignore any spurious integral signs.	
		(3)
		(3 marks)

Question Number	Sch	leme	Marks	
41.(a)	$(x-3)(3x+5) = 3x^2 - 4x - 15$ Allow $3x^2 + 5x - 9x - 15$	Correct expansion simplified or un- simplified.	B1	
	$f(x) = x^3 - 2x^2 - 15x + c$	M1: $x^n \rightarrow x^{n+1}$ for any term. Follow through on incorrect indices but not for "+ c" A1: All terms correct. Need not be simplified. No need for + c here.	M1A1	
	$x = 1, y = 20 \Longrightarrow 20 = 1 - 2 - 15 + c$ $\implies c = 36$	Substitutes $x = 1$ and $y = 20$ into their $f(x)$ to find c. Must have + c at this stage. Dependent on the first method mark.	dM1	
	$(f(x)) = x^3 - 2x^2 - 15x + 36$	Cao $(f(x) =)x^3 - 2x^2 - 15x + 36$ (All together and on one line)	A1	
(b)	4 - 4	Correct value (may be implied)	(1 R1	<u>)</u>
Way 1	$\frac{A-4}{f(x)-(x-3)^2(x+4)}$	$= (r^2 - 6r + 9)(r + 4)$	DI	
	$f(x) = x^3 + (A - b)$	$r^{2} + (0 - 6A)r + 0A$		
	1(x) - x + (A - 0)	$15 \rightarrow 4-4 0.4-26 \rightarrow 4-4$		
	$A - 6 = -2 \implies A = 4 \qquad 9 - 6A = -2$	$-13 \rightarrow A = 4 9A = 30 \rightarrow A = 4$	M1A1	
	M1: Expands $(x-3)^2(x+A)$ and compares coefficients with their $f(x)$ from part (a) to form 3 equations and attempts to solve at least two of them in an attempt to show that A is the same in each case or substitutes their A to show that the coefficients are the same.		MIAI	
			()	(3)
Way 2	A = 4	Correct value (may be implied)	B1	
	$f(x) = (x-3)^2(x+4)$	$x = (x^2 - 6x + 9)(x + 4)$		
	$= x^3 - 6x^2 + 4x^2 + 9x - 24x^2 + 9x^2 + 9x^$	$x + 36 = x^3 - 2x^2 - 15x + 36$		
	M1: Expands $(x-3)^2(x+"4")$ fully i gives the same expression A1: Fully correct proof (Condone inv provided sufficient	In an attempt to show that the expansion a found as found in part (a) visible brackets here e.g. around $x + 4$ t working is shown)	M1A1	
			(.	3)
Way 3	A = 4	Correct value (may be implied)	B1	
	$(x^{3}-2x^{2}-15x+36)$ $(x^{2}+x-12) \div (x-3) = x+4 \text{ c}$ M1: Divides their f(x) from part (a) by (x in an attempt to establish the value of A. (a) by $(x-3)^{2}$ (Allow $x^{2}\pm 6x\pm 9$) in A1: Fully c	$ \div (x-3) = x^2 + x - 12 $ or $(x^2 + x - 12) = (x+4)(x-3)$ (x-3) and divides their quotient by $(x-3)Alternatively divides their f(x) from partan attempt to establish the value of A.correct proof$	M1A1	
			(3)
	Note that this is an acceptable proof: A = 4 (may be implied) $x^{3}-2x^{2}-15x+36 = (x-3)(x^{2}+x-12)$			
	=(x-3)(x-3)(x+4)			

Remember to check the last page for their sketch

Question Number	Scheme		Marks
42.	$\int \left(2x^{5} - \frac{1}{4}x^{-3} - 5 \right) dx$		
	Ignore any spurious integral signs througho	ut	
	$x^{n} \rightarrow x^{n+1}$ Raises any of their point E.g. $x^{5} \rightarrow x^{6}$ or $x^{-3} \rightarrow x^{-3}$ or $x^{\text{their } n+1}$. All to be un-simplified e. $x^{-3} \rightarrow x^{-3+1}$ or $kx^{0} \rightarrow k^{-3}$	between by 1. $\Rightarrow x^{-2} \text{ or } k \rightarrow kx$ low the powers g. $x^5 \rightarrow x^{5+1} \text{ or}$ kx^{0+1} .	M1
	$2 \times \frac{x^{5+1}}{6}$ or $-\frac{1}{4} \times \frac{x^{-3+1}}{-2}$ Any one of the first two correct simplified or	wo terms un-simplified .	A1
	Two of: $\frac{1}{3}x^6$, $\frac{1}{8}x^{-2}$, $-5x$ Any two correct simpled Accept $+\frac{1}{8x^2}$ for $+\frac{1}{8}$ for x. Accept 0.125 for would clearly need to as 0.3 recurring.	blified terms. x^{-2} but not x^{1} or $\frac{1}{8}$ but $\frac{1}{3}$ be identified	A1
	$\frac{1}{3}x^{6} + \frac{1}{8}x^{-2} - 5x + c$ All correct and simple including + c all on o Accept $+\frac{1}{8x^{2}}$ for $+\frac{1}{8}$ for x. Apply isw here	ified and ne line. x^{-2} but not x^1	A1
			(4 marks)

Question Number	Scheme		Marks
43	Allow the marks in (b) to score in	n (a) i.e. <u>mark (a) and (b) together</u>	
	$\Rightarrow f(x) = 30x + 6\frac{x^{\frac{1}{2}}}{0.5} - 5\frac{x^{\frac{5}{2}}}{2.5}(+c)$	M1: $30 \rightarrow 30x$ or $\frac{6}{\sqrt{x}} \rightarrow \alpha x^{\frac{1}{2}}$ or $-\frac{5x^2}{\sqrt{x}} \rightarrow \beta x^{\frac{5}{2}}$ (these cases only) A1: Any 2 correct terms which can be simplified or un-simplified. This includes the powers – so allow $-\frac{1}{2}+1$ for $\frac{1}{2}$ and allow $\frac{3}{2}+1$ for $\frac{5}{2}$ (With or without + c) A1: All 3 terms correct which can be simplified or un-simplified. (With or without + c)	M1A1A1
	Ignore any spuri	ious integral signs	
	$x = 4, f(x) = -8 \Longrightarrow$ $-8 = 120 + 24 - 64 + c \Longrightarrow c = \dots$	Substitutes $x = 4$, $f(x) = -8$ into their $f(x)$ (not $f'(x)$) i.e. a changed f'(x) containing $+c$ and rearranges to obtain a value or numerical expression for <i>c</i> .	M1
	$\Rightarrow (f(x) =)30x + 12x^{\frac{1}{2}} - 2x^{\frac{5}{2}} - 88$	Cao and cso (Allow \sqrt{x} for $x^{\frac{1}{2}}$ and e.g. $\sqrt{x^5}$ or $x^2\sqrt{x}$ for $x^{\frac{5}{2}}$). Isw here so as soon as you see the correct answer, award this mark. Note that the "f(x) =" is not needed.	A1
			(5)
			(5 marks)

Question Number	Scheme	Notes	Marks
44	$\int (2x^4 - \frac{4}{\sqrt{x}} + 3) \mathrm{d}x$		
	$\frac{2}{5}x^5 - \frac{4}{\frac{1}{2}}x^{\frac{1}{2}} + 3x$	M1: $x^n \to x^{n+1}$. One power increased by 1 but not for just + c. This could be for $3 \to 3x$ or for $x^n \to x^{n+1}$ on what they think $\frac{1}{\sqrt{x}}$ is as a power of x. A1: One of these 3 terms correct. Allow un-simplified e.g. $\frac{2x^{4+1}}{4+1}$, $-\frac{4x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$, $3x^1$ A1: Two of these 3 terms correct. Allow un-simplified e.g. $\frac{2x^{4+1}}{4+1}$, $-\frac{4x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$, $3x^1$	M1A1A1
	$=\frac{2}{5}x^5 - 8x^{\frac{1}{2}} + 3x + c$ Ignore any spurious inte	$\frac{4+1}{5} = \frac{-\frac{1}{2}+1}{\frac{1}{2}}$ Complete fully correct simplified expression appearing all on one line with constant. Allow 0.4 for $\frac{2}{5}$. Do not allow $3x^1$ for $3x$ Allow \sqrt{x} or $x^{0.5}$ for $x^{\frac{1}{2}}$ gral signs and ignore subsequent working following a fully correct answer	A1
			[4]
			4 marks

Question Number	Scheme		Marks
45.	$y = 4x^3 - \frac{5}{x^2}$		
		M1: $x^n \to x^{n+1}$.	
		e.g. Sight of x^4 or x^{-1} or $\frac{1}{x^1}$	
	4 5	Do <u>not</u> award for integrating their answer to part	
	$x^{+}+-+c$	(a)	M1A1A1
	or	A1: $4\frac{x^{-1}}{4}$ or $-5 \times \frac{x^{-1}}{1}$	
	$x^4 + 5x^{-1} + c$	4 -1 A1: For fully correct and simplified answer with $+c$	-
		<u>all on one line</u> . Allow $x^4 + 5 \times \frac{1}{c} + c$	
		Allow $1x^4$ for x^4	
	Apply ISW here and awa	rd marks when first seen. Ignore spurious integral	
	-	signs for all marks.	
			(3)
			(3 marks)

Question Number		Sche	Scheme	
46	$f(x) = x^{\frac{3}{2}} - \frac{9}{2}x^{\frac{1}{2}} + 2x(+c)$ Sub $x = 4, y = 9$ into $f(x) \Rightarrow c =$		M1: $x^n \rightarrow x^{n+1}$ A1: Two terms in <i>x</i> correct, simplification is not required in coefficients or powers A1: All terms in <i>x</i> correct. Simplification not required in coefficients or powers and + c is not required	- M1A1A1
			M1: Sub $x = 4$, $y = 9$ into f (x) to obtain a value for c. If no + c then M0. Use of $x = 9$, $y = 4$ is M0.	M1
	$(f(x)=)x^{\frac{3}{2}}-\frac{9}{2}x^{\frac{1}{2}}+2x+2$	Accept equivalents but must be simplified e.g. $f(x) = x^{\frac{3}{2}} - 4.5\sqrt{x} + 2x + 2$ Must be all 'on one line' and simplified . Allow $x\sqrt{x}$ for $x^{\frac{3}{2}}$		A1
			(5)	
				(5 marks)

Question Number	Scheme	Marks
47.	$\int (8x^3 + 4) \mathrm{d}x = \frac{8x^4}{4} + 4x$	M1, A1
	$= 2x^4 + 4x + c$	A1
		(3 marks)

Notes

M1 $x^n \to x^{n+1}$ so $x^3 \to x^4$ or $4 \to 4x$ or $4x^1$

- A1 This is for either term with coefficient unsimplified (power must be simplified) so $\frac{8}{4}x^4$ or 4x (accept $4x^1$)
- A1 Fully correct simplified solution with c i.e. $2x^4 + 4x + c$ [allow $2x^4 + 4x + cx^0$]

If the answer is given as $\int 2x^4 + 4x + c$, with an integral sign – having never been seen as the fully correct simplified answer without an integral sign – then give M1A1A0 but allow anything before the = sign e.g. $y = 2x^4 + 4x + c$, $f(x) = 2x^4 + 4x + c$, $\int = 2x^4 + 4x + c$, etc....

If this answer is followed by (for example) $x^4 + 2x + k$ then treat this as **isw** (ignore subsequent work) If they follow it by finding a value for *c*, also **isw**, provided correct answer with *c* has been seen and credited

Question Number	Scheme	Marks
48.	$f(x) = \int \left(\frac{3}{8}x^2 - 10x^{-\frac{1}{2}} + 1\right) dx$	
	$x^n \rightarrow x^{n+1} \Longrightarrow f(x) = \frac{3}{8} \times \frac{x^3}{3} - 10 \frac{x^{\frac{1}{2}}}{\frac{1}{x}} + x(+c)$	M1, A1, A1
	Substitute $x = 4$, $y = 25 \implies 25 = 8 - 40 + 4 + c \implies c =$	M1
	$(f(x)) = \frac{x^3}{8} - 20x^{\frac{1}{2}} + x + 53$	A1
	0	(5)
		(5 Marks)

- M1 Attempt to integrate $x^n \rightarrow x^{n+1}$
- A1 Term in x^3 or term in $x^{\frac{1}{2}}$ correct, coefficient need not be simplified, no need for +x nor +c
- A1 ALL three terms correct, coefficients need not be simplified, no need for +c
- M1 For using x = 4, y = 25 in their f(x) to form a linear equation in c and attempt to find c
- A1 $=\frac{x^3}{8}-20x^{\frac{1}{2}}+x+53$ cao (all coefficients and powers must be simplified to give this answer- do

not need a left hand side and if there is one it may be f(x) or y). Need full expression with 53 These marks need to be scored in part (a)

Question Number	Scheme	Marks
49	$\int 2x^5 + \frac{6}{\sqrt{x}} dx$	
	$x^n \rightarrow x^{n+1}$	M1
	$=\frac{x^{6}}{3}+12x^{\frac{1}{2}}+c$	A1 A1
		(3) (3 marks)

M1 For
$$x^n \to x^{n+1}$$
. ie. x^6 or $x^{\frac{1}{2}}$ or (\sqrt{x}) seen
Do not award for integrating their answer to part (a)
A1 For either $2\frac{x^6}{6}$ or $6 \times \frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or simplified or unsimplified equivalents

A1 For fully correct and simplified answer with +c.

Question Number	Scheme	Marks
50.	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^{-\frac{1}{2}} + x\sqrt{x}$	
	$r_{2}\sqrt{r}-r^{\frac{3}{2}}$	B1
	$x \sqrt{x - x}$ $x^n \rightarrow x^{n+1}$	M1
	$y = \frac{6}{\frac{1}{2}}x^{\frac{1}{2}} + \frac{x^{\frac{5}{2}}}{\frac{5}{2}}(+c)$	A1, A1
	Use $x = 4$, $y = 37$ to give equation in c , $37 = 12\sqrt{4} + \frac{2}{5}(\sqrt{4})^5 + c$	M1
	$\Rightarrow c = \frac{1}{5} \text{or equivalent eg.} 0.2$	A1
	$(y) = 12x^{\frac{1}{2}} + \frac{2}{2}x^{\frac{5}{2}} + \frac{1}{2}$	A1
	5 5	(7 marks)
B1	$x\sqrt{x} = x^{\frac{3}{2}}$. This may be implied by $+\frac{x^{\frac{5}{2}}}{5}$ oe in the subsequent work.	
	2	
M1	$x^n \to x^{n+1}$ in at least one case so see either $x^{\overline{2}}$ or $x^{\overline{2}}$ or both	
A1	One term integrated correctly. It does not have to be simplified Eg. $\frac{6}{\frac{1}{2}}x^{\frac{1}{2}}$ or	$+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}$.
	No need for $+c$	Z
A1	Other term integrated correctly. See above. No need to simplify nor for $+c$. No $_{5}$	Need to see
	$\frac{\frac{6}{1}}{\frac{1}{2}}x^{\frac{1}{2}} + \frac{x^{\frac{1}{2}}}{\frac{5}{2}} \text{or a simplified correct version}$	
M1	Substitute $x = 4$, $y = 37$ to produce an equation in <i>c</i> .	
A1	Correctly calculates $c = \frac{1}{5}$ or equivalent e.g. 0.2	
A1	cso $y = 12x^{\frac{1}{2}} + \frac{2}{5}x^{\frac{5}{2}} + \frac{1}{5}$. Allow $5y = 60x^{\frac{1}{2}} + 2x^{\frac{5}{2}} + 1$ and accept fully simple	lified equivalents
	e.g. $y = \frac{1}{5}(60x^{\frac{1}{2}} + 2x^{\frac{5}{2}} + 1)$, $y = 12\sqrt{x} + \frac{2}{5}\sqrt{x^5} + \frac{1}{5}$	

£	EXPERT TUITION

Question Number	Schen	ıe	Marks
51	$(\int =)\frac{10x^5}{5} - \frac{4x^2}{2}, -\frac{3x^{\frac{1}{2}}}{\frac{1}{2}}$	M1: Some attempt to integrate: $x^n \rightarrow x^{n+1}$ on at least one term. (not for + c) (If they think $\frac{3}{\sqrt{x}}$ is $3x^{\frac{1}{2}}$ you can still award the method mark for $\frac{x^{\frac{1}{2}}}{x^{\frac{2}{2}}} \rightarrow x^{\frac{3}{2}}$ A1: $\frac{10x^5}{5}$ and $\frac{-4x^2}{2}$ or better A1: $-\frac{3x^{\frac{1}{2}}}{\frac{1}{2}}$ or better	M1A1, A1
	$= \underline{2x^5 - 2x^2 - 6x^{\frac{1}{2}} + c}$ Do not apply isw. If they obtain the corr they lose the l	Each term correct and simplified and the + c all appearing together on the same line. Allow \sqrt{x} for $x^{\frac{1}{2}}$. Ignore any spurious integral or signs and/or dy/dx's. ect answer and then e.g. divide by 2 ast mark	A1
			[4]

Question Number		Scheme	Marks
52 (a)	$(3-x^2)^2 = 9 - 6x^2 + x^4$	An attempt to expand the numerator obtaining an expression of the form $9 \pm px^2 \pm qx^4$, $p, q \neq 0$	M1
	$9x^{-2} + x^2$	Must come from $\frac{9+x^4}{x^2}$	A1
	-6	Must come from $\frac{-6x^2}{x^2}$	A1
	Alternative 1: Writes $\frac{(3-x^2)^2}{x^2}$ as $(3x^{-1}-x)^2$ and attempts to expand = M1		
	then AIA.	l as in the scheme.	
	Alternative 2: Sets $(3-x^2)^2 = 9 + x^2$ coefficients = M1 th	$Ax^{2} + Bx^{4}$, expands $(3 - x^{2})^{2}$ and compares hen A1A1 as in the scheme.	
			(3)
	(f'(x) =	$=9x^{-2}-6+x^2$)	
(b)	$-18x^{-3} + 2x$	M1: $x^n \rightarrow x^{n-1}$ on separate terms at least once. Do not award for $A \rightarrow 0$ (Integrating is M0) A1ft: $-18x^{-3} + 2"B"x$ with a numerical <i>B</i> and no extra terms. (A may have been incorrect or even zero)	M1 A1ft
		· · · · · · · · · · · · · · · · · · ·	(2)
(c)	$f(x) = -9x^{-1} - 6x + \frac{x^3}{3}(+c)$	M1: $x^n \rightarrow x^{n+1}$ on separate terms at least once. (Differentiating is M0) A1ft: $-9x^{-1} + Ax + \frac{Bx^3}{3}(+c)$ with numerical A and B, $A, B \neq 0$	M1A1ft
	$10 = \frac{-9}{-3} - 6(-3) + \frac{(-3)^3}{3} + c \text{ so } c$ $= \dots$	Uses $x = -3$ and $y = 10$ in what they think is $f(x)$ (They may have differentiated here) but it must be a changed function i.e. not the original $f'(x)$, to form a linear equation in <i>c</i> and attempts to find <i>c</i> . No + <i>c</i> gets M0 and A0 unless their method implies that they are correctly finding a constant	M1
	c = -2	cso	A1
	$(f(x) =) - 9x^{-1} - 6x + \frac{x^3}{3} + \text{their}$ c	Follow through their <i>c</i> in an otherwise (possibly un-simplified) correct expression . Allow $-\frac{9}{x}$ for $-9x^{-1}$ or even $\frac{9x^{-1}}{-1}$.	A1ft
	Note that if they integrate in (b),	no marks there but if they then go on to	
	use their integration in (c), th	e marks for integration are available.	· _
			(5)
			[10]

Question Number	Scheme	Notes	Marks
53.		M1: $x^n \rightarrow x^{n+1}$ for either term.	
		If they write $\frac{4}{x^2}$ as $4x^2$ allow	
		$x^2 \rightarrow x^3$ here.	
	$\int 3x^2 - \frac{4}{x^2} dx = 3\frac{x^3}{3} - 4\frac{x^{-1}}{-1}$	A1: $3\frac{x^3}{3}$ or $-4\frac{x^{-1}}{-1}$ (one correct term	M1,A1,A1
		which may be un-simplified)	
		A1: $3\frac{x^3}{3}$ and $-4\frac{x^{-1}}{-1}$ (both terms	
		correct which may be un-simplified)	
	Note that M1A0A	A1 is not possible	
	$= x^{3} + \frac{4}{x} + c \text{ or } x^{3} + 4x^{-1} + c$	Fully correct simplified answer with $+ c$ all appearing on the same line.	A1
		·	[4]

Question Number	Scheme	Notes	Marks
54	f'(x) = $\frac{x+9}{\sqrt{x}} = \frac{x}{\sqrt{x}} + \frac{9}{\sqrt{x}} = x^{\frac{1}{2}} + 9x^{-\frac{1}{2}}$	M1: Correct attempt to split into 2 separate terms or fractions. May be implied by one correct term. Divides by $x^{\frac{1}{2}}$ or multiplies by $x^{-\frac{1}{2}}$. A1: $x^{\frac{1}{2}} + 9x^{-\frac{1}{2}}$ or equivalent	M1A1
	$f(x) = \frac{x^{\frac{3}{2}}}{x^{\frac{1}{2}}} + 9\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}(+c)$	M1: Independent method mark for $x^n \rightarrow x^{n+1}$ on separate terms	M1A1
	$\frac{3}{2}$ $\frac{1}{2}$	A1: Allow un-simplified answers. No requirement for $+ c$ here	
	$\frac{(9)^{\frac{3}{2}}}{\frac{3}{2}} + 9\frac{(9)^{\frac{1}{2}}}{\frac{1}{2}} + c = 0 \Longrightarrow c = \dots$	Substitutes $x = 9$ and $y = 0$ into their integrated expression leading to a value for <i>c</i> . If no <i>c</i> at this stage MOA0 follows unless their method implies that they are correctly finding a constant of integration.	M1
	$f(x) = \frac{2}{3}x^{\frac{3}{2}} + 18x^{\frac{1}{2}} - 72$	There is no requirement to simplify their $f(x)$ so accept any correct un-simplified form.	A1
			(6)

Question Number	Schem	e	Marks	
55		Horizontal translation – does not have to cross the <i>y</i> -axis on the right but must at least reach the <i>x</i> -axis.	B1	
(a)		Touching at (-5, 0). This could be stated anywhere or -5 could be marked on the <i>x</i> -axis. Or (0, -5) marked in the correct place. Be fairly generous with 'touching' if the intention is clear.	B1	
		The right hand tail of their cubic shape crossing at $(-1, 0)$. This could be stated anywhere or -1 could be marked on the <i>x</i> -axis. Or (0, -1) marked in the correct place. The curve must cross the <i>x</i> -axis and not stop at -1 .	B1	
				(3)
(b)	$(x+5)^2(x+1)$	Allow $(x+3+2)^2(x-1+2)$	B1	
				(1)
(c)	When $x = 0, y = 25$	M1: Substitutes $x = 0$ into their expression in part (b) which is not $f(x)$. This may be implied by their answer. Note that the question asks them to use part (b) but allow independent methods. A1: $y = 25$ (Coordinates not needed)	M1 A1	
	If they expand <u>incorrectly</u> prior to s	ubstituting $x = 0$, score M1 A0		
	NB $f(x + 2) = x^3 + 1$	$1x^2 + 35x + 25$		
				<u>(2)</u>
1			1	0

Question Number	Scheme	Marks
56.	$\left\{ \int \left(6x^2 + \frac{2}{x^2} + 5 \right) dx \right\} = \frac{6x^3}{3} + \frac{2x^{-1}}{-1} + 5x (+ c)$	M1 A1
	$= 2x^3 - 2x^{-1}; + 5x + c$	A1; A1
		4
	Notes	
	M1 : for some attempt to integrate a term in <i>x</i> : $x^n \rightarrow x^{n+1}$	
	So seeing either $6x^2 \to \pm \lambda x^3$ or $\frac{2}{x^2} \to \pm \mu x^{-1}$ or $5 \to 5x$ is M1.	
	1 st A1: for a correct un-simplified x^3 or $x^{-1}\left(\text{ or } \frac{1}{x} \right)$ term.	
	2nd A1: for both x^3 and x^{-1} terms correct and simplified on the same line. I.e. $2x^3 - 2x^{-1}$ or	$2x^3-\frac{2}{x}$.
	3rd A1: for $+5x + c$. Also allow $+5x^1 + c$. This needs to be written on the same line.	
	Ignore the incorrect use of the integral sign in candidates' responses.	
	Note: If a candidate scores M1A1A1A1 and their answer is NOT ON THE SAME LINE then final accuracy mark.	withhold the

Question Number	Scheme	Marks	
57	$f(x) = \frac{x^{1+1}}{2(2)} - \frac{6x^{-\frac{1}{2}+1}}{(\frac{1}{2})} + 3x(+c)$ or equivalent.	M1 A1	
	$\{f(4) = -1 \implies\} \frac{16}{4} - 12(2) + 3(4) + c = -1$	dM1	
	$\left\{4-24+12+c=-1 \implies c=7\right\}$		
	So, $\{f(x) =\} \frac{x^2}{2(2)} - \frac{6x^{\frac{1}{2}}}{(\frac{1}{2})} + 3x + 7$	A1 cso	
	$\left\{ \text{NB: } f(x) = \frac{x^2}{4} - 12\sqrt{x} + 3x + 7 \right\}$	[4]	
		4	
	Notes		
57	1 st M1: for a clear attempt to integrate $f'()$ with at least one correct application of		
	$x^n \to x^{n+1}$ on $f'(x) = \frac{1}{2}x - \frac{6}{\sqrt{x}} + 3$.		
	So seeing either $\frac{1}{2}x \to \pm \lambda x^{1+1}$ or $-\frac{6}{\sqrt{x}} \to \pm \mu x^{-\frac{1}{2}+1}$ or $3 \to 3x^{0+1}$ is M1.		
	1 st A1: for correct un-simplified coefficients and powers (or equivalent) with or without $+c$.		
	2nd dM1: for use of $x = 4$ and $y = -1$ in an integrated equation to form a linear equation in c equal to -1.		
	ie: applying $f(4) = -1$. This mark is dependent on the first method mark being aw	arded.	
	A1: For $\{f(x)=\}\frac{x^2}{2(2)} - \frac{6x^{\frac{1}{2}}}{(\frac{1}{2})} + 3x + 7$ stated on one line where coefficients can be un-	simplified or	
	simplified, but must contain one term powers. Note this mark is for correct solution only .		
	Note: For a candidate attempting to find f(x) in part (a)		
	If it is clear that they understand that they are finding $f(x)$ in part (a); i.e. by writing $f(x) = \dots$ or $y = \dots$ then		
	you can give credit for this working in part (b).		

Question	Scheme	Marks
58.	$\frac{x^5}{5} + 4x^{\frac{3}{2}} + C$	M1A1A1 (3)
		3 marks
	Notes	
	M1 for $x^n \to x^{n+1}$ applied to y only so x^5 or $x^{\frac{3}{2}}$ seen. Do not award for integrating their answer to part (a) 1^{st} A1 for $\frac{x^5}{5}$ or $\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$ (or better). Allow $1/5x^5$ here but not for 2^{nd} A1 2^{nd} A1 for fully correct and simplified answer with + <i>C</i> . Allow $(1/5)x^5$ If + <i>C</i> appears earlier but not on a line where 2^{nd} A1 could be scored then	A0

Question	Scheme	Marks	
59.	$\left[f(x) = \right] \frac{3x^3}{3} - \frac{3x^2}{2} + 5x[+c] \qquad \text{or} \ \left\{x^3 - \frac{3}{2}x^2 + 5x(+c)\right\}$	M1A1	
	10 = 8 - 6 + 10 + c	M1	
	c = -2	A1	
	$f(1) = 1 - \frac{3}{2} + 5$ "-2" = $\frac{5}{2}$ (o.e.)	Alft (5)	
		5 montra	
		5 marks	
	Notes		
	1 st M1 for attempt to integrate $x^n \to x^{n+1}$		
	$1^{\text{st}} A1$ all correct, possibly unsimplified. Ignore + <i>c</i> here.		
	2^{nd} M1 for using $x = 2$ and $f(2) = 10$ to form a linear equation in c. Allow sign	errors.	
	They should be substituting into a <u>changed</u> expression		
	$2^{nd} A1$ for $c = -2$		
	3^{rd} A1ft for $\frac{9}{2} + c$ Follow through their <u>numerical</u> $c \ (\neq 0)$		
	This mark is dependent on 1 st M1 and 1 st A1 only.		
	3^{rd} A1ft for $\frac{9}{2} + c$ Follow through their <u>numerical</u> $c \ (\neq 0)$ This mark is dependent on 1^{st} M1 and 1^{st} A1 only.		

Question Number	Scheme	Marks
60.	$\left(\int = \right) \frac{2x^{6}}{6} + 7x + \frac{x^{-2}}{-2} = \frac{x^{6}}{3} + 7x - \frac{x^{-2}}{2} + C$	M1 A1 A1 B1 (4) 4
	NotesM1: Attempt to integrate $x^n \rightarrow x^{n+1}$ (i.e. ax^6 or ax or ax^{-2} , where a is any non-zero constant). 1^{st} A1: Two correct terms, possibly unsimplified. 2^{nd} A1: All three terms correct and simplified .Allow correct equivalents to printed answer, e.g. $\frac{x^6}{3} + 7x - \frac{1}{2x^2}$ or $\frac{1}{3}$ Allow $\frac{1x^6}{3}$ or $7x^1$ B1: + C appearing at any stage in part (b) (independent of previous work)	$x^{6} + 7x - \frac{1}{2}x^{-2}$

Question	Scheme	Marks
61.		
(a)	$p = \frac{1}{2}, q = 2$ or $6x^{\frac{1}{2}}, 3x^{2}$	B1, B1
(b)	$\frac{6x^{\frac{3}{2}}}{\binom{3}{2}} + \frac{3x^{3}}{3} \qquad \left(=4x^{\frac{3}{2}} + x^{3}\right)$	M1 A1ft
	$x = 4, y = 90: 32 + 64 + C = 90 \implies C = -6$	M1 A1
	$v = 4r^{\frac{3}{2}} + r^{3} + "their - 6"$	A1
		(5)
	Notes	7
	(a) Accept any equivalent answers, e.g. $p = 0.5$, $q = 4/2$	<u> </u>
	(b) 1 st M: Attempt to integrate $x^n \to x^{n+1}$ (for either term)	
	1^{st} A: ft their p and q, but terms need not be simplified (+C not required	l for
	this mark) 2^{nd} M: Using $r = 4$ and $y = 90$ to form an equation in C	
	2 nd A: cao	
	3^{rd} A: answer as shown with simplified correct coefficients and powers – but follow	
	through their value for C	
	If there is a restart in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b).	
	<u>Numerator and denominator integrated separately</u> : First M mark cannot be awarded so only mark available is second M mark marks.	. So 1 out of 5

Question Number	Scheme	Marks
6 2.	$\left(\int = \int \frac{12x^6}{6}, -\frac{3x^3}{3}, +\frac{4x^{\frac{4}{3}}}{\frac{4}{3}}, (+c)\right)$	M1A1, A1, A1
	$= 2x^6 - x^3 + 3x^{\frac{4}{3}} + c$	A1
		5
	Notes	
	M1 for some attempt to integrate: $x^n \rightarrow x^{n+1}$ i.e ax^6 or ax^3 or $ax^{\frac{4}{3}}$ or a non zero constant 1^{st}A1 for $\frac{12x^6}{6}$ or better 2^{nd}A1 for $-\frac{3x^3}{3}$ or better 3^{rd}A1 for $\frac{4x^{\frac{4}{3}}}{\frac{4}{3}}$ or better 4^{th}A1 for each term correct and simplified and the + <i>c</i> occurring in the fin	$ax^{\frac{1}{3}}$, where <i>a</i> is al answer

Question Number	Scheme	Marks
63.	$(f(x) =)\frac{12x^3}{3} - \frac{8x^2}{2} + x(+c)$	M1 A1 A1
	$\left(\mathbf{f}(-1) = 0 \Longrightarrow\right) 0 = 4 \times (-1) - 4 \times 1 - 1 + c$	M1
	$c = \underline{9}$	A1
	$\left[f(x) = 4x^3 - 4x^2 + x + 9\right]$	5
	Notes	
	1 st M1 for an attempt to integrate $x^n \to x^{n+1}$ 1 st A1 for at least 2 terms in <i>x</i> correct - needn't be simplified, ignore + <i>c</i> 2 nd A1 for all the terms in <i>x</i> correct but they need not be simplified. No need for + <i>c</i> 2 nd M1 for using $x = -1$ and $y = 0$ to form a linear equation in <i>c</i> . No + <i>c</i> gets MOA0 3 rd A1 for $c = 9$. Final form of $f(x)$ is not required.	

Question Number	Scheme	Marks
64.	$\frac{8x^4}{4} + \frac{6x^{\frac{3}{2}}}{\frac{3}{2}} - 5x + c$	M1 A1
	$= 2x^4 + 4x^{\frac{3}{2}}, -5x + c$	A1 A1
	Notes	
	M1 for some attempt to integrate a term in $x: x^n \to x^{n+1}$ 1 st A1 for correct, possibly un-simplified x^4 or $x^{\frac{3}{2}}$ term. e.g. $\frac{8x^4}{4}$ or $\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$ 2 nd A1 for both $2x^4$ and $4x^{\frac{3}{2}}$ terms correct and simplified on the same line N.B. some candidates write $4\sqrt{x^3}$ or $4x^{\frac{11}{2}}$ which are, of course, fine for A1 3 rd A1 for $-5x + c$. Accept $-5x^1 + c$. The $+c$ must appear on the same line as the $-5x$ N.B. We do not need to see one line with a fully correct integral Ignore ISW (ignore incorrect subsequent working) if a correct answer is followed by an i	ncorrect version.
	Condone poor use of notation e.g. $\int 2x^4 + 4x^2 - 5x + c$ will score full marks.	

Question Number	Scheme	Marks
65 . (a)	$(y=)\frac{3x^2}{2} - \frac{5x^{\frac{1}{2}}}{1} - 2x (+c)$	M1A1A1
	$f(4) = 5 \implies 5 = \frac{3}{2} \times 16 - 10 \times 2 - 8 + c$	M1
	$\begin{bmatrix} c = 9 \\ f(x) = \frac{3}{2}x^2 - 10x^{\frac{1}{2}} - 2x + 9 \end{bmatrix}$	AI (5)
(b)		
	$m = 3 \times 4 - \frac{5}{2} - 2 \left(= 7.5 \text{ or } \frac{15}{2} \right)$	M1
	Equation is: $y-5 = \frac{15}{2}(x-4)$	M1A1
	$\frac{2y - 15x + 50 = 0}{0.6}$ o.e.	A1 (4) (9marks)
(a)	n = n + 1	
	1 st A1 for an attempt to integrate $x^{n} \rightarrow x^{n}$ 1 st A1 for at least 2 correct terms in <i>x</i> (unsimplified) 2 nd A1 for all 3 terms in <i>x</i> correct (condone missing + <i>c</i> at this point). Needn't be simpl 2 nd M1 for using the point (4, 5) to form a linear equation for <i>c</i> . Must use <i>x</i> = 4 and <i>y</i> = have no <i>x</i> term and the function must have "changed". 3 rd A1 for <i>c</i> = 9. The final expression is not required.	ified 5 and
(b)	1 st M1 for an attempt to evaluate $f'(4)$. Some correct use of $x = 4$ in $f'(x)$ but condone slips. They must therefore have at least 3×4 or $-\frac{5}{2}$ and clearly be using $f'(x)$ with $x = 4$. Award this mark wherever it is seen.	
	2^{nd} M1 for using their value of <i>m</i> [or their $-\frac{1}{m}$] (provided it clearly comes from using <i>x</i>	x = 4 in
	f'(x)) to form an equation of the line through (4,5)).	
	Allow this mark for an attempt at a normal or tangent. Their <i>m</i> must be numeric Use of $y = mx + c$ scores this mark when <i>c</i> is found.	cal.
	2^{nd} A1 for any correct expression for the equation of the line 2^{nd} A1 for any correct equation with integer coefficients. An "=" is required. e.g. $2y = 15x - 50$ etc as long as the equation is correct and has integer coefficients.	ents.
Normal	Attempt at normal can score both M marks in (b) but A0A0	

Question number	Scheme	Marks
66	$x\sqrt{x} = x^{\frac{3}{2}}$ (Seen, or implied by correct integration)	B1
	$x^{-\frac{1}{2}} \rightarrow kx^{\frac{1}{2}}$ or $x^{\frac{3}{2}} \rightarrow kx^{\frac{5}{2}}$ (k a non-zero constant)	M1
	$(y =) \frac{5x^{\frac{1}{2}}}{\frac{1}{2}} \dots + \frac{x^{\frac{5}{2}}}{\frac{5}{2}}$ (+C) ("y =" and "+C" are not required for these marks)	A1 A1
	$35 = \frac{5 \times 4^{\frac{1}{2}}}{\frac{1}{2}} + \frac{4^{\frac{5}{2}}}{\frac{5}{2}} + C$ An equation in <i>C</i> is required (see conditions below).	M1
	(With their terms simplified or unsimplified).	
	$C = \frac{11}{5}$ or equivalent $2\frac{1}{5}$, 2.2	A1
	$y = 10x^{\frac{1}{2}} + \frac{2x^{\frac{5}{2}}}{5} + \frac{11}{5}$ (Or equivalent <u>simplified</u>)	A1 ft
	I.s.w. if necessary, e.g. $y = 10x^{\frac{1}{2}} + \frac{2x^{\frac{5}{2}}}{5} + \frac{11}{5} = 50x^{\frac{1}{2}} + 2x^{\frac{5}{2}} + 11$	
	The final A mark requires an <u>equation</u> " $y =$ " with correct x terms (see below).	[7]
	B mark: $x^{\frac{3}{2}}$ often appears from integration of \sqrt{x} , which is B0.	
	1 st A: Any unsimplified or simplified correct form, e.g. $\frac{5\sqrt{x}}{0.5}$.	
	2^{nd} A: Any unsimplified or simplified correct form, e.g. $\frac{x^2 \sqrt{x}}{2.5}, \frac{2(\sqrt{x})^3}{5}$.	
	2^{nd} M: Attempting to use $x = 4$ and $y = 35$ in a changed function (even if differentiated) to form an equation in <i>C</i> .	
	$3^{\rm rd}$ A: Obtaining $C = \frac{11}{5}$ with no earlier incorrect work.	
	4th A: Follow-through <u>only</u> the value of C (i.e. the other terms must be correct). Accept equivalent <u>simplified</u> terms such as $10\sqrt{x} + 0.4x^2\sqrt{x}$	

Question Number	Scheme	Marks
67	$\frac{2x^4}{4} + \frac{3x^{-1}}{-1} (+C)$	M1 A1
	$\frac{x^4}{2} - 3x^{-1} + C$	A1 (3)
		[3]
	M1 for some attempt to integrate an <i>x</i> term of the given <i>y</i> . $x^n \rightarrow x^{n+1}$ 1 st A1 for both <i>x</i> terms correct but unsimplified- as printed or better. Ignore + <i>c</i> here 2 nd A1 for both <i>x</i> terms correct and simplified and + <i>c</i> . Accept $-\frac{3}{x}$ but <u>NOT</u> $+-3x^{-1}$ Condone the + <i>c</i> appearing on the first (unsimplified) line but missing on the final (simplified) line	
	Apply ISW if a correct answer is seen If part (b) is attempted first and this is clearly labelled then apply the scheme and allow the marks. Otherwise assume the first solution is for part (a).	

Question Number	Scheme	Marks
68	$(I =)\frac{12}{6}x^6 - \frac{8}{4}x^4 + 3x + c$ = $2x^6 - 2x^4 + 3x + c$ M1 for an attempt to integrate $x^n \rightarrow x^{n+1}$ (i.e. ax^6 or ax^4 or ax , where <i>a</i> is any non-zero constant).	M1 A1A1A1 [4]
	Also, this M mark can be scored for just the + <i>c</i> (seen at some stage), even if no other terms are correct. 1 st A1 for $2x^6$ 2 nd A1 for $-2x^4$ 3 rd A1 for $3x + c$ (or $3x + k$, etc., any appropriate letter can be used as the constant) Allow $3x^1 + c$, but <u>not</u> $\frac{3x^1}{1} + c$. Note that the A marks can be awarded at separate stages, e.g. $\frac{12}{6}x^6 - 2x^4 + 3x$ scores 2^{nd} A1 $\frac{12}{6}x^6 - 2x^4 + 3x + c$ scores 3^{rd} A1 $2x^6 - 2x^4 + 3x$ scores 1^{st} A1 (even though the <i>c</i> has now been lost). Remember that all the A marks are dependent on the M mark. If applicable, isw (ignore subsequent working) after a correct answer is seen.	
	Ignore wrong notation if the intention is clear, e.g. Answer $\int 2x^2 - 2x^2 + 5x + c dx$.	

Question Number	Scheme	Marks
69	$\left(f(x)=\right)\frac{3x^3}{3} - \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - 7x(+c)$	M1
	$= x^{3} - 2x^{\frac{3}{2}} - 7x (+c)$ f(4) = 22 \Rightarrow 22 = 64 - 16 - 28 + c c = 2	A1A1 M1 A1cso (5) [5]
	1 st M1 for an attempt to integrate $(x^3 \text{ or } x^{\frac{3}{2}} \text{ seen})$. The <i>x</i> term is insufficient for this mark and similarly the + <i>c</i> is insufficient. 1 st A1 for $\frac{3}{3}x^3$ or $-\frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form) 2 nd A1 for all three <i>x</i> terms correct and simplified (the simplification may be seen later). The + <i>c</i> is not required for this mark. Allow $-7x^1$, but $\underline{\text{not}} - \frac{7x^1}{1}$. 2 nd M1 for an attempt to use $x = 4$ and $y = 22$ in a changed function (even if differentiated) to form an equation in <i>c</i> . 3 rd A1 for $c = 2$ with no earlier incorrect work (a final expression for f(<i>x</i>) is not required).	

Question number	Scheme	Marks	
70.	$2x + \frac{5}{3}x^3 + c$	M1A1A1	
		(3)	
		5	
	M1 for an attempt to integrate $x^n \to x^{n+1}$. Can be given if + <i>c</i> is only correct term.		
	1 st A1 for $\frac{5}{3}x^3$ or $2x + c$. Accept $1\frac{2}{3}$ for $\frac{5}{3}$. Do <u>not</u> accept $\frac{2x}{1}$ or $2x^1$ as final answer		
	2^{nd} A1 for as printed (no extra or omitted terms). Accept $1\frac{2}{3}$ or 1.6 for $\frac{5}{3}$ but not 1.6 or 1.67 etc		
	Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.0	67, the 1.67 is	
	treated as ISW		
	NB M1A0A1 is not possible		

Question number	Scheme	Marks
71. (a)	$\left(x^{2}+3\right)^{2} = x^{4}+3x^{2}+3x^{2}+3^{2}$	M1
	$\frac{\left(x^2+3\right)^2}{x^2} = \frac{x^4+6x^2+9}{x^2} = x^2+6+9x^{-2} (*)$	A1cso (2)
(b)	$y = \frac{x^3}{3} + 6x + \frac{9}{-1}x^{-1}(+c)$	M1A1A1
	$20 = \frac{27}{2} + 6 \times 3 - \frac{9}{2} + c$	M1
	c = -4	A1
	$[y=]\frac{x^3}{3} + 6x - 9x^{-1} - 4$	A1ft (6)
	5	8
(a)	M1 for attempting to expand $(x^2 + 3)^2$ and having at least 3(out of the 4) correct	ct terms.
	A1 at least this should be seen and no incorrect working seen.	
	If they never write $\frac{9}{x^2}$ as $9x^{-2}$ they score A0.	
(b)	1^{st} M1 for some correct integration, one correct x term as printed or better	
	Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second.	
	1 st A1 for two correct <i>x</i> terms, un-simplified, as printed or better 2 nd A1 for a fully correct expression. Terms need not be simplified and $+c$ is not required. No $+c$ loses the next 3 marks	
	2^{nd} M1 for using $x = 3$ and $y = 20$ in their expression for $f(x) \left[\neq \frac{dy}{dx} \right]$ to form a line	ear equation for c
	$3^{\rm rd}$ A1 for $c = -4$	
	4 th A1ft for an expression for y with simplified x terms: $\frac{9}{x}$ for $9x^{-1}$ is OK.	
	Condone missing " $y =$ " Follow through their numerical value of <i>c</i> only.	

Question number	Scheme	Marks	
72.	$3x^2 \rightarrow kx^3$ or $4x^5 \rightarrow kx^6$ or $-7 \rightarrow kx$ (<i>k</i> a non-zero constant)	M1	
	$\frac{3x^3}{3}$ or $\frac{4x^6}{6}$ (Either of these, simplified or unsimplified)	A1	
	$x^3 + \frac{2x^6}{3} - 7x$ or equivalent unsimplified, such as $\frac{3x^3}{3} + \frac{4x^6}{6} - 7x^1$	A1	
	+ C (or any other constant, e.g. + K)	B1 ((4) 1
	M: Given for increasing by one the power of x in one of the three terms.		
	A marks: 'Ignore subsequent working' after a correct unsimplified version of a term is seen.		
	B: Allow the mark (independently) for an integration constant appearing at any stage (even if it appears, then disappears from the final answer).		
	This B mark can be allowed even when no other marks are scored.		

Question number	Scheme	Marks	
73.	(a) $4x \to kx^2$ or $6\sqrt{x} \to kx^{\frac{3}{2}}$ or $\frac{8}{x^2} \to kx^{-1}$ (k a non-zero constant)	M1	
	$f(x) = 2x^2, -4x^{\frac{3}{2}}, -8x^{-1}$ (+ C) (+ C not required)	A1, A1, A1	
	At $x = 4$, $y = 1$: $1 = (2 \times 16) - \left(4 \times 4^{\frac{3}{2}}\right) - \left(8 \times 4^{-1}\right) + C$ Must be in part (a)	M1	
	<i>C</i> = 3	A1	(6)
	(b) $f'(4) = 16 - (6 \times 2) + \frac{8}{16} = \frac{9}{2} (= m)$ (M: Attempt $f'(4)$ with the <u>given</u> f' . <u>Must be in part (b)</u>	M1	
	Gradient of normal is $-\frac{2}{9}\left(=-\frac{1}{m}\right)$ M: Attempt perp. grad. rule.	M1	
	Dependent on the use of their $f'(x)$		
	Eqn. of normal: $y - 1 = -\frac{2}{9}(x - 4)$ (or any equiv. form, e.g. $\frac{y - 1}{x - 4} = -\frac{2}{9}$)	M1 A1	(4)
	Typical answers for A1: $\left(y = -\frac{2}{9}x + \frac{17}{9}\right)\left(2x + 9y - 17 = 0\right)\left(y = -0.\dot{2}x + 1.\dot{8}\right)$		
	Final answer: gradient $-\frac{1}{9/2}$ or $-\frac{1}{4.5}$ is A0 (but all M marks are available).		
			10
	(a) The first 3 A marks are awarded in the order shown, and the terms must be simplified.		
	'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common		
	factors. Only a single $+$ or $-$ sign is allowed (e.g. $+$ $-$ must be replaced by $-$).		
	2^{nd} M: Using $x = 4$ and $y = 1$ (not $y = 0$) to form an eqn in C. (No C is M0)		
	(b) 2^{nd} M: Dependent upon use of their $f'(x)$.		
	3^{rd} M: eqn. of a straight line through (4, 1) with any gradient except 0 or ∞ .		
	<u>Alternative for 3^{rd} M:</u> Using (4, 1) in $y = mx + c$ to <u>find a value</u> of <i>c</i> , but an equation (general or specific) must be seen.		
	Having coords the wrong way round, e.g. $y-4 = -\frac{2}{9}(x-1)$, loses the 3 rd M		
	mark <u>unless</u> a correct general formula is seen, e.g. $y - y_1 = m(x - x_1)$.		
	N.B. The A mark is scored for <u>any</u> form of the correct equation be prepared to apply isw if necessary.		

Question Number	Scheme	Marks
74. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 70x - 35x^{\frac{3}{2}}$	M1A1
	Put $\frac{dy}{dx} = 0$ to give $70x - 35x^{\frac{3}{2}} = 0$ so $x^{\frac{1}{2}} = 2$	M1
	$\begin{array}{l} x = 4\\ y = 112 \end{array}$	A1 A1 (5)
(b) (Way 1)	When $y = 0$, $35x^2 = 14x^{\frac{5}{2}}$ and $x^{\frac{1}{2}} = \frac{35}{14}$ or $5 = 2\sqrt{x}$ so $\sqrt{x} = \frac{5}{2}$	M1
	$x = \frac{25}{4}$	A1 (2)
(b) (Way 2)	When $y = 0$, $35x^2 = 14x^{\frac{5}{2}}$ so $1225x^4 = 196x^5$ or $5 = 2\sqrt{x}$ so $25 = 4x$	M1
	$x = \frac{25}{4}$ or $x = \frac{1225}{196}$	A1 (2)
(c) Way 1	$\int 35x^2 - 14x^{\frac{"5"}{2}} dx = \frac{35}{3}x^3 - \frac{14x^{\frac{"7"}{2}}}{\frac{"7"}{2}} (+c)$	M1A1ft
	$\left[\frac{35}{3}x^3 - 4x^{\frac{7}{2}}\right]_4^{\frac{25}{4}} = 406.901234.667 = 172.23$	dM1
	Hence Area = " <i>their</i> $112 \times (6\frac{1}{4} - 4)$ " - "172.23" or "252" - "172.23"	ddM1
	79.77	A1 (5)
(c) Way 2	$\int "112" - \{35x^2 - 14x^{\frac{5}{2}}\} dx = (112x) - \frac{35}{3}x^3 + \frac{14x^{\frac{7}{2}}}{\frac{7}{2}}(+c)$	M1A1ft
	$\left[(112x) - (\frac{35}{3}x^3 - 4x^{\frac{7}{2}}) \right]_{4}^{\frac{35}{4}}$ with correct use of limits	dM1
	Integrated their 112 to give $112x$ with correct use of limits	ddM1
	79.77	(5) [12]

Notes (a) M1: Attempt at differentiation after multiplying out - may be awarded for 70x term correct (If product rule is used it must be of correct form i.e. $\frac{dy}{dx} = 7x^2(-2kx^{k-1}) + 14x(5-2x^k)$) A1: the derivative must be completely correct but may be unsimplified For product rule this is $\frac{dy}{dx} = 7x^2 \left(-x^{-\frac{1}{2}}\right) + 14x(5 - 2\sqrt{x})$ M1: uses derivative = 0 to find x^k = or x = with correct work for their equation (even without fractional powers) A1: obtains x = 4 then A1: for y = 112 (may be credited if seen in part (a) or in part(c)) (b)Way 1 (Dividing first) M1: Puts y = 0 and obtains expression of the form $x^k = A$ (where k is not equal to 1) after correct algebra for their equation (may be a sign slip) A1: Obtains x = 6.25 or equivalent correct answer (b)Way 2 (dealing with fractional power first i.e. Squaring) M1: Puts y = 0 and squares each term correctly for their equation obtaining expression of the form $A^2 x^m = B^2 x^n$ after correct algebra A1: Obtains x = 6.25 or equivalent correct answer (c) Way 1 M1: Correct integration of one of their terms – e.g. see x^2 term integrated correctly (not just raised power) A1ft: completely correct integral for their power which must have been a fraction (may be unsimplified) dM1: (dependent on previous M) substituting their 25/4 and their 4 and subtracting ddM1 (depends on both method marks) Correct method to obtain shaded area so their rectangle minus their area under curve A1: Accept answers which round to 79.77 (c) Way 2 M1: Attempt at integration $-x^2$ term integrated correctly A1ft: completely correct integral for second and their third terms (provided one has a fractional power) (ignore sign errors) (may be unsimplified) dM1: (dependent on previous M) substituting their 25/4 and their 4 and subtracting (either way) ddM1 (depends on both method marks) Correct method to obtain shaded area so their 112 integrated correctly and correct signs for the other two terms in the integrand A1: Accept answers which round to 79.77 Answer with no working – send to review If they have the wrong fractional power on their second term after expansion in part (a) (usually 3/2), all the method marks are available throughout the question and the A1ft is available in (c). The A mark in part (b) may also be accessible. Maximum score is likely to be 8/12 If they have the trivial power 1 on their second term, then two method marks are available in (a) and three method marks are available in part (c) Maximum score is likely to be 5/12

Question Number	Scheme	Marks
75 Way 1	When $x = 1$, $y = 4 + 9 - 30 - 8 = -25$	B1
	Area of triangle $ABP = \frac{1}{2} \times 1 \times 25 = 12.5$ (Where <i>P</i> is at (1, 0))	B1
	Way 1: $\int (4x^3 + 9x^2 - 30x - 8) dx = x^4 + \frac{9}{3}x^3 - \frac{30x^2}{2} - 8x \{+c\} \text{ or } x^4 + 3x^3 - 15x^2 - 8x \{+c\}$	M1A1
	$\left[x^{4} + 3x^{3} - 15x^{2} - 8x\right]_{-\frac{1}{4}}^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{4} + 3\left(-\frac{1}{4}\right)^{3} - 15\left(-\frac{1}{4}\right)^{2} - 8\left(-\frac{1}{4}\right)\right)$	dM1
	$=(-19) - \frac{261}{256}$ or $-19 - 1.02$	
	So Area = " <i>their</i> 12.5" + " <i>their</i> 20 $\frac{5}{256}$ " or "12.5" + " 20.02" or "12.5" + " <i>their</i> $\frac{5125}{256}$ "	ddM1
	= 32.52 (NOT - 32.52)	A1 (7)
	Loss officient alternative matheds for first two marks in part (b) with Way 1 or 2	
	For first mark: Finding equation of the line AB as $y = 25x - 50$ as this implies the -25	B 1
	For second mark: Integrating to find triangle area $\frac{2}{3}$	
	$\int_{1}^{1} (25x - 50) dx = \left[\frac{25}{2} x^2 - 50x \right]_{1}^{1} = -50 + 37.5 = -12.5$ so area is 12.5	B1
	Then mark as before if they use Method in original scheme	
(75)	Way 2: Those who use area for original curve between -1/4 and 2 and subtract area	
way 2	The first B1 (if y=-25 is not seen) is for equation of straight line $y = 25x - 50$	B1
	The second B1 may be implied by final answer correct, or 4.5 seen for area of "segment shaped" region between line and curve, or by area between line and axis/triangle found as 12.5	B1
	$\int (4x^3 + 9x^2 - 55x + 42) dx = x^4 + \frac{9}{2}x^3 - \frac{55x^2}{2} + 42x \{+c\} \text{ (or integration as in Way 1)}$	M1A1
	The dM1 is for correct use of the different correct limits for each of the two areas: i.e.	
	$\left[x^{4} + 3x^{3} - 15x^{2} - 8x\right]_{-\frac{1}{4}}^{2} = (16 + 24 - 60 - 16) - \left(\left(-\frac{1}{4}\right)^{4} + 3\left(-\frac{1}{4}\right)^{3} - 15\left(-\frac{1}{4}\right)^{2} - 8\left(-\frac{1}{4}\right)\right)$	
	And $\left[x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x\right]_1^2 = 16 + 24 - 110 + 84 - (1 + 3 - 27.5 + 42)$	dM1
	So Area = their $\left[x^4 + 3x^3 - 15x^2 - 8x\right]_{-\frac{1}{4}}^2$ minus their $\left[x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x\right]_{1}^2$	ddM1
	i.e. " <i>their</i> 37.0195"–" <i>their</i> 4.5" (with both sets of limits correct for the integral)	
	Reaching = 32.52 (NOT – 32.52)	A1
	See over for special case with wrong limits	

NB : Those who attempt curve – line wrongly with limits $-1/4$ to 2 may earn M1A1 for correct integration of their cubic. Usually e.g.	M1A1
$\int (4x^3 + 9x^2 - 55x + 42) dx = x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x \{+c\}$	
(They will not earn any of the last 3 marks)	
They may also get first B1 mark for the correct equation of the straight line (usually seen	
but may be implied by correct line -curve equation) and second B1 if they also use	
limits 1 and 2 to obtain 4.5 (or find the triangle area 12.5).	

	Notes						
75	Way 1:						
	B1: Obtains $y = -25$ when $x = 1$ (may be seen anywhere – even in (a)) or finds correct equation of line is $y = 25x - 50$						
	B1: Obtains area of triangle = 12.5 (may be seen anywhere). Allow -12.5. Accept $\frac{1}{2} \times 1 \times 25$						
	M1: Attempt at integration of cubic; two correct terms for their integration. No limits needed A1: completely correct integral for the cubic (may be unsimplified)						
	dM1: We are looking for the start of a correct method here (dependent on previous M). It is for substituting 1 and -1/4 and subtracting. May use 2 and -1/4 and also 2 and 1 AND subtract (which is equivalent)						
	ddM1 (depends on both method marks) Correct method to obtain shaded area so adds two						
	positive numbers (areas) together – one is area of triangle, the other is area of region obtained from integration of correct function with correct limits (may add two negatives then makes positive)						
	Way 2: This is a long method and needs to be a correct method						
	B1: Finds $y=-25$ at $x=1$, or correct equation of line is $y = 25x - 50$						
	B1: May be implied where WAY 2 is used and final correct answer obtained so award of final A1 results in the award of this B1. It may also be implied by correct integration of line equation or of curve minus line expression between limits 1 and 2. So if only slip is final subtraction (giving final A0, this mark may						
	still be awarded) So may be implied by 4.5 seen for area of "segment shaped" region between line and curve.						
	M1: Attempt at integration of given cubic or after attempt at subtracting their line equation (no limits needed). Two correct terms needed						
	A1: Completely correct integral for their cubic (may be unsimplified) – may have wrong coefficients of r and wrong constant term through errors in subtraction						
	dM1. Use limits for original curve between -1/4 and 2 and use limits of 1 and 2 for area between line						
	and curve- needs completely correct limits- see scheme- this is dependent on two integrations						
	ddM1: (depends on both method marks) Subtracts " <i>their</i> 37.0195" – " <i>their</i> 4.5" Needs consistency of signs						
	A1: 32.52 or awrt 32.52 e.g. $32\frac{100}{256}$ NB: This correct answer implies the second B mark						
	(Trapezium rule gets no marks after first two B marks) The first two B marks may be given wherever seen. The integration of a cubic gives the following M1 and correct integration of their cubic						
	$\int (4x^3 + 9x^2 + Ax + B) dx = x^4 + \frac{9}{3}x^3 + \frac{Ax^2}{2} + Bx \{+c\} \text{ gives the A1}$						

Question Number		Scheme	Marks					
76. (a)	$\left\{ \int \left(3x - x^{\frac{3}{2}} \right) dx \right\} = \frac{3x^2}{2} - \frac{x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} \left\{ + c \right\} $ Either $\frac{3x \to \pm \lambda x^2 \text{ or } x^{\frac{3}{2}} \to \pm \mu x^{\frac{5}{2}}, \lambda, \mu \neq 0$ At least one term correctly integrated Both terms correctly integrated							
(b)	$0 = 3x - x^{\frac{3}{2}} \Rightarrow 0 = 3 - x^{\frac{1}{2}} \text{ or } 0 = x \left(3 - x^{\frac{1}{2}}\right) \Rightarrow x = \dots$ Sets $y = 0$, in order to find the correct $x^{\frac{1}{2}} = 3$ or $x = 9$							
	$\left\{\operatorname{Area}(S) = \right[$	$\left[\frac{3x^2}{2} - \frac{2}{5}x^{\frac{5}{2}}\right]_0^9$						
	$=\left(\frac{3(9)^2}{2}-\right)$	$\left(\frac{2}{5}\right)(9)^{\frac{5}{2}} - \{0\}$ Applies the limit 9 on an integrated function with no wrong lower limit .	ddM1					
	$\left\{=\left(\frac{243}{2}-\frac{4}{2}\right)\right\}$	$\frac{186}{5} - \{0\} = \frac{243}{10} \text{ or } 24.3 \qquad \qquad \frac{243}{10} \text{ or } 24.3$	A1 oe					
			[3] 6					
		Question 76 Notes						
(a)	M1	Either $3x \to \pm \lambda x^2$ or $x^{\frac{3}{2}} \to \pm \mu x^{\frac{3}{2}}$, $\lambda, \mu \neq 0$						
	1 st A1	At least one term correctly integrated. Can be simplified or un-simplified but power must be simplified. Then isw.	e					
	2 nd A1	2 nd A1 Both terms correctly integrated. Can be un-simplified (as in the scheme) but the $n+1$ in each denominator and power should be a single number. (e.g. $2 - \text{not } 1+1$) Ignore subsequent work if there are errors simplifying. Ignore the omission of " $+c$ ". Ignore integral signs in their answer.						
(b)	1 st M1	Sets $y = 0$, and reaches the correct $x^{\frac{1}{2}} = 3$ or $x = 9$ (isw if $x^{\frac{1}{2}} = 3$ is followed by $x = \sqrt{3}$,)					
		Just seeing $x = \sqrt{3}$ without the correct $x^{\frac{1}{2}} = 3$ gains M0. May just see $x = 9$.						
		Use of trapezium rule to find area is M0A0 as hence implies integration needed.						
	ddM1This mark is dependent on the two previous method marks and needs both to have been awarded. Sees the limit 9 substituted in an integrated function. (Do not follow through their value of x) Do not need to see MINUS 0 but if another value is used as lower limit – this is M0. This mark may be implied by 9 in the limit and a correct answer.							
	A1	$\frac{243}{10}$ or 24.3						
	Common Error	Common Error $0 = 3x - x^{\frac{3}{2}} \Rightarrow x^{\frac{1}{2}} = 3$ so $x = \sqrt{3}$ Then uses limit $\sqrt{3}$ etc gains M1 M0 A0 so 1/3						

Question	Scheme	Marks					
Number	May mark (a) and (b) together						
77. (a)	Expands to give $10x^{\frac{3}{2}} - 20x$	B1					
	Integrates to give $\frac{10}{\frac{5}{2}}x^{\frac{5}{2}} + \frac{-20^{2}x^{2}}{2} + $	M1 A1ft					
	Simplifies to $4x^{\frac{5}{2}} - 10x^2(+c)$	Alcao					
(b)	Use limits 0 and 4 either way round on their integrated function (may only see 4 substituted)	M1					
	Use limits 4 and 9 either way round on their integrated function						
	Obtains either ± -32 or ± 194 needs at least one of the previous M marks for this to be awarded	A1					
	(So area = $\left \int_{0}^{4} y dx \right + \int_{4}^{9} y dx$) i.e. 32 + 194, = 226	ddM1,A1 (5) [9]					
	Notes	<u> </u>					
(a) B1 : Ex M1 : Co one slip	pands the bracket correctly prectime process on at least one term after attempt at multiplication. (Follow correct expression in $10x^k - 20x$ where k may be $\frac{1}{2}$ or $\frac{5}{2}$ or resulting in $10x^{\frac{3}{2}} - Bx$, where B may be $\frac{1}{2}$	pansion or 2 or 5)					
So $x^{\frac{2}{2}}$	$x \to \frac{x^{\frac{1}{2}}}{\frac{5}{2}} \text{ or } x^{\frac{1}{2}} \to \frac{x^{\frac{1}{2}}}{\frac{3}{2}} \text{ or } x^{\frac{5}{2}} \to \frac{x^{\frac{1}{2}}}{\frac{7}{2}} \text{ and/or } x \to \frac{x^{2}}{2}.$						
A1: Co	rrect unsimplified follow through for both terms of their integration. Does not need $(+ c)$						
A1: Mu (b) M1: (d	ist be simplified and correct– allow answer in scheme or $4x^{2\frac{1}{2}} - 10x^2$. Does not need (+ c) oes not depend on first method mark) Attempt to substitute 4 into their integral (however obtained must not be differentiated) or seeing their evaluated number (usually 32) is enough – do not need minus zero.	ed but to see					
d M1: (depends on first method mark in (a)) Attempt to subtract either way round using the limits 4 and $\frac{1}{2}$	9					
A1: At	$A \times 9^2 - B \times 9^2$ with $A \times 4^2 - B \times 4^2$ is enough – or seeing 162 – (-32) {but not 162 – 32 } least one of the values (32 and 194) correct (needs just one of the two previous M marks in (b)) may see 162 + 32 + 32 or 162 + 64 or may be implied by correct final answer if not evaluated un	til last line					
of ddM1:	working Adds 32 and 194 (may see 162 + 32 + 32 or may be implied by correct final answer if not evalua st line of working). This depends on everything being correct to this point.	ted until					
A1cao:	Final answer of 226 not (- 226)						
Common errors: $4 \times 4^{\frac{5}{2}} - 10 \times 4^2 + 4 \times 9^{\frac{5}{2}} - 10 \times 9^2 - 4 \times 4^{\frac{5}{2}} - 10 \times 4^2 = \pm 162$ obtains M1 M1 A0 (neither 32 nor 194 seen and final answer incorrect) then M0 A0 so 2/5							
Uses corre	ect limits to obtain $-32 + 162 + 32 = +/-162$ is M1 M1 A1 (32 seen) M0 A0 so 3/5						
Special ca This also a	se: In part (b) Uses limits 9 and $0 = 972 - 810 - 0 = 162$ M0 M1 A0 M0A0 scores 1/5 applies if 4 never seen.						

$$\begin{array}{|c|c|c|} \hline \begin{tabular}{|c|c|} \hline \begi$$

Question Number	Scheme		Marks
	$\int \left(\frac{1}{8}x^3 + \frac{3}{4}x^2\right) dx = \frac{x^4}{32} + \frac{x^3}{4} \{+c\}$	M1: $x^n \rightarrow x^{n+1}$ on either term A1: $\frac{x^4}{32} + \frac{x^3}{4}$. Any correct simplified or un-simplified form. (+ c not required)	M1A1
	$\left[\frac{x^4}{32} + \frac{x^3}{4}\right]_{-4}^2 = \left(\frac{16}{32} + \frac{8}{4}\right) - \left(\frac{16}{32} + \frac{8}{4}\right) - \left(\frac{16}{32} + \frac{16}{32}\right)$ or $\left[\frac{x^4}{32} + \frac{x^3}{4}\right]_{-4}^0 = \left(0\right) - \left(\frac{\left(-4\right)^4}{32} + \frac{\left(-4\right)^3}{4}\right) \text{ added to}\left[\frac{16}{32} + \frac{16}{32}\right]$	dM1	
	Substitutes limits of 2 and -4 into an "integrate way round. Or substitutes limits of 0 and -4 a function" and subtracts either way round		
79.	$=\frac{21}{2}$	$\frac{21}{2}$ or 10.5	A1
	{At $x = -4$, $y = -8 + 12 = 4$ or at		
	Area of Rectangle $= 6$		
	$ Area of Rectangles = 4 \times 4 = 1 $	M1	
	Evidence of $(42) \times$ their y_{-4} of		
	or		
	Evidence of $4 \times$ their y_{-4} and		
	So, area(R) = $24 - \frac{21}{2} = \frac{27}{2}$	dddM1: Area rectangle – integrated answer. Dependent on all previous method marks and requires: Rectangle > integration > 0 A1: $\frac{27}{2}$ or 13.5	dddM1A1
			[7]
			Total 7

<u>Alternative</u> :				
$\pm \int \text{"their4"} - \left(\frac{1}{8}x^3 + \frac{3}{4}x^2\right) dx$	Line – curve. Condone missing brackets and allow either way round.	4 th M1		
$= 4x - \frac{x^4}{32} - \frac{x^3}{4} \{+c\}$	M1: $x^n \rightarrow x^{n+1}$ on either curve term A1ft: " $-\frac{x^4}{32} - \frac{x^3}{4}$." Any correct simplified or un-simplified form of their curve terms, follow through sign errors. (+ c not required)	1 st M1,1 st A1ft		
$\left[\right]_{-4}^{2} = \frac{\left(8 - \frac{16}{32} - \frac{8}{4}\right) - \left(-16 - \frac{256}{32} - \frac{(-64)}{4}\right)}{4}$	2 nd M1 Substitutes limits of 2 and -4 into an "integrated curve" and subtracts either way round. 3^{rd} M1 for ±("8"-"-16") Substitutes limits into the 'line part' and subtracts either way round. 2^{nd} A1 for correct ± (underlined expression). Now needs to be correct but allow ± the correct expression.	2 nd M1, 3 rd M1 2 nd A1		
$=\frac{27}{2}$	A1: $\frac{27}{2}$ or 13.5	3 rd A1		
If the final answer is -13.5 you can withhold the final A1 If -13.5 then "becomes" +13.5 allow the A1				

Question Number	Scheme	Marks			
80. (a)	Seeing -4 and 2.	B1			
(b)	$x(x+4)(x-2) = x^3 + 2x^2 - 8x$ or $x^3 - 2x^2 + 4x^2 - 8x$ (without simplifying)	(1) <u>B1</u>			
	$\int (x^3 + 2x^2 - 8x) dx = \frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2} \{+c\} \qquad \text{or } \frac{x^4}{4} - \frac{2x^3}{3} + \frac{4x^3}{3} - \frac{8x^2}{2} \{+c\}$	M1A1ft			
	$\left[\frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2}\right]_{-4}^0 = (0) - \left(64 - \frac{128}{3} - 64\right) \text{ or } \left[\frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2}\right]_0^2 = \left(4 + \frac{16}{3} - 16\right) - (0)$	dM1			
	One integral $=\pm 42\frac{2}{3}$ (42.6 or awrt 42.7) or other integral $=\pm 6\frac{2}{3}$ (6.6 or awrt 6.7)	A1			
	Hence Area = " <i>their</i> 42 $\frac{2}{3}$ " + " <i>their</i> 6 $\frac{2}{3}$ " or Area = " <i>their</i> 42 $\frac{2}{3}$ " - " <i>- their</i> 6 $\frac{2}{3}$ "	dM1			
	$= 49\frac{1}{3} \text{ or } 49.3 \text{ or } \frac{148}{3} (\text{NOT} - \frac{148}{3})$	A1			
	(An answer of $= 49\frac{1}{3}$ may not get the final two marks – check solution carefully)	(7)			
		[8]			
(a)	Notes for Question 80 B1: Need both -4 and 2. May see (-4.0) and (2.0) (correct) but allow (04) and (0. 2) or $A = -4$. B	= 2 or			
()	indeed any indication of -4 and 2 – check graph also	2 01			
(b)	B1: Multiplies out cubic correctly (terms may not be collected, but if they are, mark collected terms here) M1: Tries to integrate their expansion with $x^n \rightarrow x^{n+1}$ for at least one of the terms A1ft: completely correct integral following through from their CUBIC expansion (if only quadratic or quartic this is A0) dM1: (dependent on previous M) substituting EITHER - <i>a</i> and 0 and subtracting either way round OR similarly for 0 and <i>b</i> . If their limits, <i>a</i> and <i>b</i> are used in ONE integral, apply the Special Case below.				
	A1: Obtain either $\pm 42\frac{2}{3}$ (or 42.6 or awrt 42.7) from the integral from -4 to 0 or $\pm 6\frac{2}{3}$ (6.6 or awrt 6.7)				
	from the integral from 0 to 2; NO follow through on their cubic (allow decimal or improper equivalents				
	$\frac{128}{3}$ or $\frac{20}{3}$) is such as subtracting from rectangles. This will be penalized in the next two marks,				
	which will be M0A0. dM1 (depends on first method mark) Correct method to obtain shaded area so adds two positive numbers (areas) together or uses their positive value minus their negative value, obtained from two				
	A1: Allow 49.3, 49.33, 49.333 etc. Must follow correct logical work with no errors seen.	_			
	For full marks on this question there must be two definite integrals, from -4 to 0 and from 0 to 2, the evaluations for 0 may not be seen.	nough			
	(Trapezium rule gets no marks after first two B marks)				
(b)	Special Case: one integral only from -a to b: B1M1A1 available as before, then				
	$\left[\frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2}\right]_{-4}^2 = (4 + \frac{16}{3} - 16) - \left(64 - \frac{128}{3} - 64\right) = -6\frac{2}{3} + 42\frac{2}{3} = \dots \text{ dM1 for correct use of }$	of their			
	limits $-a$ and b and subtracting either way round. A1 for 36: NO follow through, Final M and A marks not available Max 5/7 for part (b)				

81.	$y = 27 - 2x - 9\sqrt{x} - \frac{16}{x^2}$				
	$\int y \mathrm{d}x = 27x - x^2 - 6x^{\frac{3}{2}} + 16x^{-1} \left(+c \right)$	M1: $x^n \rightarrow x^{n+1}$ on any term A1: $27x - x^2$ A1: $-6x^{\frac{3}{2}}$ A1: $+16x^{-1}$	M1A1A1A1		
	$ \begin{pmatrix} 27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1} \\ - \left(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1} \right) $	Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1	dM1		
	= (48 -	- 36)			
	12	Cao	A1		
			(6)		
			[6]		

Question number	Scheme					
Method 1	Puts $10 - x = 10x - x^2 - 8$ and	Or puts $y = 10(10 - y) - (10 - y)^2 - 8$	M1			
82 (a)	rearranges to give three term quadratic	and rearranges to give three term quadratic				
	Solves their " $x^2 - 11x + 18 = 0$ " using	Solves their " $y^2 - 9y + 8 = 0$ " using	M1			
	to give $x =$	acceptable method as in general principles to give $y = -$				
	Obtains $x = 2$, $x = 9$ (may be on	Obtains $y = 8$, $y = 1$ (may be on diagram)	A1			
	diagram or in part (b) in limits)	Substitutes their v into a given equation to	M1			
	to give $y = (may be on diagram)$	give $x = (may be on diagram or in part (b))$	1411			
	<i>y</i> = 8, <i>y</i> = 1	<i>x</i> = 2, <i>x</i> = 9	A1 (5)			
(b)	$\int (10x - x^2 - 8) dx = \frac{10x^2}{x^3} - \frac{x^3}{x^3} - 8x \{ + x \}$	- -}	M1 A1			
		,] ,	A1			
	$\begin{bmatrix} 10x^2 & x^3 \end{bmatrix}^9$		dM1			
	$\left[\frac{100}{2} - \frac{10}{3} - 8x\right]_{2} = (\dots) - (\dots)$					
	-00 $\frac{4}{-882}$ or $\frac{266}{-8}$					
	$=90 - \frac{1}{3} = 88\frac{2}{3} \text{ or } \frac{200}{3}$					
	Area of trapezium = $\frac{1}{2}(8+1)(9-2) = 31.5$					
	So area of <i>R</i> is $88\frac{2}{3} - 31.5 = 57\frac{1}{6}$ or $\frac{343}{6}$		cao			
			(7)			
			12 marks			
Notes (a)	First M1: See scheme Second M1: See	notes relating to solving quadratics	1			
	Third M1 : This may be awarded if one su	ubstitution is made				
	Just one pair of correct coordinates – i	no working or from table is M0M0A0M1A	0			
(b)	M1 : $x^n \to x^{n+1}$ for any one term.					
	1 st A1: at least two out of three terms correct dM1: Substitutes 0 and 2 (or limits from	2nd A1 : All three correct	troata			
	either way round	part(a)) into an integrated function and sub	uacts,			
	(NB: If candidate changes all signs to get $\int_{(-10x + x^2 + 8) dx} = -\frac{10x^2}{2} + \frac{x^2}{2} + 8x \{+c\}$ This is M1 A1 A1					
	Then uses limits dM1 and trapezium is E	2 3 31				
	Needs to change sign of value obtained from	integration for final M1A1 so $-88\frac{2}{3} - 31.5$ is M	(0A0)			
	B1 : Obtains 31.5 for area under line using an triangle $\frac{1}{8} \times 8 \times 8 - \frac{1}{2}$ or rectangle plus triangle	by correct method (could be integration) or triangle $[may be implied by correct 57, 1/6]$	e minus			
	M1 : Their Area under curve – Their Area under M	nder line (if integrate both need same limits)				
	A1: Accept 57.16recurring but not 57.16 PTO for Alternative method					

Method 2 for (b)	Area of R				
	$= \int_{2}^{9} (10x - x^{2} - 8) - (10 - x) \mathrm{d}x$	3 rd M1 (in (b)): Uses difference			
	$\int_{-\infty}^{9} x^2 + 11x + 18 dx$	M: $x^n \to x^{n+1}$ for any one term.	M1		
	$\int_{2}^{-x} + 11x - 18dx$	A1 at least two out of these three	A1		
	$= -\frac{x^3}{3} + \frac{11x^2}{2} - 18x \{+c\}$	simplified terms Correct integration. (Ignore $+ c$).	A1		
	$\left[-\frac{x^3}{3} + \frac{11x^2}{2} - 18x\right]_2^9 = (\dots) - (\dots)$	Substitutes 9 and 2 (or limits from part(a)) into an "integrated function" and subtracts, either way round.	dM1		
	This mark is implied by final answer wh	ich rounds to 57.2	B1		
	See above working(allow bracketing err	ors) to decide to award 3 rd M1	M1		
	<i>mark for (b) here:</i> $40.5 - (-16^2)$	-57^{1} cao	Δ 1		
	$+0.3 - (-10\frac{1}{3})$	$-57\frac{1}{6}$ cao	(7))	
			(7)) 	
Special case of above	$\int_{2}^{9} x^{2} - 11x + 18 dx = \frac{x^{3}}{3} - \frac{11x^{2}}{2} + 18x$	M1A1A1			
method	$\left[\frac{x^3}{3} - \frac{11x^2}{2} + 18x\right]_2^9 = (\dots) - (\dots)$	DM1			
	This mark is implied by final answer which rounds to 57.2 (not -57.2)				
	Difference of functions implied (see	above expression)	M1		
	$40.5 - (-16\frac{2}{3})$	$=57\frac{1}{6}$ cao	A1		
			(7))	
Special	Integrates expression in y e.g. " y^2 –	9y+8=0": This can have first			
	t is not a method for finding this				
Notes	Notes Take away trapezium again having used Method 2 loses last two marks				
	Common Error:				
	Integrates $-x^2 + 9x - 18$ is likely to be	e M1A1A0dM1B0M1A0			
	Integrates $2-11x - x^2$ is likely to e M1A0A0dM1B0M1A0				

Scheme							Marks		
Г									
	x	1	1.5	2	2.5	3	3.5	4	
	v	16.5	7.361	4	2.31	1.278	0.556	0	B1, B1
-									(2)
$\frac{1}{2}$	×0.5,	{(16.5+	(0) + 2(7.3)	61+4+	2.31+1.2	78+0.556	5)}		B1. M1A1ft
=11	1.88 (or	answers	listed below	w in note)				A1 (4)
\int_{1}^{4}	$\frac{16}{x^2} - \frac{x}{2}$	+1 dx =	$\left[-\frac{16}{x}-\frac{x}{2}\right]$	$\frac{2}{1} + x$					M1 A1 A1
• 1		=[·	-4-4+4]	 −[−16-	$-\frac{1}{4}+1$]				dM1
		L			+ J				
$= 11\frac{1}{4} \text{ or equivalent} \qquad \qquad$							A1 (5)		
(a) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ or t sch N.E $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ fina Alf Alf (c) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (All C in th Sep Alf	BI for 4 B1: Nee M1: req De at end eme. Tl 3. Speci 3. Speci 3	or any of all 0.25 of uires fir d) and s hey may all Case 5+0)+1 er implie should l 11.8775 empt to ir correct te $5x^{-1}-0.2$ his cannot grated ex <u>5 or 11 ¹/₄</u> apezia fi	correct equ 1/2 of 0.5 st bracket econd bra however - Bracketi 2(7.361+ es that the be correct or 11.878 integrate ie j rms, next 4 $25x^2 + 1x$ of t be earned pression and or 45/4 of hay be use t their "4"	to conta cket to i omit ond ing mista 4+2.31 calculat but ft th or 11.88 power ind A1 all thr or equival if previou nd subtra r equival ed : B1 ff and "2.3	g. 4.000 F in first y v nclude no e value as ake +1.278+ ion has be eir 4 and 2 only creased by ee correct lent) us M mark cts (either ent (penali or 0.25, N 81") final	value plus value plus additiona a slip. 0.556) so een done of 2.31 1 or 1 becunsimplifie has not be way round <u>se negative</u> 11 for $\frac{1}{2}h$ A1 for 11	or 2.310 last y values al y values cores B1 M correctly (omes x, ed (ignore en awarded b) e final answ (a + b) use 1.88 etc. a	ue (0 may from the M1 A0 A (then full +c) a) Uses lin wer here) ed 5 or 6 to as before	y be omitted ose in the 0 unless the marks) mits 4 and 1 times (and
In j dou	part (b) ibts ser) Need t nd to rev	o use traj view In pa	pezium i art (c) n	rule – ans eed to see	swer only e integrat	(with no ion	working	y) is 0/4 -any
	$\frac{1}{2}$ $= 1$ $\int_{1}^{4} \int_{1}^{4}$ $\frac{(a)}{b}$ $\frac{1}{2}$ $\frac{(a)}{b}$ $\frac{1}{2}$ $$	x $\frac{1}{2} \times 0.5$,= 11.88 (or $\int_{1}^{4} \frac{16}{x^{2}} - \frac{x}{2}$ (a) B1 for 4(b) B1 : Nee(b) B1 : NeeM1: reqor be at enscheme. ThN.B. Speci $\frac{1}{2} \times 0.5(16.5)$ final answerA1ft: ThisA1ft: Accept(c) M1 AtterA1ft: ThisA1 two of(Allow -16)dM1 (Thin their inteA1 ft all coIn part (b)doubts ser	x1y16.5 $\frac{1}{2} \times 0.5$, $\{(16.5 + 10.5), (16.5 + 10.5),$	x11.5y16.57.361 $\frac{1}{2} \times 0.5$, $\{(16.5+0)+2(7.3)=11.88 (or answers listed below\int_{1}^{4} \frac{16}{x^{2}} - \frac{x}{2} + 1 dx = \left[-\frac{16}{x} - \frac{x}{4}\right]= \left[-4 - 4 + 4\right]= 11\frac{1}{4} or equ(a) B1 for 4 or any correct equ(b) B1: Need 0.25 or \frac{1}{2} of 0.5M1: requires first bracketor be at end) and second brascheme. They may howeverN.B. Special Case - Bracketi\frac{1}{2} \times 0.5(16.5+0) + 2(7.361+)final answer implies that theA1ft: This should be correctA1 two correct terms, next A(Allow -16x^{-1} - 0.25x^{2} + 1x + 0.25x^$	Sch $\frac{x}{2} = \frac{1}{2} \times 0.5, \left\{ (16.5+0) + 2\left(7.361+4+\right) + 2\left(7.361+4+\right) + 2\left(7.361+4+\right) + 2\left(7.361+4+\right) + 2\left(7.361+4+\right) + 2\left(7.361+4+2\right) + 2\left(7.361+4+2.31\right) + 2\left(7.361+4+24\right) + 2$	Scheme $\frac{x 1 1.5 2 2.5}{y 16.5 7.361 4 2.31}$ $\frac{1}{2} \times 0.5, \left\{ (16.5+0) + 2\left(7.361+4+2.31+1.27\right) \right\}$ $= 11.88 \text{ (or answers listed below in note)}$ $\int_{1}^{4} \frac{16}{x^{2}} - \frac{x}{2} + 1 dx = \left[-\frac{16}{x} - \frac{x^{2}}{4} + x \right]_{1}^{4}$ $= \left[-4 - 4 + 4 \right] - \left[-16 - \frac{1}{4} + 1 \right] \right]$ $= 11\frac{1}{4} \text{ or equivalent}$ (a) B1 for 4 or any correct equivalent e.g. 4.000 H (b) B1 : Need 0.25 or ½ of 0.5 M1 : requires first bracket to contain first <i>y</i> or or be at end) and second bracket to include no scheme. They may however omit one value as N.B. Special Case - Bracketing mistake $\frac{1}{2} \times 0.5(16.5+0) + 2\left(7.361+4+2.31+1.278+4\right)$ final answer implies that the calculation has be Alft: This should be correct but ft their 4 and 3 Al: Accept 11.8775 or 11.878 or 11.88 only (c) M1 Attempt to integrate ie power increased by Al two correct terms, next Al all three correct (Allow $-16x^{-1} - 0.25x^{2} + 1x$ or equivalent) dM1 (This cannot be earned if previous M mark in their integrated expression and subtracts (either Al 11.25 or 11 ¹ 4 or 45/4 or equivalent (penalii Separate trapezia may be used : B1 for 0.25, M Alft all correct for their "4" and "2.31") final In part (b) Need to use trapezium rule – anse doubts send to review In part (c) need to sec	Scheme $\frac{x 1 1.5 2 2.5 3}{y 16.5 7.361 4 2.31 1.278}$ $\frac{1}{2} \times 0.5, \left\{ (16.5+0) + 2(7.361+4+2.31+1.278+0.556) \\ = 11.88 \text{ (or answers listed below in note)} \right.$ $\int_{1}^{4} \frac{16}{x^2} - \frac{x}{2} + 1 dx = \left[-\frac{16}{x} - \frac{x^2}{4} + x \right]_{1}^{4} \\ = \left[-4 - 4 + 4 \right] - \left[-16 - \frac{1}{4} + 1 \right] \right] \\ = 11\frac{1}{4} \text{ or equivalent}$ (a) B1 for 4 or any correct equivalent e.g. 4.000 B1 for 2.31 (b) B1 : Need 0.25 or ½ of 0.5 M1 : requires first bracket to contain first y value plus or be at end) and second bracket to include no additional scheme. They may however omit one value as a slip. N.B. Special Case - Bracketing mistake $\frac{1}{2} \times 0.5(16.5+0) + 2(7.361+4+2.31+1.278+0.556) \text{ sc}$ final answer implies that the calculation has been done of A1ft: This should be correct but ft their 4 and 2.31 A1 : Accept 11.8775 or 11.878 or 11.88 only (c) M1 Attempt to integrate ie power increased by 1 or 1 becc A1 two correct terms, next A1 all three correct unsimplified (Allow $-16x^{-1} - 0.25x^{2} + 1x$ or equivalent) dM1 (This cannot be earned if previous M mark has not be in their integrated expression and subtracts (either way round A1 11.25 or 11.14 or 45/4 or equivalent (penalise negative) Separate trapezia may be used : B1 for 0.25, M1 for $\frac{1}{2}h$ A1ft all correct for their "4" and "2.31") final A1 for 113 In part (b) Need to use trapezium rule – answer only doubts send to review In part (c) need to see integrated	Scheme $\frac{x 1 1.5 2 2.5 3 3.5}{y 16.5 7.361 4 2.31 1.278 0.556}$ $\frac{1}{2} \times 0.5, \{(16.5+0)+2(7.361+4+2.31+1.278+0.556)\}$ = 11.88 (or answers listed below in note) $\int_{1}^{4} \frac{16}{x^{2}} - \frac{x}{2} + 1 dx = \left[-\frac{16}{x} - \frac{x^{2}}{4} + x \right]_{1}^{4}$ $= \left[-4 - 4 + 4 \right] - \left[-16 - \frac{1}{4} + 1 \right]$ $= 11\frac{1}{4} \text{ or equivalent}$ (a) B1 for 4 or any correct equivalent e.g. 4.000 B1 for 2.31 or 2.310 (b) B1 : Need 0.25 or ½ of 0.5 M1 : requires first bracket to contain first y value plus last y value or be at end) and second bracket to include no additional y values scheme. They may however omit one value as a slip. N.B. Special Case - Bracketing mistake $\frac{1}{2} \times 0.5(16.5+0) + 2(7.361+4+2.31+1.278+0.556) \text{ scores B1 M}$ final answer implies that the calculation has been done correctly (A1ft: This should be correct but ft their 4 and 2.31 A1 : Accept 11.8775 or 11.878 or 11.88 only (c) M1 Attempt to integrate ie power increased by 1 or 1 becomes x, A1 two correct terms, next A1 all three correct unsimplified (ignore (Allow $-16x^{-1} - 0.25x^{2} + 1x$ or equivalent (M1 (Chis cannot be earned if previous M mark has not been awardee in their integrated expression and subtracts (either way round) A1 11.25 or 11 ¼ or 45/4 or equivalent (penalise negative final answ Separate trapezia may be used : B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ use A1ft all correct for their "4" and "2.31") final A1 for 11.88 etc. a In part (b) Need to use trapezium rule – answer only (with no doubts send to review In part (c) need to see integration	Scheme $\frac{x 1 1.5 2 2.5 3 3.5 4}{y 16.5 7.361 4 2.31 1.278 0.556 0}$ $= 11.88 \text{ (or answers listed below in note)}$ $\int_{1}^{4} \frac{16}{x^2} - \frac{x}{2} + 1 \text{ dx} = \left[-\frac{16}{x} - \frac{x^2}{4} + x \right]_{1}^{4}$ $= \left[-4 - 4 + 4 \right] - \left[-16 - \frac{1}{4} + 1 \right]$ $= 11\frac{1}{4} \text{ or equivalent}$ (a) B1 for 4 or any correct equivalent e.g. 4.000 B1 for 2.31 or 2.310 (b) B1 : Need 0.25 or ½ of 0.5 M1 : requires first bracket to contain first <i>y</i> value plus last <i>y</i> value (0 may or be at end) and second bracket to include no additional <i>y</i> values from the scheme. They may however omit one value as a slip. N.B. Special Case - Bracketing mistake $\frac{1}{2} \times 0.5(16.5 + 0) + 2(7.361 + 4 + 2.31 + 1.278 + 0.556) \text{ scores B1 M1 A0 AC}$ final answer implies that the calculation has been done correctly (then full A1ft: This should be correct but ft their 4 and 2.31 A1: Accept 11.8775 or 11.878 or 11.888 only (c) (M1 Attempt to integrate is prover increased by 1 or 1 becomes <i>x</i> , A1 two correct terms, next A1 all three correct unsimplified (ignore +c) (Allow $-16x^{-1} - 0.25x^{2} + 1x$ or equivalent) dM1 (This cannot be earned if previous M mark has not been awarded) Uses lin the in their integrate expression and subtracts (either way round) A1 11.25 or 11 \frac{14}{4} or 45/4 or equivalent (penalise negative final answer here). Separate trapezia may be used : B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6 (A1ft all correct for their "4" and "2.31") final A1 for 11.88 etc. as before In part (b) Need to use trapezium rule – answer only (with no working doubts send to review In part (c) need to see integration

Question Number	Scheme			
84.	Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$			
(a)	{Curve = Line} $\Rightarrow -x^2 + 2x + 24 = x + 4$ Eliminating <i>y</i> correctly.	B1		
	$x^{2} - x - 20 \{= 0\} \Rightarrow (x - 5)(x + 4) \{= 0\} \Rightarrow x = \dots$ Attempt to solve a <i>resulting</i> quadratic to give $x =$ their values.	M 1		
	So, $x = 5, -4$ Both $x = 5$ and $x = -4$.	A1		
	So corresponding <i>y</i> -values are $y = 9$ and $y = 0$. See notes below.	B1ft [4]		
(b)	$\left\{\int (-x^2 + 2x + 24) dx\right\} = -\frac{x^3}{3} + \frac{2x^2}{2} + 24x \left\{+c \qquad \begin{array}{c} \text{M1: } x^n \to x^{n+1} \text{ for any one term.} \\ 1^{\text{st}} \text{A1 at least two out of three terms.} \\ 2^{\text{nd}} \text{A1 for correct answer.} \end{array}\right\}$	M1A1A1		
	$\left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x\right]_{-4}^5 = (\dots) - (\dots)$ Substitutes 5 and -4 (or their limits from part(a)) into an "integrated function" and subtracts, either way round.	dM1		
	$\left\{ \left(-\frac{125}{3} + 25 + 120 \right) - \left(\frac{64}{3} + 16 - 96 \right) = \left(103\frac{1}{3} \right) - \left(-58\frac{2}{3} \right) = 162 \right\}$			
	Area of $\Delta = \frac{1}{2}(9)(9) = 40.5$ Uses correct method for finding area of triangle.	M1		
	So area of R is $162 - 40.5 = 121.5$ Area under curve – Area of triangle.	M1		
	121.5	A1 oe cao		
		[/] 11		

Question	Schomo	Marks			
Number	Scheme	IVIAI KS			
84(a)	4(a) $1^{\text{st}} B1$: For correctly eliminating either x or y. Candidates will usually write $-x^2 + 2x + 24 =$				
	This mark can be implied by the resulting quadratic.				
	M1: For solving their quadratic (which must be different to $-x^2 + 2x + 24$) to give $x =$	See			
	introduction for Method mark for solving a 3TO. It must result from some attempt to eliminate one of				
	the variables. A1: For both $x = 5$ and $x = -4$.				
	2^{nd} B1ft: For correctly substituting their values of x in equation of line or parabola to give bo	th correct ft			
	y-values. (You may have to get your calculators out if they substitute their x into $y = -x^2 + y^2$	2x + 24).			
	<u>Note:</u> For $x = 5, -4 \Rightarrow y = 9$ and $y = 0 \Rightarrow eg. (-4, 9)$ and $(5, 0)$, award B1 isw.				
	If the candidate gives additional answers to $(-4, 0)$ and $(5, 9)$, then withhold the final B1 matrix	ark.			
	Special Case : Award SC: B0M0A0B1 for $\{A\}(-4, 0)$. You may see this point marked on the diagram.				
	<u>Note:</u> SC: B0M0A0B1 for solving $0 = -x^2 + 2x + 24$ to give $\{A\}(-4, 0)$ and/or (6, 10).				
	Note: Do not give marks for working in part (b) which would be creditable in part (a).				
84(b)	1 st M1 for an attempt to integrate meaning that $x^n \rightarrow x^{n+1}$ for at least one of the terms.				
	Note that $24 \rightarrow 24x$ is sufficient for M1.				
	1 st A1 at least two out of three terms correctly integrated.				
	2^{nd}_{nd} A1 for correct integration only and no follow through. Ignore the use of a '+ c'.				
	2^{nd} M1: Note that this method mark is dependent upon the award of the first M1 mark in part	t (b).			
	Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the limits	the			
	candidate has found from part(a)) into an "integrated function" and subtracts, either way rour one slip!	nd. Allow			
	3 rd M1: Area of triangle = $\frac{1}{2}$ (their x_2 – their x_1)(their y_2) or Area of triangle = $\int_{x_1}^{x_2} x + 4 \{ dx \}$	<i>c</i> }.			
	Where x_1 = their -4, x_2 = their 5 and y_2 = their y usually found in part (a).				
	4^{th} M1: Area under curve – Area under triangle, where both Area under curve > 0				
	and Area under triangle > 0 and Area under curve $>$ Area under triangle.				
	3^{rd} A1: 121.5 or $\frac{243}{2}$ oe cao.				

Question Number	Scheme	Marks
Aliter 84.(b) Way 2	Scheme Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$ Area of $R = \int_{-4}^{5} (-x^2 + 2x + 24) - (x + 4) dx$ $= -\frac{x^3}{3} + \frac{x^2}{2} + 20x \{+c\}$ $\left[-\frac{x^3}{3} + \frac{x^2}{2} + 20x\right]_{-4}^{5} = (\dots, -) - (\dots, -)$ $\left[-\frac{x^3}{3} + \frac{x^2}{2} + 20x\right]_{-4}^{5} = (\dots, -) - (\dots, -)$ $\left[-\frac{125}{3} + \frac{25}{2} + 100\right] - \left(\frac{64}{3} + 8 - 80\right) = \left(70\frac{5}{6}\right) - \left(-50\frac{2}{3}\right)$ $\left[-50\frac{2}{3}\right]$	Marks M1 A1ft A1 dM1
	See above working to decide to award 3^{rd} M1 mark here: See above working to decide to award 4^{th} M1 mark here: 121.5	M1 M1 A1 oe cao [7] 11
84(b)	1 st M1 for an attempt to integrate meaning that $x^n \to x^{n+1}$ for at least one of the terms. Note that 20→ 20x is sufficient for M1. 1 st A1 at least two out of three terms correctly ft. Note this accuracy mark is ft in Way 2. 2 nd A1 for correct integration only and no follow through. Ignore the use of a '+c'. Allow 2 nd A1 also for $-\frac{x^3}{3} + \frac{2x^2}{2} + 24x - \left(\frac{x^2}{2} + 4x\right)$. Note that $\frac{2x^2}{2} - \frac{x^2}{2}$ or $24x - 4x$ as one integrated term for the 1 st A1 mark. Do not allow any extra terms for the 2 nd A1 mark in pa 2 nd M1: Note that this method mark is dependent upon the award of the first M1 mark in pa Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the limit candidate has found from part(a)) into an "integrated function" and subtracts, either way rou one slip! 3 nd M1: Uses the integral of $(x + 4)$ with correct ft limits of their x_1 and their x_2 (usually for (a)) {where $(x_1, y_1) = (-4, 0)$ and $(x_2, y_2) = (5, 9)$. } This mark is usually found in the first candidate's working in part (b). 4 th M1: Uses "curve" – "line" function with correct ft (usually found in part (a)) limits. Sub be correct way round. This mark is usually found in the first line of the candidate's working Allow $\int_{-4}^{5} (-x^2 + 2x + 24) - x + 4 \{dx\}$ for this method mark. 3 rd A1: 121.5 oe cao . Note: SPECIAL CASE for this alternative method Area of $R = \int_{-4}^{5} (x^2 - x - 20) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} - 20x\right]_{-4}^{5} = \left(\frac{125}{3} - \frac{25}{2} - 100\right) - \left(-\frac{64}{3} - 8 + 80\right)$ The working so far would score SPEICAL CASE M1A1A1M1M1M0A0. The candidate may then go on to state that $= \left(-70\frac{5}{6}\right) - \left(50\frac{2}{3}\right) = -\frac{243}{2}$ If the candidate then multiplies their answer by -1 then they would gain the 4 th M1 and 121.3 the final A1 mark.	only counts k. rt (b). s the and. Allow und in part line of the traction must g in part (b).

Question Number	Scheme	Marks	
Aliter	Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$		
84. (a)	{Curve = Line} $\Rightarrow y = -(y-4)^2 + 2(y-4) + 24$ Eliminating x correctly.	B1	
Way 2	$y^2 - 9y \{=0\} \Rightarrow y(y-9) \{=0\} \Rightarrow y = \dots$ Attempt to solve a resulting quadratic to give $y =$ their values.	M1	
	So, $y = 0, 9$ Both $y = 0$ and $y = 9$.	A1	
	So corresponding <i>y</i> -values are $x = -4$ and $x = 5$. See notes below.	B1ft	
	- nd	[4]	
	2^{m} B1ft: For correctly substituting their values of y in equation of line or parabola to give b ar-values	oth correct ft	
84. (b)	Alternative Methods for obtaining the M1 mark for use of limits:		
	There are two alternative methods can candidates can apply for finding "162".		
	<u>Alternative 1:</u>		
	$\int_{-1}^{1} (-x^{2} + 2x + 24) dx + \int_{0}^{1} (-x^{2} + 2x + 24) dx$		
	$= \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{0} + \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{0}^{5}$		
	$= (0) - \left(\frac{64}{3} + 16 - 96\right) + \left(-\frac{125}{3} + 25 + 120\right) - (0)$		
	$=\left(103\frac{1}{3}\right) - \left(-58\frac{2}{3}\right) = 162$		
	Alternative 2:		
	$\int_{-4}^{3} (-x^{2} + 2x + 24) dx - \int_{5}^{3} (-x^{2} + 2x + 24) dx$		
	$= \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{6} - \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{5}^{6}$		
	$= \left\{ \left(-\frac{216}{3} + 36 + 144 \right) - \left(\frac{64}{3} + 16 - 96 \right) \right\} - \left\{ \left(-\frac{216}{3} + 36 + 144 \right) - \left(-\frac{125}{3} + \frac{125}{3} $	$25+120\bigg)\bigg\}$	
	$= \left\{ \left(108\right) - \left(-58\frac{2}{3}\right) \right\} - \left\{ \left(108\right) - \left(103\frac{1}{3}\right) \right\}$		
	$=\left(166\frac{2}{3}\right) - \left(4\frac{2}{3}\right) = 162$		

Question Number	Scheme				
85. (a)	Seeing –1 and 5. (See note below.)				
(b)	$(x+1)(x-5) = x^2 - 4x - 5$ or $x^2 - 5x + x - 5$				
	$\int (x^2 - 4x - 5) dx = \frac{x^3}{3} - \frac{4x^2}{2} - 5x \{+c\}$ M: $x^n \to x^{n+1}$ for any one term. 1 st A1 at least two out of three terms correctly ft.				
	$\left[\frac{x^3}{3} - \frac{4x^2}{2} - 5x\right]_{-1}^5 = (\dots) - (\dots)$ Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round.	dM1			
	$\begin{cases} \left(\frac{125}{3} - \frac{100}{2} - 25\right) - \left(-\frac{1}{3} - 2 + 5\right) \\ = \left(-\frac{100}{3}\right) - \left(\frac{8}{3}\right) = -36 \end{cases}$				
	Hence, Area = 36 Final answer must be 36, not -36	A1 (6)			
	Notes	[/]			
(a)	B1: for -1 and 5. Note that $(-1, 0)$ and $(5, 0)$ are acceptable for B1. Also allow				
	(0, -1) and $(0, 5)$ generously for B1. Note that if a candidate writes down that				
	A:(5,0), $B:(-1,0)$, (ie A and B interchanged,) then B0. Also allow values inserted in the				
	correct position on the <i>x</i> -axis of the graph.				
(b)	correct position on the <i>x</i> -axis of the graph. B1 for $x^2 - 4x - 5$ or $x^2 - 5x + x - 5$. If you believe that the candidate is applying the Way 2 method then $-x^2 + 4x + 5$ or $-x^2 + 5x - x + 5$ would then be fine for B1. 1 st M1 for an attempt to integrate meaning that $x^n \to x^{n+1}$ for at least one of the terms. Note that $-5 \to 5x$ is sufficient for M1. 1 st A1 at least two out of three terms correctly ft from their multiplied out brackets. 2 nd A1 for correct integration only and no follow through. Ignore the use of a '+ c'. Allow 2 nd A1 also for $\frac{x^3}{3} - \frac{5x^2}{2} + \frac{x^2}{2} - 5x$. Note that $-\frac{5x^2}{2} + \frac{x^2}{2}$ only counts as one integrated term for the 1 st A1 mark. Do not allow any extra terms for the 2 nd A1 mark. 2 nd M1: Note that this method mark is dependent upon the award of the first M1 mark in part (b). Substitutes 5 and -1 (and not 1 if the candidate has stated $x = -1$ in part (a).) (or the limits the candidate has found from part(a)) into an "integrated function" and subtracts, either way round. 3 rd A1: For a final answer of 36, not -36. Note: An alternative method exists where the candidate states from the outset that Area $(R) = -\int_{0}^{5} (x^2 - 4x + 5) dx$ is detailed in the Appendix.				

Questi Numb	ion ber	Scheme		Marks					
8 6.							2		
	(a)	<u>x</u>	2	2.25	2.5	2.75	3	=	
	• •	У	0.5	0.38	0.298507	0.241691	0.2		D 1
		At $\{x = x\}$	2.5, y	= 0.30 (on	ly)		At l	east one y-ordinate correct.	BI
		At $\{x = x\}$	2.75,}	y = 0.24 (or	nly)			Both <i>y</i> -ordinates correct.	B1
		Č.	, , ,	•					(2)
							Ou	tside brackets $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$	B1 aef
	<u>For structure of </u> {};					M1			
	(b) $\frac{1}{-0.25} \times \{0.5 + 0.2 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)\}$ Correct expression								
		2	((/)	insi	ide brackets which all must	
							be r	multiplied by their "outside	<u>A1</u> √
		consta		constant".					
		$\left\{=\frac{1}{2}(2.54)\right\}=$ awrt 0.32		awrt 0.32	A1				
			,						(4)
	(c)	Area of	triang	$e = \frac{1}{2} \times 1 \times$	0.2 = 0.1				B1
		A	10.2	2					N 4 1
		Area(S) = "0.31/S" - 0.1			IVI I				
		= 0.2175			A1 ft				
									(3)
									[9]

Question Number	Scheme	Marks	
	Notes		
(b)	B1 for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent.		
	M1 requires the correct $\{\dots, \}$ bracket structure. This is for the first bracket to contain first	<i>y</i> -	
	ordinate plus last <i>y</i> -ordinate and the second bracket to be the summation of the remaining y- ordinates in the table.		
	No errors (eg. an omission of a <i>y</i> -ordinate or an extra <i>y</i> -ordinate or a repeated <i>y</i> -ordinate) are allowed in the second bracket and the second bracket must be multiplied by 2. Only one copying error is allowed here in the $2(0.38 + \text{their } 0.30 + \text{their } 0.24)$ bracket.		
	A1ft for the correct bracket $\{\dots, \}$ following through candidate's y-ordinates found in part	(a).	
	A1 for answer of awrt 0.32.		
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly		
	then award M1A0A0 for either $\frac{1}{2} \times 0.25 \times 0.5 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) + 0.2$		
	(nb: yielding final answer of 2.1025) so that the 0.5 is only multiplied by $\frac{1}{2} \times 0.25$		
	or $\frac{1}{2} \times 0.25 \times (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)$		
	(nb: yielding final answer of 1.9275) so that the $(0.5 + 0.2)$ is multiplied by $\frac{1}{2} \times 0.25$.		
	Need to see trapezium rule – answer only (with no working) gains no marks. <u>Alternative:</u> Separate trapezia may be used, and this can be marked equivalently. (See appendix.)		
(c)	B1 for the area of the triangle identified as either $\frac{1}{2} \times 1 \times 0.2$ or 0.1. May be identified on	the	
	 diagram. M1 for "part (b) answer" – "0.1 only" or "part (b) answer – their attempt at 0.1 only". (Stric attempt!) A1ft for correctly following through "part (b) answer" – 0.1. This is also dependent on the answer to (b) being greater than 0.1. Note: candidates may round answers here, so allow A they round their answer correct to 2 dp. 		

Question Number	Scheme	Marks	
87	(a) $\frac{dy}{dx} = 3x^2 - 20x + k$ (Differentiation is required)	M1 A1	
	At $x = 2$, $\frac{dy}{dx} = 0$, so $12 - 40 + k = 0$ $k = 28$ (*)	A1 cso	
	N.B. The $= 0$ must be seen at some stage to score the final mark.		
	<u>Alternatively</u> : (using $k = 28$)		
	$\frac{dy}{dx} = 3x^2 - 20x + 28$ (M1 A1)		
	'Assuming' $k = 28$ only scores the final cso mark if there is justification dv		(3)
	that $\frac{dy}{dx} = 0$ at $x = 2$ represents the <u>maximum</u> turning point.		
	(b) $\int (x^3 - 10x^2 + 28x) dx = \frac{x^4}{4} - \frac{10x^3}{3} + \frac{28x^2}{2}$ Allow $\frac{kx^2}{2}$ for $\frac{28x^2}{2}$	M1 A1	
	$\left[\frac{x^4}{4} - \frac{10x^3}{3} + 14x^2\right]_0^2 = \dots \qquad \left(=4 - \frac{80}{3} + 56 = \frac{100}{3}\right)$	M1	
	(With limits 0 to 2, substitute the limit 2 into a 'changed function')		
	y-coordinate of $P = 8 - 40 + 56 = 24$ (The B1 for 24 may be scored by implication from later working) Area of rectangle = $2 \times (\text{their } v - \text{coordinate of } P)$	B1	
	Area of $R = (\text{their } 48) - \left(\text{their } \frac{100}{3}\right) = \frac{44}{3} \left(14\frac{2}{3} \text{ or } 14.6\right)$	M1 A1	
	If the subtraction is the 'wrong way round', the final A mark is lost.		(6) 9
	 (a) M: xⁿ → cxⁿ⁻¹ (c constant, c ≠ 0) for one term, seen <u>in part (a)</u>. (b) 1st M: xⁿ → cxⁿ⁺¹ (c constant, c ≠ 0) for one term. Integrating the <u>gradient function</u> loses this M mark. 		
	2ndM: Requires use of limits 0 and 2, with 2 substituted into a 'changed function'. (It may, for example, have been differentiated).		
	Final M: Subtract their values either way round. This mark is dependent on the use of calculus and a correct method attempt for the area of the rectangle.		
	A1: Must be <u>exact</u> , not 14.67 or similar, but isw after seeing, say, $\frac{44}{3}$.		
	<u>Alternative</u> : (effectively finding area of rectangle by integration)		
	$\int \left\{ 24 - (x^3 - 10x^2 + 28x) \right\} dx = 24x - \left(\frac{x^4}{4} - \frac{10x^3}{3} + \frac{28x^2}{2} \right), \text{ etc.}$		
	This can be marked equivalently, with the 1^{st} A being for integrating the same 3 terms correctly. The 3rd M (for subtraction) will be scored at the same stage as the 2^{nd} M. If the subtraction is the 'wrong way round', the final A mark is lost.		

Question Number		Scheme	Mar	ks
88	(a)	Puts $y = 0$ and attempts to solve quadratic e.g. $(x-4)(x-1) = 0$ Points are (1,0) and (4, 0)	M1 A1	(2)
	(b)	x = 5 gives $y = 25 - 25 + 4$ and so (5, 4) lies on the curve	B1cso	(1)
	(C)	$\int \left(x^2 - 5x + 4\right) dx = \frac{1}{3}x^3 - \frac{5}{2}x^2 + 4x \qquad (+c)$	M1A1	(2)
	(d)	Area of triangle = $\frac{1}{2} \times 4 \times 4 = 8$ or $\int (x-1) dx = \frac{1}{2}x^2 - x$ with limits 1 and 5 to give 8	B1	
		Area under the curve = $\int_{4}^{5} \frac{\frac{1}{3} \times 5^{3} - \frac{5}{2} \times 5^{2} + 4 \times 5}{\frac{1}{3} \times 5^{3} - \frac{5}{2} \times 5^{2} + 4 \times 5} = -\frac{5}{6}$	M1	
		$\frac{1}{3} \times 4^3 - \frac{5}{2} \times 4^2 + 4 \times 4 \left[= -\frac{8}{3} \right]$	M1	
		$\int_{4}^{5} = -\frac{5}{6} - \frac{8}{3} = \frac{11}{6}$ or equivalent (allow 1.83 or 1.8 here)	A1 cao	
		Area of $R = 8 - \frac{11}{6} = 6\frac{1}{6}$ or $\frac{37}{6}$ or 6.16^r (not 6.17)	A1 cao	(5)
		6 ° 6		[10]
	(a)	M1 for attempt to find L and M A1 Accept $x = 1$ and $x = 4$, then isw or accept $L = (1,0)$, $M = (4,0)$ Do not accept $L = 1$, $M = 4$ nor $(0, 1)$, $(0, 4)$ (unless subsequent work) Do not need to distinguish L and M. Answers imply M1A1.		
	(b)	See substitution, working should be shown, need conclusion which could be just $y = 4$ or a tick. Allow $y = 25 - 25 + 4 = 4$ But not $25 - 25 + 4 = 4$. ($y = 4$ may appear at start) Usually $0 = 0$ or $4 = 4$ is B0		
	(c)	M1 for attempt to integrate $x^2 \rightarrow kx^3$, $x \rightarrow kx^2$ or $4 \rightarrow 4x$ A1 for correct integration of all three terms (do not need constant) isw. Mark correct work when seen. So e.g. $\frac{1}{3}x^3 - \frac{5}{2}x^2 + 4x$ is A1 then $2x^3 - 15x^2 + 24x$ would be ignored as subsequent work.		
	(d)	B1 for this triangle only (not triangle <i>LMN</i>) 1^{st} M1 for substituting 5 into their changed function 2^{nd} M1 for substituting 4 into their changed function		
	(d)	Alternative method: $\int_{1}^{5} (x-1) - (x^2 - 5x + 4)dx + \int_{1}^{4} x^2 - 5x + 4dx$ can lead to correct	answer	
		Constructs $\int_{1}^{5} (x-1) - (x^2 - 5x + 4) dx$ is B1		
		M1 for substituting 5 and 1 and subtracting in first integral M1 for substituting 4 and 1 and subtracting in second integral A1 for answer to first integral i.e. $\frac{32}{3}$ (allow 10.7) and A1 for final answer as before		

1		
	(d)	Another alternative
		$\int_{4}^{5} (x-1) - (x^2 - 5x + 4) dx + area of triangle LMP$
		Constructs $\int_{4}^{5} (x-1) - (x^2 - 5x + 4) dx$ is B1
		M1 for substituting 5 and 4 and subtracting in first integral
		M1 for complete method to find area of triangle (4.5)
		A1 for answer to first integral i.e. $\frac{5}{3}$ and A1 for final answer as before.
	(d)	Could also use
		$\int_{4}^{5} (4x - 16) - (x^2 - 5x + 4) dx + area of triangle LMN$
		Similar scheme to previous one. Triangle has area 6
		A1 for finding Integral has value $\frac{1}{6}$ and A1 for final answer as before.

Question Number	Scheme	Mark	S	
89	$\int \left(2x + 3x^{\frac{1}{2}}\right) dx = \frac{2x^2}{2} + \frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$	M1 A1A1	l	
	$\int_{1}^{4} \left(2x + 3x^{\frac{1}{2}} \right) dx = \left[x^{2} + 2x^{\frac{3}{2}} \right]_{1}^{4} = \left(16 + 2 \times 8 \right) - \left(1 + 2 \right)$	M1		
	= 29 (29 + <i>C</i> scores A0)	A1	(5) [5]	
	1 st M1 for attempt to integrate $x \to kx^2$ or $x^{\frac{1}{2}} \to kx^{\frac{3}{2}}$.			
	1 st A1 for $\frac{2x^2}{2}$ or a simplified version.			
	2 nd A1 for $\frac{3x^{\frac{3}{2}}}{\binom{3}{2}}$ or $\frac{3x\sqrt{x}}{\binom{3}{2}}$ or a simplified version.			
	Ignore + C , if seen, but two correct terms and an <u>extra non-constant</u> term scores M1A1A0.			
	2 nd M1 for correct use of correct limits ('top' – 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation).			
	Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear.			
	No working: The answer 29 with no working scores M0A0A0M1A0 (1 mark).			

Question Number	Scheme	Marks	
90	$y = (1 + x)(4 - x) = 4 + 3x - x^2$ M: Expand, giving 3 (or 4) terms	M1	
	$\int (4+3x-x^2) dx = 4x + \frac{3x^2}{2} - \frac{x^3}{3}$ M: Attempt to integrate	M1 A1	
	$= \left[\dots \right]_{-1}^{4} = \left(16 + 24 - \frac{64}{3} \right) - \left(-4 + \frac{3}{2} + \frac{1}{3} \right) = \frac{125}{6} \qquad \left(= 20\frac{5}{6} \right)$	M1 A1 (5) [5]	
Notes	M1 needs expansion, there may be a slip involving a sign or simple arithmetical error e.g. $1 \times 4 = 5$ but there needs to be a 'constant' an 'x term' and an 'x ² term'. The x terms do		
	not need to be collected. (Need not be seen if next line correct)		
	Attempt to integrate means that $x^n \to x^{n+1}$ for at least one of the terms, then M1 is awarded (even 4 becoming $4x$ is sufficient) – one correct power sufficient.		
	A1 is for correct answer only, not follow through. But allow $2x^2 - \frac{1}{2}x^2$ or any correct equivalent. Allow + <i>c</i> , and even allow an evaluated extra constant term.		
	M1 : Substitute limit 4 and limit -1 into a changed function (must be -1) and indicate subtraction (either way round).		
	A1 must be exact, not 20.83 or similar. If recurring indicated can have the mark. Negative area, even if subsequently positive loses the A mark.		
Special cases	 (i) Uses calculator method: M1 for expansion (if seen) M1 for limits if answ 0, 1 or 2 marks out of 5 is possible (Most likely M0 M0 A0 M1 A0) (ii) Uses trapezium rule : not exact, no calculus – 0/5 unless expansion mark (iii) Using original method, but then change all signs after expansion is like M1 M1 A0, M1 A0 i.e. 3/5 	ver correct, so (M1 gained. ly to lead to:	

Question number	Scheme	Marks	
91	Area of triangle = $\frac{1}{2} \times 2 \times 22$ (M: Correct method to find area of triangle) (Area = 22 with no working is acceptable) $\int 10 + 8x + x^2 - x^3 dx = 10x + \frac{8x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$ (M: $x^n \to x^{n+1}$ for one of the terms) Only one term correct: M1 A0 A0 Integrating the <u>gradient function</u> 2 or 3 terms correct: M1 A1 A0 Integrating the <u>gradient function</u> 2 or 3 terms correct: M1 A1 A0 Integrating the <u>gradient function</u> $10x + \frac{8x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \Big]_0^2 = \dots$ (Substitute limit 2 into a 'changed function') $\left(= 20 + 16 + \frac{8}{3} - 4\right)$ (This M can be awarded even if the other limit is wrong) Area of $R = 34\frac{2}{3} - 22 = \frac{38}{3} \left(= 12\frac{2}{3}\right)$ (Or 12.6) M: <u>Dependent on use of calculus in (b) and correct overall 'strategy'</u> : subtract either way round. A: Must be <u>exact</u> , not 12.67 or similar. A negative area at the end, even if subsequently made positive, loses the A mark.	M1 A1 M1 A1 A1 M1 M1 A1	(8)
	Alternative: Eqn. of line $y = 11x$. (Marks dependent on subsequent use in integration) (M1: Correct method to find equation of line. A1: Simplified form $y = 11x$) $\int 10 + kx + x^2 - x^3 dx = 10x + \frac{kx^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$ (k perhaps -3) $\left[10x + \frac{kx^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right]_0^2 = \dots$ (Substitute limit 2 into a 'changed function') Area of $R = \left[10x - \frac{3x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right]_0^2 = 20 - 6 + \frac{8}{3} - 4 = \frac{38}{3}$ $\left(=12\frac{2}{3}\right)$ Final M1 for $\int (\text{curve}) - \int (\text{line})$ or $\int (\text{line}) - \int (\text{curve})$.	M1 A1 M1 A1 A1 M1 M1 A1	(8)

92	(a)	Either solving $0 = x(6 - x)$ and showing $x = 6$ (and $x = 0$)	B1	(1)
		or showing (6,0) (and $x = 0$) satisfies $y = 6x - x^2$ [allow for showing x = 6]		
	(b)	Solving $2x = 6x - x^2$ $(x^2 = 4x)$ to $x =$	M1	
		x = 4 (and $x = 0$)	A1	
		Conclusion: when $x = 4$, $y = 8$ and when $x = 0$, $y = 0$,	A1	(3)
	(c)	(Area =) $\int_{(0)}^{(4)} (6x - x^2) dx$ Limits not required	M1	
		Correct integration $3x^2 - \frac{x^3}{3}$ (+ c)	A1	
		Correct use of correct limits on their result above (see notes on limits)	M1	
		$\begin{bmatrix} " & 3x^2 - \frac{x^3}{3}" \end{bmatrix}^4 - \begin{bmatrix} " & 3x^2 - \frac{x^3}{3}" \end{bmatrix}_0$ with limits substituted $\begin{bmatrix} = 48 - 21\frac{1}{3} = 26\frac{2}{3} \end{bmatrix}$		
		Area of triangle = 2×8 = 16 (Can be awarded even if no M scored, i.e. B1)	A1	
		Shaded area = \pm (area under curve – area of triangle) applied correctly	M1	
		$(=26\frac{2}{3}-16) = 10\frac{2}{3}$ (awrt 10.7)	A1 (6) [10]
Notes		(b) In scheme first A1: need only give $x = 4$		
		If verifying approach used:		
		Verifying (4,8) satisfies both the line and the curve M1(attempt at both),		
		Both shown successfully A1		
		For final A1, (0,0) needs to be mentioned ; accept "clear from diagram"		
		(c) Alternative Using Area = $\pm \int_{(0)}^{(4)} \{(6x - x^2); -2x\} dx$ approach		
		(i) If candidate integrates separately can be marked as main scheme		
		If combine to work with $= \pm \int_{(0)}^{(4)} (4x - x^2) dx$, first M mark and third M mark		
		$= (\pm) \left[2x^2 - \frac{x^3}{3} (+c) \right] A1,$		
		Correct use of correct limits on their result second M1,		
		Totally correct, unsimplified \pm expression (may be implied by correct ans.) A1 $10^{2}/_{3}$ A1 [Allow this if, having given - $10^{2}/_{3}$, they correct it]		
		M1 for correct use of correct limits: Must substitute correct limits for their		
		strategy into a changed expression and subtract, either way round, e.g \pm {[] 4 –[] $_0$	}	
		If a long method is used, e,g, finding three areas, this mark only gained for		
		correct strategy and all limits need to be correct for this strategy.		
		Use of trapezium rule: M0A0MA0,possibleA1for triangle M1(if correct application of trap. rule from $x = 0$ to $x = 4$) A0		

Question Number	Scheme			Notes	Marks
93. (i)	$\frac{13-4x}{(2x+1)^2(x+3)} \equiv \frac{A}{(2x+1)} + \frac{B}{(2x+1)^2} + \frac{C}{(x+3)}$				
	B = 6 C = 1			At least one of $B = 6$ or $C = 1$	B1
(a)	<i>D</i> -0, C-1			Both $B = 6$ and $C = 1$	B1
	$13-4x \equiv A(2x+1)(x+3) + B(x+3) + C(2x+1)^{2}$ $x = -3 \Rightarrow 25 = 25C \Rightarrow C = 1$ $x = -\frac{1}{2} \Rightarrow 13 - 2 = \frac{5}{2}B \Rightarrow 15 = 2.5B \Rightarrow B = 6$ Writes down a correct identity and attempts to find the value of either one of A or B or C			M1	
	Either $x^2: 0 = 2A + 4C$, constant: $13 = 3A - 4C$	+ 3B +	С,		
	$x: -4 = 7A + B + 4C \text{ or } x = 0 \Longrightarrow 13 = 3A$ leading to $A = -2$	l + 3 <i>B</i> -	+ C	Using a correct identity to find $A = -2$	A1
					[4]
(b)	$\int \frac{13-4x}{(2x+1)^2(x+3)} \mathrm{d}x = \int \frac{-2}{(2x+1)} + \frac{6}{(2x+1)^2}$	$+\frac{1}{(x+)}$	$\frac{1}{3}$ dx		
	$=\frac{(-2)}{\ln(2r+1)}+\frac{6(2r+1)^{-1}}{1}+\ln(r+3)$	ો		See notes	M1
	$= \frac{-1}{2} \ln(2x+1) + \frac{-1}{(-1)(2)} + \ln(x+3) + 0$	- 5	At	least two terms correctly integrated	Alft
	o.e. $\left\{=-\ln(2x+1)-3(2x+1)^{-1}+\ln(x+3)\{+c\}\right\}$		Cor simp	rrect answer, o.e. Simplified or un- lified. The correct answer must be stated on one line Ignore the absence of $+c'$	A1
					[3]
(ii)	$\left\{ (e^{x} + 1)^{3} = \right\} e^{3x} + 3e^{2x} + 3e^{x} + 1$	$e^{3x} +$	$-3e^{2x} +$	$3e^{x} + 1$, simplified or un-simplified	B1
				At least 3 examples (see notes) of correct ft integration	M1
	$\left\{ \int (e^{x} + 1)^{3} dx \right\} = \frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x \left\{ + c \right\}$	S	implifi	$\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + \frac{+C}{x},$ ed or un-simplified with or without	A1
					[3]
(iii)	$\int \frac{1}{4x + 5x^{\frac{1}{3}}} \mathrm{d}x, \ x > 0; \ u^3 = x$				
	$3u^2 \frac{\mathrm{d}u}{\mathrm{d}x} = 1$		3 <i>u</i> ²	$\frac{du}{dx} = 1 \text{ or } \frac{dx}{du} = 3u^2 \text{ or } \frac{du}{dx} = \frac{1}{3}x^{-\frac{2}{3}}$ or $3u^2du = dx$ o.e.	B1
	$= \int \frac{1}{4u^3 + 5u} \cdot 3u^2 du \left\{ = \int \frac{3u}{4u^2 + 5} du \right\}$ Expression of the form $\int \frac{\pm ku^2}{4u^3 \pm 5u} \{ du_{j}^{2k}, k \neq 0$ Does not have to include integral sign or Can be implied by later working		M1		
	$\equiv \frac{3}{8} \ln \left(4u^{2} + 5 \right) \left\{ +c^{2} \right\}$		de ±.	pendent on the previous M mark $\lambda \ln(4u^2 + 5); \lambda \text{ is a constant}; \lambda \neq 0$	dM1
			Corre	ect answer in x with or without + c	A1
					[4]
					14

	Question 93 Notes				
93. (iii)	Alterna	<u>tive method 1 for part (iii)</u>			
Alt 1			Attempts to multiply numerator and	1.41	
			denominator by $x^{-\frac{1}{3}}$	MI I	
	[[$(1, 1) \int x^{-\frac{1}{3}} dx$	$\int +kr^{-\frac{1}{3}}$		
	$\left\{ \frac{1}{4r} \right\}$	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} dx = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} dx$	Expression of the form $\int \frac{-kx}{4x^2} dx, k \neq 0$		
		-3λ) -4λ $+5$	$\int 4x^3 \pm 5$	M1	
			Does not have to include integral sign of du		
	2 (2	Call be implied by later working	11/1	
	$=\frac{3}{2}\ln\left[4\right]$	$4x^{\overline{3}} + 5 + c$	$\pm \lambda \ln(4x^3 + 5); \ \lambda \text{ is a constant}; \ \lambda \neq 0 \text{dM1}$		
	8 (Correct answer in x with or without $+ c$	A1	
				[4]	
93. (1) (a)	M1	Writes down <i>a correct identity</i> (althoug	th this can be implied) and attempts to find the	value of	
		at least one of either A of B of C. This can be achieved by either substituting values into the identity or comparing coefficients.			
	Note	The correct partial fraction from no wor	king scores B1B1M1A1		
	TOR		0		
(i) (b)	M1	At least 2 of either $\pm \frac{1}{(2n+1)} \rightarrow \pm D \ln \frac{1}{(2n+1)}$	$h(2x+1)$ or $\pm D\ln(x+\frac{1}{2})$ or $\pm \frac{Q}{(2x+1)^2} \rightarrow \pm E$	$C(2x+1)^{-1}$	
(1)(0)	IVII	(2x+1)	(2x+1)		
		or			
		$\pm \frac{R}{\sqrt{R}} \rightarrow \pm F \ln(x+3)$ for their cons	stants P, Q, R.		
		(x+3)			
	A1ft At least two terms from any of $\pm \frac{P}{P}$ or $\pm \frac{Q}{Q}$ or $\pm \frac{R}{R}$ correctly integrated.				
	$(2x+1)^{2} (2x+1)^{2} (x+3)^{2} (x+3)^{2}$				
	Note	Note Can be un-simplified for the A1ft mark.			
	A 1	A1 Correct answer of $\frac{(-2)}{\ln(2r+1)} + \frac{6(2r+1)^{-1}}{1} + \ln(r+3) + c$ simplified or un simplified			
	AI	Correct answer of $\frac{1}{2}$ in(2x+1) + $\frac{1}{(-1)(2)}$ + in(x+3) {+ c} simplified of un-simplified.			
		with or without '+ c '.			
		Allow final A1 for equivalent answers	$e g \ln\left(\frac{x+3}{2}\right) - \frac{3}{2} \{+c\}$ or		
	Note		(2x+1) 2x+1		
	Note	12(2x+6) = 3 (1.5)			
		$\ln\left(\frac{1}{2x+1}\right)^{-1}\frac{1}{2x+1}$			
		-2 -1			
	Note	Beware that $\int \frac{1}{(2x+1)} dx = \int \frac{1}{(x+\frac{1}{2})} dx$	$dx = -\ln(x + \frac{1}{2}) \{+c\}$ is correct integration		
	Note	F g Allow M1 A1ft A1 for a correct un	simplified $\ln(r+3) - \ln(r+\frac{1}{2}) - \frac{3}{2}(r+\frac{1}{2})^{-1}$	c}	
	Note	Condona 1 st A 1ft for noor broaketing b	ut do not allow noor brooketing for the final A1	c	
	Note	Condone 1 Affit for poor bracketing, b E a Cive final A0 for $\ln 2r + 1 = 2/2r$	ut do not anow poor bracketing for the final AT $(+1)^{-1} + \ln x + 2 (+ a)$ uplace recovered		
('')		E.g. Give final A0 for $-\ln 2x + 1 - 5(2x)$	$\frac{2x}{x+1} + \frac{2x}{x+1} + \frac{x}{x+1} + \frac{1}{x+1}$		
(11)	Note	Give B1 for an un-simplified $e^{3x} + 2e^{2x}$	$+e^{2x}+2e^{x}+e^{x}+1$		
	M1	At least 3 of either $ae^{3x} \rightarrow \frac{a}{2}e^{3x}$ or be	$e^{2x} \rightarrow \frac{D}{2}e^{2x}$ or $de^x \rightarrow de^x$ or $\mu \rightarrow \mu x; \alpha, \beta, \delta$	$, \mu \neq 0$	
		3	2		
	Note	Give A1 for an un-simplified $\frac{1}{2}e^{3x} + e^{2x}$	$x^{x} + \frac{1}{2}e^{2x} + 2e^{x} + e^{x} + x$, with or without $+c$		
		- 3	2		
(iii)	Note	1 st M1 can be implied by $\frac{\pm ku}{1 + 2} \{du\}$	$k, k \neq 0$. Does not have to include integral sign	or d <i>u</i>	
		$\int 4u^2 \pm 5$			
	Note	Condone 1 st M1 for expressions of the f	Form $\int \left(\frac{\pm 1}{2} + \frac{\pm k}{2} \right) \{du\} \ k \neq 0$		
	1010		$\int \left(4u^3 \pm 5u^2 u^{-2} \right)^{(4u)}, \ u \neq 0$		
	Note	Give 2^{nd} M0 for $\frac{3u}{\ln(4u^2 + 5)} (+ c)$ (4)	i's not cancelled) unless recovered in later work	ina	
	11010	$\frac{8u}{8u}$	s not cancened, unless recovered in fater work	<u>5</u>	
		E.g. Give 2^{nd} M0 for integration leading	$x = t_0 \frac{3}{-u} \ln(4u^2 + 5)$ as this is not in the form		
	Note	2.5. Give 2 Two for integration reduing	4		
		$\pm\lambda\ln(4u^2+5)$			

Note	Condone 2 nd M1 for poor bracketing, but do not allow poor bracketing for the final A1
	E.g. Give final A0 for $\frac{3}{8} \ln 4x^{\frac{2}{3}} + 5$ {+ <i>c</i> } unless recovered

Question Number	Scheme		Notes	Marks
93. (ii) Alt 1	$\int (e^x + 1)^3 dx; u = e^x + 1 \implies \frac{du}{dx} = e^x$			
	$\left\{=\int \frac{u^3}{(u-1)} \mathrm{d}u =\right\} \int \left(u^2 + u + 1 + \frac{1}{u-1}\right) \mathrm{d}u$		$\int \left(u^2 + u + 1 + \frac{1}{u - 1} \right) \{ du \} \text{ where } u = e^x + 1$	B1
	$=\frac{1}{3}u^{3}+\frac{1}{2}u^{2}+u+\ln(u-1)\{+c\}$	or	At least 3 of either $\alpha u^2 \rightarrow \frac{\alpha}{3} u^3$ or $\beta u \rightarrow \frac{\beta}{2} u^2$ $\delta \rightarrow \delta u$ or $\frac{\lambda}{u-1} \rightarrow \lambda \ln(u-1); \alpha, \beta, \delta, \lambda \neq 0$	M1
	$=\frac{1}{3}(e^{x}+1)^{3}+\frac{1}{2}(e^{x}+1)^{2}+(e^{x}+1)+\ln (e^{x}+1)^{2}$	$(e^{x}+1-1)$) {+ c}	
	$=\frac{1}{3}(e^{x}+1)^{3}+\frac{1}{2}(e^{x}+1)^{2}+(e^{x}+1)+x \{+c\}$		$\frac{1}{3}(e^{x}+1)^{3} + \frac{1}{2}(e^{x}+1)^{2} + (e^{x}+1) + x$ or $\frac{1}{3}(e^{x}+1)^{3} + \frac{1}{2}(e^{x}+1)^{2} + e^{x} + x$ simplified or un-simplified with or without + c Note: $\ln(e^{x}+1-1)$ needs to be simplified to x for this mark	
			*	[3]
93. (ii) Alt 2	$\int (e^x + 1)^3 dx; u = e^x \implies \frac{du}{dx} = e^x$			
	$\left\{=\int \frac{(u+1)^3}{u} \mathrm{d}u =\right\} \int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \mathrm{d}u\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3 + \frac{1}{u}\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3u + 3 + \frac{1}{u}\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3u + 3 + \frac{1}{u}\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3u + 3u + 3 + \frac{1}{u}\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3u + 3u + 3u + 3u\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3u + 3u + 3u\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3u + 3u\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3u\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3u\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3u\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u + 3u\right\right\} + \frac{1}{u} \mathrm{d}u = \left\{\int \left(u^2 + 3u +$	$\left(\frac{1}{u}\right) du$	$\int \left(u^2 + 3u + 3 + \frac{1}{u} \right) \{ du \} \text{ where } u = e^x$	B1
	$=\frac{1}{3}u^{3} + \frac{3}{2}u^{2} + 3u + \ln u \{+c\}$ $=\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x \{+c\}$ Note:		At least 3 of either $\alpha u^2 \rightarrow \frac{\alpha}{3} u^3$ or $\beta u \rightarrow \frac{\beta}{2} u^2$ or $\delta \rightarrow \delta u$ or $\frac{\lambda}{u} \rightarrow \lambda \ln u; \alpha, \beta, \delta, \lambda \neq 0$	M1
			$\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x,$ simplified or un-simplified with or without + c ln(e ^x) needs to be simplified to x for this mark	A1
L				J

Question Number	Scheme		Notes	Marks
94.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3x}$	$\frac{y^2}{\cos^2 2x}$; $-\frac{1}{2} < x < \frac{1}{2}$; $y = 2$ at $x = -\frac{\pi}{8}$		
	$\int \frac{1}{y^2}$	$-dy = \int \frac{1}{3\cos^2 2x} dx$	Separates variables as shown Can be implied by a correct attempt at integration Ignore the integral signs	B1
	$\int \frac{1}{y^2}$	$\mathrm{d}y = \int \frac{1}{3} \sec^2 2x \mathrm{d}x$		
		$1 1(\tan 2x)$	$\pm \frac{A}{y^2} \to \pm \frac{B}{y}; \ A, B \neq 0$	M1
		$-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right) \{+c\}$		M1
			$-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right)$	A1
		1 1 $\left(\left(\left(\pi \right) \right) \right)$	Use of $x = -\frac{\pi}{8}$ and $y = 2$ in an	
	_	$-\frac{1}{2} = -\frac{1}{6} \tan \left(2 \left(-\frac{1}{8} \right) \right) + c$	integrated equation <i>containing a</i> <i>constant of integration</i> , e.g. <i>c</i>	MI
	_	$-\frac{1}{2} = -\frac{1}{6} + c \Longrightarrow c = -\frac{1}{3}$		
	-	$-\frac{1}{y} = \frac{1}{6}\tan 2x - \frac{1}{3} = \frac{\tan(2x) - 2}{6}$		
	<i>y</i> =	$\frac{-1}{\frac{1}{6}\tan 2x - \frac{1}{3}} \text{ or } y = \frac{6}{2 - \tan 2x} \text{ or } y = \frac{6\cot 2}{-1 + 2\cot 2x}$	$\frac{2x}{\operatorname{tr} 2x} \left\{ -\frac{1}{2} < x < \frac{1}{2} \right\}$	A1 o.e.
				[6]
		Question 94	Notes	6
94.	B 1	Separates variables as shown. dy and dx shoul	d be in the correct positions, though th	is mark
		be implied by later working. Ignore the integral side.	l signs. The number "3" may appear or	ı either
		E.g. $\int \frac{1}{y^2} dy = \int \frac{1}{3} \sec^2 2x dx$ or $\int \frac{3}{y^2} dy = \int \frac{1}{y^2} dy$	$\frac{1}{\cos^2 2x}$ dx are fine for B1	
	Note	Allow e.g. $\int \frac{1}{y^2} \frac{dy}{dx} dx = \int \frac{1}{3} \sec^2 2x dx \text{ for B1 of}$	or condone $\int \frac{1}{y^2} = \int \frac{1}{3} \sec^2 2x$ for B1	
	Note	B1 can be implied by correct integration of both	n sides	
	M1	$\pm \frac{A}{y^2} \to \pm \frac{B}{y}; \ A, B \neq 0$		
	M1	$\frac{1}{\cos^2 2x} \text{ or } \sec^2 2x \to \pm \lambda \tan 2x; \lambda \neq 0$		
	A1 $-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right)$ with or without '+ c'. E.g. $-\frac{6}{y} = \tan 2x$			
	M1	Evidence of using both $x = -\frac{\pi}{8}$ and $y = 2$ in an	integrated or changed equation contain	ning c
	Note Note	This mark can be implied by the correct value o You may need to use your calculator to check the	f <i>c</i> nat they have satisfied the final M mark	<u> </u>
	Note	Condone using $x = \frac{\pi}{8}$ instead of $x = -\frac{\pi}{8}$		
	A1	$y = \frac{-1}{\frac{1}{6}\tan 2x - \frac{1}{3}}$ or $y = \frac{6}{2 - \tan 2x}$ or any equ	ivalent correct answer in the form y	= f(x)
	Note	You can ignore subsequent working, which follow	ows from a correct answer	

		Question 94 Notes Continued
94.	Note	Writing $\frac{dy}{dx} = \frac{y^2}{3\cos^2 2x} \implies \frac{dy}{dx} = \frac{1}{3}y^2 \sec^2 2x$ leading to e.g.
		• $y = \frac{1}{9}y^3\left(\frac{1}{2}\tan 2x\right)$ gets 2^{nd} M0 for $\pm\lambda \tan 2x$
		• $u = \frac{1}{3}y^2$, $\frac{dv}{dx} = \sec^2 2x \Rightarrow \frac{du}{dx} = \frac{2}{3}y$, $v = \frac{1}{2}\tan 2x$ gets 2^{nd} M0 for $\pm \lambda \tan 2x$
		because the variables have not been separated

Question Number	Scheme	Notes	Marks		
95. (a)	$\left\{\int x\cos 4x\mathrm{d}x\right\}$	$\pm \alpha x \sin 4x \pm \beta \int \sin 4x$	$\{dx\}$, with or without	M1	
	$=\frac{1}{4}x\sin 4x - \int \frac{1}{4}\sin 4x \left\{ dx \right\}$	1 11	$dx; \alpha, \beta \neq 0$		
		$\frac{-x\sin 4x}{4} = \int_{-}^{-\sin 4x} \frac{dx}{dx}$	$\{$, with or without dx	A1	
	1 1		ined or un-simplified		
	$=\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x \ \{+c\}\$	$\begin{array}{c} -x\sin 4x + -\cos 4x & 0.\\ 4 & 16 \end{array}$	e. with or without $+c$	A1	
	Note: You can ignore subset	quent working following on from a co	orrect solution	[3]	
(b) Way 1	$\{V =\} \pi \int_{0}^{\frac{\pi}{4}} (\sqrt{x} \sin 2x)^2 \{dx\}$	Ignora limita ar	$\pi \int \left(\sqrt{x}\sin 2x\right)^2 \{dx\}$	B1	
		For writing down a co	prrect equation linking		
	$\left\{ \int x \sin^2 2x dx = \right\}$	$\sin^2 2x$ and $\cos 4x$ (e.g.	$\cos 4x = 1 - 2\sin^2 2x)$	N / 1	
	$\int x \left(\frac{1 - \cos 4x}{2}\right) \{dx\}$ and	l some attempt at applying this equation of this equation which can be inco	ion (or a manipulation prrect) to their integral Can be implied.	MI	
		Simplifies $\int x \sin^2 2x \{dx\}$ to	$\int x \left(\frac{1 - \cos 4x}{2}\right) \{dx\}$	A1	
	$\left\{ \int \left(\frac{1}{2}x - \frac{1}{2}x\cos 4x\right) dx \right\}$ = $\frac{1}{4}x^2 - \frac{1}{2} \left(\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x\right) \{$	$ \begin{array}{c} \pm Ax^2 \pm Bx \sin 4x \pm \\ \text{which can be simpl} \\ \text{Note: Allow of } \\ \text{(on sin 4x or cos)} \end{array} $	Integrates to give $C\cos 4x$; $A, B, C \neq 0$ ified or un-simplified. one transcription error (4x) in the copying of	M1	
	4 2(4 10)	their answer from part (a) to part (b)			
	$\left\{\int_{0}^{\frac{\pi}{4}} \left(\sqrt{x}\sin 2x\right)^{2} dx = \left[\frac{1}{4}x^{2} - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x\right]_{0}^{\frac{\pi}{4}}\right\}$				
	$=\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\right)$	$\cos\left(4\left(\frac{\pi}{4}\right)\right) - \left(0 - 0 - \frac{1}{32}\cos 0\right)$	dependent on the previous M mark see notes	dM1	
	$= \left(\frac{\pi^2}{64} + \frac{1}{32}\right) - \left(-\frac{1}{32}\right) = \frac{\pi^2}{64} + \frac{1}{16}$				
	So, $V = \pi \left(\frac{\pi^2}{64} + \frac{1}{16}\right)$ or $\frac{1}{64}\pi^3 + \frac{1}{16}$	π or $\frac{\pi}{2} \left(\frac{\pi^2}{32} + \frac{1}{8} \right)$ o.e.	two term exact answer	Al o.e.	
				[6] Q	
		Question 95 Notes		<i>,</i>	
	SC <u>Special Case for the 2nd M</u>	I and 3 rd M mark for those who use	e their answer from pa	<u>art (a)</u>	
	$\pm Ax^2 \pm$ (their answer to pa	(a, b) in the state of the s			
	where their answer to part (a) is in the form				
	• $\pm Bx \sin kx \pm C \cos px$ to give $\pm Ax^2 \pm Bx \sin kx \pm C \cos px$				
	• $\pm Bx \sin kx \pm C \sin p$	ax to give $\pm Ax^2 \pm Bx \sin kx \pm C \sin px$	c		
	• $\pm Bx \cos kx \pm C \sin p$	$bx \text{ to give } \pm Ax^2 \pm Bx \cos kx \pm C \sin p$	¹ X		
	• $\pm Bx \cos kx \pm C \cos kx$ $k, n \neq 0, k, n \cosh \theta = 1$	px to give $\pm Ax^2 \pm Bx \cos kx \pm C \cos p$	x		
138	,p · · ·, , , p • • • • • • •	EXPERT			
		J_ TUITION			

Question Number		Scheme		N	otes	Marks	
95. (b) Way 2	${V=}\pi$	$\int_{0}^{\frac{\pi}{4}} \left(\sqrt{x}\sin 2x\right)^{2} \{dx\}$		Ignore limits a	$\pi \int (\sqrt{x} \sin 2x)^2 \{ dx \}$ nd dx. Can be implied	B1	
	$\left\{\int x\sin x\right\}$	$\int x \left(\frac{1-\cos 4x}{2}\right) \{dx\}$	s and manipulation of	For writing down a c $\sin^2 2x$ and $\cos 4x$ (e.g. I some attempt at apply this equation which ca	orrect equation linking $\cos 4x = 1 - 2\sin^2 2x$) ying this equation (or a in be incorrect) to their integral. Can be implied	M1	
			Simplif $u = x$ and $\frac{dv}{dx} = x$	fies $\int x \sin^2 2x \{dx\}$ to Note: This mark car $= \frac{1 - \cos 4x}{2}$ or $u = \frac{1}{2}x$	$\int x \left(\frac{1 - \cos 4x}{2}\right) \{dx\}$ in the implied for stating is and $\frac{dv}{dx} = 1 - \cos 4x$	Al	
	$=x\left(\frac{1}{2}x\right)$	$\frac{1}{x-\frac{1}{8}\sin 4x} - \int \left(\frac{1}{2}x - \frac{1}{8}x\right) dx$	$\frac{1}{3}\sin 4x dx$				
	$=x\left(\frac{1}{2}x\right)$	$\frac{1}{2}x - \frac{1}{8}\sin 4x - \left(\frac{1}{4}x^2 + \frac{1}{32}\cos 4x\right)\{+c\}$ Integrates to give $\pm Ax^2 \pm Bx\sin 4x \pm C\cos 4x; A, B, C \neq 0$ or an expression that can be simplified to this form				M1 (B1 on ePEN)	
	$\left\{ \int_{0}^{\frac{\pi}{4}} \left(\sqrt{\right.} \right)^{\frac{\pi}{4}} \left(\sqrt{\left. \int_{0}^{\frac{\pi}{4}} \left(\left. \int_{$	$\sqrt{x}\sin 2x\Big)^2 dx = \left[\frac{1}{4}x^2 - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x\right]_0^{\frac{\pi}{4}}$					
	$=\left(\frac{1}{4}\left(\frac{\pi}{4}\right)\right)$	$\left[\frac{\pi}{4}\right]^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \left(0 - 0 - \frac{1}{32}\cos 0\right)$ dependent on the previous M mark see notes				dM1	
	$=\left(\frac{\pi^2}{64}-\right)$	$+\frac{1}{32}\left(-\frac{1}{32}\right) = \frac{\pi^2}{64} +$	$\frac{1}{16}$				
	So, <i>V</i> =	$\pi\left(\frac{\pi^2}{64} + \frac{1}{16}\right)$ or $\frac{1}{64}\pi^3$	$+\frac{1}{16}\pi$ or $\frac{\pi}{2}\left(\frac{\pi^2}{32}\right)$	$\left(+\frac{1}{8}\right)$ o.e.		Al o.e.	
						[6]	
95 (a)	SC	Give Snecial Case M1	Question 95	5 Notes Continued	arts" formula and using		
90. (u)	50	$u = x, \frac{dv}{dx} = \cos 4x, \text{ bu}$	t making only one	error in the application	n of the correct formula	,	
(b)	Note	You can imply B1 for	seeing $\pi \int y^2 \{dx\}$, followed by $y^2 = \left(\sqrt{y} \right)^2$	$\sqrt{x}\sin 2x$ or $y^2 = x\sin^2 x$	2x	
	Note	If the form $\cos 4x = \cos 4x$ gained	$\cos^2 2x - \sin^2 2x$ or	$\cos 4x = 2\cos^2 2x - 1$ i	s used, the 1 st M cannot	be	
	Note	until $\cos^2 2x$ has been replaced by $\cos^2 2x = 1 - \sin^2 2x$ and the result is applied to their integration of the matrix θ mixing x's and e.g. θ 's.					
		Condone $\cos 4\theta = 1 - 2\sin^2 2\theta$, $\sin^2 2\theta = \frac{1 - \cos 4\theta}{2}$ or $\lambda \sin^2 2\theta = \lambda \left(\frac{1 - \cos 4\theta}{2}\right)$ if recovered in their integration					
	Final M1	Complete method of a	applying limits of	$\frac{\pi}{4}$ and 0 to all terms of	an expression of the fo	rm	
		$\pm Ax^2 \pm Bx \sin 4x \pm Cc$	$\frac{1}{10000000000000000000000000000000000$	and subtracting the co	rrect way round.	the	
	Note	copying of their answe	in way 1, allow of er from part (a) to r	ne transcription error (on $\sin 4x$ or $\cos 4x$) in	ine	
139			E EXP	PERT TION			

	Question 95 Notes Continued			
95 (b)	Note	Evidence of a proper consideration of the limit of 0 on $\cos 4x$ where applicable is needed for		
J.J.(0)	11010	the		
		tinal M mark		
		$ \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} \frac{\pi}{4} \\ 1 \end{bmatrix} \begin{bmatrix} \frac{\pi}{4} \end{bmatrix} \begin{bmatrix} \frac{\pi}{4} \\ 1 \end{bmatrix} \begin{bmatrix} \frac{\pi}{4} \end{bmatrix} \begin{bmatrix} \frac{\pi}{4} \\ 1 \end{bmatrix}$		
		E.g. $\begin{bmatrix} -x^2 & -x \sin 4x - \frac{1}{32} \cos 4x \end{bmatrix}_0 =$		
		• $=\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) + \frac{1}{32}$ is final M1		
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - 0$ is final M0		
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \frac{1}{32}$ is final M0 (adding)		
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \left(\frac{1}{32}\right)$ is final M1 (condone)		
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - (0+0+0)$ is final M0		
95. (b)	Note	Alternative Method:		
		$\left[\begin{array}{cc} u = \sin^2 2r & \frac{dv}{dt} = r \end{array} \right] \left[\begin{array}{cc} u = r^2 & \frac{dv}{dt} = \sin 4r \end{array} \right]$		
		$\begin{bmatrix} 1 & u = \sin^2 2x & dx = x \\ \frac{du}{dx} = 2\sin 4x & v = \frac{1}{2}x^2 \end{bmatrix} \begin{bmatrix} u = x & dx = \sin^2 1x \\ \frac{du}{dx} = 2x & v = -\frac{1}{4}\cos 4x \end{bmatrix}$		
		$\int x \sin 2x dx$		
		$=\frac{1}{2}x^{2}\sin^{2}2x - \int \frac{1}{2}x^{2}(2\sin 4x)dx$		
		$=\frac{1}{2}x^{2}\sin^{2}2x - \int x^{2}\sin 4x dx$		
		$=\frac{1}{2}x^{2}\sin^{2}2x - \left(-\frac{1}{4}x^{2}\cos 4x - \int 2x \cdot \left(-\frac{1}{4}\cos 4x\right) dx\right)$		
		$=\frac{1}{2}x^{2}\sin^{2}2x - \left(-\frac{1}{4}x^{2}\cos 4x + \frac{1}{2}\int x\cos 4xdx\right)$		
		$=\frac{1}{2}x^{2}\sin^{2}2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{2}\int x\cos 4x dx$		
		$= \frac{1}{2}x^{2}\sin^{2}2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{2}\left(\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x\right) \{+c\}$		
		$= \frac{1}{2}x^{2}\sin^{2}2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x \ \{+c\}$		
		$V = \pi \int_{0}^{\frac{\pi}{4}} \left(\sqrt{x}\sin 2x\right)^2 dx = \pi \left(\frac{\pi^2}{64} + \frac{1}{16}\right) \text{ or } \frac{1}{64}\pi^3 + \frac{1}{16}\pi \text{ or } \frac{\pi}{2} \left(\frac{\pi^2}{32} + \frac{1}{8}\right) \text{ o.e.}$		

Question Number		Scheme		Marks
96 Way 1	$\left\{ \mathbf{I} = \int x^2 \ln x dx \right\}, \begin{cases} u = \ln x \implies \frac{du}{dx} = \\ \frac{dv}{dx} = x^2 \implies v = \frac{1}{2} \end{cases}$	$\frac{1}{x}$ $\frac{1}{3}x^{3}$		
	$=\frac{x^{3}}{3}\ln x - \int \frac{x^{3}}{3} \left(\frac{1}{x}\right) \{dx\}$	Either x^2 or $\pm \lambda x$	$\ln x \to \pm \lambda x^3 \ln x - \int \mu x^3 \left(\frac{1}{x}\right) \{dx\}$ $^3 \ln x - \int \mu x^2 \{dx\} \text{, where } \lambda, \mu > 0$	M1
	$x^{2} \ln x \rightarrow \frac{x^{3}}{3} \ln x - \int \frac{x^{3}}{3} \left(\frac{1}{x}\right)^{3}$ simplified or un-simp		$x^{2} \ln x \rightarrow \frac{x^{3}}{3} \ln x - \int \frac{x^{3}}{3} \left(\frac{1}{x}\right) \{dx\},\$ simplified or un-simplified	A1
	$=\frac{x^3}{3}\ln x - \frac{x^3}{9}$	$\frac{x^3}{3}\ln x$	$-\frac{x^3}{9}$, simplified or un-simplified	A1
	Area $(R) = \left\{ \left[\frac{x^3}{3} \ln x - \frac{x^3}{9} \right]_1^2 \right\} = \left(\frac{8}{3} \ln 2 - \frac{8}{9} \right) - \left(0 - \frac{1}{9} \right) $ dependent on the previous M mark. Applies limits of 2 and 1 and subtracts the correct way round			dM1
	$=\frac{8}{3}\ln 2 - \frac{7}{9}$		$\frac{8}{3}\ln 2 - \frac{7}{9} \text{ or } \frac{1}{9}(24\ln 2 - 7)$	A1 oe cso
		(du)	[5]
96 Way 2	$I = x^{2}(x\ln x - x) - \int 2x(x\ln x - x)dx$	$\begin{cases} u = x^2 \implies \\ \frac{dv}{dx} = \ln x \implies \end{cases}$	$\frac{\mathrm{d}u}{\mathrm{d}x} = 2x$ $v = x \ln x - x$	
	So, $3I = x^2(x \ln x - x) + \int 2x^2 \{dx\}$			
		A full method of	f applying $u = x^2$, $v' = \ln x$ to give	
	and $I = \frac{1}{r^2} (r \ln r - r) + \frac{1}{r^2} \int 2r^2 (dr)$		$\pm \lambda x^2 (x \ln x - x) \pm \mu \int x^2 \{ \mathrm{d}x \}$	M1
	3" (""" """ 3] ² " ("")		$\frac{1}{3}x^{2}(x\ln x - x) + \frac{1}{3}\int 2x^{2} \left\{ dx \right\}$ simplified or un-simplified	A1
	$= \frac{1}{3}x^{2}(x\ln x - x) + \frac{2}{9}x^{3}$	$\frac{x^3}{3}\ln x$	$-\frac{x^3}{9}$, simplified or un-simplified	A1
		Then award	dM1A1 in the same way as above	M1 A1
				[5]

96	A1	Exact answer needs to be a two term expression in the form $a \ln b + c$
	Note	Give A1 e.g. $\frac{8}{3}\ln 2 - \frac{7}{9}$ or $\frac{1}{9}(24\ln 2 - 7)$ or $\frac{4}{3}\ln 4 - \frac{7}{9}$ or $\frac{1}{3}\ln 256 - \frac{7}{9}$ or $-\frac{7}{9} + \frac{8}{3}\ln 2$
		or $\ln 2^{\frac{8}{3}} - \frac{7}{9}$ or equivalent.
	Note	Give final A0 for a final answer of $\frac{6002}{3} - \frac{1}{9}$ or $\frac{6002}{3} - \frac{1}{3}\ln 1 - \frac{1}{9}$ or $\frac{6002}{3} - \frac{1}{9} + \frac{1}{9}$ or $\frac{8}{3}\ln 2 - \frac{7}{9} + c$
	Note	$\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2$ followed by awrt 1.07 with no correct answer seen is dM1A0
	Note	Give dM0A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \frac{1}{9}$ (adding rather than subtracting)
	Note	Allow dM1A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \left(0 + \frac{1}{9}\right)$
	SC	A candidate who uses $u = \ln x$ and $\frac{dv}{dx} = x^2$, $\frac{du}{dx} = \frac{\alpha}{x}$, $v = \beta x^3$, writes down the correct "by parts"
		formula but makes only one error when applying it can be awarded Special Case 1 st M1.

Question Number	Scheme		Notes	Marks
97.	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$			
(a) Way 1	$\int \frac{1}{x} \mathrm{d}x = \int -\frac{5}{2} \mathrm{d}t$	Separate be in th implied	es variables as shown. dx and dt should not ne wrong positions, though this mark can be by later working. Ignore the integral signs.	B1
	$\ln x = -\frac{5}{2}t + c$	Integrate 0	s both sides to give either $\pm \frac{\alpha}{x} \to \pm \alpha \ln x$ or $\pm k \to \pm kt$ (with respect to <i>t</i>); $k, \alpha \neq 0$	M1
	2		$\ln x = -\frac{5}{2}t + c, \text{ including "} + c"$	A1
	$\{t=0, x=60 \Longrightarrow\} \ln 60 = c$	60	Finds their <i>c</i> and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{2}$	
	$\ln x = -\frac{5}{2}t + \ln 60 \Rightarrow \underline{x = 60e^{\frac{-t}{2}}} \text{ or } x$	$=\frac{60}{e^{\frac{5}{2}t}}$	with no incorrect working seen	A1 cso
(2)	dt 2 c 2		dt 2 c 2	[4]
Way 2	$\frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \text{or} t = \int -\frac{2}{5x} \mathrm{d}x$		Either $\frac{dt}{dx} = -\frac{2}{5x}$ or $t = \int -\frac{2}{5x} dx$	B1
	2		either $t =$ or $\pm \alpha \ln px$; $\alpha \neq 0$, $p > 0$	M1
	$t = -\frac{2}{5}\ln x + c$		$t = -\frac{2}{5}\ln x + c, \text{ including "} + c"$	A1
	$\left[t=0, r=60 \right]$ $a=\frac{2}{\ln 60} \Rightarrow t=\frac{2}{2}$	$\frac{2}{\ln r}$	Finds their cand uses correct algebra	
	$\{t = 0, x = 60 \Rightarrow\} c = -\frac{10}{5} \text{ mod} \Rightarrow t = -\frac{10}{5} \text{ mod} x + -\frac{10}{5} \text{ mod} $			
	$\Rightarrow -\frac{5}{2}t = \ln x - \ln 60 \Rightarrow x = 60e^{-\frac{5}{2}t}$ or	$x = \frac{60}{5}$	$\int \int define \sqrt{e} x = 00e \text{ of } x = \frac{1}{e^{\frac{5}{2}t}}$	
		$e^{\frac{3}{2}t}$	with no incorrect working seen	A1 cso
	AY 1			[4]
(a) Way 3	$\int_{60}^{x} \frac{1}{x} dx = \int_{0}^{1} -\frac{5}{2} dt$		Ignore limits	B1
		Integrate	s both sides to give either $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$	M1
	$\left[\ln r\right]^{x} = \left[-\frac{5}{2}t\right]^{t}$	0	or $\pm k \rightarrow \pm kt$ (with respect to t); $k, \alpha \neq 0$	1011
		[h	$[\operatorname{n} x]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$ including the correct limits	A1
	$\ln x - \ln 60 = -\frac{5}{2}t \implies x = 60e^{-\frac{5}{2}t} \text{ or } x$	$=\frac{60}{e^{\frac{5}{2}t}}$	Correct algebra leading to a correct result	A1 cso
		C1	titutes	[4]
		Subs	Since $x = 20$ into an equation in the form	
(b)	$20 = 60e^{-\frac{5}{2}t}$ or $\ln 20 = -\frac{5}{2}t + \ln 60$	of e	either $x = \pm \lambda e^{-\mu} \pm \beta$ or $x = \pm \lambda e^{-\mu} \pm \alpha$ mov	M1
	2	or	$\pm \alpha \ln \delta x = \pm \mu t \pm \beta \text{ or } t = \pm \lambda \ln \delta x \pm \beta;$	
	2(20)		$\frac{\alpha}{\alpha, \lambda, \mu, \sigma \neq 0} \text{ and } \beta \text{ can be } 0$	
	$t = -\frac{1}{5} \ln \left(\frac{25}{60} \right) \qquad $	ses correct al	lgebra to achieve an equation of the form of	
	$\{=0.4394449(days)\}$	either $t = A$	$\ln\left(\frac{60}{20}\right)$ or $A\ln\left(\frac{20}{60}\right)$ or $A\ln 3$ or $A\ln\left(\frac{1}{3}\right)$ o.e. or	dM1
	Note: <i>t</i> must be greater than 0 <i>t</i> =	$= A(\ln 20 - 1)$	n60) or $A(\ln 60 - \ln 20)$ o.e. $(A \in \Box, t > 0)$	
	\Rightarrow t = 632.8006 = 633(to the nearest	minute)	awrt 633 or 10 hours and awrt 33 minutes	A1 cso
	Note: dM1 can be implied t	by $t = a wrt 0$	0.44 from no incorrect working.	7

Question Number		Scheme	Notes			Marks
97.		$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$				
(a) Way 4	$\int \frac{2}{5}$	$\frac{2}{x} dx = -\int dt$	Sep b im	Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.		
		$\frac{2}{2}\ln(5r) = -t + c$	or	Integration $\pm k \rightarrow \pm k$	tes both sides to give either $\pm \alpha \ln(px)$ <i>kt</i> (with respect to <i>t</i>); $k, \alpha \neq 0; p > 0$	M1
		5			$\frac{2}{5}\ln(5x) = -t + c, \text{ including "} + c"$	A1
	$\begin{cases} t = 0 \\ 2 \end{cases}$	$0, x = 60 \Longrightarrow \left\{ \begin{array}{l} \frac{2}{5} \ln 300 = c \\ 2 & z = -\frac{5}{2} \end{array} \right\}$	Finds their c and uses correct algebra $-\frac{5}{2}t$ 60			
	$\frac{2}{5}\ln(5)$	$f(x) = -t + \frac{2}{5}\ln 300 \implies \frac{x = 60e^{-2}}{5}$	or		to achieve $x = 60e^{-2^t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$	Alcso
	$x = \frac{60}{e^{\frac{5}{2}}}$	<u>-</u>			with no incorrect working seen	111 050
	()					[4]
(a) Way 5	$\begin{cases} \frac{\mathrm{d}t}{\mathrm{d}x} = 1 \end{cases}$	$-\frac{2}{5x} \Rightarrow $ $t = \int_{60}^{-\frac{2}{5x}} dx$			Ignore limits	B1
				Integr	ates both sides to give either $\pm k \rightarrow \pm kt$	M1
		$t = \left[-\frac{2}{\ln x}\right]^x$		(with res	spect to t) or $\pm \frac{\alpha}{x} \to \pm \alpha \ln x$; $k, \alpha \neq 0$	1011
	$\iota = \begin{bmatrix} -5 \\ 5 \end{bmatrix}_{60}$			<i>t</i> =	$= \left[-\frac{2}{5} \ln x \right]_{60}^{x}$ including the correct limits	A1
	$t = -\frac{2}{5}$	$t = -\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \implies -\frac{5}{2}t = \ln x - \ln x$				
	$\Rightarrow \underline{x} =$	$x = \frac{60e^{-\frac{5}{2}t}}{10e^{-\frac{5}{2}t}}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$		(Correct algebra leading to a correct result	A1 cso
			(Jugation	07 Notos	[4]
				<u>zuestioi</u>		
97. (a)	B1	For the correct separation of vari	ables.	E.g.	$\frac{1}{5x} dx = \int -\frac{1}{2} dt$	
	Note	B1 can be implied by seeing eith	er ln	$x = -\frac{5}{2}$	$t + c$ or $t = -\frac{2}{5}\ln x + c$ with or without	+ <i>c</i>
	Note	B1 can also be implied by seeing	$\left[\ln x\right]$	$\Big _{60}^{x} = \left[-\frac{1}{2}\right]$	$\left[\frac{5}{2}t\right]_{0}^{t}$	
	Note	Allow A1 for $x = 60\sqrt{e^{-5t}}$ or x	$=\frac{60}{\sqrt{e^5}}$	$\frac{1}{t}$ with n	o incorrect working seen	
	Note	Give final A0 for $x = e^{-\frac{5}{2}t} + 60$	$\rightarrow x$	$= 60e^{-\frac{5}{2}t}$		
	Note	Give final A0 for writing $x = e^{-1}$	$\frac{5}{2}t + \ln 60$	as their	final answer (without seeing $x = 60e^{-\frac{5}{2}t}$)	
	Note	Way 1 to Way 5 do not exhaust a	all the	differen	t methods that candidates can give.	
	Note	Give B0M0A0A0 for writing do	wn x	$= 60e^{-\frac{5}{2}t}$	or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no evidence of working of	or integration
(b)	A1	You can apply cso for the work of	only se	en in pa	rt (b).	
	Note	Give dM1(Implied) A1 for $\frac{5}{2}t =$	ln3 f	ollowed	by $t = awrt 633$ from no incorrect working	ng.
	Note Substitutes $x = 40$ into their equation from part (a) is M0dM0A0					
144		Ŧ		XPER Jitio	N N	

Question Number	Scheme			Ν	lotes	Marks
98.	(i) $\int \frac{3y-4}{y(3y+2)} dy, \ y > 0,$ (ii) $\int_{0}^{3} \sqrt{\left(\frac{3y-4}{4}\right)^{3}} dy$	$\frac{x}{-x}$ dx, x =	$=4\sin^2\theta$			
(i)	$3y-4$ A B $\rightarrow 2x$ A $A(2x)$	(2) (D_{-1})			See notes	M1
Way 1	$\frac{1}{y(3y+2)} \equiv \frac{1}{y} + \frac{1}{(3y+2)} \Rightarrow 3y - 4 \equiv A(3y)$ $y = 0 \Rightarrow -4 \equiv 2A \Rightarrow A \equiv -2$	+2) + By		At lease $A = -2$ or	st one of their their $B = 9$	A1
	$y = -\frac{2}{3} \implies -6 = -\frac{2}{3}B \implies B = 9$			4 = -2 and	Both their b their $B = 9$	A1
		I	ntegrates to g	ive at least	one of either	
		$\frac{A}{\rightarrow}$	$+\lambda \ln v$ or _	$\xrightarrow{B} \rightarrow $	$+ \mu \ln(3v + 2)$	M1
	$\int 3y - 4 dy = \int -2 dy dy$	<i>y</i> , ,	((3y+2)	$\frac{1}{4} \left(\begin{array}{c} 0 \\ 0 \end{array} \right) = \frac{1}{4} \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$	1411
	$\int \frac{1}{y(3y+2)} dy = \int \frac{1}{y} + \frac{1}{(3y+2)} dy$	A t loor	t one term ac	moothy foll	$A \neq 0, D \neq 0$	
	$21_{22} + 21_{2}(2_{22} + 2)(1_{22})$		fro	m their A or	r from their <i>B</i>	A1 ft
	$= -2\ln y + 3\ln(3y+2) \{+c\}$	$-2\ln y + 3$	$3\ln(3y+2)$	or $-2\ln y$	$+ 3\ln(y + \frac{2}{3})$. 1
			· C' 1 ·	with corre	ct bracketing,	Al cao
		simpli	ified or un-sii	nplified. C	an apply 1sw.	[6]
(ii) (a)	($($ $($ $) () dx () dx () dx$		1 0 . 0	01.0		[•]
Way 1	$\left\{x = 4\sin^2\theta \Rightarrow\right\} \frac{dx}{d\theta} = 8\sin\theta\cos\theta \text{or} \frac{dx}{d\theta} = 4\sin2\theta \text{or} dx = 8\sin\theta\cos\theta d\theta$				B1	
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ \mathrm{d}\theta \right\} \mathrm{or} \int \sqrt{\frac{4}{4-4}} \mathrm{d}\theta = 0$	$\frac{\sin^2\theta}{4\sin^2\theta}$. 4 sin	$n2 heta\left\{ d heta ight\}$			M1
	$= \int \underline{\tan \theta} \cdot 8\sin \theta \cos \theta \left\{ d\theta \right\} \text{ or } \int \underline{\tan \theta} \cdot 4\sin 2\theta$	$\theta \left\{ \mathrm{d} \theta \right\} = 1$	$\overline{\left(\frac{x}{4-x}\right)} \rightarrow$	$\pm K \tan \theta$ or	$t \pm K \left(\frac{\sin \theta}{\cos \theta} \right)$	<u>M1</u>
	$= \int 8\sin^2\theta \mathrm{d}\theta$		∫ 8	$\sin^2\theta\mathrm{d} heta$	including $d\theta$	A1
	3	π	Writes	down a con	rrect equation	
	$3 = 4\sin^2\theta$ or $\frac{1}{4} = \sin^2\theta$ or $\sin\theta = \frac{1}{2} \Rightarrow \theta =$	$\frac{1}{3}$ i	nvolving $x =$	= 3 leading	to $\theta = \frac{\pi}{2}$ and	B1
	$\{x = 0 \to \theta = 0\}$	n	o incorrect w	ork soon ro	3 pording limits	
		11		UIK SECII IEş		[5]
	$() \mathbf{f}(1-\cos 2\theta) \qquad \qquad$		Δr	nlies cos 24	$h=1$ $2\sin^2\theta$	
(ii) (b)	$= \left\{8\right\} \int \left(\frac{1-\cos 2\theta}{2}\right) d\theta \left\{=\int \left(4-4\cos 2\theta\right) d\theta\right\} $ The price $\cos 2\theta = 1-2\sin \theta$ to their integral. (See notes)		l. (See notes)	M1		
	(1, 1)		For =	$\pm \alpha \theta \pm \beta \sin \theta$	$n2\theta, \alpha, \beta \neq 0$	M1
	$= \left\{ 8 \right\} \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right) \left\{ = 4\theta - 2\sin 2\theta \right\}$		sin	$e^2 \theta \rightarrow \left(\frac{1}{2}\right)$	$\theta - \frac{1}{4}\sin 2\theta$	A1
	$\left\{\int_{0}^{\frac{\pi}{3}} 8\sin^2\theta \mathrm{d}\theta = 8\left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{3}}\right\} = 8\left[\left(\frac{\pi}{6}\right)^{\frac{\pi}{3}}\right]_{0}^{\frac{\pi}{3}}$	$\left\{ \int_{0}^{\frac{\pi}{3}} 8\sin^{2}\theta \mathrm{d}\theta = 8 \left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right]_{0}^{\frac{\pi}{3}} \right\} = 8 \left[\left(\frac{\pi}{6} - \frac{1}{4} \left(\frac{\sqrt{3}}{2} \right) \right) - \left(0 + 0 \right) \right]$				
	$=\frac{4}{3}\pi - \sqrt{3}$ "two term"	" exact answ	er of e.g. $\frac{4}{3}\pi$	$-\sqrt{3}$ or $\frac{1}{3}$	$\frac{1}{3}(4\pi - 3\sqrt{3})$	A1 o.e.
						[4]
						15

98. (i)	1 st M1	Writing $\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)}$ and a complete method for finding the value of at least one					
-		of their A or their B. $2\nu = 4$ their P					
	Note	M1A1 can be implied <i>for writing down</i> either $\frac{3y-4}{y(3y+2)} \equiv \frac{-2}{y} + \frac{\text{then } B}{(3y+2)}$					
		or $\frac{3y-4}{y(3y+2)} \equiv \frac{\text{their } A}{y} + \frac{9}{(3y+2)}$ with no working.					
	Note	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)					
	Note	Give 2^{nd} M0 for $\frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$					
	Note	but allow 2 nd M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$					
98. (ii)(a)	1 st M1	Substitutes $x = 4\sin^2\theta$ and their $dx \left(\text{from their correctly rearranged } \frac{dx}{d\theta} \right)$ into $\sqrt{\left(\frac{x}{4-x}\right)} dx$					
	Note	$dx \neq \lambda d\theta$. For example $dx \neq d\theta$					
	Note	Allow substituting $dx = 4\sin 2\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 4\sin 2\theta$ or $dx = 4\sin 2\theta d\theta$					
	2 nd M1	Applying $x = 4\sin^2\theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K\tan\theta$ or $\pm K\left(\frac{\sin\theta}{\cos\theta}\right)$					
_	Note	Integral sign is not needed for this mark.					
	1 st A1	Simplifies to give $\int 8\sin^2\theta d\theta$ including $d\theta$					
	2 nd B1	Writes down a correct equation involving $x = 3$ leading to $\theta = \frac{\pi}{2}$ and no incorrect work seen					
		regarding limits					
-		(π)					
_	Note	Allow 2 nd B1 for $x = 4\sin^2\left(\frac{\pi}{3}\right) = 3$ and $x = 4\sin^2 0 = 0$					
	Note	Allow 2 nd B1 for $\theta = \sin^{-1}\left(\sqrt{\frac{x}{4}}\right)$ followed by $x = 3, \theta = \frac{\pi}{3}; x = 0, \theta = 0$					
(ii)(b)	M1	Writes down a correct equation involving $\cos 2\theta$ and $\sin^2 \theta$					
		E.g.: $\cos 2\theta = 1 - 2\sin^2 \theta$ or $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$ or $K\sin^2 \theta = K\left(\frac{1 - \cos 2\theta}{2}\right)$					
		and <i>applies</i> it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral.					
	M1	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$,					
	1,11	$\alpha \neq 0, \beta \neq 0$					
-		(can be simplified or un-simplified).					
	1 st A1	Integrating $\sin^2 \theta$ to give $\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta$, un-simplified or simplified. Correct solution only.					
		Can be implied by $k\sin^2\theta$ giving $\frac{k}{2}\theta - \frac{k}{4}\sin 2\theta$ or $\frac{k}{4}(2\theta - \sin 2\theta)$ un-simplified or simplified.					
	2 nd A1	A correct solution in part (ii) leading to a "two term" exact answer of					
		e.g. $\frac{4}{3}\pi - \sqrt{3}$ or $\frac{8}{6}\pi - \sqrt{3}$ or $\frac{4}{3}\pi - \frac{2\sqrt{3}}{2}$ or $\frac{1}{3}(4\pi - 3\sqrt{3})$					
	Note	A decimal answer of 2.456739397 (without a correct exact answer) is A0.					
	Note	Candidates can work in terms of λ (note that λ is not given in (ii)) and gain the 1 st three marks (i.e. M1M1A1) in part (b).					
	Note	If they incorrectly obtain $\int_{0}^{\frac{\pi}{3}} 8\sin^2\theta d\theta$ in part (i)(a) (or correctly guess that $\lambda = 8$)					
		then the final A1 is available for a correct solution in part (ii)(b).					
146		EXPERT TUITION					

	Scheme	Notes	Marks	
98. (i) Way 2	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3y+6y}{y(3y+4)} \mathrm{d}y + \int \frac{3y+6y}{y(3y+4)} \mathrm{d}y = \int \frac{6y+2y}{y(3y+4)} \mathrm{d}y + \int \frac{3y+6y}{y(3y+4)} \mathrm{d}y = \int \frac{6y+2y}{y(3y+4)} \mathrm{d}y + \int \frac{6y+2y}{y(3y+4)} \mathrm{d}y = \int \frac{6y+2y}{y(3y+4)} \mathrm{d}y + \int \frac{6y+2y}{y(3y+4)} \mathrm{d}y = \int \frac{6y+2y}{y(3y+4)} \mathrm{d}y + \int 6y$	$\frac{5}{2}$ dy		
	$\frac{3y+6}{(1-x)^2} \equiv \frac{A}{1-x} + \frac{B}{(1-x)^2} \Rightarrow 3y+6 = A(3y+2) + By$		See notes	M1
	$y(3y+2) y (3y+2)$ $y=0 \implies 6-24 \implies 4-3$		At least one of their $A = 3$ or their $B = -6$	A1
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 3$ and their $B = -6$	A1
	$\int \frac{3y-4}{y(3y+2)} dy$ $\int \frac{6y+2}{y(3y+2)} dy$	or $\frac{A}{y} \rightarrow$	Integrates to give at least one of either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0 A \neq 0 B \neq 0$	M1
	$= \int \frac{1}{3y^{2} + 2y} \mathrm{d}y - \int \frac{1}{y} \mathrm{d}y + \int \frac{1}{(3y + 2)} \mathrm{d}y$	At lea	ast one term correctly followed through	A1 ft
	$= \ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \{+c\}$		$ln(3y^2+2y) - 3ln y + 2ln(3y+2)$ with correct bracketing, simplified or un-simplified	A1 cao
				[6]
98. (i) Way 3	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y+1}{3y^2+2y} \mathrm{d}y - \int \frac{5}{y(3y+1)} \mathrm{d}y = \int \frac{3y+1}{y(3y+1)} \mathrm{d}y = \int \frac{3y+1}{y(3y+1)$	$\overline{2}$ dy		
	$\frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \implies 5 = A(3y+2) -$	+ By	See notes	M1
	$y = 0 \implies 5 = 2A \implies A = \frac{5}{2}$		At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$	A1
	$y = -\frac{2}{3} \implies 5 = -\frac{2}{3}B \implies B = -\frac{15}{2}$		Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$	A1
	$\int \frac{3y - 4}{y(3y + 2)} \mathrm{d}y$ = $\int \frac{3y + 1}{2} \mathrm{d}y - \int \frac{5}{2} \mathrm{d}y + \int \frac{15}{2} \mathrm{d}y$	or $\frac{A}{y} \rightarrow$	Integrates to give at least one of either $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	M1
	$\int 3y^2 + 2y$ $\int y$ $\int (3y + 2)$		ast one term correctly followed through	A1 ft
	$=\frac{1}{2}\ln(3y^2+2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y+2)\{+c\}$		$\frac{1}{2}\ln(3y^{2}+2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y+2)$ with correct bracketing, simplified or un-simplified	A1 cao
				[6]

	Scheme		Notes		
98. (i) Way 4	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y}{y(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$	$\frac{1}{2}$ dy			
	$= \int \frac{3}{(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y = \int \frac{4}{y(3y+2)}$	$\frac{1}{2}$ dy			
	$\frac{4}{2} \equiv \frac{A}{2} + \frac{B}{2} \Rightarrow 4 = A(3v+2) + C(3v+2) + $	- Bv		See notes	M1
	y(3y+2) y $(3y+2)$		their $A = 2$ or	At least one of \cdot their $B = -6$	A1
	$y = 0 \implies 4 = 2A \implies A = 2$ $y = -\frac{2}{2} \implies 4 = -\frac{2}{2}B \implies B = -6$		Both their $A = 2$ and their $B = -6$		A1
			Integrates to give at leas	st one of either	
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y \qquad \qquad \qquad \frac{C}{(3y+2)} \to \pm \alpha \ln(3y+2) \mathrm{or} \frac{A}{y} \to \pm \lambda \ln y \mathrm{or}$			M1	
			$\frac{B}{(3v+2)} \rightarrow$	$\pm \mu \ln(3y+2),$	
	$= \left \frac{3}{2} dy - \left \frac{2}{2} dy + \left \frac{6}{2} dy \right \right \right $		$A \neq 0$, $B \neq 0$, $C \neq 0$	
	$\int 3y + 2 \qquad \int y \qquad \int (3y + 2) \qquad At let$		ast one term correctly fo	llowed through	A1 ft
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \int dx dx$		$\ln(3y+2) - 2\ln y$	$y + 2\ln(3y+2)$	
	= In(3y+2) - 2In(y+2)(+c) with correct bracketing, simplified on up simplified		rect bracketing,	A1 cao	
	simplified or un-simplified			[6]	
	Alternative methods for B1M1M1A1 in (ii)(a)				
(ii)(a) Way 2	$\left\{x = 4\sin^2\theta \Longrightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta$			As in Way 1	B1
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \{\mathrm{d}\theta\}$			As before	M1
	$= \int \sqrt{\frac{\sin^2 \theta}{(1-\sin^2 \theta)}} \cdot 8\cos \theta \sin \theta \left\{ d\theta \right\}$				
	$= \int \frac{\sin\theta}{\sqrt{(1-\sin^2\theta)}} \cdot 8\sqrt{(1-\sin^2\theta)}\sin\theta \left\{ d\theta \right\}$				
	$= \int \sin \theta . 8 \sin \theta \left\{ \mathrm{d} \theta \right\}$		Correct me $\sqrt{(1-\sin^2\theta)}$ being	thod leading to g cancelled out	M1
	$= \int 8\sin^2\theta \mathrm{d}\theta$		$\int 8\sin^2\theta \mathrm{d}\theta$	including $d\theta$	A1 cso
(ii)(a) Way 3	$\left\{x = 4\sin^2\theta \Longrightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin 2\theta \qquad \qquad \text{As in Way 1}$				B1
	$x = 4\sin^2\theta = 2 - 2\cos 2\theta$, $4 - x = 2 + 2\cos 2\theta$)			
	$\int \sqrt{\frac{2-2\cos 2\theta}{2+2\cos 2\theta}} \cdot 4\sin 2\theta \left\{ \mathrm{d}\theta \right\}$				M1
	$= \int \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 + 2\cos 2\theta}} \cdot \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 - 2\cos 2\theta}} 4\sin 2\theta \left\{ d\theta \right\} = \int \frac{2 - 2\cos 2\theta}{\sqrt{4 - 4\cos^2 2\theta}} \cdot 4\sin 2\theta \left\{ d\theta \right\}$				
	$= \int \frac{2 - 2\cos 2\theta}{2\sin 2\theta} \cdot 4\sin 2\theta \left\{ d\theta \right\} = \int 2(2 - 2\cos 2\theta) \cdot \left\{ d\theta \right\}$ Correct method leading to $\sin 2\theta$ being cancelled out			M1	
	$= \int 8\sin^2\theta d\theta \qquad \qquad \qquad \int 8\sin^2\theta d\theta \text{ including }d\theta$			A1 cso	
148	E E	XPERT Jition			

Question Number	Scheme			Notes		Marks
99.	$y = (2x-1)^{\frac{3}{4}}, x \ge \frac{1}{2}$ passes though	h $P(k,8)$				
(a)	$\left\{ \int (2x-1)^{\frac{3}{2}} dx \right\} = \frac{1}{2} (2x-1)^{\frac{5}{2}} \left\{ + c \right\}$		$(2x\pm 1)^{\frac{3}{2}}$	$\rightarrow \pm \lambda (2x \pm 1)$ where $u = 2$	$\sum_{n=1}^{\frac{5}{2}} \mathbf{or} \pm \lambda u^{\frac{5}{2}}$ $x \pm 1; \lambda \neq 0$	M1
		$\frac{1}{5}(2x-1)^{\frac{5}{2}}$	with or witho	put + c . Must be	e simplified.	A1
						[2]
(b)	$\{P(k, 8) \Rightarrow\} 8 = (2k-1)^{\frac{3}{4}} \Rightarrow k = \frac{8^{\frac{4}{3}} + 1}{2}$ Sets $8 = (2k-1)^{\frac{3}{4}}$ or $8 = (2x-1)^{\frac{3}{4}}$ rearranges to give $k = (\text{or } x =)$ a numerical w		$(x-1)^{\frac{3}{4}}$ and erical value.	M1		
	So, $k = \frac{17}{2}$			<i>k</i> (or <i>x</i>) =	$=\frac{17}{2}$ or 8.5	A1
						[2]
(c)	$\pi \int \left((2x-1)^{\frac{3}{4}} \right)^2 \mathrm{d}x$		For $\pi \int \left((2) \right)^{\pi} dx$	$(2x-1)^{\frac{3}{4}} \Big)^2$ or $2x^{\frac{3}{4}}$	$\tau \int (2x-1)^{\frac{3}{2}}$	B1
	17		Ignore lim	nits and dx. Can	be implied.	
	$\left[\left\{ \int_{\frac{1}{2}}^{\frac{17}{2}} y^2 \mathrm{d}x \right\} = \left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(0 \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(0 \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(0 \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(0 \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(0 \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(0 \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(0 \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(\frac{16^{\frac{5}{2}}}{5} \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(\frac{16^{\frac{5}{2}}}{5} \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(\frac{16^{\frac{5}{2}}}{5} \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(\frac{16^{\frac{5}{2}}}{5} \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(\frac{16^{\frac{5}{2}}}{5} \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(\frac{16^{\frac{5}{2}}}{5} \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(\frac{16^{\frac{5}{2}}}{5} \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(\frac{16^{\frac{5}{2}}}{5} \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\left(\frac{16^{\frac{5}{2}}}{5} \right)^{\frac{5}{2}} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[\frac{16^{\frac{5}{2}}}{5} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left[16^{\frac{5$	$0) \left(= \frac{1024}{5} \right)$	Applies <i>x</i> - to part (b)) the fo	limits of "8.5" (1) and 0.5 to an end 1.5 t	their answer expression of $\frac{5}{2}$; $\beta \neq 0$ and	M1
	Note: It is not necessary to write the $"-0"$	"	subt	tracts the correct	way round.	
	$(W_{1}) = c_{1}^{2}(17)(-544)$		$\pi($	$(8)^2$ (their answer	to part (b)	
	$\left\{V_{\text{cylinder}}\right\} = \pi(8)^{2} \left(\frac{1}{2}\right) \left\{= 544\pi\right\}$		$V_{ m cylin}$	$_{\rm der} = 544\pi$ impli	es this mark	B1 ft
	$\left(1024\pi\right)$	1696	An exact correct answer in the form $k\pi$			
	$\left\{ \operatorname{Vol}(S) = 544\pi - \frac{1}{5} \right\} \Rightarrow \operatorname{Vol}(S) = -\frac{1}{5}$	5^{π}	E.g.	$\frac{1696}{5}\pi, \frac{3392}{10}\pi$	or 339.2π	A1
-					2	[4]
Alt. (c)	$\operatorname{Vol}(S) = \pi(8)^{2} \left(\frac{1}{2}\right) + \underline{\pi} \int_{0.5}^{8.5} \left(8^{2} - \underline{(2x-1)^{\frac{3}{2}}}\right) dx \qquad \qquad \operatorname{For} \ \underline{\pi} \int \dots \underbrace{(2x-1)^{\frac{3}{2}}}_{x}$		B1			
	Ignore limits and dx .					
	$= \pi(8)^{2} \left(\frac{1}{2}\right) + \pi \left[64x - \frac{1}{5}(2x-1)^{2} \right]$	_0.5				
	(1) ((1	$\frac{5}{5}$	1	$\left(\frac{5}{5}\right)$	as above	M1
	$= \pi(8)^{2} \left\lfloor \frac{1}{2} \right\rfloor + \underline{\pi} \left[\left\lfloor \frac{64("8.5")}{2} - \frac{1}{5}(2(8.5) - 1)^{2} \right\rfloor - \left\lfloor \frac{64(0.5)}{2} - \frac{1}{5}(2(0.5) - 1)^{2} \right\rfloor \right]$				<u>B1</u>	
		$0) \bigg) \bigg\} \Rightarrow \operatorname{Vol}(S)$	$T) = \frac{1696}{5}\pi$			A1
						[4]
						8

99. (b)	SC	Allow Special Case SC M1 for a rearranges to give $k = (\text{or } x =)$ a	a candidat numerica	te who sets $8 = (2k - 1)^{\frac{3}{2}}$ or $8 = (2x - 1)^{\frac{3}{2}}$ I value.	and		
99. (c)	M1	Can also be given for applying <i>i</i>	Can also be given for applying <i>u</i> -limits of "16" (2("part (b)") – 1) and 0 to an expression of the				
		form $\pm \theta_{12}^{\frac{5}{2}}$, θ_{14} (0 and subtracts	the corre	of way round			
		form $\pm pu^2$; $p \neq 0$ and subtracts	17	et way found.			
	Note	You can give M1 for $\left[\frac{(2x-1)^2}{5}\right]$	You can give M1 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{\frac{1}{2}}^{\frac{7}{2}} = \frac{1024}{5}$				
	Note	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]_{0}^{\frac{17}{2}} = \left($	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]_{0}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5}\right) - (0)\right)$				
	B1ft	Correct expression for the volum	ne of a cy	linder with radius 8 and their (part (b)) heig	ht <i>k</i> .		
	Note	If a candidate uses integration to	o find the	volume of this cylinder they need to apply t	heir limi	its	
		So $\pi \int_{0}^{8.5} 8^2 dx = \pi [64x]_{0}^{8.5}$ is not	t sufficier	t for B1 but $\pi(64(8.5) - 0)$ is sufficient for	or B1.		
99.	MISRE	MISREADING IN BOTH PARTS (B) AND (C)					
	Apply th	e misread rule (MR) for candidates	who apply	$v = (2x - 1)^{\frac{3}{2}}$ to both parts (b) and (c)			
		$\frac{2}{2}$		$\frac{3}{2}$			
(b)	$\Big\{P(k,8)$	$\Rightarrow \left\{ 8 = (2k-1)^{\frac{3}{2}} \Rightarrow k = \frac{8^3+1}{2} \right\}$	Sets $8 = (2k - 1)^2$ or $8 = (2x - 1)^2$ and rearranges to give $k = (\text{or } x =)$ a numerical value.				
		So, $k = \frac{5}{2}$		$k (\text{or } x) = \frac{5}{2} \text{ or } 2.5$	A1		
				•		[2]	
(c)	$\pi \int (2x)$	$(x-1)^{\frac{3}{2}}\Big)^2 dx$		For $\pi \int \left((2x-1)^{\frac{3}{2}} \right)^2$ or $\pi \int (2x-1)^3$	B1		
		,		Ignore limits and dx. Can be implied.	ļ		
	(17	$-\frac{5}{2}$		Applies x-limits of " 2.5 " (their answer to			
	$\int \int \frac{1}{2} v^2 d$	$x = \left \frac{(2x-1)^4}{2} \right ^2 = \left(\left(\frac{4^4}{2} \right) - (0) \right) $	= 32	part (b)) and 0.5 to an expression of the $2/2$	M1		
	$\left(J\frac{1}{2} \right)^{-1}$	$\int \left[8 \right]_{\frac{1}{2}} \left(\left(8 \right)^{-1} \right)^{-1} \left(\left(8 \right)^{-1} \right)^{-1} \right)^{-1} $)	form $\pm\beta(2x-1)$; $\beta\neq 0$ and subtracts			
		(\mathbf{z})		the correct way round. $(0)^2(1 + 1)$			
	$V_{\rm cylinder} =$	$\pi(8)^2 \left(\frac{5}{2}\right) \left\{= 160\pi\right\}$		$\pi(8)$ (their answer to part (b))	B1 ft		
		(2)		Sight of 160π implies this mark			
	$\left\{ \operatorname{Vol}(S) = 160\pi - 32\pi \right\} \Longrightarrow \operatorname{Vol}(S) = 128\pi$			An exact correct answer in the form $\kappa \pi$ E.g. 128π	A1	[4]	
	Note	Mark parts (b) and (c) using the may	rk scheme	above and then working forwards from par	t (h)	[4]	
	TUL	deduct two from any A or B marks	gained.	above and then working forwards from par	(0)		
		E.g. (b) M1A1 (c) B1M1B1A1 w E.g. (b) M1A1 (c) B1M1B0A0	ould scor	e (b) M1A0 (c) B0M1B1A1 c (b) M1A0 (c) B0M1B0A0			
		$\frac{1}{3}$	ould scor	<u>3</u>			
	Note	If a candidate uses $y = (2x - 1)^{\overline{4}}$ if	n part (b)	and then uses $y = (2x - 1)^{\overline{2}}$ in part (c) do n	ot apply	/ a	
		misread in part (c).					

Question Number		Scheme		Marks
100.	y = 4x	$-xe^{\frac{1}{2}x}, x \ge 0$		
(a)	$\begin{cases} y = 0 \end{cases}$	$\Rightarrow 4x - x e^{\frac{1}{2}x} = 0 \Rightarrow x(4 - e^{\frac{1}{2}x}) = 0 \Rightarrow \bigg\}$		
	e	$\frac{1}{2^x} = 4 \implies x_a = 4\ln 2$	Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$	M1
		л	$4\ln 2$ cao (Ignore $x = 0$)	A1 [2]
	$\int \int u d^{\frac{1}{2}x}$	$d_{\rm H} = 2 m \frac{1}{2^{\rm x}} \int 2 a \frac{1}{2^{\rm x}} (d_{\rm H})$	$\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \left\{ dx \right\}, \alpha > 0, \beta > 0$	M1
(0)		$dx = 2xe^{2} - \int 2e^{2} \{dx\}$	$2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$, with or without dx	A1 (M1 on ePEN)
		$= 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \{+c\}$	$2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$ o.e. with or without $+c$	A1
(c)	$\begin{cases} \int 4x d. \end{cases}$	$\left\{x\right\} = 2x^2$	$4x \rightarrow 2x^2$ or $\frac{4x^2}{2}$ o.e.	B1
	$\left\{\int_{0}^{4\ln 2} (4x - x e^{\frac{1}{2}x}) dx\right\} = \left[2x^{2} - \left(2x e^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}\right)\right]_{0}^{1}$			
	$= \left(2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 4e^{\frac{1}{2}(4\ln 2)} \right) - \left(2(0)^2 - 2(0)e^{\frac{1}{2}(0)} + 4e^{\frac{1}{2}(0)} \right)$ See notes			
	$=(32(\ln$	$(12)^2 - 32(\ln 2) + 16) - (4)$		
	= 32(ln	$2)^2 - 32(\ln 2) + 12$	$32(\ln 2)^2 - 32(\ln 2) + 12$, see notes	A1
				[3] 8
		Ques	stion 100 Notes	
100. (a)	M1	Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$	in terms of $\pm \lambda \ln \mu$ where $\mu > 0$	
(b)	AI NOT	$4 \ln 2$ cao stated in part (a) only (ignore	x = 0)	
(0)	Ε	Tart (b) appears as written on er Er		
	M1	Integration by parts is applied in the form	n $\alpha x e^{2^x} - \beta \int e^{2^x} \{ dx \}$, where $\alpha > 0, \beta > 0$.	
		(must be in this form) with or without d	x	
	A1	$2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$ or equivalent, with	h or without dx . Can be un-simplified.	
	A1	$2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$ or equivalent with or with	out + c. Can be un-simplified.	
	Note	You can also allow $2e^{\frac{1}{2}x}(x-2)$ or $e^{\frac{1}{2}x}(x-2)$	2x - 4) for the final A1.	
	isw	You can ignore subsequent working follo	owing on from a correct solution.	
	SC	SPECIAL CASE: A candidate who use	es $u = x$, $\frac{dv}{dx} = e^{\frac{1}{2}x}$, writes down the correct "b	y parts"
		formula, but makes only one error when (Applying their <i>v</i> counts for one consiste	applying it can be awarded Special Case M1. ent error.)	

100. (c)	B1	$4x \rightarrow 2x^2 \text{ or } \frac{4x^2}{2} \text{ oe}$
	M1	Complete method of applying limits of their x_A and 0 to all terms of an expression of the form
		$\pm Ax^2 \pm Bx e^{\frac{1}{2}x} \pm Ce^{\frac{1}{2}x}$ (where $A \neq 0, B \neq 0$ and $C \neq 0$) and subtracting the correct way round.
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1.
	Nata	So subtracting 0 is M0.
		A correct three term exect quadratic expression in ln 2
	AI	For example allow for A1
		• $32(\ln 2)^2 - 32(\ln 2) + 12$
		• $8(2\ln 2)^2 - 8(4\ln 2) + 12$
		• $2(4\ln 2)^2 - 32(\ln 2) + 12$
		• $2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 12$
	Note	Note that the constant term of 12 needs to be combined from $4e^{\frac{1}{2}(4\ln 2)} - 4e^{\frac{1}{2}(0)}$ o.e.
	Note	Also allow $32 \ln 2(\ln 2 - 1) + 12$ or $32 \ln 2 \left(\ln 2 - 1 + \frac{12}{32 \ln 2} \right)$ for A1.
	Note	Do not apply "ignore subsequent working" for incorrect simplification.
		Eg: $32(\ln 2)^2 - 32(\ln 2) + 12 \rightarrow 64(\ln 2) - 32(\ln 2) + 12$ or $32(\ln 4) - 32(\ln 2) + 12$
	Note	Bracketing error: $32\ln 2^2 - 32(\ln 2) + 12$, unless recovered is final A0.
	Note	Notation: Allow $32(\ln^2 2) - 32(\ln 2) + 12$ for the final A1.
	Note	5.19378 without seeing $32(\ln 2)^2 - 32(\ln 2) + 12$ is A0.
	Note	5.19378 following from a correct $2x^2 - \left(2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}\right)$ is M1A0.
	Note	5.19378 from no working is M0A0.

Question Number	Scheme	Marks
101. (a)	$A = \int_0^3 \sqrt{(3-x)(x+1)} dx \ , \ x = 1 + 2\sin\theta$	
	$\frac{dx}{d\theta} = 2\cos\theta \qquad \qquad \frac{dx}{d\theta} = 2\cos\theta \text{ or } 2\cos\theta \text{ used correctly}\\ \text{in their working. Can be implied.}$	B1
	$\left\{\int \sqrt{(3-x)(x+1)} \mathrm{d}x \mathrm{or} \int \sqrt{(3+2x-x^2)} \mathrm{d}x \right\}$	
	$= \int \sqrt{(3 - (1 + 2\sin\theta))((1 + 2\sin\theta) + 1)} 2\cos\theta \{d\theta\}$ Substitutes for both x and dx, where $dx \neq \lambda d\theta$. Ignore $d\theta$	M1
	$= \int \sqrt{(2 - 2\sin\theta)(2 + 2\sin\theta)} \ 2\cos\theta \ \{\mathrm{d}\theta\}$ $\int \sqrt{(4 - 4\sin^2\theta)} \ 2 = -6 \ (10)$	
	$= \int \sqrt{(4 - 4\sin^2\theta) 2\cos\theta \left\{ d\theta \right\}}$	
	$= \int \sqrt{\left(4 - 4(1 - \cos^2\theta) 2\cos\theta \left\{ d\theta \right\}} \text{or} \int \sqrt{4\cos^2\theta} \ 2\cos\theta \left\{ d\theta \right\} \qquad \text{Applies } \cos^2\theta = 1 - \sin^2\theta \text{ see notes}$	M1
	$= 4 \int \cos^2 \theta \mathrm{d}\theta, \ \{k = 4\} \qquad \qquad 4 \int \cos^2 \theta \mathrm{d}\theta \text{ or } \int 4 \cos^2 \theta \mathrm{d}\theta$	A1
	Note: $d\theta$ is required here. $0 = 1 + 2\sin\theta$ or $-1 = 2\sin\theta$ or $\sin\theta = -\frac{1}{2} \Rightarrow \theta = -\frac{\pi}{6}$	
	and $3 = 1 + 2\sin\theta$ or $2 = 2\sin\theta$ or $\sin\theta = 1 \Rightarrow \theta = \frac{\pi}{2}$ See notes	B1
		[5]
(b)	$\left\{k\int\cos^2\theta\left\{\mathrm{d}\theta\right\}\right\} = \left\{k\right\}\int\left(\frac{1+\cos 2\theta}{2}\right)\left\{\mathrm{d}\theta\right\} $ Applies $\cos 2\theta = 2\cos^2\theta - 1$ to their integral	M1
	$= \left\{k\right\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right)$ Integrates to give $\pm \alpha\theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$ or $k(\pm \alpha\theta \pm \beta \sin 2\theta)$	M1 (A1 on ePEN)
	$\left\{ \operatorname{So} 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta \mathrm{d}\theta = \left[2\theta + \sin 2\theta \right]_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \right\}$	
	$= \left(2\left(\frac{\pi}{2}\right) + \sin\left(\frac{2\pi}{2}\right)\right) - \left(2\left(-\frac{\pi}{6}\right) + \sin\left(-\frac{2\pi}{6}\right)\right)$	
	$\left\{ = \left(\pi\right) - \left(-\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right) \right\} = \frac{4\pi}{3} + \frac{\sqrt{3}}{2} \qquad \qquad \frac{4\pi}{3} + \frac{\sqrt{3}}{2} \text{or} \\ \frac{1}{5} \left(8\pi + 3\sqrt{3}\right) \right\}$	A1 cao cso
	<u>o</u> \//	[3]
		0

		Question 101 Notes			
101. (a)	B 1	$\frac{dx}{d\theta} = 2\cos\theta$. Also allow $dx = 2\cos\theta d\theta$. This mark can be implied by later working.			
	Note	You can give B1 for $2\cos\theta$ used correctly in their working.			
	M1	Substitutes $x = 1 + 2\sin\theta$ and their $dx \left(\text{from their rearranged} \frac{dx}{d\theta} \right)$ into $\sqrt{(3-x)(x+1)} dx$.			
	Note	Condone bracketing errors here.			
	Note	$dx \neq \lambda d\theta$. For example $dx \neq d\theta$.			
	Note	Condone substituting $dx = \cos\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 2\cos\theta$ or $dx = 2\cos\theta d\theta$			
Î	M1	Applies either			
		• $1 - \sin^2 \theta = \cos^2 \theta$			
		• $\lambda - \lambda \sin^2 \theta$ or $\lambda (1 - \sin^2 \theta) = \lambda \cos^2 \theta$			
		• $4-4\sin^2\theta = 4+2\cos 2\theta - 2 = 2+2\cos 2\theta = 4\cos^2\theta$			
		to their expression where λ is a numerical value.			
	A1	Correctly proves that $\int \sqrt{(3-x)(x+1)} dx$ is equal to $4 \int \cos^2 \theta d\theta$ or $\int 4 \cos^2 \theta d\theta$			
	Note	All three previous marks must have been awarded before A1 can be awarded.			
	Note Note	Their final answer must include $d\theta$.			
	B1	Find can ignore mints for the final AT mark. Evidence of a correct equation in $\sin \theta$ or $\sin^{-1} \theta$ for both r-values leading to both θ values. Eq.			
		• $0 = 1 + 2\sin\theta$ or $-1 = 2\sin\theta$ or $\sin\theta = -\frac{1}{2}$ which then leads to $\theta = -\frac{\pi}{6}$, and			
		• $3 = 1 + 2\sin\theta$ or $2 = 2\sin\theta$ or $\sin\theta = 1$ which then leads to $\theta = \frac{\pi}{2}$			
	Note	Allow B1 for $x = 1 + 2\sin\left(-\frac{\pi}{6}\right) = 0$ and $x = 1 + 2\sin\left(\frac{\pi}{2}\right) = 3$			
	Note	Allow B1 for $\sin \theta = \left(\frac{x-1}{2}\right)$ or $\theta = \sin^{-1}\left(\frac{x-1}{2}\right)$ followed by $x = 0, \ \theta = -\frac{\pi}{6}; \ x = 3, \ \theta = \frac{\pi}{2}$			
(b)	NOTE	Part (b) appears as M1A1A1 on ePEN, but is now marked as M1M1A1.			
	M1	Writes down a correct equation involving $\cos 2\theta$ and $\cos^2 \theta$			
		Eg: $\cos 2\theta = 2\cos^2 \theta - 1$ or $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ or $\lambda \cos^2 \theta = \lambda \left(\frac{1 + \cos 2\theta}{2}\right)$			
		and <i>applies</i> it to their integral. Note: Allow M1 for a correctly stated formula (via an			
	MI	incorrect rearrangement) being applied to their integral.			
	IVI I	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0$, $\beta \neq 0$			
	A1	A correct solution in part (b) leading to a "two term" exact answer.			
		4π $\sqrt{3}$ 8π $\sqrt{3}$ $1/$			
		Eg: $\frac{\pi}{3} + \frac{\sqrt{5}}{2}$ or $\frac{\pi}{6} + \frac{\sqrt{5}}{2}$ or $\frac{1}{6}(8\pi + 3\sqrt{3})$			
	Note	5.054815 from no working is M0M0A0.			
	Note	Candidates can work in terms of k (note that k is not given in (a)) for the M1M1 marks in part (b).			
	Note	If they incorrectly obtain $4 \int_{-\infty}^{\frac{\pi}{2}} \cos^2 \theta d\theta$ in part (a) (or guess $k = 4$) then the final A1 is available			
		for a connect solution in part (b) only			
		for a correct solution in part (b) only.			

Question Number	Scheme	Marks
102. (a)	$\frac{2}{P(P-2)} = \frac{A}{P} + \frac{B}{(P-2)}$	
	$2 \equiv A(P-2) + BP$ Can be implied.	M1
	A = -1, B = 1 Either one.	A1
	giving $\frac{1}{(P-2)} - \frac{1}{P}$ See notes. cao, aef	A1
(b)	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{2}P(P-2)\cos 2t$	[3]
	$\int \frac{2}{P(P-2)} dP = \int \cos 2t dt$ can be implied by later working	B1 oe
	$\pm \lambda \ln(P-2) \pm \mu \ln P,$ $\lambda \neq 0, \mu \neq 0$	M1
	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$ $\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$	A1
	$\{t = 0, P = 3 \Longrightarrow\}$ $\ln 1 - \ln 3 = 0 + c$ $\{\Rightarrow c = -\ln 3 \text{ or } \ln(\frac{1}{3})\}$ See notes	M1
	$\ln (P-2) - \ln P = \frac{1}{2} \sin 2t - \ln 3$	
	$\ln\left(\frac{3(P-2)}{P}\right) = \frac{1}{2}\sin 2t$	
	Starting from an equation of the form	
	$\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c,$ $3(P - 2)$	
	$\frac{S(1-2)}{P} = e^{\frac{1}{2}\sin 2t}$ $\lambda, \mu, \beta, K, \sigma \neq 0$, applies a fully correct method to	M1
	Must have a constant of integration that need	
	not be evaluated (see note)	
	$3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t}$ A complete method of rearranging to make P the subject	
	gives $3P - Pe^{\frac{1}{2}\sin 2t} = 6 \implies P(3 - e^{\frac{1}{2}\sin 2t}) = 6$ Must have a constant of integration	dM1
	$P = \frac{6}{4} * \frac{1}{2}$ that need not be evaluated (see note)	
	$(3 - e^{\frac{1}{2}\sin 2t})$ Correct proof.	A1 * cso
		[7].
(c)	$\{\text{population} = 4000 \Rightarrow\} P = 4$ States $P = 4$ or applies $P = 4$	M1
	$\begin{bmatrix} 1 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ or } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ or } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ or } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin 2t = \ln k \text{ obtains } \pm \lambda \sin t = \ln k, \\ 0 & \text{obtains } \pm \lambda \sin t = \ln k, \\ 0 & o$	N/1
	$\begin{bmatrix} \frac{1}{2} \sin 2t & -\sin \left(\frac{1}{4}\right) \end{bmatrix}^{-\sin \left(\frac{1}{2}\right)} \qquad \qquad \lambda \neq 0, k > 0 \text{ where } \lambda \text{ and } k \text{ are numerical}$	1/11
	λ can be 1 anything that rounds to 0.473	
	t = 0.4/28/00467 Do not apply isw here	A1
		[3]
		13

Question Number		Scheme	Marks	
	Method	2 for Q7(b)		
102. (b)	ln (P	$P-2) - \ln P = \frac{1}{2}\sin 2t \ (+c)$ As before for	B1M1A1	
	lı	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c$		
	$\frac{(P-p)}{P}$	$\frac{2}{P} = e^{\frac{1}{2}\sin 2t + c} \text{ or } \frac{(P-2)}{P} = Ae^{\frac{1}{2}\sin 2t}$ Starting from an equation of the form $\pm \lambda \ln(P-\beta) \pm \mu \ln P = \pm K \sin \delta t + c,$ $\lambda, \mu, \beta, K, \delta \neq 0,$ applies a fully correct method to eliminate their logarithms. Must have a constant of integration that need not be evaluated (see note)	3 rd M1	
	$(P-2)$ $\Rightarrow P(1)$	$= APe^{\frac{1}{2}\sin 2t} \Rightarrow P - APe^{\frac{1}{2}\sin 2t} = 2$ $- Ae^{\frac{1}{2}\sin 2t}) = 2 \Rightarrow P = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2t})}$ A complete method of rearranging to make P the subject. Condone sign slips or constant errors. Must have a constant of integration that need not be evaluated (see note)	4 th dM1	
	${t=0, t}$	$P = 3 \implies 3 = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2(0)})}$ See notes (Allocate this mark as the 2 nd M1 mark on ePEN).	2 nd M1	
	$\left\{ \Rightarrow 3 = \right.$	$=\frac{2}{(1-A)} \Rightarrow A = \frac{1}{3}$		
	$\Rightarrow P =$	$\frac{2}{\left(1-\frac{1}{3}e^{\frac{1}{2}\sin 2t}\right)} \Rightarrow P = \frac{6}{(3-e^{\frac{1}{2}\sin 2t})}*$ Correct proof.	A1 * cso	
		Question 102 Notes		
102. (a)	M1	Forming a correct identity. For example, $2 \equiv A(P-2) + BP$ from $\frac{2}{P(P-2)} = \frac{A}{P} + \frac{A}{P}$	$\frac{B}{(P-2)}$	
	Note A1	A and B are not referred to in question. Either one of $A = -1$ or $B = 1$.		
	A1	$\frac{1}{(P-2)} - \frac{1}{P}$ or any equivalent form. This answer <i>cannot</i> be recovered from part (b)).	
	Note	M1A1A1 can also be given for a candidate who finds both $A = -1$ and $B = 1$ and $\frac{A}{P}$	$+ \frac{B}{(P-2)}$	
		is seen in their working.		
	Note	Candidates can use 'cover-up' rule to write down $\frac{1}{(P-2)} - \frac{1}{P}$, so as to gain all three	e marks.	
	Note	Equating coefficients from $2 \equiv A(P-2) + BP$ gives $A + B = 2, -2A = 2 \Rightarrow A = -1$,	B = 1	

102. (b)	B 1	Separates variables as shown on the Mark Scheme. dP and dt should be in the correct positions,		
		though this mark can be implied by later working. Ignore the integral signs.		
	Note	Eg: $\int \frac{2}{P^2 - 2P} dP = \int \cos 2t dt \text{or} \int \frac{1}{P(P-2)} dP = \frac{1}{2} \int \cos 2t dt \text{ o.e. are also fine for B1.}$		
	1 st M1	$\pm \lambda \ln(P-2) \pm \mu \ln P, \ \lambda \neq 0, \ \mu \neq 0.$ Also allow $\pm \lambda \ln(M(P-2)) \pm \mu \ln NP; \ M, N$ can be 1.		
	Note	Condone $2\ln(P-2) + 2\ln P$ or $2\ln(P(P-2))$ or $2\ln(P^2-2P)$ or $\ln(P^2-2P)$		
	1 st A1	Correct result of $\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$ or $2\ln(P-2) - 2\ln P = \sin 2t$		
	2 nd M1	Some evidence of using both $t = 0$ and $P = 3$ in an integrated equation containing a constant of integration. Eq. c or A, etc.		
	3 rd M1	Starting from an equation of the form $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c$, $\lambda, \mu, \beta, K, \delta \neq 0$,		
		applies a fully correct method to eliminate their logarithms.		
	4 th M1	dependent on the third method mark being awarded.		
	Note	A complete method of rearranging to make P the subject. Condone sign slips or constant errors.		
	note	For the 5 MT and 4 MT marks, a candidate needs to have included a constant of integration, in their working eg $c A \ln A$ or an evaluated constant of integration		
		$\frac{6}{6}$		
	2 nd A1	Correct proof of $P = \frac{1}{(3 - e^{\frac{1}{2}\sin 2t})}$. Note: This answer is given in the question.		
		$(P-2)$ 1 $(P-2)$ $\frac{1}{\sin 2t}$		
	Note $\ln\left(\frac{(1-2)}{P}\right) = \frac{1}{2}\sin 2t + c$ followed by $\frac{(1-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^c$ is 3 rd M0, 4 th M0, 2 nd A0.			
	Note $\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t + c} \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c}$ is final M1M0A0			
	<u>4th M1 f</u>	4 th M1 for making <i>P</i> the subject		
	Note there are three type of manipulations here which are considered acceptable for making <i>P</i> the subject			
	(1) M1 for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t} \Rightarrow P(3-e^{\frac{1}{2}\sin 2t}) = 6$ $\Rightarrow P = \frac{6}{(3-e^{\frac{1}{2}\sin 2t})}$			
	(2) M1 1	$\int \frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - \frac{6}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - e^{\frac{1}{2}\sin 2t} = \frac{6}{P} \Rightarrow \Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$		
	(3) M1 1	For $\left\{ \ln(P-2) + \ln P = \frac{1}{2} \sin 2t + \ln 3 \Rightarrow \right\} P(P-2) = 3e^{\frac{1}{2}\sin 2t} \Rightarrow P^2 - 2P = 3e^{\frac{1}{2}\sin 2t}$		
		$\Rightarrow (P-1)^2 - 1 = 3e^{\frac{1}{2}\sin 2t} \text{ leading to } P =$		
(c)	M1	States $P = 4$ or applies $P = 4$		
	M1	Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$, where λ and k are numerical values and λ can be 1		
	A1	anything that rounds to 0.473. (Do not apply isw here)		
	Note	Do not apply ignore subsequent working for A1. (Eg: 0.473 followed by 473 years is A0.)		
	Note	<u>Use of $P = 4000$</u> : Without the mention of $P = 4$, $\frac{1}{2}\sin 2t = \ln 2.9985$ or $\sin 2t = 2\ln 2.9985$		
		or $\sin 2t = 2.1912$ will usually imply MOM1A0		
	Note	<u>Use of Degrees:</u> $t = awrt 27.1$ will usually imply M1M1A0		

Question
NumberSchemeMarks103. (a)
$$\{y = 3^* \Rightarrow\} \frac{dy}{dx} = 3^* \ln 3$$
 $\frac{dy}{dx} = 3^* \ln 3$ or $\ln 3(e^{\sin 3})$ or $y \ln 3$ B1Either T: $y = 9 \Rightarrow 3^* \ln 3(x = 2)$
or T: $y = (3^* \ln 3)x + 9 - 18 \ln 3$, where $9 = (3^* \ln 3)(2) + c$ See notesM1(Cue x-axis $\Rightarrow y = 0 \Rightarrow$) $-9 = 9 \ln 3(x = 2)$ or $0 = (3^* \ln 3)x + 9 - 18 \ln 3$.Sets $y = 0$ in their tangent equation
and progresses to $x = ...$ M1(b) $-9 = 9 \ln 3(x = 2)$ or $0 = (3^* \ln 3)x + 9 - 18 \ln 3$.Sets $y = 0$ in their tangent equation
and progresses to $x = ...$ M1(b) $V = \pi \int (3^*)^2 \{dx\}$ or $\pi \int 3^{3*} \{dx\}$ or $\pi \int 9^* \{dx\}$ $V = \pi \int (3^*)^2$ with or without dx .
Blo.c.Blo.c.(c) $V = \pi \int (3^*)^2 \{dx\}$ or $\pi \int 3^{3*} \{dx\}$ or $\pi \int 9^* \{dx\}$ $V = \pi \int (3^*)^2$ with or without dx .
Blo.c.Blo.c.(b) $V = \pi \int (3^*)^2 \{dx\}$ or $\pi \int 3^{3*} \{dx\}$ or $\pi \int 9^* \{dx\}$ $V = \pi \int (3^*)^2$ with or without dx .
Blo.c.Blo.c. $V = \pi \int (3^*)^2 \{dx\}$ or $\pi \int 3^{3*} \{dx\}$ or $\pi \int 9^* \{dx\}$ $x = 2 + \frac{\pi}{2} \frac{\pi}{2 \ln 3}$ Al o.e. $V = \pi \int (3^*)^2 dx = \{\pi [\frac{3^*}{2 \ln 3} = 1]$ $[= \{\pi] \frac{3^*}{2 \ln 3} = \frac{1}{2 \ln 3} \frac{1}{2 \ln 3}$ $x = 2 + \frac{\pi}{2} \frac{1}{2 \ln 3} (e^{2\pi i 3})$ $V = \pi \int (3^*)^2 dx = \{\pi [\frac{3^*}{2 \ln 3} = \frac{1}{2 \ln 3} = \frac{1}{2 \ln 3} \frac{1}{2 \ln 3}$ $V = \pi 2 + \frac{\pi}{2} \frac{\pi}{2 \ln 3} - \frac{\pi}{2 \ln 3}$ Al o.e. $V = \pi \int (3^*)^2 (\frac{1}{\ln 3}) = \frac{1}{2 \ln 3} (\frac{3^*}{2 \ln 3} = \frac{1}{2 \ln 3} \frac{1}{2 \ln 3} (\frac{3^*}{2 \ln 3} - \frac{2}{2 \ln 3} \frac{1}{2 \ln 3} (\frac{3}{2 \ln 3} - \frac{2}{2 \ln 3} - \frac{1}{2 \ln 3} (\frac{3}{2 \ln 3} - \frac{2}{2 \ln 3} - \frac{1}{2 \ln 3} \frac{1}{10}$ (b) $A = \pi \int (3^*)^2 (\frac{1}{2 \ln 3} - \frac{1}{2 \ln 3} + \frac{1}{2 \ln 3} (\frac{3}{2 \ln 3} - \frac{1}{2 \ln 3} - \frac{1}{2$

		Question 103 Notes
103. (a)	B 1	$\frac{dy}{dx} = 3^x \ln 3$ or $\ln 3(e^{x \ln 3})$ or $y \ln 3$. Can be implied by later working.
	M 1	Substitutes either $x = 2$ or $y = 9$ into their $\frac{dy}{dx}$ which is a function of x or y to find m_T and
		• either applies $y - 9 = (\text{their } m_T)(x - 2)$, where m_T is a numerical value.
		• or applies $y = (\text{their } m_T)x + \text{their } c$, where m_T is a numerical value and c is found
		by solving $9 = (\text{their } m_T)(2) + c$
-	Note	The first M1 mark can be implied from later working.
	M1	Sets $y = 0$ in their <i>tangent</i> equation, where m_T is a numerical value, (seen or implied)
-		and progresses to $x = \dots$
	A1	An exact value of $2 - \frac{1}{\ln 3}$ or $\frac{2\ln 3 - 1}{\ln 3}$ or $\frac{\ln 9 - 1}{\ln 3}$ by a correct solution only.
	Note	Allow A1 for $2 - \frac{\lambda}{\lambda \ln 3}$ or $\frac{\lambda(2\ln 3 - 1)}{\lambda \ln 3}$ or $\frac{\lambda(\ln 9 - 1)}{\lambda \ln 3}$ or $2 - \frac{\lambda}{\lambda \ln 3}$, where λ is an integer, and ignore subsequent working.
	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$) is M0 M0 in part (a).
	Note	Candidates who invent a value for m_r (which bears no resemblance to their gradient function)
		cannot gain the 1 st M1 and 2 nd M1 mark in part (a).
_	Note	A decimal answer of 1.089760773 (without a correct exact answer) is A0.
103. (b)	B 1	A correct expression for the volume with or without dx
	Note	Eg: Allow B1 for $\pi \left \left(3^x \right)^2 \left\{ dx \right\}$ or $\pi \left 3^{2x} \left\{ dx \right\}$ or $\pi \left 9^x \left\{ dx \right\}$ or $\pi \left \left(e^{x \ln 3} \right)^2 \left\{ dx \right\} \right\}$
		or $\pi \int (e^{2x \ln 3}) \{ dx \}$ or $\pi \int e^{x \ln 9} \{ dx \}$ with or without dx
	M1	Either $3^{2x} \rightarrow \frac{3^{2x}}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3) 3^{2x}$ or $9^x \rightarrow \frac{9^x}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9) 9^x$
		$e^{2\lambda \ln 3} \rightarrow \frac{\pm \alpha (\ln 3)}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3)e^{2\lambda \ln 3}$ or $e^{\lambda \ln 3} \rightarrow \frac{\pm \alpha (\ln 9)}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9)e^{\lambda \ln 3}$, etc where $\alpha \in \mathbb{C}$
	Note	$3^{2x} \rightarrow \frac{3^{2x+1}}{\pm \alpha(\ln 3)}$ or $9^x \rightarrow \frac{9^{x+1}}{\pm \alpha(\ln 3)}$ are allowed for M1
	Note	$3^{2x} \rightarrow \frac{3^{2x+1}}{2x+1}$ or $9^x \rightarrow \frac{9^{x+1}}{x+1}$ are both M0
	Note	M1 can be given for $9^{2x} \rightarrow \frac{9^{2x}}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9)9^{2x}$
	A1	Correct integration of 3^{2x} . Eg: $3^{2x} \rightarrow \frac{3^{2x}}{2\ln 3}$ or $\frac{3^{2x}}{\ln 9}$ or $9^x \rightarrow \frac{9^x}{\ln 9}$ or $e^{2x\ln 3} \rightarrow \frac{1}{2\ln 3} (e^{2x\ln 3})$
	dM1	dependent on the previous method mark being awarded.
	N~4-	Attempts to apply $x = 2$ and $x = 0$ to integrated expression and subtracts the correct way round. Evidence of a moment consideration of the limit of 0 is needed for $M(1 - S_{12})$ with restrict 0 is $M(0 - S_{12})$.
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.

$$\begin{array}{l} \textbf{103. (b)} & \frac{2^{\text{Md}} \textbf{B} \text{If } \textbf{mark for finding the Volume of a Cone}}{\textbf{Alternative method 2:}} \\ V_{\text{cons}} = \pi \int_{2^{-1} \frac{1}{\ln 3}}^{2} (9 \ln 3 - 18 \ln 3 + 9)^{2} dx \\ = \pi \int_{2^{-1} \frac{1}{\ln 3}}^{2} (8 \ln 3)^{2} - 324x (\ln 3)^{2} + 162x \ln 3 - 324 \ln 3 + 324x (\ln 3)^{2} + 81) dx \\ = \pi \left[27x^{3} (\ln 3)^{2} - 162x^{3} (\ln 3)^{2} + 81x^{2} \ln 3 - 324x \ln 3 + 324x (\ln 3)^{2} + 81x \right]_{2^{-1} \frac{1}{\ln 3}}^{2} \\ **** \\ & \left\{ \begin{array}{c} (216 (\ln 3)^{2} - 648 (\ln 3)^{2} + 324 \ln 3 - 648 \ln 3 + 648 (\ln 3)^{2} + 162) \\ - \left(27 \left(2 - \frac{1}{\ln 3} \right)^{3} (\ln 3)^{2} - 162 \left(2 - \frac{1}{\ln 3} \right)^{2} (\ln 3)^{2} + 81 \left(2 - \frac{1}{\ln 3} \right)^{2} \ln 3 \\ - 324 \left(2 - \frac{1}{\ln 3} \right) (\ln 3)^{2} - 162 \left(2 - \frac{1}{\ln 3} \right)^{2} (\ln 3)^{2} + 81 \left(2 - \frac{1}{\ln 3} \right) \end{array} \right) \right] \\ & = \pi \left[\left(216 (\ln 3)^{2} - 324 \ln 3 + 162 \right) - \left(27 \left(8 - \frac{12}{\ln 3} + \frac{6}{(\ln 3)^{2}} - \frac{1}{(\ln 3)^{2}} \right) (\ln 3)^{2} - 162 \left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^{2}} \right) (\ln 3)^{2} \right) \right] \\ & = \pi \left[\left(216 (\ln 3)^{2} - 324 \ln 3 + 162 \right) - \left(27 \left(8 - \frac{12}{\ln 3} + \frac{6}{(\ln 3)^{2}} - \frac{1}{(\ln 3)^{2}} \right) (\ln 3)^{2} - 162 \left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^{2}} \right) (\ln 3)^{2} \right) \right] \\ & = \pi \left[\left(216 (\ln 3)^{2} - 324 \ln 3 + 162 \right) - \left(27 \left(8 - \frac{12}{\ln 3} + \frac{1}{(\ln 3)^{2}} \right) (\ln 3)^{2} + 81 \left(2 - \frac{1}{\ln 3} \right) (\ln 3)^{2} + 81 \left(2 - \frac{1}{\ln 3} \right) (\ln 3)^{2} + 81 \left(2 - \frac{1}{\ln 3} \right) (\ln 3)^{2} \right) \right] \\ & = \pi \left[\left(216 (\ln 3)^{2} - 324 \ln 3 + 162 \right) - \left(216 (\ln 3)^{2} - 324 \ln 3 + 162 - \frac{27}{\ln 3} - 648 (\ln 3)^{2} + 648 \ln 3 - 162 \right) \right] \\ & = \pi \left[\left(216 (\ln 3)^{2} - 324 \ln 3 + 162 \right) - \left(216 (\ln 3)^{2} - 324 \ln 3 + 162 - \frac{27}{\ln 3} - 648 (\ln 3)^{2} + 648 \ln 3 - 162 \right) \right] \\ & = \pi \left[\left(216 (\ln 3)^{2} - 324 \ln 3 + 162 \right) - \left(216 (\ln 3)^{2} - 324 \ln 3 + 162 - \frac{27}{\ln 3} \right) \right] \\ & = \pi \left[\frac{27\pi}{\ln 3} \right] \right] \\ = \frac{27\pi}{\ln 3} \\ = \pi \left[\frac{27\pi}{\ln 3} \right] \left[\frac{27\pi}{\ln 3} + \frac{162}{\ln 3} - \frac{1}{\ln 3} + \frac{162}{\ln 3} - \frac{27}{\ln 3} \right] \\ = \frac{27\pi}{\ln 3} \\ = \frac{27\pi}{\ln 3} \\ = \frac{1}{\ln 3$$

Question Number		Scheme	Marks
104	$u = \sqrt{u}$	$\sqrt{x} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u} = 2u$	B1
	$\int \overline{2}$	$\frac{10}{u^2 + 5u} \cdot 2u du \qquad \text{Either } \left\{ \int \right\} \frac{\pm k u}{\alpha u^2 \pm \beta u} \left\{ du \right\} \text{ or } \left\{ \int \right\} \frac{\pm k}{u \left(\alpha u^2 \pm \beta u \right)} \left\{ du \right\}$	M1
	{_ ($\pm \lambda \ln(2u+5) \text{ or } \pm \lambda \ln\left(u+\frac{5}{2}\right), \ \lambda \neq 0$	M1
	{= J	$\frac{2u+5}{2u+5} \stackrel{\text{du}}{\longrightarrow} = \frac{1}{2} \ln(2u+5) \text{with no other terms.}$ $\frac{20}{2u+5} \rightarrow \frac{20}{2} \ln(2u+5) \text{ or } 10 \ln\left(u+\frac{5}{2}\right)$	A1 cso
	$\left\{ \boxed{\frac{20}{2}} \right.$	$\ln(2u+5)\Big]_{1}^{2} = 10\ln(2(2)+5) - 10\ln(2(1)+5)$ Substitutes limits of 2 and 1 in <i>u</i> (or 4 and 1 in <i>x</i>) and subtracts the correct way round.	M1
	101n9	$9 - 10 \ln 7$ or $10 \ln \left(\frac{9}{7}\right)$ or $20 \ln 3 - 10 \ln 7$	A1 oe cso
			[6]
104	B1	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{or} \mathrm{d}u = \frac{1}{2\sqrt{x}} \mathrm{d}x \text{or} \ 2\sqrt{x} \mathrm{d}u = \mathrm{d}x \text{or} \mathrm{d}x = 2u \mathrm{d}u \text{or} \frac{\mathrm{d}x}{\mathrm{d}u} = 2u \text{o.e.}$	
	M1	Applying the substitution and achieving $\left\{ \int \right\} \frac{\pm k u}{\alpha u^2 \pm \beta u} \left\{ du \right\}$ or $\left\{ \int \right\} \frac{\pm k}{u \left(\alpha u^2 \pm \beta u \right)}$	$\left\{ \mathrm{d}u\right\} ,$
		$k, \alpha, \beta \neq 0$. Integral sign and du not required for this mark.	
	M1	Cancelling <i>u</i> and integrates to achieve $\pm \lambda \ln(2u+5)$ or $\pm \lambda \ln\left(u+\frac{5}{2}\right)$, $\lambda \neq 0$ with no otherwise	ner terms.
	A1	cso. Integrates $\frac{20}{2u+5}$ to give $\frac{20}{2}\ln(2u+5)$ or $10\ln\left(u+\frac{5}{2}\right)$, un-simplified or simplifie	d.
	Note	BE CAREFUL! Candidates must be integrating $\frac{20}{2u+5}$ or equivalent.	
		So $\int \frac{10}{2u+5} du = 10 \ln(2u+5)$ WOULD BE A0 and final A0.	
	M1	Applies limits of 2 and 1 in u or 4 and 1 in x in their (i.e. any) changed function and subtra correct way round.	cts the
	A1	Exact answers of either $10\ln 9 - 10\ln 7$ or $10\ln\left(\frac{9}{7}\right)$ or $20\ln 3 - 10\ln 7$ or $20\ln\left(\frac{3}{\sqrt{7}}\right)$	or $\ln\left(\frac{9^{10}}{7^{10}}\right)$
		or equivalent. Correct solution only.	
	Note Note	You can ignore subsequent working which follows from a correct answer. A decimal answer of 2.513144283 (without a correct exact answer) is A0.	

Question Number	Scheme	Marks
	$\pm \alpha x e^{4x} - \int \beta e^{4x} \{ dx \}, \alpha \neq 0, \beta > 0$	M1
105. (i)	$\int x e^{4x} dx = \frac{1}{4} x e^{4x} - \int \frac{1}{4} e^{4x} \{ dx \}$ $\frac{1}{4} x e^{4x} - \int \frac{1}{4} e^{4x} \{ dx \}$	A1
	$=\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} \{+c\}$ $\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$	A1
	$\pm \lambda (2x-1)^{-2}$	[3] M1
(ii)	$\int \frac{\sigma}{(2x-1)^3} dx = \frac{\sigma(2x-1)}{(2)(-2)} \left\{ + c \right\} \qquad \qquad \frac{8(2x-1)^{-2}}{(2)(-2)} \text{ or equivalent.}$	A1
	$\left\{=-2(2x-1)^{-2} \left\{+c\right\}\right\} $ {Ignore subsequent working}.	[2]
(iii)	$\frac{dy}{dx} = e^x \operatorname{cosec} 2y \operatorname{cosec} y$ $y = \frac{\pi}{6}$ at $x = 0$	
	Main Scheme	
	$\int \frac{1}{\csc 2y \operatorname{cosec} y} \mathrm{d}y = \int \mathrm{e}^x \mathrm{d}x \text{or} \int \sin 2y \sin y \mathrm{d}y = \int \mathrm{e}^x \mathrm{d}x$	B1 oe
	$\int 2\sin y \cos y \sin y dy = \int e^x dx \qquad \text{Applying } \frac{1}{\csc 2y} \text{ or } \sin 2y \to 2\sin y \cos y$	M1
	Integrates to give $\pm \mu \sin^3 y$	M1
	$\frac{2}{3}\sin^3 y = e^x \{+c\}$ $2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y$	A1
	$e^x \rightarrow e^x$	B1
	$\frac{2}{3}\sin^3\left(\frac{\pi}{6}\right) = e^0 + c \text{ or } \frac{2}{3}\left(\frac{1}{8}\right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0$	M1
	$\begin{cases} \Rightarrow c = -\frac{11}{12} \\ \text{giving} \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \\ \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \end{cases}$	A1
		[7]
	Alternative Method 1	
	$\int \frac{1}{\csc 2y \operatorname{cosec} y} \mathrm{d}y = \int \mathrm{e}^x \mathrm{d}x \text{or} \int \sin 2y \sin y \mathrm{d}y = \int \mathrm{e}^x \mathrm{d}x$	B1 oe
	$\int -\frac{1}{2} (\cos 3y - \cos y) dy = \int e^x dx \qquad $	M1
	Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$	M1
	$-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \{+c\} \qquad -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right)$	A1
	$e^x \rightarrow e^x$ as part of solving their DE.	B1
	$-\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 + c \text{ or } -\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c$	M1
	$\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \qquad \qquad -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$	A1
		[7]
		12

		Question 105 Notes			
105. (i)	M1	Integration by parts is applied in the form \pm	$\alpha x e^{4x} - \int \beta e^{4x} \{ dx \}$, where $\alpha \neq 0, \beta > 0$.		
		(must be in this form).			
	A1	$\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\} \text{ or equivalent.}$			
	A1 $\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ with/without + c. Can be un-simplified.				
	isw	You can ignore subsequent working followi	ng on from a correct solution.		
	SC	SPECIAL CASE: A candidate who uses $u = x$, $\frac{dv}{dx} = e^{4x}$, writes down the correct "by parts"			
		formula, but makes only one error when applying it c	an be awarded Special Case M1.		
(ii)	M1	$\pm \lambda (2x-1)^{-2}, \lambda \neq 0$. Note that λ can be 1.			
	A1	$\frac{8(2x-1)^{-2}}{(2)(-2)}$ or $-2(2x-1)^{-2}$ or $\frac{-2}{(2x-1)^2}$	- with/without + c . Can be un-simplified.		
	Note	You can ignore subsequent working which t	follows from a correct answer.		
(iii)	B1	Separates variables as shown. dy and dx sh	hould be in the correct positions, though this n	nark can be	
		implied by later working. Ignore the integr			
	Note	Allow B1 for $\int \frac{1}{\csc 2y \csc y} = \int e^x$ or $\int \sin 2y \sin y = \int e^x$			
	M1	$\frac{1}{\csc 2y} \rightarrow 2\sin y \cos y \text{or} \sin 2y \rightarrow 2\sin y \cos y \text{or} \sin 2y \sin y \rightarrow \pm \lambda \cos 3y \pm \lambda \cos y$			
	N/1	seen anywhere in the candidate's working to (iii). Integrates to give $\pm u \sin^3 v$, $u \neq 0$, $cr = \pm u \sin^2 v + \theta \sin v$, $cr \neq 0$, $\theta \neq 0$			
	MI	Integrates to give $\pm \mu \sin^2 y$, $\mu \neq 0$ or $\pm \alpha \sin 3y \pm \beta \sin y$, $\alpha \neq 0$, $\beta \neq 0$			
	A1	$2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y \text{ (with no extra terms) or integrates to give } -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y\right)$			
	B1	Evidence that e^x has been integrated to give e^x as part of solving their DE.			
	M1	Some evidence of using both $y = \frac{\pi}{6}$ and $x =$	= 0 in an integrated or changed equation contained	aining <i>c</i> .	
	Note	that is mark can be implied by the correct va	alue of <i>c</i> .		
	A1	$\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ or $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y$	$v = e^x - \frac{11}{12}$ or any equivalent correct answ	er.	
	Note You can ignore subsequent working which follows from a correct answer.				
	$\int \sin 2v \sin v dv = \int e^x dx$			B1 oe	
	Applies integration by parts twice				
	to give $\pm \alpha \cos y \sin 2y \pm \beta \sin y \cos 2y$ M2				
	$\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y = e^x \{+c\}$ $\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y$ (simplified or un-simplified) $A1$ $\frac{e^x}{2} = e^x \exp \frac{1}{2}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y$				
			$c \rightarrow c$ as part of solving their DE. as in the main scheme	M1	
	1	$2y = \frac{2}{2} \sin y \cos 2y = e^x = \frac{11}{2}$	$\frac{1}{-\sin^2 y} + \frac{1}{-\sin^2 y} = 2^x$ 11	Δ1	
	$3^{-\cos y \sin}$	$2y = \frac{1}{3} \sin y \cos 2y = \frac{1}{2} - \frac{1}{12}$	$\frac{\sin 3y}{6} + \frac{-\sin y}{2} = e^{-} - \frac{1}{12}$		
				[7]	

Question Number	Scheme	Marks
106.	$x = 3\tan\theta$, $y = 4\cos^2\theta$ or $y = 2 + 2\cos 2\theta$, $0 \le \theta < \frac{\pi}{2}$.	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$, $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -8\cos\theta\sin\theta$ or $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -4\sin2\theta$	
	$\frac{dy}{d\theta} = \frac{-8\cos\theta\sin\theta}{d\theta} \left\{ = -\frac{8}{\cos^3\theta}\sin\theta = -\frac{4}{\sin^2\theta}\sin^2\theta} \right\} \qquad \text{their } \frac{dy}{d\theta} \text{ divided by their } \frac{dx}{d\theta}$	M1
	$\frac{dx}{dx} = 3\sec^2\theta \qquad \begin{bmatrix} -3 & -3 & -3 & -3 \\ -3 & -3 & -3 \end{bmatrix} \qquad \text{Correct } \frac{dy}{dx}$	A1 oe
	At $P(3, 2), \ \theta = \frac{\pi}{4}, \ \frac{dy}{dx} = -\frac{8}{3}\cos^3\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right) \left\{=-\frac{2}{3}\right\}$ Some evidence of substituting $\theta = \frac{\pi}{4}$ into their $\frac{dy}{dx}$	M1
	So, $m(\mathbf{N}) = \frac{3}{2}$ applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1
	Either N: $y - 2 = \frac{3}{2}(x - 3)$	
	or $2 = \left(\frac{3}{2}\right)(3) + c$ see notes	M1
	{At Q , $y = 0$, so, $-2 = \frac{3}{2}(x - 3)$ } giving $x = \frac{5}{3}$ $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67	A1 cso
		[6]
(b)	$\left\{ \int y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta \right\} = \left\{ \int \left\{ (4\cos^2\theta)^2 3\sec^2\theta \right\} \{d\theta\} $ see notes	M1
	So, $\pi \int y^2 dx = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$ see notes	A1
	$\int y^2 dx = \int 48\cos^2\theta d\theta \qquad $	A1
	$= \{48\} \int \left(\frac{1+\cos 2\theta}{2}\right) d\theta \left\{= \int (24+24\cos 2\theta) d\theta\right\} \qquad \text{Applies } \cos 2\theta = 2\cos^2 \theta - 1$	M1
	Dependent on the first method (1 1) mark For $\pm \alpha \theta \pm \beta \sin 2\theta$	
	$= \{48\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right) \{= 24\theta + 12\sin 2\theta\} \qquad \qquad$	A1
	$\int_{0}^{\frac{\pi}{4}} y^{2} dx \begin{cases} = 48 \left[\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta \right]_{0}^{\frac{\pi}{4}} \right] = \left\{ 48 \right\} \left(\left(\frac{\pi}{8} + \frac{1}{4} \right) - (0+0) \right) \left\{ = 6\pi + 12 \right\} $ Dependent on the third method mark.	dM1
	{So $V = \pi \int_{0}^{\frac{\pi}{4}} y^2 dx = 6\pi^2 + 12\pi$ }	
	$V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \frac{5}{3}\right) \left\{ = \frac{16\pi}{9} \right\}$ $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \text{their } (a)\right)$	M1
	$\left\{ \text{Vol}(S) = 6\pi^2 + 12\pi - \frac{16\pi}{9} \right\} \Rightarrow \text{Vol}(S) = \frac{92}{9}\pi + 6\pi^2 \qquad \qquad \frac{92}{9}\pi + 6\pi^2$	A1
	$\left\{p = \frac{92}{9}, \ q = 6\right\}$	[9]
		15

	Question 106 Notes					
106. (a)	1 st M1	Applies their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$ or applies $\frac{dy}{d\theta}$ multiplied by their $\frac{d\theta}{dx}$				
	SC	Award Special Case 1 st M1 if both $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ are both correct.				
	1 st A1	Correct $\frac{dy}{dx}$ i.e. $\frac{-8\cos\theta\sin\theta}{3\sec^2\theta}$ or $-\frac{8}{3}\cos^3\theta\sin\theta$ or $-\frac{4}{3}\sin2\theta\cos^2\theta$ or any equivalent form.				
	2 nd M1	Some evidence of substituting $\theta = \frac{\pi}{4}$ or $\theta = 45^{\circ}$ into their $\frac{dy}{dx}$				
	Note	For 3 rd M1 and 4 th M1, $m(\mathbf{T})$ must be found by using $\frac{dy}{dx}$.				
	3 rd M1	applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. Numerical value for $m(\mathbf{N})$ is required here.				
	4 th M1	• Applies $v - 2 = (\text{their } m_{y})(x - 3)$, where m(N) is a numerical value.				
		• or <i>finds c</i> by solving $2 = (\text{their } m_N)3 + c$, where m(N) is a numerical value,				
		and $m_N = -\frac{1}{\text{their } m(\mathbf{T})}$ or $m_N = \frac{1}{\text{their } m(\mathbf{T})}$ or $m_N = -\text{their } m(\mathbf{T})$.				
	Note	This mark can be implied by subsequent working.				
	2 nd A1	$x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only.				
(b)	1 st M1	Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral.				
	Note	You can ignore the omission of an integral sign and/or $d\theta$ for the 1 st M1.				
	Note	Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times$ "their 3sec ² θ " d θ or $\int 4(\cos^2 \theta)^2 \times$ "their 3sec ² θ " d θ				
	1 st A1	Correct expression $\left\{\pi \int y^2 dx\right\} = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$ (Allow the omission of $d\theta$)				
	Note	IMPORTANT: The π can be recovered later, but as a correct statement only.				
	2 nd A1	$\left\{ \int y^2 dx \right\} = \int 48\cos^2\theta \left\{ d\theta \right\}.$ (Ignore $d\theta$). Note: 48 can be written as 24(2) for example.				
	2 nd M1	Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied .)				
	3 rd dM1*	which is dependent on the 1 st M1 mark.				
		Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified.				
	3 rd A1	which is dependent on the 3 rd M1 mark and the 1 st M1 mark.				
	Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified.					
		This can be implied by $k\cos^2\theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified.				
	4 th dM1	which is dependent on the 3 rd M1 mark and the 1 st M1 mark.				
		Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ				
	Applies $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 (3 - \text{their part}(a) \text{ answer}).$					
Note Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their}}^{3} \left(\frac{3}{2}x - \frac{5}{2}\right)^2 \{dx\}$, which includes the correct						
	4th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$					
	Note Note	A decimal answer of 91.33168464 (without a correct exact answer) is A0. The π in the volume formula is only needed for the 1 st A1 mark and the final accuracy mark.				
166		T EXPERT T TUITION				

106.		Working with a Cartesian Equation			
		A cartesian equation for C is $y = \frac{30}{x^2 + 9}$			
(a)	1 st M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda x \left(\pm \alpha x^2 \pm \beta\right)^{-2} \text{ or } \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\pm \lambda x}{\left(\pm \alpha x^2 \pm \beta\right)^2}$			
	1 st A1	$\frac{dy}{dx} = -36(x^2+9)^{-2}(2x)$ or $\frac{dy}{dx} = \frac{-72x}{(x^2+9)^2}$ un-simplified or simplified.			
	2 nd dM1	Dependent on the 1 st M1 mark if a candidate uses this method			
		For substituting $x = 3$ into their $\frac{dy}{dx}$			
		i.e. at $P(3, 2)$, $\frac{dy}{dx} = \frac{-72(3)}{(3^2 + 9)^2} \left\{ = -\frac{2}{3} \right\}$			
		From this point onwards the original scheme can be applied.			
(b)	1 st M1	For $\int \left(\frac{\pm \lambda}{\pm \alpha x^2 \pm \beta}\right)^2 \{dx\}$ (π not required for this mark)			
	A1	For $\pi \int \left(\frac{36}{x^2+9}\right)^2 \{dx\}$ (π required for this mark)			
		To integrate, a substitution of $x = 3\tan\theta$ is required which will lead to $\int 48\cos^2\theta d\theta$ and so			
		from this point onwards the original scheme can be applied.			
		Another cartesian equation for <i>C</i> is $x^2 = \frac{36}{y} - 9$			
(a)	1 st M1	$\pm \alpha x = \pm \frac{\beta}{y^2} \frac{dy}{dx}$ or $\pm \alpha x \frac{dx}{dy} = \pm \frac{\beta}{y^2}$			
	1 st A1	$2x = -\frac{36}{y^2}\frac{dy}{dx}$ or $2x\frac{dx}{dy} = -\frac{36}{y^2}$			
	2 nd dM1	Dependent on the 1 st M1 mark if a candidate uses this method			
		For substituting $x = 3$ to find $\frac{dy}{dx}$			
		dx 36 dy dy			
		i.e. at $P(3, 2), 2(3) = -\frac{33}{4} \frac{dy}{dx} \Rightarrow \frac{dy}{dx} =$			
		From this point onwards the original scheme can be applied.			

Question Number	Scheme				
107	$\left\{ \int (2-x)e^{2x} dx \right\}, \left\{ \begin{array}{l} u = 2-x \implies \frac{du}{dx} = -1 \\ \frac{dv}{dx} = e^{2x} \implies v = \frac{1}{2}e^{2x} \end{array} \right\}$				
	$=\frac{1}{2}(2$	$\operatorname{Either} (2-x)e^{2x} \to \pm \lambda(2-x)e^{2x} \pm \int \mu e^{2x} \{dx\}$ $= \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\}$ or $\pm xe^{2x} \to \pm \lambda xe^{2x} \pm \int \mu e^{2x} \{dx\}$			
	Z	$(2-x)e^{2x} \to \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\}$	A1		
	$=\frac{1}{2}(2$	$(2-x)e^{2x} + \frac{1}{4}e^{2x}$ $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$	A1 oe		
	Area =	$= \left\{ \left[\frac{1}{2} (2-x) e^{2x} + \frac{1}{4} e^{2x} \right]^2 \right\}$			
	$=\left(0+\right)$	$= \left(0 + \frac{1}{4}e^{4}\right) - \left(\frac{1}{2}(2)e^{0} + \frac{1}{4}e^{0}\right)$ Applies limits of 2 and 0 <i>to all terms</i> and subtracts the correct way round.			
	$=\frac{1}{4}e^4 - \frac{5}{4}$ or $\frac{e^4}{4}$		A1 oe		
		Question 107 Notes			
107	M1	Either $(2-x)e^{2x} \rightarrow \pm \lambda(2-x)e^{2x} \pm \int \mu e^{2x} \{dx\}$ or $\pm xe^{2x} \rightarrow \pm \lambda xe^{2x} \pm \int \mu e^{2x} \{dx\}$			
	A1	$(2-x)e^{2x} \rightarrow \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\}$ either un-simplified or simplified.			
	A1	Correct expression, i.e. $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$ or $\frac{5}{4}e^{2x} - xe^{2x}$ (or equivalent)			
	dM1	which is dependent on the 1 st M1 mark being awarded.			
	Note	Complete method of applying limits of 2 and 0 to all terms and subtracting the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M1. So, just subtracting zero is M0.			
	A1	$\frac{1}{4}e^4 - \frac{5}{4}$ or $\frac{e^4 - 5}{4}$. Do not allow $\frac{1}{4}e^4 - \frac{5}{4}e^0$ unless simplified to give $\frac{1}{4}e^4 - \frac{5}{4}e^4$			
	Note	12.39953751 without seeing $\frac{1}{4}e^4 - \frac{5}{4}$ is A0.			
	Note	Note 12.39953751 from NO working is M0A0A0M0A0.			

Question Number	Scheme	Marks			
108. (a)	$\frac{25}{x^2(2x+1)} \equiv \frac{A}{x} + \frac{B}{x^2} + \frac{C}{(2x+1)}$				
	At least one of "B" or "C" correct. B = 25, $C = 100Breaks up their partial fraction correctly intothree terms and both "B" = 25 and "C" = 100.See notes.$	B1 B1 cso			
	$25 = Ax(2x + 1) + B(2x + 1) + Cx^{2}$ $x = 0, \qquad 25 = B$ $x = -\frac{1}{2}, \qquad 25 = \frac{1}{4}C \Rightarrow C = 100$ Writes down a correct identity and attempts to find the value of either one of "A", "B" or "C". $x^{2} \text{ terms:} 0 = 2A + C$ $0 = 2A + 100 \Rightarrow A = -50$ $x^{2} : 0 = 2A + C, x: 0 = A + 2B,$ $\text{constant:} 25 = B$	M1			
	leading to $A = -50$ $\begin{cases} Correct value for "A" which is found using a correct identity and follows from their partial fraction decomposition. \end{cases}$ $\begin{cases} \frac{25}{x^2(2x+1)} \equiv -\frac{50}{x} + \frac{25}{x^2} + \frac{100}{(2x+1)} \end{cases}$	A1 [4]			
(b)	$V = \pi \int_{1}^{4} \left(\frac{5}{x\sqrt{(2x+1)}}\right)^{2} dx$ For $\pi \int \left(\frac{5}{x\sqrt{(2x+1)}}\right)^{2}$ Ignore limits and dx. Can be implied.	B1			
	For their partial fraction				
	$\left\{ \int \frac{25}{x^2(2x+1)} dx = \int -\frac{50}{x} + \frac{25}{x^2} + \frac{100}{(2x+1)} dx \right\} \qquad \text{Either } \pm \frac{A}{x} \to \pm a \ln x \text{ or } \pm a \ln kx \text{ or}$ $= 50 \ln x + \frac{25x^{-1}}{x} + \frac{100}{x} \ln (2x+1) \ln (x) = \frac{\pm B}{x^2} \to \pm bx^{-1} \text{ or } \frac{C}{x} \to \pm c \ln(2x+1)$	M1			
	$= -50 \ln x + \frac{1}{(-1)} + \frac{1}{2} \ln(2x+1) \{+c\}$ x^{2} (2x+1) <i>At least</i> two terms correctly integrated <i>All three</i> terms correctly integrated.	A1ft A1ft			
	$\begin{cases} \int_{1}^{4} \frac{25}{x^{2}(2x+1)} dx = \left[-50\ln x - \frac{25}{x} + 50\ln(2x+1) \right]_{1}^{4} \\ = \left(-50\ln 4 - \frac{25}{4} + 50\ln 9 \right) - \left(0 - 25 + 50\ln 3 \right) \\ = 50\ln 9 - 50\ln 4 - 50\ln 3 - \frac{25}{4} + 25 \\ = 50\ln \left(\frac{3}{4} \right) + \frac{75}{4} \end{cases}$ Applies limits of 4 and 1 and subtracts the correct way round.	dM1			
	So $W = \frac{75}{4}\pi + 50\pi \ln\left(\frac{3}{4}\right)$ or allow $\pi\left(\frac{75}{4} + 50\ln\left(\frac{3}{4}\right)\right)$	A1 oe [6] 10			

	Question 108 Notes			
108. (a)	BE CAREFUL! Candidates will assign <i>their own</i> " <i>A</i> , <i>B</i> and <i>C</i> " for this question.			
	B1	At least one of "B" or "C" are correct.		
	B 1	Breaks up their partial fraction correctly into three terms and both $"B" = 25$ and $"C" = 100$.		
	Note	If a candidate does not give partial fraction decomposition then:		
		• the 2 nd B1 mark can follow from a correct identity.		
	M1	Writes down <i>a correct identity</i> (although this can be implied) and attempts to find the value of either		
		one of " <i>A</i> " or " <i>B</i> " or " <i>C</i> ".		
		This can be achieved by <i>either</i> substituting values into their identity <i>or</i>		
		comparing coefficients and solving the resulting equations simultaneously.		
	A1	Correct value for "A" which is found using a correct identity and follows from their partial fraction		
		decomposition.		
	Note	If a candidate does not give partial fraction decomposition then the final A1 mark can be awarded for		
		a correct "A" if a candidate writes out their partial fractions at the end.		
	Note	The correct partial fraction from no working scores B1B1M1A1.		
	Note	A number of candidates will start this problem by writing out the correct identity and then attempt to		
		find "A" or "B" or "C". Therefore the B1 marks can be awarded from this method.		
	Note	Award SC B1B0M0A0 for $\frac{25}{1000} = \frac{B}{100000000000000000000000000000000000$		
	11010	$x^{2}(2x+1)$ x^{2} $(2x+1)$		
		$(5)^2 $ $(25)^2$		
(b)	B 1	For a correct statement of π π $\frac{3}{\sqrt{2}}$ or π $\frac{23}{\sqrt{2}}$. Ignore limits and dx. Can be implied.		
		$J(x\sqrt{(2x+1)}) \qquad J(x(2x+1))$		
	The π can only be recovered later from a correct expression.			
		For their partial fraction, (not $\sqrt{\text{their partial fraction}}$), where A, B, C are "their" part (a) constants		
		$A \qquad B \qquad C \qquad C$		
	M1 Either $\pm \frac{1}{x} \rightarrow \pm a \ln x$ or $\pm \frac{1}{x^2} \rightarrow \pm b x^{-1}$ or $\frac{1}{(2x+1)} \rightarrow \pm c \ln(2x+1)$.			
	$ \begin{bmatrix} \lambda & \lambda \\ -\lambda & (2\lambda + 1) \end{bmatrix} $			
	Note $\sqrt{\frac{B}{2}} \rightarrow \frac{\sqrt{B}}{2}$ which integrates to $\sqrt{B} \ln x$ is not worthy of M1.			
		$\sqrt{x^2}$ x		
	A 1.64	At least two terms from any of $+ A$ or $+ B$ or $-C$ correctly integrated. Can be up simplified		
	AIII	At least two terms normally of $\pm \frac{1}{x}$ of $\pm \frac{1}{x^2}$ of $\frac{1}{(2x+1)}$ concerns integrated. Can be un-simplified.		
	A1ft	All 3 terms from $\pm \frac{1}{r}$, $\pm \frac{1}{r^2}$ and $\frac{1}{(2r+1)}$ correctly integrated. Can be un-simplified.		
	Nata	The 1 st A1 and 2 nd A1 modes in part (b) are both follow through a course works		
	Note	The T AT and 2 AT marks in part (b) are both follow through accuracy marks.		
	alvii	Applies limits of 4 and 1 and subtracts the correct way round		
		Applies limits of 4 and 1 and subtracts the correct way found. $75 \qquad (2) \qquad (2) \qquad 75$		
	A1	Final correct exact answer in the form $a + b \ln c$. i.e. either $\frac{75}{4}\pi + 50\pi \ln \left(\frac{5}{4}\right)$ or $50\pi \ln \left(\frac{5}{4}\right) + \frac{75}{4}\pi$		
		4 (4) (4) 4		
		or $50\pi \ln\left(\frac{9}{2}\right) + \frac{75}{7\pi}\pi$ or $\frac{75}{7\pi}\pi - 50\pi \ln\left(\frac{4}{2}\right)$ or $\frac{75}{7\pi}\pi + 25\pi \ln\left(\frac{9}{2}\right)$ etc		
		(12) 4 4 4 (3) 4 (16) (16)		
		$(75 \dots (3))$		
		Also allow $\pi \left[\frac{1}{4} + 50 \ln \left[\frac{1}{4} \right] \right]$ or equivalent.		
	Nat-	(τ) (τ)		
	note	A candidate who achieves run marks in (a), but then mixes up the correct constants when writing their partial fraction can only achieve a maximum of R1M1A1A0M1A0 in part (b)		
	Noto	The π in the volume formula is only required for the R1 mark and the final A1 mark		
	note	The π in the volume formula is only required for the D1 mark and the initial A1 mark.		

108. (b) Alternative method of integration

$$V = \pi \int_{1}^{4} \left(\frac{5}{x\sqrt{(2x+1)}}\right)^{2} dx$$

$$V = \pi \int_{1}^{2} \left(\frac{5}$$

Question Number	Scheme			
109.	$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{(kt-1)(5000-N)}{t}, t > 0, \ 0 < N < 5000$			
(a)	$\int \frac{1}{5000 - N} dN = \int \frac{(kt - 1)}{t} dt \left\{ \text{or} = \int \left(k - \frac{1}{t} \right) dt \right\}$ See notes			B1
	$-\ln(5000 - N) = kt - \ln t; +c$		See notes	M1 A1; A1
	then eg either	or	or	
	$-kt + c = \ln(5000 - N) - \ln t$	$kt + c = \ln t - \ln \left(5000 - N \right)$	$\ln(5000 - N) = -kt + \ln t + c$	
	$-kt + c = \ln\left(\frac{5000 - N}{t}\right)$	$kt + c = \ln\left(\frac{t}{5000 - N}\right)$	$5000 - N = e^{-kt + \ln t + c}$	
	$e^{-kt+c} = \frac{5000-N}{t}$	$e^{kt+c} = \frac{t}{5000-N}$	$5000 - N = t e^{-kt + c}$	
	leading to $N = 5000 - A$	te^{-kt} with no incorrect wor	king/statements. See notes	A1 * cso
		k		[5]
(b)	$\{t = 1, N = 1200 \Longrightarrow\} 1200 = 5$	$000 - Ae^{-\kappa}$ At	least one correct statement written	B1
	$\{t = 2, N = 1800 \Rightarrow\}$ $1800 = 5000 - 2Ae^{-2k}$ down using the boundary conditions			
	So $Ae^{-k} = 3800$			
	and $2Ae^{-2k} = 3200$ or Ae^{-2k}	$2^{2k} = 1600$		
	Eg. $\frac{e^{-k}}{2} = \frac{3800}{2}$ or $\frac{2e^{-2k}}{2} = \frac{3200}{2}$ An attempt to eliminate			M1
	$2e^{-2k}$ 3200 e^{-k} 3800 by producing an equation in only k.			
	So $\frac{1}{2}e^k = \frac{3800}{3200}$ or $2e^k$	$k = \frac{3200}{3800}$		
			At least one of $A = 9025$ cao	
	$k = \ln\left(\frac{7600}{3200}\right) \text{ or equivalent } \left\{ \text{eg } k = \ln\left(\frac{19}{8}\right) \right\} \text{ or } k = \ln\left(\frac{7600}{3200}\right) \text{ or exact equivalent}$			A1
	Both $A = 9025$ cao			
	$\left\{A = 3800(e^k) = 3800\left(\frac{19}{8}\right) \Rightarrow \right\} A = 9025 \text{or } k = \ln\left(\frac{7600}{3200}\right) \text{ or exact equivalent}$			A1
			× ,	[4]
	Alternative Method for the M1	mark in (b)		
	$e^{-k} = \frac{3800}{A}$			
	$2A\left(\frac{3800}{A}\right)^2 = 3200$	ł	An attempt to eliminate k by producing an equation in only A	M1
(c)	$\left\{ t = 5, \ N = 5000 - 9025(5)e^{-5\ln\left(\frac{19}{8}\right)} \right\}$			
	N = 4402.828401 = 4400 (fish) (nearest 100)		anything that rounds to 4400	B1 [1] 10

	Question 109 Notes					
109. (a)						
	B1	Separates variables as shown. dN and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.				
	M1	Either $\pm \lambda \ln(5000 - N)$ or $\pm \lambda \ln(N - 5000)$ or $kt - \ln t$ where $\lambda \neq 0$ is a constant.				
	A1	For $-\ln(5000 - N) = kt - \ln t$ or $\ln(5000 - N) = -kt + \ln t$ or $-\frac{1}{k}\ln(5000 - N) = t - \frac{1}{k}\ln t$ oe				
	A1	which is dependent on the 1 st M1 mark being awarded.				
		For applying a constant of integration, eg. $+ c$ or $+ \ln e^{c}$ or $+ \ln c$ or A to their integrated equation				
	Note	+ c can be on either side of their equation for the 2^{nd} A1 mark. Uses a constant of integration eg. "c" or " $\ln e^c$ " " $\ln c$ " or and applies a fully correct method to prove the result $N = 5000 - Ate^{-kt}$ with no incorrect working seen. (Correct solution only.) IMPORTANT				
	A1					
	NOTE					
		There needs to be an intermediate stage of justifying the A and the e^{-kt} in Ate^{-kt} by for example • either $5000 - N = e^{\ln t - kt + c}$				
		• or $5000 - N = t e^{-kt + c}$				
		• or $5000 - N = t e^{-kt} e^{c}$				
		or equivalent needs to be stated before achieving $N = 5000 - Ate^{-kt}$				
(b)	B1	At least one of either $1200 = 5000 - Ae^{-k}$ (or equivalent) or $1800 = 5000 - 2Ae^{-2k}$ (or equivalent)				
	M1	• Either an attempt to eliminate A by producing an equation in only k .				
		• or an attempt to eliminate k by producing an equation in only A				
	A1	At least one of $A = 9025$ cao or $k = \ln\left(\frac{7600}{3200}\right)$ or equivalent Both $A = 9025$ cao or $k = \ln\left(\frac{7600}{3200}\right)$ or equivalent Alternative correct values for k are $k = \ln\left(\frac{19}{8}\right)$ or $k = -\ln\left(\frac{8}{19}\right)$ or $k = \ln 7600 - \ln 3200$				
	A1					
	Note					
		or $k = -\ln\left(\frac{3800}{9025}\right)$ or equivalent.				
	Note	k = 0.8649 without a correct exact equivalent is A0.				
(c)	B 1	anything that rounds to 4400				

Marks			
M1			
M1			
AI [5] M1 A1 oe [2]			
M1: Integration by parts is applied in the form $x^2e^x - \int \lambda x e^x \{dx\}$, where $\lambda > 0$. (must be in this form). A1: $x^2e^x - \int 2xe^x \{dx\}$ or equivalent. M1: Either achieving a result in the form $\pm Ax^2e^x \pm Bxe^x \pm C \int e^x \{dx\}$ (can be implied)			
(where $A \neq 0$, $B \neq 0$ and $C \neq 0$) or for $\pm K \int x e^x \{ dx \} \rightarrow \pm K \left(x e^x - \int e^x \{ dx \} \right)$ M1: $\pm A x^2 e^x \pm B x e^x \pm C e^x$ (where $A \neq 0$, $B \neq 0$ and $C \neq 0$)			
 A1: x²e^x - 2(xe^x - e^x) or x²e^x - 2xe^x + 2e^x or (x² - 2x + 2)e^x or equivalent with/without + c. M1: Complete method of applying limits of 1 and 0 to their part (a) answer in the form ±Ax²e^x ± Bxe^x ± Ce^x, (where A ≠ 0, B ≠ 0 and C ≠ 0) and subtracting the correct way round. Evidence of a proper consideration of the limit of 0 (as detailed above) is needed for M1. So, just subtracting zero is M0. A1: e - 2 or e¹ - 2 or - 2 + e. Do not allow e - 2e⁰ unless simplified to give e - 2. Note: that 0.718 without seeing e - 2 or equivalent is A0. WARNING: Please note that this A1 mark is for correct solution only. 			

Question Number	Scheme	Marks
111	$V = \pi \int_{0}^{\frac{\pi}{2}} \left(\sec\left(\frac{x}{2}\right) \right)^{2} dx$ For $\pi \int \left(\sec\left(\frac{x}{2}\right) \right)^{2}$. Ignore limits and dx . Can be implied	B1
	$= \left\{ \pi \right\} \left[2 \tan\left(\frac{x}{2}\right) \right]^{\frac{\pi}{2}} \qquad $	M1
	$2\tan\left(\frac{x}{2}\right) = 2\tan\left(\frac{x}{2}\right) = 2\tan\left(\frac{x}{2}\right) $ or equivalent	A1
	$=2\pi$ 2π	A1 cao cso
		[4]
	Notes for Question 111	
111	B1: For a correct statement of $\pi \int \left(\sec\left(\frac{x}{2}\right) \right)^2$ or $\pi \int \sec^2\left(\frac{x}{2}\right)$ or $\pi \int \frac{1}{\left(\cos\left(\frac{x}{2}\right)\right)^2} \{dx\}$.	
	Ignore limits and dx . Can be implied.	
	Note: Unless a correct expression stated $\pi \int \sec\left(\frac{x^2}{4}\right)$ would be B0.	
	M1: $\pm \lambda \tan\left(\frac{x}{2}\right)$ from any working.	
	A1: $2\tan\left(\frac{x}{2}\right)$ or $\frac{1}{\left(\frac{1}{2}\right)}\tan\left(\frac{x}{2}\right)$ from any working.	
	A1: 2π from a correct solution only.	
	Note: The π in the volume formula is only required for the B1 mark and the final A1 mark. Note: Decimal answer of 6.283 without correct exact answer is A0.	
	Note: The B1 mark can be implied by later working – as long as it is clear that the candidate has ap	plied $\pi \int y^2$
	in their working.	•
	Note: Writing the correct formula of $V = \pi \int y^2 \{ dx \}$, but incorrectly applying it is B0.	

Question Number	Scheme	Marks		
112. (a)	$\left\{x = u^2 \Longrightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}u} = 2u$ or $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2\sqrt{x}}$	B1		
	$\left\{ \int \frac{1}{x(2\sqrt{x}-1)} \mathrm{d}x \right\} = \int \frac{1}{u^2(2u-1)} 2u \mathrm{d}u$	M1		
	$=\int \frac{2}{u(2u-1)}\mathrm{d}u$	A1 * cso		
(b)	2 <i>A B</i>	[3]		
	$\frac{1}{u(2u-1)} \equiv \frac{1}{u} + \frac{1}{(2u-1)} \Rightarrow 2 \equiv A(2u-1) + Bu$ $u = 0 \Rightarrow 2 = -A \Rightarrow A = -2$ $u = \frac{1}{2} \Rightarrow 2 = \frac{1}{2}B \Rightarrow B = 4$ See notes	M1 A1		
	So $\int \frac{2}{u(2u-1)} du = \int \frac{-2}{u} + \frac{4}{(2u-1)} du$ Integrates $\frac{M}{u} + \frac{N}{(2u-1)}$, $M \neq 0$, $N \neq 0$ to obtain any one of $\pm \lambda \ln u$ or $\pm \mu \ln(2u-1)$	M1		
	$= -2\ln u + 2\ln(2u - 1)$ At least one term correctly followed through $-2\ln u + 2\ln(2u - 1).$	A1 ft A1 cao		
	So, $\left[-2\ln u + 2\ln(2u-1)\right]_{1}^{3}$			
	$= (-2\ln 3 + 2\ln(2(3) - 1)) - (-2\ln 1 + 2\ln(2(1) - 1))$ Applies limits of 3 and 1 in <i>u</i> or 9 and 1 in <i>x</i> in their integrated function and subtracts the correct way round.	M1		
	$= -2\ln 3 + 2\ln 5 - (0) \tag{5}$			
	$= 2\ln\left(\frac{5}{3}\right) \qquad \qquad 2\ln\left(\frac{5}{3}\right)$	A1 cso cao		
		[/] 10		
	$\frac{1}{dr} \frac{1}{dr} \frac$			
(a)	B1: $\frac{dx}{du} = 2u$ or $dx = 2u du$ or $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ or $du = \frac{du}{2\sqrt{x}}$			
	M1: A full substitution producing an integral in u only (including the du) (Integral sign not n	ecessary).		
	The candidate needs to deal with the "x", the " $(2\sqrt{x} - 1)$ " and the "dx" and converts fr integral term in site on integral in y. (Bernember the integral size is not necessary for M	om an		
	A1*: leading to the result printed on the question paper (including the du). (Integral sign is not	eeded).		
(b)	M1: Writing $\frac{2}{u(2u-1)} \equiv \frac{A}{u} + \frac{B}{(2u-1)}$ or writing $\frac{1}{u(2u-1)} \equiv \frac{P}{u} + \frac{Q}{(2u-1)}$ and a complete method for			
	finding the value of at least one of their A or their B (or their P or their Q).			
	A1: Both their $A = -2$ and their $B = 4$. (Or their $P = -1$ and their $Q = 2$ with the multiply 2 in front of the integral sign)	ing factor of		
	M1: Integrates $\frac{M}{u} + \frac{N}{(2u-1)}$, $M \neq 0$, $N \neq 0$ (i.e. <i>a two term partial fraction</i>) to obtain any one of			
	$\pm \lambda \ln u$ or $\pm \mu \ln(2u-1)$ or $\pm \mu \ln\left(u-\frac{1}{2}\right)$			
	A1ft: At least one term correctly followed through from their <i>A</i> or from their <i>B</i> (or their <i>P</i> and their <i>Q</i>). A1: $-2\ln u + 2\ln(2u - 1)$			
	Notes for Question 112 Continued			
112. (b) ctd	M1: Applies limits of 3 and 1 in u or 9 and 1 in x in their (i.e. any) changed function and subt	racts the		

EXPERT TUITION

Question Number	Scheme			Marl	KS	
113.	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda (120 - \theta), \theta \leqslant 100$					
(a)	$\int \frac{1}{120 - \theta} \mathrm{d}\theta = \int \lambda \mathrm{d}t \qquad \text{or} \int$	$\frac{1}{\lambda(120-\theta)}\mathrm{d}\theta = \int\mathrm{d}\theta$	lt		B1	
	$-\ln(120-\theta); = \lambda t + c$ or \cdot	$-\frac{1}{\lambda}\ln(120-\theta);=t+$	С	See notes	M1 A1; M1 A1	
	${t=0, \theta=20 \Rightarrow} -\ln(120-20) =$	$=\lambda(0)+c$		See notes	M1	
	$c = -\ln 100 \Rightarrow -\ln (120 - \theta) = \lambda t$	$-\ln 100$				
	then either	or				
	$-\lambda t = \ln(120 - \theta) - \ln 100$	$\lambda t = \ln 100 - \ln (120)$	$-\theta$)			
	$-\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$	$\lambda t = \ln \left(\frac{100}{120 - \theta} \right)$				
	$e^{-\lambda t} = \frac{120 - \theta}{100}$	$e^{\lambda t} = \frac{100}{120 - \theta}$			dddM1	
	$100e^{-\lambda t} - 120 - \theta$	$(120-\theta)e^{\lambda t} = 100$				
	1000 - 120 - 0	$\Rightarrow 120 - \theta = 100e^{-\lambda}$	t		A1 *	
	leading to $\theta = 120 -$	$100e^{-\lambda t}$				
(b)	$\{\lambda = 0.01, \theta = 100 \Rightarrow\}$ 100 = 120 - 100 e ^{-0.01t}				M1	[8]
	$\Rightarrow 100e^{-0.01t} = 120 - 100 \Rightarrow -0.01t = \ln\left(\frac{120 - 100}{100}\right) \qquad \text{Uses correct order of operations by} \\ \text{moving from } 100 = 120 - 100e^{-0.01t} \end{cases}$					
	$t = \frac{1}{-0.01} \ln \left(\frac{120 - 100}{100} \right)$		to g	ive $t = \dots$ and $t = A \ln B$, where $B > 0$	dM1	
	$\left\{ t = \frac{1}{-0.01} \ln\left(\frac{1}{5}\right) = 100 \ln 5 \right\}$					
	t = 160.94379 = 161 (s) (nearest	second)		awrt 161	A1	
						[3] 11

	Notes for Question 113			
(a)	B1: Separates variables as shown. $d\theta$ and dt should be in the correct positions, though this	mark can be		
	implied by later working. Ignore the integral signs.			
	Euther Or			
	M1: $\int \frac{1}{120-\theta} d\theta \rightarrow \pm A \ln(120-\theta) \qquad \int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow \pm A \ln(120-\theta), A \text{ is a con}$	stant.		
	A1: $\int \frac{1}{120-\theta} d\theta \rightarrow -\ln(120-\theta) \qquad \int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda}\ln(120-\theta) \text{ or } -\frac{1}{\lambda}\ln(120-\theta) $	$(120\lambda - \lambda\theta),$		
	M1: $\int \lambda dt \to \lambda t$ $\int 1 dt \to t$			
	A1: $\int \lambda dt \rightarrow \lambda t + c$ or $\int 1 dt \rightarrow t + c$ The $+ c$ can appear on either side o	f the equation.		
	IMPORTANT: + c can be on either side of their equation for the 2^{nd} A1 mark.			
	M1: Substitutes $t = 0$ AND $\theta = 20$ in an integrated or changed equation containing c (or A)	or $\ln A$).		
	Note that this mark can be implied by the correct value of c. { Note that $-\ln 100 = -4.6$	60517 }.		
	dddM1: Uses their value of <i>c</i> which must be a ln term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on all three previous method marks being awarded. A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in the candidate's working. Do not accept huge leaps in working at the end. So a minimum of either:			
	$\begin{array}{c} (1). \ c \\ 100 \end{array} \qquad 120 \ c \\ $			
	or (2): $e^{\lambda t} = \frac{100}{120 - \theta} \Rightarrow (120 - \theta)e^{\lambda t} = 100 \Rightarrow 120 - \theta = 100e^{-\lambda t} \Rightarrow \theta = 120 - 100e^{-\lambda t}$			
	is required for A1.			
	Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a).			
(h)	M1. Substitutes $1 = 0.01$ and $0 = 100$ into the printed equation on one of their conline equation	na aannaatina		
(0)	W1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation of one of their earlier equation θ and the triangle can be implied by subsequent working.	is connecting		
	θ and <i>i</i> . This mark can be implied by subsequent working.			
	unit: Candidate uses confect order of operations by moving from $100 = 120 - 1000$ to the Nates, that the 2 nd Method mark is dependent on the 1 st Method mark being awarded in the 1 st Method mark being awa	$h = \dots$		
	A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units).	part (0).		
<i>Aliter</i> 113. (a) Way 2	$\int \frac{1}{120 - \theta} \mathrm{d}\theta = \int \lambda \mathrm{d}t$	B1		
Way 2	$-\ln(120 - \theta) = \lambda t + c$ See notes	M1 A1; M1 A1		
	$-\ln(120 - \theta) = \lambda t + c$			
	$\ln(120 - \theta) = -\lambda t + c$			
	$120 - \theta = A e^{-\lambda t}$			
	$\theta = 120 - Ae^{-\lambda t}$			
	$\{t = 0, \theta = 20 \implies \} 20 = 120 = 4e^0$	M1		
	1 = 0, 0 = 20 = 120 = AC 4 = 120, 20 = 100	1 VI I		
	$A = 120 = 20 = 100$ $S_{0} = 0 = 120 = 100e^{-\lambda t}$	↓ I A INNELL		
	$50, \ \theta = 120 - 1000$			
		႞ႄ႞		

	Notes for Question 113 Continued			
(a)	B1M1A1M1A1: Mark as in the original scheme.			
	M1: Substitutes $t = 0$ AND $\theta = 20$ in an integrated equation containing their constant of integration which			
	could be c or A . Note that this mark	k can be implied by the correct valu	e of c or A .	<i>.</i>
	dddM1: Uses a fully correct method their evaluated constant of integration	od to eliminate their logarithms and	writes down an equation of	ontaining
	Note: This mark is dependent on a	ui. Il three previous method marks beir	g awarded	
	Note: $\ln(120 - \theta) = -\lambda t + c$ let	adding to $120 - \theta = e^{-\lambda t} + e^{c}$ or 120	$\theta - \theta = e^{-\lambda t} + A$ would be	dddM0
	A1*: Same as the original scheme			uddivio.
	Note: The jump from $\ln(120 - \theta)$	$= -\lambda t + c$ to $120 - \theta - 4e^{-\lambda t}$	with no incorrect working	is condoned
	in port (a)	- m + c = 10 + 120 = m c	un no incorrect working	is condoned
Aliter				
113. (a)	$\int \frac{1}{120 - \theta} \mathrm{d}\theta = \int \lambda \mathrm{d}t \left\{ \Rightarrow \int \frac{-1}{\theta} \frac{1}{\theta} \right\}$	$\frac{-1}{120} \mathrm{d}\theta = \int \lambda \mathrm{d}t \bigg\}$		B1
Way 3	$-\ln\left \theta - 120\right = \lambda t + c$		Modulus required for 1 st A1.	M1 A1 M1 A1
	$\left\{t=0, \theta=20 \Rightarrow\right\} -\ln 20-120 =$	$=\lambda(0)+c$	Modulus not required here!	M1
	$\Rightarrow c = -\ln 100 \Rightarrow -\ln \theta - 120 =$	$\lambda t - \ln 100$	1	
	then either	or		
	$-\lambda t = \ln\left \theta - 120\right - \ln 100$	$\lambda t = \ln 100 - \ln \left \theta - 120 \right $		
	$-\lambda t = \ln \left \frac{\theta - 120}{100} \right $	$\lambda t = \ln \left \frac{100}{\theta - 120} \right $		
	As $\theta \leq$	≤ 100		
	$-\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$	$\lambda t = \ln\left(\frac{100}{120 - \theta}\right)$	Understanding of modulus is required	dddM1
	$e^{-\lambda t} = \frac{120 - \theta}{100}$	$e^{\lambda t} = \frac{100}{120 - \theta}$	here!	uuumi
		$(120-\theta)e^{\lambda t} = 100$		
	$100e^{-\lambda t} = 120 - \theta$	$\Rightarrow 120 - \theta = 100 \mathrm{e}^{-\lambda t}$		A 1 4
	leading to $\theta = 120 -$	$100e^{-\lambda t}$		AI "
]	[8]
	B1: Mark as in the original scheme	2.		
	M1: Mark as in the original schem	e ignoring the modulus.		
	A1: $\int \frac{1}{120-\theta} \mathrm{d}\theta \to -\ln \theta - 120 $). (The modulus is required here).		
	M1A1: Mark as in the original scheme. M1: Substitutes $t = 0$ AND $\theta = 20$ in an integrated equation containing their constant of integration which			
	could be c or A . Mark as in the original scheme ignoring the modulus.			
	dddM1: Mark as in the original scheme AND the candidate must demonstrate that they have converted			
	$\ln \theta - 120 $ to $\ln (120 - \theta)$ in their working. Note: This mark is dependent on all three previous method			
	marks being awarded.			
	A1: Mark as in the original scheme	2.		

	Notes for Question 113 Continued		
Aliter 113.	Use of an integrating factor		
(a) Way 4	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda \big(120 - \theta\big) \implies \frac{\mathrm{d}\theta}{\mathrm{d}t} + \lambda\theta = 120\lambda$		
	$\mathbf{IF} = \mathbf{e}^{\lambda t}$	B1	
	$\frac{\mathrm{d}}{\mathrm{d}t}\left(\mathrm{e}^{\lambda t}\theta\right)=120\lambda\mathrm{e}^{\lambda t},$	M1A1	
	$\mathrm{e}^{\lambda t}\theta = 120\lambda \mathrm{e}^{\lambda t} + k$	M1A1	
	$\theta = 120 + K \mathrm{e}^{-\lambda t}$	M1	
	$\{t=0, \theta=20 \Rightarrow\} -100 = K$		
	$\theta = 120 - 100 \mathrm{e}^{-\lambda t}$	M1A1	

Question Number	Scheme		Marks
114.	$\int_0^4 \frac{1}{2 + \sqrt{(2x+1)}} \mathrm{d}x \ , \ u = 2 + \sqrt{(2x+1)}$		
	$du = (2x + 1)^{-\frac{1}{2}}$ or $dx = y = 2$	$\frac{\mathrm{d}u}{\mathrm{d}x} = \pm K(2x+1)^{-\frac{1}{2}} \text{or} \frac{\mathrm{d}x}{\mathrm{d}u} = \pm \lambda(u-2)$	M1
	$\frac{du}{dx} = (2x+1)^{-1} \text{or} \frac{du}{du} = u - 2$	Either $\frac{du}{dx} = (2x+1)^{-\frac{1}{2}}$ or $\frac{dx}{du} = (u-2)$	A1
	$\left\{\int \frac{1}{2+\sqrt{(2x+1)}} \mathrm{d}x\right\} = \int \frac{1}{u} (u-2) \mathrm{d}u$	Correct substitution (Ignore integral sign and du).	A1
	$=\int \left(1-\frac{2}{u}\right) \mathrm{d}u$	An attempt to divide each term by u .	dM1
		$\pm Au \pm B \ln u$	ddM1
	$= u - 2 \ln u$	$u-2\ln u$	A1 ft
	$\left\{ \text{So} \left[u - 2\ln u \right]_{3}^{5} \right\} = \left(5 - 2\ln 5 \right) - \left(3 - 2\ln 3 \right)$	Applies limits of 5 and 3 in u or 4 and 0 in x in their integrated function and subtracts the correct way round.	M1
	$= 2 + 2\ln\left(\frac{3}{5}\right)$	$2 + 2\ln\left(\frac{3}{5}\right)$	A1 cao cso
			[8] 8
	Notes for Que	stion 114	
	M1: Also allow $du = \pm \lambda \frac{1}{(u-2)} dx$ or $(u-2)du =$	$=\pm\lambda\mathrm{d}x$	
	Note: The expressions must contain du and	dx. They can be simplified or un-simplified	
	A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = \pm \lambda$	d <i>x</i>	
	Note: The expressions must contain du and du	dx. They can be simplified or un-simplified	
	A1: $\int \frac{1}{u} (u-2) du$. (Ignore integral sign and du)		
	dM1: An attempt to divide each term by <i>u</i> . Note that this mark is dependent on the prev Note that this mark can be implied by later y	ious M1 mark being awarded.	
	ddM1: $\pm Au \pm B \ln u$, $A \neq 0$, $B \neq 0$, on the second s	
	Note that this mark is dependent on the two A1ft: $u - 2\ln u$ or $\pm Au \pm B\ln u$ being correctly	previous M1 marks being awarded. followed through, $A \neq 0, B \neq 0$	
	M1: Applies limits of 5 and 3 in u or 4 and 0 in x i way round.	n their integrated function and subtracts the	correct
	A1: cso and cao. $2 + 2\ln\left(\frac{3}{5}\right)$ or $2 + 2\ln(0.6)$,	$\left(= A + 2\ln B, \text{ so } A = 2, B = \frac{3}{5}\right)$	
	Note: $2 - 2\ln\left(\frac{3}{5}\right)$ is A0.		

Notes for Question 114 Continued114. ctdNote: $\int \frac{1}{u} (u-2) du = u - 2 \ln u$ with no working is 2^{nd} M1, 3^{rd} M1, 3^{rd} A1.but Note: $\int \frac{1}{u} (u-2) du = (u-2) \ln u$ with no working is 2^{nd} M0, 3^{rd} M0, 3^{rd} A0.

Question Number	Scheme	Marks
115. (a)	6.248046798 = 6.248 (3dp)6.248 or awrt 6.248	B1
(b)	Area $\approx \frac{1}{2} \times 2$; $\times [3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223]$	[1] B1; <u>M1</u>
	= 49.369 = 49.37 (2 dp) 49.37 or awrt 49.37	A1
		[3]
(c)	$\left\{ \left[(4t e^{-\frac{1}{3}t} + 3) dt \right] = -12t e^{-\frac{1}{3}t} - \left[-12e^{-\frac{1}{3}t} \left\{ dt \right\} \right] = 4t e^{-\frac{1}{3}t} \left\{ dt \right\} + 4t e^{-\frac{1}{3}t} \pm B \right] e^{-\frac{1}{3}t} \left\{ dt \right\}, \ A \neq 0, \ B \neq 0$	M1
	$+ 3t \qquad \qquad \text{See notes.} \\ 3 \rightarrow 3t$	A1 B1
	$= -12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t} \left\{+3t\right\} - 12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t}$	A1
	$\left[-12t\mathrm{e}^{-\frac{1}{3}t}-36\mathrm{e}^{-\frac{1}{3}t}+3t\right]^{8}=$	
	Substitutes limits of 8 and 0 into an integrated function of the form of	
	$= \left(-12(8)e^{-\frac{1}{3}(8)} - 36e^{-\frac{1}{3}(8)} + 3(8)\right) - \left(-12(0)e^{-\frac{1}{3}(0)} - 36e^{-\frac{1}{3}(0)} + 3(0)\right) \text{either } \pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} \text{ or } t = 0$	dM1
	$+ 2te^{-\frac{1}{3}t} + ue^{-\frac{1}{3}t} + Bt$ and	01/11
	subtracts the correct way	
	round.	
	$= \left(-96e^{\overline{3}} - 36e^{\overline{3}} + 24\right) - (0 - 36 + 0)$	
	$= 60 - 132e^{-\frac{8}{3}}$ $60 - 132e^{-\frac{8}{3}}$	A1
		[6]
(d)	Difference = $ 60 - 132e^{-\frac{8}{3}} - 49.37 = 1.458184439 = 1.46 (2 dp)$ 1.46 or awrt 1.46	B1
		[1]
	Notes for Orestion 115	11
(a)	B1: 6.248 or awrt 6.248. Look for this on the table or in the candidate's working.	
(b)	B1 : Outside brackets $\frac{1}{2} \times 2$ or 1	
	2 M1. For structure of trapezium rule Allow one miscopy of their values	
	A1 • 49 37 or anything that rounds to 49 37	
	Note: It can be possible to award : (a) B0 (b) B1M1A1 (awrt 49.37)	
	Note: Working must be seen to demonstrate the use of the trapezium rule. Note: actual area is 50.3 Bracketing mistake: Unless the final answer implies that the calculation has been done correct	328
	Award B1M0A0 for $1 + 3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223$ (nb: answer of 50.369).	y,

Notes for Question 115 Continued			
115. (b) ctd	Alternative method for part (b): Adding individual trapezia		
	Area $\approx 2 \times \left[\frac{3+7.107}{2} + \frac{7.107+7.218}{2} + \frac{7.218+6.248}{2} + \frac{6.248+5.223}{2} \right] = 49.369$		
	B1: 2 and a divisor of 2 on all terms inside brackets.		
	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.		
	A1: anything that rounds to 49.37		
(c)	M1: For $4t e^{-\frac{1}{3}t} \to \pm At e^{-\frac{1}{3}t} \pm B \int e^{-\frac{1}{3}t} \{dt\}$, $A \neq 0, B \neq 0$		
	A1: For $t e^{-\frac{1}{3}t} \rightarrow \left(-3t e^{-\frac{1}{3}t} - \int -3e^{-\frac{1}{3}t}\right)$ (some candidates lose the 4 and this is fine for the first A1 mark).		
	or $4t e^{-\frac{1}{3}t} \to 4\left(-3t e^{-\frac{1}{3}t} - \int -3e^{-\frac{1}{3}t}\right)$ or $-12t e^{-\frac{1}{3}t} - \int -12e^{-\frac{1}{3}t}$ or $12\left(-t e^{-\frac{1}{3}t} - \int -e^{-\frac{1}{3}t}\right)$		
	These results can be implied. They can be simplified or un-simplified. B1: $3 \rightarrow 3t$ or $3 \rightarrow 3x$ (bod).		
	Note: Award B0 for 3 integrating to 12t (implied), which is a common error when taking out a factor of 4.		
	Be careful some candidates will factorise out 4 and have $4\left(\dots+\frac{3}{4}\right) \rightarrow 4\left(\dots+\frac{3}{4}t\right)$		
	which would then be fine for B1.		
	Note: Allow B1 for $\int_0^8 3 dt = 24$		
	A1: For correct integration of $4t e^{-\frac{1}{3}t}$ to give $-12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t}$ or $4\left(-3t e^{-\frac{1}{3}t} - 9e^{-\frac{1}{3}t}\right)$ or equivalent.		
	This can be simplified or un-simplified.		
	dM1: Substitutes limits of 8 and 0 into an integrated function of the form of either $\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t}$ or		
	$\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} + Bt$ and subtracts the correct way round.		
	Note: Evidence of a proper consideration of the limit of 0 (as detailed in the scheme) is needed for dM1. So, just subtracting zero is M0.		
	A1: An exact answer of $60 - 132e^{-\frac{3}{3}}$. A decimal answer of 50.82818444 without a correct answer is A0.		
	Note: A decimal answer of 50.82818444 without a correct exact answer is A0.		
	Note: If a candidate gains M1A1B1A1 and then writes down 50.8 or awrt 50.8 with no method for substituting limits of 8 and 0, then award the final M1A0		
	IMPORTANT: that is fine for candidates to work in terms of x rather than t in part (c)		
	Note: The "3t" is needed for B1 and the final A1 mark		
ക്ര	B1: 1 46 or awrt 1 46 or -1 46 or awrt -1 46		
(4)	Candidates may give correct decimal answers of 1.458184439 or 1.459184439		
	Note: You can award this mark whether or not the candidate has answered part (c) correctly.		

Question Number	Scheme		Marks
116.	$x = 27 \sec^3 t$, $y = 3 \tan t$, $0 \le t \le \frac{\pi}{3}$		
(9)	$\frac{dx}{dt} = 81 \sec^2 t \sec t \tan t$ $\frac{dy}{dt} = 3 \sec^2 t$	At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct.	B1
(a)	$\frac{dt}{dt} = 0$ (see that t , $\frac{dt}{dt} = 0$ (see that t)	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct.	B1
	$\frac{dy}{dx} = \frac{3\sec^2 t}{81\sec^3 t \tan t} \left\{ = \frac{1}{27\sec t \tan t} = \frac{\cos t}{27\tan t} = \frac{\cos^2 t}{27\sin t} \right\}$	Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	M1;
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{3\sec^2\left(\frac{\pi}{6}\right)}{81\sec^3\left(\frac{\pi}{6}\right)\tan\left(\frac{\pi}{6}\right)} = \frac{4}{72} \left\{ = \frac{3}{54} = \frac{1}{18} \right\}$	$\frac{4}{72}$	A1 cao cso
			[4]
(b)	$\left\{1 + \tan^2 t = \sec^2 t\right\} \Longrightarrow 1 + \left(\frac{y}{3}\right)^2 = \left(\sqrt[3]{\left(\frac{x}{27}\right)}\right)^2 = \left(\frac{x}{27}\right)^{\overline{3}}$		M1
	$\Rightarrow 1 + \frac{y^2}{9} = \frac{x^2}{9} \Rightarrow 9 + y^2 = x^2 \Rightarrow y = \left(x^2 - 9\right)^{\frac{1}{2}} *$		A1 * cso
	$a = 27$ and $b = 216$ or $27 \le x \le 216$	a = 27 and $b = 216$	B1
(c)	$V = \pi \int_{0}^{125} \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^{2} dx \text{ or } \pi \int_{0}^{125} \left(x^{\frac{2}{3}} - 9 \right) dx$	For $\pi \int \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2$ or $\pi \int \left(x^{\frac{2}{3}} - 9 \right)$	B1
	\mathbf{J}_{27}	Ignore limits and dx . Can be implied.	
	$-(\pi) \left[3 r^{\frac{5}{3}} 0 r \right]^{125}$	Either $\pm Ax^{\frac{3}{3}} \pm Bx$ or $\frac{3}{5}x^{\frac{3}{3}}$ oe	M1
	$= \left\{ n \right\} \left[\frac{5}{5} x - 9x \right]_{27}$	$\frac{3}{5}x^{\frac{5}{3}} - 9x$ oe	A1
	$= \left\{\pi\right\} \left(\left(\frac{3}{5}(125)^{\frac{5}{3}} - 9(125)\right) - \left(\frac{3}{5}(27)^{\frac{5}{3}} - 9(27)\right) \right)$	Substitutes limits of 125 and 27 into an integrated function and subtracts the correct way round.	dM1
	$= \{\pi\} \big((1875 - 1125) - (145.8 - 243) \big)$		
	$=\frac{4236\pi}{5}$ or 847.2π	$\frac{4236\pi}{5}$ or 847.2π	A1
			[5] 12
	Notes for Questio	n 116	•
(a)	B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this	mark can be implied from their working.	
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark	k can be implied from their working.	
	M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$, where both $\frac{dx}{dt}$	$\frac{\mathrm{d}y}{\mathrm{d}t}$ and $\frac{\mathrm{d}x}{\mathrm{d}t}$ are trigonometric functions of	t.
	A1: $\frac{4}{72}$ or any equivalent correct rational answer not inv	volving surds.	
	Allow 0.05 with the recurring symbol.		

Notes for Question 116 Continued			
	Note: Please check that their $\frac{dx}{dt}$ is differentiated correctly.		
	Eg. Note that $x = 27 \sec^3 t = 27 (\cos t)^{-3} \Rightarrow \frac{dx}{dt} = -81 (\cos t)^{-2} (-\sin t)$ is correct.		
(b)	M1: Either:		
	• Applying a correct trigonometric identity (usually $1 + \tan^2 t = \sec^2 t$) to give a Cartesian equ x and y only.	ation in	
	• Starting from the RHS and goes on to achieve $\sqrt{9\tan^2 t}$ by using a correct trigonometric identity of the trigonometric ide	ntity.	
	• Starts from the LHS and goes on to achieve $\sqrt{9\sec^2 t - 9}$ by using a correct trigonometric identity.		
	A1*: For a correct proof of $y = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}}$.		
(c)	Note this result is printed on the Question Paper, so no incorrect working is allowed. B1: Both $a = 27$ and $b = 216$. Note that $27 \le x \le 216$ is also fine for B1.		
	B1: For a correct statement of $\pi \int \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2$ or $\pi \int \left(x^{\frac{2}{3}} - 9 \right)$. Ignore limits and dx. Can be in	implied.	
	M1: Either integrates to give $\pm Ax^{\frac{5}{3}} \pm Bx$, $A \neq 0$, $B \neq 0$ or integrates $x^{\frac{2}{3}}$ correctly to give $\frac{3}{5}x^{\frac{5}{3}}$ oe		
	A1: $\frac{3}{5}x^{\frac{5}{3}} - 9x$ or. $\frac{x^{\frac{5}{3}}}{\left(\frac{5}{3}\right)} - 9x$ oe.		
	dM1: Substitutes limits of 125 and 27 into an integrated function and subtracts the correct way round.Note: that this mark is dependent upon the previous method mark being awarded.		
	A1: A correct exact answer of $\frac{4236\pi}{5}$ or 847.2π .		
	5 Note: The π in the volume formula is only required for the B1 mark and the final A1 mark		
	Note: A decimal answer of 2661.557 without a correct exact answer is A0.		
	Note: If a candidate gains the first B1M1A1 and then writes down 2661 or awrt 2662 with no method for		
(a)	Alternative response using the Cartesian equation in part (a)		
	$\frac{dy}{dx} = \pm K x^{-\frac{1}{3}} \left(x^{\frac{2}{3}} - 9 \right)^{-\frac{1}{2}} \left[\frac{1}{2} - \frac{1}{2} \right]$	M1	
Way 2	$\begin{cases} y = \begin{pmatrix} x^3 - 9 \end{pmatrix} \implies \frac{1}{dx} = \frac{1}{2} \begin{pmatrix} x^3 - 9 \end{pmatrix} \begin{pmatrix} -\frac{1}{3}x^{-3} \\ -\frac{1}{3}x^{-1} \end{pmatrix} \text{oe} \end{cases}$	A1	
	At $t = \frac{\pi}{6}$, $x = 27 \sec^3\left(\frac{\pi}{6}\right) = 24\sqrt{3}$ Uses $t = \frac{\pi}{6}$ to find x and substitutes		
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \left(\left(24\sqrt{3} \right)^{\frac{2}{3}} - 9 \right)^{-\frac{1}{2}} \left(\frac{2}{3} \left(24\sqrt{3} \right)^{-\frac{1}{3}} \right) \qquad \text{their } x \text{ into an expression for } \frac{\mathrm{d}y}{\mathrm{d}x}.$	dM1	
	So, $\Rightarrow \frac{dy}{dx} = \frac{1}{2} \left(\frac{1}{\sqrt{3}} \right) \left(\frac{1}{3\sqrt{3}} \right) = \frac{1}{18}$ $\frac{1}{18}$	A1 cao cso	
	Note: Way 2 is marked as M1 A1 dM1 A1 Note: For way 2 the second M1 mark is dependent on the first M1 being gained		
	rote. For way 2 the second with mark is dependent on the first with being gained.		

Notes for Question 116 Continued			
116. (b)	Alternative responses for M1A1 in part (b): STARTING FROM	<u>M THE RHS</u>	
Way 2	$\left\{ \text{RHS} = \right\} \left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} = \sqrt{\left(27 \sec^3 t \right)^{\frac{2}{3}} - 9} = \sqrt{9 \sec^2 t - 9} = \sqrt{9 \tan^2 t}$	For applying $1 + \tan^2 t = \sec^2 t$ of to achieve $\sqrt{9\tan^2}$	$\frac{1}{t}$ M1
	$=3\tan t = y \{= LHS\} \mathbf{cso}$	Correct proof from $\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}$ to	<i>y</i> . A1*
	M1: Starts from the RHS and goes on to achieve $\sqrt{9\tan^2 t}$ by us	sing a correct trigonometric identity.	
116.	Alternative responses for M1A1 in part (b): STARTING FROM	M THE LHS	
(b) Way 3	{LHS =} $y = 3\tan t = \sqrt{(9\tan^2 t)} = \sqrt{9\sec^2 t - 9}$	For applying $1 + \tan^2 t = \sec^2 t$ of to achieve $\sqrt{9\sec^2 t - 9}$	$\frac{1}{9}$ M1
	$=\sqrt{9\left(\frac{x}{27}\right)^{\frac{2}{3}}-9} = \sqrt{9\left(\frac{x^{\frac{2}{3}}}{9}\right)-9} = \left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}} \mathbf{cso}$	Correct proof from y to $\left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}}$	¹ / ₂ . A1*
	M1: Starts from the LHS and goes on to achieve $\sqrt{9\sec^2 t - 9}$ b	y using a correct trigonometric identit	y.
116.	Alternative response for part (c) using parametric integration	· · · · ·	•
(c)	n	π $\int 3\tan t \left(81 \sec^2 t \sec t \tan t \right) dt$	
Way 2	$V = \pi \int 9 \tan^2 t \left(81 \sec^2 t \sec t \tan t \right) dt$		B1
	J	nore limits and dx . Can be implied.	
	$= \{\pi\} \int 729 \sec^2 t \tan^2 t \sec t \tan t \mathrm{d}t$		
	$= \left\{\pi\right\} \int 729 \sec^2 t \left(\sec^2 t - 1\right) \sec t \tan t \mathrm{d}t$		
	$= \{\pi\} \int 729 \left(\sec^4 t - \sec^2 t\right) \sec t \tan t \mathrm{d}t$		
	$= \{\pi\} \int 729 \left(\sec^4 t - \sec^2 t\right) \sec t \tan t \mathrm{d}t$		
		$\pm A \sec^5 t \pm B \sec^3 t$	M1
	$= \left\{\pi\right\} \left[729 \left(\frac{1}{5}\sec^5 t - \frac{1}{3}\sec^3 t\right)\right]$	$729\left(\frac{1}{5}\sec^5 t - \frac{1}{3}\sec^3 t\right)$	A1
	$V = \{\pi\} \left[729 \left(\frac{1}{5} \left(\frac{5}{3} \right)^5 - \frac{1}{3} \left(\frac{5}{3} \right)^3 \right) - 729 \left(\frac{1}{5} 1^5 - \frac{1}{3} 1^3 \right) \right] $ Substituting substitutions integrated integrated states and the second states are specified with the second states are specified wither specified with the second states are specified with the	itutes $\sec t = \frac{5}{3}$ and $\sec t = 1$ into an ed function and subtracts the correct	dM1
	$= 729\pi \left[\left(\frac{250}{243} \right) - \left(-\frac{2}{15} \right) \right]$	way round.	
	$=\frac{4236\pi}{5}$ or 847.2π	$\frac{4236\pi}{5} \text{or} 847.2\pi$	A1

Question Number	Scheme	Marks
117.	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(M-x)$, where <i>M</i> is a constant	
(a)	$\frac{dx}{dt}$ is the <u>rate of increase</u> of the <u>mass of waste</u> products. Any one correct explanation	n. B1
	M is the total mass of unburned fuel and waste fuel (or the initial mass of unburned fuel) Both explanations are correct	et. B1
(b)	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t \qquad \text{or} \int \frac{1}{k(M-x)} \mathrm{d}x = \int \mathrm{d}t$	B1
	$-\ln(M-x) = kt \{+c\} \qquad \text{or} -\frac{1}{k}\ln(M-x) = t \{+c\} \qquad \text{See note}$	es M1 A1
	${t = 0, x = 0 \Rightarrow} -\ln(M - 0) = k(0) + c$ See note	es M1
	$c = -\ln M \implies -\ln(M - x) = kt - \ln M$	
	then either or	
	$-kt = \ln(M - x) - \ln M \qquad \qquad kt = \ln M - \ln(M - x)$	
	$-kt = \ln\left(\frac{M-x}{M}\right)$ $kt = \ln\left(\frac{M}{M-x}\right)$	
	$e^{-kt} = \frac{M-x}{M}$ $e^{kt} = \frac{M}{M-x}$	ddM1
	$Me^{-kt} = M - x \qquad \qquad \begin{pmatrix} (M-x)e^{kt} = M \\ M-x = Me^{-kt} \end{pmatrix}$	A1 * cso
	leading to $x = M - Me^{-M}$ or $x = M(1 - e^{-M})$ oe	[6]
	$\left[\frac{1}{m} - \frac{1}{m} M + \frac{1}{m} A \right] = \frac{1}{m} M - M(1 - e^{-k \ln 4})$	[v]
(c)	$\begin{cases} x = \frac{1}{2}M, t = \frac{1}{2}M \Rightarrow \\ 2 & 2 \end{cases} \xrightarrow{-M} M = M(1 - e)$	MII
	$\Rightarrow \frac{1}{2} = 1 - e^{-k \ln 4} \Rightarrow e^{-k \ln 4} = \frac{1}{2} \Rightarrow -k \ln 4 = -\ln 2$	
	So $k = \frac{1}{2}$	A1
	$x = M\left(1 - e^{-\frac{1}{2}\ln 9}\right)$	dM1
	$x = \frac{2}{3}M$	Al cso
		[4] 12

	Notes for Question 117 Continued
117. (a)	B1: At least one explanation correct.
	B1: Both explanations are correct.
	$\frac{dx}{dt}$ is the <u>rate of increase</u> of the <u>mass of waste</u> products.
	or the <u>rate of change</u> of the <u>mass of waste</u> products.
	<i>M</i> is the total mass of unburned fuel and waste fuel
	or the total mass of rocket fuel and waste fuel
	or the initial mass of rocket fuel
	or the <u>initial mass</u> of <u>fuel</u>
(b)	or the total mass of waste and unburned products.
(~)	B1: Separates variables as shown. dx and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.
	M1: Both $\pm \lambda \ln(M-x)$ or $\pm \lambda \ln(x-M)$ and $\pm \mu t$ where λ and μ are any constants.
	A1: For $-\ln(M-x) = kt$ or $-\ln(x-M) = kt$ or $-\frac{1}{k}\ln(M-x) = t$ or $-\frac{1}{k}\ln(x-M) = t$
	or $-\frac{1}{k}\ln(kM - kx) = t$ or $-\frac{1}{k}\ln(kx - kM) = t$
	Note: $+c$ is not needed for this mark.
	IMPORTANT: + c can be on either side of their equation for the 1^{st} A1 mark.
	M1: Substitutes $t = 0$ AND $x = 0$ in an integrated or changed equation containing c (or A or $\ln A$, etc.)
	Note that this mark can be implied by the correct value of <i>c</i> .
	ddM1: Uses their value of <i>c</i> which must be a ln term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on both previous method marks being awarded.
	A1: $x = M - Me^{-kt}$ or $x = M(1 - e^{-kt})$ or $x = \frac{M(e^{kt} - 1)}{e^{kt}}$ or equivalent where x is the subject.
	Note: Please check their working as incorrect working can lead to a correct answer.
	Note: $\left\{\frac{\mathrm{d}x}{\mathrm{d}t} = k\left(M-x\right) \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{kM-kx} \Rightarrow \right\} x = -\frac{1}{k}\ln(kM-kx)\left\{+c\right\}$ is B1(Implied) M1A1.
(c)	M1: Substitutes $x = \frac{1}{2}M$ and $t = \ln 4$ into one of their earlier equations connecting x and t.
	A1: $k = \frac{1}{2}$, which can be an un-simplified equivalent numerical value. i.e. $k = \frac{\ln 2}{\ln 4}$ is fine for A1.
	dM1: Substitutes $t = \ln 4$ and their evaluated k (which must be a numerical value) into one of their earlier
	equations connecting x and t. Note: that the 2^{nd} Method mark is dependent on the 1^{st} Method mark being awarded in part (c).
	A1: $x = \frac{2}{3}M$ cso.
	Note: Please check their working as incorrect working can lead to a correct answer.

Notes for Question 117 Continued			
<i>Aliter</i> 117. (b) Way 2	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t$	B1	
	$-\ln(M-x) = kt \{+c\}$ See notes	M1 A1	
	$\ln(M-x) = -kt + c$		
	$M - x = Ae^{-kt}$		
	$\{t = 0, x = 0 \implies\} M - 0 = Ae^{-\alpha t}$ $\implies M = A$	MI	
	$M - x = M e^{-kt}$	ddM1	
	So, $x = M - Me^{-kt}$	A1	
(b)	R1M1A1 . Mark as in the original scheme	[6]	
(0)	M1: Substitutes $t = 0$ AND $x = 0$ in an integrated equation containing their constant of integrated equation $x = 0$	gration which	
	 could be c or A. Note that this mark can be implied by the correct value of c or A. ddM1: Uses a fully correct method to eliminate their logarithms and writes down an equation their evaluated constant of integration. Note: This mark is dependent on both previous method marks being awarded. Note: ln(M - x) = -kt + c leading to ln(M - x) = e^{-kt} + e^c or ln(M - x) = e^{-kt} + A we A1: Same as the original scheme. 	n containing ould be dddM0.	
<i>Aliter</i> 117. (b) Way 3	$\int_0^x \frac{1}{M-x} \mathrm{d}x = \int_0^t k \mathrm{d}t$	B1	
	$\left[-\ln(M-x)\right]_0^x = \left[kt\right]_0^t$	M1 A1	
	$-\ln(M-x)-(-\ln M) = kt$ Applies limits of	M1	
	$-\ln(M-x) + \ln M = kt$		
	and then follows the original scheme.		
(a)	B1M1A1: Mark as in the original scheme (ignoring the limits). ddM1: Applies limits 0 and x on their integrated LHS and limits of 0 and t . M1A1: Same as the original scheme.		

	Notes fo	r Question 117 Continued		
Aliter 117. (b)	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t \left\{ \Rightarrow \int \frac{-1}{x-M} \mathrm{d}x \right\}$	$=\int k\mathrm{d}t\Big\}$		B1
Way 4	$-\ln \left x - M \right = kt + c$		Modulus not required for 1 st A1.	M1 A1
	$\{t=0, x=0 \Longrightarrow\} -\ln 0-M = k(0) + d$		<i>Modulus</i> not required here!	M1
	$\Rightarrow c = -\ln M \Rightarrow -\ln x - M = kt - \ln M$	М	•	
	then either or	•		
	$-kt = \ln x - M - \ln M \qquad kt$	$=\ln M - \ln \left x - M \right $		
	$-kt = \ln \left \frac{x - M}{M} \right \qquad \qquad kt$	$=\ln\left \frac{M}{x-M}\right $		
	As $x < M$			
	$-kt = \ln\left(\frac{M-x}{M}\right) \qquad \qquad kt$	$=\ln\left(rac{M}{M-x} ight)$	Understanding of	ddM1
	$e^{-kt} = \frac{M-x}{M}$ e^{kt}	$=\frac{M}{M-x}$	here!	uulvii
	$Me^{-kt} = M - x \tag{M}$	$(x - x)e^{kt} = M$		
	leading to $\mu = M = M e^{-kt}$ or	-x - Mc		A1 * cso
	leading to $x = M - Me$ of	x = M(1 - e) 0e		[6]
	B1: Mark as in the original scheme. M1A1M1: Mark as in the original scheme <i>A</i> ddM1: Mark as in the original scheme <i>A</i> $\ln x - M $ to $\ln (M - x)$ in their Note: This mark is dependent on A1: Mark as in the original scheme.	ne ignoring the modulus. ND the candidate must demor working. h both the previous method ma	nstrate that they have conv	erted
Aliter	Use of an integrating factor (I.F.)			
(b) Way 5	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(M - x) \implies \frac{\mathrm{d}x}{\mathrm{d}t} + kx = kM$ I.F. = e ^{kt}	B1		
	$\frac{d}{dt} \left(e^{kt} x \right) = k M e^{kt} ,$ $e^{kt} x = M e^{kt} + c$	M1A1		
	$x = M + ce^{-kt}$ {t = 0, x = 0 \Rightarrow} 0 = M + ce^{-k(0)}	M1		
	$\Rightarrow c = -M$ $x = M - Me^{-kt}$	ddM1A1		

Question Number	Scheme		Marks
118(i)	$\int x e^{-\frac{1}{2}x} dx \implies \begin{cases} u = x \implies \frac{du}{dx} = 1\\ \frac{dv}{dx} = e^{-\frac{1}{2}x} \implies v = -2e^{-\frac{1}{2}x} \end{cases}$		
	$\int x e^{-\frac{1}{2}x} dx = -2x e^{-\frac{1}{2}x} - \int -2e^{-\frac{1}{2}x} dx$	Use of 'integration by parts' formula in the correct direction. Correct expression.	<u>M1*</u> A1 aef
		$+\lambda re^{-\frac{1}{2}x} + \mu e^{-\frac{1}{2}x} (+c)$	M1
	$= -2xe^{-\frac{1}{2}x} - 4e^{-\frac{1}{2}x} + c$	$\frac{2\pi w c}{correct answer}$ with/without + c	A1
(ii)	$\int_{0}^{4} x e^{-\frac{1}{2}x} dx = \left[-2x e^{-\frac{1}{2}x} - 4e^{-\frac{1}{2}x} \right]_{0}^{4}$		
	$= \left(-2(4)e^{-\frac{1}{2}(4)} - 4e^{-\frac{1}{2}(4)}\right) - \left(-2(0)e^{-\frac{1}{2}(0)} - 4e^{-\frac{1}{2}(0)}\right)$ $= \left(-8e^{-2} - 4e^{-2}\right) - \left(0 - 4\right)$	Substitutes limits of 4 and 0 and subtracts the correct way round.	d <u>M1*</u>
	$= 4 - 12e^{-2}$	$a = 4, b = -12$ or $4 - 12e^{-2}$	A1
			[6]
	Notes on Question 118		
118(ii)	dM1: Complete method of applying limits of 4 and 0 and su Evidence of a proper consideration of the limit of 0 is a serie is M0.	btracting the correct way roun needed for M1. So, just subtra	nd. acting

Question Number	Scheme		Marks
110 (i)(a)	7x = A + B		
119. (I)(a)	(x+3)(2x-1) $(x+3)$ $(2x-1)$		
	$7x \equiv A(2x-1) + B(x+3)$	Forms the correct identity.	B1
	When $x = -3$, $A = 3$.	Substitutes either $x = -3$ or $x = \frac{1}{2}$	
	When $x = \frac{1}{2}$, $B = 1$.	into their identity and correctly finds one of either <i>A</i> or <i>B</i> .	M1
	Hence, $\left\{\frac{7x}{(x+3)(2x-1)}\right\} = \frac{3}{(x+3)} + \frac{1}{(2x-1)}$	Correct partial fraction.	A1
			[3]
(b)	$\int \frac{7x}{(x+3)(2x-1)} \mathrm{d}x = \int \frac{3}{(x+3)} + \frac{1}{(2x-1)} \mathrm{d}x$		
	1	Either $\pm a \ln(x+3)$ or $\pm b \ln(2x-1)$	M1
	$= 3\ln(x+3) + \frac{1}{2}\ln(2x-1) + c$	At least one ln term correct	A1 ft
	2	Correct integration with $+c$	A1
	•		[3]
(ii)	$\int \frac{1}{x+x^{\frac{1}{3}}} \mathrm{d}x , \qquad u^3 = x$		
	$3u^2 \frac{\mathrm{d}u}{\mathrm{d}x} = 1$	$3u^2 \frac{du}{dx} = 1$ or $\frac{dx}{du} = 3u^2$ or $\frac{du}{dx} = \frac{1}{3}x^{-\frac{2}{3}}$	B1 oe
		Attempt to substitute $u^3 = x$ and	
	$= \int \frac{1}{u^3 + u} \cdot 3u^2 \mathrm{d}u$	$3u^2 \frac{\mathrm{d}u}{\mathrm{d}x} = 1$ or $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{3}x^{-\frac{2}{3}}$ to give an	M1
	•	expression to be integrated which is in	
	6 2	terms of u only.	
	$= \int \frac{3u}{u^2 + 1} \mathrm{d}u$	$\int \frac{3u}{u^2 + 1} \mathrm{d}u$	A1
	$=\frac{3}{2}\ln\left(u^2+1\right)+c$	$\pm \lambda \ln \left(u^2 + 1 \right)$	M1
	$=\frac{3}{2}\ln\left(x^{\frac{2}{3}}+1\right)+c$	Correct answer in x with or without $+ c$.	A1
			[5]
	Notes on Question 119		11
(ii)	Note: 1 st M1 can be implied by $\int \frac{1}{u^3 + u} \cdot 3u^2$ if the	du is missing.	

Question Number	Scheme	Marks
120. (a)	$x = \tan \theta$, $y = 1 + 2\cos 2\theta$, $0 \le \theta < \frac{\pi}{2}$	
	$V = \underline{\pi} \int (1 + 2\cos 2\theta)^2 \cdot \sec^2 \theta \{ d\theta \}$ attempt at $V = \underline{\pi} \int \underline{y^2} dx$ Correct expression ignoring limits and	M1
	π .	B1
	$V = (\pi) \int (1 + 2(2\cos^2 \theta - 1))^2 \sec^2 \theta \{ d\theta \}$ Using either $\cos 2\theta = 2\cos^2 \theta - 1$ or $\cos 2\theta = 1 - 2\sin^2 \theta$ or $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	M1
	$V = (\pi) \int (4\cos^2 \theta - 1)^2 \sec^2 \theta \left\{ \mathrm{d}\theta \right\}$	
	$V = (\pi) \int (16\cos^4\theta - 8\cos^2\theta + 1)\sec^2\theta \left\{ d\theta \right\}$	
	$V = \pi \int (16\cos^2 \theta - 8 + \sec^2 \theta) \{ d\theta \}$ Manipulates to give the final answer where $k = \pi$	A1 *
	change limits: when $x = 1 \Rightarrow 1 = \tan \theta \Rightarrow \theta = \frac{\pi}{4}$	D1
	$x = \sqrt{3} \Rightarrow \sqrt{3} = \tan \theta \Rightarrow \theta = \frac{\pi}{3}$	DI
		[5]
(b)	$(\pi) \int 16 \left(\frac{1 + \cos 2\theta}{2} \right) - 8 + \sec^2 \theta d\theta \qquad \qquad \cos 2\theta = 2\cos^2 \theta - 1 \text{ to substitute}$	M1
	$\int \left(\begin{array}{c} 2 \end{array} \right) for \cos^2 \theta.$	
	$= (\pi) \int 8 + 8\cos 2\theta - 8 + \sec^2 \theta \mathrm{d}\theta$	
	$= (\pi) \int 8\cos 2\theta + \sec^2 \theta \mathrm{d}\theta$	
	Either $\pm 4\sin 2\theta$ or $\tan \theta$	M1
	$=(\pi)\left(\frac{1}{2} + \tan\theta\right) \qquad \qquad \frac{8\sin 2\theta}{2} + \tan\theta$	A1
	So, $V = (\pi) \int_{-\infty}^{\frac{\pi}{3}} (8\cos 2\theta + \sec^2 \theta) d\theta = (\pi) \left[\frac{8\sin 2\theta}{2} + \tan \theta \right]^{\frac{\pi}{3}}$	
	$\begin{bmatrix} \pi \\ 4 \end{bmatrix}$	
	$=(\pi)\left[\left(\frac{4\sqrt{3}}{2}+\sqrt{3}\right)-(4+1)\right]$ Substitutes limits of $\frac{\pi}{3}$ and $\frac{\pi}{4}$ and	ddM1
	subtracts the correct way round.	
	$= (3\sqrt{3}-5)\pi \qquad (3\sqrt{3}-5)\pi$	A1
		[5] 10
	Notes on Question 120	
(a)	Note: The use of $\int y \frac{dx}{d\theta} \{ d\theta \}$ (i.e. an expression for area and not volume) is the 1 st M0, 1 st	B0.
	Note: For the 1 st B1, the correct expression of $\int (1 + 2\cos 2\theta)^2 \sec^2 \theta$ must be stated on one	e line.
	Note: Award 2 nd M0 for applying $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ to give an expression in terms of $\cos 2\theta$	2 heta .
	Note: The π in the volume formula is only required for the 1 st M1 mark and the A1 mark.	

Question Number	Scheme		Marks
121. (a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = -32\pi\sqrt{h}$		
	$V = \pi (40)^2 h \ \left\{ = 1600\pi h \right\} \qquad \qquad V = \pi$	$\tau(40)^2 h$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}V} = 1600\pi$ $\frac{\mathrm{d}V}{\mathrm{d}V} = 1600\pi$	1600π	B1ft
	$ \begin{array}{c} dh \\ dh \\ dh \\ dV \end{array} $		
	$\frac{dt}{dt} = \frac{dV}{dV} \times \frac{dt}{dt}$		
	$\frac{dh}{dt} = \frac{1}{1600\pi} \times -32\pi\sqrt{h} \qquad \qquad \frac{dh}{dt} = \left(\pm 32\pi\sqrt{h}\right) \div \left(\text{thei}\right)$	$r \frac{dV}{dh}$	M1
	So, $\frac{dh}{dt} = -0.02 \sqrt{h}$ Correct	t proof.	A1 * cso
			[4]
(b)	$\int \frac{dh}{\sqrt{h}} = \int -0.02 dt$ Attempt to separate val Integral signs not nec	riables. cessary.	B1
	$\Rightarrow \int h^{-\frac{1}{2}} dh = \int -0.02 dt$	5	
	Separates variables and int	agratas	
	to give $\pm \alpha h^{\frac{1}{2}} = \pm \beta$	$\beta t (+ c)$	M1
	$\Rightarrow \frac{1}{\left(\frac{1}{2}\right)} = -0.02t (+c)$ Correct integration with/wi	thout + c	A1
	Uses boundary conditio	ns for t	
	$t = 0, h = 100 \Rightarrow 2\sqrt{100} = -0.02(0) + c \Rightarrow c = 20$ and h to find c. Then uses found c to form an equation	<i>h</i> with ation in	M1
	$n = 50 \Rightarrow 2\sqrt{50} = -0.02l + 20$ round c to form an equatorial order to	\Rightarrow find <i>t</i> .	
	So, $0.02t = 20 - 2\sqrt{50}$		
	$\Rightarrow t = 1000 - 500\sqrt{2} = 292.8932188$		
	$\Rightarrow t = 293 \text{ (minutes) (nearest minute)} \qquad av$	wrt 293	A1 cso
			[5] 9
	Notes on Question 121	I	
(a)	Note: Use of $V = \pi r^2 h$ is 1 st B0 until $r = 40$ is substituted.		
(b)	Note: Award final A0 for dividing by 60 after achieving $t = 292.8932188$		
	Note: The final A1 mark is for correct solution only. If the candidate makes a si	gn error	then award
	Inal AU.		

	Notes on Question 121 continued	
(a)	Alternative Method for part (a)	
	$\frac{\mathrm{d}}{\mathrm{d}t}\left(\pi 40^2 h\right) = -32\pi\sqrt{h}$	B1B1: $\frac{d}{dt} (\pi 40^2 h) = -32 \pi \sqrt{h}$
	$\Rightarrow \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-32\pi\sqrt{h}}{\pi40^2}$	M1: Simplifies to give an expression for $\frac{dh}{dt}$.
	So, $\frac{\mathrm{d}h}{\mathrm{d}t} = -0.02 \sqrt{h}$ *	A1: Correct proof.
(b)	Alternative Method for part (b)	
	$\int_{100}^{50} \frac{dh}{\sqrt{h}} = \int_{0}^{T} -0.02 dt$	B1: Attempt to separate variables. Integral signs and limits not necessary.
	$\Rightarrow \int_{100}^{50} h^{-\frac{1}{2}} \mathrm{d}h = \int_{0}^{T} -0.02 \mathrm{d}t$	
	$ = \left[\frac{h^{\frac{1}{2}}}{2} \right]^{50} = \left[-0.02t \right]^T $	M1: $\pm \alpha h^{\frac{1}{2}} = \pm \beta t (+ c)$
	$ = \left\lfloor \left(\frac{1}{2}\right) \right\rfloor_{100} = \left\lfloor -0.02t \right\rfloor_{0} $	A1: Correct integration with/without limits
	$2\sqrt{50} - 2\sqrt{100} = -0.02T$	M1: Attempts to use limits in order to find <i>T</i> .
	So, $0.02T = 20 - 2\sqrt{50}$	
	$\Rightarrow T = 1000 - 500\sqrt{2} = 292.8932188$	
	\Rightarrow T = 293 (minutes) (nearest minute)	A1: A correct solution (with a correct application of limits) leading to awrt 293.

Question
NumberScheme122. (a)
$$\int \frac{1}{x^1} \ln x \, dx$$
.
$$\begin{cases} u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x^{-3} \Rightarrow v = \frac{x^{-2}}{x^{-2}} = \frac{-1}{2x^2} \end{cases}$$
In the form $\frac{\pm \lambda}{x^1} \ln x \pm \int u \frac{1}{x^2} \cdot \frac{1}{x}$ M1 $= \frac{-1}{2x^2} \ln x - \int \frac{-1}{2x^2} \frac{1}{x} \, dx$ $-\frac{1}{2x^2} \ln x \sinh (16 \ or un-simplified. Al $-\int \frac{-1}{2x^2} \frac{1}{x} \sinh (16 \ or un-simplified. Al $-\int \frac{-1}{2x^2} \frac{1}{x} \sinh (16 \ or un-simplified. Al $-\int \frac{-1}{2x^2} \frac{1}{x} + \frac{1}{2} \int \frac{1}{x^2} dx \Biggrlength{}$ M1 $= -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^2} \, dx \Biggrlength{}$ $= -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^2} \, dx \Biggrlength{}$ M1 $= -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^2} \, dx \Biggrlength{}$ $= -\frac{1}{2(1)^2} \ln x - \frac{1}{4(2)^2} \int \frac{1}{x^2} - \frac{1}{4(2)^2} \int \frac{1}{x^2} - \frac{1}{4(1)^2} \int \frac{1}{x^2} \int \frac{1}{x} + \frac{1}{x^2} \int \frac{1}{x^2} \, dx \Biggrlength{}$ M1(b) $\left\{ \begin{bmatrix} -\frac{1}{2x^2} \ln x - \frac{1}{4x^2} \end{bmatrix}_{1}^{2} \right\} = \left(-\frac{1}{2(2)^2} \ln 2 - \frac{1}{4(2)^2} \right) - \left(-\frac{1}{2(1)^2} \ln 1 - \frac{1}{4(1)^2} \right)$ In the form $\frac{4x}{x^2} \ln x + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} \int \frac{1}{x} \int \frac{1}{x} \, dx \Biggrlength{}$ (a)M1: Integration by parts is applied in the form $\frac{\pm \lambda}{x^2} \ln x \pm \int \mu \frac{1}{x^2} \frac{1}{x}$ or equivalent.A1 $\frac{21}{2x^2} \ln x - \frac{1}{2x^2} \frac{1}{x}$ or equivalent. You can ignore the dx.M1: Depends on the previous M1. $\pm \int \mu \frac{1}{x^2} \frac{1}{x} \rightarrow \pm \frac{1}{2x} \ln x - \frac{1}{2x} \ln x - \frac{x^2}{4} \{+c\}$ $\sigma = -\frac{1}{2x^2} \ln x + \frac{1}{2} \left(-\frac{1}{2x^2} \right) \{+c\}$ or $= -\frac{1}{2x^2} \ln x - \frac{x^2}{4} \{+c\}$ $\sigma = -\frac{1}{2x^2} \frac{1}{x} + \frac{1}{x} +$$$$

$$\begin{bmatrix} 122. (b) \\ ctd \end{bmatrix} \text{ Note: Decimal answer is 0.100856... in part (b).} \\ \\ \frac{Alternative Solution}{\int \frac{1}{x^3} \ln x \, dx, } \begin{cases} u = x^{-3} \implies \frac{du}{dx} = -3x^{-4} \\ \frac{dv}{dx} = \ln x \implies v = x \ln x - x \end{cases} \\ \\ \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) - \int (x \ln x - x) \frac{-3}{x^4} dx \\ & k \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) - \int (x \ln x - x) \frac{-3}{x^4} dx \\ & k \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) - \int (x \ln x - x) \frac{-3}{x^4} dx \\ & -2 \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) - \int \frac{3}{x^3} dx \\ & -2 \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) - \int \frac{3}{x^2} dx \\ & -2 \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) - \int \frac{3}{x^2} dx \\ & -2 \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) + \frac{3}{2x^2} \left\{ + c \right\} \\ & -2 \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) + \frac{3}{2x^2} \left\{ + c \right\} \\ & -\frac{1}{2x^3} (x \ln x - x) - \int \frac{3}{4x^2} 0 \text{ requivalent} \\ & + \frac{1}{2x^2} \ln x - \frac{1}{2x^2} \ln x - \frac{1}{4x^2} \left\{ + c \right\} \\ & = -\frac{1}{2x^2} \ln x - \frac{1}{4x^2} \left\{ + c \right\}$$

Question Number	Scheme	Marks
123. (a)	1.0981	B1 cao
		[1]
(b)	Area $\approx \frac{1}{2} \times 1$; $\times [0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333]$	B1; <u>M1</u>
	$=\frac{1}{2} \times 5.6863 = 2.84315 = 2.843$ (3 dp) 2.843 or awrt 2.843	A1
		[3]
(c)	$\left\{u = 1 + \sqrt{x}\right\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{\mathrm{d}x}{\mathrm{d}u} = 2(u-1)$	<u>B1</u>
	$\int \frac{(u-1)^2}{u} \dots \dots$	M1
	$\left\{\int \frac{1}{1+\sqrt{x}} \mathrm{d}x = \right\} \int \frac{1}{u} \cdot 2(u-1) \mathrm{d}u \qquad \qquad \int \frac{(u-1)^2}{u} \cdot 2(u-1) \mathrm{d}u$	A1
	$= 2 \int \frac{(u-1)^3}{u} du = \{2\} \int \frac{(u^3 - 3u^2 + 3u - 1)}{u} du$ Expands to give a "four term" cubic in u . Eg: $\pm Au^3 \pm Bu^2 \pm Cu \pm D$	M1
	$= \{2\} \int \left(u^2 - 3u + 3 - \frac{1}{u} \right) du$ An attempt to divide at least three terms in <i>their cubic</i> by <i>u</i> . See notes.	M1
	$= \{2\} \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u \right) \qquad $	A1
	Area(R) = $\left[\frac{2u^3}{3} - 3u^2 + 6u - 2\ln u\right]^3$	
	$= \left(\frac{2(3)^{3}}{3} - 3(3)^{2} + 6(3) - 2\ln 3\right) - \left(\frac{2(2)^{3}}{3} - 3(2)^{2} + 6(2) - 2\ln 2\right)$ Applies limits of 3 and 2 in <i>u</i> or 4 and 1 in <i>x</i> and subtracts either way round.	M1
	$= \frac{11}{3} + 2\ln 2 - 2\ln 3 \text{or} \frac{11}{3} + 2\ln\left(\frac{2}{3}\right) \text{ or } \frac{11}{3} - \ln\left(\frac{9}{4}\right), \text{ etc} \qquad \begin{array}{c} \text{Correct exact answer} \\ \text{or equivalent.} \end{array}$	A1
		[8] 12
(a)	B1: 1.0981 correct answer only. Look for this on the table or in the candidate's working.	
(b)	B1 : Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$	
	M1: For structure of trapezium rule	
	A1: anything that rounds to 2.843 Note: Working must be seen to demonstrate the use of the trapezium rule. Note: actual area is 2.8.	5573645
	<u>Note:</u> Award B1M1 A1 for $\frac{1}{2}(0.5 + 1.3333) + (0.8284 + \text{their } 1.0981) = 2.84315$	
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctl	у
	Award B1M0A0 for $\frac{1}{2} \times 1 + 0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333$ (nb: answer of 6.1863).	
	Award B1M0A0 for $\frac{1}{2} \times 1$ (0.5 + 1.3333) + 2(0.8284 + their 1.0981) (nb: answer of 4.76965).	

123. (b)
$$\frac{dlecrative method for put (b): Adding individual trapezia
Area \approx 1x \left[\frac{0.5 + 0.8284}{2} + \frac{0.8284 + 1.0981 + 1.3333}{2} \right] = 2.84315$$
B1: 1 and a divisor of 2 on all terms inside brackets.
M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.
A1: anything that rounds to 2.843
(c)
B1: $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ or $du = \frac{1}{2\sqrt{x}} dx$ or $2\sqrt{x} du = dx$ or $dx = 2(u-1)du$ or $\frac{dx}{du} = 2(u-1)$ oe.
1^a M1: $\frac{x}{1+\sqrt{x}}$ becoming $\frac{(u-1)^2}{u}$ (Ignore integral sign).
1^a A1 (B1 on epen): $\frac{x}{1+\sqrt{x}} dx$ becoming $\frac{(u-1)^2}{u}$. $2(u-1) \{du\}$ or $\frac{(u-1)^2}{u} \cdot \frac{2}{(u-1)^{-1}} \{du\}$.
You can ignore the integral sign and the du .
2^{ad} M1: Expands to give a "four term" cubic in $u, \pm Au^2 \pm Bu^2 \pm Cu \pm D$
where $A \neq 0, B \neq 0, C \neq 0$ and $D \neq 0$ The cubic does not need to be simplified for this mark.
3^{ad} M1: An attempt to divide at least three terms in *their cubic* by u .
I.e. $\frac{(u^2 - 3u^2 + 3u - 1)}{u} \rightarrow u^2 - 3u + 3 - \frac{1}{u}$
2^{ad} A1: $\int \frac{(u-1)^3}{u} du \rightarrow \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u\right)$
4th M1: Some evidence of limits of 3 and 2 in u and subtracting either way round.
3^{ad} A1: Exact answer of $\frac{11}{3} + 2\ln 2 - 2\ln 3$ or $\frac{11}{3} + 2\ln \left(\frac{2}{3}\right)$ or $\frac{11}{3} - \ln \left(\frac{9}{4}\right)$ or $2\left(\frac{11}{6} + \ln 2 - \ln 3\right)$
or $\frac{22}{6} + 2\ln \left(\frac{2}{3}\right)$, etc. Note: that fractions must be combined to give either $\frac{11}{3}$ or $\frac{22}{6}$ or $3\frac{2}{3}$
Alternative method for 2^{ad} M1 and 3^{ad} M1 mark
 $\{2\} \int \frac{(u-1)^2}{u} \cdot (u-1) du = \{2\} \int (u^2 - 2u + 1) \\ u$ An attempt to expand $(u-1)^2$, then divide the result y_i and the go on to multiply y_i $(u-1)$.
 $= \{2] \int (u^2 - 2u + 1 - u + 2 - \frac{1}{u}) du$
 $= \{2] \int (u^2 - 3u + 3 - \frac{1}{u}) du$

$$\begin{bmatrix} 123, (c) \\ etd \\ etd \\ \end{bmatrix} = \begin{bmatrix} \frac{2(1+\sqrt{x})^2}{3} - 3(1+\sqrt{x})^2 + 6(1+\sqrt{x}) - 2\ln(1+\sqrt{x}) \\ \frac{2(1+\sqrt{x})^2}{3} - 3(1+\sqrt{4})^2 + 6(1+\sqrt{4}) - 2\ln(1+\sqrt{4}) \\ \frac{2(1+\sqrt{1})^3}{3} - 3(1+\sqrt{1})^2 + 6(1+\sqrt{1}) - 2\ln(1+\sqrt{1}) \\ \frac{2(1+\sqrt{1})^2}{3} - 3(1+\sqrt{1})^2 + 2\ln(2-2\ln(2+\sqrt{1})) \\ \frac{2(1+\sqrt{1})^2}{1} - 2\ln(1+\sqrt{1})^2 + 2\ln(2-2\ln(2+\sqrt{1})) \\ \frac{2(1+\sqrt{1})^2}{1} - 2\ln(1+\sqrt{1})^2 - 2\ln(1+\sqrt{1}) \\ \frac{2(1+\sqrt{1})^2}{1} - 2\ln(1+\sqrt{1})^2 - 2\ln(1+\sqrt{1}) \\ \frac{2(1+\sqrt{1})^2}{4u} - \frac{1}{4} \int \frac{u^2 - 4u}{u^2} + \frac{2u^2 - 4u}{u^2} + 1 \\ \frac{2(u-1)^4}{4u} + \frac{1}{4} \int u^2 - 4u + 6 - \frac{4}{u} + \frac{1}{u^2} du \\ \frac{2(u-1)^4}{4u} + \frac{1}{4} \int u^2 - 4u + 6 - \frac{4}{u} + \frac{1}{u^2} du \\ \frac{2(u-1)^4}{4u} + \frac{1}{4} \int \frac{u^2}{4u^2} - \frac{2u^2}{4u^2} + \frac{3u}{2} - \ln u - \frac{1}{4u} \end{bmatrix}^2 \\ \frac{2(u-1)^4}{4u} = \left[\frac{(u-1)^4}{4u} + \frac{u^2}{12} - \frac{u^2}{2} + \frac{3u}{2} - \ln u - \frac{1}{4u} \right]^2 \\ \frac{2(u-1)^4}{4u} = \left[\frac{(1+\sqrt{1})^4}{4u} + \frac{1}{12} - \frac{2}{2} + \frac{3u}{2} - \ln u - \frac{1}{4u} \right]^2 \\ \frac{2(u-1)^4}{4u} = \left[\frac{(1+\sqrt{1})^4}{4u} + \frac{1}{4} - \frac{2}{3} - \frac{2u^2}{4} + \frac{3u}{2} - \frac{2u}{4} - \frac{4u}{4} + \frac{4}{2} - \frac{2u^2}{4} + \frac{4}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{8} \right]$$
 MI
 = (7-\ln 3) - (\frac{5}{3} - \ln 2) \\ = \frac{11}{16} + \ln\frac{2}{3} A1

Question Number	Scheme		Mark	IS .
124.	Working parametrically:			
	$x = 1 - \frac{1}{2}t$, $y = 2^{t} - 1$ or $y = e^{t \ln 2} - 1$			
(a)	$\{x = 0 \implies\} 0 = 1 - \frac{1}{2}t \implies t = 2$	Applies $x = 0$ to obtain a value for <i>t</i> .	M1	
	When $t = 2$, $y = 2^2 - 1 = 3$	Correct value for <i>y</i> .	A1	[2]
(b)	$\{y=0 \Rightarrow\} 0=2^t-1 \Rightarrow t=0$	Applies $y = 0$ to obtain a value for <i>t</i> . (Must be seen in part (b)).	M1	[4]
	When $t = 0$, $x = 1 - \frac{1}{2}(0) = 1$	x = 1	A1	
				[2]
(c)	$\frac{dx}{dt} = -\frac{1}{2}$ and either $\frac{dy}{dt} = 2^t \ln 2$ or $\frac{dy}{dt} = e^{t \ln 2} \ln t$	2	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2^t \ln 2}{-\frac{1}{2}}$	Attempts their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$.	M1	
	At A, $t = "2"$, so $m(\mathbf{T}) = -8\ln 2 \implies m(\mathbf{N}) = \frac{1}{8\ln 2}$	Applies $t = "2"$ and $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1	
	$y-3 = \frac{1}{8 \ln 2} (x-0)$ or $y = 3 + \frac{1}{8 \ln 2} x$ or equiv	alent. See notes.	M1 A1 o cso	oe
(d)	Area(R) = $\int (2^t - 1) \cdot \left(-\frac{1}{2}\right) dt$	Complete substitution for both y and dx	M1	[9]
	$x = -1 \rightarrow t = 4$ and $x = 1 \rightarrow t = 0$		B1	
		Either $2^t \rightarrow \frac{2^t}{\ln 2}$		
	$=\left\{-\frac{1}{2}\right\}\left(\frac{2^{t}}{1+2}-t\right)$	or $(2^t - 1) \rightarrow \frac{(2^t)}{\pm \alpha (\ln 2)} - t$	M1*	
	$(2)(\ln 2)$	or $(2^t - 1) \rightarrow \pm \alpha (\ln 2)(2^t) - t$		
		$(2^t - 1) \rightarrow \frac{2^t}{\ln 2} - t$	A1	
	$\left\{-\frac{1}{2}\left[\frac{2^{\prime}}{\ln 2}-t\right]_{4}^{0}\right\} = -\frac{1}{2}\left(\left(\frac{1}{\ln 2}\right)-\left(\frac{16}{\ln 2}-4\right)\right)$	Depends on the previous method mark. Substitutes their changed limits in <i>t</i> and subtracts either way round.	dM1*	
	$=\frac{15}{2\ln 2}-2$	$\frac{15}{2\ln 2}$ - 2 or equivalent.	A1	
				[6] 15

M1: Applies x = 0 and obtains a value of t. **124.** (a) A1: For $y = 2^2 - 1 = 3$ or y = 4 - 1 = 3**Alternative Solution 1:** M1: For substituting t = 2 into either x or y. A1: $x = 1 - \frac{1}{2}(2) = 0$ and $y = 2^2 - 1 = 3$ Alternative Solution 2: M1: Applies y = 3 and obtains a value of t. A1: For $x = 1 - \frac{1}{2}(2) = 0$ or x = 1 - 1 = 0. **Alternative Solution 3:** M1: Applies y = 3 or x = 0 and obtains a value of t. A1: Shows that t = 2 for both y = 3 and x = 0. M1: Applies y = 0 and obtains a value of t. Working must be seen in part (b). (b) **A1:** For finding x = 1. **Note:** Award M1A1 for x = 1. **B1:** Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ correct. This mark can be implied by later working. (c) **M1:** Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their}\left(\frac{dx}{dt}\right)}$. Note: their $\frac{dy}{dt}$ must be a function of t. M1: Uses their value of t found in part (a) and applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. M1: y - 3 = (their normal gradient)x or y = (their normal gradient)x + 3 or equivalent. A1: $y-3 = \frac{1}{8 \ln 2} (x-0)$ or $y=3+\frac{1}{8 \ln 2} x$ or $y-3 = \frac{1}{\ln 256} (x-0)$ or $(8 \ln 2) y - 24 \ln 2 = x$ or $\frac{y-3}{(x-0)} = \frac{1}{8 \ln 2}$. You can apply isw here. Working in decimals is ok for the three method marks. B1, A1 require exact values. M1: Complete substitution for both y and dx. So candidate should write down $\int (2^t - 1) \cdot (1 + \frac{dx}{dt})$ (d) **B1:** Changes limits from $x \to t$. $x = -1 \to t = 4$ and $x = 1 \to t = 0$. Note t = 4 and t = 0 seen is B1. M1*: Integrates 2^t correctly to give $\frac{2^t}{\ln 2}$... or integrates $(2^t - 1)$ to give either $\frac{(2^t)}{\pm \alpha (\ln 2)} - t$ or $\pm \alpha (\ln 2)(2^t) - t$. A1: Correct integration of $(2^t - 1)$ with respect to t to give $\frac{2^t}{\ln 2} - t$. dM1*: Depends upon the previous method mark. Substitutes their limits in t and subtracts either way round. A1: Exact answer of $\frac{15}{2\ln 2} - 2$ or $\frac{15}{\ln 4} - 2$ or $\frac{15 - 4\ln 2}{2\ln 2}$ or $\frac{7.5}{\ln 2} - 2$ or $\frac{15}{2}\log_2 e - 2$ or equivalent.

Questio n Number	Scheme		Marks
124.	Alternative: Converting to a Cartesian equation:		
(a)	$t = 2 - 2x \implies y = 2^{2-2x} - 1$ $\{x = 0 \implies\} y = 2^2 - 1$ y = 3	Applies $x = 0$ in their Cartesian equation to arrive at a correct answer of 3.	M1 A1
(b)	$\{y = 0 \Rightarrow\} 0 = 2^{2-2x} - 1 \Rightarrow 0 = 2 - 2x \Rightarrow x = \dots$ x = 1	Applies $y = 0$ to obtain a value for x. (Must be seen in part (b)). x = 1	[2] M1 A1
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\left(2^{2-2x}\right)\ln 2$	$\pm \lambda 2^{2-2x}, \ \lambda \neq 1$ -2(2 ^{2-2x})ln 2 or equivalent	M1 A1
	At A, $x = 0$, so $m(\mathbf{T}) = -8\ln 2 \implies m(\mathbf{N}) = \frac{1}{8\ln 2}$	Applies $x = 0$ and $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1
	$y-3 = \frac{1}{8 \ln 2} (x-0)$ or $y = 3 + \frac{1}{8 \ln 2} x$ or equivalent.	As in the original scheme.	M1 A1 oe
(d)	$\operatorname{Area}(R) = \int \left(2^{2-2x} - 1 \right) \mathrm{d}x$	Form the integral of their Cartesian equation of C .	[5] M1
	$= \int_{-1}^{1} (2^{2-2x} - 1) dx$	For $2^{2-2x} - 1$ with limits of $x = -1$ and $x = 1$. I.e. $\int_{-1}^{1} (2^{2-2x} - 1)^{1/2} dx$	B1
	$=\left(\frac{2^{2-2x}}{-2\ln 2} - x\right)$	Either $2^{2-2x} \rightarrow \frac{2^{2-2x}}{-2\ln 2}$ or $(2^{2-2x} - 1) \rightarrow \frac{2^{2-2x}}{\pm \alpha (\ln 2)} - x$ or $(2^{2-2x} - 1) \rightarrow \pm \alpha (\ln 2)(2^{2-2x}) - x$	M1*
		$(2^{2-2x} - 1) \rightarrow \frac{2^{2-2x}}{-2\ln 2} - x$	A1
	$\left\{ \left[\frac{2^{2-2x}}{-2\ln 2} - x \right]_{-1}^{1} \right\} = \left(\left(\frac{1}{-2\ln 2} - 1 \right) - \left(\frac{16}{-2\ln 2} + 1 \right) \right)$	Depends on the previous method mark. Substitutes limits of -1 and their x_B and subtracts either way round.	dM1*
	$=\frac{15}{2\ln 2}-2$	$\frac{15}{2 \ln 2} - 2$ or equivalent.	A1
(b)	Alternative method: In Cartesian and applying	u = 2 - 2x	[6] 15

Area(R) =
$$\int (2^u - 1) \{ dx \}$$
, where $u = 2 - 2x$
= $\int_4^0 (2^u - 1) (-\frac{1}{2}) \{ du \}$

M0: Unless a candidate *writes* $\int (2^{2-2x} - 1) \{dx\}$ Then apply the "working parametrically" mark scheme.

Questio n Number	Scheme		Marks
124. (d)	Alternative method: For substitution $u = 2^t$		
	Area(R) = $\int (2^t - 1) \cdot \left(-\frac{1}{2}\right) dt$	Complete substitution for both y and dx	M1
	where $u = 2^t \implies \frac{\mathrm{d}u}{\mathrm{d}t} = 2^t \ln 2 \implies \frac{\mathrm{d}u}{\mathrm{d}t} = u \ln 2$		
	$x = -1 \rightarrow t = 4 \rightarrow u = 16$ and $x = 1 \rightarrow t = 0 \rightarrow u = 1$	Both correct limits in <i>t</i> or both correct limits in <i>u</i> .	B1
	So area(R) = $-\frac{1}{2}\int \frac{u-1}{u\ln 2} du$	If not awarded above, you can award M1 for this integral	
	$= -\frac{1}{2}\int \frac{1}{\ln 2} - \frac{1}{u\ln 2} du$		
		Either $2^t \rightarrow \frac{u}{\ln 2}$	
	$-\int -\frac{1}{2}\left(-\frac{u}{u}-\frac{\ln u}{2}\right)$	or $(2^t - 1) \rightarrow \frac{u}{\pm \alpha (\ln 2)} - \frac{\ln u}{\ln 2}$	M1*
	$\left(2\right) \left(\ln 2 \ln 2 \right)$	or $(2^t - 1) \rightarrow \pm \alpha (\ln 2)(u) - \frac{\ln u}{\ln 2}$	
		$\left(2^{t}-1\right) \rightarrow \frac{u}{\ln 2} - \frac{\ln u}{\ln 2}$	A1
	$ \left[\begin{array}{ccc} 1 \left[u & \ln u \end{array} \right]^{1} \right] \qquad 1 \left(\left(\begin{array}{ccc} 1 \end{array} \right) \left(\begin{array}{ccc} 16 & \ln 16 \end{array} \right) \right) $	Depends on the previous	
	$\left\{-\frac{1}{2}\left\lfloor\frac{\ln 2}{\ln 2} - \frac{1}{\ln 2}\right\rfloor_{16}\right\} = -\frac{1}{2}\left(\left\lfloor\frac{\ln 2}{\ln 2}\right\rfloor - \left\lfloor\frac{\ln 2}{\ln 2}\right\rfloor\right)$	method mark. Substitutes their changed limits <i>in</i>	dM1*
		<i>u</i> and subtracts either way round.	
	$= \frac{15}{2\ln 2} - \frac{\ln 16}{2\ln 2} \text{ or } \frac{15}{2\ln 2} - 2$	$\frac{15}{2\ln 2} - \frac{\ln 16}{2\ln 2}$ or $\frac{15}{2\ln 2} - 2$	A1
		or equivalent.	10
			[0]

Questio n Number	Scheme	Marks
125. (a)	$\{y = 0 \Rightarrow\}$ 1-2cos x = 0 1-2cos x = 0, seen or implied.	M1
	At least one correct value of x . (See notes).	A1
	$\Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3}$ Both $\frac{\pi}{3}$ and $\frac{5\pi}{3}$	A1 cso
(b)	$V = \pi \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos x)^2 dx$ For $\pi \int (1 - 2\cos x)^2$. Ignore limits and dx	[3] B1
	$\begin{cases} \left (1 - 2\cos x)^2 dx \right = \int (1 - 4\cos x + 4\cos^2 x) dx \\ = \int 1 - 4\cos x + 4\left(\frac{1 + \cos 2x}{2}\right) dx \\ = \int (3 - 4\cos x + 2\cos 2x) dx \end{cases} $ cos 2x = 2 cos ² x - 1 See notes.	M1
	Attempts $\int y^2$ to give any two of	
	$\pm A \rightarrow \pm Ax, \pm B\cos x \rightarrow \pm B\sin x$ or	M1
	$= 3x - 4\sin x + \frac{2\sin 2x}{2} \qquad \qquad \pm \lambda \cos 2x \rightarrow \pm \mu \sin 2x.$	
	Correct integration.	A1
	$V = \left\{\pi\right\} \left[\left(3\left(\frac{5\pi}{3}\right) - 4\sin\left(\frac{5\pi}{3}\right) + \frac{2\sin\left(\frac{10\pi}{3}\right)}{2}\right) - \left(3\left(\frac{\pi}{3}\right) - 4\sin\left(\frac{\pi}{3}\right) + \frac{2\sin\left(\frac{2\pi}{3}\right)}{2}\right) \right] $ Applying limits the correct way round. Ignore	ddM1
	$\pi = \pi \left(\left(5\pi + 2\sqrt{3} - \frac{\sqrt{3}}{2} \right) - \left(\pi - 2\sqrt{3} + \frac{\sqrt{3}}{2} \right) \right)$	
	$=\pi((18.3060) - (0.5435)) = 17.7625\pi = 55.80$	
	$=\pi(4\pi + 3\sqrt{3})$ or $4\pi^2 + 3\pi\sqrt{3}$ Two term exact answer.	A1
	x /	[6] 9

125. (a)	M1: $1-2\cos x = 0$.
	This can be implied by either $\cos x = \frac{1}{2}$ or any one of the correct values for x in radians or in
	degrees.
	1 st A1: Any one of either $\frac{\pi}{3}$ or $\frac{5\pi}{3}$ or 60 or 300 or awrt 1.05 or 5.23 or awrt 5.24.
	2nd A1: Both $\frac{\pi}{3}$ and $\frac{5\pi}{3}$.
(b)	
	B1: (M1 on epen) For $\pi \int (1-2\cos x)^2$. Ignore limits and dx.
	1 st M1: Any correct form of $\cos 2x = 2\cos^2 x - 1$ used or written down in the same variable.
	This can be implied by $\cos^2 x = \frac{1 + \cos 2x}{2}$ or $4\cos^2 x \rightarrow 2 + 2\cos 2x$ or $\cos 2A = 2\cos^2 A - 1$.
	2nd M1: Attempts $\int y^2$ to give any two of $\pm A \rightarrow \pm Ax$, $\pm B \cos x \rightarrow \pm B \sin x$ or $\pm \lambda \cos 2x \rightarrow \pm \mu \sin 2x$. Do not worry about the signs when integrating $\cos x$ or $\cos 2x$ for this mark.
	Note: $\int (1 - 2\cos x)^2 = \int 1 + 4\cos^2 x$ is ok for an attempt at $\int y^2$.
	1 st A1: Correct integration. Eg. $3x - 4\sin x + \frac{2\sin 2x}{2}$ or $x - 4\sin x + \frac{2\sin 2x}{2} + 2x$ oe.
	3rd ddM1: Depends on both of the two previous method marks. (Ignore π).
	Some evidence of substituting their $x = \frac{5\pi}{3}$ and their $x = \frac{\pi}{3}$ and subtracting the correct
	way round. You will need to use your calculator to check for correct substitution of their limits into their integrand if a candidate does not explicitly give some evidence . Note: For correct integral and limits decimals gives: $\pi((18.3060) - (0.5435)) = 17.7625\pi = 55.80$
	2nd A1: <i>Two term</i> exact answer of either $\pi(4\pi + 3\sqrt{3})$ or $4\pi^2 + 3\pi\sqrt{3}$ or equivalent.
	Note: The π in the volume formula is only required for the B1 mark and the final A1 mark. Note: Decimal answer of 58.802 without correct exact answer is A0. Note: Applying $\int (1 - 2\cos x) dx$ will usually be given no marks in this part.

Question Number	Scheme	Marks		
126. (a)	$\left\{\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{(3-\theta)}{125}\right\} \Rightarrow \int \frac{1}{3-\theta} \mathrm{d}\theta = \int \frac{1}{125} \mathrm{d}t \text{or} \int \frac{125}{3-\theta} \mathrm{d}\theta = \int \mathrm{d}t$	B1		
	$-\ln(\theta - 3) = \frac{1}{125}t \{+c\}$ or $-\ln(3 - \theta) = \frac{1}{125}t \{+c\}$ See notes.	M1 A1		
	$\ln\left(\theta - 3\right) = -\frac{1}{125}t + c$			
	$\theta - 3 = e^{-\frac{1}{125}t + c}$ or $e^{-\frac{1}{125}t}e^{c}$ to $\theta = Ae^{-0.008t} + 3$.			
	$\theta = A e^{-0.008t} + 3 *$	A1 [4]		
(b)	$\{t=0, \theta=16 \Rightarrow\}$ $16 = Ae^{-0.008(0)} + 3; \Rightarrow A = 13$ See notes.	M1; A1		
	Substitutes $\theta = 10$ into an equation $10 = 13e^{-0.008t} + 3$ of the form $\theta = Ae^{-0.008t} + 3$,	M1		
	or equivalent. See notes. Correct algebra to $-0.008t = \ln k$			
	$e^{-0.008t} = \frac{7}{13} \implies -0.008t = \ln\left(\frac{7}{13}\right)$ where k is a positive value. See	M1		
	$\left[\ln\left(\frac{7}{12}\right) \right]$			
	$\left\{ t = \frac{(13)}{(-0.008)} \right\} = 77.3799 = 77 \text{ (nearest minute)} $ awrt 77	A1		
		[5]		
126. (a)		9		
	B1: (M1 on epen) Separates variables as shown. $d\theta$ and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs. M1: Both $\pm \lambda \ln(3-\theta)$ or $\pm \lambda \ln(\theta-3)$ and $\pm \mu t$ where λ and μ are constants.			
	A1: For $-\ln(\theta - 3) = \frac{1}{125}t$ or $-\ln(3 - \theta) = \frac{1}{125}t$ or $-125\ln(\theta - 3) = t$ or $-125\ln(3 - \theta) = t$			
	Note: $+c$ is not needed for this mark.			
	A1: Correct completion to $\theta = Ae^{-0.008t} + 3$. Note: + <i>c</i> is needed for this mark.			
	Note: $\ln(\theta - 3) = -\frac{1}{125}t + c$ leading to $\theta - 3 = e^{-\frac{1}{125}t} + e^c$ or $\theta - 3 = e^{-\frac{1}{125}t} + A$, would be final			
	A0. $1 = 1 (2 - 2) = \frac{1}{2} = 1 (2 - 2) = \frac{1}{2}$			
	Note: From $-\ln(\theta - 3) = \frac{1}{125}t + c$, then $\ln(\theta - 3) = -\frac{1}{125}t + c$			
	$\Rightarrow \theta - 3 = e^{-\frac{1}{125}t + c} \text{ or } \theta - 3 = e^{-\frac{1}{125}t} e^{c} \Rightarrow \theta = A e^{-0.008t} + 3 \text{ is required for A1.}$			
	Note: From $-\ln(3-\theta) = \frac{1}{125}t + c$, then $\ln(3-\theta) = -\frac{1}{125}t + c$			
	$\Rightarrow 3 - \theta = e^{-\frac{1}{125}t^{+c}} \text{ or } 3 - \theta = e^{-\frac{1}{125}t}e^{c} \Rightarrow \theta = Ae^{-0.008t} + 3 \text{ is sufficient for A1.}$			
	Note: The jump from $3 - \theta = Ae^{-\frac{1}{125}t}$ to $\theta = Ae^{-0.008t} + 3$ is fine.			

Note:	$\ln(\theta - 3) = -\frac{1}{125}t + c \implies \theta - 3 = Ae^{-\frac{1}{125}t}$, where candidate writes $A = e^c$ is also
accepta	ble.

126. (b)					
	M1: (B1 on epen) Substitutes $\theta = 16$, $t = 0$, into either their equation containing an unknown constant or the printed equation. Note: You can imply this method mark.				
	A1: (M1 on epen) $A = 13$. Note: $\theta = 13e^{-0.008t} + 3$ without any working implies the first two marks,				
	M1A1.	0.009			
	M1: Substitutes $\theta = 10$ into an equation of the fo	orm $\theta = Ae^{-0.000} + 3$, or equivalent.			
	M1: Uses correct algebra to rearrange their equation	where A is a positive or negative numerical value and A can be equal to 1 or -1. M1: Uses correct algebra to rearrange their equation into the form $-0.008t = \ln k$			
	where k is a positive numerical value.				
	A1: awrt 77 or awrt 1 hour 17 minutes.				
	<u>Alternative Method I for part (b)</u>				
	$\int \frac{1}{3-\theta} d\theta = \int \frac{1}{125} dt \implies -\ln(\theta-3) = \frac{1}{125}t + c$				
	1	M1: Substitutes $t = 0, \theta = 16$,			
	${t=0, \theta=16 \Rightarrow} -\ln(16-3) = \frac{1}{125}(0) + c$	$\operatorname{into} -\ln(\theta - 3) = \frac{1}{125}t + c$			
	$\Rightarrow c = -\ln 13$	A1: $c = -\ln 13$			
	$-\ln(\theta - 3) = \frac{1}{125}t - \ln 13$ or $\ln(\theta - 3) = -\frac{1}{125}t$	+ ln13			
		M1: Substitutes $\theta = 10$ into an equation of the			
	$-\ln(10-3) = \frac{1}{125}t - \ln 13$	form $\pm \lambda \ln(\theta - 3) = \pm \frac{1}{125}t \pm \mu$			
		where λ , μ are numerical values.			
	$\ln 13 - \ln 7 = \frac{1}{t}t$	MI: Uses correct algebra to rearrange their equation into the form $\pm 0.008t - \ln C - \ln D$			
	$\frac{1113}{125}$	where C. D are positive numerical values.			
	t = 77.3799 = 77 (nearest minute)	A1: awrt 77.			
	Alternative Method 2 for part (b)				
	$\int \frac{1}{3-\theta} \mathrm{d}\theta = \int \frac{1}{125} \mathrm{d}t \Rightarrow -\ln 3-\theta = \frac{1}{125}t + c$				
	1	M1: Substitutes $t = 0, \theta = 16$,			
	${t=0, \theta=16 \Rightarrow} -\ln 3-16 = \frac{1}{125}(0) + c$	$\operatorname{into} -\ln(3-\theta) = \frac{1}{125}t + c$			
	$\Rightarrow c = -\ln 13$	A1: $c = -\ln 13$			
	$-\ln 3-\theta = \frac{1}{125}t - \ln 13$ or $\ln 3-\theta = -\frac{1}{125}t$	$+\ln 13$			
	M1: Substitutes $\theta = 10$ into an equation of the				
	$-\ln(3-10) = \frac{1}{125}t - \ln 13$	form $\pm \lambda \ln(3-\theta) = \pm \frac{1}{125}t \pm \mu$			
		where λ , μ are numerical values.			
	$\ln 13 - \ln 7 = \frac{1}{125}t$	M1: Uses correct algebra to rearrange their equation into the form $\pm 0.008t = \ln C - \ln D$,			

126. (b)	<u>Alternative Method 3 for part (b)</u>	
	$\int_{16}^{10} \frac{1}{3-\theta} \mathrm{d}\theta = \int_{0}^{t} \frac{1}{125} \mathrm{d}t$	
	$= \left[-\ln \left 3 - \theta \right \right]_{16}^{10} = \left[\frac{1}{125} t \right]_{0}^{t}$	
	$-\ln 7\ln 13 = \frac{1}{125}t$	M1A1: ln13 M1: Substitutes limit of $\theta = 10$ correctly. M1: Uses correct algebra to rearrange their own equation into the form $\pm 0.008t = \ln C - \ln D$,
	t = 77.3799 = 77 (nearest minute)	where <i>C</i> , <i>D</i> are <i>positive numerical values</i> . A1: awrt 77.
	<u>Alternative Method 4 for part (b)</u>	
	$\left\{ \theta = 16 \Longrightarrow \right\}$ $16 = Ae^{-0.008t} + 3$	M1*: Writes down a pair of equations in A and t , for $\theta = 16$ and $\theta = 10$ with either A unknown or A being a positive or negative value.
	$\left\{ \theta = 10 \Longrightarrow \right\}$ $10 = A e^{-0.008t} + 3$	A1: Two equations with an unknown <i>A</i> .
	$-0.008t = \ln\left(\frac{13}{A}\right)$ or $-0.008t = \ln\left(\frac{7}{A}\right)$	M1: Uses <i>correct algebra</i> to solve both of their equations leading to answers of the form $-0.008t = \ln k$, where <i>k</i> is <i>a positive numerical value</i> .
	$t_{(1)} = \frac{\ln\left(\frac{13}{A}\right)}{-0.008}$ and $t_{(2)} = \frac{\ln\left(\frac{7}{A}\right)}{-0.008}$	
	$t = t_{(1)} - t_{(2)} = \frac{\ln\left(\frac{13}{A}\right)}{-0.008} - \frac{\ln\left(\frac{7}{A}\right)}{-0.008}$	M1: Finds difference between the two times. (either way round).
	$\left\{ t = \frac{\ln\left(\frac{7}{13}\right)}{\left(-0.008\right)} \right\} = 77.3799 = 77 \text{ (nearest minute)}$	A1: awrt 77. Correct solution only.

Question Number	Scheme	Marks
Question Number 127.	Scheme (a) $1 = A(3x-1)^2 + Bx(3x-1) + Cx$ $x \to 0$ $(1 = A)$ $x \to \frac{1}{3}$ $1 = \frac{1}{3}C \Rightarrow C = 3$ any two constants correct Coefficients of x^2 $0 = 9A + 3B \Rightarrow B = -3$ all three constants correct (b)(i) $\int \left(\frac{1}{x} - \frac{3}{3x-1} + \frac{3}{(3x-1)^2}\right) dx$ $= \ln x - \frac{3}{3}\ln(3x-1) + \frac{3}{(-1)3}(3x-1)^{-1}$ (+C) $\left(= \ln x - \ln(3x-1) - \frac{1}{3x-1} + (+C)\right)$ (ii) $\int_{1}^{2} f(x) dx = \left[\ln x - \ln(3x-1) - \frac{1}{3x-1}\right]_{1}^{2}$ $= \left(\ln 2 - \ln 5 - \frac{1}{2}\right) - \left(\ln 1 - \ln 2 - \frac{1}{2}\right)$	Marks B1 M1 A1 A1 A1 (4) M1 A1ft A1ft
	$= \left(\ln 2 - \ln 5 - \frac{1}{5} \right) - \left(\ln 1 - \ln 2 - \frac{1}{2} \right)$ $= \ln \frac{2 \times 2}{2} + \dots$	M1 M1
	$=\frac{5}{10}+\ln\left(\frac{4}{5}\right)$	A1 (6) [10]

Question Number	Scheme	Marks
128.	$\int y dy = \int \frac{3}{\cos^2 x} dx$ Can be implied. Ignore integral signs $= \int 3 \sec^2 x dx$	B1
	$\frac{1}{2}y^2 = 3\tan x (+C)$	M1 A1
	$y = 2, x = \frac{\pi}{4}$ $\frac{1}{2}2^2 = 3\tan\frac{\pi}{4} + C$ Leading to	M1
	C = -1 $\frac{1}{2}y^{2} = 3\tan x - 1$ or equivalent	A1 (5) [5]

Question Number	Scheme	Marks
129.	(a) $\int x^{\frac{1}{2}} \ln 2x dx = \frac{2}{3} x^{\frac{3}{2}} \ln 2x - \int \frac{2}{3} x^{\frac{3}{2}} \times \frac{1}{x} dx$ $= \frac{2}{3} x^{\frac{3}{2}} \ln 2x - \int \frac{2}{3} x^{\frac{1}{2}} dx$	M1 A1
	$=\frac{2}{3}x^{\frac{3}{2}}\ln 2x - \frac{4}{9}x^{\frac{3}{2}} (+C)$	M1 A1 (4)
	(b) $\left[\frac{2}{3}x^{\frac{3}{2}}\ln 2x - \frac{4}{9}x^{\frac{3}{2}}\right]_{1}^{4} = \left(\frac{2}{3}4^{\frac{3}{2}}\ln 8 - \frac{4}{9}4^{\frac{3}{2}}\right) - \left(\frac{2}{3}\ln 2 - \frac{4}{9}\right)$ = $(16\ln 2)$ Using or implying $\ln 2^{n} = n\ln 2$	M1 M1
	$=\frac{40}{3}\ln 2 - \frac{20}{9}$	A1 (3)
		[/]

Question Number	Scheme	Marks
130 (a)	$\int x \sin 3x dx = -\frac{1}{3} x \cos 3x - \int -\frac{1}{3} \cos 3x \{dx\}$	M1 A1
	$= -\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x \{+c\}$	A1
(b)	$\int x^2 \cos 3x dx = \frac{1}{3} x^2 \sin 3x - \int \frac{2}{3} x \sin 3x \{dx\}$	[3] M1 A1
	$=\frac{1}{3}x^{2}\sin 3x - \frac{2}{3}\left(-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x\right) \{+c\}$	A1 isw
	$\left\{=\frac{1}{3}x^{2}\sin 3x+\frac{2}{9}x\cos 3x-\frac{2}{27}\sin 3x \ \left\{+c\right\}\right\}$ Ignore subsequent working	[3] 6
(a)	M1: Use of 'integration by parts' formula $uv - \int vu'$ (whether stated or not stated) in the correct	direction,
	where $u = x \rightarrow u' = 1$ and $v' = \sin 3x \rightarrow v = k \cos 3x$ (seen or implied), where k is a positive or negative constant. (Allow $k = 1$).	tive
	This means that the candidate must achieve $x(k\cos 3x) - \int (k\cos 3x)$, where k is a consistent cons	tant.
	If x^2 appears after the integral, this would imply that the candidate is applying integration by parts i direction, so M0.	n the wrong
	A1: $-\frac{1}{3}x\cos 3x - \int -\frac{1}{3}\cos 3x \{dx\}$. Can be un-simplified. Ignore the $\{dx\}$.	
	A1: $-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x$ with/without + c. Can be un-simplified.	
(b)	M1: Use of 'integration by parts' formula $uv - \int vu'$ (whether stated or not stated) in the correct of	direction,
	where $u = x^2 \rightarrow u' = 2x$ or x and $v' = \cos 3x \rightarrow v = \lambda \sin 3x$ (seen or implied), where λ is a positi negative constant. (Allow $\lambda = 1$).	ve or
	This means that the candidate must achieve $x^2(\lambda \sin 3x) - \int 2x(\lambda \sin 3x)$, where $u' = 2x$	
	or $x^2(\lambda \sin 3x) - \int x(\lambda \sin 3x)$, where $u' = x$.	
	If x^3 appears after the integral, this would imply that the candidate is applying integration by parts i direction, so M0.	n the wrong
	A1: $\frac{1}{3}x^2 \sin 3x - \int \frac{2}{3}x \sin 3x \{dx\}$. Can be un-simplified. Ignore the $\{dx\}$.	
	A1: $\frac{1}{3}x^2\sin 3x - \frac{2}{3}\left(-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x\right)$ with/without + c, can be un-simplified.	
	You can ignore subsequent working here. Special Case: If the candidate scores the first two marks of M1A1 in part (b), then you can award t	he final A1
	as a follow through for $\frac{1}{3}x^2 \sin 3x - \frac{2}{3}$ (their follow through part(a) answer).	

Question Number	Scheme	Marks	
131.	Volume = $\pi \int_{0}^{2} \left(\sqrt{\left(\frac{2x}{3x^2 + 4}\right)} \right)^2 dx$ Use of $V = \underline{\pi \int y^2} dx$.	<u>B1</u>	
	$\pm k \ln \left(3x^2 + 4\right)$	M1	
	$= (\pi) \left[\frac{1}{3} \ln (3x^2 + 4) \right]_0 \qquad \qquad$	A1	
	$= (\pi) \left[\left(\frac{1}{3} \ln 16 \right) - \left(\frac{1}{3} \ln 4 \right) \right]$ Substitutes limits of 2 and 0 and subtracts the correct way round.	dM1	
	So Volume = $\frac{1}{3}\pi \ln 4$ or $\frac{2}{3}\pi \ln 2$	A1 oe isw	
		[5] 5	
	NOTE: π is required for the B1 mark and the final A1 mark. It is not required for the 3 intermed	liate marks.	
	B1: For applying $\pi \int y^2$. Ignore limits and dx. This can be implied by later working,		
	but the pi and $\int \frac{2x}{3x^2 + 4}$ must appear on one line somewhere in the candidate's working.		
	B1 can also be implied by a correct final answer. Note: $\pi(\int y)^2$ would be B0.		
	Working in x		
	M1: For $\pm k \ln(3x^2 + 4)$ or $\pm k \ln\left(x^2 + \frac{4}{3}\right)$ where k is a constant and k can be 1.		
	Note: M0 for $\pm k x \ln(3x^2 + 4)$.		
	Note: M1 can also be given for $\pm k \ln (p(3x^2 + 4))$, where k and p are constants and k can be 1.		
	A1: For $\frac{1}{3}\ln(3x^2+4)$ or $\frac{1}{3}\ln(\frac{1}{3}(3x^2+4))$ or $\frac{1}{3}\ln(x^2+\frac{4}{3})$ or $\frac{1}{3}\ln(p(3x^2+4))$.		
	You may allow M1 A1 for $\frac{1}{3}\left(\frac{x}{x}\right)\ln(3x^2+4)$ or $\frac{1}{3}\left(\frac{2x}{6x}\right)\ln(3x^2+4)$		
	dM1: Substitutes limits of 2 and 0 and subtracts the correct way round. Working in decimals is finder that $(-1)^{1/2}$	ine for dM1.	
	A1: For either $\frac{1}{3}\pi \ln 4$, $\frac{1}{3}\ln 4^{\pi}$, $\frac{2}{3}\pi \ln 2$, $\pi \ln 4^{\frac{1}{3}}$, $\pi \ln 2^{\frac{2}{3}}$, $\frac{1}{3}\pi \ln \left(\frac{16}{4}\right)$, $2\pi \ln \left(\frac{16^{\frac{1}{6}}}{4^{\frac{1}{6}}}\right)$, etc.		
	Note: $\frac{1}{3}\pi(\ln 16 - \ln 4)$ would be A0.		
	<u>Working in u:</u> where $u = 3x^2 + 4$,		
	M1: For $\pm k \ln u$ where k is a constant and k can be 1.		
	Note: M1 can also be given for $\pm k \ln(pu)$, where k and p are constants and k can be 1.		
	A1: For $\frac{1}{3} \ln u$ or $\frac{1}{3} \ln 3u$ or $\frac{1}{3} \ln pu$.		
	dM1: Substitutes limits of 16 and 4 in u or limits of 2 and 0 in <i>x</i> and subtracts the correct way rou A1: As above!	ınd.	

Question Number	Scheme		
132. (a)	0.73508		
		[1]	
(b)	Area $\approx \frac{1}{2} \times \frac{\pi}{8}$; $\times [0 + 2(\text{their } 0.73508 + 1.17157 + 1.02280) + 0]$	B1 <u>M1</u>	
	$=\frac{\pi}{16} \times 5.8589 = 1.150392325 = 1.1504 \ (4 \text{ dp}) \qquad \text{awrt } 1.1504$	A1 [3]	
(c)	$\left\{ u = 1 + \cos x \right\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$	<u>B1</u>	
	$\left\{ \int \frac{2\sin 2x}{(1+\cos x)} \mathrm{d}x = \right\} \int \frac{2(2\sin x \cos x)}{(1+\cos x)} \mathrm{d}x \qquad \qquad$	B1	
	$= \int \frac{4(u-1)}{u} (-1) \mathrm{d}u \left\{ = 4 \int \frac{(1-u)}{u} \mathrm{d}u \right\}$	M1	
	$= 4 \int \left(\frac{1}{u} - 1\right) \mathrm{d}u = 4 \left(\ln u - u\right) + c$	dM1	
	$= 4\ln(1 + \cos x) - 4(1 + \cos x) + c = 4\ln(1 + \cos x) - 4\cos x + k$ AG	A1 cso [5]	
(d)	$= \left[4\ln\left(1 + \cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2} \right] - \left[4\ln\left(1 + \cos\theta\right) - 4\cos\theta \right] $ Applying limits $x = \frac{\pi}{2}$ and $x = 0$ either way round.	M1	
	$= [4\ln 1 - 0] - [4\ln 2 - 4]$		
	$\pm 4(1 - \ln 2)$ or		
	$= 4 - 4 \ln 2 \left\{ = 1.227411278 \right\} \qquad \pm (4 - 4 \ln 2) \text{ or awrt } \pm 1.2,$ <i>however</i> found.	A1	
	Error = $ (4 - 4\ln 2) - 1.1504 $ awrt ±0.077 or awrt ±6.3(%)	A1 cso [3]	
	= 0.0//0112//6 = 0.0//(2st)	10	
(a)	B1: 0.73508 correct answer only. Look for this on the table or in the candidate's working.	12	
(b)	B1 : Outside brackets $\frac{1}{2} \times \frac{\pi}{8}$ or $\frac{\pi}{16}$ or awrt 0.196		
	M1: For structure of trapezium rule []; (0 can be implied).		
	A1: anything that rounds to 1.1504 Bracketing mistake: Unless the final answer implies that the calculation has been done correct	etly	
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8} + 2$ (their 0.73508 + 1.17157 + 1.02280) (nb: answer of 6.0552).		
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8} (0+0) + 2$ (their 0.73508 + 1.17157 + 1.02280) (nb: answer of 5.8589))).	
	Alternative method for part (b): Adding individual trapezia		
	Area $\approx \frac{\pi}{8} \times \left[\frac{0 + 0.73508}{2} + \frac{0.73508 + 1.17157}{2} + \frac{1.17157 + 1.02280}{2} + \frac{1.02280 + 0}{2} \right] = 1.15$	50392325	
	B1: $\frac{\pi}{2}$ and a divisor of 2 on all terms inside brackets.		
	M1: One of first and last ordinates, two of the middle ordinates inside brackets ignoring the 2. A1: anything that rounds to 1.1504		

B1: $\frac{du}{dx} = -\sin x$ or $du = -\sin x \, dx$ or $\frac{dx}{du} = \frac{1}{-\sin x}$ oe. **132.** (c) **B1:** For seeing, applying or implying $\sin 2x = 2\sin x \cos x$. **M1:** After applying substitution candidate achieves $\pm k \int \frac{(u-1)}{u} (du)$ or $\pm k \int \frac{(1-u)}{u} (du)$. Allow M1 for "invisible" brackets here, eg: $\pm \int \frac{(\lambda u - 1)}{u} (du)$ or $\pm \int \frac{(-\lambda + u)}{u} (du)$, where λ is a positive constant. **dM1:** An attempt to divide through each term by u and $\pm k \int \left(\frac{1}{u} - 1\right) du \rightarrow \pm k (\ln u - u)$ with/without + c. Note that this mark is dependent on the previous M1 mark being awarded. Alternative method: Candidate can also gain this mark for applying integration by parts followed by a correct method for integrating $\ln u$. (See below). A1: Correctly combines their + c and "-4" together to give $4\ln(1 + \cos x) - 4\cos x + k$ As a minimum candidate must write either $4\ln(1 + \cos x) - 4(1 + \cos x) + c \rightarrow 4\ln(1 + \cos x) - 4\cos x + k$ or $4\ln(1 + \cos x) - 4(1 + \cos x) + k \rightarrow 4\ln(1 + \cos x) - 4\cos x + k$ Note: that this mark is also for a correct solution only. Note: those candidates who attempt to find the value of k will usually achieve A0. (d) M1: Substitutes limits of $x = \frac{\pi}{2}$ and x = 0 into $\left\{4\ln(1 + \cos x) - 4\cos x\right\}$ or their answer from part (c) and subtracts the either way round. Note that: $\left| 4\ln\left(1 + \cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2} \right| - [0]$ is M0. A1: $4(1-\ln 2)$ or $4-4\ln 2$ or awrt 1.2, however found. This mark can be implied by the final answer of either awrt ± 0.077 or awrt ± 6.3 A1: For either awrt ± 0.077 or awrt ± 6.3 (for percentage error). Note this mark is for a correct solution only. Therefore if there if a candidate substitutes limits the incorrect way round and final achieves (usually fudges) the final correct answer then this mark can be withheld. Note that awrt 6.7 (for percentage error) is A0. Alternative method for dM1 in part (c) $\int \frac{(1-u)}{u} \, \mathrm{d}u = \left((1-u)\ln u - \int -\ln u \, \mathrm{d}u \right) = \left((1-u)\ln u + u\ln u - \int \frac{u}{u} \, \mathrm{d}u \right) = \left((1-u)\ln u + u\ln u - u \right)$ or $\int \frac{(u-1)}{u} du = \left((u-1)\ln u - \int \ln u du \right) = \left((u-1)\ln u - \left(u\ln u - \int \frac{u}{u} du \right) \right) = \left((u-1)\ln u - u\ln u + u \right)$ So **dM1** is for $\int \frac{(1-u)}{u} du$ going to $((1-u)\ln u + u\ln u - u)$ or $((u-1)\ln u - u\ln u + u)$ oe. Alternative method for part (d) **M1A1** for $\left\{4\int_{2}^{1}\left(\frac{1}{u}-1\right)du = \right\} 4\left[\ln u - u\right]_{2}^{1} = 4\left[(\ln 1 - 1) - (\ln 2 - 2)\right] = 4(1 - \ln 2)$ <u>Alternative method for part (d):</u> Using an extra constant λ from their integration. $\left| 4\ln\left(1+\cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2} + \lambda \right| - \left[4\ln\left(1+\cos\theta\right) - 4\cos\theta + \lambda\right]$ λ is usually -4, but can be a value of k that the candidate has found in part (d). **Note:** The extra constant λ should cancel out and so the candidate can gain all three marks using this method, even the final A1 cso.

Question Number	Scheme		
133. (a)	1 = A(5 - P) + BP Can be implied	1. M1	
	$A = \frac{1}{5}, B = \frac{1}{5}$ Either on	e. A1	
	giving $\frac{1}{5} + \frac{1}{(5-P)}$ See note	s. A1 cao, aef	
		[3]	
(b)	$\int \frac{1}{P(5-P)} \mathrm{d}P = \int \frac{1}{15} \mathrm{d}t$	B1	
	$\frac{1}{5}\ln P - \frac{1}{5}\ln(5 - P) = \frac{1}{15}t \ (+c)$	M1* A1ft	
	$\{t = 0, P = 1 \Rightarrow\}$ $\frac{1}{5}\ln 1 - \frac{1}{5}\ln(4) = 0 + c$ $\{\Rightarrow c = -\frac{1}{5}\ln 4\}$	dM1*	
	eg: $\frac{1}{5}\ln\left(\frac{P}{5-P}\right) = \frac{1}{15}t - \frac{1}{5}\ln 4$ Using any of the subtraction (or addition laws for logarithm CORRECTL)	he h) hs Y	
	$\ln\left(\frac{4P}{5-P}\right) = \frac{1}{3}t$ eg: $\frac{4P}{5-P} = e^{\frac{1}{3}t}$ or eg: $\frac{5-P}{4P} = e^{-\frac{1}{3}t}$ Eliminate ln's correctly gives $4P = 5e^{\frac{1}{3}t} - Pe^{\frac{1}{3}t} \implies P(4+e^{\frac{1}{3}t}) = 5e^{\frac{1}{3}t}$	y. dM1*	
	$P = \frac{5e^{\frac{1}{3}t}}{(4+e^{\frac{1}{3}t})} \left\{\frac{(\div e^{\frac{1}{3}t})}{(\div e^{\frac{1}{3}t})}\right\}$ Make <i>P</i> the subject	t. dM1*	
	$P = \frac{5}{(1+4e^{-\frac{1}{3}t})}$ or $P = \frac{25}{(5+20e^{-\frac{1}{3}t})}$ etc.	A1	
		[8]	
(c)	$1 + 4e^{-3t} > 1 \implies P < 5$. So population cannot exceed 5000.	B1	
		[1] 12	
(a)	M1: Forming a correct identity. For example, $1 = A(5 - P) + BP$. Note A and B not referr	ed to in question.	
	A1: Either one of $A = \frac{1}{5}$ or $B = \frac{1}{5}$.		
	A1: $\frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)}$ or any equivalent form, eg: $\frac{1}{5P} + \frac{1}{25-5P}$, etc. Ignore subsequent wo	king.	
	This answer must be stated in part (a) only.		
	A1 can also be given for a candidate who finds both $A = \frac{1}{5}$ and $B = \frac{1}{5}$ and $\frac{A}{P} + \frac{B}{5-P}$ is seen in their		
	working.		
	Candidate can use 'cover-up' rule to write down $\frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)}$, as so gain all three marks.		
	Candidate cannot gain the marks for part (a) in part (b).		

B1: Separates variables as shown. dP and dt should be in the correct positions, though this mark can be 133. (b) implied by later working. Ignore the integral signs. M1*: Both $\pm \lambda \ln P$ and $\pm \mu \ln(\pm 5 \pm P)$, where λ and μ are constants. Or $\pm \lambda \ln mP$ and $\pm \mu \ln(n(\pm 5 \pm P))$, where λ , μ , *m* and *n* are constants. A1ft: Correct follow through integration of both sides from their $\int \frac{\lambda}{P} + \frac{\mu}{(5-P)} dP = \int K dt$ with or without +c**dM1*:** Use of t = 0 and P = 1 in an integrated equation containing c dM1*: Using ANY of the subtraction (or addition) laws for logarithms CORRECTLY. **dM1*:** Apply logarithms (or take exponentials) to eliminate ln's CORRECTLY from their equation. dM1*: A full ACCEPTABLE method of rearranging to make P the subject. (See below for examples!) A1: $P = \frac{5}{(1+4e^{-\frac{1}{3}t})} \{ \text{where } a = 5, b = 1, c = 4 \}.$ Also allow any "integer" multiples of this expression. For example: $P = \frac{25}{(5+20e^{-\frac{1}{3}t})}$ Note: If the first method mark (M1*) is not awarded then the candidate cannot gain any of the six remaining marks for this part of the question. Note: $\int \frac{1}{P(5-P)} dP = \int 15 dt \Rightarrow \int \frac{1}{5} + \frac{1}{(5-P)} dP = \int 15 dt \Rightarrow \ln P - \ln(5-P) = 15t$ is B0M1A1ft. dM1* for making P the subject Note there are three type of manipulations here which are considered acceptable to make P the subject. (1) M1 for $\frac{P}{5-P} = e^{\frac{1}{3}t} \Rightarrow P = 5e^{\frac{1}{3}t} - Pe^{\frac{1}{3}t} \Rightarrow P(1+e^{\frac{1}{3}t}) = 5e^{\frac{1}{3}t} \Rightarrow P = \frac{5}{(1+e^{-\frac{1}{3}t})}$ (2) M1 for $\frac{P}{5-P} = e^{\frac{1}{3}t} \Rightarrow \frac{5-P}{P} = e^{\frac{1}{3}t} \Rightarrow \frac{5}{P} - 1 = e^{\frac{1}{3}t} \Rightarrow \frac{5}{P} = e^{\frac{1}{3}t} + 1 \Rightarrow P = \frac{5}{(1+e^{\frac{1}{3}t})}$ (3) M1 for $P(5-P) = 4e^{\frac{1}{3}t} \Rightarrow P^2 - 5P = -4e^{\frac{1}{3}t} \Rightarrow \left(P - \frac{5}{2}\right)^2 - \frac{25}{4} = -4e^{\frac{1}{3}t}$ leading to $P = \dots$ Note: The incorrect manipulation of $\frac{P}{5-P} = \frac{P}{5} - 1$ or equivalent is awarded this dM0*. Note: $(P) - (5 - P) = e^{\frac{1}{3}t} \Rightarrow 2P - 5 = \frac{1}{3}t$ leading to P = ... or equivalent is awarded this dM0* **B1:** $1 + 4e^{-\frac{1}{3}t} > 1$ and P < 5 and a conclusion relating population (or even P) or meerkats to 5000. (c) For $P = \frac{25}{(5+20e^{-\frac{1}{3}t})}$, B1 can be awarded for $5+20e^{-\frac{1}{3}t} > 5$ and P < 5 and a conclusion relating population (or even P) or meerkats to 5000. B1 can only be obtained if candidates have correct values of a and b in their $P = \frac{a}{(b + ce^{-\frac{1}{3}t})}$. Award B0 for: As $t \to \infty$, $e^{-\frac{1}{3}t} \to 0$. So $P \to \frac{5}{(1+0)} = 5$, so population cannot exceed 5000, unless the candidate also proves that $P = \frac{5}{(1 + 4e^{-\frac{1}{3}t})}$ oe. is an increasing function. If unsure here, then send to review!

133.	Alternative method for par	<u>t (b)</u>
	B1M1*A1: as before for	$\frac{1}{5}\ln P - \frac{1}{5}\ln(5-P) = \frac{1}{15}t \ (+c)$
	Award 3 rd M1for	$\ln\!\left(\frac{P}{5-P}\right) = \frac{1}{3}t + c$
	Award 4 th M1 for	$\frac{P}{5-P} = A \mathrm{e}^{\frac{1}{3}t}$
	Award 2 nd M1 for	$t = 0, P = 1 \implies \frac{1}{5-1} = Ae^0 \left\{ \Rightarrow A = \frac{1}{4} \right\}$
		$\frac{P}{5-P} = \frac{1}{4} e^{\frac{1}{3}t}$
	then award the final M1A1	in the same way.

Scheme		Mark	S
0.0333, 1.3596 awr 596	t 0.0333,	B1 B1	(2)
Area $(R) \approx \frac{1}{2} \times \frac{\sqrt{2}}{4} [\ldots]$		B1	
$\approx \dots \left[0 + 2(0.0333 + 0.3240 + 1.3596) + 3.9 \right]$	210]	M1	
≈1.30	Accept	A1	(3)
$u = x^2 + 2 \implies \frac{\mathrm{d}u}{\mathrm{d}x} = 2x$		B1	
$\operatorname{Area}(R) = \int_0^{\sqrt{2}} x^3 \ln(x^2 + 2) \mathrm{d}x$		B1	
$\int x^{3} \ln (x^{2} + 2) dx = \int x^{2} \ln (x^{2} + 2) x dx = \int (u - 2) dx dx$	$2)(\ln u)^{\frac{1}{2}}\mathrm{d} u$	M1	
Area $(R) = \frac{1}{2} \int_{2}^{4} (u-2) \ln u du *$		A1	(4)
$\int (u-2)\ln u \mathrm{d}u = \left(\frac{u^2}{2} - 2u\right)\ln u - \int \left(\frac{u^2}{2} - 2u\right)\frac{1}{u} \mathrm{d}u$	Γ	-M1 A1	
$= \left(\frac{u^2}{2} - 2u\right) \ln u - \int \left(\frac{u}{2} - 2\right) du$ $= \left(\frac{u^2}{2} - 2u\right) \ln u - \left(\frac{u^2}{4} - 2u\right) (+C)$		-M1 A1	
Area $(R) = \frac{1}{2} \left[\left(\frac{u^2}{2} - 2u \right) \ln u - \left(\frac{u^2}{4} - 2u \right) \right]_2^4$			
$= \frac{1}{2} \Big[(8-8) \ln 4 - 4 + 8 - ((2-4) \ln 2 - 1 + 4) \Big]$		-M1	
$=\frac{1}{2}(2\ln 2+1)$	$\ln 2 + \frac{1}{2}$	AI	(6) [15]
5	Scheme $ \frac{1}{96} = \frac{1}{2} \times \frac{\sqrt{2}}{4} [\dots] = \frac{1}{2} = \frac{\sqrt{2}}{4} [\dots] = \frac{1}{2} \times \frac{\sqrt{2}}{4} [\dots] = \frac{1}{2} = \frac{1}{2} \begin{bmatrix} \frac{u^2}{2} - 2u \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{u^2}{2}$	$schene = \frac{1}{2} 1$	Schene Mark 0.0333, 1.3596 awrt 0.0333, 96 awrt 0.0333, Area $(R) \approx \frac{1}{2} \times \frac{\sqrt{2}}{4} []$ $\approx [0+2(0.0333+0.3240+1.3596)+3.9210]$ ≈ 1.30 Accept $u = x^2 + 2 \Rightarrow \frac{du}{dx} = 2x$ Area $(R) = \int_{0}^{\sqrt{2}} x^3 \ln(x^2 + 2) dx$ B1 $\int x^3 \ln(x^2 + 2) dx = \int x^2 \ln(x^2 + 2) x dx = \int (u-2)(\ln u) \frac{1}{2} du$ ce Area $(R) = \frac{1}{2} \int_{2}^{4} (u-2) \ln u du $ $\int (u-2) \ln u du = \left(\frac{u^2}{2} - 2u\right) \ln u - \int \left(\frac{u^2}{2} - 2u\right) \frac{1}{u} du$ $= \left(\frac{u^2}{2} - 2u\right) \ln u - \int \left(\frac{u^2}{2} - 2u\right) \frac{1}{u} du$ $= \left(\frac{u^2}{2} - 2u\right) \ln u - \left(\frac{u^2}{4} - 2u\right) (+C)$ Area $(R) = \frac{1}{2} \left[\left(\frac{u^2}{2} - 2u\right) \ln u - \left(\frac{u^2}{4} - 2u\right) \right]_{2}^{4}$ $= \frac{1}{2} (2\ln 2 + 1)$ $\ln 2 + \frac{1}{2}$ M1 A1 M1 A1 M2 M3 M4 M4 M5 M5 M5 M5 M5 M5 M5 M5 M5 M5

Question Number	Scheme	Marks		
135.	(a) $\tan \theta = \sqrt{3} or \ \sin \theta = \frac{\sqrt{3}}{2}$ $\theta = \frac{\pi}{3}$	awrt 1.05	M1 A1 (2))
	(b) $\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2\theta, \frac{\mathrm{d}y}{\mathrm{d}\theta} = \cos\theta$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos\theta}{\sec^2\theta} \left(=\cos^3\theta\right)$		M1 A1	
	At <i>P</i> , $m = \cos^3\left(\frac{\pi}{3}\right) = \frac{1}{8}$	Can be implied	A1	
	Using $mm' = -1$, $m' = -8$ For normal $y - \frac{1}{2}\sqrt{3} = -8(x - \sqrt{3})$ At <i>O</i> , $y = 0$ $-\frac{1}{2}\sqrt{3} = -8(x - \sqrt{3})$		M1 M1	
	leading to $x = \frac{17}{16}\sqrt{3}$ $(k = \frac{17}{16})$	1.0625	A1 (6	6)
	(c) $\int y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta = \int \sin^2 \theta \sec^2 \theta d\theta$ $= \int \tan^2 \theta d\theta$ $= \int (\sec^2 \theta - 1) d\theta$ $= \tan \theta - \theta (+C)$ $V = \pi \int_0^{\frac{\pi}{3}} y^2 dx = [\tan \theta - \theta]_0^{\frac{\pi}{3}} = \pi [(\sqrt{3} - \frac{\pi}{3}) - (0 - 0)]$		M1 A1 A1 M1 A1 M1	
	$=\sqrt{3\pi}-\frac{1}{3}\pi^{2}$ $(p=1,q=-\frac{1}{3})$		A1 (7) [15])

Question Number	Scheme	Marl	KS
136.	(a) $\int (4y+3)^{-\frac{1}{2}} dx = \frac{(4y+3)^{\frac{1}{2}}}{(4)(\frac{1}{2})} (+C)$ $\left(=\frac{1}{2}(4y+3)^{\frac{1}{2}}+C\right)$	M1 A1	(2)
	(b) $\int \frac{1}{\sqrt{(4y+3)}} dy = \int \frac{1}{x^2} dx$ $\int (4y+3)^{-\frac{1}{2}} dy = \int x^{-2} dx$	B1	
	$\frac{1}{2}(4y+3)^{\frac{1}{2}} = -\frac{1}{x} (+C)$	M1	
	Using $(-2, 1.5)$ $\frac{1}{2}(4 \times 1.5 + 3)^{\frac{1}{2}} = -\frac{1}{-2} + C$ leading to $C = 1$	M1 A1	
	$\frac{-2(4y+3)^{\frac{1}{2}} = -\frac{-1}{x}}{(4y+3)^{\frac{1}{2}} = 2 - \frac{2}{x}}$	M1	
	$y = \frac{1}{4} \left(2 - \frac{2}{x} \right) - \frac{3}{4}$ or equivalent	A1	(6) [8]

Question Number	Scheme	Marks
137.	$\int x \sin 2x dx = -\frac{x \cos 2x}{2} + \int \frac{\cos 2x}{2} dx$ $= \dots + \frac{\sin 2x}{4}$ $[\dots]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}$	M1 A1 A1 M1 M1 A1
		[6]

Question Number	Scheme	Marks
138. (a)	$\frac{5}{(x-1)(3x+2)} = \frac{A}{x-1} + \frac{B}{3x+2}$ 5 = A(3x+2) + B(x-1) $x \to 1$ $5 = 5A \implies A = 1$	M1 A1
	$x \rightarrow -\frac{2}{3}$ $5 = -\frac{5}{3}B \implies B = -3$	A1 (3)
(b)	$\int \frac{5}{(x-1)(3x+2)} dx = \int \left(\frac{1}{x-1} - \frac{3}{3x+2}\right) dx$ = ln(x-1)-ln(3x+2) (+C) ft constants	M1 A1ft A1ft (3)
(c)	$\int \frac{5}{(x-1)(3x+2)} dx = \int \left(\frac{1}{y}\right) dy$ $\ln(x-1) - \ln(3x+2) = \ln y (+C)$	M1 M1 A1
	$y = \frac{K(x-1)}{3x+2}$ depends on first two Ms in (c) Using (2,8) $8 = \frac{K}{8}$ depends on first two Ms in (c)	M1 dep M1 dep
	$y = \frac{64(x-1)}{3x+2}$	A1 (6) [12]

Question Number	Scheme	Marks
139. (a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t}, \frac{\mathrm{d}y}{\mathrm{d}t} = 2t$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2t^2$	M1 A1
	Using $mm' = -1$, at $t = 3$ $m' = -\frac{1}{18}$	M1 A1
	$y-7 = -\frac{1}{18}(x-\ln 3)$	M1 A1 (6)
(b)	$x = \ln t \implies t = e^x$ $y = e^{2x} - 2$	B1 M1 A1 (3)
(c)	$V = \pi \int \left(e^{2x} - 2 \right)^2 \mathrm{d}x$	M1
	$\int (e^{2x} - 2)^2 dx = \int (e^{4x} - 4e^{2x} + 4) dx$	M1
	$=\frac{e^{4x}}{4}-\frac{4e^{2x}}{2}+4x$	M1 A1
	$\pi \left[\frac{e^{4x}}{4} - \frac{4e^{2x}}{2} + 4x \right]_{\ln 2}^{\ln 4} = \pi \left[(64 - 32 + 4\ln 4) - (4 - 8 + 4\ln 2) \right]$	M1
	$=\pi(36+4\ln 2)$	A1 (6)
		[15]
	Alternative to (c) using parameters	
	$V = \pi \int \left(t^2 - 2\right)^2 \frac{\mathrm{d}t}{\mathrm{d}t} \mathrm{d}t$	M1
	$\int \left(\left(t^2 - 2\right)^2 \times \frac{1}{t} \right) dt = \int \left(t^3 - 4t + \frac{4}{t}\right) dt$	M1
	$=\frac{t^4}{4} - 2t^2 + 4\ln t$	M1 A1
	The limits are $t = 2$ and $t = 4$	
	$\pi \left\lfloor \frac{t^{*}}{4} - 2t^{2} + 4\ln t \right\rfloor_{2} = \pi \left[(64 - 32 + 4\ln 4) - (4 - 8 + 4\ln 2) \right]$	M1
	$=\pi(36+4\ln 2)$	A1 (6)

Question Number	Scheme	Marks
140. (a)	$x = 3 \implies y = 0.1847$ awrt $x = 5 \implies y = 0.1667$ awrt or $\frac{1}{6}$	B1 B1 (2)
(b)	$I \approx \frac{1}{\underline{2}} \Big[0.2 + 0.1667 + 2 \big(0.1847 + 0.1745 \big) \Big]$ $\approx 0.543 \qquad \qquad$	<u>B1</u> M1A1ft A1 (4)
(c)	$\frac{\mathrm{d}x}{\mathrm{d}u} = 2(u-4)$	B1
	$\int \frac{1}{4+\sqrt{(x-1)}} \mathrm{d}x = \int \frac{1}{u} \times 2(u-4) \mathrm{d}u$	M1
	$=\int \left(2-\frac{8}{u}\right) \mathrm{d}u$	A1
	$= 2u - 8 \ln u$ $x = 2 \implies u = 5, x = 5 \implies u = 6$	M1 A1 B1
	$[2u-8\ln u]_{5}^{6} = (12-8\ln 6) - (10-8\ln 5)$	M1
	$=2+8\ln\left(\frac{5}{6}\right)$	A1
		(8) [14]

Question Number	Scheme	Marks
141.	$\frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$	B1
	$\int \sin x \mathrm{e}^{\cos x + 1} \mathrm{d}x = -\int \mathrm{e}^u \mathrm{d}u$	M1 A1
	$=-e^{u}$ ft sign error	A1ft
	$=-e^{\cos x+1}$	
	$\left[-e^{\cos x+1}\right]_{0}^{\frac{\pi}{2}} = -e^{1} - \left(-e^{2}\right) \qquad \text{or equivalent with } u$	M1
	$= e(e-1) \star cso$	A1 (6)

Question Number	Scheme	Marks
142.	(a) $f(\theta) = 4\cos^2 \theta - 3\sin^2 \theta$ $= 4\left(\frac{1}{2} + \frac{1}{2}\cos 2\theta\right) - 3\left(\frac{1}{2} - \frac{1}{2}\cos 2\theta\right)$ $= \frac{1}{2} + \frac{7}{2}\cos 2\theta \bigstar \qquad \qquad$	M1 M1 A1 (3)
	(b) $\int \theta \cos 2\theta d\theta = \frac{1}{2} \theta \sin 2\theta - \frac{1}{2} \int \sin 2\theta d\theta$ $= \frac{1}{2} \theta \sin 2\theta + \frac{1}{4} \cos 2\theta$ $\int \theta f(\theta) d\theta = \frac{1}{4} \theta^2 + \frac{7}{4} \theta \sin 2\theta + \frac{7}{8} \cos 2\theta$ $\left[\dots \right]_0^{\frac{\pi}{2}} = \left[\frac{\pi^2}{16} + 0 - \frac{7}{8} \right] - \left[0 + 0 + \frac{7}{8} \right]$	M1 A1 A1 M1 A1 M1
	$=\frac{\pi^2}{16}-\frac{7}{4}$	A1 (7) [10]

Question Number	Scheme	Marks
143.	(a) $ \frac{dV}{dt} = 0.48\pi - 0.6\pi h $ $ V = 9\pi h \Rightarrow \frac{dV}{dt} = 9\pi \frac{dh}{dt} $ $ 9\pi \frac{dh}{dt} = 0.48\pi - 0.6\pi h $ Leading to $75\frac{dh}{dt} = 4 - 5h $ \star cso	M1 A1 B1 M1 A1 (5)
	(b) $\int \frac{75}{4-5h} dh = \int 1 dt$ separating variables $-15 \ln (4-5h) = t \ (+C)$ $-15 \ln (4-5h) = t + C$ When $t = 0, h = 0.2$ $-15 \ln 3 = C$ $t = 15 \ln 3 - 15 \ln (4-5h)$ When $h = 0.5$ $t = 15 \ln 3 - 15 \ln 1.5 = 15 \ln \left(\frac{3}{1.5}\right) = 15 \ln 2$ awrt 10.4	M1 M1 A1 M1 M1 A1
	Alternative for last 3 marks $t = [-15\ln(4-5h)]_{0.2}^{0.5}$ $= -15\ln 1.5 + 15\ln 3$ $= 15\ln(\frac{3}{1.5}) = 15\ln 2$ awrt 10.4	M1 M1 A1 (6) [11]

Question Number	Scheme	Marks	5
144	(a) 1.386, 2.291 awrt 1.386, 2.291	B1 B1	(2)
	(b) $A \approx \frac{1}{2} \times 0.5 ()$	B1	
	$= \dots \left(0 + 2\left(0.608 + 1.386 + 2.291 + 3.296 + 4.385\right) + 5.545\right)$	M1	
	= 0.25 (0 + 2(0.608 + 1.386 + 2.291 + 3.296 + 4.385) + 5.545) ft their (a)	A1ft	
	$= 0.25 \times 29.477 \dots \approx 7.37$ cao	A1	(4)
	(c)(i) $\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \times \frac{1}{x} dx$. M1 A1	
	$= \frac{x^{2}}{2} \ln x - \int \frac{x}{2} dx$ = $\frac{x^{2}}{2} \ln x - \frac{x^{2}}{4} (+C)$. M1 A1	
	(ii) $\left[\frac{x^2}{2}\ln x - \frac{x^2}{4}\right]_1^4 = (8\ln 4 - 4) - \left(-\frac{1}{4}\right)$	M1	
	$=8\ln 4 - \frac{15}{4}$		
	$=8(2\ln 2) - \frac{15}{4} \qquad \ln 4 = 2\ln 2 \text{ seen or implied}$	M1	
	$=\frac{1}{4}(64\ln 2 - 15) \qquad a = 64, b = -15$	A1	(7)
			[13]

Question Number	Scheme	Marks	
145	(a) $\int \frac{9x+6}{x} dx = \int \left(9+\frac{6}{x}\right) dx$ $= 9x+6\ln x \ (+C)$	M1 A1	(2)
	(b) $\int \frac{1}{y^{\frac{1}{3}}} dy = \int \frac{9x+6}{x} dx$ Integral signs not necessary $\int v^{-\frac{1}{3}} dy = \int \frac{9x+6}{x} dx$	B1	
	$\int y dy = \int \frac{1}{x} dx$ $\frac{y^{\frac{2}{3}}}{\frac{2}{3}} = 9x + 6 \ln x (+C) \qquad \pm ky^{\frac{2}{3}} = \text{ their } (a)$	M1	
	$\frac{3}{2}y^{\frac{2}{3}} = 9x + 6\ln x \ (+C) \qquad \text{ft their (a)}$	A1ft	
	$\frac{3}{2}8^{\frac{2}{3}} = 9 + 6\ln 1 + C$	M1	
	C = -3 $v^{\frac{2}{3}} = \frac{2}{(9x+6\ln x-3)}$	A1	
	$y^{2} = (6x + 4\ln x - 2)^{3} (= 8(3x + 2\ln x - 1)^{3})$	A1	(6) [8]

Question Number	Scheme	Marks	
146	(a) $y = 0 \Rightarrow t(9-t^2) = t(3-t)(3+t) = 0$ t = 0, 3, -3 Any one correct value At $t = 0$, $x = 5(0)^2 - 4 = -4$ Method for finding one value of x At $t = 3$, $x = 5(3)^2 - 4 = 41$ (At $t = -3$, $x = 5(-3)^2 - 4 = 41$)	B1 M1	
	At A, $x = -4$; at B, $x = 41$ Both	A1 ((3)
	(b) $\frac{\mathrm{d}x}{\mathrm{d}t} = 10t$ Seen or implied	B1	
	$\int y \mathrm{d}x = \int y \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t = \int t \left(9 - t^2\right) 10t \mathrm{d}t$	M1 A1	
	$= \int \left(90t^2 - 10t^4\right) \mathrm{d}t$		
	$=\frac{90t^{3}}{3}-\frac{10t^{5}}{5}(+C) \qquad \left(=30t^{3}-2t^{5}(+C)\right)$	A1	
	$\left[\frac{90t^3}{3} - \frac{10t^5}{5}\right]_0^3 = 30 \times 3^3 - 2 \times 3^5 (=324)$	M1	
	$A = 2\int y \mathrm{d}x = 648 \left(\mathrm{units}^2\right)$	A1 (6	6) [9]

Question Number	Scheme	Marks
147	(a) $\frac{\mathrm{d}x}{\mathrm{d}u} = -2\sin u$	B1
	$\int \frac{1}{x^2 \sqrt{4 - x^2}} \mathrm{d}x = \int \frac{1}{\left(2\cos u\right)^2 \sqrt{4 - \left(2\cos u\right)^2}} \times -2\sin u \mathrm{d}u$	M1
	$= \int \frac{-2\sin u}{4\cos^2 u\sqrt{4\sin^2 u}} du \qquad \text{Use of } 1 - \cos^2 u = \sin^2 u$	M1
	$= -\frac{1}{4} \int \frac{1}{\cos^2 u} du \qquad \qquad \pm k \int \frac{1}{\cos^2 u} du$	M1
	$= -\frac{1}{4} \tan u \ (+C) \qquad \qquad \pm k \tan u$	M1
	$x = \sqrt{2} \implies \sqrt{2} = 2\cos u \implies u = \frac{\pi}{4}$	
	$x=1 \Rightarrow 1=2\cos u \Rightarrow u=\frac{\pi}{3}$	M1
	$\left[-\frac{1}{4} \tan u \right]_{\frac{\pi}{3}}^{\frac{\pi}{4}} = -\frac{1}{4} \left(\tan \frac{\pi}{4} - \tan \frac{\pi}{3} \right)$	
	$= -\frac{1}{4}\left(1 - \sqrt{3}\right) \left(=\frac{\sqrt{3} - 1}{4}\right)$	A1 (7)
	(b) $V = \pi \int_{1}^{\sqrt{2}} \left(\frac{4}{x(4-x^2)^{\frac{1}{4}}}\right)^2 dx$	M1
	= $16\pi \int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} dx$ $16\pi \times \text{ integral in (a)}$	M1
	$=16\pi\left(\frac{\sqrt{3}-1}{4}\right) \qquad 16\pi\times \text{ their answer to part (a)}$	A1ft (3)
		[10]

Ques Num	tion ber	Scheme		Mar	ks
148	(a)	1.14805	awrt 1.14805	B1	(1)
	(b)	$A \approx \frac{1}{2} \times \frac{3\pi}{8} (\dots)$		B1	
		$= \dots \left(3 + 2(2.77164 + 2.12132 + 1.14805) + 0\right)$	0 can be implied	M1	
		$= \frac{3\pi}{16} (3 + 2(2.77164 + 2.12132 + 1.14805))$	ft their (a)	A1ft	
		$=\frac{3\pi}{16} \times 15.08202 \dots = 8.884$	cao	A1	(4)
	(c)	$\int 3\cos\left(\frac{x}{3}\right) dx = \frac{3\sin\left(\frac{x}{3}\right)}{\frac{1}{3}}$		M1 A1	
		$=9\sin\left(\frac{x}{3}\right)$			
		$A = \left[9\sin\left(\frac{x}{3}\right)\right]_{0}^{\frac{3\pi}{2}} = 9 - 0 = 9$	cao	A1	(3)
					[8]

Ques Num	stion nber	Scheme	Mark	(S
149	(a)	$f(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{x+3}$		
		4 - 2x = A(x+1)(x+3) + B(2x+1)(x+3) + C(2x+1)(x+1)	M1	
		A method for evaluating one constant	M1	
		$x \to -\frac{1}{2}, 5 = A(\frac{1}{2})(\frac{5}{2}) \Rightarrow A = 4$ any one correct constant $x \to -1, 6 = B(-1)(2) \Rightarrow B = -3$	A1	
		$x \to -3$, $10 = C(-5)(-2) \Rightarrow C = 1$ all three constants correct	A1	(4)
	(b)	(i) $\int \left(\frac{4}{2x+1} - \frac{3}{x+1} + \frac{1}{x+3}\right) dx$		
		$=\frac{4}{2}\ln(2x+1)-3\ln(x+1)+\ln(x+3)+C$ A1 two ln terms correct	M1 A1f	t
		All three ln terms correct and "+ C "; ft constants	A1ft	(3)
		(ii) $\left[2\ln(2x+1)-3\ln(x+1)+\ln(x+3)\right]_{0}^{2}$		
		$= (2 \ln 5 - 3 \ln 3 + \ln 5) - (2 \ln 1 - 3 \ln 1 + \ln 3)$	M1	
		$= 3\ln 5 - 4\ln 3$		
		$=\ln\left(\frac{5^3}{3^4}\right)$	M1	
		$=\ln\left(\frac{125}{81}\right)$	A1	(3)
				[10]

Question Number	Scheme	Marks	5
150 (a)	$\int \sqrt{(5-x)} dx = \int (5-x)^{\frac{1}{2}} dx = \frac{(5-x)^{\frac{3}{2}}}{-\frac{3}{2}} (+C)$ $\left(=-\frac{2}{3}(5-x)^{\frac{3}{2}}+C\right)$	M1 A1	(2)
(b)	(i) $\int (x-1)\sqrt{(5-x)} dx = -\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}} + \frac{2}{3}\int (5-x)^{\frac{3}{2}} dx$ $= \dots + \frac{2}{3} \times \frac{(5-x)^{\frac{5}{2}}}{-\frac{5}{2}} (+C)$ $= -\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}} - \frac{4}{15}(5-x)^{\frac{5}{2}} (+C)$	M1 A1ft M1 A1	(4)
	(ii) $\left[-\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}}-\frac{4}{15}(5-x)^{\frac{5}{2}}\right]_{1}^{5} = (0-0)-\left(0-\frac{4}{15}\times4^{\frac{5}{2}}\right)$ = $\frac{128}{15}\left(=8\frac{8}{15}\approx8.53\right)$ awrt 8.53	M1 A1	(2) [8]
	Alternatives for (b) and (c) (b) $u^2 = 5 - x \Rightarrow 2u \frac{du}{dx} = -1 \left(\Rightarrow \frac{dx}{du} = -2u \right)$ $\int (x-1)\sqrt{(5-x)} dx = \int (4-u^2)u \frac{dx}{du} du = \int (4-u^2)u (-2u) du$ $= \int (2u^4 - 8u^2) du = \frac{2}{5}u^5 - \frac{8}{3}u^3 (+C)$ $= \frac{2}{5}(5-x)^{\frac{5}{2}} - \frac{8}{3}(5-x)^{\frac{3}{2}} (+C)$ (c) $x = 1 \Rightarrow u = 2, \ x = 5 \Rightarrow u = 0$ $\left[\frac{2}{5}u^5 - \frac{8}{3}u^3 \right]_2^0 = (0-0) - \left(\frac{64}{5} - \frac{64}{3} \right)$ $= \frac{128}{15} \left(= 8\frac{8}{15} \approx 8.53 \right)$ awrt 8.53	M1 A1 M1 A1 M1 A1	(2)

Question Number		Scheme		Mark	S
151	(a)	$\int \sin^2 \theta \mathrm{d}\theta = \frac{1}{2} \int (1 - \cos 2\theta) \mathrm{d}\theta = \frac{1}{2} \theta - \frac{1}{4} \sin 2\theta (+C)$	M1	A1	(2)
	(b)	$x = \tan \theta \implies \frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2 \theta$			
		$\pi \int y^2 \mathrm{d}x = \pi \int y^2 \frac{\mathrm{d}x}{\mathrm{d}\theta} \mathrm{d}\theta = \pi \int (2\sin 2\theta)^2 \sec^2\theta \mathrm{d}\theta$	M1	A1	
		$=\pi\int \frac{\left(2\times 2\sin\theta\cos\theta\right)^2}{\cos^2\theta}\mathrm{d}\theta$	M1		
		$=16\pi \int \sin^2 \theta \mathrm{d}\theta \qquad \qquad k=16\pi$	A1		
		$x=0 \Rightarrow \tan \theta = 0 \Rightarrow \theta = 0, x = \frac{1}{\sqrt{3}} \Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = \frac{\pi}{6}$	B1		(5)
		$\left(V = 16\pi \int_0^{\frac{\pi}{6}} \sin^2 \theta \mathrm{d}\theta\right)$			
	(c)	$V = 16\pi \left[\frac{1}{2}\theta - \frac{\sin 2\theta}{4}\right]_0^{\frac{\pi}{6}}$	M1		
		$=16\pi \left[\left(\frac{\pi}{12} - \frac{1}{4} \sin \frac{\pi}{3} \right) - (0 - 0) \right]$ Use of correct limits	M1		
		$=16\pi \left(\frac{\pi}{12} - \frac{\sqrt{3}}{8}\right) = \frac{4}{3}\pi^2 - 2\pi\sqrt{3} \qquad p = \frac{4}{3}, q = -2$	A1		(3)
					[10]

Question Number	Scheme		Marks
152. (a)	Area(R) = $\int_{0}^{2} \frac{3}{\sqrt{(1+4x)}} dx = \int_{0}^{2} 3(1+4x)^{-1}$	$\frac{1}{2}$ dx	
	$= \left[\frac{3(1+4x)^{\frac{1}{2}}}{1+4x} \right]^2$	<i>Integrating</i> $3(1+4x)^{\frac{1}{2}}$ to give $\pm k(1+4x)^{\frac{1}{2}}$.	M1
	$\left\lfloor \frac{\frac{1}{2}.4}{2} \right\rfloor_0$	<u>Correct integration.</u> Ignore limits.	<u>A1</u>
	$= \left[\frac{3}{2}(1+4x)^{\frac{1}{2}}\right]_0^2$		
	$= \left(\frac{3}{2}\sqrt{9}\right) - \left(\frac{3}{2}(1)\right)$	Substitutes limits of 2 and 0 into a changed function and subtracts the correct way round.	M1
	$=\frac{9}{2}-\frac{3}{2}=\underline{3}(\text{units})^2$	<u>3</u>	<u>A1</u>
	(Answer of 3 with no working scores MC)A0M0A0.)	[4]
(b)	Volume = $\pi \int_{0}^{2} \left(\frac{3}{\sqrt{(1+4x)}}\right)^{2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits and dx .	B1
	$=(\pi)\int_{0}^{2}\frac{9}{1+4x}\mathrm{d}x$		
	$-(\pi)\left[\frac{9}{9}\ln\left 1+4r\right \right]^{2}$	$\pm k \ln 1+4x $	M1
	$= (\pi) \lfloor \frac{1}{4} \prod_{i=1}^{n} \frac{1}{4} + \frac{1}{4} \rfloor_{0}$	$\frac{9}{4}\ln 1+4x $	A1
	$= (\pi) \left[\left(\frac{9}{4} \ln 9 \right) - \left(\frac{9}{4} \ln 1 \right) \right]$	Substitutes limits of 2 and 0 and subtracts the correct way round.	dM1
	So Volume = $\frac{9}{4}\pi \ln 9$	$\frac{9}{4}\pi\ln9$ or $\frac{9}{2}\pi\ln3$ or $\frac{18}{4}\pi\ln3$	A1 oe isw
			[5] 9 marks
[7 mar K3
Note the value.	ne answer must be a one term exact Note, also you can ignore uent working here.	Note that ln1 can be implied as equal to 0.	
	Note that $=\frac{9}{4}\pi \ln 9 + c$ (oe.) would be awarded the fin		ïnal A0.

Question Number	Scheme	Marks
153. (a)	$\int \tan^2 x \mathrm{d}x$	
	$\left[NB: \underline{\sec^2 A = 1 + \tan^2 A} \text{ gives } \underline{\tan^2 A = \sec^2 A - 1} \right]$ The correct <u>underlined identity</u> .	M1 oe
	$= \int \sec^2 x - 1 \mathrm{d}x$	
	$= \underline{\tan x - x}(+c)$ Correct integration with/without + c	A1
		[2]
(b)	$\int \frac{1}{x^3} \ln x \mathrm{d}x$	
	$\begin{cases} u = \ln x \implies \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x^{-3} \implies v = \frac{x^{-2}}{-2} = \frac{-1}{2x^2} \end{cases}$	
	$= -\frac{1}{2x^2} \ln x - \int -\frac{1}{2x^2} \cdot \frac{1}{x} dx$ Use of 'integration by parts' formula in the correct direction. Correct expression.	M1 A1
	$= -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^3} dx$ An attempt to multiply through $\frac{k}{x}, n \in \Box, n \dots 2 \text{ by } \frac{1}{x} \text{ and an}$	
	$= -\frac{1}{2r^2} \ln x + \frac{1}{2} \left(-\frac{1}{2r^2} \right) (+c)$ attempt to	
	2x - 2(-2x) "integrate" (process the result);	M1
	<u>correct solution</u> with/without + c	A1 oe [4]
L		
	Correct direction means that $u = \ln x$.	

Question Number	Scheme		Marks
(c)	$\int \frac{\mathrm{e}^{3x}}{1+\mathrm{e}^{x}} \mathrm{d}x$		
	$\left\{ u = 1 + e^x \implies \frac{\mathrm{d}u}{\mathrm{d}x} = e^x, \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{1}{e^x}, \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{1}{u-1} \right\}$	Differentiating to find any one of the <u>three underlined</u>	<u>B1</u>
	$= \int \frac{e^{2x} \cdot e^{x}}{1 + e^{x}} dx = \int \frac{(u - 1)^{2} \cdot e^{x}}{u} \cdot \frac{1}{e^{x}} du$	Attempt to substitute for $e^{2x} = f(u)$, their $\frac{dx}{du} = \frac{1}{e^x}$ and $u = 1 + e^x$ or $e^{3x} = f(u)$, their $\frac{dx}{du} = \frac{1}{u}$ and	M1*
	or $=\int \frac{(u-1)}{u} \cdot \frac{1}{(u-1)} du$	$du u = 1 + e^x$.	
	$=\int \frac{(u-1)^2}{u} \mathrm{d}u$	$\frac{\int \frac{(u-1)^2}{u} \mathrm{d}u}{u}$	A1
	$=\int \frac{u^2 - 2u + 1}{u} \mathrm{d}u$	An attempt to multiply out their numerator to give at least three terms	
	$=\int u-2+\frac{1}{u} \mathrm{d}u$	and divide through each term by <i>u</i>	dM1*
	$=\frac{u^{2}}{2}-2u+\ln u \ (+c)$	Correct integration with/without +c	A1
	$=\frac{(1+e^{x})^{2}}{2}-2(1+e^{x})+\ln(1+e^{x})+c$	Substitutes $u = 1 + e^x$ back into their integrated expression with at least two terms.	dM1*
	$= \frac{1}{2} + e^{x} + \frac{1}{2}e^{2x} - 2 - 2e^{x} + \ln(1 + e^{x}) + c$		
	$= \frac{1}{2} + e^{x} + \frac{1}{2}e^{2x} - 2 - 2e^{x} + \ln(1 + e^{x}) + c$		
	$= \frac{1}{2}e^{2x} - e^{x} + \ln(1 + e^{x}) - \frac{3}{2} + c$		
	$=\frac{1}{2}e^{2x} - e^{x} + \ln(1 + e^{x}) + k$ AG	$\frac{\frac{1}{2}e^{2x} - e^{x} + \ln(1 + e^{x}) + k}{\frac{1}{2}e^{2x} - e^{x} + \ln(1 + e^{x}) + k}$ must use a + c and " - ³ / ₂ " combined	A1 cso
			[7]
			13 marks

Question Number	Scheme	Marks
154 . (a)	$\begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$	
	$\int xe^{x} dx = xe^{x} - \int e^{x} \cdot 1 dx$ Use of 'integration by parts' formula in the correct direction . (See note.) Correct expression. (Ignore dx)	M1 A1
	$= x e^x - \int e^x dx$	
	$= xe^{x} - e^{x}(+c)$ Correct integration with/without + c	A1 [3]
(b)	$\begin{cases} u = x^2 \implies \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$	
	$\int x^2 e^x dx = x^2 e^x - \int e^x 2x dx$ Use of 'integration by parts' formula in the correct direction . Correct expression. (Ignore dx)	M1 A1
	$= x^2 e^x - 2 \int x e^x dx$	
	$= x^{2}e^{x} - 2(xe^{x} - e^{x}) + c$ Correct expression including + c. (seen at any stage! in part (b)) You can ignore subsequent working.	A1 ISW
	$\begin{cases} = x^2 e^x - 2x e^x + 2e^x + c \\ = e^x (x^2 - 2x + 2) + c \end{cases}$ Ignore subsequent working	[3]
		6 marks

Note integration by parts in the **correct direction** means that u and $\frac{dv}{dx}$ must be assigned/used as u = x and $\frac{dv}{dx} = e^x$ in part (a) for example

+ *c* is not required in part (a).

Question Number	Scheme	Marks
155 . (a)	$\frac{2}{4-y^2} \equiv \frac{2}{(2-y)(2+y)} \equiv \frac{A}{(2-y)} + \frac{B}{(2+y)}$	
	$2 \equiv A(2+y) + B(2-y)$ NB : A & B are not assigned in this question	M1
	Let $y = -2$, $2 = B(4) \implies B = \frac{1}{2}$ Let $y = 2$, $2 = A(4) \implies A = \frac{1}{2}$ Either one of $A = \frac{1}{2}$ or $B = \frac{1}{2}$	A1
	giving $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$, aef $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$, aef	<u>A1</u> cao
	(If no working seen, but candidate writes down <i>correct partial fraction</i> then award all three marks. If no working is seen but one of <i>A</i> or <i>B</i> is incorrect then M0A0A0.)	[3]

Question Number	Scheme		Marks
155 . (b)	$\int \frac{2}{4 - y^2} \mathrm{d}y = \int \frac{1}{\cot x} \mathrm{d}x$	Separates variables as shown. Can be implied. Ignore the integral signs, and the '2'.	B1
	$\int \frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)} dy = \int \tan x dx$		
	$\therefore -\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) + (c)$	$\ln(\sec x) \text{ or } -\ln(\cos x)$ Either $\pm a \ln(\lambda - y)$ or $\pm b \ln(\lambda + y)$ their $\int \frac{1}{\cot x} dx =$ LHS correct with ft for their A and B and no error with the "2" with or without + c	B1 M1; A1√
	$y = 0, x = \frac{\pi}{3} \implies -\frac{1}{2}\ln 2 + \frac{1}{2}\ln 2 = \ln\left(\frac{1}{\cos(\frac{\pi}{3})}\right) + c$	Use of $y = 0$ and $x = \frac{\pi}{3}$ in an integrated equation containing c	M1*
	$\left\{0 = \ln 2 + c \implies \underline{c = -\ln 2}\right\}$		
	$-\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) - \ln 2$		
	$\frac{1}{2}\ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)$	Using either the quotient (or product) or power laws for logarithms CORRECTLY.	M1
	$\ln\left(\frac{2+y}{2-y}\right) = 2\ln\left(\frac{\sec x}{2}\right)$		
	$\ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)^2$	Using the log laws correctly to obtain a single log term on both sides of the equation.	dM1*
	$\frac{2+y}{2-y} = \frac{\sec^2 x}{4}$		
	Hence, $\underbrace{\sec^2 x = \frac{8+4y}{2-y}}$	$\frac{\sec^2 x = \frac{8+4y}{2-y}}{2-y}$	A1 aef
			11 marks

Question Number	Scheme		Marks
156 . (a)	At $P(4, 2\sqrt{3})$ either $\underline{4 = 8\cos t}$ or $\underline{2\sqrt{3} = 4\sin 2t}$	$\underline{4=8\cos t}$ or $\underline{2\sqrt{3}=4\sin 2t}$	M1
	\Rightarrow only solution is $t = \frac{\pi}{3}$ where $0 \leq t \leq \frac{\pi}{2}$.	$\underbrace{t = \frac{\pi}{3}}_{\text{stated in the range } 0 \leq t \leq \frac{\pi}{2}.$	A1 [2]
(b)	$x = 8\cos t , \qquad y = 4\sin 2t$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -8\sin t , \frac{\mathrm{d}y}{\mathrm{d}t} = 8\cos 2t$	Attempt to differentiate both x and y wrt t to give $\pm p \sin t$ and $\pm q \cos 2t$ respectively	M1
		Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	At P_{i} , $\frac{dy}{dx} = \frac{8\cos\left(\frac{2\pi}{3}\right)}{-8\sin\left(\frac{\pi}{3}\right)}$	Divides in correct way round and attempts to substitute their value of t (in degrees or radians) into their $\frac{dy}{dx}$ expression.	M1*
	$\left\{ = \frac{8\left(-\frac{1}{2}\right)}{\left(-8\right)\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58 \right\}$	You may need to check candidate's substitutions for M1* Note the next two method marks are dependent on M1*	
	Hence m(N) = $-\sqrt{3}$ or $\frac{-1}{\frac{1}{\sqrt{3}}}$	Uses $m(\mathbf{N}) = -\frac{1}{\text{their } m(\mathbf{T})}$.	dM1*
	N: $y - 2\sqrt{3} = -\sqrt{3}(x-4)$	Uses $y - 2\sqrt{3} = (\text{their } m_N)(x - 4)$ or finds c using $x = 4$ and $y = 2\sqrt{3}$ and uses $y = (\text{their } m_N)x + "c"$.	dM1*
	N: $y = -\sqrt{3}x + 6\sqrt{3}$ AG	$\underline{y = -\sqrt{3}x + 6\sqrt{3}}$	A1 cso AG
	or $2\sqrt{3} = -\sqrt{3}(4) + c \implies c = 2\sqrt{3} + 4\sqrt{3} = 6\sqrt{3}$ so N: $\left[\underline{y} = -\sqrt{3}x + 6\sqrt{3} \right]$		[6]

Question	Scheme		Marks
156 . (c)	$A = \int_{0}^{4} y dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 4\sin 2t \cdot (-8\sin t) dt$	attempt at $A = \int \underline{y} \frac{dx}{dt} dt$ correct expression (ignore limits and dt)	M1 A1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32\sin 2t . \sin t dt = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32(2\sin t \cos t) . \sin t dt$	Seeing $\sin 2t = 2\sin t \cos t$ anywhere in PART (c).	M1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -64.\sin^2 t \cos t dt$ $A = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64.\sin^2 t \cos t dt$	Correct proof. Appreciation of how the negative sign affects the limits. Note that the answer is given in the question.	A1 AG
(d)	{Using substitution $u = \sin t \implies \frac{du}{dt} = \cos t$ } {change limits: when $t = \frac{\pi}{3}$, $u = \frac{\sqrt{3}}{2}$ & when $t = \frac{\pi}{2}$, $u = 1$ }		[4]
	$A = 64 \left[\frac{\sin^3 t}{3} \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \text{or} A = 64 \left[\frac{u^3}{3} \right]_{\frac{\sqrt{3}}{2}}^{1}$	$k \sin^3 t$ or ku^3 with $u = \sin t$ Correct integration ignoring limits.	M1 A1
	$A = 64 \left[\frac{1}{3} - \left(\frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) \right]$	Substitutes limits of either $\left(t = \frac{\pi}{2} \text{ and } t = \frac{\pi}{3}\right)$ or $\left(u = 1 \text{ and } u = \frac{\sqrt{3}}{2}\right)$ and subtracts the correct way round.	dM1
	$A = 64\left(\frac{1}{3} - \frac{1}{8}\sqrt{3}\right) = \frac{64}{3} - 8\sqrt{3}$	$\frac{\frac{64}{3} - 8\sqrt{3}}{\frac{4}{3}}$ Aef in the form $a + b\sqrt{3}$, with awrt 21.3 and anything that cancels to $a = \frac{64}{3}$ and b = -8.	A1 aef isw [4]
	(Note that $a = \frac{64}{3}, b = -8$)		16 marks

Question Number	Scheme	Marks
157.	Volume = $\pi \int_{a}^{b} \left(\frac{1}{2x+1}\right)^{2} dx = \pi \int_{a}^{b} \frac{1}{(2x+1)^{2}} dx$ Use of $V = \pi \int y^{2} dx$. Can be implied. Ignore limits.	B1
	$= \pi \int_a^b (2x+1)^{-2} dx$	
	$= \left(\pi\right) \left[\frac{(2x+1)^{-1}}{(-1)(2)}\right]_{a}^{b}$	
	$= \left(\pi\right) \left[\frac{-\frac{1}{2}(2x+1)^{-1}}{-\frac{1}{2}(2x+1)^{-1}} \right]_{a}^{b}$ Integrating to give $\frac{\pm p(2x+1)^{-1}}{-\frac{1}{2}(2x+1)^{-1}}$	M1 A1
	$= \left(\pi\right) \left[\left(\frac{-1}{2(2b+1)}\right) - \left(\frac{-1}{2(2a+1)}\right) \right]$ Substitutes limits of <i>b</i> and <i>a</i> and subtracts the correct way round.	dM1
	$=\frac{\pi}{2}\left[\frac{-2a-1+2b+1}{(2a+1)(2b+1)}\right]$	
	$=\frac{\pi}{2} \left[\frac{2(b-a)}{(2a+1)(2b+1)} \right]$	
	$=\frac{\pi(b-a)}{(2a+1)(2b+1)} \qquad \qquad \frac{\pi(b-a)}{(2a+1)(2b+1)}$	A1 aef
		5 marks
	Allow other equivalent forms such as	

$$\frac{\pi b - \pi a}{(2a+1)(2b+1)} \text{ or } \frac{-\pi(a-b)}{(2a+1)(2b+1)} \text{ or } \frac{\pi(b-a)}{4ab+2a+2b+1} \text{ or } \frac{\pi b - \pi a}{4ab+2a+2b+1}.$$

Note that π is not required for the middle three marks of this question.

Question Number	Scheme		Marks
<i>Aliter</i> 157. Way 2	Volume = $\pi \int_{a}^{b} \left(\frac{1}{2x+1}\right)^{2} dx = \pi \int_{a}^{b} \frac{1}{(2x+1)^{2}} dx$ Use of V = Can be implied. Ig	$= \frac{\pi \int y^2}{\text{nore limits.}} \mathrm{d}x .$	B1
	$= \pi \int_{a}^{b} (2x+1)^{-2} dx$		
	Applying substitution $u = 2x + 1 \Rightarrow \frac{du}{dx} = 2$ and changing limits $x \to u$ so that $a \to 2a + 1$ and $b \to 2b + 1$, gives		
	$= (\pi) \int_{2a+1}^{2b+1} \frac{u^{-2}}{2} \mathrm{d}u$		
	$= (\pi) \left[\frac{u^{-1}}{(-1)(2)} \right]_{2a+1}^{2b+1}$		
	$= (\pi) \left[-\frac{1}{2} u^{-1} \right]_{2a+1}^{2b+1}$ Integrating to g	give $\underline{\pm p u^{-1}}$ $\underline{-\frac{1}{2}u^{-1}}$	M1 A1
	$= (\pi) \left[\left(\frac{-1}{2(2b+1)} \right) - \left(\frac{-1}{2(2a+1)} \right) \right]$ Substitutes limits of $2a+1$ and subtracts	f $2b + 1$ and the correct way round.	dM1
	$=\frac{\pi}{2}\left[\frac{-2a-1+2b+1}{(2a+1)(2b+1)}\right]$		
	$=\frac{\pi}{2} \left[\frac{2(b-a)}{(2a+1)(2b+1)} \right]$		
	$=\frac{\pi(b-a)}{(2a+1)(2b+1)}$	$\frac{\tau(b-a)}{+1)(2b+1)}$	A1 aef
			[5] 5 marks
Note that three mark	π is not required for the middle ks of this question.		

Allow other equivalent forms such as

$$\frac{\pi b - \pi a}{(2a+1)(2b+1)} \text{ or } \frac{-\pi(a-b)}{(2a+1)(2b+1)} \text{ or } \frac{\pi(b-a)}{4ab+2a+2b+1} \text{ or } \frac{\pi b - \pi a}{4ab+2a+2b+1}.$$

Questi Numb	ion ber	Scheme	Marks
158.	. (i)	$\int \ln\left(\frac{x}{2}\right) dx = \int 1.\ln\left(\frac{x}{2}\right) dx \implies \begin{cases} u = \ln\left(\frac{x}{2}\right) \implies \frac{du}{dx} = \frac{1}{2} = \frac{1}{x} \\ \frac{dv}{dx} = 1 \implies v = x \end{cases}$	
		$\int \ln\left(\frac{x}{2}\right) dx = x \ln\left(\frac{x}{2}\right) - \int x \cdot \frac{1}{x} dx$ Use of 'integration by parts' formula in the correct direction. Correct expression. An attempt to multiply x by a	M1 A1
		$= x \ln(\frac{x}{2}) - \frac{1}{y} \frac{dx}{dx}$ $= x \ln(\frac{x}{2}) - x + c$ Correct integration with $+ c$	<u>dM11</u> A1 aef [4]
(ii)		$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx$ $\left[\text{NB: } \cos 2x = \pm 1 \pm 2\sin^2 x \text{ or } \sin^2 x = \frac{1}{2} (\pm 1 \pm \cos 2x) \right]$ $= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} dx = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 - \cos 2x}{2} \right) dx$ Consideration of double angle formula for $\cos 2x$	M1
		$= \frac{1}{2} \left[\frac{x - \frac{1}{2}\sin 2x}{\frac{\pi}{4}} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$ $\frac{\frac{1}{2} \tan 2x}{\frac{1}{2}\sin 2x} = \frac{1}{2} \left[\frac{x - \frac{1}{2}\sin 2x}{\frac{\pi}{4}} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$ $\frac{1}{2} \tan 2x = \frac{1}{2} \sin 2x$ $\frac{1}{2} \tan 2x = \frac{1}{2} \sin 2x$ $\frac{1}{2} \tan 2x = \frac{1}{2} \sin 2x$	dM1 A1
		$= \frac{1}{2} \left[\left(\frac{\pi}{2} - \frac{\sin(\pi)}{2} \right) - \left(\frac{\pi}{4} - \frac{\sin(\frac{\pi}{2})}{2} \right) \right]$ Substitutes limits of $\frac{\pi}{2}$ and $\frac{\pi}{4}$ and subtracts the correct way round.	ddM1
		$= \frac{1}{2} \left(\frac{\pi}{4} + \frac{1}{2}\right) = \frac{\pi}{8} + \frac{1}{4}$ $\frac{\frac{1}{2} \left(\frac{\pi}{4} + \frac{1}{2}\right)}{\frac{1}{2} \left(\frac{\pi}{4} + \frac{1}{2}\right)} \text{ or } \frac{\pi}{8} + \frac{1}{4} \text{ or } \frac{\pi}{8} + \frac{2}{8}$ Candidate must collect their π term and constant term together for A1 No fluked answers, hence cso .	A1 aef , cso [5]
<u> </u>			9 marks
Note: $\int \ln\left(\frac{x}{2}\right) dx = (\text{their } v) \ln\left(\frac{x}{2}\right) - \int (\text{their } v) \cdot (\text{their } \frac{du}{dx}) dx$ for M1 in part (i). Note $\frac{\pi}{8} + \frac{1}{4} = 0.64269$			

Question Number	Scheme	Mark	.s
<i>Aliter</i> 158. (i) Way 2	$\int \ln\left(\frac{x}{2}\right) dx = \int (\ln x - \ln 2) dx = \int \ln x dx - \int \ln 2 dx$		
	$\int \ln x dx = \int 1.\ln x dx \implies \begin{cases} u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = 1 \Rightarrow v = x \end{cases}$		
	$\int \ln x dx = x \ln x - \int x \cdot \frac{1}{x} dx$ Use of 'integration by parts' formula in the correct direction.	M1	
	$= x \ln x - x + c$ Correct integration of $\ln x$ with or without $+ c$	A1	
	$\int \ln 2 dx = x \ln 2 + c$ Correct integration of $\ln 2$ with or without $+ c$	M1	
	Hence, $\int \ln\left(\frac{x}{2}\right) dx = x \ln x - x - x \ln 2 + c$ Correct integration with $+ c$	A1 aef	[4]
			[.]
	Note: $\int \ln x dx = (\text{their } v) \ln x - \int (\text{their } v) \cdot (\text{their } \frac{du}{dx}) dx$ for M1 in part (i).		

Question Number	Scheme	Marks	
<i>Aliter</i> 158. (i) Way 3	$\int \ln\left(\frac{x}{2}\right) dx$		
	$u = \frac{x}{2} \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}$		
	$\int \ln\left(\frac{x}{2}\right) dx = 2 \int \ln u du$ Applying substitution correctly to give $\int \ln\left(\frac{x}{2}\right) dx = 2 \int \ln u du$ Decide to award 2 nd M1 here!		
	$\int \ln u \mathrm{d}x = \int 1.\ln u \mathrm{d}u$		
	$\int \ln u dx = u \ln u - \int u \cdot \frac{1}{u} du$ Use of 'integration by parts' formula in the correct direction.	M1	
	$= u \ln u - u + c$ Correct integration of $\ln u$ with or without $+ c$	A1	
	Decide to award 2 nd M1 here!	M1	
	$\int \ln\left(\frac{x}{2}\right) dx = 2\left(u\ln u - u\right) + c$		
	Hence, $\int \ln(\frac{x}{2}) dx = x \ln(\frac{x}{2}) - x + c$ Correct integration with $+ c$	A1 aef	[4]

Question
NumberSchemeMarksAffter
158, (ii)
Way 2
$$\int_{\pi}^{\pi} \sin x \sin x \, dx = \int_{\pi}^{\pi} \sin x \sin x \, dx = and I = \int \sin^2 x \, dx$$
Image: Affter Islaw is the construction of the construction of

Note $\frac{\pi}{8} + \frac{1}{4} = 0.64269...$

Question Number	Scheme	Marks
159. (a)	$\left[x = \ln(t+2), \ y = \frac{1}{t+1}\right], \Rightarrow \frac{dx}{dt} = \frac{1}{t+2}$ Must state $\frac{dx}{dt} = \frac{1}{t+2}$	B1
	$\operatorname{Area}(R) = \int_{\ln 2}^{\ln 4} \frac{1}{t+1} dx; = \int_{0}^{2} \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) dt \qquad \qquad \operatorname{Area} = \int \frac{1}{t+1} dx.$ Ignore limits. $\int \left(\frac{1}{t+1}\right) \times \left(\frac{1}{t+2}\right) dt.$ Ignore limits.	M1; A1 AG
	Changing limits, when: $x = \ln 2 \implies \ln 2 = \ln(t+2) \implies 2 = t+2 \implies t=0$ $x = \ln 4 \implies \ln 4 = \ln(t+2) \implies 4 = t+2 \implies t=2$ changes limits $x \rightarrow t$ so that $\ln 2 \rightarrow 0$ and $\ln 4 \rightarrow 2$	B1
	Hence, Area(R) = $\int_{0}^{2} \frac{1}{(t+1)(t+2)} dt$	[4]
(b)	$\left(\frac{1}{(t+1)(t+2)}\right) = \frac{A}{(t+1)} + \frac{B}{(t+2)}$ $\frac{A}{(t+1)} + \frac{B}{(t+2)}$ with A and B found	M1
	1 = A(t+2) + B(t+1)	
	Let $t = -1$, $1 = A(1) \implies \underline{A} = 1$ Let $t = -2$, $1 = B(-1) \implies \underline{B} = -1$ Finds both A and B correctly. Can be implied. (See note below)	A1
	$\int_{0}^{2} \frac{1}{(t+1)(t+2)} dt = \int_{0}^{2} \frac{1}{(t+1)} - \frac{1}{(t+2)} dt$	
	$= \left[\ln(t+1) - \ln(t+2) \right]_{0}^{2}$ Either $\pm a \ln(t+1)$ or $\pm b \ln(t+2)$ Both ln terms correctly ft.	dM1 A1√
	$= (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$ Substitutes <i>both</i> limits of 2 and 0 and subtracts the correct way round.	ddM1
	$= \ln 3 - \ln 4 + \ln 2 = \ln 3 - \ln 2 = \ln \left(\frac{3}{2}\right) \qquad \frac{\ln 3 - \ln 4 + \ln 2 \text{ or } \ln \left(\frac{3}{4}\right) - \ln \left(\frac{1}{2}\right)}{\text{ or } \ln 3 - \ln 2 \text{ or } \ln \left(\frac{3}{2}\right)} $ (must deal with ln 1)	A1 aef isw
		[v]
Takes ou	t brackets. Writing down $\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} + \frac{1}{(t+2)}$ means first M1A0 in (b).	
	Writing down $\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} - \frac{1}{(t+2)}$ means first M1A1 in (b).	

Question Number	Scheme		Marks
	$x = \ln(t+2), \qquad y = \frac{1}{t+1}$		
159. (c)	$e^x = t + 2 \implies t = e^x - 2$	Attempt to make $t =$ the subject giving $t = e^x - 2$	M1 A1
	$y = \frac{1}{e^x - 2 + 1} \implies y = \frac{1}{e^x - 1}$	Eliminates <i>t</i> by substituting in <i>y</i> giving $y = \frac{1}{e^x - 1}$	dM1 A1 [4]
Aliter	$t+1=\frac{1}{y} \implies t=\frac{1}{y}-1 \text{ or } t=\frac{1-y}{y}$	Attempt to make $t =$ the subject	M1
7. (c) Way 2	$y(t+1) = 1 \implies yt + y = 1 \implies yt = 1 - y \implies t = \frac{1-y}{y}$	Giving either $t = \frac{1}{y} - 1$ or $t = \frac{1 - y}{y}$	A1
	$x = \ln\left(\frac{1}{y} - 1 + 2\right)$ or $x = \ln\left(\frac{1 - y}{y} + 2\right)$	Eliminates t by substituting in x	dM1
	$x = \ln\left(\frac{1}{y} + 1\right)$		
	$e^x = \frac{1}{y} + 1$		
	$e^x - 1 = \frac{1}{y}$		
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1
(d)	Domain : $x > 0$	x > 0 or just > 0	B1
			[1]
			15 marks

Question Number	Scheme		Marks
<i>Aliter</i> 159. (c) Way 3	$e^x = t + 2 \implies t + 1 = e^x - 1$	Attempt to make $t + 1 =$ the subject giving $t + 1 = e^{x} - 1$	M1 A1
	$y = \frac{1}{t+1} \implies y = \frac{1}{e^x - 1}$	Eliminates <i>t</i> by substituting in <i>y</i> giving $y = \frac{1}{e^x - 1}$	dM1 A1 [4]
<i>Aliter</i> 159. (c) Way 4	$t+1 = \frac{1}{y} \implies t+2 = \frac{1}{y}+1 \text{ or } t+2 = \frac{1+y}{y}$	Attempt to make $t + 2 =$ the subject Either $t + 2 = \frac{1}{y} + 1$ or $t + 2 = \frac{1+y}{y}$	M1 A1
	$x = \ln\left(\frac{1}{y} + 1\right)$ or $x = \ln\left(\frac{1+y}{y}\right)$	Eliminates <i>t</i> by substituting in <i>x</i>	dM1
	$x = \ln\left(\frac{1}{y} + 1\right)$		
	$e^x = \frac{1}{y} + 1 \implies e^x - 1 = \frac{1}{y}$		
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1 [4]

Question Number	Scheme		Marks
160. (a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - c\sqrt{h} \text{or} \frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - k\sqrt{h} ,$	Either of these statements	M1
	$\left(V = 4000h \implies\right) \frac{\mathrm{d}V}{\mathrm{d}h} = 4000$	$\frac{dV}{dh} = 4000 \text{ or } \frac{dh}{dV} = \frac{1}{4000}$	M1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\frac{\mathrm{d}V}{\mathrm{d}t}}{\frac{\mathrm{d}V}{\mathrm{d}h}}$		
	Either, $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1600 - c\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{c\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$	Convincing proof of $\frac{dh}{dt}$	A1 AG
	or $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1600 - k\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{k\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$	dt	[3]
(b)	When $h = 25$ water <i>leaks out such that</i> $\frac{dV}{dt} = 400$		[-]
	$400 = c\sqrt{h} \Longrightarrow 400 = c\sqrt{25} \Longrightarrow 400 = c(5) \Longrightarrow c = 80$		
	From above; $k = \frac{c}{4000} = \frac{80}{4000} = 0.02$ as required	Proof that $k = 0.02$	B1 AG [1]
<i>Aliter</i> (b) Way 2	$400 = 4000k\sqrt{h}$		
	$\Rightarrow 400 = 4000k\sqrt{25}$ $\Rightarrow 400 = k(20000) \Rightarrow k = \frac{400}{20000} = 0.02$	Using 400, 4000 and $h = 25$ or $\sqrt{h} = 5$. Proof that $k = 0.02$	B1 AG [1]
(c)	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - k\sqrt{h} \implies \int \frac{\mathrm{d}h}{0.4 - k\sqrt{h}} = \int dt$	Separates the variables with $\int \frac{dh}{0.4 - k\sqrt{h}}$ and $\int dt$ on either side with integral signs not necessary.	M1 oe
	: time required = $\int_{0}^{100} \frac{1}{0.4 - 0.02\sqrt{h}} dh = \frac{\div 0.02}{\div 0.02}$		
	time required = $\int_{0}^{100} \frac{50}{20 - \sqrt{h}} \mathrm{d}h$	Correct proof	A1 AG [2]

Question Number	Scheme		Marks
160. (d)	$\int_{0}^{100} \frac{50}{20 - \sqrt{h}} \mathrm{d}h \text{with substitution} h = (20 - x)^2$		
	$\frac{dh}{dx} = 2(20-x)(-1)$ or $\frac{dh}{dx} = -2(20-x)$	Correct $\frac{\mathrm{d}h}{\mathrm{d}x}$	B1 aef
	$h = (20 - x)^2 \implies \sqrt{h} = 20 - x \implies x = 20 - \sqrt{h}$	• 20	
	$\int \frac{50}{20 - \sqrt{h}} \mathrm{d}h = \int \frac{50}{x} \cdot -2(20 - x) \mathrm{d}x$	$\pm \lambda \int \frac{20 - x}{x} dx \text{ or}$ $\pm \lambda \int \frac{20 - x}{20 - (20 - x)} dx$	M1
	$=100\int \frac{x-20}{x} \mathrm{d}x$	where λ is a constant	
	$=100\int \left(1-\frac{20}{x}\right)\mathrm{d}x$		
	$= 100(x - 20\ln x) (+c)$	$\pm \alpha x \pm \beta \ln x; \alpha, \beta \neq 0$ $100x - 2000 \ln x$	M1 A1
	change limits: when $h = 0$ then $x = 20$ and when $h = 100$ then $x = 10$		
	$\int_{0}^{100} \frac{50}{20 - \sqrt{h}} \mathrm{d}h = \left[100 x - 2000 \ln x\right]_{20}^{10}$		
	or $\int_{0}^{100} \frac{50}{20 - \sqrt{h}} dh = \left[100 \left(20 - \sqrt{h} \right) - 2000 \ln \left(20 - \sqrt{h} \right) \right]_{0}^{100}$	Correct use of limits, ie. putting them in the correct way round	
	$= (1000 - 2000 \ln 10) - (2000 - 2000 \ln 20)$	Either $x = 10$ and $x = 20$ or $h = 100$ and $h = 0$	ddM1
	$= 2000 \ln 20 - 2000 \ln 10 - 1000$	Combining logs to give $2000 \ln 2 - 1000$	
	$= 2000 \ln 2 - 1000$	or $-2000 \ln \left(\frac{1}{2}\right) - 1000$	A1 aef
(e)	Time required = $2000 \ln 2 - 1000 = 386.2943611$ sec		[v]
	= 386 seconds (nearest second)		
	= 6 minutes and 26 seconds (nearest second)	<u>6 minutes, 26 seconds</u>	B1 [1]
			13 marks

