

Maths Questions By Topic:

Integration
 Mark Scheme

A-Level Edexcel

円 www.expert-tuition.co.ukonline.expert-tuition.co.uk
enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 .. Page 1
Paper 2
Page 36
Old Spec
Core 1 .. Page 70
Core 2 .. Page 105
Core 4 Page 133

Question	Scheme	Marks	AOs
1 (a)	$\lim _{\delta x \rightarrow 0} \sum_{x=2.1}^{6.3} \frac{2}{x} \delta x=\int_{2.1}^{6.3} \frac{2}{x} \mathrm{~d} x$	B1	1.2
		(1)	
(b)	$=[2 \ln x]_{2.1}^{6.3}=2 \ln 6.3-2 \ln 2.1$	M1	1.1b
	$=\ln 9 \quad$ CSO	A1	1.1b
		(2)	
(3 marks)			
Notes:			

Mark (a) and (b) as one
(a)

B1: States that $\int_{2.1}^{6.3} \frac{2}{x} \mathrm{~d} x$ or equivalent such as $2 \int_{2.1}^{6.3} x^{-1} \mathrm{~d} x$ but must include the limits and the $\mathrm{d} x$. Condone $\mathrm{d} x \leftrightarrow \delta x$ as it is very difficult to tell one from another sometimes
(b)

M1: Know that $\int \frac{1}{x} \mathrm{~d} x=\ln x$ and attempts to apply the limits (either way around)
Condone $\int \frac{2}{x} \mathrm{~d} x=p \ln x$ (including $p=1$) or $\int \frac{2}{x} \mathrm{~d} x=p \ln q x$ as long as the limits are applied.
Also be aware that $\int \frac{2}{x} \mathrm{~d} x=\ln x^{2}, \int \frac{2}{x} \mathrm{~d} x=2 \ln |x|+c$ and $\int \frac{2}{x} \mathrm{~d} x=2 \ln c x$ o.e. are also correct $[p \ln x]_{2.1}^{6.3}=p \ln 6.3-p \ln 2.1$ is sufficient evidence to award this mark
A1: CSO $\ln 9$. Also answer $=\ln 3^{2}$ so $k=9$ is fine. Condone $\ln |9|$
The method mark must have been awarded. Do not accept answers such as $\ln \frac{39.69}{4.41}$
Note that solutions appearing from "rounded" decimal work when taking lns should not score the final mark. It is a "show that" question
E.g. $[2 \ln x]_{2.1}^{6.3}=2 \ln 6.3-2 \ln 2.1=2.197=\ln k \Rightarrow k=\mathrm{e}^{2.197}=8.998=9$

Question	Scheme	Marks	AOs
2	$\int x^{3} \ln x \mathrm{~d} x=\frac{x^{4}}{4} \ln x-\int \frac{x^{4}}{4} \times \frac{1}{x} \mathrm{~d} x$	M1	1.1b
	$=\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}(+c)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\int_{1}^{\mathrm{e}^{2}} x^{3} \ln x \mathrm{~d} x=\left[\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}\right]_{1}^{\mathrm{e}^{2}}=\left(\frac{\mathrm{e}^{8}}{4} \ln \mathrm{e}^{2}-\frac{\mathrm{e}^{8}}{16}\right)-\left(-\frac{1^{4}}{16}\right)$	M1	2.1
	$=\frac{7}{16} \mathrm{e}^{8}+\frac{1}{16}$	A1	1.1b
		(5)	
(5 marks)			
Notes:			

M1: Integrates by parts the right way round.
Look for $k x^{4} \ln x-\int k x^{4} \times \frac{1}{x} \mathrm{~d} x$ o.e. with $k>0$. Condone a missing $\mathrm{d} x$
M1: Uses a correct method to integrate an expression of the form $\int k x^{4} \times \frac{1}{x} \mathrm{~d} x \rightarrow c x^{4}$
A1: $\int x^{3} \ln x \mathrm{~d} x=\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}(+c)$ which may be left unsimplified
M1: Attempts to substitute 1 and e^{2} into an expression of the form $\pm p x^{4} \ln x \pm q x^{4}$, subtracts and uses $\ln \mathrm{e}^{2}=2$ (which may be implied).
A1: $\frac{7}{16} \mathrm{e}^{8}+\frac{1}{16}$ o.e. Allow $0.4375 \mathrm{e}^{8}+0.0625$ or uncancelled fractions. NOT ISW: $7 \mathrm{e}^{8}+1$ is A0
You may see attempts where substitution has been attempted.
E.g. $u=\ln x \Rightarrow x=\mathrm{e}^{u}$ and $\frac{\mathrm{d} x}{\mathrm{~d} u}=\mathrm{e}^{u}$

M1: Attempts to integrate the correct way around condoning slips on the coefficients

$$
\int x^{3} \ln x \mathrm{~d} x=\int \mathrm{e}^{4 u} u \mathrm{~d} u=\frac{\mathrm{e}^{4 u}}{4} u-\int \frac{\mathrm{e}^{4 u}}{4} \mathrm{~d} u
$$

M1 A1: $\int x^{3} \ln x \mathrm{~d} x=\frac{\mathrm{e}^{4 u}}{4} u-\frac{\mathrm{e}^{4 u}}{16}(+c)$
M1 A1: Substitutes 0 and 2 into an expression of the form $\pm p u \mathrm{e}^{4 u} \pm q \mathrm{e}^{4 u}$ and subtracts

It is possible to use integration by parts "the other way around"
To do this, candidates need to know or use $\int \ln x \mathrm{~d} x=x \ln x-x$
FYI $I=\int x^{3} \ln x \mathrm{~d} x=x^{3}(x \ln x-x)-\int(x \ln x-x) \times 3 x^{2} \mathrm{~d} x=x^{3}(x \ln x-x)-3 I+\frac{3}{4} x^{4}$
Hence $4 I=x^{4} \ln x-\frac{1}{4} x^{4} \Rightarrow I=\frac{1}{4} x^{4} \ln x-\frac{1}{16} x^{4}$
Score M1 for a full attempt at line 1 (condoning bracketing and coefficient slips) followed by M 1 for line 2 where terms in I o.e. to form the answer.

Question	Scheme	Marks	AOs
3 (a)	Attempts $y \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}=(2 \sin 2 t+3 \sin t) \times 16 \sin t \cos t \text { and uses } \sin 2 t=2 \sin t \cos t$	M1	2.1
	Correct expanded integrand. Usually for one of $\begin{aligned} & (R)=\int \underline{\underline{48 \sin ^{2} t \cos t+16 \sin ^{2} 2 t}} \\ & (R)=\int \underline{\underline{48 \sin ^{2} t \cos t+64 \sin ^{2} t \cos ^{2} t} t \mathrm{~d} t} \\ & (R)=\int \underline{\underline{\underline{24 \sin 2 t \sin t+16 \sin ^{2} 2 t \mathrm{~d} t}}} \end{aligned}$	A1	1.1b
	Attempts to use $\cos 4 t=1-2 \sin ^{2} 2 t=\left(1-8 \sin ^{2} t \cos ^{2} t\right)$	M1	1.1b
	$R=\int_{0}^{a} 8-8 \cos 4 t+48 \sin ^{2} t \cos t \mathrm{~d} t \quad *$	A1*	2.1
	Deduces $a=\frac{\pi}{4}$	B1	2.2a
		(5)	
(b)	$\int 8-8 \cos 4 t+48 \sin ^{2} t \cos t \mathrm{~d} t=8 t-2 \sin 4 t+16 \sin ^{3} t$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\left[8 t-2 \sin 4 t+16 \sin ^{3} t\right]_{0}^{\frac{\pi}{4}}=2 \pi+4 \sqrt{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
		(4)	
(9 marks)			
Notes:			

(a) Condone work in another variable, say $\theta \leftrightarrow t$ if used consistently for the first $\mathbf{3}$ marks

M1: For the key step in attempting $y \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}=(2 \sin 2 t+3 \sin t) \times 16 \sin t \cos t$ with an attempt to use $\sin 2 t=2 \sin t \cos t \quad$ Condone slips in finding $\frac{\mathrm{d} x}{\mathrm{~d} t}$ but it must be of the form $k \sin t \cos t$
E.g. I $\quad y . \frac{\mathrm{d} x}{\mathrm{~d} t}=(2 \sin 2 t+3 \sin t) \times k \sin t \cos t=(4 \sin t \cos t+3 \sin t) \times k \sin t \cos t$
E.g. II $\quad y \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}=(2 \sin 2 t+3 \sin t) \times k \sin t \cos t=(2 \sin 2 t+3 \sin t) \times \frac{k}{2} \sin 2 t$

A1: A correct (expanded) integrand in t. Don't be concerned by the absence of \int or $\mathrm{d} t$ or limits

$$
(R)=\int \underline{\underline{48 \sin ^{2} t \cos t+16 \sin ^{2} 2 t} \mathrm{~d} t} \text { or }(R)=\int \underline{\underline{48 \sin ^{2} t \cos t+64 \sin ^{2} t \cos ^{2} t \mathrm{~d} t}}
$$

but watch for other correct versions such as $(R)=\int \underline{\underline{24 \sin 2 t \sin t+16 \sin ^{2} 2 t} \mathrm{~d} t}$

M1: Attempts to use $\cos 4 t= \pm 1 \pm 2 \sin ^{2} 2 t$ to get the integrand in the correct form.
If they have the form $P \sin ^{2} 2 t$ it is acceptable to write $P \sin ^{2} 2 t=\frac{P}{2}(\pm 1 \pm \cos 4 t)$
If they have the form $Q \sin ^{2} t \cos ^{2} t$ sight and use of $\sin 2 t$ and/or $\cos 2 t$ will usually be seen first. There are many ways to do this, below is such an example
$Q \sin ^{2} t \cos ^{2} t=Q\left(\frac{1-\cos 2 t}{2}\right)\left(\frac{1+\cos 2 t}{2}\right)=Q\left(\frac{1-\cos ^{2} 2 t}{4}\right)=Q\left(\frac{1}{4}-\frac{\cos ^{2} 2 t}{4}\right)=Q\left(\frac{1}{4}-\frac{1+\cos 4 t}{8}\right)$
Allow candidates to start with the given answer and work backwards using the same rules. So expect to see $\cos 4 t= \pm 1 \pm 2 \times \sin ^{2} 2 t$ or $\cos 4 t= \pm 2 \times \cos ^{2} 2 t \pm 1$ before double angle identities for $\sin 2 t$ or $\cos 2 t$ are used.
A1*: Proceeds to the given answer with correct working. The order of the terms is not important. Ignore limits for this mark. The integration sign and the $\mathrm{d} t$ must be seen on their final answer. If they have worked backwards there must be a concluding statement to the effect that they know that they have shown it. The integration sign and the $d \mathrm{t}$ must also be seen
E.g. Reaches $\int 48 \sin ^{2} t \cos t+64 \sin ^{2} t \cos ^{2} t \mathrm{~d} t$

$$
\begin{aligned}
\text { Answer is } & \int 8-8 \cos 4 t+48 \sin ^{2} t \cos t \mathrm{~d} t \\
& =\int 8-8\left(1-2 \sin ^{2} 2 t\right)+48 \sin ^{2} t \cos t \mathrm{~d} t \\
= & \int 16 \sin ^{2} 2 t+48 \sin ^{2} t \cos t \mathrm{~d} t \\
= & \int 64 \sin ^{2} t \cos ^{2} t+48 \sin ^{2} t \cos t \mathrm{~d} t
\end{aligned}
$$

B1: Deduces $a=\frac{\pi}{4}$. It may be awarded from the upper limit and can be awarded from (b)
(b)

M1: For the key process in using a correct approach to integrating the trigonometric terms.
May be done separately.
There may be lots of intermediate steps (e.g. let $u=\sin t$).
There are other more complicated methods so look carefully at what they are doing.
$\int 8-8 \cos 4 t+48 \sin ^{2} t \cos t \mathrm{~d} t=\ldots \pm P \sin 4 t \pm Q \sin ^{3} t$ where P and Q are constants
A1: $\int 8-8 \cos 4 t+48 \sin ^{2} t \cos t \mathrm{~d} t=8 t-2 \sin 4 t+16 \sin ^{3} t(+c)$
If they have written $16 \sin ^{3} t$ as $16 \sin t^{3}$ only award if further work implies a correct answer.
Similarly, $8 t$ may be written as $8 x$. Award if further work implies $8 t$, e.g. substituting in their limits. Do not penalise this sort of slip at all, these are intermediate answers.
M1: Uses the limits their a and 0 where $a=\frac{\pi}{6}, \frac{\pi}{4}$ or $\frac{\pi}{3}$ in an expression of the form $k t \pm P \sin 4 t \pm Q \sin ^{3} t$ leading to an exact answer. Ignore evidence at lower limit as terms are 0
A1: CSO $2 \pi+4 \sqrt{2}$ or exact simplified equivalent such as $2 \pi+\frac{8}{\sqrt{2}}$ or $2 \pi+\sqrt{32}$.
Be aware that $\int_{0}^{\frac{\pi}{4}} 8-8 \cos 4 t+48 \sin ^{2} t \cos t \mathrm{~d} t=\underset{=}{8 t+\lambda \sin 4 t+16 \sin ^{3} t(+c) \text { would lead to the }}$ correct answer but would only score M1 A0 M1 A0

Question	Scheme	Marks	AOs
4	$x^{n} \rightarrow x^{n+1}$	M1	1.1b
	$\int\left(8 x^{3}-\frac{3}{2 \sqrt{x}}+5\right) \mathrm{d} x=\frac{8 x^{4}}{4} \ldots+5 x$	A1	1.1b
	$=\ldots-2 \times \frac{3}{2} x^{\frac{1}{2}}+\ldots$	A1	1.1b
	$=2 x^{4}-3 x^{\frac{1}{2}}+5 x+c$	A1	1.1b
		(4)	
(4 marks)			

M1: For raising any correct power of x by 1 including $5 \rightarrow 5 x$ (not for $+c$) Also allow eg $x^{3} \rightarrow x^{3+1}$

A1: For 2 correct non-fractional power terms (allow unsimplified coefficients) and may appear on separate lines. The indices must be processed. The $+c$ does not count as a correct term here. Condone the 1 appearing as a power or denominator such as $\frac{5 x^{1}}{1}$ for this mark.

A1: For the correct fractional power term (allow unsimplified) Allow eg $+-2 \times 1.5 \sqrt{x^{1}}$.
Also allow fractions within fractions for this mark such as $\frac{\frac{3}{2}}{\frac{1}{2}} x^{\frac{1}{2}}$

A1: All correct and simplified and on one line including $+c$. Allow $-3 \sqrt{x}$ or $-\sqrt{9 x}$ for $-3 x^{\frac{1}{2}}$. Do not accept $+-3 x^{\frac{1}{2}}$ for this mark.

Award once a correct expression is seen and isw but if there is any additional/incorrect notation and no correct expression has been seen on its own, withhold the final mark.

Eg. $\int 2 x^{4}-3 x^{\frac{1}{2}}+5 x+c \mathrm{~d} x \quad$ or $\quad 2 x^{4}-3 x^{\frac{1}{2}}+5 x+c=0 \quad$ with no correct expression seen earlier are both A0.

Question	Scheme	Marks	AOs
5(a)	$y=\frac{1}{3} x^{2}-2 \sqrt{x}+3 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{3} x-x^{-\frac{1}{2}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$x=4 \Rightarrow y=\frac{13}{3}$	B1	1.1b
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{x=4}=\frac{2}{3} \times 4-4^{-\frac{1}{2}}\left(=\frac{13}{6}\right) \quad \therefore y-\frac{13}{3}=\frac{13}{6}(x-4)$	M1	2.1
	$13 x-6 y-26=0 *$	A1*	1.1b
		(5)	
(b)	$\int\left(\frac{x^{2}}{3}-2 \sqrt{x}+3\right) \mathrm{d} x=\frac{x^{3}}{9}-\frac{4}{3} x^{\frac{3}{2}}+3 x(+c)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$y=0 \Rightarrow x=2$	B1	2.2a
	Area of R is $\left[\frac{x^{3}}{9}-\frac{4}{3} x^{\frac{3}{2}}+3 x\right]_{0}^{4}-\frac{1}{2} \times(4-" 2 ") \times " \frac{13}{3} "=\frac{76}{9}-\frac{13}{3}$	M1	3.1a
	$=\frac{37}{9}$	A1	1.1b
		(5)	
(10 marks)			
Notes			
(a) Calculators: If no algebraic differentiation seen then maximum in a) is M0A0B1M1A0* M1: $\quad x^{n} \rightarrow x^{n-1}$ seen at least once $\ldots x^{2} \rightarrow \ldots x^{1}, \ldots x^{\frac{1}{2}} \rightarrow \ldots x^{-\frac{1}{2}}, 3 \rightarrow 0$. Also accept on sight of eg $\ldots x^{\frac{1}{2}} \rightarrow \ldots x^{\frac{1}{2}-1}$ A1: $\quad \frac{2}{3} x-x^{-\frac{1}{2}}$ or any unsimplified equivalent (indices must be processed) accept the use of $0 . \dot{6} x$ but not rounded or ambiguous values eg $0.6 x$ or eg $0.66 \ldots x$ B1: Correct y coordinate of P. May be seen embedded in an attempt of the equation of l M1: Fully correct strategy for an equation for l. Look for $y-" \frac{13}{3} "=" \frac{13}{6} "(x-4)$ where their $\frac{13}{6}$ is from differentiating the equation of the curve and substituting in $x=4$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and the y coordinate is from substituting $x=4$ into the given equation. If they use $y=m x+c$ they must proceed as far as $c=\ldots$ to score this mark. Do not allow this mark if they use a perpendicular gradient. A1*: Obtains the printed answer with no errors. (b) Calculators: If no algebraic integration seen then maximum in b) is M0A0B1M1A0 M1: $\quad x^{n} \rightarrow x^{n+1}$ seen at least once. Eg $\ldots x^{2} \rightarrow \ldots x^{3}, \ldots x^{\frac{1}{2}} \rightarrow \ldots x^{\frac{3}{2}}, 3 \rightarrow 3 x^{1}$. Allow eg $\ldots x^{2} \rightarrow \ldots x^{2+1}$ The $+c$ is not a valid term for this mark.			

A1: $\quad \frac{x^{3}}{9}-\frac{4}{3} x^{\frac{3}{2}}+3 x$ or any unsimplified equivalent (indices must be processed) accept the use of exact decimals for $\frac{1}{9}(0 . \dot{1})$ and $-\frac{4}{3}(-1 . \dot{3})$ but not rounded or ambiguous values.
B1: Deduces the correct value for x for the intersection of l with the x-axis. May be seen indicated on Figure 2.
M1: Fully correct strategy for the area. This needs to include

- a correct attempt at the area of the triangle using their values (could use integration)
- a correct attempt at the area under the curve using 0 and 4 in their integrated expression
- the two values subtracted.

Be aware of those who mix up using the y-coordinate of P and the gradient at P which is M0. The values embedded in an expression is sufficient to score this mark.
A1: $\quad \frac{37}{9}$ or exact equivalent eg $4 \frac{1}{9}$ or 4.1 but not $4.111 \ldots$ isw after a correct answer
Be aware of other strategies to find the area R
eg Finding the area under the curve between 0 and 2 and then the difference between the curve and the straight line between 2 and 4:

$$
\int_{0}^{2} \frac{x^{2}}{3}-2 \sqrt{x}+3 \mathrm{~d} x+\int_{2}^{4} \frac{x^{2}}{3}-2 \sqrt{x}-\frac{13}{6} x+\frac{22}{3} \mathrm{~d} x
$$

M1 $\quad x^{n} \rightarrow x^{n+1}$ seen at least once on either integral (or on the equation of the line $y=\frac{1}{3} x+3$)
A1 for correct integration of either integral $\frac{x^{3}}{9}-\frac{4}{3} x^{\frac{3}{2}}+3 x$ or $\frac{x^{3}}{9}-\frac{4}{3} x^{\frac{3}{2}}-\frac{13}{12} x^{2}+\frac{22}{3} x$ (may
be unsimplified/uncollected terms but the indices must be processed with/without the $+C$)
B1 Correct value for x can be seen from the top of the first integral (or bottom value of the second integral)
M1 Correct strategy for the area eg.

$$
\left[\frac{x^{3}}{9}-\frac{4}{3} x^{\frac{3}{2}}+3 x\right]_{0}^{2}+\left[\frac{x^{3}}{9}-\frac{4}{3} x^{\frac{3}{2}}-\frac{13}{12} x^{2}+\frac{22}{3} x\right]_{2}^{4}=\frac{62}{9}-\frac{4}{3}(2)^{\frac{3}{2}}+\frac{76}{9}-\frac{101}{9}+\frac{4}{3}(2)^{\frac{3}{2}}
$$

A1: $\frac{37}{9}$ or exact equivalent eg $4 \frac{1}{9}$ or 4.1 but not 4.1 or $4.111 \ldots$.
You could also see use of the area of a trapezium and/or the use of the line $y=\frac{1}{3} x+3$ to find other areas which could be combined or used as part of the strategy to find \boldsymbol{R}. Ignore areas which are not used. The marks should still be able to be applied as per the scheme

Area of trapezium - (Area between $y=\frac{1}{3} x+3$ and curve $C+$ area of triangle)

$$
=\frac{44}{3}-\frac{56}{9}-\frac{13}{3}=\frac{37}{9}
$$

Question	Scheme	Marks	AOs
6(a)	$h=0.5$	B1	1.1b
	$A \approx \frac{1}{2} \times \frac{1}{2}\{0.4805+1.9218+2(0.8396+1.2069+1.5694)\}$	M1	1.1b
	$=2.41$	A1	1.1b
		(3)	
(b)	$\int(\ln x)^{2} \mathrm{~d} x=x(\ln x)^{2}-\int x \times \frac{2 \ln x}{x} \mathrm{~d} x$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & \hline 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\begin{gathered} =x(\ln x)^{2}-2 \int \ln x \mathrm{~d} x=x(\ln x)^{2}-2\left(x \ln x-\int \mathrm{d} x\right) \\ =x(\ln x)^{2}-2 \int \ln x \mathrm{~d} x=x(\ln x)^{2}-2 x \ln x+2 x \end{gathered}$	dM1	2.1
	$\begin{gathered} \int_{2}^{4}(\ln x)^{2} \mathrm{~d} x=\left[x(\ln x)^{2}-2 x \ln x+2 x\right]_{2}^{4} \\ =4(\ln 4)^{2}-2 \times 4 \ln 4+2 \times 4-\left(2(\ln 2)^{2}-2 \times 2 \ln 2+2 \times 2\right) \\ =4(2 \ln 2)^{2}-16 \ln 2+8-2(\ln 2)^{2}+4 \ln 2-4 \end{gathered}$	ddM1	2.1
	$=14(\ln 2)^{2}-12 \ln 2+4$	A1	1.1b
		(5)	
(8 marks)			
Notes			

(a)

B1: Correct strip width. May be implied by $\frac{1}{2} \times \frac{1}{2}\{\ldots\}$ or $\frac{1}{4} \times\{\ldots$.
M1: Correct application of the trapezium rule.
Look for $\frac{1}{2} \times " h "\{0.4805+1.9218+2(0.8396+1.2069+1.5694)\}$ condoning slips in the digits.
The bracketing must be correct but it is implied by awrt 2.41
A1: 2.41 only. This is not awrt
(b)

M1: Attempts parts the correct way round to achieve $\alpha x(\ln x)^{2}-\beta \int \ln x \mathrm{~d} x$ o.e.
May be unsimplified (see scheme). Watch for candidates who know or learn $\int \ln x \mathrm{~d} x=x \ln x-x$ who may write $\int(\ln x)^{2} \mathrm{~d} x=\int(\ln x)(\ln x) \mathrm{d} x=\ln x(x \ln x-x)-\int \frac{x \ln x-x}{x} \mathrm{~d} x$
A1: Correct expression which may be unsimplified
dM 1 : Attempts parts again to (only condone coefficient errors) to achieve $\alpha x(\ln x)^{2}-\beta x \ln x \pm \gamma x$ o.e. ddM1: Applies the limits 4 and 2 to an expression of the form $\pm \alpha x(\ln x)^{2} \pm \beta x \ln x \pm \gamma x$, subtracts and applies $\ln 4=2 \ln 2$ at least once. Both M's must have been awarded

A1: Correct answer

It is possible to do $\int(\ln x)^{2} \mathrm{~d} x$ via a substitution $u=\ln x$ but it is very similar.
M1 A1, dM1: $\int u^{2} \mathrm{e}^{u} \mathrm{~d} u=u^{2} \mathrm{e}^{u}-\int 2 u \mathrm{e}^{u} \mathrm{~d} u,=u^{2} \mathrm{e}^{u}-2 u \mathrm{e}^{u} \pm 2 \mathrm{e}^{u}$
ddM1: Applies appropriate limits and uses $\ln 4=2 \ln 2$ at least once to an expression of the form $u^{2} \mathrm{e}^{u}-\beta u \mathrm{e}^{u} \pm \gamma \mathrm{e}^{u}$ Both M's must have been awarded

Question	Scheme	Marks	AOs
7	$\int \frac{3 x^{4}-4}{2 x^{3}} \mathrm{~d} x=\int \frac{3}{2} x-2 x^{-3} \mathrm{~d} x$	M 1	1.1 b
	$=\frac{3}{2} \times \frac{x^{2}}{2}-2 \times \frac{x^{-2}}{-2}(+c)$	A 1	1.1 b
	$=\frac{3}{4} x^{2}+\frac{1}{x^{2}}+c$	o.e	AM1

Notes:

(i)

M1: Attempts to divide to form a sum of terms. Implied by two terms with one correct index.
$\int \frac{3 x^{4}}{2 x^{3}}-\frac{4}{2 x^{3}} \mathrm{~d} x$ scores this mark.
A1: $\int \frac{3}{2} x-2 x^{-3} \mathrm{~d} x$ o.e such as $\frac{1}{2} \int\left(3 x-4 x^{-3}\right) \mathrm{d} x$. The indices must have been processed on both terms. Condone spurious notation or lack of the integral sign for this mark.
dM1: For the full strategy to integrate the expression. It requires two terms with one correct index. Look for $=a x^{p}+b x^{q}$ where $p=2$ or $q=-2$

A1: Correct answer $\frac{3}{4} x^{2}+\frac{1}{x^{2}}+c$ o.e. such as $\frac{3}{4} x^{2}+x^{-2}+c$

Question	Scheme	Marks	AOs
8	$\int_{k}^{9} \frac{6}{\sqrt{x}} \mathrm{~d} x=\left[a x^{\frac{1}{2}}\right]_{k}^{9}=20 \Rightarrow 36-12 \sqrt{k}=20$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Correct method of solving Eg. $36-12 \sqrt{k}=20 \Rightarrow k=$	dM1	3.1a
	$\Rightarrow k=\frac{16}{9}$ oe	A1	1.1b
		(4)	

(4 marks)

Notes:

M1: For setting $\left[a x^{\frac{1}{2}}\right]_{k}^{9}=20$
A1: A correct equation involving p Eg. $36-12 \sqrt{k}=20$
dM1: For a whole strategy to find k. In the scheme it is awarded for setting $\left[a x^{\frac{1}{2}}\right]_{k}^{9}=20$, using both limits and proceeding using correct index work to find k. It cannot be scored if $k^{\frac{1}{2}}<0$
A1: $k=\frac{16}{9}$

Question	Scheme	Marks	AOs
9(a)	$\mathrm{f}(x)=-3 x^{2}+12 x+8=-3(x \pm 2)^{2}+\ldots$	M1	1.1b
	$=-3(x-2)^{2}+\ldots$	A1	1.1b
	$=-3(x-2)^{2}+20$	A1	1.1b
		(3)	
(b)	Coordinates of $M=(2,20)$	$\begin{aligned} & \text { B1ft } \\ & \text { B1ft } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 2.2 \mathrm{a} \end{aligned}$
		(2)	
(c)	$\int-3 x^{2}+12 x+8 \mathrm{~d} x=-x^{3}+6 x^{2}+8 x$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Method to find $R=$ their $2 \times 20-\int_{0}^{2}\left(-3 x^{2}+12 x+8\right) \mathrm{d} x$	M1	3.1a
	$R=40-\left[-2^{3}+24+16\right]$	dM1	1.1b
	$=8$	A1	1.1b
		(5)	

(10 marks)

Alt(c)	$\int 3 x^{2}-12 x+12 \mathrm{~d} x=x^{3}-6 x^{2}+12 x$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Method to find $R=\int_{0}^{2} 3 x^{2}-12 x+12 \mathrm{~d} x$	M1	3.1a
	$R=2^{3}-6 \times 2^{2}+12 \times 2$	dM1	1.1b
	$=8$	A1	1.1b

Notes:

(a)

M1: Attempts to take out a common factor and complete the square. Award for $-3(x \pm 2)^{2}+\ldots$
Alternatively attempt to compare $-3 x^{2}+12 x+8$ to $a x^{2}+2 a b x+a b^{2}+c$ to find values of a and b

A1: Proceeds to a form $-3(x-2)^{2}+\ldots$ or via comparison finds $a=-3, b=-2$

A1: $\quad-3(x-2)^{2}+20$
(b)

B1ft: One correct coordinate
B1ft: Correct coordinates. Allow as $x=\ldots, y=\ldots$
Follow through on their $(-b, c)$
(c)

M1: Attempts to integrate. Award for any correct index

A1: $\int-3 x^{2}+12 x+8 \mathrm{~d} x=-x^{3}+6 x^{2}+8 x(+c)$ (which may be unsimplified)
M1: Method to find area of R. Look for their $2 \times 20 "-\int_{0}^{2 "} \mathrm{f}(x) \mathrm{d} x$
dM1: Correct application of limits on their integrated function. Their 2 must be used
A1: Shows that area of $R=8$

Question	Scheme	Marks	AOs
10 (a)	$x=u^{2}+1 \Rightarrow \mathrm{~d} x=2 u \mathrm{~d} u$ oe	B1	1.1b
	Full substitution $\int \frac{3 \mathrm{~d} x}{(x-1)(3+2 \sqrt{x-1})}=\int \frac{3 \times 2 u \mathrm{~d} u}{\left(u^{2}+1-1\right)(3+2 u)}$	M1	1.1b
	Finds correct limits e.g. $p=2, q=3$	B1	1.1b
	$=\int \frac{3 \times 2 \nsim \mathrm{~d} u}{u^{\underline{Z}}(3+2 u)}=\int \frac{6 \mathrm{~d} u}{u(3+2 u)} *$	A1*	2.1
		(4)	
(b)	$\frac{6}{u(3+2 u)}=\frac{A}{u}+\frac{B}{3+2 u} \Rightarrow A=\ldots, B=\ldots$	M1	1.1b
	Correct PF. $\frac{6}{u(3+2 u)}=\frac{2}{u}-\frac{4}{3+2 u}$	A1	1.1b
	$\int \frac{6 \mathrm{~d} u}{u(3+2 u)}=2 \ln u-2 \ln (3+2 u) \quad(+c)$	$\begin{aligned} & \text { dM1 } \\ & \text { A1ft } \end{aligned}$	$\begin{aligned} & \text { 3.1a } \\ & \text { 1.1b } \end{aligned}$
	Uses limits $u=" 3 ", u=" 2$ " with some correct ln work leading to $k \ln b \quad$ E.g. $\quad(2 \ln 3-2 \ln 9)-(2 \ln 2-2 \ln 7)=2 \ln \frac{7}{6}$	M1	1.1b
	$\ln \frac{49}{36}$	A1	2.1
		(6)	
(10 marks)			
Notes: Mark (a) and (b) together as one complete question			

(a)

B1: $\mathrm{d} x=2 u \mathrm{~d} u$ or exact equivalent. E.g. $\frac{\mathrm{d} x}{\mathrm{~d} u}=2 u, \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{2}(x-1)^{-\frac{1}{2}}$
M1: Attempts a full substitution of $x=u^{2}+1$, including $\mathrm{d} x \rightarrow \ldots \mathrm{~d} u$ to form an integrand in terms of u. Condone slips but there should be an attempt to use the correct substitution on the denominator.
B1: Finds correct limits either states $p=2, q=3$ or sight of embedded values as limits to the integral
A1*: Clear reasoning including one fully correct intermediate line, including the integral signs, leading to the given expression ignoring limits. So B1, M1, B0, A1 is possible if the limits are incorrect, omitted or left as 5 and 10 .
(b)

M1: Uses correct form of PF leading to values of A and B.
A1: Correct $\mathrm{PF} \frac{6}{u(3+2 u)}=\frac{2}{u}-\frac{4}{3+2 u} \quad$ (Not scored for just the correct values of A and B)
dM1: This is an overall problem solving mark. It is for using the correct PF form and integrating using lns. Look for $P \ln u+Q \ln (3+2 u)$
A1ft: Correct integration for their $\frac{A}{u}+\frac{B}{3+2 u} \rightarrow A \ln u+\frac{B}{2} \ln (3+2 u)$ with or without modulus signs
M1: Uses their 2 and 3 as limits, with at least one correct application of the addition law or subtraction law leading to the form $k \ln b$ or $\ln a$. PF's must have been attempted. Condone bracketing slips. Alternatively changing the u 's back to x 's and use limits of 5 and 10 .
13: Proceeds to $\ln \frac{49}{36}$. Answers without working please send to review.

Question	Scheme	Marks	AOs
11 (a)	$x^{n} \rightarrow x^{n+1}$	M1	1.1b
	$\int\left(\frac{5}{2 \sqrt{x}}+3\right) \mathrm{d} x=5 \sqrt{x}+3 x$	A1	1.1b
	$[5 \sqrt{x}+3 x]_{1}^{k}=4 \Rightarrow 5 \sqrt{k}+3 k-8=4$	dM1	1.1b
	$3 k+5 \sqrt{k}-12=0$ *	A1*	2.1
		(4)	
(b)	$3 k+5 \sqrt{k}-12=0 \Rightarrow(3 \sqrt{k}-4)(\sqrt{k}+3)=0$	M1	3.1a
	$\sqrt{k}=\frac{4}{3},(-3)$	A1	1.1b
	$\sqrt{k}=\ldots \Rightarrow k=\ldots$ oe	dM1	1.1b
	$k=\frac{16}{9}$, 久	A1	2.3
		(4)	
(8 marks)			

Notes

(a)

M1: For $x^{n} \rightarrow x^{n+1}$ on correct indices. This can be implied by the sight of either $x^{\frac{1}{2}}$ or x
A1: $\quad 5 \sqrt{x}+3 x$ or $5 x^{\frac{1}{2}}+3 x$ but may be unsimplified. Also allow with $+c$ and condone any spurious notation.
dM1: Uses both limits, subtracts, and sets equal to 4 . They cannot proceed to the given answer without a line of working showing this.

A1*: Fully correct proof with no errors (bracketing or otherwise) leading to given answer.
(b)

M1: For a correct method of solving. This could be as the scheme, treating as a quadratic in \sqrt{k} and using allowable method to solve including factorisation, formula etc.
Allow values for \sqrt{k} to be just written down, e.g. allow $\sqrt{k}= \pm \frac{4}{3},(\pm 3)$
Alternatively score for rearranging to $5 \sqrt{k}=12-3 k$ and then squaring to get
$\ldots k=(12-3 k)^{2}$
A1: $\quad \sqrt{k}=\frac{4}{3},(-3)$
Or in the alt method it is for reaching a correct 3TQ equation $9 k^{2}-97 k+144=0$
dM1: For solving to find at least one value for k. It is dependent upon the first M mark.
In the main method it is scored for squaring their value(s) of \sqrt{k}
In the alternative scored for solving their 3TQ by an appropriate method
A1: Full and rigorous method leading to $k=\frac{16}{9}$ only. The 9 must be rejected.

Question	Scheme	Marks	AOs
12 (a)	$y=x(x+2)(x-4)=x^{3}-2 x^{2}-8 x$	B1	1.1b
	$\int x^{3}-2 x^{2}-8 x \mathrm{~d} x \rightarrow \frac{1}{4} x^{4}-\frac{2}{3} x^{3}-4 x^{2}$	M1	1.1b
	Attempts area using the correct strategy $\int_{-2}^{0} y \mathrm{~d} x$	dM1	2.2a
	$\left[\frac{1}{4} x^{4}-\frac{2}{3} x^{3}-4 x^{2}\right]_{-2}^{0}=(0)-\left(4-\frac{-16}{3}-16\right)=\frac{20}{3} *$	A1*	2.1
		(4)	
(b)	For setting 'their' $\frac{1}{4} b^{4}-\frac{2}{3} b^{3}-4 b^{2}= \pm \frac{20}{3}$	M1	1.1b
	For correctly deducing that $3 b^{4}-8 b^{3}-48 b^{2}+80=0$	A1	2.2a
	Attempts to factorise $3 b^{4}-8 b^{3}-48 b^{2} \pm 80=(b+2)(b+2)\left(3 b^{2} \ldots b \ldots 20\right)$	M1	1.1b
	Achieves $(b+2)^{2}\left(3 b^{2}-20 b+20\right)=0$ with no errors	A1*	2.1
		(4)	
(c)			
	 States that between $x=-2$ and $x=5.442$ the area above the x-axis $=$ area below the x-axis	B1 B1	1.16 2.4
		(2)	
(10 marks)			

(a)

B1: Expands $x(x+2)(x-4)$ to $x^{3}-2 x^{2}-8 x \quad$ (They may be in a different order)
M1: Correct attempt at integration of their cubic seen in at least two terms.
Look for an expansion to a cubic and $x^{n} \rightarrow x^{n+1}$ seen at least twice
dM1: For a correct strategy to find the area of R_{1}
It is dependent upon the previous M and requires a substitution of -2 into \pm their integrated function. The limit of 0 may not be seen. Condone $\left[\frac{1}{4} x^{4}-\frac{2}{3} x^{3}-4 x^{2}\right]_{-2}^{0}=\frac{20}{3}$ oe for this mark
$\mathbf{A 1 *}$: For a rigorous argument leading to area of $R_{1}=\frac{20}{3}$ For this to be awarded the integration must be correct and the limits must be the correct way around and embedded or calculated values must be seen.
Eg. Look for $-\left(4+\frac{16}{3}-16\right)$ or $-\left(\frac{1}{4}(-2)^{4}-\frac{2}{3}(-2)^{3}-4(-2)^{2}\right)$ oe before you see the $\frac{20}{3}$
Note: It is possible to do this integration by parts.
(b)

M1: For setting their $\frac{1}{4} b^{4}-\frac{2}{3} b^{3}-4 b^{2}= \pm \frac{20}{3}$ or $\left[\frac{1}{4} x^{4}-\frac{2}{3} x^{3}-4 x^{2}\right]_{-2}^{b}=0$
A1: Deduces that $3 b^{4}-8 b^{3}-48 b^{2}+80=0$. Terms may be in a different order but expect integer coefficients. It must have followed $\frac{1}{4} b^{4}-\frac{2}{3} b^{3}-4 b^{2}=-\frac{20}{3}$ oe.
Do not award this mark for $\frac{1}{4} b^{4}-\frac{2}{3} b^{3}-4 b^{2}+\frac{20}{3}=0$ unless they attempt the second part of this question by expansion and then divide the resulting expanded expression by 12
M1: Attempts to factorise $3 b^{4}-8 b^{3}-48 b^{2} \pm 80=(b+2)(b+2)\left(3 b^{2} \ldots b \ldots 20\right)$ via repeated division or inspection. FYI $3 b^{4}-8 b^{3}-48 b^{2}+80=(b+2)\left(3 b^{3}-14 b^{2}-20 b+40\right)$ Allow an attempt via inspection $3 b^{4}-8 b^{3}-48 b^{2} \pm 80=\left(b^{2}+4 b+4\right)\left(3 b^{2} \ldots b \ldots 20\right)$ but do not allow candidates to just write out $3 b^{4}-8 b^{3}-48 b^{2} \pm 80=(b+2)^{2}\left(3 b^{2}-20 b+20\right)$ which is really just copying out the given answer. Alternatively attempts to expand $(b+2)^{2}\left(3 b^{2}-20 b+20\right)$ achieving terms of a quartic expression
$\mathbf{A 1 *}$: Correctly reaches $(b+2)^{2}\left(3 b^{2}-20 b+20\right)=0$ with no errors and must have $=0$
In the alternative obtains both equations in the same form and states that they are same. Allow \checkmark QED etc here.
(c) Please watch for candidates who answer this on Figure 2 which is fine

B1: Sketches the curve and a vertical line to the right of 4 ($x=5.442$ may not be labelled.)
B1: Explains that (between $x=-2$ and $x=5.442$) the area above the x-axis $=$ area below the x-axis with appropriate areas shaded or labelled.
Alternatively states that the area between 1.225 and 4 is the same as the area between 4 and 5.442
Another correct statement is that the net area between 0 and 5.442 is $-\frac{20}{3}$
Look carefully at what is written. There are many correct statements/ deductions.
Eg. " (area between 0 and 4) - (area between 4 and 5.442$)=20 / 3 "$. Diagram below for your information.

Question	Scheme	Marks	AOs
13 (a)	(i) Explains $2 x-q=0$ when $x=2$ oe Hence $q=4$ *	B1*	2.4
	(ii) Substitutes $\left(3, \frac{1}{2}\right)$ into $y=\frac{p-3 x}{(2 x-4)(x+3)}$ and solves	M1	1.1b
	$\frac{1}{2}=\frac{p-9}{(2) \times(6)} \Rightarrow p-9=6 \Rightarrow p=15 *$	A1*	2.1
		(3)	
(b)	Attempts to write $\frac{15-3 x}{(2 x-4)(x+3)}$ in PF's and integrates using lns between 3 and another value of x.	M1	3.1a
	$\frac{15-3 x}{(2 x-4)(x+3)}=\frac{A}{(2 x-4)}+\frac{B}{(x+3)}$ leading to A and B	M1	1.1b
	$\frac{15-3 x}{(2 x-4)(x+3)}=\frac{1.8}{(2 x-4)}-\frac{2.4}{(x+3)} \quad \text { or } \frac{0.9}{(x-2)}-\frac{2.4}{(x+3)} \text { oe }$	A1	1.1b
	$\mathrm{I}=\int \frac{15-3 x}{(2 x-4)(x+3)} \mathrm{d} x=m \ln (2 x-4)+n \ln (x+3)+(c)$	- M1	1.1b
	$\mathrm{I}=\int \frac{15-3 x}{(2 x-4)(x+3)} \mathrm{d} x=0.9 \ln (2 x-4)-2.4 \ln (x+3)$ oe	A1ft	1.1b
	$\begin{gathered} \text { Deduces that Area Either } \int_{3}^{5} \frac{15-3 x}{(2 x-4)(x+3)} \mathrm{d} x \\ \text { Or } \quad[\ldots \ldots \ldots]_{3}^{5} \end{gathered}$	B1	2.2a
	Uses correct \ln work seen at least once for $\ln 6=\ln 2+\ln 3$ or $\ln 8=3 \ln 2$ $\begin{aligned} & {[0.9 \ln (6)-2.4 \ln (8)]-[0.9 \ln (2)-2.4 \ln (6)]} \\ & =3.3 \ln 6-7.2 \ln 2-0.9 \ln 2 \end{aligned}$	dM1	2.1
	$=3.3 \ln 3-4.8 \ln 2$	A1	1.1b
		(8)	
(11marks)			

(a)

B1*: Is able to link $2 x-q=0$ and $x=2$ to explain why $q=4$
Eg "The asymptote $x=2$ is where $2 x-q=0$ so $4-q=0 \Rightarrow q=4$ "
"The curve is not defined when $2 \times 2-q=0 \Rightarrow q=4$ "
There must be some words explaining why $q=4$ and in most cases, you should see a reference to either "the asymptote $x=2 "$, "the curve is not defined at $x=2 "$, 'the denominator is 0 at $x=2$ "
M1: Substitutes $\left(3, \frac{1}{2}\right)$ into $y=\frac{p-3 x}{(2 x-4)(x+3)}$ and solves
Alternatively substitutes $\left(3, \frac{1}{2}\right)$ into $y=\frac{15-3 x}{(2 x-4)(x+3)}$ and shows $\frac{1}{2}=\frac{6}{(2) \times(6)}$ oe
$\mathbf{A 1 *}$: Full proof showing all necessary steps $\frac{1}{2}=\frac{p-9}{(2) \times(6)} \Rightarrow p-9=6 \Rightarrow p=15$
In the alternative there would have to be some recognition that these are equal eg \checkmark hence $p=15$
(b)

M1: Scored for an overall attempt at using PF's and integrating with lns seen with sight of limits 3 and another value of x.
M1: $\frac{15-3 x}{(2 x-4)(x+3)}=\frac{A}{(2 x-4)}+\frac{B}{(x+3)}$ leading to A and B
A1: $\frac{15-3 x}{(2 x-4)(x+3)}=\frac{1.8}{(2 x-4)}-\frac{2.4}{(x+3)}$, or for example $\frac{0.9}{(x-2)}-\frac{2.4}{(x+3)}, \frac{9}{(10 x-20)}-\frac{12}{(5 x+15)}$ oe
Must be written in PF form, not just for correct A and B
M1: Area $R=\int \frac{15-3 x}{(2 x-4)(x+3)} \mathrm{d} x=m \ln (2 x-4)+n \ln (x+3)$

$$
\text { OR } \quad \int \frac{15-3 x}{(2 x-4)(x+3)} \mathrm{d} x=m \ln (x-2)+n \ln (x+3)
$$

Note that $\int \frac{l}{(x-2)} \mathrm{d} x \rightarrow l \ln (k x-2 k)$ and $\int \frac{m}{(x+3)} \mathrm{d} x \rightarrow m \ln (n x+3 n)$
A1ft: $=\int \frac{15-3 x}{(2 x-4)(x+3)} \mathrm{d} x=0.9 \ln (2 x-4)-2.4 \ln (x+3) \quad$ oe. FT on their A and B
B1: Deduces that the limits for the integral are 3 and 5. It cannot just be awarded from 5 being marked on
Figure 4. So award for sight of $\int_{3}^{5} \frac{15-3 x}{(2 x-4)(x+3)}(\mathrm{d} x)$ or $[\ldots \ldots]_{3}^{5}$ having performed an integral which may be incorrect
dM1: Uses correct \ln work seen at least once eg $\ln 6=\ln 2+\ln 3, \ln 8=3 \ln 2$ or $m \ln 6 k-m \ln 2 k=m \ln 3$ This is an attempt to get either of the above \ln 's in terms of $\ln 2$ and $/$ or $\ln 3$ It is dependent upon the correct limits and having achieved $m \ln (2 x-4)+n \ln (x+3)$ oe
A1: $=3.3 \ln 3-4.8 \ln 2 \mathrm{oe}$

Question	Scheme	Marks	AOs
14(a)	$x^{n} \rightarrow x^{n+1}$	M1	1.1b
	$\int\left(\frac{4}{x^{3}}+k x\right) \mathrm{d} x=-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}+c$	A1	1.1 b 1.1 b
		(3)	
(b)	$\left[-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}\right]_{0.5}^{2}=\left(-\frac{2}{2^{2}}+\frac{1}{2} k \times 4\right)-\left(-\frac{2}{(0.5)^{2}}+\frac{1}{2} k \times(0.5)^{2}\right)=8$	M1	1.1b
	$7.5+\frac{15}{8} k=8 \Rightarrow k=\ldots$	dM1	1.1b
	$k=\frac{4}{15}$ oe	A1	1.1b
		(3)	
(6 marks)			
Notes			
Mark parts (a) and (b) as one (a) M1: For $x^{n} \rightarrow x^{n+1}$ for either x^{-3} or x^{1}. This can be implied by the sight of either x^{-2} or x^{2}. Condone " unprocessed" values here. Eg. x^{-3+1} and x^{1+1} A1: Either term correct (un simplified). Accept $4 \times \frac{x^{-2}}{-2}$ or $k \frac{x^{2}}{2}$ with the indices processed. A1: Correct (and simplified) with $+c$. Ignore spurious notation e.g. answer appearing with an \int sign or with $\mathrm{d} x$ on the end. Accept $-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}+c$ or exact simplified equivalent such as $-2 x^{-2}+k \frac{x^{2}}{2}+c$ (b) M1: For substituting both limits into their $-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}$, subtracting either way around and setting equal to 8 . Allow this when using a changed function. (so the M in part (a) may not have been awarded). Condone missing brackets. Take care here as substituting 2 into the original function gives the same result as the integrated function so you will have to consider both limits. dM1: For solving a linear equation in k. It is dependent upon the previous M only Don't be too concerned by the mechanics here. Allow for a linear equation in k leading to $k=$ A1: $k=\frac{4}{15}$ or exact equivalent. Allow for $\frac{m}{n}$ where m and n are integers and $\frac{m}{n}=\frac{4}{15}$ Condone the recurring decimal $0.2 \dot{6}$ but not 0.266 or 0.267 Please remember to isw after a correct answer			

	Scheme	Marks	AOs
15.	The overall method of finding the x coordinate of A.	M1	3.1a
	$y=2 x^{3}-17 x^{2}+40 x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=6 x^{2}-34 x+40$	B1	1.1b
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 6 x^{2}-34 x+40=0 \Rightarrow 2(3 x-5)(x-4)=0 \Rightarrow x=\ldots$	M1	1.1b
	Chooses $x=4 \quad x>\frac{5}{3}$	A1	3.2a
	$\int 2 x^{3}-17 x^{2}+40 x \mathrm{~d} x=\left[\frac{1}{2} x^{4}-\frac{17}{3} x^{3}+20 x^{2}\right]$	B1	1.1b
	Area $=\frac{1}{2}(4)^{4}-\frac{17}{3}(4)^{3}+20(4)^{2}$	M1	1.1b
	$=\frac{256}{3}$ *	A1*	2.1
		(7)	
7 marks)			
Notes			
M1: An overall problem -solving method mark to find the minimum point. To score this you need to see - an attempt to differentiate with at least two correct terms - an attempt to set their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and then solve to find x. Don't be overly concerned by the mechanics of this solution B1: $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 6 x^{2}-34 x+40$ which may be unsimplified M1: Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$, which must be a 3 TQ in x, and attempts to solve via factorisation, formula or calculator. If a calculator is used to find the roots, they must be correct for their quadratic. If $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is correct allow them to just choose the root 4 for M1 A1. Condone $(x-4)\left(x-\frac{5}{3}\right)$ A1: Chooses $x=4$ This may be awarded from the upper limit in their integral B1: $\int 2 x^{3}-17 x^{2}+40 x \mathrm{~d} x=\left[\frac{1}{2} x^{4}-\frac{17}{3} x^{3}+20 x^{2}\right]$ which may be unsimplified M1: Correct attempt at area. There may be slips on the integration but expect two correct terms The upper limit used must be their larger solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and the lower limit used must be 0 . So if their roots are 6 and 10 , then they must use 10 and 0 . If only one value is found then the limits must be 0 to that value. Expect to see embedded or calculated values. Don't accept $\int_{0}^{4} 2 x^{3}-17 x^{2}+40 x \mathrm{~d} x=\frac{256}{3}$ without seeing the integration and the embedded or calculated values $\mathbf{A 1} *:$ Area $=\frac{256}{3}$ with correct notation and no errors. Note that this is a given answer.			

For correct notation expect to see

- $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d}}{\mathrm{d} x}$ used correctly at least once. If $\mathrm{f}(x)$ is used accept $\mathrm{f}^{\prime}(x)$. Condone y^{\prime}
- $\int 2 x^{3}-17 x^{2}+40 x \mathrm{~d} x$ used correctly at least once with or without the limits.

Question	Scheme	Marks	AOs
16 (a)	$\int \frac{2}{(3 x-k)} \mathrm{d} x=\frac{2}{3} \ln (3 x-k)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	1.1 a 1.1 b
	$\int_{k}^{3 k} \frac{2}{(3 x-k)} \mathrm{d} x=\frac{2}{3} \ln (9 k-k)-\frac{2}{3} \ln (3 k-k)$	dM1	1.1 b
	$=\frac{2}{3} \ln \left(\frac{8 k}{2 \not K}\right)=\frac{2}{3} \ln 4 \mathrm{oe}$	A1	2.1
		(4)	
(b)	$\int \frac{2}{(2 x-k)^{2}} \mathrm{~d} x=-\frac{1}{(2 x-k)}$	M1	1.1b
	$\int_{k}^{2 k} \frac{2}{(2 x-k)^{2}} \mathrm{~d} x=-\frac{1}{(4 k-k)}+\frac{1}{(2 k-k)}$	dM1	1.1b
	$=\frac{2}{3 k}\left(\propto \frac{1}{k}\right)$	A1	2.1
		(3)	
(7 marks)			

(a)

M1: $\int \frac{2}{(3 x-k)} \mathrm{d} x=A \ln (3 x-k) \quad$ Condone a missing bracket
A1: $\int \frac{2}{(3 x-k)} \mathrm{d} x=\frac{2}{3} \ln (3 x-k)$
Allow recovery from a missing bracket if in subsequent work $A \ln 9 k-k \rightarrow A \ln 8 k$ dM1: For substituting k and $3 k$ into their $A \ln (3 x-k)$ and subtracting either way around
A1: Uses correct \ln work and notation to show that $\mathrm{I}=\frac{2}{3} \ln \left(\frac{8}{2}\right)$ or $\frac{2}{3} \ln 4$ oe (ie independent of k)
(b)

M1: $\int \frac{2}{(2 x-k)^{2}} \mathrm{~d} x=\frac{C}{(2 x-k)}$
dM1: For substituting k and $2 k$ into their $\frac{C}{(2 x-k)}$ and subtracting
A1: Shows that it is inversely proportional to k Eg proceeds to the answer is of the form A / k with $A=2 / 3$ There is no need to perform the whole calculation. Accept from $-\frac{1}{(3 k)}+\frac{1}{(k)}=\left(-\frac{1}{3}+1\right) \times \frac{1}{k} \propto \frac{1}{k}$
If the calculation is performed it must be correct.
Do not isw here. They should know when they have an expression that is inversely proportional to \boldsymbol{k}.
You may see substitution used but the mark is scored for the same result. See below $u=2 x-k \rightarrow\left[\frac{C}{u}\right]$ for M1 with limits $3 k$ and k used for dM1

Question	Scheme	Marks	AOs
17(a)	$\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{H \cos 0.25 t}{40} \Rightarrow \int \frac{1}{H} \mathrm{~d} H=\int \frac{\cos 0.25 t}{40} \mathrm{~d} t$	M1	3.1a
	$\ln H=\frac{1}{10} \sin 0.25 t(+c)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Substitutes $t=0, H=5 \Rightarrow c=\ln (5)$	dM1	3.4
	$\ln \left(\frac{H}{5}\right)=\frac{1}{10} \sin 0.25 t \Rightarrow H=5 \mathrm{e}^{0.1 \sin 0.25 t}$ *	A1*	2.1
		(5)	
(b)	Max height $=5 \mathrm{e}^{0.1}=5.53 \mathrm{~m} \quad$ (Condone lack of units)	B1	3.4
		(1)	
(c)	Sets $0.25 t=\frac{5 \pi}{2}$	M1	3.1b
	31.4	A1	1.1b
		(2)	

(a)

M1: Separates the variables to reach $\int \frac{1}{H} \mathrm{~d} H=\int \frac{\cos 0.25 t}{40} \mathrm{~d} t$ or equivalent.
The integral signs need to be present on both sides and the $\mathrm{d} H$ AND $\mathrm{d} t$ need to be in the correct positions.
M1: Integrates both sides to reach $\ln H=A \sin 0.25 t$ or equivalent with or without the $+c$
A1: $\ln H=\frac{1}{10} \sin 0.25 t+c$ or equivalent with or without the $+c$. Allow two constants, one either side If the 40 was on the lhs look for $40 \ln H=4 \sin 0.25 t+c$ or equivalent.
dM1: Substitutes $t=0, H=5 \Rightarrow c=$.. There needs to have been a single " $+c$ " to find.
It is dependent upon the previous M mark. You may allow even if you don't explicitly see " $t=0, H=5$ " as it may be implied from their previous line

If the candidate has attempted to change the subject and made an error/ slip then condone it for this M but not the final A. Eg. $40 \ln H=4 \sin 0.25 t+c \Rightarrow \Rightarrow H^{40}=\mathrm{e}^{4 \sin 0.25 t}+\mathrm{e}^{c} \Rightarrow 5^{40}=1+\mathrm{e}^{c} \Rightarrow c=\ldots$

Also many students will be attempting to get to the given answer so condone the method of finding $\mathrm{c}=\ldots$ These students will lose the A1* mark

A1*: Proceeds via $\ln H=\frac{1}{10} \sin 0.25 t+\ln 5$ or equivalent to the given answer $H=5 \mathrm{e}^{0.1 \sin 0.25 t}$ with at least one correct intermediate line and no incorrect work.

DO NOT condone c^{\prime} s going to c^{\prime} s when they should be e^{c} or A

Accept as a minimum $\ln H=\frac{1}{10} \sin 0.25 t+\ln 5 \Rightarrow H=\mathrm{e}^{\frac{1}{10} \sin 0.25 t+\ln 5}$ or $H=\mathrm{e}^{\frac{1}{10} \sin 0.25 t} \times \mathrm{e}^{+\ln 5}$ before sight of the given answer
If the only error was to omit the integration signs on line 1 , thus losing the first M1, allow the candidate to have access to this mark following a correct intermediate line (see above).

If they attempt to change the subject first then the constant of integration must have been adapted if the A1* is to be awarded. $\ln H=\frac{1}{10} \sin 0.25 t+c \Rightarrow H=\mathrm{e}^{\frac{1}{10} \sin 0.25 t+c} \Rightarrow H=A \mathrm{e}^{\frac{1}{10} \sin 0.25 t}$

The dM1 and A1* under this method are awarded at virtually the same time.
Also, for the final two marks, you may see a proof from $\quad \int_{0}^{H} \frac{40}{H} d H=\int_{5}^{t} \cos 0.25 t d t$

There is an alternative via the use of an integrating factor.
(b)

B1: States that the maximum height is 5.53 m Accept $5 \mathrm{e}^{0.1}$ Condone a lack of units here, but penalise if incorrect units are used.
(c)

M1: For identifying that it would reach the maximum height for the 2nd time when $0.25 t=\frac{5 \pi}{2}$ or 450
A1: Accept awrt 31.4 or $10 \pi \quad$ Allow if units are seen

Question	Schem	Substitution	Marks	AOs
18	Chooses a suitable method for $\int_{0}^{2} 2 x \sqrt{x+2} \mathrm{~d} x$ Award for - Using a valid substitution $u=\ldots$, changing the terms to $u^{\prime} \mathrm{s}$ - integrating and using appropriate limts .		M1	3.1a
	Substitution $u=\sqrt{x+2} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=2 u \quad \text { oe }$	Substitution $u=x+2 \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=1$ oe	B1	1.1b
	$\begin{aligned} & \int 2 x \sqrt{x+2} \mathrm{~d} x \\ & =\int A\left(u^{2} \pm 2\right) u^{2} \mathrm{~d} u \end{aligned}$	$\begin{aligned} & \int 2 x \sqrt{x+2} \mathrm{~d} x \\ & =\int A(u \pm 2) \sqrt{u} \mathrm{~d} u \end{aligned}$	M1	1.1b
	$=P u^{5} \pm Q u^{3}$	$=S u^{\frac{5}{2}} \pm T u^{\frac{3}{2}}$	dM1	2.1
	$=\frac{4}{5} u^{5}-\frac{8}{3} u^{3}$	$=\frac{4}{5} u^{\frac{5}{2}}-\frac{8}{3} u^{\frac{3}{2}}$	A1	1.1b
	Uses limits 2 and $\sqrt{2}$ the correct way around	Uses limits 4 and 2 the correct way around	ddM1	1.1b
		+ $\sqrt{2}$) *	A1*	2.1
			(7)	
				marks)

M1: For attempting to integrate using substitution. Look for

- terms and limits changed to u 's. Condone slips and errors/omissions on changing $\mathrm{d} x \rightarrow \mathrm{~d} u$
- attempted multiplication of terms and raising of at least one power of u by one. Condone slips
- Use of at least the top correct limit. For instance if they go back to x 's the limit is 2

B1: For substitution it is for giving the substitution and stating a correct $\frac{\mathrm{d} x}{\mathrm{~d} u}$
Eg, $u=\sqrt{x+2} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=2 u$ or equivalent such as $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x+2}}$
M1: It is for attempting to get all aspects of the integral in terms of ' u '.
All terms must be attempted including the $\mathrm{d} x$. You are only condoning slips on signs and coefficients dM1: It is for using a correct method of expanding and integrating each term (seen at least once). It is dependent upon the previous M
A1: Correct answer in x or $u \quad$ See scheme
ddM1: Dependent upon the previous M, it is for using the correct limits for their integral, the correct way around
A1*: Proceeds correctly to $=\frac{32}{15}(2+\sqrt{2})$. Note that this is a given answer
There must be at one least correct intermediate line between $\left[\frac{4}{5} u^{5}-\frac{8}{3} u^{3}\right]_{\sqrt{2}}^{2}$ and $\frac{32}{15}(2+\sqrt{2})$

Question Alt	Scheme for by parts	Marks	AOs
18	Chooses a suitable method for $\int_{0}^{2} 2 x \sqrt{x+2} \mathrm{~d} x$ Award for - using by parts the correct way around - and using limits	M1	3.1a
	$\int(\sqrt{x+2}) \mathrm{d} x=\frac{2}{3}(x+2)^{\frac{3}{2}}$	B1	1.1b
	$\int 2 x \sqrt{x+2} \mathrm{~d} x=A x(x+2)^{\frac{3}{2}}-\int B(x+2)^{\frac{3}{2}}(\mathrm{~d} x)$	M1	1.1b
	$=A x(x+2)^{\frac{3}{2}}-C(x+2)^{\frac{5}{2}}$	dM1	2.1
	$=\frac{4}{3} x(x+2)^{\frac{3}{2}}-\frac{8}{15}(x+2)^{\frac{5}{2}}$	A1	1.1b
	Uses limits 2 and 0 the correct way around	ddM1	1.1b
	$=\frac{32}{15}(2+\sqrt{2})$	A1*	2.1
		(7)	

M1: For attempting using by parts to solve It is a problem- solving mark and all elements do not have to be correct.

- the formula applied the correct way around. You may condone incorrect attempts at integrating $\sqrt{x+2}$ for this problem solving mark
- further integration, again, this may not be correct, and the use of at least the top limit of 2

B1: For $\int(\sqrt{x+2}) \mathrm{d} x=\frac{2}{3}(x+2)^{\frac{3}{2}}$ oe May be awarded $\int_{0}^{2} 2 x \sqrt{x+2} \mathrm{~d} x \rightarrow x^{2} \times \frac{2(x+2)^{\frac{3}{2}}}{3}$
M1: For integration by parts the right way around. Award for $A x(x+2)^{\frac{3}{2}}-\int B(x+2)^{\frac{3}{2}}(\mathrm{~d} x)$
dM1: For integrating a second time. Award for $A x(x+2)^{\frac{3}{2}}-C(x+2)^{\frac{5}{2}}$
A1: $\frac{4}{3} x(x+2)^{\frac{3}{2}}-\frac{8}{15}(x+2)^{\frac{5}{2}}$ which may be un simplified
ddM1: Dependent upon the previous M, it is for using the limits 2 and 0 the correct way around
$\mathbf{A 1} *:$ Proceeds to $=\frac{32}{15}(2+\sqrt{2})$. Note that this is a given answer.
At least one correct intermediate line must be seen. (See substitution). You would condone missing dx's

Question	Scheme	Marks	AOs
19	$\int\left(\frac{2}{3} x^{3}-6 \sqrt{x}+1\right) \mathrm{d} x$		
	Attempts to integrate awarded for any correct power	M1	1.1a
	$\int\left(\frac{2}{3} x^{3}-6 \sqrt{x}+1\right) \mathrm{d} x=\frac{2}{3} \times \frac{x^{4}}{4}+\ldots+x$	A1	1.1b
	$=\ldots-6 \frac{x^{\frac{3}{2}}}{3 / 2}+\ldots$.	A1	1.1b
	$=\frac{1}{6} x^{4}-4 x^{\frac{3}{2}}+x+c$	A1	1.1b
(4 marks)			
	Notes		

M1: Allow for raising power by one. $x^{n} \rightarrow x^{n+1}$
Award for any correct power including sight of $1 x$
A1: Correct two 'non fractional power' terms (may be un-simplified at this stage)
A1: Correct 'fractional power' term (may be un-simplified at this stage)
A1: Completely correct, simplified and including constant of integration seen on one line.
Simplification is expected for full marks.
Accept correct exact equivalent expressions such as $\frac{x^{4}}{6}-4 x \sqrt{x}+1 x^{1}+c$
Accept $\quad \frac{x^{4}-24 x^{\frac{3}{2}}+6 x}{6}+c$
Remember to isw after a correct answer.
Condone poor notation. Eg answer given as $\int \frac{1}{6} x^{4}-4 x^{\frac{3}{2}}+x+c$

Question	Scheme	Marks	AOs
20.	For the complete strategy of finding where the normal cuts the $x-$ axis. Key points that must be seen are $-\quad$ Attempt at differentiation	M1	3.1 a

A1: Normal cuts the x-axis at $x=16$

The next 5 marks are for finding the area R

M1: For the complete strategy of finding the values of two key areas. See scheme
M1: Integrates $\int \frac{32}{x^{2}}+3 x-8 \mathrm{~d} x$ raising the power of at least one index
A1: $\int \frac{32}{x^{2}}+3 x-8 \mathrm{~d} x=-\frac{32}{x}+\frac{3}{2} x^{2}-8 x$ which may be unsimplified
dM1: Area $=\left[-\frac{32}{x}+\frac{3}{2} x^{2}-8 x\right]_{2}^{4}=(-16)-(-26)=(10)$
It is dependent upon having scored the M mark for integration, for substituting in both 4 and 2 and subtracting either way around. The above line shows the minimum allowed working for a correct answer.
A1*: Shows that the area under curve $=46$. No errors or omissions are allowed
A number of candidates are equating the line and the curve (or subtracting the line from the curve) The last 5 marks are scored as follows.
M1: For the complete strategy of finding the values of the two key areas. Points that must be seen are

- There must be an attempt to find the area BETWEEN the line and the curve either way around by integrating between 2 and 4
- There must be an attempt to find the area of a triangle using $\frac{1}{2} \times\left({ }^{\prime} 16^{\prime}-2\right) \times\left(-\frac{1}{2} \times 2+8\right)$ or via integration $\int_{2}^{16}\left(7-\frac{1}{2} x+8 "\right) d x$

M1: Integrates $\int\left("-\frac{1}{2} x+8 "\right)-\left(\frac{32}{x^{2}}+3 x-8\right) \mathrm{d} x$ either way around and raises the power of at least one index by one
A1: $\pm\left(-\frac{32}{x}+\frac{7}{4} x^{2}-16 x\right)$ must be correct
dM 1 : Area $=\int_{2}^{4}\left("-\frac{1}{2} x+8 "\right)-\left(\frac{32}{x^{2}}+3 x-8\right) \mathrm{d} x=\ldots \ldots$. either way around
A1: Area $=49-3=46$
NB: Watch for candidates who calculate the area under the curve between 2 and $4=10$ and subtract this from the large triangle $=56$. They will lose both the strategy mark and the answer mark.

Question	Scheme	Marks	AOs
21(a)	(i) $\int_{1}^{a} \sqrt{8 x} \mathrm{~d} x=\sqrt{8} \times \int_{1}^{a} \sqrt{x} \mathrm{~d} x=10 \sqrt{8}=20 \sqrt{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	(ii) $\int_{0}^{a} \sqrt{x} \mathrm{~d} x=\int_{0}^{1} \sqrt{x} \mathrm{~d} x+\int_{1}^{a} \sqrt{x} \mathrm{~d} x=\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{1}+10=\frac{32}{3}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
		(4)	
(b)	$R=\int_{1}^{a} \sqrt{x} \mathrm{~d} x=\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{1}^{a}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\frac{2}{3} a^{\frac{3}{2}}-\frac{2}{3}=10 \Rightarrow a^{\frac{3}{2}}=16 \Rightarrow a=16^{\frac{2}{3}}$	dM1	3.1a
	$\Rightarrow a=2^{4 \times \frac{2}{3}}=2^{\frac{8}{3}}$	A1	2.1
		(4)	

(8 marks)

Notes:

(a)(i)

M1: For deducing that $\int_{1}^{a} \sqrt{8 x} \mathrm{~d} x=\sqrt{8} \times \int_{1}^{a} \sqrt{x} \mathrm{~d} x$ attempting to multiply $\int_{1}^{a} \sqrt{x} \mathrm{~d} x$ by $\sqrt{8}$
A1: $20 \sqrt{2}$ or exact equivalent
(a)(ii)

M1: For identifying and attempting to use $\int_{0}^{a} \sqrt{x} \mathrm{~d} x=\int_{0}^{1} \sqrt{x} \mathrm{~d} x+\int_{1}^{a} \sqrt{x} \mathrm{~d} x$
A1: For $\frac{32}{3}$ or exact equivalent
(b)

M1: Attempts to integrate, $x^{\frac{1}{2}} \rightarrow x^{\frac{3}{2}}$
A1: $\quad \int_{1}^{a} \sqrt{x} \mathrm{~d} x=\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{1}^{a}$
$\mathbf{d M 1}$: For a whole strategy to find a. In the scheme it is awarded for setting $\left[\ldots x^{\frac{3}{2}}\right]_{1}^{a}=10$, using both limits and proceeding using correct index work to find a. Alternatively a candidate could assume $a=2^{k}$. In such a case it is awarded for setting $\left[\ldots x^{\frac{3}{2}}\right]_{1}^{2^{k}}=10$, using both limits and proceeding using correct index work to $k=$..
A1: $a=2^{4 \times \frac{2}{3}}=2^{\frac{8}{3}}$
In the alternative case, a further statement must be seen following $k=\frac{8}{3}$ Hence True

Question	Scheme	Marks	AOs
22	$y=(x-2)^{2}(x+3)=\left(x^{2}-4 x+4\right)(x+3)=x^{3}-1 x^{2}-8 x+12$	B1	1.16
	An attempt to find x coordinate of the maximum point. To score this you must see either - an attempt to expand $(x-2)^{2}(x+3)$, an attempt to differentiate the result, followed by an attempt at solving $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ - an attempt to differentiate $(x-2)^{2}(x+3)$ by the product rule followed by an attempt at solving $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$	M1	3.1a
	$y=x^{3}-1 x^{2}-8 x+12 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-2 x-8$	M1	1.1b
	Maximum point occurs when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow(x-2)(3 x+4)=0$ $\Rightarrow x=-\frac{4}{3}$	M1 A1	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	An attempt to find the area under $y=(x-2)^{2}(x+3)$ between two values. To score this you must see an attempt to expand $(x-2)^{2}(x+3)$ followed by an attempt at using two limits	M1	3.1a
	Area $=\int\left(x^{3}-1 x^{2}-8 x+12\right) \mathrm{d} x=\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}-4 x^{2}+12 x\right]$	M1	1.1b
	Uses a top limit of 2 and a bottom limit of their $x=-\frac{4}{3} R=\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}-4 x^{2}+12 x\right]_{-\frac{4}{3}}^{2}$	M1	2.2a
	Uses $=\frac{28}{3}--\frac{1744}{81}=\frac{2500}{81}$	A1	2.1
		(9)	
(9 marks)			
Notes:			
B1: Expands $(x-2)^{2}(x+3)$ to $x^{3}-1 x^{2}-8 x+12$ seen at some point in their solution. It may appear just on their integral for example. M1: This is a problem solving mark for knowing the method of finding the maximum point. You should expect to see the key points used (i) differentiation (ii) solution of their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$			

M1: For correctly differentiating their cubic with at least two terms correct (for their cubic).
M1: For setting their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and solves using a correct method (including calculator methods)
A1: $\Rightarrow x=-\frac{4}{3}$
M1: This is a problem solving mark for knowing how integration is used to find the area underneath a curve between two points.
M1: For correctly integrating their cubic with at least two correct terms (for their cubic).
M1: For deducing the top limit is 2 , the bottom limit is their $x=-\frac{4}{3}$ and applying these correctly within their integration.
A1: Shows above steps clearly and proceeds to $R=\frac{2500}{81}$

Question	Scheme	Marks	AOs
23	$\mathrm{f}(x)=2 x+3+12 x^{-2}$	B1	1.1b
	Attempts to integrate	M1	1.1a
	$\int\left(+2 x+3+\frac{12}{x^{2}}\right) \mathrm{d} x=x^{2}+3 x-\frac{12}{x}$	A1	1.1b
	$\left((2 \sqrt{2})^{2}+3(2 \sqrt{2})-\frac{12(\sqrt{2})}{2 \times 2}\right)-(-8)$	M1	1.1 b
	$=16+3 \sqrt{2}$ *	A1*	1.1b
(5 marks)			
Notes:			
B1: Correct function with numerical powers M1: Allow for raising power by one. $x^{n} \rightarrow x^{n+1}$ A1: Correct three terms M1: Substitutes limits and rationalises denominator A1*: Completely correct, no errors seen			

24

Writes $\int \frac{t+1}{t} \mathrm{~d} t=\int 1+\frac{1}{t} \mathrm{~d} t$ and attempts to integrate	M1	2.1	
$=t+\ln t(+c)$	M1	1.1 b	
$(2 a+\ln 2 a)-(a+\ln a)=\ln 7$	M1	1.1 b	
$a=\ln \frac{7}{2}$ with $k=\frac{7}{2}$	A1	1.1 b	
$\mathbf{(4 ~ m a r k s)}$			

Notes:

M1: Attempts to divide each term by t or alternatively multiply each term by t^{-1}
M1: Integrates each term and knows $\int_{t}^{-1} \mathrm{~d} t=\ln t$. The $+c$ is not required for this mark
M1: Substitutes in both limits, subtracts and sets equal to $\ln 7$
A1: Proceeds to $a=\ln \frac{7}{2}$ and states $k=\frac{7}{2}$ or exact equivalent such as 3.5

Question	Scheme	Marks	AOs
25	$y=\frac{(x-2)(x-4)}{4 \sqrt{x}}=\frac{x^{2}-6 x+8}{4 \sqrt{x}}=\frac{1}{4} x^{\frac{3}{2}}-\frac{3}{2} x^{\frac{1}{2}}+2 x^{-\frac{1}{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\int \frac{1}{4} x^{\frac{3}{2}}-\frac{3}{2} x^{\frac{1}{2}}+2 x^{-\frac{1}{2}} \mathrm{~d} x=\frac{1}{10} x^{\frac{5}{2}}-x^{\frac{3}{2}}+4 x^{\frac{1}{2}}(+c)$	$\begin{gathered} \mathrm{dM} 1 \\ \mathrm{~A} 1 \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Deduces limits of integral are 2 and 4 and applies to their $\frac{1}{10} x^{\frac{5}{2}}-x^{\frac{3}{2}}+4 x^{\frac{1}{2}}$	M1	2.2a
	$\begin{gathered} \left(\frac{32}{10}-8+8\right)-\left(\frac{2}{5} \sqrt{2}-2 \sqrt{2}+4 \sqrt{2}\right)=\frac{16}{5}-\frac{12}{5} \sqrt{2} \\ \text { Area } R=\frac{12}{5} \sqrt{2}-\frac{16}{5}\left(\text { or } \frac{16}{5}-\frac{12}{5} \sqrt{2}\right) \end{gathered}$	A1	2.1
		(6)	
(6 marks)			
Notes:			

M1: Correct attempt to write $\frac{(x-2)(x-4)}{4 \sqrt{x}}$ as a sum of terms with indices.
Look for at least two different terms with the correct index e.g. two of $x^{\frac{3}{2}}, x^{\frac{1}{2}}, x^{-\frac{1}{2}}$ which have come from the correct places.
The correct indices may be implied later when e.g. \sqrt{x} becomes $x^{\frac{1}{2}}$ or $\frac{1}{\sqrt{x}}$ becomes $x^{-\frac{1}{2}}$
A1: $\frac{1}{4} x^{\frac{3}{2}}-\frac{3}{2} x^{\frac{1}{2}}+2 x^{-\frac{1}{2}}$ which can be left unsimplified e.g. $\frac{1}{4} x^{2-\frac{1}{2}}-\frac{1}{2} x^{\frac{1}{2}}-x^{\frac{1}{2}}+2 x^{-\frac{1}{2}}$
or as e.g. $\frac{1}{4}\left(x^{\frac{3}{2}}-6 x^{\frac{1}{2}}+8 x^{-\frac{1}{2}}\right)$
The correct indices may be implied later when e.g. \sqrt{x} becomes $x^{\frac{1}{2}}$ or $\frac{1}{\sqrt{x}}$ becomes $x^{-\frac{1}{2}}$
dM1: Integrates $x^{n} \rightarrow x^{n+1}$ for at least 2 correct indices
i.e. at least 2 of $x^{\frac{3}{2}} \rightarrow x^{\frac{5}{2}}, x^{\frac{1}{2}} \rightarrow x^{\frac{3}{2}}, x^{-\frac{1}{2}} \rightarrow x^{\frac{1}{2}}$

It is dependent upon the first M so at least two terms must have had a correct index.
A1: $\frac{1}{10} x^{\frac{5}{2}}-x^{\frac{3}{2}}+4 x^{\frac{1}{2}}(+c)$. Allow unsimplified e.g. $\frac{1}{4} \times \frac{2}{5} x^{\frac{3}{2}+1}-\frac{1}{2} \times \frac{2}{3} x^{\frac{1}{2}+1}-\frac{2}{3} x^{\frac{1}{2}+1}+2 \times 2 x^{\frac{1}{2}}$ or as e.g. $\frac{1}{4}\left(\frac{2}{5} x^{\frac{5}{2}}-4 x^{\frac{3}{2}}+16 x^{\frac{1}{2}}\right)(+c)$.
M1: Substitutes the limits 4 and 2 to their $\frac{1}{10} x^{\frac{5}{2}}-x^{\frac{3}{2}}+4 x^{\frac{1}{2}}$ and subtracts either way round.
There is no requirement to evaluate but 4 and 2 must be substituted either way round with evidence of subtraction, condoning omission of brackets.
E.g. condone $\frac{1}{10} \times 4^{\frac{5}{2}}-4^{\frac{3}{2}}+4 \times 4^{\frac{1}{2}}-\frac{1}{10} \times 2^{\frac{5}{2}}-2^{\frac{3}{2}}+4 \times 2^{\frac{1}{2}}$

This is an independent mark but the limits must be applied to an expression that is not y so they may even have differentiated.

A1: Correct working shown leading to $\frac{12}{5} \sqrt{2}-\frac{16}{5}$ but also allow $\frac{16}{5}-\frac{12}{5} \sqrt{2}$ or exact equivalents Award this mark once one of these forms is reached and isw

See overleaf for integration by parts and integration by substitution.

Integration by parts:

$\int \frac{(x-2)(x-4)}{4 \sqrt{x}} \mathrm{~d} x=\int \frac{1}{4}(x-2)(x-4) x^{-\frac{1}{2}} \mathrm{~d} x=\frac{1}{2}(x-2)(x-4) x^{\frac{1}{2}}-\int \frac{1}{2}(2 x-6) x^{\frac{1}{2}} \mathrm{~d} x$	M1 A1	1.1 b 1.1 b
$\frac{1}{2}(x-2)(x-4) x^{\frac{1}{2}}-\int \frac{1}{2}(2 x-6) x^{\frac{1}{2}} \mathrm{~d} x=\frac{1}{2}(x-2)(x-4) x^{\frac{1}{2}}-\int x^{\frac{3}{2}}-3 x^{\frac{1}{2}} \mathrm{~d} x$		
$=\frac{1}{2}(x-2)(x-4) x^{\frac{1}{2}}-\frac{2}{5} x^{\frac{5}{2}}+2 x^{\frac{3}{2}}$	3.1 a	
A1	1.1 b	
Or e.g. $=\frac{1}{2}(x-2)(x-4) x^{\frac{1}{2}}-\frac{1}{3} x^{\frac{3}{2}}(2 x-6)+\frac{4}{15} x^{\frac{5}{2}}$	M1	2.2 a
Deduces limits of integral are 2 and 4 and applies to their		
$\frac{1}{2}(x-2)(x-4) x^{\frac{1}{2}}-\frac{1}{3} x^{\frac{3}{2}}(2 x-6)+\frac{4}{15} x^{\frac{5}{2}}$	A1	2.1
$0-\frac{16}{3}+\frac{128}{15}-\left(0+\frac{4}{3} \sqrt{2}+\frac{16}{15} \sqrt{2}\right)$		
Area $R=\frac{12}{5} \sqrt{2}-\frac{16}{5}\left(\right.$ or $\left.\frac{16}{5}-\frac{12}{5} \sqrt{2}\right)$	(6)	

Notes:
M1: Applies integration by parts and reaches the form $\alpha(x-2)(x-4) x^{\frac{1}{2}} \pm \int(p x+q) x^{\frac{1}{2}} \mathrm{~d} x \quad \alpha, p \neq 0$ oe e.g. $\alpha\left(x^{2}-6 x+8\right) x^{\frac{1}{2}} \pm \int(p x+q) x^{\frac{1}{2}} \mathrm{~d} x \alpha, p \neq 0$

A1: Correct first application of parts in any form
$\mathbf{d M 1}$: Attempts their $\int(p x+q) x^{\frac{1}{2}} \mathrm{~d} x$ by expanding and integrating or may attempt parts again.
E.g. $\int(2 x-6) x^{\frac{1}{2}} \mathrm{~d} x=\int\left(2 x^{\frac{3}{2}}-6 x^{\frac{1}{2}}\right) \mathrm{d} x=\ldots$ or e.g. $\int(2 x-6) x^{\frac{1}{2}} \mathrm{~d} x=\frac{2}{3} x^{\frac{3}{2}}(2 x-6)-\frac{4}{3} \int x^{\frac{3}{2}} \mathrm{~d} x$

If they expand then at least one term requires $x^{n} \rightarrow x^{n+1}$ or if parts is attempted again, the structure must be correct.

A1: Fully correct integration in any form
M1: Substitutes the limits 4 and 2 to their $=\frac{1}{2}(x-2)(x-4) x^{\frac{1}{2}}-\frac{2}{5} x^{\frac{5}{2}}+2 x^{\frac{3}{2}}$ and subtracts either way round. There is no requirement to evaluate but 4 and 2 must be substituted either way round with evidence of subtraction, condoning omission of brackets.
E.g. condone $0-\frac{16}{3}+\frac{128}{15}-0+\frac{4}{3} \sqrt{2}+\frac{16}{15} \sqrt{2}$

This is an independent mark but the limits must be applied to a "changed" function.
A1: Correct working shown leading to $\frac{12}{5} \sqrt{2}-\frac{16}{5}$ but also allow $\frac{16}{5}-\frac{12}{5} \sqrt{2}$ or exact equivalents

Integration by substitution example:

$u=\sqrt{x}\left(x=u^{2}\right) \Rightarrow \int \frac{(x-2)(x-4)}{4 \sqrt{x}} \mathrm{~d} x=\int \frac{\left(u^{2}-2\right)\left(u^{2}-4\right)}{4 u} \frac{\mathrm{~d} x}{\mathrm{~d} u} \mathrm{~d} u$	M1	1.1 b 1.1 b
$=\int \frac{\left(u^{2}-2\right)\left(u^{2}-4\right)}{4 u} 2 u \mathrm{~d} u$	A1	
$=\frac{1}{2} \int\left(u^{4}-6 u^{2}+8\right) \mathrm{d} u=\frac{1}{2}\left(\frac{u^{5}}{5}-\frac{6 u^{3}}{3}+8 u\right)(+c)$	dM1	3.1 a 1.1 b
Deduces limits of integral are $\sqrt{ } 2$ and 2 and applies to their	M1	2.2 a
$\frac{1}{2}\left(\frac{u^{5}}{5}-\frac{6 u^{3}}{3}+8 u\right)$	A1	2.1
Area $R=\frac{12}{5} \sqrt{2}-\frac{16}{5}\left(\frac{32}{5}-16+16-\left(\frac{4 \sqrt{2}}{5}-4 \sqrt{2}+8 \sqrt{2}\right)\right)$		
or $\left.\frac{16}{5} \sqrt{2}\right)$	(6)	

Notes:

M1: Applies the substitution e.g. $u=\sqrt{x}$ and attempts $k \int \frac{\left(u^{2}-2\right)\left(u^{2}-4\right)}{u} \frac{\mathrm{~d} x}{\mathrm{~d} u} \mathrm{~d} u$
A1: Fully correct integral in terms of u in any form e.g. $\frac{1}{2} \int\left(u^{2}-2\right)\left(u^{2}-4\right) \mathrm{d} u$
dM1: Expands the bracket and integrates $u^{n} \rightarrow u^{n+1}$ for at least 2 correct indices i.e. at least 2 of $u^{4} \rightarrow u^{5}, u^{2} \rightarrow u^{3}, \quad k \rightarrow k u$

A1: $\frac{1}{2}\left(\frac{u^{5}}{5}-\frac{6 u^{3}}{3}+8 u\right)(+c)$. Allow unsimplified.
M1: Substitutes the limits 2 and $\sqrt{ } 2$ to their $\frac{1}{2}\left(\frac{u^{5}}{5}-\frac{6 u^{3}}{3}+8 u\right)$ and subtracts either way round.
There is no requirement to evaluate but 2 and $\sqrt{ } 2$ must be substituted either way round with evidence of subtraction, condoning omission of brackets.
E.g. condone $\frac{1}{2}\left(\frac{32}{5}-16+16-\frac{4 \sqrt{2}}{5}-4 \sqrt{2}+8 \sqrt{2}\right)$

Alternatively reverses the substitution and applies the limits 4 and 2 with the same conditions.
A1: Correct working shown leading to $\frac{12}{5} \sqrt{2}-\frac{16}{5}$ but also allow $\frac{16}{5}-\frac{12}{5} \sqrt{2}$ or exact equivalents
Award this mark once one of these forms is reached and isw.

There may be other substitutions seen and the same marking principles apply.

Question	Scheme	Marks	AOs
26(a)	$\frac{3}{(2 x-1)(x+1)}=\frac{A}{2 x-1}+\frac{B}{x+1} \Rightarrow A=\ldots, B=\ldots$	M1	1.1b
	Either $A=2$ or $B=-1$	A1	1.1b
	$\frac{3}{(2 x-1)(x+1)}=\frac{2}{2 x-1}-\frac{1}{x+1}$	A1	1.1b
		(3)	
(b)	$\int \frac{1}{V} \mathrm{~d} V=\int \frac{3}{(2 t-1)(t+1)} \mathrm{d} t$	B1	1.1a
	$\int \frac{2}{2 t-1}-\frac{1}{t+1} \mathrm{~d} t=\ldots \ln (2 t-1)-\ldots \ln (t+1)(+c)$	M1	3.1a
	$\ln V=\ln (2 t-1)-\ln (t+1)(+c)$	A1ft	1.1b
	Substitutes $t=2, V=3 \Rightarrow c=(\ln 3)$	M1	3.4
	$\begin{gathered} \ln V=\ln (2 t-1)-\ln (t+1)+\ln 3 \\ V=\frac{3(2 t-1)}{(t+1)} * \end{gathered}$	A1*	2.1
		(5)	
	(b) Alternative separation of variables:		
	$\int \frac{1}{3 V} \mathrm{~d} V=\int \frac{1}{(2 t-1)(t+1)} \mathrm{d} t$	B1	1.1a
	$\frac{1}{3} \int \frac{2}{2 t-1}-\frac{1}{t+1} \mathrm{~d} t=\ldots \ln (2 t-1)-\ldots \ln (t+1)(+c)$	M1	3.1a
	$\frac{1}{3} \ln 3 V=\frac{1}{3} \ln (2 t-1)-\frac{1}{3} \ln (t+1)(+c)$	A1ft	1.1b
	Substitutes $t=2, V=3 \Rightarrow c=\left(\frac{1}{3} \ln 3\right)$	M1	3.4
	$\begin{gathered} \frac{1}{3} \ln V=\frac{1}{3} \ln (2 t-1)-\frac{1}{3} \ln (t+1)+\frac{1}{3} \ln 3 \\ V=\frac{3(2 t-1)}{(t+1)} * \end{gathered}$	A1*	2.1
		(5)	
(c)	(i) 30 (minutes)	B1	3.2a
	(ii) $6\left(\mathrm{~m}^{3}\right)$	B1	3.4
		(2)	
(10 marks)			
Notes:			

(a)

M1: Correct method of partial fractions leading to values for their A and B
E.g. substitution: $\frac{3}{(2 x-1)(x+1)}=\frac{A}{2 x-1}+\frac{B}{x+1} \Rightarrow 3=A(x+1)+B(2 x-1) \Rightarrow A=\ldots, B=\ldots$

Or compare coefficients $\frac{3}{(2 x-1)(x+1)}=\frac{A}{2 x-1}+\frac{B}{x+1} \Rightarrow 3=x(A+2 B)+A-B \Rightarrow A=\ldots, B=\ldots$
Note that $\frac{3}{(2 x-1)(x+1)}=\frac{A}{2 x-1}+\frac{B}{x+1} \Rightarrow 3=A(2 x-1)+B(x+1) \Rightarrow A=\ldots, B=\ldots$ scores M0

A1: Correct value for " A " or " B "
A1: Correct partial fractions not just values for " A " and " B ". $\frac{2}{2 x-1}-\frac{1}{x+1}$ or e.g. $\frac{2}{2 x-1}+\frac{-1}{x+1}$ Must be seen as fractions but if not stated here, allow if the correct fractions appear later.
(b)

B1: Separates variables $\int \frac{1}{V} \mathrm{~d} V=\int \frac{3}{(2 t-1)(t+1)} \mathrm{d} t$. May be implied by later work.
Condone omission of the integral signs but the $\mathrm{d} V$ and $\mathrm{d} t$ must be in the correct positions if awarding this mark in isolation but they may be implied by subsequent work.
M1: Correct attempt at integration of the partial fractions.
Look for $\ldots \ln (2 t-1)+\ldots \ln (t+1)$ where \ldots are constants.
Condone missing brackets around the $(2 t-1)$ and/or the $(t+1)$ for this mark
A1ft: Fully correct equation following through their A and B only.
No requirement for $+c$ here.
The brackets around the $(2 t-1)$ and/or the $(t+1)$ must be seen or implied for this mark
M1: Attempts to find " c " or e.g. "In k " using $t=2, V=3$ following an attempt at integration. Condone poor algebra as long as $t=2, V=3$ is used to find a value of their constant.
Note that the constant may be found immediately after integrating or e.g. after the ln's have been combined.
A1*: Correct processing leading to the given answer $V=\frac{3(2 t-1)}{(t+1)}$

Alternative:

B1: Separates variables $\int \frac{1}{3 V} \mathrm{~d} V=\int \frac{1}{(2 t-1)(t+1)} \mathrm{d} t$. May be implied by later work.
Condone omission of the integral signs but the $\mathrm{d} V$ and $\mathrm{d} t$ must be in the correct positions if awarding this mark in isolation but they may be implied by subsequent work.
M1: Correct attempt at integration of the partial fractions.
Look for $\ldots \ln (2 t-1)+\ldots \ln (t+1)$ where \ldots are constants.
Condone missing brackets around the $(2 t-1)$ and/or the $(t+1)$ for this mark
A1ft: Fully correct equation following through their A and B only.
No requirement for $+c$ here.
The brackets around the $(2 t-1)$ and/or the $(t+1)$ must be seen or implied for this mark
M1: Attempts to find " c " or e.g. "ln k " using $t=2, V=3$ following an attempt at integration.
Condone poor algebra as long as $t=2, V=3$ is used to find a value of their constant.
Note that the constant may be found immediately after integrating or e.g. after the ln's have been combined.
A1*: Correct processing leading to the given answer $V=\frac{3(2 t-1)}{(t+1)}$
(Note the working may look like this:

$$
\begin{aligned}
\frac{1}{3} \ln 3 V & =\frac{1}{3} \ln (2 t-1)-\frac{1}{3} \ln (t+1)+c, \frac{1}{3} \ln 9=\frac{1}{3} \ln (3)-\frac{1}{3} \ln 3+c, c=\frac{1}{3} \ln 9 \\
\ln 3 V & \left.=\ln \frac{9(2 t-1)}{(t+1)} \Rightarrow 3 V=\frac{9(2 t-1)}{(t+1)} \Rightarrow V=\frac{3(2 t-1)}{(t+1)} *\right)
\end{aligned}
$$

Note that B0M1A1M1A1 is not possible in (b) as the B1 must be implied if all the other marks have been awarded.

Note also that some candidates may use different variables in (b) e.g.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 y}{(2 x-1)(x+1)} \Rightarrow \int \frac{1}{y} \mathrm{~d} y=\int \frac{3}{(2 x-1)(x+1)} \mathrm{d} x$ etc. In such cases you should award marks for equivalent work but they must revert to the given variables at the end to score the final mark. Also if e.g. a " t " becomes an " x " within their working but is recovered allow full marks.
(c)

B1: Deduces 30 minutes. Units not required so just look for 30 but allow equivalents e.g. $1 / 2$ an hour. If units are given they must be correct so do not allow e.g. 30 hours.
B1: Deduces $6 \mathrm{~m}^{3}$. Units not required so just look for 6 . Condone $V<6$ or $V \leq 6$ If units are given they must be correct so do not allow e.g. 6 m .

Question	Scheme	Marks	AOs
27(a)	$y=x^{3}-10 x^{2}+27 x-23 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-20 x+27$	B1	1.1b
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{x=5}=3 \times 5^{2}-20 \times 5+27(=2)$	M1	1.1b
	$y+13=2(x-5)$	M1	2.1
	$y=2 x-23$	A1	1.1b
		(4)	
(b)	Both C and l pass through $(0,-23)$ and so C meets l again on the y-axis	B1	2.2a
		(1)	
(c)	$\begin{gathered} \pm \int\left(x^{3}-10 x^{2}+27 x-23-(2 x-23)\right) \mathrm{d} x \\ = \pm\left(\frac{x^{4}}{4}-\frac{10}{3} x^{3}+\frac{25}{2} x^{2}\right) \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \end{gathered}$	$\begin{aligned} & \text { 1.1b } \\ & \text { 1.1b } \end{aligned}$
	$\begin{aligned} & {\left[\frac{x^{4}}{4}-\frac{10}{3} x^{3}+\frac{25}{2} x^{2}\right]_{0}^{5} } \\ = & \left(\frac{625}{4}-\frac{1250}{3}+\frac{625}{2}\right)(-0) \end{aligned}$	dM1	2.1
	$=\frac{625}{12}$	A1	1.1b
		(4)	
	(c) Alternative:		
	$\begin{aligned} & \pm \int\left(x^{3}-10 x^{2}+27 x-23\right) \mathrm{d} x \\ & \quad= \pm\left(\frac{x^{4}}{4}-\frac{10}{3} x^{3}+\frac{27}{2} x^{2}-23 x\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\begin{gathered} {\left[\frac{x^{4}}{4}-\frac{10}{3} x^{3}+\frac{27}{2} x^{2}-23 x\right]_{0}^{5}+\frac{1}{2} \times 5(23+13)} \\ =-\frac{455}{12}+90 \end{gathered}$	dM1	2.1
	$=\frac{625}{12}$	A1	1.1b
(9 marks)			

(a)

B1: Correct derivative
M1: Substitutes $x=5$ into their derivative. This may be implied by their value for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
M1: Fully correct straight line method using $(5,-13)$ and their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=5$
A1: cao. Must see the full equation in the required form.
(b)

B1: Makes a suitable deduction.
Alternative via equating l and C and factorising e.g.

$$
\begin{gathered}
x^{3}-10 x^{2}+27 x-23=2 x-23 \\
x^{3}-10 x^{2}+25 x=0 \\
x\left(x^{2}-10 x+25\right)=0 \Rightarrow x=0
\end{gathered}
$$

So they meet on the y-axis
(c)

M1: For an attempt to integrate $x^{n} \rightarrow x^{n+1}$ for $\pm^{"} C-l$ "
A1ft: Correct integration in any form which may be simplified or unsimplified. (follow through their equation from (a))
If they attempt as 2 separate integrals e.g. $\int\left(x^{3}-10 x^{2}+27 x-23\right) \mathrm{d} x-\int(2 x-23) \mathrm{d} x$ then
award this mark for the correct integration of the curve as in the alternative.
If they combine the curve with the line first then the subsequent integration must be correct or a correct ft for their line and allow for \pm " $C-l$ "
dM1: Fully correct strategy for the area. Award for use of 5 as the limit and condone the omission of the " -0 ". Depends on the first method mark.
A1: Correct exact value

Alternative:

M1: For an attempt to integrate $x^{n} \rightarrow x^{n+1}$ for $\pm C$
A1: Correct integration for $\pm C$
dM1: Fully correct strategy for the area e.g. correctly attempts the area of the trapezium and subtracts the area enclosed between the curve and the x-axis. Need to see the use of 5 as the limit condoning the omission of the " -0 " and a correct attempt at the trapezium and the subtraction.
May see the trapezium area attempted as $\int(2 x-23) \mathrm{d} x$ in which case the integration and use of the limits needs to be correct or correct follow through for their straight line equation.

Depends on the first method mark.

A1: Correct exact value

Note if they do $l-C$ rather than $C-l$ and the working is otherwise correct allow full marks if their final answer is given as a positive value. E.g. correct work with $l-C$ leading to $-\frac{625}{12}$ and then e.g. hence area is $\frac{625}{12}$ is acceptable for full marks.
If the answer is left as $-\frac{625}{12}$ then score A0

Question	Scheme	Marks	AOs
28(a)	$u=1+\sqrt{x} \Rightarrow x=(u-1)^{2} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=2(u-1)$ or $u=1+\sqrt{x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$	B1	1.1b
	$\begin{gathered} \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{(u-1)^{2}}{u} 2(u-1) \mathrm{d} u \\ \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{x}{u} \times 2 x^{\frac{1}{2}} \mathrm{~d} u=\int \frac{2 x^{\frac{3}{2}}}{u} \mathrm{~d} u=\int \frac{2(u-1)^{3}}{u} \mathrm{~d} u \end{gathered}$	M1	2.1
	$\int_{0}^{16} \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int_{1}^{5} \frac{2(u-1)^{3}}{u} \mathrm{~d} u$	A1	1.1b
		(3)	
(b)	$2 \int \frac{u^{3}-3 u^{2}+3 u-1}{u} \mathrm{~d} u=2 \int\left(u^{2}-3 u+3-\frac{1}{u}\right) \mathrm{d} u=\ldots$	M1	3.1a
	$=(2)\left[\frac{u^{3}}{3}-\frac{3 u^{2}}{2}+3 u-\ln u\right]$	A1	1.1b
	$=2\left[\frac{5^{3}}{3}-\frac{3(5)^{2}}{2}+3(5)-\ln 5-\left(\frac{1}{3}-\frac{3}{2}+3-\ln 1\right)\right]$	dM1	2.1
	$=\frac{104}{3}-2 \ln 5$	A1	1.1b
		(4)	
(7 marks)			
Notes			
(a) B1: Correct expression for $\frac{\mathrm{d} x}{\mathrm{~d} u}$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}$ (or u^{\prime}) or $\mathrm{d} x$ in terms of $\mathrm{d} u$ or $\mathrm{d} u$ in terms of $\mathrm{d} x$ M1: Complete method using the given substitution. This needs to be a correct method for their $\frac{\mathrm{d} x}{\mathrm{~d} u}$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}$ leading to an integral in terms of u only (ignore any limits if present) so for each case you need to see: $\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} u}=\mathrm{f}(u) \rightarrow \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{(u-1)^{2}}{u} \mathrm{f}(u) \mathrm{d} u \\ & \frac{\mathrm{~d} u}{\mathrm{~d} x}=\mathrm{g}(x) \rightarrow \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{x}{u} \times \frac{\mathrm{d} u}{\mathrm{~g}(x)}=\int \mathrm{h}(u) \mathrm{d} u \text {. In this case you can condone } \\ & \text { slips with coefficients e.g. allow } \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}} \rightarrow \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{x}{u} \times \frac{x^{\frac{1}{2}}}{2} \mathrm{~d} u=\int \mathrm{h}(u) \mathrm{d} u \end{aligned}$			

but not $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}} \rightarrow \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{x}{u} \times \frac{x^{-\frac{1}{2}}}{2} \mathrm{~d} u=\int \mathrm{h}(u) \mathrm{d} u$
A1: All correct with correct limits and no errors. The " $\mathrm{d} u$ " must be present but may have been omitted along the way but it must have been seen at least once before the final answer. The limits can be seen as part of the integral or stated separately.
(b)

M1: Realises the requirement to cube the bracket and divide through by u and makes progress with the integration to obtain at least 3 terms of the required form e.g. 3 from $k u^{3}, k u^{2}, k u, k \ln u$
A1: Correct integration. This mark can be scored with the " 2 " still outside the integral or even if it has been omitted. But if the "2" has been combined with the integrand, the integration must be correct.
dM1: Completes the process by applying their "changed" limits and subtracts the right way round Depends on the first method mark.
A1: Cao (Allow equivalents for $\frac{104}{3}$ e.g. $\frac{208}{6}$)

Question	Scheme	Marks	AOs
29(a)	$\frac{\mathrm{d} V}{\mathrm{~d} t}=0.48-0.1 \mathrm{~h}$	B1	3.1b
	$V=24 h \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} h}=24$ or $\frac{\mathrm{d} h}{\mathrm{~d} V}=\frac{1}{24}$	B1	3.1b
	$\begin{gathered} \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \times \frac{\mathrm{d} h}{\mathrm{~d} V}=\frac{0.48-0.1 h}{24} \\ \frac{\mathrm{~d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \frac{\mathrm{~d} h}{\mathrm{~d} t} \Rightarrow 0.48-0.1 h=24 \frac{\mathrm{~d} h}{\mathrm{~d} t} \end{gathered}$	M1	2.1
	$1200 \frac{\mathrm{~d} h}{\mathrm{~d} t}=24-5 h^{*}$	A1*	1.1b
		(4)	
(b)	$\begin{gathered} 1200 \frac{\mathrm{~d} h}{\mathrm{~d} t}=24-5 h \Rightarrow \int \frac{1200}{24-5 h} \mathrm{~d} h=\int \mathrm{d} t \\ \Rightarrow \text { e.g. } \alpha \ln (24-5 h)=t(+c) \text { oe } \\ \text { or } \\ 1200 \frac{\mathrm{~d} h}{\mathrm{~d} t}=24-5 h \Rightarrow \frac{\mathrm{~d} t}{\mathrm{~d} h}=\frac{1200}{24-5 h} \\ \Rightarrow \text { e.g. } t(+c)=\alpha \ln (24-5 h) \text { oe } \end{gathered}$	M1	3.1a
	$t=-240 \ln (24-5 h)(+c)$ oe	A1	1.1b
	$t=0, h=2 \Rightarrow 0=-240 \ln (24-10)+c \Rightarrow c=\ldots(240 \ln 14)$	M1	3.4
	$t=240 \ln (14)-240 \ln (24-5 h)$	A1	1.1b
	$\begin{gathered} t=240 \ln \frac{14}{24-5 h} \Rightarrow \frac{t}{240}=\ln \frac{14}{24-5 h} \Rightarrow \mathrm{e}^{\frac{1}{240}}=\frac{14}{24-5 h} \\ \Rightarrow 14 \mathrm{e}^{-\frac{t}{240}}=24-5 h \Rightarrow h=\ldots \end{gathered}$	ddM1	2.1
	$h=4.8-2.8 \mathrm{e}^{-\frac{1}{240}}$ oe e.g. $h=\frac{24}{5}-\frac{14}{5} \mathrm{e}^{-\frac{1}{200}}$	A1	3.3
		(6)	
(c)	Examples: - As $t \rightarrow \infty, \mathrm{e}^{-\frac{t}{240}} \rightarrow 0$ - When $h>4.8, \frac{\mathrm{~d} V}{\mathrm{~d} t}<0$ - Flow in = flow out at max h so $0.1 h=4.8 \rightarrow h=4.8$ - As $\mathrm{e}^{-\frac{t}{240}}>0, h<4.8$ - $h=5 \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} t}=-0.02$ or $\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{1}{1200}$ - $\frac{\mathrm{d} h}{\mathrm{~d} t}=0 \Rightarrow h=4.8$ - $h=5 \Rightarrow 4.8-2.8 \mathrm{e}^{-\frac{1}{20}}=5 \Rightarrow \mathrm{e}^{-\frac{1}{200}}<0$	M1	3.1b
	- The limit for h (according to the model) is 4.8 m and the tank is 5 m high so the tank will never become full - If $h=5$ the tank would be emptying so can never be full - The equation can't be solved when $h=5$	A1	3.2a

	Notes

Notes

(a)

B 1 : Identifies the correct expression for $\frac{\mathrm{d} V}{\mathrm{~d} t}$ according to the model
B1: Identifies the correct expression for $\frac{\mathrm{d} V}{\mathrm{~d} h}$ according to the model
M1: Applies $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \times \frac{\mathrm{d} h}{\mathrm{~d} V}$ or equivalent correct formula with their $\frac{\mathrm{d} V}{\mathrm{~d} t}$ and $\frac{\mathrm{d} V}{\mathrm{~d} h}$ which may be implied by their working
A1*: Correct equation obtained with no errors
Note that: $\frac{\mathrm{d} V}{\mathrm{~d} t}=0.48-0.1 h \Rightarrow \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{0.48-0.1 h}{24} \Rightarrow 1200 \frac{\mathrm{~d} h}{\mathrm{~d} t}=24-5 h *$ scores
B1B0M0A0. There must be clear evidence where the " 24 " comes from and evidence of the correct chain rule being applied.
(b)

M1: Adopts a correct strategy by separating the variables correctly or rearranges to obtain $\frac{\mathrm{d} t}{\mathrm{~d} h}$ correctly in terms of h and integrates to obtain $t=\alpha \ln (24-5 h)(+c)$ or equivalent (condone missing brackets around the " $24-5 h$ ") and $+c$ not required for this mark.
A1: Correct equation in any form and $+c$ not required. Do not condone missing brackets unless they are implied by subsequent work.
M1: Substitutes $t=0$ and $h=2$ to find their constant of integration (there must have been some attempt to integrate)
A1: Correct equation in any form
ddM1: Uses fully correct log work to obtain h in terms of t.

This depends on both previous method marks.

A1: Correct equation
Note that the marks may be earned in a different order e.g.:

$$
\begin{gathered}
t+c=-240 \ln (24-5 h) \Rightarrow-\frac{t}{240}+d=\ln (24-5 h) \Rightarrow A \mathrm{e}^{-\frac{t}{240}}=24-5 h \\
t=0, h=2 \Rightarrow A=14 \Rightarrow 14 \mathrm{e}^{-\frac{t}{240}}=24-5 h \Rightarrow h=4.8-2.8 \mathrm{e}^{-\frac{t}{240}}
\end{gathered}
$$

Score as M1 A1 as in main scheme then
M1: Correct work leading to $A \mathrm{e}^{\alpha t}=24-5 h$ (must have a constant " A ")

$$
\text { A1: } A \mathrm{e}^{-\frac{t}{240}}=24-5 h
$$

ddM1: Uses $t=0, h=2$ in an expression of the form above to find A

$$
\mathrm{A} 1: h=4.8-2.8 \mathrm{e}^{-\frac{1}{240}}
$$

(c)

M1: See scheme for some examples
A1: Makes a correct interpretation for their method.
There must be no incorrect working or contradictory statements.
This is not a follow through mark and if their equation in (b) is used it must be correct.

Question	Scheme	Marks	AOs
30(a)	$\begin{gathered} x^{2}+8 x-3=(A x+B)(x+2)+C \text { or } A x(x+2)+B(x+2)+C \\ \Rightarrow A=\ldots, B=\ldots, C=\ldots \\ \text { or } \\ x + 2 \longdiv { x ^ { 2 } + 8 x - 3 } \\ \frac{x^{2}+2 x}{6 x-3} \\ \frac{6 x+12}{-15} \end{gathered}$	M1	1.1b
	Two of $A=1, B=6, C=-15$	A1	1.1b
	All three of $A=1, B=6, C=-15$	A1	1.1b
		(3)	
30(b)	$\int \frac{x^{2}+8 x-3}{x+2} \mathrm{~d} x=\int x+6-\frac{15}{x+2} \mathrm{~d} x=\ldots-15 \ln (x+2)$	M1	1.1b
	$=\frac{1}{2} x^{2}+6 x-15 \ln (x+2) \quad(+c)$	A1ft	1.1b
	$\left.\begin{array}{l} \int_{0}^{6} \frac{x^{2}+8 x-3}{x+2} \mathrm{~d} x=\left[\frac{1}{2} x^{2}+6 x-15 \ln (x+2)\right]_{0}^{6} \\ =(18+36-15 \ln 8)-(0+0-15 \ln 2) \end{array}\right\}$	M1	2.1
	$=54-30 \ln 2$	A1	1.1b
		(4)	
(7 marks)			

Notes:

(a)

M1: Multiplies by $(x+2)$ and attempts to find values for A, B and C e.g. by comparing coefficients or substituting values for x. If the method is unclear, at least 2 terms must be correct on rhs.
Or attempts to divide $x^{2}+8 x-3$ by $x+2$ and obtains a linear quotient and a constant remainder.
This mark may be implied by 2 correct values for A, B or C
A1: Two of $A=1, B=6, C=-15$. But note that just performing the division correctly is insufficient and they must clearly identify their A, B, C to score any accuracy marks.
A1: All three of $A=1, B=6, C=-15$
This is implied by stating $\frac{x^{2}+8 x-3}{x+2}=x+6-\frac{15}{x+2}$ or within the integral in (b)
(b)

M1: Integrates an expression of the form $\frac{C}{x+2}$ to obtain $k \ln (x+2)$.
Condone the omission of brackets around the " $x+2$ "
A1ft: Correct integration ft on their $A x+B+\frac{C}{x+2},(A, B, C \neq 0)$ The brackets should be present around the " $x+2$ " unless they are implied by subsequent work.
M1: Substitutes both limits 0 and 6 into an expression that contains an x or x^{2} term or both and a ln term and subtracts either way round WITH fully correct log work to combine two log terms (but allow sign errors when removing brackets) leading to an answer of the form $a+b \ln c$ (a, b and c not necessarily integers) e.g. if they expand to get $-15 \ln 8-15 \ln 2$ followed by $-15 \ln 16$ and reach $a+b \ln c$ then allow the M mark

A1: $54-30 \ln 2$ (Apply isw once a correct answer is seen)

Examples: $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=\frac{2 \sqrt{x}(8 x+1)-\left(4 x^{2}+x\right) x^{-\frac{1}{2}}}{(2 \sqrt{x})^{2}}, \frac{1}{2} x^{-\frac{1}{2}}(8 x+1)-\frac{1}{4}\left(4 x^{2}+x\right) x^{-\frac{3}{2}}, 2 \times \frac{3}{2} x^{\frac{1}{2}}+\frac{1}{2} \times \frac{1}{2} x^{-\frac{1}{2}}$
A1*: Obtains $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12 x^{2}+x-16 \sqrt{x}}{4 x \sqrt{x}}$ via $3 \sqrt{x}+\frac{1}{4 \sqrt{x}}-\frac{4}{x}$ or a correct application of the quotient or product rule and with sufficient working shown to reach the printed answer.
There must be no errors e.g. missing brackets.
(b)

M1: Sets $12 x^{2}+x-16 \sqrt{x}=0$ and divides by \sqrt{x} or equivalent e.g. divides by x and multiplies by $\sqrt{ } x$
dM1: Makes the term in $x^{\frac{3}{2}}$ the subject of the formula
A1*: A correct and rigorous argument leading to the given solution.

Alternative - working backwards:

$x=\left(\frac{4}{3}-\frac{\sqrt{x}}{12}\right)^{\frac{2}{3}} \Rightarrow x^{\frac{3}{2}}=\frac{4}{3}-\frac{\sqrt{x}}{12} \Rightarrow 12 x^{\frac{3}{2}}=16-\sqrt{x} \Rightarrow 12 x^{2}=16 \sqrt{x}-x \Rightarrow 12 x^{2}-16 \sqrt{x}+x=0$
M1: For raising to power of $3 / 2$ both sides. dM1: Multiplies through by $\sqrt{ } x$. A1: Achieves printed answer and makes a minimal comment e.g. tick, \#, QED, true etc.
(c)

M1: Attempts to use the iterative formula with $x_{1}=2$. This is implied by sight of $x_{2}=\left(\frac{4}{3}-\frac{\sqrt{2}}{12}\right)^{\frac{2}{3}}$ or awrt 1.14
A1: $x_{2}=$ awrt 1.13894
A1: Deduces that $x=1.15650$

Question	Scheme	Marks	AOs
31	$\mathrm{f}^{\prime}(x)=6 x^{2}+a x-23 \Rightarrow \mathrm{f}(x)=2 x^{3}+\frac{1}{2} a x^{2}-23 x+c$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$" c "=-12$	B1	2.2a
	$\mathrm{f}(-4)=0 \Rightarrow 2 \times(-4)^{3}+\frac{1}{2} a(-4)^{2}-23(-4)-12=0$	dM1	3.1a
	$a=\ldots$ (6)	dM1	1.1b
	$(\mathrm{f}(x)=) 2 x^{3}+3 x^{2}-23 x-12$ Or Equivalent e.g. $(\mathrm{f}(x)=)(x+4)\left(2 x^{2}-5 x-3\right) \quad(\mathrm{f}(x)=)(x+4)(2 x+1)(x-3)$	A1cso	2.1
		(6)	
(6 marks)			

Notes:

M1: Integrates $\mathrm{f}^{\prime}(x)$ with two correct indices. There is no requirement for the $+c$
A1: Fully correct integration (may be unsimplified). The $+c$ must be seen (or implied by the -12)
B1: Deduces that the constant term is -12
dM1: Dependent upon having done some integration. It is for setting up a linear equation in a by using $f(-4)=0$ May also see long division attempted for this mark. Need to see a complete method leading to a remainder in terms of a which is then set $=0$.
For reference, the quotient is $2 x^{2}+\left(\frac{a}{2}-8\right) x+9-2 a$ and the remainder is $8 a-48$
May also use $(x+4)\left(p x^{2}+q x+r\right)=2 x^{3}+\frac{1}{2} a x^{2}-23 x-12$ and compare coefficients to find p, q and r and hence a. Allow this mark if they solve for p, q and r
Note that some candidates use $2 \mathrm{f}(x)$ which is acceptable and gives the same result if executed correctly.
dM1: Solves the linear equation in a or uses p, q and r to find a.
It is dependent upon having attempted some integration and used $f(\pm 4)=0$ or long division/comparing coefficients with $(x+4)$ as a factor.
A1cso: For $(\mathrm{f}(x)=) 2 x^{3}+3 x^{2}-23 x-12$ oe. Note that " $\mathrm{f}(x)=$ " does not need to be seen and ignore any " $=0$ "

Via firstly using factor

Question	Scheme	Marks	AOs
31 Alt	$\mathrm{f}(x)=(x+4)\left(A x^{2}+B x+C\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \hline 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\mathrm{f}(x)=A x^{3}+(4 A+B) x^{2}+(4 B+C) x+4 C \Rightarrow C=-3$	B1	2.2 a
	$\begin{gathered} \mathrm{f}^{\prime}(x)=3 A x^{2}+2(4 A+B) x+(4 B+C) \text { and } \mathrm{f}^{\prime}(x)=6 x^{2}+a x-23 \\ \Rightarrow A=\ldots \end{gathered}$	dM1	3.1a
	Full method to get A, B and C	dM1	1.1b
	$\mathrm{f}(x)=(x+4)\left(2 x^{2}-5 x-3\right)$	A1cso	2.1
		(6)	
(6 marks)			

Notes:

M1: Uses the fact that $\mathrm{f}(x)$ is a cubic expression with a factor of $(x+4)$
A1: For $\mathrm{f}(x)=(x+4)\left(A x^{2}+B x+C\right)$
B1: Deduces that $C=-3$
dM1: Attempts to differentiate either by product rule or via multiplication and compares to $\mathrm{f}^{\prime}(x)=6 x^{2}+a x-23$ to find A.
dM1: Full method to get A, B and C
A1cso: $\mathrm{f}(x)=(x+4)\left(2 x^{2}-5 x-3\right)$ or $\mathrm{f}(x)=(x+4)(2 x+1)(x-3)$

Question	Scheme	Marks	AOs
32(a)(i)	$y \times \frac{\mathrm{d} x}{\mathrm{~d} t}=5 \sin 2 t \times 6 \cos t \text { or } 5 \times 2 \sin t \cos t \times 6 \cos t$	M1	1.2
	$\begin{gathered} \text { (Area }=\text {) } \int 5 \sin 2 t \times 6 \cos t \mathrm{~d} t=\int 5 \times 2 \sin t \cos t \times 6 \cos t \mathrm{~d} t \\ \text { or } \\ \\ \int 5 \sin 2 t \times 6 \cos t \mathrm{~d} t=\int 60 \sin t \cos ^{2} t \mathrm{~d} t \end{gathered}$	dM1	1.1b
	$\text { (Area }=\text {) } \int_{0}^{\frac{\pi}{2}} 60 \sin t \cos ^{2} t \mathrm{~d} t *$	A1*	2.1*
		(3)	
(a)(ii)	$\int 60 \sin t \cos ^{2} t \mathrm{~d} t=-20 \cos ^{3} t$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & \text { 1.1b } \\ & \text { 1.1b } \end{aligned}$
	Area $=\left[-20 \cos ^{3} t\right]_{0}^{\frac{\pi}{2}}=0-(-20)=20 *$	A1*	2.1
		(3)	
(b)	$5 \sin 2 t=4.2 \Rightarrow \sin 2 t=\frac{4.2}{5}$	M1	3.4
	$t=0.4986 \ldots, 1.072 \ldots$	A1	1.1b
	Attempts to finds the x values at both t values	dM1	3.4
	$\begin{gathered} t=0.4986 \ldots \Rightarrow x=2.869 \ldots \\ t=1.072 \Rightarrow x=5.269 \ldots \end{gathered}$	A1	1.1b
	Width of path $=2.40$ metres	A1	3.2a
		(5)	
(11 marks)			

Notes:

(a)(i)

M1: Attempts to multiply y by $\frac{\mathrm{d} x}{\mathrm{~d} t}$ to obtain $A \sin 2 t \cos t$ but may apply $\sin 2 t=2 \sin t \cos t$ here
dM1: Attempts to use $\sin 2 t=2 \sin t \cos t$ within an integral which may be implied by
e.g. $A \int \sin 2 t \times \cos t \mathrm{~d} t=\int k \sin t \cos ^{2} t \mathrm{~d} t$

A1*: Fully correct work leading to the given answer.
This must include $\sin 2 t=2 \sin t \cos t$ or e.g. $5 \sin 2 t=10 \sin t \cos t$ seen explicitly in their proof and a correct intermediate line that includes an integral sign and the " $\mathrm{d} t$ "
Allow the limits to just "appear" in the final answer e.g. working need not be shown for the limits.
(a)(ii)

M1: Obtains $\int 60 \sin t \cos ^{2} t \mathrm{~d} t=k \cos ^{3} t$. This may be attempted via a substitution of $u=\cos t$ to obtain $\int 60 \sin t \cos ^{2} t \mathrm{~d} t=k u^{3}$
A1: Correct integration $-20 \cos ^{3} t$ or equivalent e.g. $-20 u^{3}$
$\mathbf{A 1 *}$: Rigorous proof with all aspects correct including the correct limits and the $0-(-20)$ and
not just: $\quad-20 \cos ^{3} \frac{\pi}{2}-\left(-20 \cos ^{3} 0\right)=20$
(b)

M1: Uses the given model and attempts to find value(s) of t when $\sin 2 t=\frac{4.2}{5}$. Look for $2 t=\sin ^{-1} \frac{4.2}{5} \Rightarrow t=\ldots$
A1: At least one correct value for t, correct to 2 dp . FYI $t=0.4986 \ldots, 1.072 \ldots$ or in degrees $t=28.57 \ldots, 61.42 \ldots$
dM1: Attempts to find TWO distinct values of x when $\sin 2 t=\frac{4.2}{5}$. Condone poor trig work and allow this mark if 2 values of x are attempted from 2 values of t.
A1: Both values correct to 2 dp . NB $x=2.869 \ldots, 5.269 \ldots$

Or may take Cartesian approach

$5 \sin 2 t=4.2 \Rightarrow 10 \sin t \cos t=4.2 \Rightarrow 10 \frac{x}{6} \sqrt{1-\frac{x^{2}}{36}}=4.2 \Rightarrow x^{4}-36 x^{2}+228.6144=0 \Rightarrow x=2.869 \ldots, 5.269 \ldots$
M1: For converting to Cartesian form A1: Correct quartic M1: Solves quartic A1: Correct values
A1: 2.40 metres or 240 cm
Allow awrt 2.40 m or allow 2.4 m (not awrt 2.4 m) and allow awrt 240 cm . Units are required.

Notes for Question 33 Continued

Alt The following method is correct:

$\operatorname{Area}(A)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \mathrm{f}\left(x_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left(2+\frac{i}{n}\right)^{2}$
$=\lim _{n \rightarrow \infty}\left\lfloor\frac{1}{n} \sum_{i=1}^{n} 4+\frac{1}{n} \sum_{i=1}^{n}\left(\frac{4 i}{n}\right)+\frac{1}{n} \sum_{i=1}^{n}\left(\frac{i^{2}}{n^{2}}\right)\right\rfloor$
$=\lim _{n \rightarrow \infty}\left\lfloor\frac{1}{n} \sum_{i=1}^{n} 4+\frac{4}{n^{2}} \sum_{i=1}^{n} i+\frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}\right\rfloor$
$=\lim _{n \rightarrow \infty}\left[\frac{4 n}{n}+\frac{4}{n^{2}}\left(\frac{1}{2} n(n+1)\right)+\frac{1}{n^{3}}\left(\frac{1}{6} n(n+1)(2 n+1)\right)\right]$
$=\lim _{n \rightarrow \infty}\left[\frac{4}{n}+\frac{4 n^{2}+4 n}{2 n^{2}}+\frac{2 n^{3}+3 n^{2}+n}{6 n^{3}}\right]$
$=\lim _{n \rightarrow \infty}\left[4+2+\frac{2}{n}+\frac{1}{3}+\frac{1}{2 n}+\frac{1}{6 n^{2}}\right]$
$=4+2+\frac{1}{3}=\frac{19}{3}$
So, $\lim _{\delta x \rightarrow 0} \sum_{x=4}^{9} \sqrt{x} \delta x=\operatorname{Area}(R)=(3 \times 9)-(2 \times 4)-\frac{19}{3}$
$=\frac{38}{3}$ or $12 \frac{2}{3}$ or awrt 12.7

Question	Scheme	Marks	AOs
34 (a)	$\{u=4-\sqrt{h} \Rightarrow\} \frac{\mathrm{d} u}{\mathrm{~d} h}=-\frac{1}{2} h^{-\frac{1}{2}}$ or $\frac{\mathrm{d} h}{\mathrm{~d} u}=-2(4-u)$ or $\frac{\mathrm{d} h}{\mathrm{~d} u}=-2 \sqrt{h}$	B1	1.1b
	$\left\{\int \frac{\mathrm{d} h}{4-\sqrt{h}}=\right\} \int \frac{-2(4-u)}{u} \mathrm{~d} u$	M1	2.1
	$=\int\left(-\frac{8}{u}+2\right) \mathrm{d} u$	M1	1.1b
		M1	1.1b
		A1	1.1b
	$=-8 \ln \|4-\sqrt{h}\|+2(4-\sqrt{h})+c=-8 \ln \|4-\sqrt{h}\|-2 \sqrt{h}+k$ *	A1*	2.1
		(6)	
(b)	$\left\{\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{t^{025}(4-\sqrt{h})}{20}=0 \Rightarrow\right\} 4-\sqrt{h}=0$	M1	3.4
	Deduces any of $0<h<16,0 \leq h<16,0<h \leq 16,0 \leq h \leq 16$, $h<16, h \leq 16$ or all values up to 16	A1	2.2a
		(2)	
$\stackrel{(c)}{\text { Way } 1}$	$\int \frac{1}{(4-\sqrt{h})} \mathrm{d} h=\int \frac{1}{20} t^{025} \mathrm{~d} t$	B1	1.1b
	$-8 \ln \|4-\sqrt{h}\|-2 \sqrt{h}=\frac{1}{25} t^{125}\{+c\}$	M1	1.1b
		A1	1.1b
	$\{t=0, h=1 \Rightarrow\}-8 \ln (4-1)-2 \sqrt{(1)}=\frac{1}{25}(0)^{125}+c$	M1	3.4
	$\begin{gathered} \Rightarrow c=-8 \ln (3)-2 \Rightarrow-8 \ln \|4-\sqrt{h}\|-2 \sqrt{h}=\frac{1}{25} t^{125}-8 \ln (3)-2 \\ \{h=12 \Rightarrow\}-8 \ln \|4-\sqrt{12}\|-2 \sqrt{12}=\frac{1}{25} t^{125}-8 \ln (3)-2 \end{gathered}$	dM1	3.1a
	$t^{125}=221.2795202 \ldots \Rightarrow t=\sqrt[125]{221.2795 \ldots}$ or $t=(221.2795 \ldots)^{08}$	M1	1.1b
	$t=75.154 \ldots \Rightarrow t=75.2$ (years) (3 sf) or awrt 75.2 (years)	A1	1.1b
	Note: You can recover work for part (c) in part (b)	(7)	
(c) Way 2	$\int_{1}^{12} \frac{20}{(4-\sqrt{h})} \mathrm{d} h=\int_{0}^{T} t^{025} \mathrm{~d} t$	B1	1.1b
	$[20(-8 \ln \|4-\sqrt{h}\|-2 \sqrt{h})]^{12}=\left[\frac{4}{5} t^{125}\right]^{T}$	M1	1.1b
		A1	1.1b
	$20(-8 \ln (4-\sqrt{12})-2 \sqrt{12})-20(-8 \ln (4-1)-2 \sqrt{1})=\frac{4}{5} T^{125}-0$	M1	3.4
		dM1	3.1a
	$T^{125}=221.2795202 \ldots \Rightarrow T=\sqrt[125]{221.2795 \ldots . . .}$ or $T=(221.2795 \ldots . .)^{08}$	M1	1.1b
	$T=75.154 \ldots \Rightarrow T=75.2$ (years) (3 sf) or awrt 75.2 (years)	A1	1.1b
	Note: You can recover work for part (c) in part (b)	(7)	
(15 marks)			

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Notes for Question 34}

\hline (a) \&

\hline B1: \& See scheme. Allow $\mathrm{d} u=-\frac{1}{2} h^{-\frac{1}{2}} \mathrm{~d} h, \mathrm{~d} h=-2(4-u) \mathrm{d} u, \mathrm{~d} h=-2 \sqrt{h} \mathrm{~d} u$ o.e.

\hline M1:

Note: \& | Complete method for applying $u=4-\sqrt{h}$ to $\int \frac{\mathrm{d} h}{4-\sqrt{h}}$ to give an expression of the form $\int \frac{k(4-u)}{u} \mathrm{~d} u ; k \neq 0$ |
| :--- |
| Condone the omission of an integral sign and/or $\mathrm{d} u$ |

\hline M1: \& Proceeds to obtain an integral of the form $\int\left(\frac{A}{u}+B\right)\{\mathrm{d} u\} ; A, B \neq 0$

\hline M1: \& $\int\left(\frac{A}{u}+B\right)\{\mathrm{d} u\} \rightarrow D \ln u+E u ; A, B, D, E \neq 0$; with or without a constant of integration

\hline A1: \& $$
\int\left(-\frac{8}{u}+2\right)\{\mathrm{d} u\} \rightarrow-8 \ln u+2 u ; \text { with or without a constant of integration }
$$

\hline A1*: \& | dependent on all previous marks |
| :--- |
| Substitutes $u=4-\sqrt{h}$ into their integrated result and completes the proof by obtaining the printed result $-8 \ln \|4-\sqrt{h}\|-2 \sqrt{h}+k$. |
| Condone the use of brackets instead of the modulus sign. |

\hline Note: \& They must combine 2(4) and their $+c$ correctly to give $+k$

\hline Note: \& Going from $-8 \ln |4-\sqrt{h}|+2(4-\sqrt{h})+c$ to $-8 \ln |4-\sqrt{h}|-2 \sqrt{h}+k$, with no intermediate working or with no incorrect working is required for the final A1* mark.

\hline Note: \& Allow A1* for correctly reaching $-8 \ln |4-\sqrt{h}|-2 \sqrt{h}+c+8$ and stating $k=c+8$

\hline Note: \& Allow A1* for correctly reaching $-8 \ln |4-\sqrt{h}|+2(4-\sqrt{h})+k=-8 \ln |4-\sqrt{h}|-2 \sqrt{h}+k$

\hline \multirow[t]{2}{*}{} \& Alternative (integration by parts) method for the $2^{\text {nd }} \mathbf{M}, 3^{\text {rd }} M$ and $1^{\text {st }}$ A mark

\hline \& $\left\{\int \frac{-2(4-u)}{u} \mathrm{~d} u=\int \frac{2 u-8}{u} \mathrm{~d} u\right\}=(2 u-8) \ln u-\int 2 \ln u \mathrm{~d} u=(2 u-8) \ln u-2(u \ln u-u)\{+c\}$

\hline $2^{\text {nd }}$ M1: \& Proceeds to obtain an integral of the form $(A u+B) \ln u-\int A \ln u\{\mathrm{~d} u\} ; A, B \neq 0$

\hline $3{ }^{\text {rd }}$ M1: \& Integrates to give $D \ln u+E u ; D, E \neq 0$; which can be simplified or un-simplified with or without a constant of integration.

\hline Note: \& Give ${ }^{\text {rd }}$ M1 for $(2 u-8) \ln u-2(u \ln u-u)$ because it is an un-simplified form of $D \ln u+E u$

\hline $1^{\text {st }} \mathrm{A}$: \& Integrates to give $(2 u-8) \ln u-2(u \ln u-u)$ or $-8 \ln u+2 u$ o.e. with or without a constant of integration.

\hline (b) \&

\hline M1:
Note: \& Uses the context of the model and has an understanding that the tree keeps growing until $\frac{\mathrm{d} h}{\mathrm{~d} t}=0 \Rightarrow 4-\sqrt{h}=0$. Alternatively, they can write $\frac{\mathrm{d} h}{\mathrm{~d} t}>0 \Rightarrow 4-\sqrt{h}>0$ Accept $h=16$ or 16 used in their inequality statement for this mark.

\hline A1: \& See scheme

\hline Note: \& A correct answer can be given M1 A1 from any working.

\hline
\end{tabular}

Notes for Question 34	
(c)	Way 1
B1:	Separates the variables correctly. $\mathrm{d} h$ and $\mathrm{d} t$ should not be in the wrong positions, although this mark can be implied by later working. Condone absence of integral signs.
M1:	Integrates t^{025} to give $\lambda t^{125} ; \lambda \neq 0$
A1:	Correct integration. E.g. $-8 \ln \|4-\sqrt{h}\|-2 \sqrt{h}=\frac{1}{25} t^{125}$ or $20(-8 \ln \|4-\sqrt{h}\|-2 \sqrt{h})=\frac{4}{5} t^{125}$ $-8 \ln \|4-\sqrt{h}\|+2(4-\sqrt{h})=\frac{1}{25} t^{125} \quad$ or $\quad 20(-8 \ln \|4-\sqrt{h}\|+2(4-\sqrt{h}))=\frac{4}{5} t^{125}$ with or without a constant of integration, e.g. k, c or A
Note:	There is no requirement for modulus signs.
M1:	Some evidence of applying both $t=0$ and $h=1$ to their model (which can be a changed equation) which contains a constant of integration, e.g. k, c or A
dM1:	dependent on the previous M mark Complete process of finding their constant of integration, followed by applying $h=12$ and their constant of integration to their changed equation
M1:	Rearranges their equation to make $t^{\text {their } 125}=\ldots$ followed by a correct method to give $t=\ldots ; t>0$
Note:	$t^{\text {their } 125}=\ldots$ can be negative, but their ' $t=\ldots$ ' must be positive
Note:	"their 1.25 " cannot be 0 or 1 for this mark
Note:	Do not give this mark if $t^{\text {their } 125}=\ldots$ (usually $t^{025}=\ldots$) is a result of substituting $t=12$ (or $t=11$) into the given $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{t^{025}(4-\sqrt{h})}{20}$. Note: They will usually write $\frac{\mathrm{d} h}{\mathrm{~d} t}$ as either 12 or 11 .
A1:	awrt 75.2
(c)	Way 2
B1: Note:	Separates the variables correctly. $\mathrm{d} h$ and $\mathrm{d} t$ should not be in the wrong positions, although this mark can be implied by later working. Integral signs and limits are not required for this mark.
M1:	Same as Way 1 (ignore limits)
A1:	Same as Way 1 (ignore limits)
M1:	Applies limits of 1 and 12 to their model (i.e. to their changed expression in h) and subtracts
dM1	dependent on the previous M mark Complete process of applying limits of 1 and 12 and 0 and T (or 't') appropriately to their changed equation
M1:	Same as Way 1
A1:	Same as Way 1

Notes for Question 35 Continued

Note: $\quad \operatorname{Area}\left(R_{2}\right)$ can also be found by integrating the line l between limits of e and their x_{A} i.e. $\operatorname{Area}\left(R_{2}\right)=\int_{\mathrm{e}}^{\text {their } x_{A}}\left(-\frac{1}{2} x+\frac{3}{2} \mathrm{e}\right) \mathrm{d} x=[\ldots]_{\mathrm{e}}^{\text {their } x_{A}}=\ldots$

Note: Calculator approach with no algebra, differentiation or integration seen:

- Finding l cuts through the x-axis at awrt 8.15 is $2^{\text {nd }} \mathrm{M} 12^{\text {nd }} \mathrm{A} 1$
- Finding area between curve and the x-axis between $x=1$ and $x=\mathrm{e}$ to give awrt 2.10 is $3^{\text {rd }} \mathrm{M} 1$
- Using the above information (must be seen) to apply

$$
\operatorname{Area}(R)=2.0972 \ldots+7.3890 \ldots=9.4862 \ldots \text { is final M1 }
$$

Therefore, a maximum of 4 marks out of the 10 available.

Question	Scheme	Marks	AOs
36 (a)	$x>\ln \left(\frac{4}{3}\right)$	B1	2.2a
		(1)	
(b)	Attempts to apply $\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t$	M1	3.1a
	$\left\{\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\right\}=\int\left(\frac{1}{t+1}\right)\left(\frac{1}{t+2}\right) \mathrm{d} t$	A1	1.1b
	$\frac{1}{(t+1)(t+2)} \equiv \frac{A}{(t+1)}+\frac{B}{(t+2)} \Rightarrow 1 \equiv A(t+2)+B(t+1)$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow\}$ gives $\frac{1}{(t+1)}-\frac{1}{(t+2)}$	A1	1.1b
	$\left.\iint\left(\frac{1}{(t+1)}-\frac{1}{(t+2)}\right) \mathrm{d} t=\right\} \ln (t+1)-\ln (t+$	M1	1.1b
	$\left.\int\left(\frac{1}{(t+1)}-\frac{1}{(t+2)}\right) \mathrm{d} t=\right\} \ln (t+1)-\ln (t+2)$	A1	1.1b
	$\operatorname{Area}(R)=[\ln (t+1)-\ln (t+2)]_{0}^{2}=(\ln 3-\ln 4)-(\ln 1-\ln 2)$	M1	2.2a
	$=\ln 3-\ln 4+\ln 2=\ln \left(\frac{(3)(2)}{4}\right)=\ln \left(\frac{6}{4}\right)$		
	$=\ln \left(\frac{3}{2}\right) *$	A1*	2.1
		(8)	
(b) Alt 1	Attempts to apply $\int y \mathrm{~d} x=\int \frac{1}{\mathrm{e}^{x}-2+1} \mathrm{~d} x=\int \frac{1}{\mathrm{e}^{x}-1} \mathrm{~d} x$, with a substitution of $u=\mathrm{e}^{x}-1$	M1	3.1a
	$\left\{\int y \mathrm{~d} x\right\}=\int\left(\frac{1}{u}\right)\left(\frac{1}{u+1}\right) \mathrm{d} u$	A1	1.1b
	$\frac{1}{u(u+1)} \equiv \frac{A}{u}+\frac{B}{(u+1)} \Rightarrow 1 \equiv A(u+1)+B u$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow\}$ gives $\frac{1}{u}-\frac{1}{(u+1)}$	A1	1.1b
	$\left\{\int\left(\frac{1}{u}-\frac{1}{u+1}\right) \mathrm{d} u=\right\} \ln u-\ln (u+1)$	M1	1.1b
	$\left\{\int\left(\frac{1}{u}-\frac{1}{(u+1)}\right) \mathrm{d} u=\right\} \ln u-\ln (u+1)$	A1	1.1b
	$\operatorname{Area}(R)=[\ln u-\ln (u+1)]_{1}^{3}=(\ln 3-\ln 4)-(\ln 1-\ln 2)$	M1	2.2a
	$=\ln 3-\ln 4+\ln 2=\ln \left(\frac{(3)(2)}{4}\right)=\ln \left(\frac{6}{4}\right)$		
	$=\ln \left(\frac{3}{2}\right) *$	A1 *	2.1
		(8)	
(9 marks)			

Question	Scheme	Marks	AOs
$\begin{gathered} 36 \text { (b) } \\ \text { Alt } 2 \end{gathered}$	Attempts to apply $\int y \mathrm{~d} x=\int \frac{1}{\mathrm{e}^{x}-2+1} \mathrm{~d} x=\int \frac{1}{\mathrm{e}^{x}-1} \mathrm{~d} x$, with a substitution of $v=\mathrm{e}^{x}$	M1	3.1a
	$\left\{\int y \mathrm{~d} x\right\}=\int\left(\frac{1}{v-1}\right)\left(\frac{1}{v}\right) \mathrm{d} v$	A1	1.1b
	$\frac{1}{(v-1) v} \equiv \frac{A}{(v-1)}+\frac{B}{v} \Rightarrow 1 \equiv A v+B(v-1)$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow\}$ gives $\frac{1}{(v-1)}-\frac{1}{v}$	A1	1.1b
	$\left.\iint\left(\frac{1}{v-1)}-\frac{1}{v}\right) \mathrm{d} v=\right\} \ln (v-1)-\ln v$	M1	1.1b
	$\left.\iint\left(\frac{1}{(v-1)}-\frac{1}{v}\right) \mathrm{d} v=\right\} \ln (v-1)-\ln v$	A1	1.1b
	$\operatorname{Area}(R)=[\ln (v-1)-\ln v]_{2}^{4}=(\ln 3-\ln 4)-(\ln 1-\ln 2)$	M1	2.2a
	$=\ln 3-\ln 4+\ln 2=\ln \left(\frac{(3)(2)}{4}\right)=\ln \left(\frac{6}{4}\right)$		
	$=\ln \left(\frac{3}{2}\right) *$	A1 *	2.1
		(8)	

Question 36 Notes:

(a)

B1: Uses $x=\ln (t+2)$ with $t>-\frac{2}{3}$ to deduce the correct domain, $x>\ln \left(\frac{4}{3}\right)$
(b)

M1:

A1:
Obtains

- $\int\left(\frac{1}{t+1}\right)\left(\frac{1}{t+2}\right) \mathrm{d} t$ from a parametric approach
- $\int\left(\frac{1}{u}\right)\left(\frac{1}{u+1}\right) \mathrm{d} u$ from a Cartesian approach with $u=\mathrm{e}^{x}-1$
- $\int\left(\frac{1}{v-1}\right)\left(\frac{1}{v}\right) \mathrm{d} v$ from a Cartesian approach with $v=\mathrm{e}^{x}$

M1:
Applies a strategy of attempting to express either $\frac{1}{(t+1)(t+2)}, \frac{1}{u(u+1)}$ or $\frac{1}{(v-1) v}$ as partial fractions
A1: \quad Correct partial fractions for their method
Integrates to give either

- $\pm \alpha \ln (t+1) \pm \beta \ln (t+2)$
- $\quad \pm \alpha \ln u \pm \beta \ln (u+1) ; \alpha, \beta \neq 0$, where $u=\mathrm{e}^{x}-1$
- $\pm \alpha \ln (v-1) \pm \beta \ln v ; \alpha, \beta \neq 0$, where $v=\mathrm{e}^{x}$

A1:
Correct integration for their method
M1:
Either

- Parametric approach: Deduces and applies limits of 2 and 0 in t and subtracts the correct way round
- Cartesian approach: Deduces and applies limits of 3 and 1 in u, where $u=\mathrm{e}^{x}-1$, and subtracts the correct way round
- Cartesian approach: Deduces and applies limits of 4 and 2 in v, where $v=\mathrm{e}^{x}$, and subtracts the correct way round
A1*: Correctly shows that the area of R is $\ln \left(\frac{3}{2}\right)$, with no errors seen in their working

Question	Scheme		Marks	AOs
37	$\int\left(3 x^{05}+A\right) \mathrm{d} x=2 x^{15}+A x(+c)$		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Uses limits and sets $=2 A^{2} \Rightarrow(2 \times 8+4 A)-(2 \times 1+A)=2 A^{2}$		M1	1.1b
	Sets up quadratic and attempts to solve	Sets up quadratic and attempts $b^{2}-4 a c$	M1	1.1b
	$\Rightarrow A=-2, \frac{7}{2}$ and states that there are two roots	States $b^{2}-4 a c=121>0$ and hence there are two roots	A1	2.4
(5 marks)				
Notes:				
M1: Integrates the given function and achieves an answer of the form $k x^{15}+A x(+c)$ where k a non- zero constant A1: Correct answer but may not be simplified M1: Substitutes in limits and subtracts. This can only be scored if $\int A \mathrm{~d} x=A x$ and not $\frac{A^{2}}{2}$ M1: Sets up quadratic equation in A and either attempts to solve or attempts $b^{2}-4 a c$ A1: Either $A=-2, \frac{7}{2}$ and states that there are two roots Or states $b^{2}-4 a c=121>0$ and hence there are two roots				

Question	Scheme	Marks	AOs
38	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{15}{2} x^{\frac{1}{2}}-9$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & \text { 3.1a } \\ & 1.1 \mathrm{~b} \end{aligned}$
	Substitutes $x=4 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=6$	M1	2.1
	Uses (4,15) and gradient $\Rightarrow y-15=6(x-4)$	M1	2.1
	Equation of l is $y=6 x-9$	A1	1.1b
	Area $R=\int_{0}^{4}\left(5 x^{\frac{3}{2}}-9 x+11\right)-(6 x-9) \mathrm{d} x$	M1	3.1a
	$=\left[2 x^{\frac{5}{2}}-\frac{15}{2} x^{2}+20 x(+c)\right]_{0}^{4}$	A1	1.1 b
	Uses both limits of 4 and 0 $\left[2 x^{\frac{5}{2}}-\frac{15}{2} x^{2}+20 x\right]_{0}^{4}=2 \times 4^{\frac{5}{2}}-\frac{15}{2} \times 4^{2}+20 \times 4-0$	M1	2.1
	Area of $R=24$ *	A1*	1.1b
	Correct notation with good explanations	A1	2.5
		(10)	
(10 marks)			

Question 38 continued

Notes:
M1: Differentiates $5 x^{\frac{3}{2}}-9 x+11$ to a form $A x^{\frac{1}{2}}+B$
A1: $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{15}{2} x^{\frac{1}{2}}-9$ but may not be simplified
M1: Substitutes $x=4$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to find the gradient of the tangent
M1: Uses their gradient and the point $(4,15)$ to find the equation of the tangent
A1: Equation of l is $y=6 x-9$
M1: Uses Area $R=\int_{0}^{4}\left(5 x^{\frac{3}{2}}-9 x+11\right)-(6 x-9) \mathrm{d} x$ following through on their $y=6 x-9$ Look for a form $A x^{\frac{5}{2}}+B x^{2}+C x$
A1: $\quad=\left[2 x^{\frac{5}{2}}-\frac{15}{2} x^{2}+20 x(+c)\right]_{0}^{4}$ This must be correct but may not be simplified
M1: Substitutes in both limits and subtracts
A1*: Correct area for $R=24$
A1: Uses correct notation and produces a well explained and accurate solution. Look for

- Correct notation used consistently and accurately for both differentiation and integration
- Correct explanations in producing the equation of l. See scheme.
- Correct explanation in finding the area of R. In way 2 a diagram may be used.

Alternative method for the area using area under curve and triangles. (Way 2)
M1: \quad Area under curve $=\int_{0}^{4}\left(5 x^{\frac{3}{2}}-9 x+11\right)=\left[A x^{\frac{5}{2}}+B x^{2}+C x\right]_{0}^{4}$
A1: $\quad=\left[2 x^{\frac{5}{2}}-\frac{9}{2} x^{2}+11 x\right]_{0}^{4}=36$
M1: This requires a full method with all triangles found using a correct method

Look for Area $R=$ their $36-\frac{1}{2} \times 15 \times\left(4-\right.$ their $\left.\frac{3}{2}\right)+\frac{1}{2} \times$ their $9 \times$ their $\frac{3}{2}$

Question	Scheme	Marks	AOs
39(a)	Sets $\frac{1}{P(11-2 P)}=\frac{A}{P}+\frac{B}{(11-2 P)}$	B1	1.1a
	Substitutes either $P=0$ or $P=\frac{11}{2}$ into $1=A(11-2 P)+B P \Rightarrow A$ or B	M1	1.1b
	$\frac{1}{P(11-2 P)}=\frac{1 / 11}{P}+\frac{2 / 11}{(11-2 P)}$	A1	1.1b
		(3)	
(b)	Separates the variables $\int \frac{22}{P(11-2 P)} \mathrm{d} P=\int 1 \mathrm{~d} t$	B1	3.1a
	Uses (a) and attempts to integrate $\int \frac{2}{P}+\frac{4}{(11-2 P)} \mathrm{d} P=t+c$	M1	1.1b
	$2 \ln P-2 \ln (11-2 P)=t+c$	A1	1.1b
	Substitutes $t=0, P=1 \Rightarrow t=0, P=1 \Rightarrow c=(-2 \ln 9)$	M1	3.1a
	Substitutes $P=2 \Rightarrow t=2 \ln 2+2 \ln 9-2 \ln 7$	M1	3.1a
	Time $=1.89$ years	A1	3.2a
		(6)	
(c)	$\begin{aligned} & \text { Uses } \ln \text { laws } \quad 2 \ln P-2 \ln (11-2 P)=t-2 \ln 9 \\ & \Rightarrow \ln \left(\frac{9 P}{11-2 P}\right)=\frac{1}{2} t \end{aligned}$	M1	2.1
	$\begin{aligned} & \text { Makes 'P' the subject } \left.\begin{array}{rl} \Rightarrow\left(\frac{9 P}{11-2 P}\right)=\mathrm{e}^{\frac{1}{2} t} \\ \Rightarrow & 9 P=(11-2 P) \mathrm{e}^{\frac{1}{2} t} \\ \Rightarrow & P=\mathrm{f}\left(\mathrm{e}^{\frac{1}{2} t}\right) \text { or } \Rightarrow P=\mathrm{f}\left(\mathrm{e}^{-\frac{1}{2} t}\right) \end{array}\right) . \end{aligned}$	M1	2.1
	$\Rightarrow P=\frac{11}{2+9 \mathrm{e}^{-\frac{1}{2} t}} \Rightarrow A=11, B=2, C=9$	A1	1.1b
		(3)	
(12 marks)			

Question 39 continued

Notes:
(a)

B1: \quad Sets $\frac{1}{P(11-2 P)}=\frac{A}{P}+\frac{B}{(11-2 P)}$
M1: Substitutes $P=0$ or $P=\frac{11}{2}$ into $1=A(11-2 P)+B P \Rightarrow A$ or B
Alternatively compares terms to set up and solve two simultaneous equations in A and B
A1: $\quad \frac{1}{P(11-2 P)}=\frac{1 / 11}{P}+\frac{2 / 11}{(11-2 P)}$ or equivalent $\frac{1}{P(11-2 P)}=\frac{1}{11 P}+\frac{2}{11(11-2 P)}$
Note: The correct answer with no working scores all three marks.
(b)

B1: Separates the variables to reach $\int \frac{22}{P(11-2 P)} \mathrm{d} P=\int 1 \mathrm{~d} t$ or equivalent
M1: Uses part (a) and $\int \frac{A}{P}+\frac{B}{(11-2 P)} \mathrm{d} P=A \ln P \pm C \ln (11-2 P)$
A1: Integrates both sides to form a correct equation including a ' c ' Eg $2 \ln P-2 \ln (11-2 P)=t+c$
M1: \quad Substitutes $t=0$ and $P=1$ to find c
M1: Substitutes $P=2$ to find t. This is dependent upon having scored both previous M's
A1: \quad Time $=1.89$ years
(c)

M1: Uses correct \log laws to move from $2 \ln P-2 \ln (11-2 P)=t+c$ to $\ln \left(\frac{P}{11-2 P}\right)=\frac{1}{2} t+d$ for their numerical ' c '
M1: Uses a correct method to get P in terms of $\mathrm{e}^{\frac{1}{2} t}$ This can be achieved from $\ln \left(\frac{P}{11-2 P}\right)=\frac{1}{2} t+d \Rightarrow \frac{P}{11-2 P}=\mathrm{e}^{\frac{1}{2} t+d}$ followed by cross multiplication and collection of terms in P (See scheme)
Alternatively uses a correct method to get P in terms of e ${ }^{-\frac{1}{2} t}$ For example $\frac{P}{11-2 P}=\mathrm{e}^{\frac{1}{2} t+d} \Rightarrow \frac{11-2 P}{P}=\mathrm{e}^{-\left(\frac{1}{2} t+d\right)} \Rightarrow \frac{11}{P}-2=\mathrm{e}^{-\left(\frac{1}{2} t+d\right)} \Rightarrow \frac{11}{P}=2+\mathrm{e}^{-\left(\frac{1}{2} t+d\right)}$ followed by division
A1: Achieves the correct answer in the form required. $P=\frac{11}{2+9 \mathrm{e}^{-\frac{1}{2} t}} \Rightarrow A=11, B=2, C=9$ oe

Question Number	Scheme		Marks
40.	$2 x^{1.5}-3 x^{2}+4 x+c$	M1: For $x^{n} \rightarrow x^{n+1}$ i.e. $x^{1.5}$ or x^{2} or x seen (not for " $+c$ ")	M1A1A1
		A1: For two out of three terms correct un-simplified or simplified (Ignore $+c$ for this mark)	
		A1: cao $2 x^{1.5}-3 x^{2}+4 x+c$. All correct and simplified and on one line including " +c ". Allow $\sqrt{x^{3}}$ for $x^{1.5}$ but not x^{1} for x.	
	Ignore any spurious integral signs.		
			(3)
			(3 marks)

Question Number	Scheme		Marks
41.(a)	$\begin{gathered} (x-3)(3 x+5)=3 x^{2}-4 x-15 \\ \text { Allow } 3 x^{2}+5 x-9 x-15 \end{gathered}$	Correct expansion simplified or unsimplified.	B1
	$\mathrm{f}(x)=x^{3}-2 x^{2}-15 x+c$	M1: $x^{n} \rightarrow x^{n+1}$ for any term. Follow through on incorrect indices but not for " $+c$ "	M1A1
		A1: All terms correct. Need not be simplified. No need for $+c$ here.	
	$\begin{aligned} x=1, y=20 & \Rightarrow 20=1-2-15+c \\ & \Rightarrow c=36 \end{aligned}$	Substitutes $x=1$ and $y=20$ into their $\mathrm{f}(x)$ to find c. Must have $+c$ at this stage. Dependent on the first method mark.	dM1
	$(\mathrm{f}(x)=) x^{3}-2 x^{2}-15 x+36$	Cao $(\mathrm{f}(x)=) x^{3}-2 x^{2}-15 x+36$ (All together and on one line)	A1
			(5)
(b) Way 1	$A=4$	Correct value (may be implied)	B1
	$\begin{gathered} \mathrm{f}(x)=(x-3)^{2}(x+A)=\left(x^{2}-6 x+9\right)(x+A) \\ \mathrm{f}(x)=x^{3}+(A-6) x^{2}+(9-6 A) x+9 A \\ A-6=-2 \Rightarrow A=4 \quad 9-6 A=-15 \Rightarrow A=4 \quad 9 A=36 \Rightarrow A=4 \end{gathered}$ M1: Expands $(x-3)^{2}(x+A)$ and compares coefficients with their $\mathrm{f}(x)$ from part (a) to form 3 equations and attempts to solve at least two of them in an attempt to show that A is the same in each case or substitutes their A to show that the coefficients are the same. A1: Fully correct proof - must use all 3 coefficients		M1A1
			(3)
Way 2	$A=4$	Correct value (may be implied)	B1
	$\begin{gathered} \mathrm{f}(x)=(x-3)^{2}(x+4)=\left(x^{2}-6 x+9\right)(x+4) \\ =x^{3}-6 x^{2}+4 x^{2}+9 x-24 x+36=x^{3}-2 x^{2}-15 x+36 \end{gathered}$ M1: Expands $(x-3)^{2}(x+44$ ") fully in an attempt to show that the expansion gives the same expression found as found in part (a) A1: Fully correct proof (Condone invisible brackets here e.g. around $x+4$ provided sufficient working is shown)		M1A1
			(3)
Way 3	$A=4$	Correct value (may be implied)	B1
	$\begin{gathered} \left(x^{3}-2 x^{2}-15 x+36\right) \div(x-3)=x^{2}+x-12 \\ \left(x^{2}+x-12\right) \div(x-3)=x+4 \text { or }\left(x^{2}+x-12\right)=(x+4)(x-3) \end{gathered}$ M1: Divides their $\mathrm{f}(x)$ from part (a) by $(x-3)$ and divides their quotient by $(x-3)$ in an attempt to establish the value of A. Alternatively divides their $\mathrm{f}(x)$ from part (a) by $(x-3)^{2}$ (Allow $x^{2} \pm 6 x \pm 9$) in an attempt to establish the value of A. A1: Fully correct proof		M1A1
			(3)
	Note that this is $\begin{array}{r} A=4(\mathrm{ma} \\ x^{3}-2 x^{2}-15 x+36 \\ =(x-3) \\ =(x- \end{array}$	acceptable proof: be implied) $\begin{aligned} & =(x-3)\left(x^{2}+x-12\right) \\ & -3)(x+4) \\ &)^{2}(x+4) \end{aligned}$	

Remember to check the last page for their sketch

41(c)		
	A positive cubic shape. Its position is not important but must be a curve and not straight lines and the "ends" must not clearly turn back in on themselves.	B1
	Touches at the point $(3,0)$ (could be a maximum). Accept 3 marked on the x-axis and accept $(0,3)$ as long as it is in the correct place. Allow $(3,0)$ in the body of the script but it must correspond with the sketch. If ambiguous, the sketch takes precedence.	B1
	Crosses or reaches the x-axis at $(-4,0)$. Accept -4 marked on the x-axis and accept $(0,-4)$ as long as it is in the correct place. FT on their $-A$ from part (b) and allow " $-A$ " and allow a "made up" A. Allow $(-4,0)$ in the body of the script but it must correspond with the sketch. If ambiguous, the sketch takes precedence.	B1ft
	Crosses the y-axis at $(0,36)$ and with a maximum in the second quadrant. Accept 36 marked on the y-axis and accept $(36,0)$ as long as it is in the correct place. FT on their numerical ' c ' from part (a) only. Allow $(0,36)$ in the body of the script but it must correspond with the sketch. If ambiguous, the sketch takes precedence.	B1ft
		(4)
		(12 marks)

Question Number	Scheme		Marks
42.	$\int\left(2 x^{5}-\frac{1}{4} x^{-3}-5\right) \mathrm{d} x$ Ignore any spurious integral signs throughout		
	$x^{n} \rightarrow x^{n+1}$	Raises any of their powers by 1 . E.g. $x^{5} \rightarrow x^{6}$ or $x^{-3} \rightarrow x^{-2}$ or $k \rightarrow k x$ or $x^{\text {their } n} \rightarrow x^{\text {their } n+1}$. Allow the powers to be un-simplified e.g. $x^{5} \rightarrow x^{5+1}$ or $x^{-3} \rightarrow x^{-3+1}$ or $k x^{0} \rightarrow k x^{0+1}$.	M1
	$2 \times \frac{x^{5+1}}{6} \quad$ or $\quad-\frac{1}{4} \times \frac{x^{-3+1}}{-2}$	Any one of the first two terms correct simplified or un-simplified.	A1
	Two of: $\frac{1}{3} x^{6}, \frac{1}{8} x^{-2},-5 x$	Any two correct simplified terms. Accept $+\frac{1}{8 x^{2}}$ for $+\frac{1}{8} x^{-2}$ but not x^{1} for x. Accept 0.125 for $\frac{1}{8}$ but $\frac{1}{3}$ would clearly need to be identified as 0.3 recurring.	A1
	$\frac{1}{3} x^{6}+\frac{1}{8} x^{-2}-5 x+c$	All correct and simplified and including $+c$ all on one line. Accept $+\frac{1}{8 x^{2}}$ for $+\frac{1}{8} x^{-2}$ but not x^{1} for x. Apply isw here.	A1
			(4 marks)

Question Number	Scheme		Marks
43	Allow the marks in (b) to score in (a) i.e. mark (a) and (b) together		M1A1A1
	$\Rightarrow \mathrm{f}(x)=30 x+6 \frac{x^{\frac{1}{2}}}{0.5}-5 \frac{x^{\frac{5}{2}}}{2.5}(+c)$	$\begin{aligned} & \text { M1: } 30 \rightarrow 30 x \text { or } \frac{6}{\sqrt{x}} \rightarrow \alpha x^{\frac{1}{2}} \text { or } \\ & -\frac{5 x^{2}}{\sqrt{x}} \rightarrow \beta x^{\frac{5}{2}} \text { (these cases only) } \end{aligned}$	
		A1: Any 2 correct terms which can be simplified or un-simplified. This includes the powers - so allow $-\frac{1}{2}+1$ for $\frac{1}{2}$ and allow $\frac{3}{2}+1$ for $\frac{5}{2}$ (With or without $+c$)	
		A1: All 3 terms correct which can be simplified or un-simplified. (With or without $+c$)	
	Ignore any spurious integral signs		
	$\begin{gathered} x=4, \mathrm{f}(x)=-8 \Rightarrow \\ -8=120+24-64+c \Rightarrow c=\ldots \end{gathered}$	Substitutes $x=4, \mathrm{f}(x)=-8$ into their $\mathrm{f}(x)$ (not $\left.\mathrm{f}^{\prime}(x)\right)$ i.e. a changed $\mathrm{f}^{\prime}(x)$ containing $+c$ and rearranges to obtain a value or numerical expression for c.	M1
	$\Rightarrow(\mathrm{f}(x)=) 30 x+12 x^{\frac{1}{2}}-2 x^{\frac{5}{2}}-88$	Cao and cso (Allow \sqrt{x} for $x^{\frac{1}{2}}$ and e.g. $\sqrt{x^{5}}$ or $x^{2} \sqrt{x}$ for $x^{\frac{5}{2}}$). Isw here so as soon as you see the correct answer, award this mark. Note that the " $\mathrm{f}(x)="$ is not needed.	A1
			(5)
			(5 marks)

Question Number	Scheme	Notes	Marks
44		$\int\left(2 x^{4}-\frac{4}{\sqrt{x}}+3\right) \mathrm{d} x$	
	$\frac{2}{5} x^{5}-\frac{4}{\frac{1}{2}} x^{\frac{1}{2}}+3 x$	M1: $x^{n} \rightarrow x^{n+1}$. One power increased by 1 but not for just $+c$. This could be for $3 \rightarrow 3 x$ or for $x^{n} \rightarrow x^{n+1}$ on what they think $\frac{1}{\sqrt{x}}$ is as a power of x.	M1A1A1
		A1: One of these 3 terms correct. Allow un-simplified e.g. $\frac{2 x^{4+1}}{4+1},-\frac{4 x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}, 3 x^{1}$	
		A1: Two of these 3 terms correct. Allow un-simplified e.g. $\frac{2 x^{4+1}}{4+1},-\frac{4 x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}, 3 x^{1}$	
	$=\frac{2}{5} x^{5}-8 x^{\frac{1}{2}}+3 x+c$	Complete fully correct simplified expression appearing all on one line with constant. Allow 0.4 for $\frac{2}{5}$. Do not allow $3 x^{1}$ for $3 x$ Allow \sqrt{x} or $x^{0.5}$ for $x^{\frac{1}{2}}$	A1
	Ignore any spurious integral signs and ignore subsequent working following a fully correct answer.		
			[4]
			4 marks

Question Number	Scheme		Marks
45.	$y=4 x^{3}-\frac{5}{x^{2}}$		
	$x^{4}+\frac{5}{x}+c$ or $x^{4}+5 x^{-1}+c$	M1: $x^{n} \rightarrow x^{n+1}$. e.g. Sight of x^{4} or x^{-1} or $\frac{1}{x^{1}}$ Do not award for integrating their answer to part (a) A1: $4 \frac{x^{4}}{4}$ or $-5 \times \frac{x^{-1}}{-1}$ A1: For fully correct and simplified answer with +c all on one line. Allow $x^{4}+5 \times \frac{1}{x}+c$ Allow $1 x^{4}$ for x^{4}	M1A1A1
	Apply ISW here and award marks when first seen. Ignore spurious integral signs for all marks.		
			(3)
			(3 marks)

Question Number	Scheme		Marks
46	$\mathrm{f}(x)=x^{\frac{3}{2}}-\frac{9}{2} x^{\frac{1}{2}}+2 x(+c)$	M1: $x^{n} \rightarrow x^{n+1}$	M1A1A1
		A1: Two terms in x correct, simplification is not required in coefficients or powers	
		A1: All terms in x correct. Simplification not required in coefficients or powers and +c is not required	
	Sub $x=4, y=9$ into $\mathrm{f}(x) \Rightarrow c=\ldots$	M1: Sub $x=4, y=9$ into $\mathrm{f}(x)$ to obtain a value for c. If no $+c$ then M0. Use of $x=9, y=4$ is M0.	M1
	$(\mathrm{f}(x)=) x^{\frac{3}{2}}-\frac{9}{2} x^{\frac{1}{2}}+2 x+2 \quad \begin{aligned} & \text { Acc } \\ & \text { sim } \\ & \text { Mu } \\ & \text { All }\end{aligned}$	t equivalents but must be fied e.g. $\mathrm{f}(x)=x^{\frac{3}{2}}-4.5 \sqrt{x}+2 x+2$ be all 'on one line' and simplified. $x \sqrt{x}$ for $x^{\frac{3}{2}}$	A1
			(5)
			(5 marks)

Question Number	Scheme	Marks
47.	$\int\left(8 x^{3}+4\right) \mathrm{d} x=\frac{8 x^{4}}{4}+4 x$	
$=2 x^{4}+4 x+c$	M1, A1	
		A1

Notes

M1 $\quad x^{n} \rightarrow x^{n+1}$ so $x^{3} \rightarrow x^{4}$ or $4 \rightarrow 4 x$ or $4 x^{1}$
A1 This is for either term with coefficient unsimplified (power must be simplified)- so $\frac{8}{4} x^{4}$ or $4 x$ (accept $4 x^{1}$)

A1 Fully correct simplified solution with c i.e. $2 x^{4}+4 x+c \quad$ [allow $2 x^{4}+4 x+c x^{0}$]

If the answer is given as $\int 2 x^{4}+4 x+c$, with an integral sign - having never been seen as the fully correct simplified answer without an integral sign - then give M1A1A0 but allow anything before the $=$ sign e.g. $y=2 x^{4}+4 x+c, \mathrm{f}(x)=2 x^{4}+4 x+c, \int=2 x^{4}+4 x+c$, etc \ldots.

If this answer is followed by (for example) $x^{4}+2 x+k$ then treat this as isw (ignore subsequent work) If they follow it by finding a value for c, also isw, provided correct answer with c has been seen and credited

Question Number	Scheme	Marks
48.	$\mathrm{f}(x)=\int\left(\frac{3}{8} x^{2}-10 x^{-\frac{1}{2}}+1\right) \mathrm{d} x$	
	$x^{n} \rightarrow x^{n+1} \Rightarrow \mathrm{f}(x)=\frac{3}{8} \times \frac{x^{3}}{3}-10 \frac{x^{\frac{1}{2}}}{\frac{1}{2}}+x(+c)$	
Substitute $x=4, y=25 \Rightarrow 25=8-40+4+c \Rightarrow c=$	M1, A1, A1	
$(\mathrm{f}(x))=\frac{x^{3}}{8}-20 x^{\frac{1}{2}}+x+53$	A1	

Notes

M1 Attempt to integrate $x^{n} \rightarrow x^{n+1}$
A1 Term in x^{3} or term in $x^{\frac{1}{2}}$ correct, coefficient need not be simplified, no need for $+x$ nor +c
A1 ALL three terms correct, coefficients need not be simplified, no need for +c
M1 For using $x=4, y=25$ in their $\mathrm{f}(x)$ to form a linear equation in c and attempt to find c
A1 $=\frac{x^{3}}{8}-20 x^{\frac{1}{2}}+x+53$ cao (all coefficients and powers must be simplified to give this answer- do not need a left hand side and if there is one it may be $\mathrm{f}(x)$ or y). Need full expression with 53 These marks need to be scored in part (a)

Question Number	Scheme	Marks		
49	$\int 2 x^{5}+\frac{6}{\sqrt{x}} \mathrm{~d} x$	$x^{n} \rightarrow x^{n+1}$	M1	M1 A1
:---				

M1 For $x^{n} \rightarrow x^{n+1}$. ie. x^{6} or $x^{\frac{1}{2}}$ or (\sqrt{x}) seen
Do not award for integrating their answer to part (a)
A1 For either $2 \frac{x^{6}}{6}$ or $6 \times \frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or simplified or unsimplified equivalents
A1 For fully correct and simplified answer with $+c$.

B1 $x \sqrt{x}=x^{\frac{3}{2}}$. This may be implied by $+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}$ oe in the subsequent work.
M1 $\quad x^{n} \rightarrow x^{n+1}$ in at least one case so see either $x^{\frac{1}{2}}$ or $x^{\frac{5}{2}}$ or both
A1 One term integrated correctly. It does not have to be simplified Eg. $\frac{6}{\frac{1}{2}} x^{\frac{1}{2}}$ or $+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}$.
No need for $+c$
A1 Other term integrated correctly. See above. No need to simplify nor for $+c$. Need to see $\frac{6}{\frac{1}{2}} x^{\frac{1}{2}}+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}$ or a simplified correct version

M1 Substitute $x=4, y=37$ to produce an equation in c.
A1 Correctly calculates $c=\frac{1}{5}$ or equivalent e.g. 0.2
A1 cso $y=12 x^{\frac{1}{2}}+\frac{2}{5} x^{\frac{5}{2}}+\frac{1}{5}$. Allow $5 y=60 x^{\frac{1}{2}}+2 x^{\frac{5}{2}}+1$ and accept fully simplified equivalents.
e.g. $y=\frac{1}{5}\left(60 x^{\frac{1}{2}}+2 x^{\frac{5}{2}}+1\right), y=12 \sqrt{x}+\frac{2}{5} \sqrt{x^{5}}+\frac{1}{5}$

Question Number	Scheme	Notes	Marks
54	$\mathrm{f}^{\prime}(x)=\frac{x+9}{\sqrt{x}}=\frac{x}{\sqrt{x}}+\frac{9}{\sqrt{x}}=x^{\frac{1}{2}}+9 x^{-\frac{1}{2}}$	M1: Correct attempt to split into 2 separate terms or fractions. May be implied by one correct term. Divides by $x^{\frac{1}{2}}$ or multiplies by $x^{-\frac{1}{2}}$.	M1A1
		A1: $x^{\frac{1}{2}}+9 x^{-\frac{1}{2}}$ or equivalent	
	$\mathrm{f}(x)=\frac{x^{\frac{3}{2}}}{2}+9 \frac{x^{\frac{1}{2}}}{1}(+c)$	M1: Independent method mark for $x^{\mathrm{n}} \rightarrow x^{\mathrm{n}+1}$ on separate terms	M1A1
	$\begin{array}{ll} \frac{3}{2} & \frac{1}{2} \\ \hline \end{array}$	A1: Allow un-simplified answers. No requirement for +c here	
	$\frac{(9)^{\frac{3}{2}}}{\frac{3}{2}}+9 \frac{(9)^{\frac{1}{2}}}{\frac{1}{2}}+c=0 \Rightarrow c=\ldots$	Substitutes $x=9$ and $y=0$ into their integrated expression leading to a value for c. If no c at this stage M0A0 follows unless their method implies that they are correctly finding a constant of integration.	M1
	$\mathrm{f}(x)=\frac{2}{3} x^{\frac{3}{2}}+18 x^{\frac{1}{2}}-72$	There is no requirement to simplify their $\mathrm{f}(x)$ so accept any correct un-simplified form.	A1
			(6)

Question Number	Scheme ${ }_{\text {a }}$ Marks
56.	$\begin{aligned} \left\{\int\left(6 x^{2}+\frac{2}{x^{2}}+5\right) \mathrm{d} x\right\} & =\frac{6 x^{3}}{3}+\frac{2 x^{-1}}{-1}+5 x(+c) \\ & =2 x^{3}-2 x^{-1} ;+5 x+c \end{aligned}$
	Notes
	M1: for some attempt to integrate a term in $x: x^{n} \rightarrow x^{n+1}$ So seeing either $6 x^{2} \rightarrow \pm \lambda x^{3}$ or $\frac{2}{x^{2}} \rightarrow \pm \mu x^{-1}$ or $5 \rightarrow 5 x$ is M1. $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct un-simplified x^{3} or $x^{-1}\left(\right.$ or $\left.\frac{1}{x}\right)$ term. $\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for both x^{3} and x^{-1} terms correct and simplified on the same line. Ie. $2 x^{3}-2 x^{-1}$ or $2 x^{3}-\frac{2}{x}$. $\mathbf{3}^{\text {rd }} \mathbf{A 1}$: for $+5 x+c$. Also allow $+5 x^{1}+c$. This needs to be written on the same line. Ignore the incorrect use of the integral sign in candidates' responses. Note: If a candidate scores M1A1A1A1 and their answer is NOT ON THE SAME LINE then withhold the final accuracy mark.

Question Number	Scheme ${ }^{\text {a }}$ Marks
57	$\begin{aligned} & \mathrm{f}(x)=\frac{x^{1+1}}{2(2)}-\frac{6 x^{-\frac{1}{2}+1}}{\left(\frac{1}{2}\right)}+3 x(+c) \\ & \{\mathrm{f}(4)=-1 \Rightarrow\} \frac{16}{4}-12(2)+3(4)+c=-1 \\ & \{4-24+12+c=-1 \Rightarrow c=7\} \end{aligned}$ So, $\{\mathrm{f}(x)=\} \frac{x^{2}}{2(2)}-\frac{6 x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}+3 x+7$ A1 cso $\left\{\mathrm{NB}: \mathrm{f}(x)=\frac{x^{2}}{4}-12 \sqrt{x}+3 x+7\right\}$
	Notes
57	$\mathbf{1}^{\text {st }} \mathbf{M 1}$: for a clear attempt to integrate $f^{\prime}()$ with at least one correct application of $x^{n} \rightarrow x^{n+1} \text { on } \mathrm{f}^{\prime}(x)=\frac{1}{2} x-\frac{6}{\sqrt{x}}+3$ So seeing either $\frac{1}{2} x \rightarrow \pm \lambda x^{1+1}$ or $-\frac{6}{\sqrt{x}} \rightarrow \pm \mu x^{-\frac{1}{2}+1}$ or $3 \rightarrow 3 x^{0+1}$ is M1. $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for correct un-simplified coefficients and powers (or equivalent) with or without $+c$. $\mathbf{2}^{\text {nd }} \mathbf{d M 1}$: for use of $x=4$ and $y=-1$ in an integrated equation to form a linear equation in c equal to -1 . ie: applying $f(4)=-1$. This mark is dependent on the first method mark being awarded. A1: For $\{\mathrm{f}(x)=\} \frac{x^{2}}{2(2)}-\frac{6 x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}+3 x+7$ stated on one line where coefficients can be un-simplified or simplified, but must contain one term powers. Note this mark is for correct solution only. Note: For a candidate attempting to find $f(x)$ in part (a) If it is clear that they understand that they are finding $\mathrm{f}(x)$ in part (a); ie. by writing $\mathrm{f}(x)=\ldots$ or $y=\ldots$ then you can give credit for this working in part (b).

Question Number	Scheme ${ }^{\text {a }}$
60.	$\begin{array}{r} \left(\int=\right) \frac{2 x^{6}}{6}+7 x+\frac{x^{-2}}{-2}=\frac{x^{6}}{3}+7 x-\frac{x^{-2}}{2} \\ +C \tag{4} \end{array}$ M1 A1 A1
	Notes M1: Attempt to integrate $x^{n} \rightarrow x^{n+1}$ (i.e. $a x^{6}$ or $a x$ or $a x^{-2}$, where a is any non-zero constant). $1^{\text {st }} \mathrm{A} 1$: Two correct terms, possibly unsimplified. $2^{\text {nd }}$ A1: All three terms correct and simplified. Allow correct equivalents to printed answer, e.g. $\frac{x^{6}}{3}+7 x-\frac{1}{2 x^{2}}$ or $\frac{1}{3} x^{6}+7 x-\frac{1}{2} x^{-2}$ Allow $\frac{1 x^{6}}{3}$ or $7 x^{1}$ B1: $+C$ appearing at any stage in part (b) (independent of previous work)

Question Number	Scheme	Marks
61. (a)	$p=\frac{1}{2}, q=2 \quad$ or $\quad 6 x^{\frac{1}{2}}, 3 x^{2}$	B1, B1 (2)
(b)	$\begin{aligned} & \frac{6 x^{\frac{3}{2}}}{(3 / 2)}+\frac{3 x^{3}}{3} \quad\left(=4 x^{\frac{3}{2}}+x^{3}\right) \\ & x=4, y=90: 32+64+C=90 \Rightarrow C=-6 \\ & y=4 x^{\frac{3}{2}}+x^{3}+\text { "their }-6 " \end{aligned}$	M1 A1ft M1 A1 A1 (5)
	Notes	
	(a) Accept any equivalent answers, e.g. $p=0.5, q=4 / 2$ (b) $1^{\text {st }} \mathrm{M}$: Attempt to integrate $x^{n} \rightarrow x^{n+1}$ (for either term) $1^{\text {st }} \mathrm{A}$: ft their p and q, but terms need not be simplified ($+C$ not required for this mark) $2^{\text {nd }} \mathrm{M}$: Using $x=4$ and $y=90$ to form an equation in C. $2^{\text {nd }} A$: cao $3^{\text {rd }} \mathrm{A}$: answer as shown with simplified correct coefficients and powers - but follow through their value for C If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). Numerator and denominator integrated separately: First M mark cannot be awarded so only mark available is second M mark. So 1 out of 5 marks.	

Question Number	Scheme Marks
62.	$\begin{aligned} & \left(\int=\right) \frac{12 x^{6}}{6},-\frac{3 x^{3}}{3},+\frac{4 x^{\frac{4}{3}}}{\frac{4}{3}},(+c) \\ & =2 x^{6}-x^{3}+3 x^{\frac{4}{3}}+c \end{aligned}$ M1A1,A1,A1
	Notes
	M1 for some attempt to integrate: $x^{n} \rightarrow x^{n+1}$ i.e $a x^{6}$ or $a x^{3}$ or $a x^{\frac{4}{3}}$ or $a x^{\frac{1}{3}}$, where a is a non zero constant $1^{\text {st }}$ A1 for $\frac{12 x^{6}}{6}$ or better $2^{\text {nd }}$ A1 for $-\frac{3 x^{3}}{3}$ or better $3^{\text {rd }} \mathrm{A} 1$ for $\frac{4 x^{\frac{4}{3}}}{\frac{4}{3}}$ or better $4^{\text {th }}$ A1 for each term correct and simplified and the $+c$ occurring in the final answer

Question Number	Scheme	Marks
63.	$\begin{aligned} & (\mathrm{f}(x)=) \frac{12 x^{3}}{3}-\frac{8 x^{2}}{2}+x(+c) \\ & (\mathrm{f}(-1)=0 \Rightarrow) 0=4 \times(-1)-4 \times 1-1+c \\ & c=\underline{9} \\ & {\left[\mathrm{f}(x)=4 x^{3}-4 x^{2}+x+9\right]} \end{aligned}$	M1 A1 A1 M1 A1
	Notes	
	$\begin{aligned} & 1^{\text {st }} \text { M1 for an attempt to integrate } x^{n} \rightarrow x^{n+1} \\ & 1^{\text {st }} \text { A1 for at least } 2 \text { terms in } x \text { correct - needn't be simplified, ignore }+c \\ & 2^{\text {nd }} \text { A1 for all the terms in } x \text { correct but they need not be simplified. No } \\ & \text { need for }+c \\ & 2^{\text {nd }} \text { M1 for using } x=-1 \text { and } y=0 \text { to form a linear equation in } c \text {. No }+c \text { gets } \\ & \text { M0A0 } \\ & 3^{\text {rd }} \text { A1 for } c=9 \text {. Final form of } \mathrm{f}(x) \text { is not required. } \end{aligned}$	

Question Number	Scheme ${ }^{\text {a }}$ Marks
65. (a) (b)	$(y=) \frac{3 x^{2}}{2}-\frac{5 x^{\frac{1}{2}}}{\frac{1}{2}}-2 x \quad(+c)$ M1A1A1 $\mathrm{f}(4)=5 \Rightarrow 5=\frac{3}{2} \times 16-10 \times 2-8+c$ $\left[\mathrm{f}(x)=\frac{3}{2} x^{2}-10 x^{\frac{1}{2}}-2 x+9\right]$ $m=3 \times 4-\frac{5}{2}-2\left(=7.5\right.$ or $\left.\frac{15}{2}\right)$ M1 Equation is: $y-5=\frac{15}{2}(x-4)$ A1 (5) $\qquad 2 y-15 x+50=0$ o.e.
(a) (b) Normal	$1^{\text {st }} \mathrm{M} 1$ for an attempt to integrate $x^{n} \rightarrow x^{n+1}$ $1^{\text {st }} \mathrm{A} 1$ for at least 2 correct terms in x (unsimplified) $2^{\text {nd }} \mathrm{A} 1$ for all 3 terms in x correct (condone missing $+c$ at this point). Needn't be simplified $2^{\text {nd }}$ M1 for using the point $(4,5)$ to form a linear equation for c. Must use $x=4$ and $y=5$ and have no x term and the function must have "changed". $3^{\text {rd }}$ A1 for $c=9$. The final expression is not required. $1^{\text {st }}$ M1 for an attempt to evaluate $\mathrm{f}^{\prime}(4)$. Some correct use of $x=4$ in $\mathrm{f}^{\prime}(x)$ but condone slips. They must therefore have at least 3×4 or $-\frac{5}{2}$ and clearly be using $\mathrm{f}^{\prime}(x)$ with $x=4$. Award this mark wherever it is seen. $2^{\text {nd }}$ M1 for using their value of m [or their $-\frac{1}{m}$] (provided it clearly comes from using $x=4$ in $\mathrm{f}^{\prime}(x)$) to form an equation of the line through $(4,5)$). Allow this mark for an attempt at a normal or tangent. Their m must be numerical. Use of $y=m x+c$ scores this mark when c is found. $1^{\text {st }}$ A1 for any correct expression for the equation of the line $2^{\text {nd }} \mathrm{A} 1$ for any correct equation with integer coefficients. An " $=$ " is required. e.g. $2 y=15 x-50$ etc as long as the equation is correct and has integer coefficients. Attempt at normal can score both M marks in (b) but A0A0

Question number	Scheme	Marks
66	$x \sqrt{x}=x^{\frac{3}{2}} \quad$ (Seen, or implied by correct integration) $x^{-1 / 2} \rightarrow k x^{1 / 2}$ or $x^{3 / 2} \rightarrow k x^{5 / 2}$ (k a non-zero constant) $(y=) \frac{5 x^{1 / 2}}{1 / 2} \cdots+\frac{x^{5 / 2}}{5 / 2}(+C) \quad(" y="$ and " $+C$ " are not required for these marks $)$ $35=\frac{5 \times 4^{1 / 2}}{1 / 2}+\frac{4^{5 / 2}}{5 / 2}+C \quad$ An equation in C is required (see conditions below). (With their terms simplified or unsimplified). $C=\frac{11}{5} \quad$ or equivalent $\quad 2 \frac{1}{5}, 2.2$ $y=10 x^{1 / 2}+\frac{2 x^{5 / 2}}{5}+\frac{11}{5}$ (Or equivalent simplified) I.s.w. if necessary, e.g. $y=10 x^{1 / 2}+\frac{2 x^{5 / 2}}{5}+\frac{11}{5}=50 x^{1 / 2}+2 x^{5 / 2}+11$ The final A mark requires an equation " $y=\ldots$..." with correct x terms (see below).	B1 M1 A1... A1 M1 A1 A1 ft
	B mark: $x^{\frac{3}{2}}$ often appears from integration of \sqrt{x}, which is B 0 . $1^{\text {st }} \mathrm{A}$: Any unsimplified or simplified correct form, e.g. $\frac{5 \sqrt{x}}{0.5}$. $2^{\text {nd }}$ A: Any unsimplified or simplified correct form, e.g. $\frac{x^{2} \sqrt{x}}{2.5}, \frac{2(\sqrt{x})^{5}}{5}$. $2^{\text {nd }} \mathrm{M}$: Attempting to use $x=4$ and $y=35$ in a changed function (even if differentiated) to form an equation in C. $3^{\text {rd }} \mathrm{A}$: Obtaining $C=\frac{11}{5}$ with no earlier incorrect work. 4th A: Follow-through only the value of C (i.e. the other terms must be correct). Accept equivalent simplified terms such as $10 \sqrt{x}+0.4 x^{2} \sqrt{x} \ldots$	

Question Number	Scheme	Marks
67	$\begin{aligned} & \frac{2 x^{4}}{4}+\frac{3 x^{-1}}{-1}(+C) \\ & \frac{x^{4}}{2}-3 x^{-1}+C \end{aligned}$	M1 A1 A1 (3) [3]
	M1 for some attempt to integrate an x term of the given $y . \quad x^{n} \rightarrow x^{n+1}$ $1^{\text {st }}$ A1 for both x terms correct but unsimplified- as printed or better. Ignore $+c$ here $2^{\text {nd }}$ A1 for both x terms correct and simplified and $+c$. Accept $-\frac{3}{x}$ but NOT $+-3 x^{-1}$ Condone the $+c$ appearing on the first (unsimplified) line but missing on the final (simplified) line Apply ISW if a correct answer is seen If part (b) is attempted first and this is clearly labelled then apply the scheme and allow the marks. Otherwise assume the first solution is for part (a).	

Question Number	Scheme	Marks
68	$\begin{aligned} & (I=) \frac{12}{6} x^{6}-\frac{8}{4} x^{4}+3 x+c \\ & =2 x^{6}-2 x^{4}+3 x+c \end{aligned}$	M1 A1A1A1 [4]
	M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$ (i.e. $a x^{6}$ or $a x^{4}$ or $a x$, where a is any non-zero constant). Also, this M mark can be scored for just the $+c$ (seen at some stage), even if no other terms are correct. $1^{\text {st }}$ A1 for $2 x^{6}$ $2^{\text {nd }}$ A1 for $-2 x^{4}$ $3^{\text {rd }} \mathrm{A} 1$ for $3 x+c$ (or $3 x+k$, etc., any appropriate letter can be used as the constant) Allow $3 x^{1}+c$, but not $\frac{3 x^{1}}{1}+c$. Note that the A marks can be awarded at separate stages, e.g. $\begin{array}{ll} \frac{12}{6} x^{6}-2 x^{4}+3 x & \text { scores } 2^{\text {nd }} \mathrm{A} 1 \\ \frac{12}{6} x^{6}-2 x^{4}+3 x+c & \text { scores } 3^{\text {rd }} \mathrm{A} 1 \\ 2 x^{6}-2 x^{4}+3 x & \text { scores } 1^{\text {st }} \mathrm{A} 1 \text { (even though the } c \text { has now been lost). } \end{array}$ Remember that all the A marks are dependent on the M mark. If applicable, isw (ignore subsequent working) after a correct answer is seen. Ignore wrong notation if the intention is clear, e.g. Answer $\int 2 x^{6}-2 x^{4}+3 x+c \mathrm{~d} x$.	

Question Number	Scheme	Marks
69	$\begin{aligned} & \begin{aligned} (\mathrm{f}(x) & =) \frac{3 x^{3}}{3}-\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}-7 x(+c) \\ & =x^{3}-2 x^{\frac{3}{2}}-7 x \quad(+c) \\ \mathrm{f}(4) & =22 \Rightarrow 22=64-16-28+c \\ c & =2 \end{aligned} \end{aligned}$	M1 AlA1 M1 Alcso (5)
	$1^{\text {st }}$ M1 for an attempt to integrate (x^{3} or $x^{\frac{3}{2}}$ seen). The x term is insufficient for this mark and similarly the $+c$ is insufficient. $1^{\text {st }}$ A1 for $\frac{3}{3} x^{3}$ or $-\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form) $2^{\text {nd }}$ A1 for all three x terms correct and simplified... (the simplification may be seen later). The $+c$ is not required for this mark. Allow $-7 x^{1}$, but not $-\frac{7 x^{1}}{1}$. $2^{\text {nd }}$ M1 for an attempt to use $x=4$ and $y=22$ in a changed function (even if differentiated) to form an equation in c. $3^{\text {rd }}$ A1 for $c=2$ with no earlier incorrect work (a final expression for $\mathrm{f}(x)$ is not required).	

Question number	Scheme ${ }^{\text {a }}$
70.	$2 x+\frac{5}{3} x^{3}+c$ M1A1A1
	M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$. Can be given if $+c$ is only correct term. $1^{\text {st }}$ A1 for $\frac{5}{3} x^{3}$ or $2 x+c$. Accept $1 \frac{2}{3}$ for $\frac{5}{3}$. Do not accept $\frac{2 x}{1}$ or $2 x^{1}$ as final answer $2^{\text {nd }}$ A1 for as printed (no extra or omitted terms). Accept $1 \frac{2}{3}$ or $1 . \dot{6}$ for $\frac{5}{3}$ but not 1.6 or 1.67 etc Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.67 , the 1.67 is treated as ISW NB M1A0A1 is not possible

Question number	Scheme Marks
71. (a)	$\begin{align*} & \left(x^{2}+3\right)^{2}=x^{4}+3 x^{2}+3 x^{2}+3^{2} \\ & \frac{\left(x^{2}+3\right)^{2}}{x^{2}}=\frac{x^{4}+6 x^{2}+9}{x^{2}}=x^{2}+6+9 x^{-2} \tag{*}\\ & y=\frac{x^{3}}{3}+6 x+\frac{9}{-1} x^{-1}(+c) \tag{2}\\ & 20=\frac{27}{3}+6 \times 3-\frac{9}{3}+c \\ & c=-4 \\ & {[y=] \frac{x^{3}}{3}+6 x-9 x^{-1}-4} \end{align*}$
(a) (b)	M1 for attempting to expand $\left(x^{2}+3\right)^{2}$ and having at least 3(out of the 4) correct terms. A1 at least this should be seen and no incorrect working seen. If they never write $\frac{9}{x^{2}}$ as $9 x^{-2}$ they score A0. $1^{\text {st }}$ M1 for some correct integration, one correct x term as printed or better Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second. $1^{\text {st }}$ A1 for two correct x terms, un-simplified, as printed or better $2^{\text {nd }}$ A1 for a fully correct expression. Terms need not be simplified and $+c$ is not required. No $+c$ loses the next 3 marks $2^{\text {nd }}$ M1 for using $x=3$ and $y=20$ in their expression for $\mathrm{f}(x)\left[\neq \frac{\mathrm{d} y}{\mathrm{~d} x}\right]$ to form a linear equation for c $3^{\text {rd }} \mathrm{A} 1$ for $c=-4$ $4^{\text {th }} \mathrm{A} 1 \mathrm{ft} \quad$ for an expression for y with simplified x terms: $\frac{9}{x}$ for $9 x^{-1}$ is OK . Condone missing " $y=$ " Follow through their numerical value of c only.

Question number	Scheme	Marks
73.	(a) $4 x \rightarrow k x^{2}$ or $6 \sqrt{x} \rightarrow k x^{3 / 2}$ or $\frac{8}{x^{2}} \rightarrow k x^{-1} \quad$ (k a non-zero constant) $\mathrm{f}(x)=2 x^{2},-4 x^{3 / 2},-8 x^{-1} \quad(+C) \quad(+C$ not required $)$ At $x=4, y=1: \quad 1=(2 \times 16)-\left(4 \times 4^{3 / 2}\right)-\left(8 \times 4^{-1}\right)+C \quad$ Must be in part (a) $C=3$ (b) $\mathrm{f}^{\prime}(4)=16-(6 \times 2)+\frac{8}{16}=\frac{9}{2}(=m) \quad\left[\begin{array}{c}\text { M: Attempt } \mathrm{f}^{\prime}(4) \text { with the given } \mathrm{f}^{\prime} . \\ \underline{\text { Must be in part (b) }}\end{array}\right]$ Gradient of normal is $-\frac{2}{9}\left(=-\frac{1}{m}\right) \quad\left[\begin{array}{l}\mathrm{M} \text { : Attempt perp. grad. rule. } \\ \text { Dependent on the use of their } \mathrm{f}^{\prime}(x)\end{array}\right]$ Eqn. of normal: $y-1=-\frac{2}{9}(x-4) \quad$ (or any equiv. form, e.g. $\frac{y-1}{x-4}=-\frac{2}{9}$) Typical answers for A1: $\left(y=-\frac{2}{9} x+\frac{17}{9}\right)(2 x+9 y-17=0)(y=-0 . \dot{2} x+1 . \dot{8})$ Final answer: gradient $-\frac{1}{(9 / 2)}$ or $-\frac{1}{4.5}$ is A0 (but all M marks are available).	$\begin{array}{ll} \text { M1 } & \\ \text { A1, A1, A1 } \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } \\ \\ \text { M1 A1 } \tag{4} \end{array}$
	(a) The first 3 A marks are awarded in the order shown, and the terms must be simplified. 'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common factors. Only a single + or - sign is allowed (e.g. +- must be replaced by -). $2^{\text {nd }}$ M: Using $x=4$ and $y=1$ (not $y=0$) to form an eqn in C. (No C is M0) (b) $2^{\text {nd }} \mathrm{M}$: Dependent upon use of their $\mathrm{f}^{\prime}(x)$. $3^{\text {rd }} \mathrm{M}$: eqn. of a straight line through $(4,1)$ with any gradient except 0 or ∞. Alternative for $3^{\text {rd }} \mathrm{M}$: Using $(4,1)$ in $y=m x+c$ to find a value of c, but an equation (general or specific) must be seen. Having coords the wrong way round, e.g. $y-4=-\frac{2}{9}(x-1)$, loses the $3^{\text {rd }} \mathrm{M}$ mark unless a correct general formula is seen, e.g. $y-y_{1}=m\left(x-x_{1}\right)$. N.B. The A mark is scored for any form of the correct equation... be prepared to apply isw if necessary.	

Question Number	Scheme	Marks
74. (a)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=70 x-35 x^{\frac{3}{2}} \\ & \quad \text { Put } \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text { to give } 70 x-35 x^{\frac{3}{2}}=0 \text { so } x^{\frac{1}{2}}=2 \\ & x=4 \\ & y=112 \end{aligned}$	M1A1 M1 A1 A1 (5)
$\begin{gathered} \text { (b) } \\ \text { (Way 1) } \end{gathered}$	When $y=0, \quad 35 x^{2}=14 x^{\frac{5}{2}}$ and $x^{\frac{1}{2}}=\frac{35}{14}$ or $5=2 \sqrt{x} \quad$ so $\sqrt{x}=\frac{5}{2}$ $x=\frac{25}{4}$	M1 A1 (2)
$\begin{gathered} \text { (b) } \\ \text { (Way 2) } \end{gathered}$	When $y=0, \quad 35 x^{2}=14 x^{\frac{5}{2}}$ so $1225 x^{4}=196 x^{5}$ or $5=2 \sqrt{x}$ so $25=4 x$ $x=\frac{25}{4}$ or $x=\frac{1225}{196}$	M1 A1 (2)
(c) Way 1	$\begin{aligned} & \int 35 x^{2}-14 x^{\frac{-5 "}{2}} \mathrm{~d} x=\frac{35}{3} x^{3}-\frac{14 x^{\frac{\text { "7n }}{2}}}{\frac{" 7 "}{2}}(+c) \\ & {\left[\frac{35}{3} x^{3}-4 x^{\frac{7}{2}}\right]_{4}^{\frac{25}{4}}=406.901 . .-234.667=172.23} \\ & \text { Hence Area }=\text { "their } 112 \times\left(6 \frac{1}{4}-4\right) \text { " }-" 172.23 " \quad \text { or " } 252 "-" 172.23 " \\ & 79.77 \end{aligned}$	dM1 ddM1 A1 (5)
(c) Way 2	$\begin{aligned} & \int " 112 "-\left\{35 x^{2}-14 x^{\frac{5}{2}}\right\} \mathrm{d} x=(112 x)-\frac{35}{3} x^{3}+\frac{14 x^{\frac{7}{2}}}{\frac{7}{2}}(+c) \\ & {\left[(112 x)-\left(\frac{35}{3} x^{3}-4 x^{\frac{7}{2}}\right)\right]_{" 4 "}^{7 \frac{25}{4} "} \text { with correct use of limits }} \end{aligned}$ Integrated their 112 to give $112 x$ with correct use of limits 79.77	$\begin{array}{r} \text { M1A1ft } \\ \text { dM1 } \\ \text { ddM1 } \\ \text { A1 } \\ \text { (5) } \\ {[\mathbf{1 2]}} \\ \hline \end{array}$

Notes

(a)

M1: Attempt at differentiation after multiplying out - may be awarded for $70 x$ term correct
(If product rule is used it must be of correct form i.e. $\frac{\mathrm{d} y}{\mathrm{~d} x}=7 x^{2}\left(-2 k x^{k-1}\right)+14 x\left(5-2 x^{k}\right)$)
A1: the derivative must be completely correct but may be unsimplified
For product rule this is $\frac{\mathrm{d} y}{\mathrm{~d} x}=7 x^{2}\left(-x^{-\frac{1}{2}}\right)+14 x(5-2 \sqrt{x})$
M1: uses derivative $=0$ to find $x^{k}=$ or $x=$ with correct work for their equation (even without fractional powers)
A1: obtains $x=4$ then
A1: for $y=112$ (may be credited if seen in part (a) or in part(c))
(b)

Way 1 (Dividing first)
M1: Puts $y=0$ and obtains expression of the form $x^{k}=A$ (where k is not equal to 1) after correct algebra for their equation (may be a sign slip)
A1: Obtains $x=6.25$ or equivalent correct answer
(b)

Way 2 (dealing with fractional power first i.e. Squaring)
M1: Puts $y=0$ and squares each term correctly for their equation obtaining expression of the form
$A^{2} x^{m}=B^{2} x^{n}$ after correct algebra
A1: Obtains $x=6.25$ or equivalent correct answer
(c)

Way 1
M1: Correct integration of one of their terms - e.g. see x^{2} term integrated correctly (not just raised power) A1ft: completely correct integral for their power which must have been a fraction (may be unsimplified)
dM1: (dependent on previous M) substituting their $25 / 4$ and their 4 and subtracting
ddM1 (depends on both method marks) Correct method to obtain shaded area so their rectangle minus their area under curve
A1: Accept answers which round to 79.77
(c)

Way 2
M1: Attempt at integration $-x^{2}$ term integrated correctly
A1ft: completely correct integral for second and their third terms (provided one has a fractional power) (ignore sign errors) (may be unsimplified)
dM1: (dependent on previous M) substituting their $25 / 4$ and their 4 and subtracting (either way)
ddM1 (depends on both method marks) Correct method to obtain shaded area so their 112 integrated correctly and correct signs for the other two terms in the integrand
A1: Accept answers which round to 79.77
Answer with no working - send to review
If they have the wrong fractional power on their second term after expansion in part (a) (usually $\mathbf{3} / \mathbf{2}$), all the method marks are available throughout the question and the A1ft is available in (c). The \mathbf{A} mark in part (b) may also be accessible. Maximum score is likely to be $\mathbf{8 / 1 2}$
If they have the trivial power 1 on their second term, then two method marks are available in (a) and three method marks are available in part (c) Maximum score is likely to be 5/12

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 75 Way 1 \& \begin{tabular}{l}
When \(x=1, y=4+9-30-8=-25\) \\
Area of triangle \(A B P=\frac{1}{2} \times 1 \times 25=12.5 \quad\) (Where \(P\) is at \((1,0)\)) \\
Way 1: \(\int\left(4 x^{3}+9 x^{2}-30 x-8\right) \mathrm{d} x=x^{4}+\frac{9}{3} x^{3}-\frac{30 x^{2}}{2}-8 x\{+c\}\) or \(x^{4}+3 x^{3}-15 x^{2}-8 x\{+c\}\)
\[
\begin{aligned}
{\left[x^{4}+3 x^{3}-15 x^{2}-8 x\right]_{-\frac{1}{4}}^{1} } \& =(1+3-15-8)-\left(\left(-\frac{1}{4}\right)^{4}+3\left(-\frac{1}{4}\right)^{3}-15\left(-\frac{1}{4}\right)^{2}-8\left(-\frac{1}{4}\right)\right) \\
\& =(-19)-\frac{261}{256} \text { or }-19-1.02
\end{aligned}
\] \\
So Area \(=\) "their \(12.5 "+\) "their \(20 \frac{5}{256}\) " or " 12.5 " + " 20.02 " or " 12.5 " + "their \(\frac{5125}{256}\) " \(=32.52 \quad(\) NOT -32.52\()\)
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
dM1 \\
ddM1 \\
A1 \\
(7)
\end{tabular} \\
\hline \& \begin{tabular}{l}
Less efficient alternative methods for first two marks in part (b) with Way 1 or 2 For first mark: Finding equation of the line \(A B\) as \(y=25 x-50\) as this implies the -25 For second mark: Integrating to find triangle area
\[
\int_{1}^{2}(25 x-50) \mathrm{d} x=\left[\frac{25}{2} x^{2}-50 x\right]_{1}^{2}=-50+37.5=-12.5 \quad \text { so area is } 12.5
\] \\
Then mark as before if they use Method in original scheme
\end{tabular} \& B1
B1 \\
\hline \[
\begin{gathered}
(75) \\
\text { Way } 2
\end{gathered}
\] \& \begin{tabular}{l}
Way 2: Those who use area for original curve between -1/4 and \(\mathbf{2}\) and subtract area between line and curve between 1 and 2 have a correct (long) method. \\
The first B1 (if \(\mathrm{y}=-25\) is not seen) is for equation of straight line \(y=25 x-50\) \\
The second B1 may be implied by final answer correct, or 4.5 seen for area of "segment shaped" region between line and curve, or by area between line and axis/triangle found as 12.5
\[
\int\left(4 x^{3}+9 x^{2}-55 x+42\right) \mathrm{d} x=x^{4}+\frac{9}{3} x^{3}-\frac{55 x^{2}}{2}+42 x\{+c\} \quad(\text { or integration as in Way 1) }
\] \\
The dM1 is for correct use of the different correct limits for each of the two areas: i.e.
\[
\begin{aligned}
\& {\left[x^{4}+3 x^{3}-15 x^{2}-8 x\right]_{-\frac{1}{4}}^{2}=(16+24-60-16)-\left(\left(-\frac{1}{4}\right)^{4}+3\left(-\frac{1}{4}\right)^{3}-15\left(-\frac{1}{4}\right)^{2}-8\left(-\frac{1}{4}\right)\right)} \\
\& \text { And }\left[x^{4}+\frac{9}{3} x^{3}-\frac{55 x^{2}}{2}+42 x\right]_{1}^{2}=16+24-110+84-(1+3-27.5+42)
\end{aligned}
\] \\
So Area \(=\) their \(\left[x^{4}+3 x^{3}-15 x^{2}-8 x\right]_{-\frac{1}{4}}^{2}\) minus their \(\left[x^{4}+\frac{9}{3} x^{3}-\frac{55 x^{2}}{2}+42 x\right]_{1}^{2}\) \\
i.e. "their 37.0195" - "their 4.5" (with both sets of limits correct for the integral) \\
Reaching \(=32.52 \quad\) (NOT -32.52) \\
See over for special case with wrong limits
\end{tabular} \& B1
B1
M1A1

dM1
ddM1
A1

\hline
\end{tabular}

NB: Those who attempt curve - line wrongly with limits $-1 / 4$ to 2 may earn M1A1 for correct integration of their cubic. Usually e.g.
$\int\left(4 x^{3}+9 x^{2}-55 x+42\right) \mathrm{d} x=x^{4}+\frac{9}{3} x^{3}-\frac{55 x^{2}}{2}+42 x\{+c\}$
(They will not earn any of the last 3 marks)
They may also get first B1 mark for the correct equation of the straight line (usually seen but may be implied by correct line -curve equation) and second B1 if they also use limits 1 and 2 to obtain 4.5 (or find the triangle area 12.5).

Notes

Way 1:
B1: Obtains $y=-25$ when $x=1$ (may be seen anywhere - even in (a)) or finds correct equation of line is $y=25 x-50$
B1: Obtains area of triangle $=12.5$ (may be seen anywhere). Allow -12.5 . Accept $\frac{1}{2} \times 1 \times 25$
M1: Attempt at integration of cubic; two correct terms for their integration. No limits needed
A1: completely correct integral for the cubic (may be unsimplified)
dM 1 : We are looking for the start of a correct method here (dependent on previous M). It is for substituting 1 and $-1 / 4$ and subtracting. May use 2 and $-1 / 4$ and also 2 and 1 AND subtract (which is equivalent)
ddM1 (depends on both method marks) Correct method to obtain shaded area so adds two positive numbers (areas) together - one is area of triangle, the other is area of region obtained from integration of correct function with correct limits (may add two negatives then makes positive)
Way 2: This is a long method and needs to be a correct method
B1: Finds $y=-25$ at $x=1$,or correct equation of line is $y=25 x-50$
B1: May be implied where WAY 2 is used and final correct answer obtained so award of final A1 results in the award of this B1. It may also be implied by correct integration of line equation or of curve minus line expression between limits 1 and 2 . So if only slip is final subtraction (giving final A0, this mark may still be awarded) So may be implied by 4.5 seen for area of "segment shaped" region between line and curve.
M1: Attempt at integration of given cubic or after attempt at subtracting their line equation (no limits needed). Two correct terms needed
A1: Completely correct integral for their cubic (may be unsimplified) - may have wrong coefficients of x and wrong constant term through errors in subtraction
dM 1 : Use limits for original curve between $\mathbf{- 1 / 4}$ and 2 and use limits of 1 and 2 for area between line and curve- needs completely correct limits- see scheme- this is dependent on two integrations ddM1: (depends on both method marks) Subtracts "their 37.0195"- "their 4.5" Needs consistency of signs.
A1: 32.52 or awrt 32.52 e.g. $32 \frac{133}{256}$ NB: This correct answer implies the second B mark (Trapezium rule gets no marks after first two B marks) The first two B marks may be given wherever seen. The integration of a cubic gives the following M1 and correct integration of their cubic
$\int\left(4 x^{3}+9 x^{2}+A x+B\right) \mathrm{d} x=x^{4}+\frac{9}{3} x^{3}+\frac{A x^{2}}{2}+B x\{+c\}$ gives the A1

Question Number	Scheme	Marks
77. (a)	May mark (a) and (b) together	
	Expands to give $10 x^{\frac{3}{2}}-20 x$	B1
		M1 A1ft
(b)	Simplifies to $4 x^{\frac{5}{2}}-10 x^{2}(+c)$	A1cao
	Use limits 0 and 4 either way round on their integrated function (may only see 4 substituted) Use limits 4 and 9 either way round on their integrated function	$\begin{gathered} \text { M1 } \\ \text { dM1 } \end{gathered}$
	Obtains either ±-32 or ± 194 needs at least one of the previous M marks for this to be awarded	A1
	$\text { (So area }=\left\|\int_{0}^{4} y d x\right\|+\int_{4}^{9} y d x \text {) i.e. } 32+194,=226$	$\begin{array}{r} \mathrm{ddM} 1, \mathrm{~A} 1 \\ \mathbf{(5)} \\ \mathbf{5} \mathbf{1} \end{array}$

Notes

(a) B1: Expands the bracket correctly

M1: Correct integration process on at least one term after attempt at multiplication. (Follow correct expansion or one slip resulting in $10 x^{k}-20 x$ where k may be $\frac{1}{2}$ or $\frac{5}{2}$ or resulting in $10 x^{\frac{3}{2}}-B x$, where B may be 2 or 5)
So $x^{\frac{3}{2}} \rightarrow \frac{x^{\frac{5}{2}}}{5 / 2}$ or $x^{\frac{1}{2}} \rightarrow \frac{x^{\frac{1}{2}}}{3 / 2}$ or $x^{\frac{5}{2}} \rightarrow \frac{x^{\frac{1}{2}}}{7 / 2}$ and/or $x \rightarrow \frac{x^{2}}{2}$.
A1: Correct unsimplified follow through for both terms of their integration. Does not need $(+c)$
A1: Must be simplified and correct- allow answer in scheme or $4 x^{2 \frac{1}{2}}-10 x^{2}$. Does not need $(+c)$
(b) M1: (does not depend on first method mark) Attempt to substitute 4 into their integral (however obtained but must not be differentiated) or seeing their evaluated number (usually 32) is enough - do not need to see minus zero.
dM1: (depends on first method mark in (a)) Attempt to subtract either way round using the limits 4 and 9
$A \times 9^{\frac{5}{2}}-B \times 9^{2}$ with $A \times 4^{\frac{5}{2}}-B \times 4^{2}$ is enough - or seeing 162-(-32) \{but not $\left.162-32\right\}$
A1: At least one of the values (32 and 194) correct (needs just one of the two previous M marks in (b))
or may see $162+32+32$ or $162+64$ or may be implied by correct final answer if not evaluated until last line of working
ddM1: Adds 32 and 194 (may see $162+32+32$ or may be implied by correct final answer if not evaluated until last line of working). This depends on everything being correct to this point.
A1cao: Final answer of $226 \operatorname{not}(-226)$
Common errors: $4 \times 4^{\frac{5}{2}}-10 \times 4^{2}+4 \times 9^{\frac{5}{2}}-10 \times 9^{2}-4 \times 4^{\frac{5}{2}}-10 \times 4^{2}= \pm 162$ obtains M1 M1 A0 (neither 32 nor 194 seen and final answer incorrect) then M0 A0 so $2 / 5$
Uses correct limits to obtain $-32+162+32=+/-162$ is M1 M1 A1 (32 seen) M0 A0 so $3 / 5$
Special case: In part (b) Uses limits 9 and $0=972-810-0=162$ M0 M1 A0 M0A0 scores $1 / 5$
This also applies if 4 never seen.

Question	Scheme	Marks
78.	M1: $x^{n} \rightarrow x^{n+1}$	
	A1: At least one of either $\frac{x^{4}}{6(4)}$ or $\frac{x^{-1}}{(3)(-1)}$.	
	$\left\{\boldsymbol{\int}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\frac{x^{4}}{6(4)}+\frac{x^{-1}}{(3)(-1)}$ A1: $\frac{x^{4}}{6(4)}+\frac{x^{-1}}{(3)(-1)}$ or equivalent. e.g. $\frac{\frac{x^{4}}{6}}{4}+\frac{\frac{x^{-1}}{3}}{-1}$ (they will lose the final mark if they cannot deal with this correctly)	M1A1A1
	Note that some candidates may change the function prior to integrating e.g. $\int \frac{x^{3}}{6}+\frac{1}{3 x^{2}} \mathrm{~d} x=\int 3 x^{5}+6 \mathrm{~d} x$ in which case allow the M1 if $x^{n} \rightarrow x^{n+1}$ for their changed function and allow the M1 for limits if scored	
	$\left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{(\sqrt{3})^{-1}}{-1(3)}\right)-\left(\frac{(1)^{4}}{24}+\frac{(1)^{-1}}{-1(3)}\right)$	dM1
	$2^{\text {nd }} \mathbf{d M 1}$: For using limits of $\sqrt{3}$ and 1 on an integrated expression and subtracting the correct way round. The $2^{\text {nd }} \mathbf{M 1}$ is dependent on the $1^{\text {st }} \mathrm{M} 1$ being awarded.	
	$=\left(\frac{9}{24}-\frac{1}{3 \sqrt{3}}\right)-\left(\frac{1}{24}-\frac{1}{3}\right)=\frac{2}{3}-\frac{1}{9} \sqrt{3} \quad \left\lvert\, \begin{aligned} & \frac{2}{3}-\frac{1}{9} \sqrt{3} \text { or } a=\frac{2}{3} \text { and } b=-\frac{1}{9} . \\ & \text { Allow equivalent fractions for } a \text { and/or } b \text { and } \\ & 0.6 \text { recurring and/or } 0.1 \text { recurring but do not } \\ & \text { allow } \frac{6-\sqrt{3}}{9} \end{aligned}\right.$	A1cso
	This final mark is cao and cso - there must have been no previous errors	
		Total 5
	Common Errors (Usually 3 out of 5)	
	$\begin{gathered} \left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\int\left(\frac{x^{3}}{6}+3 x^{-2}\right) \mathrm{d} x=\frac{x^{4}}{6(4)}+\frac{3 x^{-1}}{(-1)} \text { M1A1A } 0 \\ \left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{3(\sqrt{3})^{-1}}{-1}\right)-\left(\frac{(1)^{4}}{24}+\frac{3(1)^{-1}}{-1}\right) \mathrm{dM} 1 \\ =\left(\frac{9}{24}-\frac{3}{\sqrt{3}}\right)-\left(\frac{1}{24}+\frac{3}{-1}\right)=\frac{10}{3}-\sqrt{3} \text { A0 } \end{gathered}$	
	$\begin{gathered} \left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\int\left(\frac{x^{3}}{6}+(3 x)^{-2}\right) \mathrm{d} x=\frac{x^{4}}{6(4)}+\frac{(3 x)^{-1}}{(-1)} \text { M1A1A0 } \\ \left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{(3 \sqrt{3})^{-1}}{-1}\right)-\left(\frac{(1)^{4}}{24}+\frac{(3 \times 1)^{-1}}{-1}\right) \mathrm{dM} 1 \\ =\left(\frac{9}{24}-\frac{1}{3 \sqrt{3}}\right)-\left(\frac{1}{24}-\frac{1}{3}\right)=\frac{2}{3}-\frac{\sqrt{3}}{9} \mathrm{~A} 0 \end{gathered}$ Note this is the correct answer but follows incorrect work.	

	Alternative:		$4^{\text {th }}$ M1
	\pm "their4" $-\left(\frac{1}{8} x^{3}+\frac{3}{4} x^{2}\right) \mathrm{d} x$	Line - curve. Condone missing brackets and allow either way round.	
		M1: $x^{n} \rightarrow x^{n+1}$ on either curve term	$\begin{aligned} & 1^{\mathrm{st}} \mathrm{M} 1,1^{\mathrm{st}} \\ & \text { A1ft } \end{aligned}$
	$=4 x-\frac{x^{4}}{32}-\frac{x^{3}}{4}\{+c\}$	A1ft: "- $\frac{x^{4}}{32}-\frac{x^{3}}{4}$." Any correct simplified or un-simplified form of their curve terms, follow through sign errors. (+ c not required)	
	$[]_{-4}^{2}=\left(8-\frac{16}{32}-\frac{8}{4}\right)-\left(-16-\frac{256}{32}-\frac{(-64)}{4}\right)$	$2^{\text {nd }} \mathrm{M} 1$ Substitutes limits of 2 and -4 into an "integrated curve" and subtracts either way round.	$\begin{aligned} & 2^{\mathrm{nd}} \mathrm{M} 1,3^{\mathrm{rd}} \\ & \mathrm{M} 1 \\ & 2^{\text {nd }} \mathrm{A} 1 \end{aligned}$
		$3^{\text {rd }}$ M1 for \pm ("8"-"-16") Substitutes limits into the 'line part' and subtracts either way round.	
		$2^{\text {nd }} \mathrm{A} 1$ for correct \pm (underlined expression). Now needs to be correct but allow \pm the correct expression.	
	$=\frac{27}{2}$	A1: $\frac{27}{2}$ or 13.5	$3^{\text {rd }}$ A1
	If the final answer is $\mathbf{- 1 3 . 5}$ you can withhold the final $\mathbf{A 1}$ If $\mathbf{- 1 3 . 5}$ then "becomes" $+\mathbf{1 3 . 5}$ allow the A1		

81.	$y=27-2 x-9 \sqrt{x}-\frac{16}{x^{2}}$		
	$\int y \mathrm{~d} x=27 x-x^{2}-6 x^{\frac{3}{2}}+16 x^{-1}(+c)$	M1: $x^{n} \rightarrow x^{n+1}$ on any term	M1A1A1A1
		A1: $27 x-x^{2}$	
		A1: $-6 x^{\frac{3}{2}}$	
		A1: $+16 x^{-1}$	
	$\left(27(4)-(4)^{2}-6(4)^{\frac{3}{2}}+16(4)^{-1}\right)$ Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1 $-\left(27(1)-(1)^{2}-6(1)^{\frac{3}{2}}+16(1)^{-1}\right)$		dM1
	$=(48-36)$		
	12	Cao	A1
			(6)
			[6]

$\begin{gathered} \text { Method } 2 \\ \text { for (b) } \end{gathered}$	$\begin{aligned} & \text { Area of } R \\ & =\int_{2}^{9}\left(10 x-x^{2}-8\right)-(10-x) \mathrm{d} x \\ & \int_{2}^{9}-x^{2}+11 x-18 \mathrm{~d} x \\ & =-\frac{x^{3}}{3}+\frac{11 x^{2}}{2}-18 x\{+c\} \\ & {\left[-\frac{x^{3}}{3}+\frac{11 x^{2}}{2}-18 x\right]_{2}^{9}=(\ldots . .)-(\ldots . .)} \end{aligned}$ $3^{\text {rd }}$ M1 (in (b)): Uses difference between two functions in integral. M: $x^{n} \rightarrow x^{n+1}$ for any one term. A1 at least two out of these three simplified terms Correct integration. (Ignore $+c$). Substitutes 9 and 2 (or limits from part(a)) into an "integrated function" and subtracts, either way round. This mark is implied by final answer which rounds to 57.2 See above working(allow bracketing errors) to decide to award $3^{\text {rd }}$ M1 mark for (b) here: $40.5-\left(-16 \frac{2}{3}\right)=57 \frac{1}{6} \mathrm{cao}$	M1 A1 A1 dM1 B1 M1 A1 (7)
Special case of above method	$\begin{aligned} & \int_{2}^{9} x^{2}-11 x+18 \mathrm{~d} x=\frac{x^{3}}{3}-\frac{11 x^{2}}{2}+18 x\{+c\} \\ & {\left[\frac{x^{3}}{3}-\frac{11 x^{2}}{2}+18 x\right]_{2}^{9}=(\ldots \ldots)-(\ldots \ldots)} \end{aligned}$ This mark is implied by final answer which rounds to 57.2 (not -57.2) Difference of functions implied (see above expression) $40.5-\left(-16 \frac{2}{3}\right)=57 \frac{1}{6} \text { cao }$	M1A1A1 DM1 B1 M1 A1
Special Case 2	Integrates expression in y e.g. " $y^{2}-9 y+8=0$ ": This can have first M1 in part (b) and no other marks. (It is not a method for finding this area)	
Notes	Take away trapezium again having used Method 2 loses last two marks Common Error: Integrates $-x^{2}+9 x-18$ is likely to be M1A1A0dM1B0M1A0 Integrates $2-11 x-x^{2}$ is likely to e M1A0A0dM1B0M1A0 Writing $\int_{2}^{9}\left(10 x-x^{2}-8\right)-(10-x) \mathrm{d} x$ only earns final M mark	

Question Number	Scheme	Marks
84. (a)	$\begin{aligned} & \text { Curve: } y=-x^{2}+2 x+24 \text {, Line: } y=x+4 \\ & \{\text { Curve }=\text { Line }\} \Rightarrow-x^{2}+2 x+24=x+4 \\ & x^{2}-x-20\{=0\} \Rightarrow(x-5)(x+4)\{=0\} \Rightarrow x=\ldots \ldots \end{aligned}$ Eliminating y correctly. Attempt to solve a resulting quadratic to give $x=$ their values. So, $x=5,-4$ Both $x=5$ and $x=-4$. So corresponding y-values are $y=9$ and $y=0$. See notes below.	B1 M1 A1 B1ft [4]
(b)	$\begin{aligned} & \left\{\int\left(-x^{2}+2 x+24\right) \mathrm{d} x\right\}=-\frac{x^{3}}{3}+\frac{2 x^{2}}{2}+24 x\left\{+c \quad \begin{array}{r} \text { M1: } x^{n} \rightarrow x^{n+1} \text { for any one term. } \\ 1^{\text {st }} \mathrm{A} 1 \text { at least two out of three terms. } \\ 2^{\text {nd }} \mathrm{A} 1 \text { for correct answer. } \end{array}\right. \\ & {\left[-\frac{x^{3}}{3}+\frac{2 x^{2}}{2}+24 x\right]_{-4}^{5}=(\ldots \ldots . .)-(\ldots \ldots) \quad \begin{array}{r} \text { Substitutes } 5 \text { and }-4 \text { (or their limits from } \\ \text { part(a) }) \text { into an "integrated function" and } \\ \text { subtracts, either way round. } \end{array}} \\ & \left\{\left(-\frac{125}{3}+25+120\right)-\left(\frac{64}{3}+16-96\right)=\left(103 \frac{1}{3}\right)-\left(-58 \frac{2}{3}\right)=162\right\} \\ & \text { Area of } \Delta=\frac{1}{2}(9)(9)=40.5 \quad \text { Uses correct method for finding area of triangle. } \\ & \text { So area of } R \text { is } 162-40.5=121.5 \end{aligned}$	M1A1A1 dM1 M1 M1 A1 oe cao

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks

\hline 84(a)

84(b) \& | $1^{\text {st }} \mathrm{B} 1$: For correctly eliminating either x or y. Candidates will usually write $-x^{2}+2 x+24=x+4$. |
| :--- |
| This mark can be implied by the resulting quadratic. |
| M1: For solving their quadratic (which must be different to $-x^{2}+2 x+24$) to give $x=\ldots$ See introduction for Method mark for solving a 3TQ. It must result from some attempt to eliminate one of the variables. |
| A1: For both $x=5$ and $x=-4$. |
| $2^{\text {nd }}$ B1ft: For correctly substituting their values of x in equation of line or parabola to give both correct ft y-values. (You may have to get your calculators out if they substitute their x into $y=-x^{2}+2 x+24$). |
| Note: For $x=5,-4 \Rightarrow y=9$ and $y=0 \Rightarrow$ eg. $(-4,9)$ and $(5,0)$, award B1 isw. |
| If the candidate gives additional answers to $(-4,0)$ and $(5,9)$, then withhold the final B 1 mark. |
| Special Case: Award SC: B0M0A0B1 for $\{A\}(-4,0)$. You may see this point marked on the diagram. |
| Note: SC: B0M0A0B1 for solving $0=-x^{2}+2 x+24$ to give $\{A\}(-4,0)$ and/or $(6,10)$. |
| Note: Do not give marks for working in part (b) which would be creditable in part (a). |
| $1^{\text {st }}$ M1 for an attempt to integrate meaning that $x^{n} \rightarrow x^{n+1}$ for at least one of the terms. |
| Note that $24 \rightarrow 24 x$ is sufficient for M1. |
| $1^{\text {st }} \mathrm{A} 1$ at least two out of three terms correctly integrated. |
| $2^{\text {nd }} \mathrm{A} 1$ for correct integration only and no follow through. Ignore the use of a ' $+c$ '. |
| $2^{\text {nd }}$ M1: Note that this method mark is dependent upon the award of the first M1 mark in part (b). |
| Substitutes 5 and -4 (and not 4 if the candidate has stated $x=-4$ in part (a).) (or the limits the |
| candidate has found from part(a)) into an "integrated function" and subtracts, either way round. Allow one slip! |
| $3^{\text {rd }}$ M1: Area of triangle $=\frac{1}{2}$ (their x_{2} - their $\left.x_{1}\right)$ (their y_{2}) or Area of triangle $=\int_{x_{1}}^{x_{2}} x+4\{\mathrm{~d} x\}$. |
| Where $x_{1}=$ their $-4, x_{2}=$ their 5 and $y_{2}=$ their y usually found in part (a). |
| $4^{\text {th }}$ M1: Area under curve - Area under triangle, where both Area under curve >0 and Area under triangle >0 and Area under curve $>$ Area under triangle. |
| $3^{\text {rd }} \mathrm{A} 1: 121.5$ or $\frac{243}{2}$ oe cao. |

\hline
\end{tabular}

Question Number	Scheme	Marks
Aliter 84.(b) Way 2	Curve: $y=-x^{2}+2 x+24$, Line: $y=x+4$ $3^{\text {rd }}$ M1: Uses integral of $(x+4)$ with See above working to decide to award $3^{\text {rd }}$ M1 mark here: See above working to decide to award $4^{\text {th }}$ M1 mark here: So area of R is $=121.5$	M1 A1ft A1 dM1 M1 M1 A1 oe cao

84(b) $\quad 1^{\text {st }} \mathrm{M} 1$ for an attempt to integrate meaning that $x^{n} \rightarrow x^{n+1}$ for at least one of the terms.
Note that $20 \rightarrow 20 x$ is sufficient for M1.
$1^{\text {st }} \mathrm{A} 1$ at least two out of three terms correctly ft . Note this accuracy mark is ft in Way 2.
$2^{\text {nd }} \mathrm{A} 1$ for correct integration only and no follow through. Ignore the use of a $+c c^{\prime}$.
Allow $2^{\text {nd }} \mathrm{A} 1$ also for $-\frac{x^{3}}{3}+\frac{2 x^{2}}{2}+24 x-\left(\frac{x^{2}}{2}+4 x\right)$. Note that $\frac{2 x^{2}}{2}-\frac{x^{2}}{2}$ or $24 x-4 x$ only counts as one integrated term for the $1^{\text {st }} \mathrm{A} 1$ mark. Do not allow any extra terms for the $2^{\text {nd }} \mathrm{A} 1$ mark. $2^{\text {nd }}$ M1: Note that this method mark is dependent upon the award of the first M1 mark in part (b).
Substitutes 5 and -4 (and not 4 if the candidate has stated $x=-4$ in part (a).) (or the limits the candidate has found from part(a)) into an "integrated function" and subtracts, either way round. Allow one slip!
$3^{\text {rd }}$ M1: Uses the integral of $(x+4)$ with correct ft limits of their x_{1} and their x_{2} (usually found in part (a)) $\left\{\right.$ where $\left(x_{1}, y_{1}\right)=(-4,0)$ and $\left(x_{2}, y_{2}\right)=(5,9)$. \} This mark is usually found in the first line of the candidate's working in part (b).
$4^{\text {th }}$ M1: Uses "curve" - "line" function with correct ft (usually found in part (a)) limits. Subtraction must be correct way round. This mark is usually found in the first line of the candidate's working in part (b).
Allow $\int_{-4}^{5}\left(-x^{2}+2 x+24\right)-x+4\{\mathrm{~d} x\}$ for this method mark.
$3^{\text {rd }}$ A1: 121.5 oe cao.
Note: SPECIAL CASE for this alternative method
Area of $R=\int_{-4}^{5}\left(x^{2}-x-20\right) \mathrm{d} x=\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}-20 x\right]_{-4}^{5}=\left(\frac{125}{3}-\frac{25}{2}-100\right)-\left(-\frac{64}{3}-8+80\right)$
The working so far would score SPEICAL CASE M1A1A1M1M1M0A0.
The candidate may then go on to state that $=\left(-70 \frac{5}{6}\right)-\left(50 \frac{2}{3}\right)=-\frac{243}{2}$
If the candidate then multiplies their answer by -1 then they would gain the $4^{\text {th }} \mathrm{M} 1$ and 121.5 would gain the final A1 mark.

Question Number	Scheme		Marks
Aliter 84. (a) Way 2	Curve: $y=-x^{2}+2 x+24$, Line: $y=x+4$ $\{$ Curve $=$ Line $\} \Rightarrow y=-(y-4)^{2}+2(y-4)+24$ $y^{2}-9 y\{=0\} \Rightarrow y(y-9)\{=0\} \Rightarrow y=\ldots . .$ So, $y=0,9$ So corresponding y-values are $x=-4$ and $x=5$.	Eliminating x correctly. Attempt to solve a resulting quadratic to give $y=$ their values. Both $y=0$ and $y=9$. See notes below.	B1 M1 A1 B1ft

$2^{\text {nd }}$ B1ft: For correctly substituting their values of y in equation of line or parabola to give both correct $\boldsymbol{f t}$ x-values.
84. (b) Alternative Methods for obtaining the M1 mark for use of limits:

There are two alternative methods can candidates can apply for finding "162".
Alternative 1:

$$
\begin{aligned}
& \int_{-4}^{0}\left(-x^{2}+2 x+24\right) \mathrm{d} x+\int_{0}^{5}\left(-x^{2}+2 x+24\right) \mathrm{d} x \\
= & {\left[-\frac{x^{3}}{3}+\frac{2 x^{2}}{2}+24 x\right]_{-4}^{0}+\left[-\frac{x^{3}}{3}+\frac{2 x^{2}}{2}+24 x\right]_{0}^{5} } \\
= & (0)-\left(\frac{64}{3}+16-96\right)+\left(-\frac{125}{3}+25+120\right)-(0) \\
= & \left(103 \frac{1}{3}\right)-\left(-58 \frac{2}{3}\right)=162
\end{aligned}
$$

Alternative 2:

$$
\begin{aligned}
& \int_{-4}^{6}\left(-x^{2}+2 x+24\right) \mathrm{d} x-\int_{5}^{6}\left(-x^{2}+2 x+24\right) \mathrm{d} x \\
= & {\left[-\frac{x^{3}}{3}+\frac{2 x^{2}}{2}+24 x\right]_{-4}^{6}-\left[-\frac{x^{3}}{3}+\frac{2 x^{2}}{2}+24 x\right]_{5}^{6} } \\
= & \left\{\left(-\frac{216}{3}+36+144\right)-\left(\frac{64}{3}+16-96\right)\right\}-\left\{\left(-\frac{216}{3}+36+144\right)-\left(-\frac{125}{3}+25+120\right)\right\} \\
= & \left\{(108)-\left(-58 \frac{2}{3}\right)\right\}-\left\{(108)-\left(103 \frac{1}{3}\right)\right\} \\
= & \left(166 \frac{2}{3}\right)-\left(4 \frac{2}{3}\right)=162
\end{aligned}
$$

Question Number	Scheme	Marks
85.	Seeing -1 and 5. (See note below.)	B1 (1)
(b)	$\begin{aligned} & (x+1)(x-5)=\underline{x^{2}-4 x-5} \text { or } \underline{x^{2}-5 x+x-5} \\ & \left\{\left(x^{2}-4 x-5\right) \mathrm{d} x=\frac{x^{3}}{3}-\frac{4 x^{2}}{2}-5 x\{+c\}\right. \\ & {\left[\frac{x^{3}}{3}-\frac{4 x^{2}}{2}-5 x\right]_{-1}^{5}=(\ldots \ldots)-(\ldots \ldots .)} \\ & \left\{\begin{array}{l} \left(\frac{125}{3}-\frac{100}{2}-25\right)-\left(-\frac{1}{3}-2+5\right) \\ =\left(-\frac{100}{3}\right)-\left(\frac{8}{3}\right)=-36 \end{array}\right\} \end{aligned}$ M: $x^{n} \rightarrow x^{n+1}$ for any one term. $1^{\text {st }} \mathrm{A} 1$ at least two out of three terms correctly ft. Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round. Hence, Area $=36$ Final answer must be 36, not -36	B1 M1A1ft A1 dM1 A1 (6) [7]
	Notes	
(a)	B1: for -1 and 5 . Note that $(-1,0)$ and $(5,0)$ are acceptable for B1. Also allow $(0,-1)$ and $(0,5)$ generously for B1. Note that if a candidate writes down that $A:(5,0), B:(-1,0)$, (ie A and B interchanged,) then B0. Also allow values inserted in the correct position on the x-axis of the graph.	
(b)	B1 for $x^{2}-4 x-5$ or $x^{2}-5 x+x-5$. If you believe that the candidate is applying the Way 2 method then $-x^{2}+4 x+5$ or $-x^{2}+5 x-x+5$ would then be fine for B1. $1^{\text {st }} \mathrm{M} 1$ for an attempt to integrate meaning that $x^{n} \rightarrow x^{n+1}$ for at least one of the terms. Note that $-5 \rightarrow 5 x$ is sufficient for M1. $1^{\text {st }} \mathrm{A} 1$ at least two out of three terms correctly ft from their multiplied out brackets. $2^{\text {nd }} \mathrm{A} 1$ for correct integration only and no follow through. Ignore the use of a ' $+c$ '. Allow $2^{\text {nd }}$ A1 also for $\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+\frac{x^{2}}{2}-5 x$. Note that $-\frac{5 x^{2}}{2}+\frac{x^{2}}{2}$ only counts as one integrated term for the $1^{\text {st }}$ A1 mark. Do not allow any extra terms for the $2^{\text {nd }}$ A1 mark. $2^{\text {nd }}$ M1: Note that this method mark is dependent upon the award of the first M1 mark in part (b). Substitutes 5 and -1 (and not 1 if the candidate has stated $x=-1$ in part (a).) (or the limits the candidate has found from part(a)) into an "integrated function" and subtracts, either way round. $3^{\text {rd }} \mathrm{A} 1$: For a final answer of 36 , not -36 . Note: An alternative method exists where the candidate states from the outset that Area $(R)=-\int_{-1}^{5}\left(x^{2}-4 x+5\right) \mathrm{d} x$ is detailed in the Appendix.	

Question Number	Scheme	Marks
(b)	B1 for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent. M1 requires the correct $\{.\}$. ordinate plus last y-ordinate and the second bracket to be the summation of the remaining y- ordinates in the table. No errors (eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y-ordinate) are allowed in the second bracket and the second bracket must be multiplied by 2 . Only one copying error is allowed here in the $2(0.38+$ their $0.30+$ their 0.24$)$ bracket. A1ft for the correct bracket $\{\ldots . .$.$\} following through candidate’s y$-ordinates found in part (a). A1 for answer of awrt 0.32.	
Bracketing mistake: Unless the final answer implies that the calculation has been done correctly then award M1A0A0 for either $\frac{1}{2} \times 0.25 \times 0.5+2(0.38+$ their $0.30+$ their 0.24$)+0.2$ (nb: yielding final answer of 2.1025$)$ so that the 0.5 is only multiplied by $\frac{1}{2} \times 0.25$ or $\frac{1}{2} \times 0.25 \times(0.5+0.2)+2(0.38+$ their $0.30+$ their 0.24$)$ (nb: yielding final answer of 1.9275$)$ so that the ($0.5+0.2)$ is multiplied by $\frac{1}{2} \times 0.25$. Need to see trapezium rule - answer only (with no working) gains no marks. Alternative: Separate trapezia may be used, and this can be marked equivalently. (See		
appendix.)		

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \multirow[t]{3}{*}{87} \& \begin{tabular}{l}
(a) \(\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-20 x+k\) \\
(Differentiation is required)
\[
\begin{equation*}
\text { At } x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \text {, so } 12-40+k=0 \quad k=28 \tag{}
\end{equation*}
\] \\
N.B. The ' \(=0\) ' must be seen at some stage to score the final mark. \\
Alternatively: (using \(k=28\))
\[
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-20 x+28 \tag{M1A1}
\end{equation*}
\] \\
'Assuming' \(k=28\) only scores the final cso mark if there is justification that \(\frac{\mathrm{d} y}{\mathrm{~d} x}=0\) at \(x=2\) represents the maximum turning point.
\end{tabular} \& M1 A1
A1 cso

(3)

\hline \& | (b) \int |
| :--- |
| $\int\left(x^{3}-10 x^{2}+28 x\right) \mathrm{d} x=\frac{x^{4}}{4}-\frac{10 x^{3}}{3}+\frac{28 x^{2}}{2} \quad$ Allow $\frac{k x^{2}}{2}$ for $\frac{28 x^{2}}{2}$ $\left[\frac{x^{4}}{4}-\frac{10 x^{3}}{3}+14 x^{2}\right]_{0}^{2}=\ldots \quad\left(=4-\frac{80}{3}+56=\frac{100}{3}\right)$ |
| (With limits 0 to 2 , substitute the limit 2 into a 'changed function') |
| y-coordinate of $P=8-40+56=24$ |
| Allow if seen in part (a) |
| (The B1 for 24 may be scored by implication from later working) Area of rectangle $=2 \times$ (their y-coordinate of P) |
| Area of $R=($ their 48$)-\left(\right.$ their $\left.\frac{100}{3}\right)=\frac{44}{3}\left(14 \frac{2}{3}\right.$ or $\left.14 . \dot{6}\right)$ |
| If the subtraction is the 'wrong way round', the final A mark is lost. | \& | M1 A1 |
| :--- |
| M1 |
| B1 |
| M1 A1 |
| (6) |

\hline \& | (a) M: $x^{n} \rightarrow c x^{n-1}(c$ constant, $c \neq 0)$ for one term, seen in part (a). |
| :--- |
| (b) $1^{\text {st }} \mathrm{M}: x^{n} \rightarrow c x^{n+1}$ (c constant, $c \neq 0$) for one term. |
| Integrating the gradient function loses this M mark. |
| 2ndM: Requires use of limits 0 and 2 , with 2 substituted into a 'changed function'. (It may, for example, have been differentiated). |
| Final M: Subtract their values either way round. This mark is dependent on the use of calculus and a correct method attempt for the area of the rectangle. |
| A1: Must be exact, not 14.67 or similar, but isw after seeing, say, $\frac{44}{3}$. |
| Alternative: (effectively finding area of rectangle by integration) $\int\left\{24-\left(x^{3}-10 x^{2}+28 x\right)\right\} \mathrm{d} x=24 x-\left(\frac{x^{4}}{4}-\frac{10 x^{3}}{3}+\frac{28 x^{2}}{2}\right)$, etc. |
| This can be marked equivalently, with the $1^{\text {st }} \mathrm{A}$ being for integrating the same 3 terms correctly. The 3rd M (for subtraction) will be scored at the same stage as the $2^{\text {nd }} \mathrm{M}$. If the subtraction is the 'wrong way round', the final A mark is lost. | \&

\hline
\end{tabular}

Question Number	Scheme ${ }_{\text {S }}$ Marks
(a) (b) (c) (d)	
(a) (b) (c) (d)	M1 for attempt to find L and M A1 Accept $x=1$ and $x=4$, then isw or accept $L=(1,0), M=(4,0)$ Do not accept $L=1, M=4$ nor $(0,1),(0,4)$ (unless subsequent work) Do not need to distinguish L and M. Answers imply M1A1. See substitution, working should be shown, need conclusion which could be just $y=4$ or a tick. Allow $y=25-25+4=4$ But not $25-25+4=4$. ($y=4$ may appear at start) Usually $0=0$ or $4=4$ is B0 M1 for attempt to integrate $x^{2} \rightarrow k x^{3}, x \rightarrow k x^{2}$ or $4 \rightarrow 4 x$ A1 for correct integration of all three terms (do not need constant) isw. Mark correct work when seen. So e.g. $\frac{1}{3} x^{3}-\frac{5}{2} x^{2}+4 x$ is A1 then $2 x^{3}-15 x^{2}+24 x$ would be ignored as subsequent work. B1 for this triangle only (not triangle $L M N$) $1^{\text {st }} \mathrm{M} 1$ for substituting 5 into their changed function $2^{\text {nd }} \mathrm{M} 1$ for substituting 4 into their changed function
(d)	Alternative method: $\quad \int_{1}^{5}(x-1)-\left(x^{2}-5 x+4\right) \mathrm{d} x+\int_{1}^{4} x^{2}-5 x+4 \mathrm{~d} x$ can lead to correct answer Constructs $\int_{1}^{5}(x-1)-\left(x^{2}-5 x+4\right) \mathrm{d} x$ is B1 M1 for substituting 5 and 1 and subtracting in first integral M1 for substituting 4 and 1 and subtracting in second integral A1 for answer to first integral i.e. $\frac{32}{3}$ (allow 10.7) and A1 for final answer as before..

(d)	Another alternative
	$\int_{4}^{5}(x-1)-\left(x^{2}-5 x+4\right) \mathrm{d} x+$ area of triangle $L M P$
	Constructs $\int_{4}^{5}(x-1)-\left(x^{2}-5 x+4\right) \mathrm{d} x$ is B1
	M1 for substituting 5 and 4 and subtracting in first integral
M1 for complete method to find area of triangle (4.5)	
A1 for answer to first integral i.e. $\frac{5}{3}$ and A1 for final answer as before.	
(d)	Could also use $\int_{4}^{5}(4 x-16)-\left(x^{2}-5 x+4\right) \mathrm{d} x+$ area of triangle $L M N$ Similar scheme to previous one. Triangle has area 6 A1 for finding Integral has value $\frac{1}{6}$ and A1 for final answer as before.

Question Number	Scheme Marks
89	$\begin{aligned} & \int\left(2 x+3 x^{\frac{1}{2}}\right) \mathrm{d} x=\frac{2 x^{2}}{2}+\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}} \\ & \begin{aligned} \int_{1}^{4}\left(2 x+3 x^{\frac{1}{2}}\right) \mathrm{d} x & =\left[x^{2}+2 x^{\frac{3}{2}}\right]_{1}^{4}=(16+2 \times 8)-(1+2) \\ & =29 \end{aligned} \end{aligned}$ M1 A1A1
	$1^{\text {st }}$ M1 for attempt to integrate $x \rightarrow k x^{2}$ or $x^{\frac{1}{2}} \rightarrow k x^{\frac{3}{2}}$. $1^{\text {st }} \mathrm{A} 1$ for $\frac{2 x^{2}}{2}$ or a simplified version. $2^{\text {nd }} \mathrm{A} 1$ for $\frac{3 x^{\frac{3}{2}}}{(3 / 2)}$ or $\frac{3 x \sqrt{x}}{(3 / 2)}$ or a simplified version. Ignore $+C$, if seen, but two correct terms and an extra non-constant term scores M1A1A0. $2^{\text {nd }}$ M1 for correct use of correct limits ('top' - 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation). Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear. No working: The answer 29 with no working scores M0A0A0M1A0 (1 mark).

Question Number	Scheme Marks
90	$y=(1+x)(4-x)=4+3 x-x^{2}$ M: Expand, giving 3 (or 4) terms M1 $\int\left(4+3 x-x^{2}\right) \mathrm{d} x=4 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{3}$ M: Attempt to integrate M1 A1 $=[\ldots \ldots \ldots]_{-1}^{4}=\left(16+24-\frac{64}{3}\right)-\left(-4+\frac{3}{2}+\frac{1}{3}\right)=\frac{125}{6} \quad\left(=20 \frac{5}{6}\right)$ M1 A1 (5) [5]
Notes	M1 needs expansion, there may be a slip involving a sign or simple arithmetical error e.g. $1 \times 4=5$, but there needs to be a 'constant' an ' x term' and an ' x^{2} term'. The x terms do not need to be collected. (Need not be seen if next line correct) Attempt to integrate means that $x^{n} \rightarrow x^{n+1}$ for at least one of the terms, then M1 is awarded (even 4 becoming $4 x$ is sufficient) - one correct power sufficient. A1 is for correct answer only, not follow through. But allow $2 x^{2}-\frac{1}{2} x^{2}$ or any correct equivalent. Allow $+\boldsymbol{c}$, and even allow an evaluated extra constant term. M1: Substitute limit 4 and limit -1 into a changed function (must be -1) and indicate subtraction (either way round). A1 must be exact, not 20.83 or similar. If recurring indicated can have the mark. Negative area, even if subsequently positive loses the A mark.
Special cases	(i) Uses calculator method: M1 for expansion (if seen) M1 for limits if answer correct, so 0,1 or 2 marks out of 5 is possible (Most likely M0 M0 A0 M1 A0) (ii) Uses trapezium rule : not exact, no calculus - $0 / 5$ unless expansion mark M1 gained. (iii) Using original method, but then change all signs after expansion is likely to lead to: M1 M1 A0, M1 A0 i.e. 3/5

92	(a) (b) (c)	Either solving $0=x(6-x)$ and showing $x=6$ (and $x=0)$ or showing $(6,0)$ (and $x=0$) satisfies $y=6 x-x^{2} \quad$ [allow for showing $x=6$] Solving $2 x=6 x-x^{2} \quad\left(x^{2}=4 x\right) \quad$ to $\mathrm{x}=.$. $x=4 \quad(\text { and } x=0)$ Conclusion: when $x=4, y=8$ and when $x=0, y=0$, (Area $=) \int_{(0)}^{(4)}\left(6 x-x^{2}\right) \mathrm{d} x \quad$ Limits not required Correct integration $3 x^{2}-\frac{x^{3}}{3} \quad(+\mathrm{c})$ Correct use of correct limits on their result above (see notes on limits) [" $3 x^{2}-\frac{x^{3}}{3}$ "] $]^{4}-\left[\text { " } 3 x^{2}-\frac{x^{3}}{3} "\right]_{0}$ with limits substituted $\left[=48-21 \frac{1}{3}=26 \frac{2}{3}\right.$] Area of triangle $=2 \times 8=16 \quad$ (Can be awarded even if no M scored, i.e. B1) Shaded area $= \pm$ (area under curve - area of triangle $)$ applied correctly $\left(=26 \frac{2}{3}-16\right)=10 \frac{2}{3} \quad$ (awrt 10.7)	$\begin{array}{ll}\mathrm{B} 1 & \text { (1) } \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & (3) \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 (6)[10] }\end{array}$
Notes		(b) In scheme first A1: need only give $x=4$ If verifying approach used: Verifying $(4,8)$ satisfies both the line and the curve M 1 (attempt at both), Both shown successfully A1 For final A1, $(0,0)$ needs to be mentioned ; accept " clear from diagram" (c) Alternative Using Area $= \pm \int_{(0)}^{(4)}\left\{\left(6 x-x^{2}\right) ;-2 x\right\} \mathrm{d} x \quad$ approach (i) If candidate integrates separately can be marked as main scheme If combine to work with $= \pm \int_{(0)}^{(4)}\left(4 x-x^{2}\right) \mathrm{d} x, \quad$ first M mark and third M mark $=(\pm)\left[2 x^{2}-\frac{x^{3}}{3}(+\mathrm{c})\right] \quad \mathrm{A} 1,$ Correct use of correct limits on their result second M1, Totally correct, unsimplified \pm expression (may be implied by correct ans.) A1 $10^{2 / 3}$ A1 [Allow this if, having given - $10^{2} / 3$, they correct it] M1 for correct use of correct limits: Must substitute correct limits for their strategy into a changed expression and subtract, either way round, e.g $\pm\left\{[]^{4}-[]_{0}\right.$ If a long method is used, e,g, finding three areas, this mark only gained for correct strategy and all limits need to be correct for this strategy. Use of trapezium rule: MOAOMAO, possibleA1for triangle M1(if correct application of trap. rule from $x=0$ to $x=4$) A0	

Question Number	Scheme		Notes	Marks
93. (i)	$\frac{13-4 x}{(2 x+1)^{2}(x+3)} \equiv \frac{A}{(2 x+1)}+\frac{B}{(2 x+1)^{2}}+\frac{C}{(x+3)}$			
(a)	$B=6, C=1$		At least one of $B=6$ or $C=1$	B1
			Both $B=6$ and $C=1$	B1
	$\begin{aligned} & 13-4 x \equiv A(2 x+1)(x+3)+B(x+3)+C(2 x+1)^{2} \\ & x=-3 \Rightarrow 25=25 C \Rightarrow C=1 \\ & x=-\frac{1}{2} \Rightarrow 13--2=\frac{5}{2} B \Rightarrow 15=2.5 B \Rightarrow B=6 \end{aligned}$		Writes down a correct identity and attempts to find the value of either one of A or B or C	M1
	$\begin{gathered} \text { Either } x^{2}: 0=2 A+4 C, \text { constant }: 13=3 A+3 B+C, \\ x: 4=7 A+B+4 C \text { or } x=0 \Rightarrow 13=3 A+3 B+C \\ \text { leading to } A=2 \\ \hline \end{gathered}$		Using a correct identity to find $A=2$	A1
	$\int \frac{13-4 x}{(2 x+1)^{2}(x+3)} \mathrm{d} x=\int \frac{-2}{(2 x+1)}+\frac{6}{(2 x+1)^{2}}+\frac{1}{(x+3)} \mathrm{d} x$			[4]
(b)				
	$=\frac{(-2)}{2} \ln (2 x+1)+\frac{6(2 x+1)^{-1}}{(-1)(2)}+\ln (x+3)\{+c\}$ o.e. $\left\{=-\ln (2 x+1)-3(2 x+1)^{-1}+\ln (x+3)\{+c\}\right\}$		See notes	M1
			ast two terms correctly integrated	A1ft
			ect answer, o.e. Simplified or unfied. The correct answer must be stated on one line Ignore the absence of ' $+c$ '	A1
				[3]
(ii)	$\left\{\left(\mathrm{e}^{x}+1\right)^{3}=\right\} \mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+1$	$\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+1$, simplified or un-simplified		B1
	$\left\{\int\left(\mathrm{e}^{x}+1\right)^{3} \mathrm{~d} x\right\}=\frac{1}{3} \mathrm{e}^{3 x}+\frac{3}{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+x\{+c\}$		At least 3 examples (see notes) of correct ft integration	M1
			$\frac{1}{3} \mathrm{e}^{3 x}+\frac{3}{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+\frac{+c}{x}$ or un-simplified with or without	A1
				[3]
(iii)	$\int \frac{1}{4 x+5 x^{\frac{1}{3}}} \mathrm{~d} x, x>0 ; u^{3}=x$			
	$3 u^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}=1$	$\begin{array}{r} 3 u^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}=1 \text { or } \frac{\mathrm{d} x}{\mathrm{~d} u}=3 u^{2} \text { or } \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{3} x^{\frac{2}{3}} \\ \\ \text { or } 3 u^{2} \mathrm{~d} u=\mathrm{d} x \text { o.e. } \end{array}$		B1
	$=\int \frac{1}{4 u^{3}+5 u} \cdot 3 u^{2} \mathrm{~d} u\left\{=\int \frac{3 u}{4 u^{2}+5} \mathrm{~d} u\right\}$	$\text { Expression of the form } \int \frac{ \pm k u^{2}}{4 u^{3} \pm 5 u}\{\mathrm{~d} u\}_{\zeta} u$ $k \neq 0$ Does not have to include integral sign or Can be implied by later working		M1
	$\equiv \frac{3}{8} \ln \left(4 u^{\left.\left.x^{\frac{2}{3}}+55\right)\{+c\}\right\}}\right.$	dependent on the previous M mark $\pm \lambda \ln \left(4 u^{2}+5\right) ; \lambda$ is a constant; $\lambda \neq 0$		dM1
		Correct answer in x with or without $+c$		A1
				[4]
				14

			tion 93 Notes	
93. (iii)$\text { Alt } 1$	Alternative method 1 for part (iii)			
	$\left\{\int \frac{1}{4 x+5 x^{\frac{1}{3}}} \mathrm{~d} x\right\}=\int \frac{x^{-\frac{1}{3}}}{4 x^{\frac{2}{3}}+5} \mathrm{~d} x$		Attempts to multiply numerator and denominator by $x^{-\frac{1}{3}}$	M1
			Expression of the form $\int \frac{ \pm k x^{-\frac{1}{3}}}{4 x^{\frac{2}{3}} \pm 5} \mathrm{~d} x, k \neq 0$ Does not have to include integral sign or $\mathrm{d} u$ Can be implied by later working	M1
	$=\frac{3}{8} \ln \left(4 x^{\frac{2}{3}}+5\right)\{+c\}$		$\pm \lambda \ln \left(4 x^{\frac{2}{3}}+5\right) ; \lambda$ is a constant; $\lambda \neq 0$	dM1
			Correct answer in x with or without $+c$	A1
				[4]
93. (i) (a)	M1 Writes down a correct identity (although this can be implied) and attempts to find the value of at least one of either A or B or C. This can be achieved by either substituting values into their identity or comparing coefficients.			
	Note	The correct partial fraction from no working scores B1B1M1A1		
(i) (b)	M1	At least 2 of either $\pm \frac{P}{(2 x+1)} \rightarrow \pm D \ln (2 x+1)$ or $\pm D \ln \left(x+\frac{1}{2}\right)$ or $\pm \frac{Q}{(2 x+1)^{2}} \rightarrow \pm E(2 x+1)^{1}$ or $\pm \frac{R}{(x+3)} \rightarrow \pm F \ln (x+3)$ for their constants P, Q, R.		
	A1ft Note	At least two terms from any of $\pm \frac{P}{(2 x+1)}$ or $\pm \frac{Q}{(2 x+1)^{2}}$ or $\pm \frac{R}{(x+3)}$ correctly integrated. Can be un-simplified for the A1ft mark.		
	A1	Correct answer of $\frac{(2)}{2} \ln (2 x+1)+\frac{6(2 x+1)^{1}}{(1)(2)}+\ln (x+3)\{+c\}$ simplified or un-simplified. with or without ' $+c$ '.		
	Note	Allow final A1 for equivalent answers, e.g. $\ln \left(\frac{x+3}{2 x+1}\right)-\frac{3}{2 x+1}\{+c\}$ or $\ln \left(\frac{2 x+6}{2 x+1}\right)-\frac{3}{2 x+1}\{+c\}$		
	Note	Beware that $\int \frac{-2}{(2 x+1)} \mathrm{d} x=\int \frac{-1}{\left(x+\frac{1}{2}\right)} \mathrm{d} x=-\ln \left(x+\frac{1}{2}\right)\{+c\}$ is correct integration		
	Note	E.g. Allow M1 A1ft A1 for a correct un-simplified $\ln (x+3)-\ln \left(x+\frac{1}{2}\right)-\frac{3}{2}\left(x+\frac{1}{2}\right)^{-1}\{+c\}$		
	Note	Condone $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for poor bracketing, but do not allow poor bracketing for the final A1 E.g. Give final A0 for $-\ln 2 x+1-3(2 x+1)^{-1}+\ln x+3\{+c\}$ unless recovered		
(ii)	Note	Give B1 for an un-simplified $\mathrm{e}^{3 x}+2 \mathrm{e}^{2 x}+\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+\mathrm{e}^{x}+1$		
	M1	At least 3 of either $\mathrm{e}^{3 x} \rightarrow \frac{-}{3} \mathrm{e}^{3 x}$ or $\mathrm{e}^{2 x} \rightarrow \frac{-\mathrm{e}^{2 x}}{}$ or $\mathrm{e}^{x} \rightarrow \mathrm{e}^{x}$ or $\mu \rightarrow \mu x ; \alpha, \beta, \delta, \mu \neq 0$		
	Note	Give A1 for an un-simplified $\frac{1}{3} \mathrm{e}^{3 x}+\mathrm{e}^{2 x}+\frac{1}{2} \mathrm{e}^{2 x}+2 \mathrm{e}^{x}+\mathrm{e}^{x}+x$, with or without $+c$		
(iii)	Note	$1^{\text {st }}$ M1 can be implied by $\int \frac{ \pm k u}{4 u^{2} \pm 5}\{\mathrm{~d} u\}, k \neq 0$. Does not have to include integral sign or $\mathrm{d} u$		
	Note	Condone $1^{\text {st }} \mathrm{M} 1$ for expressions of the form $\int\left(\frac{ \pm 1}{4 u^{3} \pm 5 u} \cdot \frac{ \pm k}{u^{-2}}\right)\{\mathrm{d} u\}, k \neq 0$		
	Note	Give $2^{\text {nd }} \mathrm{M} 0$ for $\frac{3 u}{8 u} \ln \left(4 u^{2}+5\right)\{+c\}(u$'s not cancelled) unless recovered in later working		
	Note	E.g. Give $2^{\text {nd }} \mathrm{M} 0$ for integration leading to $\frac{3}{4} u \ln \left(4 u^{2}+5\right)$ as this is not in the form $\pm \lambda \ln \left(4 u^{2}+5\right)$		

Note \quad Condone $2^{\text {nd }}$ M1 for poor bracketing, but do not allow poor bracketing for the final A1 E.g. Give final A0 for $\frac{3}{8} \ln 4 x^{\frac{2}{3}}+5\{+c\}$ unless recovered

Question Number	Scheme	Notes	Marks
93. (ii) Alt 1	$\int\left(\mathrm{e}^{x}+1\right)^{3} \mathrm{~d} x ; u=\mathrm{e}^{x}+1 \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\mathrm{e}^{x}$		
	$\left\{=\int \frac{u^{3}}{(u-1)} \mathrm{d} u=\right\} \int\left(u^{2}+u+1+\frac{1}{u-1}\right) \mathrm{d} u$	$\int\left(u^{2}+u+1+\frac{1}{u-1}\right)\{\mathrm{d} u\}$ where $u=\mathrm{e}^{x}+1$	B1
	$=\frac{1}{3} u^{3}+\frac{1}{2} u^{2}+u+\ln (u-1)\{+c\}$	At least 3 of either $\alpha u^{2} \rightarrow \frac{\alpha}{3} u^{3}$ or $\beta u \rightarrow \frac{\beta}{2} u^{2}$ or $\delta \rightarrow \delta u$ or $\frac{\lambda}{u-1} \rightarrow \lambda \ln (u-1) ; \alpha, \beta, \delta, \lambda \neq 0$	M1
	$=\frac{1}{3}\left(\mathrm{e}^{x}+1\right)^{3}+\frac{1}{2}\left(\mathrm{e}^{x}+1\right)^{2}+\left(\mathrm{e}^{x}+1\right)+\ln \left(\mathrm{e}^{x}+1-1\right)\{+c\}$		
	$=\frac{1}{3}\left(\mathrm{e}^{x}+1\right)^{3}+\frac{1}{2}\left(\mathrm{e}^{x}+1\right)^{2}+\left(\mathrm{e}^{x}+1\right)+x\{+c\}$	$\begin{aligned} & \frac{1}{3}\left(\mathrm{e}^{x}+1\right)^{3}+\frac{1}{2}\left(\mathrm{e}^{x}+1\right)^{2}+\left(\mathrm{e}^{x}+1\right)+x \\ & \text { or } \frac{1}{3}\left(\mathrm{e}^{x}+1\right)^{3}+\frac{1}{2}\left(\mathrm{e}^{x}+1\right)^{2}+\mathrm{e}^{x}+x \end{aligned}$ simplified or un-simplified with or without Note: $\ln \left(\mathrm{e}^{x}+1-1\right)$ needs to be simplified to x for this mark	A1
			[3]
93. (ii)$\text { Alt } 2$	$\int\left(\mathrm{e}^{x}+1\right)^{3} \mathrm{~d} x ; u=\mathrm{e}^{x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\mathrm{e}^{x}$		
	$\left\{=\int \frac{(u+1)^{3}}{u} \mathrm{~d} u=\right\} \int\left(u^{2}+3 u+3+\frac{1}{u}\right) \mathrm{d} u$	$\int\left(u^{2}+3 u+3+\frac{1}{u}\right)\{\mathrm{d} u\}$ where $u=\mathrm{e}^{x}$	B1
	$=\frac{1}{3} u^{3}+\frac{3}{2} u^{2}+3 u+\ln u\{+c\}$	At least 3 of either $\alpha u^{2} \rightarrow \frac{\alpha}{3} u^{3}$ or $\beta u \rightarrow \frac{\beta}{2} u^{2}$ or $\delta \rightarrow \delta u$ or $\frac{\lambda}{u} \rightarrow \lambda \ln u ; \alpha, \beta, \delta, \lambda \neq 0$	M1
	$=\frac{1}{3} \mathrm{e}^{3 x}+\frac{3}{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+x\{+c\}$	$\frac{1}{3} \mathrm{e}^{3 x}+\frac{3}{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+x$ simplified or un-simplified with or without $+c$ Note: $\ln \left(\mathrm{e}^{x}\right)$ needs to be simplified to x for this mark	A1
			[3]

	Question 94 Notes Continued	
94.	Note	Writing $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}}{3 \cos ^{2} 2 x} \Rightarrow \begin{aligned} & \mathrm{d} y \\ & \mathrm{~d} x\end{aligned}=\frac{1}{3} y^{2} \sec ^{2} 2 x$ leading to e.g. - $y=\frac{1}{9} y^{3}\left(\frac{1}{2} \tan 2 x\right)$ gets $2^{\text {nd }} \mathrm{M} 0$ for $\pm \lambda \tan 2 x$ - $u=\frac{1}{3} y^{2}, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sec ^{2} 2 x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{2}{3} y, v=\frac{1}{2} \tan 2 x$ gets $2^{\text {nd }} \mathrm{M} 0$ for $\pm \lambda \tan 2 x$ because the variables have not been separated

Question Number	Scheme					Marks
95. (b) Way 2	$\{V=\} \pi \int_{0}^{\frac{\pi}{4}}(\sqrt{x} \sin 2 x)^{2}\{\mathrm{~d} x\}$			Ignore limit	$\begin{aligned} & \int(\sqrt{x} \sin 2 x)^{2}\{\mathrm{~d} x\} \\ & \mathrm{d} x . \text { Can be implied } \end{aligned}$	B1
	$\begin{aligned} & \left\{\int x \sin ^{2} 2 x \mathrm{~d} x=\right\} \\ & \quad \int x\left(\frac{1-\cos 4 x}{2}\right)\{\mathrm{d} x\} \end{aligned}$		manipulati	r writing down a and $\cos 4 x$ (e.g me attempt at app equation which c	ect equation linking $\left.4 x=1-2 \sin ^{2} 2 x\right)$ this equation (or a e incorrect) to their integral. Can be implied	M1
			$u=x \text { and }$	$\int x \sin ^{2} 2 x\{\mathrm{~d} x\}$ te: This mark c $\frac{\cos 4 x}{2} \text { or } u=\frac{1}{2}$	$x\left(\frac{1-\cos 4 x}{2}\right)\{\mathrm{d} x\}$ implied for stating $\frac{\mathrm{d} v}{\mathrm{~d} x}=1-\cos 4 x$	A1
	$=x\left(\frac{1}{2} x-\frac{1}{8} \sin 4 x\right)-\int\left(\frac{1}{2} x-\frac{1}{8} \sin 4 x\right) \mathrm{d} x$					
	$=x\left(\frac{1}{2} x-\frac{1}{8} \sin 4 x\right)-\left(\frac{1}{4} x^{2}+\frac{1}{32} \cos 4 x\right)\{+c\}$			$\pm A x^{2} \pm B x \sin 4 x$ or an expressio	Integrates to give $\cos 4 x ; A, B, C \neq 0$ at can be simplified to this form	M1 (B1 on ePEN)
	$\frac{\left\{\int_{0}^{\frac{\pi}{4}}(\sqrt{x} \sin 2 x)^{2} \mathrm{~d} x=\left[\frac{1}{4} x^{2}-\frac{1}{8} x \sin 4 x-\frac{1}{32} \cos 4 x\right]_{0}^{\frac{\pi}{4}}\right\}}{}$					
	$=\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)-\left(0-0-\frac{1}{32} \cos 0\right)$				dependent on the previous M mark see notes	dM1
	$=\left(\frac{\pi^{2}}{64}+\frac{1}{32}\right)-\left(-\frac{1}{32}\right)=\frac{\pi^{2}}{64}+\frac{1}{16}$					
	So, $V=\pi\left(\frac{\pi^{2}}{64}+\frac{1}{16}\right)$ or $\frac{1}{64} \pi^{3}+\frac{1}{16} \pi$ or $\frac{\pi}{2}\left(\frac{\pi^{2}}{32}+\frac{1}{8}\right)$ o.e.					A1 o.e.
						[6]
	Question 95 Notes Continued					
95. (a)	SC $\begin{array}{l}\text { Give Special Case M1A0A0 for writing down the correct "by parts" formula and using } \\ u=x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\cos 4 x, \text { but making only one error in the application of the correct formula }\end{array}$					
(b)	Note \quad You can imply B1 for seeing $\pi \int y^{2}\{\mathrm{~d} x\}$, followed by $y^{2}=(\sqrt{x} \sin 2 x)^{2}$ or $y^{2}=x \sin ^{2} 2 x$					
	Note	If the form $\cos 4 x=\cos ^{2} 2 x-\sin ^{2} 2 x$ or $\cos 4 x=2 \cos ^{2} 2 x-1$ is used, the $1^{\text {st }} \mathrm{M}$ cannot be gained until $\cos ^{2} 2 x$ has been replaced by $\cos ^{2} 2 x=1-\sin ^{2} 2 x$ and the result is applied to their integral				
	Note	Mixing $x^{\prime} s$ and e.g. $\theta^{\prime} s$: Condone $\cos 4 \theta=1-2 \sin ^{2} 2 \theta, \sin ^{2} 2 \theta=\frac{1-\cos 4 \theta}{2}$ or $\lambda \sin ^{2} 2 \theta=\lambda\left(\frac{1-\cos 4 \theta}{2}\right)$ if recovered in their integration				
	Final M1	Complete method of applying limits of $\frac{\pi}{4}$ and 0 to all terms of an expression of the form $\pm A x^{2} \pm B x \sin 4 x \pm C \cos 4 x ; A, B, C \neq 0$ and subtracting the correct way round.				
	Note	For the final M1 mark in Way 1, allow one transcription error (on $\sin 4 x$ or $\cos 4 x$) in the copying of their answer from part (a) to part (b)				

Question 95 Notes Continued

95. (b) Note

Evidence of a proper consideration of the limit of 0 on $\cos 4 x$ where applicable is needed for the
final M mark
E.g. $\left[\frac{1}{4} x^{2}-\frac{1}{8} x \sin 4 x-\frac{1}{32} \cos 4 x\right]_{0}^{\frac{\pi}{4}}=$

- $=\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)+\frac{1}{32}$ is final M1
- $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)-0$ is final M0
- $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)-\frac{1}{32}$ is final M0 (adding)
- $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)-\left(\frac{1}{32}\right)$ is final M1 (condone)
- $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)-(0+0+0)$ is final M0

95. (b)

Note Alternative Method:

$$
\begin{aligned}
& \left\{\begin{array}{cc}
u=\sin ^{2} 2 x \quad & \frac{\mathrm{~d} v}{\mathrm{~d} x}=x \\
\frac{\mathrm{~d} u}{\mathrm{~d} x}=2 \sin 4 x \quad v=\frac{1}{2} x^{2}
\end{array}\right\},\left\{\begin{array}{cc}
u=x^{2} & \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sin 4 x \\
\frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x & v=-\frac{1}{4} \cos 4 x
\end{array}\right\} \\
& \left\{x \sin ^{2} 2 x \mathrm{~d} x\right. \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x-\int \frac{1}{2} x^{2}(2 \sin 4 x) \mathrm{d} x \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x-\int x^{2} \sin 4 x \mathrm{~d} x \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x-\left(-\frac{1}{4} x^{2} \cos 4 x-\int 2 x .\left(-\frac{1}{4} \cos 4 x\right) \mathrm{d} x\right) \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x-\left(-\frac{1}{4} x^{2} \cos 4 x+\frac{1}{2} \int x \cos 4 x \mathrm{~d} x\right) \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x+\frac{1}{4} x^{2} \cos 4 x-\frac{1}{2} \int x \cos 4 x \mathrm{~d} x \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x+\frac{1}{4} x^{2} \cos 4 x-\frac{1}{2}\left(\frac{1}{4} x \sin 4 x+\frac{1}{16} \cos 4 x\right)\{+c\} \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x+\frac{1}{4} x^{2} \cos 4 x-\frac{1}{8} x \sin 4 x-\frac{1}{32} \cos 4 x\{+c\} \\
& V=\pi \int_{0}^{\frac{\pi}{4}}(\sqrt{x} \sin 2 x)^{2} \mathrm{~d} x=\pi\left(\frac{\pi^{2}}{64}+\frac{1}{16}\right) \text { or } \frac{1}{64} \pi^{3}+\frac{1}{16} \pi \quad \text { or } \frac{\pi}{2}\left(\frac{\pi^{2}}{32}+\frac{1}{8}\right) \text { o.e. }
\end{aligned}
$$

96	A1 Note Note	Exact answer needs to be a two term expression in the form $a \ln b+c$ Give A1 e.g. $\frac{8}{3} \ln 2-\frac{7}{9}$ or $\frac{1}{9}(24 \ln 2-7)$ or $\frac{4}{3} \ln 4-\frac{7}{9}$ or $\frac{1}{3} \ln 256-\frac{7}{9}$ or $-\frac{7}{9}+\frac{8}{3} \ln 2$ or $\ln 2^{\frac{8}{3}}-\frac{7}{9}$ or equivalent. Give final A0 for a final answer of $\frac{8 \ln 2-\ln 1}{3}-\frac{7}{9}$ or $\frac{8 \ln 2}{3}-\frac{1}{3} \ln 1-\frac{7}{9}$ or $\frac{8 \ln 2}{3}-\frac{8}{9}+\frac{1}{9}$ or $\frac{8}{3} \ln 2-\frac{7}{9}+c$
	Note	$\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]_{1}^{2}$ followed by awrt 1.07 with no correct answer seen is dM1A0
	Note	Give dM0A0 for $\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]_{1}^{2} \rightarrow\left(\frac{8}{3} \ln 2-\frac{8}{9}\right)-\frac{1}{9} \quad$ (adding rather than subtracting)
	Note	Allow dM1A0 for $\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]_{1}^{2} \rightarrow\left(\frac{8}{3} \ln 2-\frac{8}{9}\right)-\left(0+\frac{1}{9}\right)$
	SC	A candidate who uses $u=\ln x$ and $\frac{\mathrm{d} v}{\mathrm{~d} x}=x^{2}, \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{\alpha}{x}, v=\beta x^{3}$, writes down the correct "by parts" formula but makes only one error when applying it can be awarded Special Case $1^{\text {st }}$ M1.

98. (i)	$1^{\text {st }} \mathrm{M} 1$	Writing $\frac{3 y-4}{y(3 y+2)} \equiv \frac{A}{y}+\frac{B}{(3 y+2)}$ and a complete method for finding the value of at least one of their A or their B.
	Note	M1A1 can be implied for writing down either $\frac{3 y-4}{y(3 y+2)} \equiv \frac{-2}{y}+\frac{\text { their } B}{(3 y+2)}$ or $\frac{3 y-4}{y(3 y+2)} \equiv \frac{\text { their } A}{y}+\frac{9}{(3 y+2)}$ with no working.
	Note	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)
	Note	Give $2^{\text {nd }} \mathrm{M} 0$ for $\frac{3 y-4}{y(3 y+2)}$ going directly to $\pm \alpha \ln \left(3 y^{2}+2 y\right)$
	Note	\ldots..but allow $2^{\text {nd }} \mathrm{M} 1$ for either $\frac{M(6 y+2)}{3 y^{2}+2 y} \rightarrow \pm \alpha \ln \left(3 y^{2}+2 y\right)$ or $\frac{M(3 y+1)}{3 y^{2}+2 y} \rightarrow \pm \alpha \ln \left(3 y^{2}+2 y\right)$
98. (ii)(a)	$1^{\text {st }} \mathrm{M} 1$ Note Note	Substitutes $x=4 \sin ^{2} \theta$ and their $\mathrm{d} x\left(\right.$ from their correctly rearranged $\left.\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)$ into $\sqrt{\left(\frac{x}{4-x}\right)} \mathrm{d} x$ $\mathrm{d} x \neq \lambda \mathrm{d} \theta$. For example $\mathrm{d} x \neq \mathrm{d} \theta$ Allow substituting $\mathrm{d} x=4 \sin 2 \theta$ for the $1^{\text {st }} \mathrm{M} 1$ after a correct $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=4 \sin 2 \theta$ or $\mathrm{d} x=4 \sin 2 \theta \mathrm{~d} \theta$
	$2^{\text {nd }} \mathbf{M 1}$ Note	Applying $x=4 \sin ^{2} \theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K \tan \theta$ or $\pm K\left(\frac{\sin \theta}{\cos \theta}\right)$ Integral sign is not needed for this mark.
	$1^{\text {st }} \mathrm{A} 1$	Simplifies to give $\int 8 \sin ^{2} \theta \mathrm{~d} \theta$ including $\mathrm{d} \theta$
	$2^{\text {nd }} \mathrm{B} 1$	Writes down a correct equation involving $x=3$ leading to $\theta=\frac{\pi}{3}$ and no incorrect work seen regarding limits
	Note	Allow $2^{\text {nd }} \mathrm{B} 1$ for $x=4 \sin ^{2}\left(\frac{\pi}{3}\right)=3$ and $x=4 \sin ^{2} 0=0$
	Note	Allow $2^{\text {nd }} \mathrm{B} 1$ for $\theta=\sin ^{-1}\left(\sqrt{\frac{x}{4}}\right)$ followed by $x=3, \theta=\frac{\pi}{3} ; x=0, \theta=0$
(ii)(b)	M1	Writes down a correct equation involving $\cos 2 \theta$ and $\sin ^{2} \theta$ E.g.: $\cos 2 \theta=1-2 \sin ^{2} \theta$ or $\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$ or $K \sin ^{2} \theta=K\left(\frac{1-\cos 2 \theta}{2}\right)$ and applies it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral.
	M1	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2 \theta$ or $k(\pm \alpha \theta \pm \beta \sin 2 \theta)$, $\alpha \neq 0, \beta \neq 0$ (can be simplified or un-simplified).
	$1^{\text {st }} \mathrm{A} 1$	Integrating $\sin ^{2} \theta$ to give $\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta$, un-simplified or simplified. Correct solution only. Can be implied by $k \sin ^{2} \theta$ giving $\frac{k}{2} \theta-\frac{k}{4} \sin 2 \theta$ or $\frac{k}{4}(2 \theta-\sin 2 \theta)$ un-simplified or simplified.
	$2^{\text {nd }} \mathbf{A 1}$	A correct solution in part (ii) leading to a "two term" exact answer of e.g. $\frac{4}{3} \pi-\sqrt{3}$ or $\frac{8}{6} \pi-\sqrt{3}$ or $\frac{4}{3} \pi-\frac{2 \sqrt{3}}{2}$ or $\frac{1}{3}(4 \pi-3 \sqrt{3})$
	Note	A decimal answer of 2.456739397... (without a correct exact answer) is A0.
	Note	Candidates can work in terms of λ (note that λ is not given in (ii)) and gain the $1^{\text {st }}$ three marks (i.e. M1M1A1) in part (b).
	Note	If they incorrectly obtain $\int_{0}^{\frac{\pi}{3}} 8 \sin ^{2} \theta \mathrm{~d} \theta$ in part (i)(a) (or correctly guess that $\lambda=8$) then the final A1 is available for a correct solution in part (ii)(b).

	Scheme	Notes	Marks
$\begin{aligned} & \text { 98. (i) } \\ & \text { Way } 2 \end{aligned}$	$\int \frac{3 y-4}{y(3 y+2)} \mathrm{d} y=\int \frac{6 y+2}{3 y^{2}+2 y} \mathrm{~d} y-\int \frac{3 y+6}{y(3 y+2)} \mathrm{d} y$		
	$\frac{3 y+6}{y(3 y+2)} \equiv \frac{A}{y}+\frac{B}{(3 y+2)} \Rightarrow 3 y+6=A(3 y+2)+B y$	$+2)+B y$	M1
		At least one of their $A=3$ or their $B=-6$	A1
	$y=-\frac{2}{3} \Rightarrow 4=-\frac{2}{3} B \Rightarrow B=-6 \quad$ Both their $A=3$ and their $B=-6$		A1
	$\begin{aligned} & \int \frac{3 y-4}{y(3 y+2)} \mathrm{d} y \\ & =\int \frac{6 y+2}{3 y^{2}+2 y} \mathrm{~d} y-\int \frac{3}{y} \mathrm{~d} y+\int \frac{6}{(3 y+2)} \mathrm{d} y \\ & =\ln \left(3 y^{2}+2 y\right)-3 \ln y+2 \ln (3 y+2)\{+c\} \end{aligned}$	Integrates to give at least one of either $\begin{aligned} \frac{M(6 y+2)}{3 y^{2}+2 y} & \rightarrow \pm \alpha \ln \left(3 y^{2}+2 y\right) \\ \text { or } \frac{A}{y} \rightarrow \pm \lambda \ln y \text { or } \frac{B}{(3 y+2)} & \rightarrow \pm \mu \ln (3 y+2) \\ M & \neq 0, A \neq 0, B \neq 0 \end{aligned}$	M1
		At least one term correctly followed through	A1 ft
		$\ln \left(3 y^{2}+2 y\right)-3 \ln y+2 \ln (3 y+2)$ with correct bracketing, simplified or un-simplified	A1 cao
			[6]
98. (i) Way 3	$\int \frac{3 y-4}{y(3 y+2)} \mathrm{d} y=\int \frac{3 y+1}{3 y^{2}+2 y} \mathrm{~d} y-\int \frac{5}{y(3 y+2)} \mathrm{d} y$	dy	
	$\begin{aligned} & \frac{5}{y(3 y+2)} \equiv \frac{A}{y}+\frac{B}{(3 y+2)} \Rightarrow 5=A(3 y+2)+B y \\ & y=0 \Rightarrow 5=2 A \Rightarrow A=\frac{5}{2} \\ & y=-\frac{2}{3} \Rightarrow 5=-\frac{2}{3} B \Rightarrow B=-\frac{15}{2} \end{aligned}$	By \quad See notes	M1
		At least one of their $A=\frac{5}{2}$ or their $B=-\frac{15}{2}$	A1
		Both their $A=\frac{5}{2}$ and their $B=-\frac{15}{2}$	A1
	$\begin{aligned} & \int \frac{3 y-4}{y(3 y+2)} \mathrm{d} y \\ & =\int \frac{3 y+1}{3 y^{2}+2 y} \mathrm{~d} y-\int \frac{\frac{5}{2}}{y} \mathrm{~d} y+\int \frac{\frac{15}{2}}{(3 y+2)} \mathrm{d} y \\ & =\frac{1}{2} \ln \left(3 y^{2}+2 y\right)-\frac{5}{2} \ln y+\frac{5}{2} \ln (3 y+2)\{+c\} \end{aligned}$	Integrates to give at least one of either $\frac{M(3 y+1)}{3 y^{2}+2 y} \rightarrow \pm \alpha \ln \left(3 y^{2}+2 y\right)$ $\text { or } \begin{array}{r} \frac{A}{y} \rightarrow \pm \lambda \ln y \text { or } \frac{B}{(3 y+2)} \rightarrow \pm \mu \ln (3 y+2) \\ M \neq 0, A \neq 0, B \neq 0 \end{array}$	M1
		At least one term correctly followed through	A1 ft
		$\frac{1}{2} \ln \left(3 y^{2}+2 y\right)-\frac{5}{2} \ln y+\frac{5}{2} \ln (3 y+2)$ with correct bracketing, simplified or un-simplified	A1 cao
			[6]

Question Number	Scheme	Notes		Marks
99.	$y=(2 x-1)^{\frac{3}{4}}, \quad x \geqslant \frac{1}{2} \quad$ passes though $P(k, 8)$			
(a)	$\left\{\int(2 x-1)^{\frac{3}{2}} \mathrm{~d} x\right\}=\frac{1}{5}(2 x-1)^{\frac{5}{2}}\{+c\}$	$\begin{array}{r} (2 x \pm 1)^{\frac{3}{2}} \rightarrow \pm \lambda(2 x \pm 1)^{\frac{5}{2}} \text { or } \pm \lambda u^{\frac{5}{2}} \\ \text { where } u=2 x \pm 1 ; \lambda \neq 0 \end{array}$		M1
		$\frac{1}{5}(2 x-1)^{\frac{5}{2}}$ with or without $+c$. Must be simplified.		A1
				[2]
(b)	$\{P(k, 8) \Rightarrow\} 8=(2 k-1)^{\frac{3}{4}} \Rightarrow k=\frac{8^{\frac{4}{3}}+1}{2}$	Sets $8=(2 k-1)^{\frac{3}{4}}$ or $8=(2 x-1)^{\frac{3}{4}}$ and rearranges to give $k=$ (or $x=$) a numerical value.		M1
	So, $k=\frac{17}{2}$	$k($ or $x)=\frac{17}{2}$ or 8.5		A1
				[2]
(c)	$\pi \int\left((2 x-1)^{\frac{3}{4}}\right)^{2} \mathrm{~d} x$	For $\pi \int\left((2 x-1)^{\frac{3}{4}}\right)^{2}$ or $\pi \int(2 x-1)^{\frac{3}{2}}$ Ignore limits and $d x$. Can be implied.		B1
	$\left\{\int_{\frac{1}{2}}^{\frac{17}{2}} y^{2} \mathrm{~d} x\right\}=\left[\frac{(2 x-1)^{\frac{5}{2}}}{5}\right]_{\frac{1}{2}}^{\frac{17}{2}}=\left(\left(\frac{16^{\frac{5}{2}}}{5}\right)-(0)\right)\left\{=\frac{1024}{5}\right\}$ Note: It is not necessary to write the " -0 "	Applies x-limits of "8.5" (their answer to part (b)) and 0.5 to an expression of the form $\pm \beta(2 x-1)^{\frac{5}{2}} ; \beta \neq 0$ and subtracts the correct way round.		M1
	$\left\{V_{\text {cylinder }}\right\}=\pi(8)^{2}\left(\frac{17}{2}\right)\{=544 \pi\}$	$\begin{gathered} \pi(8)^{2}(\text { their answer to part }(b)) \\ V_{\text {cylinder }}=544 \pi \text { implies this mark } \end{gathered}$		B1 ft
	$\left\{\operatorname{Vol}(S)=544 \pi-\frac{1024 \pi}{5}\right\} \Rightarrow \operatorname{Vol}(S)=\frac{1696}{5} \pi$	An exact correct answer in the form $k \pi$$\text { E.g. } \frac{1696}{5} \pi, \frac{3392}{10} \pi \text { or } 339.2 \pi$		A1
				[4]
Alt. (c)	$\operatorname{Vol}(S)=\pi(8)^{2}\left(\frac{1}{2}\right)+\underline{\underline{\pi}} \int_{0.5}^{8.5}\left(8^{2}-\underline{\underline{(2 x-1)^{\frac{3}{2}}}}\right) \mathrm{d} x$	For $\underline{\underline{\pi}} \int \cdots . . \underline{\underline{(2 x-1)^{\frac{3}{2}}}}$ Ignore limits and $d x$.		B1
	$=\pi(8)^{2}\left(\frac{1}{2}\right)+\pi\left[64 x-\frac{1}{5}(2 x-1)^{\frac{5}{2}}\right]_{0.5}^{8.5}$			
			as above	M1
				B1
	$\left\{=32 \pi+\pi\left(\left(544-\frac{1024}{5}\right)-(32-0)\right)\right\} \Rightarrow \operatorname{Vol}(S)=\frac{1696}{5} \pi$			A1
				[4]
				8

100. (c)	B1	$4 x \rightarrow 2 x^{2}$ or $\frac{4 x^{2}}{2}$ oe
	M1 Note Note	Complete method of applying limits of their x_{A} and 0 to all terms of an expression of the form $\pm A x^{2} \pm B x \mathrm{e}^{\frac{1}{2} x} \pm C \mathrm{e}^{\frac{1}{2} x}$ (where $A \neq 0, B \neq 0$ and $C \neq 0$) and subtracting the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M 1 . So subtracting 0 is M0. $\ln 16$ or $2 \ln 4$ or equivalent is fine as an upper limit.
	A1	A correct three term exact quadratic expression in $\ln 2$. For example allow for A1 - $32(\ln 2)^{2}-32(\ln 2)+12$ - $8(2 \ln 2)^{2}-8(4 \ln 2)+12$ - $2(4 \ln 2)^{2}-32(\ln 2)+12$ - $2(4 \ln 2)^{2}-2(4 \ln 2) \mathrm{e}^{\frac{1}{2}(4 \ln 2)}+12$
	Note Note	Note that the constant term of 12 needs to be combined from $4 \mathrm{e}^{\frac{1}{2}(4 \ln 2)}-4 \mathrm{e}^{\frac{1}{2}(0)}$ o.e. Also allow $32 \ln 2(\ln 2-1)+12$ or $32 \ln 2\left(\ln 2-1+\frac{12}{32 \ln 2}\right)$ for A1.
	Note	Do not apply "ignore subsequent working" for incorrect simplification. Eg: $32(\ln 2)^{2}-32(\ln 2)+12 \rightarrow 64(\ln 2)-32(\ln 2)+12$ or $32(\ln 4)-32(\ln 2)+12$
	Note	Bracketing error: $32 \ln 2^{2}-32(\ln 2)+12$, unless recovered is final A0.
	Note	Notation: Allow $32\left(\ln ^{2} 2\right)-32(\ln 2)+12$ for the final A1.
	Note	$5.19378 \ldots$ without seeing $32(\ln 2)^{2}-32(\ln 2)+12$ is A 0 .
	Note	5.19378... following from a correct $2 x^{2}-\left(2 x \mathrm{e}^{\frac{1}{2} x}-4 \mathrm{e}^{\frac{1}{2} x}\right)$ is M1A0.
	Note	5.19378... from no working is M0A0.

Question Number	Scheme	Marks
101. (a)	$A=\int_{0}^{3} \sqrt{(3-x)(x+1)} \mathrm{d} x, x=1+2 \sin \theta$	
	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \cos \theta$ $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \cos \theta \text { or } 2 \cos \theta \text { used correctly }$ in their working. Can be implied.	B1
	$\left\{\int \sqrt{(3-x)(x+1)} \mathrm{d} x\right.$ or $\left.\int \sqrt{\left(3+2 x-x^{2}\right)} \mathrm{d} x\right\}$	
	$=\int \sqrt{(3-(1+2 \sin \theta))((1+2 \sin \theta)+1)} 2 \cos \theta\{\mathrm{~d} \theta\} \quad \begin{aligned} & \text { Substitutes for both } x \text { and } \mathrm{d} x \\ & \text { where } \mathrm{d} x \neq \lambda \mathrm{d} \theta \text {. Ignore } \mathrm{d} \theta\end{aligned}$	M1
	$\begin{aligned} & =\int \sqrt{(2-2 \sin \theta)(2+2 \sin \theta)} 2 \cos \theta\{\mathrm{~d} \theta\} \\ & =\int \sqrt{\left(4-4 \sin ^{2} \theta\right)} 2 \cos \theta\{\mathrm{~d} \theta\} \end{aligned}$	
	$=\int \sqrt{\left(4-4\left(1-\cos ^{2} \theta\right)\right.} 2 \cos \theta\{\mathrm{~d} \theta\}$ or $\int \sqrt{4 \cos ^{2} \theta} 2 \cos \theta\{\mathrm{~d} \theta\} \quad$ Applies $\cos ^{2} \theta=1-\ldots \sin ^{2} \theta$	M1
	$=4 \int \cos ^{2} \theta \mathrm{~d} \theta,\{k=4\}$ $4 \int \cos ^{2} \theta \mathrm{~d} \theta \text { or } \int 4 \cos ^{2} \theta \mathrm{~d} \theta$ Note: $\mathrm{d} \theta$ is required here.	A1
	$0=1+2 \sin \theta$ or $-1=2 \sin \theta$ or $\sin \theta=-\frac{1}{2} \Rightarrow \theta=-\frac{\pi}{6}$ and $3=1+2 \sin \theta$ or $2=2 \sin \theta$ or $\sin \theta=1 \Rightarrow \theta=\frac{\pi}{2}$	B1
		[5]
(b)	$\left\{k \int \cos ^{2} \theta\{\mathrm{~d} \theta\}\right\}=\{k\} \int\left(\frac{1+\cos 2 \theta}{2}\right)\{\mathrm{d} \theta\} \quad \begin{array}{r}\text { Applies } \cos 2 \theta=2 \cos ^{2} \theta-1 \\ \text { to their integral }\end{array}$	M1
	$\begin{aligned} =\{k\}\left(\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right) & \text { Integrates to give } \pm \alpha \theta \pm \beta \sin 2 \theta, \alpha \neq 0, \beta \neq 0 \\ & \text { or } k(\pm \alpha \theta \pm \beta \sin 2 \theta) \end{aligned}$	M1 (A1 on ePEN)
	$\left.\begin{array}{l} \left\{\text { So } 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta=[2 \theta+\sin 2 \theta]_{-\frac{\pi}{6}}^{\frac{\pi}{2}}\right. \end{array}\right\}=\left(2\left(\frac{\pi}{2}\right)+\sin \left(\frac{2 \pi}{2}\right)\right)-\left(2\left(-\frac{\pi}{6}\right)+\sin \left(-\frac{2 \pi}{6}\right)\right) .$	
	$\left\{=(\pi)-\left(-\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right)\right\}=\frac{4 \pi}{3}+\frac{\sqrt{3}}{2} \quad \begin{aligned} & \frac{4 \pi}{3}+\frac{\sqrt{3}}{2} \text { or } \\ & \frac{1}{6}(8 \pi+3 \sqrt{3}) \end{aligned}$	A1 cao cso
		[3] 8

Question 101 Notes

Question Number	Scheme	Marks
102. (a)	$\frac{2}{P(P-2)}=\frac{A}{P}+\frac{B}{(P-2)}$	
	$2 \equiv A(P-2)+B P$	M1
	$A=-1, B=1$	A1
	giving $\frac{1}{(P-2)}-\frac{1}{P} \quad$ See notes. cao, aef	A1
(b)	$\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{2} P(P-2) \cos 2 t$	[3]
	$\int \frac{2}{P(P-2)} \mathrm{d} P=\int \cos 2 t \mathrm{~d} t \quad$ can be implied by later working	B1 oe
	$\ln (P-2)-\ln P=\frac{1}{2} \sin 2 t(+c) \quad \begin{array}{r} \pm \ln (P-2) \pm \mu \ln P, \\ \lambda \neq 0, \mu \neq 0 \end{array}$	M1
	2	A1
	$\{t=0, P=3 \Rightarrow\} \ln 1-\ln 3=0+c \quad\left\{\Rightarrow c=-\ln 3\right.$ or $\left.\ln \left(\frac{1}{3}\right)\right\}$	M1
	$\begin{aligned} & \ln (P-2)-\ln P=\frac{1}{2} \sin 2 t-\ln 3 \\ & \ln \left(\frac{3(P-2)}{P}\right)=\frac{1}{2} \sin 2 t \end{aligned}$	
	$\begin{array}{r} \begin{array}{r} \text { Starting from an equation of the form } \\ \pm \lambda \ln (P-\beta) \pm \mu \ln P= \pm K \sin \delta t+c, \end{array} \\ \frac{3(P-2)}{P}=\mathrm{e}^{\frac{1}{2 \sin 2 t}} \quad \begin{array}{r} \pm, \beta, K, \delta \neq 0 \text { applies a fully correct method to } \\ \text { eliminate their logarithms. } \end{array} \\ \text { Must have a constant of integration that need } \end{array}$	M1
	$3(P-2)=P \mathrm{e}^{\frac{1}{3} \sin 2 t} \Rightarrow 3 P-6=P \mathrm{e}^{\frac{1}{2} \sin 2 t}$A complete method of rearranging to make P the subject.	dM1
		A1 * cso
		[7]
(c)	$\{$ population $=4000 \Rightarrow\} P=4$	M1
	$\frac{1}{2} \sin 2 t=\ln \left(\frac{3(4-2)}{4}\right)\left\{=\ln \left(\frac{3}{2}\right)\right\} \quad \begin{array}{r} \text { Obtains } \pm \lambda \sin 2 t=\ln k \text { or } \pm \lambda \sin t=\ln k, \\ \lambda \neq 0, k>0 \text { where } \lambda \text { and } k \text { are numerical } \end{array}$	M1
	$t=0.4728700467 . . . \quad \begin{aligned} & \text { anything that rounds to } 0.473 \\ & \text { Do not apply isw here } \end{aligned}$	A1
		[3]

Question Number	Scheme			Marks
102. (b)	Method 2 for Q7(b)			
	$\ln (P-2)-\ln P=\frac{1}{2} \sin 2 t(+c)$		As before for...	B1M1A1
	$\ln \left(\frac{(P-2)}{P}\right)=\frac{1}{2} \sin 2 t+c$			
	$\frac{(P-2)}{P}=\mathrm{e}^{\frac{1}{\sin 2 t+c}} \text { or } \frac{(P-2)}{P}=A \mathrm{e}^{\frac{1}{\sin 2 t}}$ Starting from an equation of the form $\pm \lambda \ln (P-\beta) \pm \mu \ln P= \pm K \sin \delta t+c$, $\lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method to eliminate their logarithms. Must have a constant of integration that need not be evaluated (see note)			$3^{\text {rd }}$ M1
			A complete method of rearranging to make P the subject. Condone sign	
	$\Rightarrow P\left(1-A \mathrm{e}^{\left.\frac{1}{\sin 2 t}\right)}\right)=2 \Rightarrow P=\frac{2}{\left(1-A \mathrm{e}^{\left.\frac{1}{\sin 2 t}\right)}\right)}$		slips or constant errors. Must have a constant of integration that need not be evaluated (see note)	$4^{\text {th }} \mathrm{dM1}$
	$\{t=0, P=3 \Rightarrow\} \quad 3=\frac{2}{\left(1-A \mathrm{e}^{\frac{1}{2 \sin 2(0)}}\right)}$		See notes (Allocate this mark as the $2^{\text {nd }}$ M1 mark on ePEN).	$\mathbf{2}^{\text {nd }}$ M1
	$\left\{\Rightarrow 3=\frac{2}{(1-A)} \Rightarrow A=\frac{1}{3}\right\}$			
	$\Rightarrow P=\frac{2}{\left(1-\frac{1}{3} \mathrm{e}^{\frac{1}{\sin 2 t}}\right)} \Rightarrow P=\frac{6}{\left(3-\mathrm{e}^{\frac{1}{2} \sin 2 t}\right)} *$		Correct proof.	A1 * cso
102. (a)	Question 102 Notes			
	$\begin{gathered} \text { M1 } \\ \text { Note } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	Forming a correct identity. For example, $2 \equiv A(P-2)+B P$ from $\frac{2}{P(P-2)}=\frac{A}{P}+$ A and B are not referred to in question. Either one of $A=-1$ or $B=1$. $\frac{1}{(P-2)}-\frac{1}{P}$ or any equivalent form. This answer cannot be recovered from part (b).		$\frac{B}{(P-2)}$
	Note Note Note	M1A1A1 can also be given for a candidate who finds both $A=-1$ and $B=1$ and $\frac{A}{P}+\frac{B}{(P-2)}$ is seen in their working.		

102. (b) \quad B1 \quad Separates variables as shown on the Mark Scheme. $\mathrm{d} P$ and $\mathrm{d} t$ should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.

Note	Eg: $\int \frac{2}{P^{2}-2 P} \mathrm{~d} P=\int \cos 2 t \mathrm{~d} t$ or $\int \frac{1}{P(P-2)} \mathrm{d} P=\frac{1}{2} \int \cos$
$\mathbf{1}^{\text {st }} \mathrm{A} 1$ $\mathbf{2}^{\text {nd }} \mathrm{M} 1$	Correct result of $\ln (P-2)-\ln P=\frac{1}{2} \sin 2 t$ or $2 \ln (P-2)-2 \ln P=\sin 2 t$ o.e. with or without $+c$ Some evidence of using both $t=0$ and $P=3$ in an integrated equation containing a constant of integration. Eg: c or A, etc.
$3^{\text {rd }}$ M1 $4^{\text {th }}$ M1 Note	Starting from an equation of the form $\pm \lambda \ln (P-\beta) \pm \mu \ln P= \pm K \sin \delta t+c, \lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method to eliminate their logarithms. dependent on the third method mark being awarded. A complete method of rearranging to make P the subject. Condone sign slips or constant errors. For the $3^{\text {rd }} \mathrm{M} 1$ and $4^{\text {th }}$ M1 marks, a candidate needs to have included a constant of integration, in their working. eg. $c, A, \ln A$ or an evaluated constant of integration.
$\mathbf{2}^{\text {nd }}$ A1	Correct proof of $P=\frac{6}{\left(3-\mathrm{e}^{\frac{1}{2} \text { in } 2 t}\right)}$. Note: This answer is given in the question.
Note	$\ln \left(\frac{(P-2)}{P}\right)=\frac{1}{2} \sin 2 t+c$ followed by $\frac{(P-2)}{P}=\mathrm{e}^{\frac{1}{2} \sin 2 t}+\mathrm{e}^{c}$ is $3^{\text {rd }} \mathrm{M} 0,4^{\text {th }} \mathrm{M} 0$,
Note	$\left.\frac{(P)}{P}\right)=\frac{1}{2} \sin 2 t+c \rightarrow \frac{(P-2)}{P}=\mathrm{e}^{\frac{1}{2} \sin 2 t+c} \rightarrow \frac{(P-2)}{P}=\mathrm{e}^{\frac{1}{2} \sin 2 t}+\mathrm{e}^{c}$ is final M1M0A0

$4^{\text {th }}$ M1 for making P the subiect

Note there are three type of manipulations here which are considered acceptable for making P the subject.
(1) M1 for $\frac{3(P-2)}{P}=\mathrm{e}^{\frac{1}{\sin 2 t}} \Rightarrow 3(P-2)=P \mathrm{e}^{\frac{1}{2} \sin 2 t} \Rightarrow 3 P-6=P \mathrm{e}^{\frac{1}{2} \sin 2 t} \Rightarrow P\left(3-\mathrm{e}^{\frac{1}{2} \sin 2 t}\right)=6$

$$
\Rightarrow P=\frac{6}{\left(3-\mathrm{e}^{\frac{1}{\sin 2 t}}\right)}
$$

(2) M1 for $\frac{3(P-2)}{P}=\mathrm{e}^{\frac{1}{2} \sin 2 t} \Rightarrow 3-\frac{6}{P}=\mathrm{e}^{\frac{1}{2 \sin 2 t}} \Rightarrow 3-\mathrm{e}^{\frac{1}{2} \sin 2 t}=\frac{6}{P} \Rightarrow \Rightarrow P=\frac{6}{\left(3-\mathrm{e}^{\frac{1}{2} \sin 2 t}\right)}$
(3) M1 for $\left\{\ln (P-2)+\ln P=\frac{1}{2} \sin 2 t+\ln 3 \Rightarrow\right\} P(P-2)=3 \mathrm{e}^{\frac{1}{2} \sin 2 t} \Rightarrow P^{2}-2 P=3 \mathrm{e}^{\frac{1}{\sin } 2 t}$

$$
\Rightarrow(P-1)^{2}-1=3 \mathrm{e}^{\frac{1}{2} \sin 2 t} \text { leading to } P=. .
$$

(c)

M1 \quad States $P=4$ or applies $P=4$
M1 Obtains $\pm \lambda \sin 2 t=\ln k$ or $\pm \lambda \sin t=\ln k$, where λ and k are numerical values and λ can be 1
A1 anything that rounds to 0.473. (Do not apply isw here)
Note Do not apply ignore subsequent working for A1. (Eg: 0.473 followed by 473 years is A0.)
Note Use of $P=4000$: Without the mention of $P=4, \frac{1}{2} \sin 2 t=\ln 2.9985$ or $\sin 2 t=2 \ln 2.9985$ or $\sin 2 t=2.1912 \ldots$.. will usually imply M0M1A0
Note Use of Degrees: $t=$ awrt 27.1 will usually imply M1M1A0

Question Number	Scheme	Marks
103. (a)	$\left\{y=3^{x} \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=3^{x} \ln 3 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=3^{x} \ln 3$ or $\ln 3\left(\mathrm{e}^{x \ln 3}\right)$ or $y \ln 3$	B1
	Either T: $y-9=3^{2} \ln 3(x-2)$ or T: $y=\left(3^{2} \ln 3\right) x+9-18 \ln 3$, where $9=\left(3^{2} \ln 3\right)(2)+c$ See notes	M1
	\{Cuts x-axis $\Rightarrow y=0 \Rightarrow$ \}	
	$-9=9 \ln 3(x-2)$ or $0=\left(3^{2} \ln 3\right) x+9-18 \ln 3, \quad$ Sets $y=0$ in their tangent equation $\begin{array}{r}\text { and progresses to } x=\ldots\end{array}$	M1
	So, $x=2-\frac{1}{\ln 3}$	A1 cso
		[4]
(b)	$V=\pi \int\left(3^{x}\right)^{2}\{\mathrm{~d} x\}$ or $\pi \int 3^{2 x}\{\mathrm{~d} x\}$ or $\pi \int 9^{x}\{\mathrm{~d} x\} \quad V=\pi \int\left(3^{x}\right)^{2}$ with or without $\mathrm{d} x$, which can be implied	B1 o.e.
	$=\{\pi\}\left(\frac{3^{2 x}}{2 \ln 3}\right) \quad \text { or }=\{\pi\}\left(\frac{9^{x}}{\ln 9}\right) \quad \text { Eg: either } 3^{2 x} \rightarrow \frac{3^{2 x}}{ \pm \alpha(\ln 3)} \text { or } \pm \alpha(\ln 3) 3^{2 x}$	M1
	($3^{2 x} \rightarrow \frac{3^{2 x}}{2 \ln 3}$ or $9^{x} \rightarrow \frac{9^{x}}{\ln 9}$ or $\mathrm{e}^{2 x \ln 3} \rightarrow \frac{1}{2 \ln 3}\left(\mathrm{e}^{2 x \ln 3}\right)$	A1 o.e.
	$\left\{V=\pi \int_{0}^{2} 3^{2 x} \mathrm{~d} x=\{\pi\}\left[\frac{3^{2 x}}{2 \ln 3}\right]_{0}^{2}\right\}=\{\pi\}\left(\frac{3^{4}}{2 \ln 3}-\frac{1}{2 \ln 3}\right)\left\{=\frac{40 \pi}{\ln 3}\right\} \quad \begin{array}{r}\text { Dependent on the previous } \\ \text { method mark. Substitutes } \\ x=2 \text { and } x=0 \text { and subtracts } \\ \text { the correct way round. }\end{array}$	dM1
	$V_{\text {cone }}=\frac{1}{3} \pi(9)^{2}\left(\frac{1}{\ln 3}\right)\left\{=\frac{27 \pi}{\ln 3}\right\} \quad V_{\text {cone }}=\frac{1}{3} \pi(9)^{2}(2-$ their $(a))$. See notes.	B1ft
	$\left\{\operatorname{Vol}(S)=\frac{40 \pi}{\ln 3}-\frac{27 \pi}{\ln 3}\right\}=\frac{13 \pi}{\ln 3} \quad \frac{13 \pi}{\ln 3}$ or $\frac{26 \pi}{\ln 9}$ or $\frac{26 \pi}{2 \ln 3}$ etc., isw	A1 o.e.
	$\{\mathrm{Eg}: p=13 \pi, q=\ln 3\}$	[6]
		10
(b)	Alternative Method 1: Use of a substitution	
	$V=\pi \int\left(3^{x}\right)^{2}\{\mathrm{~d} x\}$	B1 o.e.
	$\left\{u=3^{x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=3^{x} \ln 3=u \ln 3\right\} V=\{\pi\} \int \frac{u^{2}}{u \ln 3}\{\mathrm{~d} u\}=\{\pi\} \int \frac{u}{\ln 3}\{\mathrm{~d} u\}$	
	$\left(3^{x}\right)^{2} \rightarrow \frac{u^{2}}{ \pm \alpha(\ln 3)} \text { or } \pm \alpha(\ln 3) u^{2} \text {, where } u=3^{x}$	M1
	$\left(3^{x}\right)^{2} \rightarrow \frac{u^{2}}{2(\ln 3)} \text {, where } u=3^{x}$	A1
	$\left\{V=\pi \int_{0}^{2}\left(3^{x}\right)^{2} \mathrm{~d} x=\{\pi\}\left[\frac{u^{2}}{2 \ln 3}\right]_{1}^{9}\right\}=\{\pi\}\left(\frac{9^{2}}{2 \ln 3}-\frac{1}{2 \ln 3}\right)\left\{=\frac{40 \pi}{\ln 3}\right\} \quad \begin{array}{r}\text { Substitutes limits of } 9 \text { in } u \text { and } \text { (or } 2 \text { and } 0 \text { in } x \\ \text { and subtracts the correct } \\ \text { way round. }\end{array}$	dM1
	then apply the main scheme.	

Question 103 Notes

103. (a)

\begin{tabular}{|c|c|}
\hline B1
M1

Note \& | $\frac{\mathrm{d} y}{\mathrm{~d} x}=3^{x} \ln 3$ or $\ln 3\left(\mathrm{e}^{x \ln 3}\right)$ or $y \ln 3$. Can be implied by later working. |
| :--- |
| Substitutes either $x=2$ or $y=9$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ which is a function of x or y to find m_{T} and |
| - either applies $y-9=\left(\right.$ their $\left.m_{T}\right)(x-2)$, where m_{T} is a numerical value. |
| - or applies $y=\left(\right.$ their $\left.m_{T}\right) x$ their c, where m_{T} is a numerical value and c is found by solving $9=\left(\right.$ their $\left.m_{T}\right)(2)+c$ |

\hline Note \& The first M1 mark can be implied from later working. Sets $y=0$ in their tangent equation, where m_{T} is a numerical value, (seen or implied) and progresses to $x=$.

\hline A1
Note
Note
Note

Note \& | An exact value of $2-\frac{1}{\ln 3}$ or $\frac{2 \ln 3-1}{\ln 3}$ or $\frac{\ln 9-1}{\ln 3}$ by a correct solution only. |
| :--- |
| Allow A1 for $2-\frac{\lambda}{\lambda \ln 3}$ or $\frac{\lambda(2 \ln 3-1)}{\lambda \ln 3}$ or $\frac{\lambda(\ln 9-1)}{\lambda \ln 3}$ or $2-\frac{\lambda}{\lambda \ln 3}$, where λ is an integer, and ignore subsequent working. |
| Using a changed gradient (i.e. applying $\frac{-1}{\text { their } \frac{d v}{d x}}$ or $\frac{1}{\text { their } \frac{d v}{d x}}$) is M0 M0 in part (a). |
| Candidates who invent a value for m_{T} (which bears no resemblance to their gradient function) cannot gain the $1^{\text {st }}$ M1 and $2^{\text {nd }}$ M1 mark in part (a). |
| A decimal answer of $1.089760773 \ldots$ (without a correct exact answer) is A0. |

\hline B1 \& A correct expression for the volume with or without $\mathrm{d} x$ Eg: Allow B1 for $\pi \int\left(3^{x}\right)^{2}\{\mathrm{~d} x\}$ or $\pi \int 3^{2 x}\{\mathrm{~d} x\}$ or $\pi \int 9^{x}\{\mathrm{~d} x\}$ or $\pi \int\left(\mathrm{e}^{x \ln 3}\right)^{2}\{\mathrm{~d} x\}$ or $\pi \int\left(\mathrm{e}^{2 x \ln 3}\right)\{\mathrm{d} x\}$ or $\pi \int \mathrm{e}^{x \ln 9}\{\mathrm{~d} x\}$ with or without $\mathrm{d} x$

\hline M1

Note
Note
Note \& Either $\quad 3^{2 x} \rightarrow \frac{3^{2 x}}{ \pm \alpha(\ln 3)}$ or $\pm \alpha(\ln 3) 3^{2 x} \quad$ or $9^{x} \rightarrow \frac{9^{x}}{ \pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9) 9^{x}$ $\mathrm{e}^{2 x \ln 3} \rightarrow \frac{\mathrm{e}^{2 x \ln 3}}{ \pm \alpha(\ln 3)}$ or $\pm \alpha(\ln 3) \mathrm{e}^{2 x \ln 3}$ or $\mathrm{e}^{x \ln 9} \rightarrow \frac{\mathrm{e}^{x \ln 9}}{ \pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9) \mathrm{e}^{x \ln 9}$, etc where $\alpha \in \in^{-}$ $3^{2 x} \rightarrow \frac{3^{2 x+1}}{ \pm \alpha(\ln 3)}$ or $9^{x} \rightarrow \frac{9^{x+1}}{ \pm \alpha(\ln 3)}$ are allowed for M1 $3^{2 x} \rightarrow \frac{3^{2 x+1}}{2 x+1}$ or $9^{x} \rightarrow \frac{9^{x+1}}{x+1}$ are both M0 M1 can be given for $9^{2 x} \rightarrow \frac{9^{2 x}}{ \pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9) 9^{2 x}$

\hline A1 \& Correct integration of $3^{2 x}$. Eg: $3^{2 x} \rightarrow \frac{3^{2 x}}{2 \ln 3}$ or $\frac{3^{2 x}}{\ln 9}$ or $9^{x} \rightarrow \frac{9^{x}}{\ln 9}$ or $\mathrm{e}^{2 x \ln 3} \rightarrow \frac{1}{2 \ln 3}\left(\mathrm{e}^{2 x \ln 3}\right)$

\hline dM1

Note \& | dependent on the previous method mark being awarded. |
| :--- |
| Attempts to apply $x=2$ and $x=0$ to integrated expression and subtracts the correct way round. |
| Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0. |

\hline
\end{tabular}

dM1 \quad dependent on the previous method mark being awarded.
Attempts to apply $x=2$ and $x=0$ to integrated expression and subtracts the correct way round.
Note Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.
B1ft $\quad V_{\text {cone }}=\frac{1}{3} \pi(9)^{2}(2-$ their answer to part $(a))$.
Sight of $\frac{27 \pi}{\ln 3}$ implies the B1 mark.
Note Alternatively they can apply the volume formula to the line segment. They need to achieve the result highlighted by $* * * *$ on either page 29 or page 30 in order to obtain the B1ft mark.
A1 $\frac{13 \pi}{\ln 3}$ or $\frac{26 \pi}{\ln 9}$ or $\frac{26 \pi}{2 \ln 3}$, etc., where their answer is in the form $\frac{p}{q}$

Note The π in the volume formula is only needed for the $1^{\text {st }} \mathrm{B} 1$ mark and the final A1 mark.
Note A decimal answer of 37.17481128... (without a correct exact answer) is A0.
Note A candidate who applies $\int 3^{x} d x$ will either get B0 M0 A0 M0 B0 A0 or B0 M0 A0 M0 B1 A0
Note $\quad \pi \int 3^{x^{2}} \mathrm{~d} x$ unless recovered is B0.

Note Be careful! A correct answer may follow from incorrect working

$$
\begin{aligned}
& V=\pi \int_{0}^{2} 3^{x^{2}} \mathrm{~d} x-\frac{1}{3} \pi(9)^{2}\left(\frac{1}{\ln 3}\right)=\pi\left[\frac{3^{x^{2}}}{2 \ln 3}\right]_{0}^{2}-\frac{27 \pi}{\ln 3}=\frac{\pi 3^{4}}{2 \ln 3}-\frac{\pi}{2 \ln 3}-\frac{27 \pi}{\ln 3}=\frac{13 \pi}{\ln 3} \\
& \text { would score B0 M0 A0 dM0 M1 A0. }
\end{aligned}
$$

103. (b) $\underline{2}^{\text {nd }}$ B1ft mark for finding the Volume of a Cone

$$
\begin{aligned}
V_{\text {cone }} & =\pi \int_{2-\frac{1}{\ln 3}(9 x \ln 3-18 \ln 3+9)^{2} \mathrm{~d} x}^{2} \\
& =\pi\left[\frac{(9 x \ln 3-18 \ln 3+9)^{3}}{27 \ln 3}\right]_{2-\frac{1}{\ln 3} \text { or their part (a)answer }}^{2}
\end{aligned} \begin{aligned}
& \text { Award B1ft here where their } \\
& \text { lower limit is } 2-\frac{1}{\ln 3} \text { or their } \\
& \text { part (a) answer. }
\end{aligned}
$$

$$
=\pi\left(\left(\frac{(18 \ln 3-18 \ln 3+9)^{3}}{27 \ln 3}\right)-\left(\frac{\left(9\left(2-\frac{1}{\ln 3}\right) \ln 3-18 \ln 3+9\right)^{3}}{27 \ln 3}\right)\right)
$$

$$
=\pi\left(\left(\frac{729}{27 \ln 3}\right)-\left(\frac{(18 \ln 3-9-18 \ln 3+9)^{3}}{27 \ln 3}\right)\right)
$$

$$
=\frac{27 \pi}{\ln 3}
$$

103. (b)	${ }^{\text {2 }{ }^{\text {d }} \text { B1ft mark for finding the Volume of a Cone }}$
	Alternative method 2:
	$V_{\text {cone }}=\pi \int_{2-\frac{1}{\ln 3}}^{2}(9 x \ln 3-18 \ln 3+9)^{2} \mathrm{~d} x$
	$=\pi \int_{2-\frac{1}{\ln 3}}^{2}\left(81 x^{2}(\ln 3)^{2}-324 x(\ln 3)^{2}+162 x \ln 3-324 \ln 3+324(\ln 3)^{2}+81\right) \mathrm{d} x$
	$\begin{array}{l\|l} =\pi\left[27 x^{3}(\ln 3)^{2}-162 x^{2}(\ln 3)^{2}+81 x^{2} \ln 3-324 x \ln 3+324 x(\ln 3)^{2}+81 x\right]_{2-\frac{1}{\ln 3}}^{2} & \begin{array}{l} \text { Award B1ft here where } \\ \text { their lower limit is } 2-\frac{1}{\ln 3} \\ \text { or their part (a) answer. } \end{array} \\ * * * * \end{array}$
	$=\pi\binom{\left(216(\ln 3)^{2}-648(\ln 3)^{2}+324 \ln 3-648 \ln 3+648(\ln 3)^{2}+162\right)}{-\binom{27\left(2-\frac{1}{\ln 3}\right)^{3}(\ln 3)^{2}-162\left(2-\frac{1}{\ln 3}\right)^{2}(\ln 3)^{2}+81\left(2-\frac{1}{\ln 3}\right)^{2} \ln 3}{-324\left(2-\frac{1}{\ln 3}\right) \ln 3+324\left(2-\frac{1}{\ln 3}\right)(\ln 3)^{2}+81\left(2-\frac{1}{\ln 3}\right)}}$
	$=\pi\left(\left(216(\ln 3)^{2}-324 \ln 3+162\right)-\left(\begin{array}{c} 216(\ln 3)^{2}-324 \ln 3+162-\frac{27}{\ln 3}-648(\ln 3)^{2}+648 \ln 3-162 \\ +324 \ln 3-324+\frac{81}{\ln 3}-648 \ln 3+324 \\ +648(\ln 3)^{2}-324 \ln 3+162-\frac{81}{\ln 3} \end{array}\right)\right)$
	$\begin{aligned} & =\pi\left(\left(216(\ln 3)^{2}-324 \ln 3+162\right)-\left(216(\ln 3)^{2}-324 \ln 3+162-\frac{27}{\ln 3}\right)\right) \\ & =\frac{27 \pi}{\ln 3} \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 105. (i)

(ii) \& \[
\left.$$
\begin{array}{rlr}
\int x \mathrm{e}^{4 x} \mathrm{~d} x= & \frac{1}{4} x \mathrm{e}^{4 x}-\int \frac{1}{4} \mathrm{e}^{4 x}\{\mathrm{~d} x\} & \pm \alpha x \mathrm{e}^{4 x}-\int \beta \mathrm{e}^{4 x}\{\mathrm{~d} x\}, \quad \alpha \neq 0, \beta>0 \\
= & \frac{1}{4} x \mathrm{e}^{4 x}-\frac{1}{16} \mathrm{e}^{4 x}\{+c\} & \frac{1}{4} x \mathrm{e}^{4 x}-\int \frac{1}{4} \mathrm{e}^{4 x}\{\mathrm{~d} x\} \\
\frac{1}{4} x \mathrm{e}^{4 x}-\frac{1}{16} \mathrm{e}^{4 x}
\end{array}
$$\right\} $$
\begin{array}{rr}
\\
\int \frac{8}{(2 x-1)^{3}} \mathrm{~d} x & =\frac{8(2 x-1)^{-2}}{(2)(-2)}\{+c\} \\
\left\{=-2(2 x-1)^{-2}\{+c\}\right\} & \frac{8(2 x-1)^{-2}}{(2)(-2)} \text { or equivalent. } \\
\text { \{Ignore subsequent working\}. }
\end{array}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| [3] |
| M1 |
| A1 |

\hline (iii) \& $$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x} \operatorname{cosec} 2 y \operatorname{cosec} y \quad y=\frac{\pi}{6} \text { at } x=0
$$ \&

\hline \& Main Scheme \& | B1 oe |
| :--- |
| M1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 |
| [7] |

\hline \& Alternative Method 1 \& | B1 oe |
| :--- |
| M1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 |

\hline \& \& 12

\hline
\end{tabular}

Question Number	Scheme	Marks
106. (a)	$\begin{aligned} & x=3 \tan \theta, \quad y=4 \cos ^{2} \theta \text { or } y=2+2 \cos 2 \theta, \quad 0 \leqslant \theta<\frac{\pi}{2} . \\ & \frac{\mathrm{d} x}{\mathrm{~d} \theta}=3 \sec ^{2} \theta, \quad \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=-8 \cos \theta \sin \theta \quad \text { or } \quad \frac{\mathrm{d} y}{\mathrm{~d} \theta}=-4 \sin 2 \theta \end{aligned}$	
(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-8 \cos \theta \sin \theta}{3 \sec ^{2} \theta}\left\{=-\frac{8}{3} \cos ^{3} \theta \sin \theta=-\frac{4}{3} \sin 2 \theta \cos ^{2} \theta\right\} \quad$ their $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ divided by their $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ Correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1 A1 oe
	At $P(3,2), \theta=\frac{\pi}{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{8}{3} \cos ^{3}\left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)\left\{=-\frac{2}{3}\right\} \quad$ Substituting $\theta=\frac{\pi}{4}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ So, $m(\mathbf{N})=\frac{3}{2}$ applies $m(\mathbf{N})=\frac{-1}{m(\mathbf{T})}$	M1 M1
		M1
	$\left\{\right.$ At $Q, y=0$, so, $\left.-2=\frac{3}{2}(x-3)\right\}$ giving $x=\frac{5}{3} \quad x=\frac{5}{3}$ or $1 \frac{2}{3}$ or awrt 1.67	A1 cso [6]
(b)	$\left\{\int y^{2} \mathrm{~d} x=\int y^{2} \frac{\mathrm{~d} x}{\mathrm{~d} \theta} \mathrm{~d} \theta\right\}=\left\{\int\right\}\left(4 \cos ^{2} \theta\right)^{2} 3 \sec ^{2} \theta \quad\{\mathrm{~d} \theta\}$ see notes	M1
	So, $\pi \int y^{2} \mathrm{~d} x=\pi \int\left(4 \cos ^{2} \theta\right)^{2} 3 \sec ^{2} \theta\{\mathrm{~d} \theta\}$ see notes	A1
	$\int y^{2} \mathrm{~d} x=\int 48 \cos ^{2} \theta \mathrm{~d} \theta \quad \int 48 \cos ^{2} \theta\{\mathrm{~d} \theta\}$	A1
	$=\{48\} \int\left(\frac{1+\cos 2 \theta}{2}\right) \mathrm{d} \theta \quad\left\{=\int(24+24 \cos 2 \theta) \mathrm{d} \theta\right\} \quad \text { Applies } \cos 2 \theta=2 \cos ^{2} \theta-1$	M1
	$=\{48\}\left(\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right) \quad\{=24 \theta+12 \sin 2 \theta\} \quad \begin{gathered}\text { Dependent on the first method } \\ \text { mark. For } \pm \alpha \theta \pm \beta \sin 2 \theta \\ \cos ^{2} \theta \rightarrow\left(\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right)\end{gathered}$	dM1 ${ }^{\text {A1 }}$,
	$\begin{aligned} & \int_{0}^{\frac{\pi}{4}} y^{2} \mathrm{~d} x\left\{=48\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\frac{\pi}{4}}\right\}=\{48\}\left(\left(\frac{\pi}{8}+\frac{1}{4}\right)-(0+0)\right)\{=6 \pi+12\} \quad \begin{array}{r} \text { Dependent on } \\ \text { the third method } \\ \text { mark. } \end{array} \\ & \left\{\text { So } V=\pi \int_{0}^{\frac{\pi}{4}} y^{2} \mathrm{~d} x=6 \pi^{2}+12 \pi\right\} \end{aligned}$	dM1
	$\begin{aligned} & V_{\text {cone }}=\frac{1}{3} \pi(2)^{2}\left(3-\frac{5}{3}\right)\left\{=\frac{16 \pi}{9}\right\} \\ & \left\{\operatorname{Vol}(S)=6 \pi^{2}+12 \pi-\frac{16 \pi}{9}\right\} \Rightarrow \operatorname{Vol}(S)=\underline{92} \pi+6 \pi^{2} \end{aligned} \quad V_{\text {cone }}=\frac{1}{3} \pi(2)^{2}(3-\text { their }(a))$	M1 A1
	$\left\{p=\frac{92}{9}, q=6\right\}$	[9]
		15

	Question 106 Notes	
106. (a)	$\begin{gathered} 1^{\text {st }} \mathrm{M} 1 \\ \mathrm{SC} \\ \mathbf{1}^{\text {st }} \mathrm{A} 1 \\ 2^{\text {nd }} \mathrm{M} 1 \end{gathered}$	Applies their $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ divided by their $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ or applies $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ multiplied by their $\frac{\mathrm{d} \theta}{\mathrm{d} x}$ Award Special Case $1^{\text {st }}$ M1 if both $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ and $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ are both correct. Correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ i.e. $\frac{-8 \cos \theta \sin \theta}{3 \sec ^{2} \theta}$ or $-\frac{8}{3} \cos ^{3} \theta \sin \theta$ or $-\frac{4}{3} \sin 2 \theta \cos ^{2} \theta$ or any equivalent form. Some evidence of substituting $\theta=\frac{\pi}{4}$ or $\theta=45^{\circ}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b)	Note $\begin{gathered} 3^{\mathrm{rd}} \mathrm{M} 1 \\ 4^{\text {th }} \mathrm{M} 1 \end{gathered}$ Note	For $3^{\text {rd }} \mathrm{M} 1$ and $4^{\text {th }} \mathrm{M} 1, m(\mathbf{T})$ must be found by using $\frac{\mathrm{d} y}{\mathrm{~d} x}$. applies $m(\mathbf{N})=\frac{-1}{m(\mathbf{T})}$. Numerical value for $m(\mathbf{N})$ is required here. - Applies $y-2=\left(\right.$ their $\left.m_{N}\right)(x-3)$, where $\mathrm{m}(\mathbf{N})$ is a numerical value, - or finds \boldsymbol{c} by solving $2=\left(\right.$ their $\left.m_{N}\right) 3+c$, where $\mathrm{m}(\mathbf{N})$ is a numerical value, and $m_{N}=-\frac{1}{\text { their } \mathrm{m}(\mathbf{T})}$ or $m_{N}=\frac{1}{\text { their } \mathrm{m}(\mathbf{T})}$ or $m_{N}=-$ their $\mathrm{m}(\mathbf{T})$. This mark can be implied by subsequent working.
	$2^{\text {nd }} \mathbf{A 1}$	$x=\frac{5}{3}$ or $1 \frac{2}{3}$ or awrt 1.67 from a correct solution only.
	$\mathbf{1}^{\text {st }} \text { M1 }$ Note Note $1^{\text {st }}$ A1 Note $2^{\text {nd }} \mathbf{A 1}$ $2^{\text {nd }} \mathbf{M} 1$	Applying $\int y^{2} \mathrm{~d} x$ as $y^{2} \frac{\mathrm{~d} x}{\mathrm{~d} \theta}$ with their $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$. Ignore π or $\frac{1}{3} \pi$ outside integral. You can ignore the omission of an integral sign and/or $\mathrm{d} \theta$ for the $1^{\text {st }} \mathrm{M} 1$. Allow $1^{\text {st }} \mathrm{M} 1$ for $\int\left(\cos ^{2} \theta\right)^{2} \times$ "their $3 \sec ^{2} \theta$ " $\mathrm{d} \theta$ or $\int 4\left(\cos ^{2} \theta\right)^{2} \times$ "their $3 \sec ^{2} \theta$ " $\mathrm{d} \theta$ Correct expression $\left\{\pi \int y^{2} \mathrm{~d} x\right\}=\pi \int\left(4 \cos ^{2} \theta\right)^{2} 3 \sec ^{2} \theta\{\mathrm{~d} \theta\}$ (Allow the omission of $\mathrm{d} \theta$) IMPORTANT: The π can be recovered later, but as a correct statement only. $\left\{\int y^{2} \mathrm{~d} x\right\}=\int 48 \cos ^{2} \theta\{\mathrm{~d} \theta\}$. (Ignore $\mathrm{d} \theta$). Note: 48 can be written as 24(2) for example. Applies $\cos 2 \theta=2 \cos ^{2} \theta-1$ to their integral. (Seen or implied.)
	$3^{\text {rd }}$ dM1*	which is dependent on the $1^{\text {st }}$ M1 mark. Integrating $\cos ^{2} \theta$ to give $\pm \alpha \theta \pm \beta \sin 2 \theta, \alpha \neq 0, \beta \neq 0$, un-simplified or simplified.
	$3^{\text {rd }} \mathrm{A} 1$ $4^{\text {th }} \mathbf{d M} 1$ $5^{\text {th }} \mathrm{M} 1$ Note $4^{\text {th }} \mathbf{A 1}$ Note Note	which is dependent on the $3^{\text {rd }}$ M1 mark and the $1^{\text {st }}$ M1 mark. Integrating $\cos ^{2} \theta$ to give $\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta$, un-simplified or simplified. This can be implied by $k \cos ^{2} \theta$ giving $\frac{k}{2} \theta+\frac{k}{4} \sin 2 \theta$, un-simplified or simplified. which is dependent on the $3^{\text {rd }}$ M1 mark and the $1^{\text {st }}$ M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ Applies $V_{\text {cone }}=\frac{1}{3} \pi(2)^{2}(3-$ their part (a) answer $)$. Also allow the $5^{\text {th }}$ M1 for $V_{\text {cone }}=\pi \int_{\text {their } \frac{5}{3}}^{3}\left(\frac{3}{2} x-\frac{5}{2}\right)^{2}\{d x\}$, which includes the correct limits. $\frac{92}{9} \pi+6 \pi^{2} \text { or } 10 \frac{2}{9} \pi+6 \pi^{2}$ A decimal answer of 91.33168464... (without a correct exact answer) is A0. The π in the volume formula is only needed for the $1^{\text {st }} \mathrm{A} 1$ mark and the final accuracy mark.

106.		Working with a Cartesian Equation A cartesian equation for C is $y=\frac{36}{x^{2}+9}$
(a)	$\begin{gathered} \mathbf{1}^{\text {st }} \text { M1 } \\ \mathbf{1}^{\text {st }} \mathrm{A} 1 \\ \mathbf{2}^{\text {nd }} \mathrm{d} 1 \end{gathered}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \lambda x\left(\pm \alpha x^{2} \pm \beta\right)^{-2} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{ \pm \lambda x}{\left(\pm \alpha x^{2} \pm \beta\right)^{2}}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=-36\left(x^{2}+9\right)^{-2}(2 x) \quad$ or $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-72 x}{\left(x^{2}+9\right)^{2}}$ un-simplified or simplified. Dependent on the $1^{\text {st }} \mathbf{M 1}$ mark if a candidate uses this method For substituting $x=3$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ i.e. at $P(3,2), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-72(3)}{\left(3^{2}+9\right)^{2}}\left\{=-\frac{2}{3}\right\}$ From this point onwards the original scheme can be applied.
(b)	$\mathbf{1}^{\text {st }} \text { M1 }$ A1	For $\int\left(\frac{ \pm \lambda}{ \pm \alpha x^{2} \pm \beta}\right)^{2}\{\mathrm{~d} x\} \quad$ (π not required for this mark) For $\pi \int\left(\frac{36}{x^{2}+9}\right)^{2}\{\mathrm{~d} x\} \quad(\pi$ required for this mark) To integrate, a substitution of $x=3 \tan \theta$ is required which will lead to $\int 48 \cos ^{2} \theta \mathrm{~d} \theta$ and so from this point onwards the original scheme can be applied.
(a)	$\begin{gathered} \mathbf{1}^{\text {st }} \text { M1 } \\ \mathbf{1}^{\text {st }} \mathrm{A} 1 \\ \mathbf{2}^{\text {nd }} \mathbf{d M 1} \end{gathered}$	Another cartesian equation for C is $x^{2}=\frac{36}{y}-9$ $\begin{aligned} & \pm \alpha x= \pm \frac{\beta}{y^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad \text { or } \quad \pm \alpha x \frac{\mathrm{~d} x}{\mathrm{~d} y}= \pm \frac{\beta}{y^{2}} \\ & 2 x=-\frac{36}{y^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad \text { or } \quad 2 x \frac{\mathrm{~d} x}{\mathrm{~d} y}=-\frac{36}{y^{2}} \end{aligned}$ Dependent on the $1^{\text {st }}$ M1 mark if a candidate uses this method For substituting $x=3$ to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ i.e. at $P(3,2), 2(3)=-\frac{36}{4} \frac{\mathrm{~d} y}{\mathrm{~d} x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots$ From this point onwards the original scheme can be applied.

Question 108 Notes

108. (a) BE CAREFUL! Candidates will assign their own " A, B and C " for this question.

B1 At least one of " B " or " C " are correct.
B1 Breaks up their partial fraction correctly into three terms and both " B " $=25$ and " C " $=100$.
Note If a candidate does not give partial fraction decomposition then:

- the $2^{\text {nd }} \mathrm{B} 1$ mark can follow from a correct identity.

M1 Writes down a correct identity (although this can be implied) and attempts to find the value of either one of " A " or " B " or " C ".
This can be achieved by either substituting values into their identity or comparing coefficients and solving the resulting equations simultaneously.
A1 Correct value for " A " which is found using a correct identity and follows from their partial fraction decomposition.
Note If a candidate does not give partial fraction decomposition then the final A1 mark can be awarded for a correct " A " if a candidate writes out their partial fractions at the end.

Note The correct partial fraction from no working scores B1B1M1A1.
Note A number of candidates will start this problem by writing out the correct identity and then attempt to find " A " or " B " or " C ". Therefore the B1 marks can be awarded from this method.
Note Award SC B1B0M0A0 for $\frac{25}{x^{2}(2 x+1)} \equiv \frac{B}{x^{2}}+\frac{C}{(2 x+1)}$ leading to " B " $=25$ or " C " $=100$
(b)

B1 For a correct statement of $\pi \int\left(\frac{5}{x \sqrt{(2 x+1)}}\right)^{2}$ or $\pi \int \frac{25}{x^{2}(2 x+1)}$. Ignore limits and $\mathrm{d} x$. Can be implied.
Note The π can only be recovered later from a correct expression.
For their partial fraction, (not $\sqrt{\text { their partial fraction }}$), where A, B, C are "their" part (a) constants
M1 Either $\pm \frac{A}{x} \rightarrow \pm a \ln x$ or $\pm \frac{B}{x^{2}} \rightarrow \pm b x^{-1}$ or $\frac{C}{(2 x+1)} \rightarrow \pm c \ln (2 x+1)$.
Note $\sqrt{\frac{B}{x^{2}}} \rightarrow \frac{\sqrt{B}}{x}$ which integrates to $\sqrt{B} \ln x$ is not worthy of M1.
A1ft At least two terms from any of $\pm \frac{A}{x}$ or $\pm \frac{B}{x^{2}}$ or $\frac{C}{(2 x+1)}$ correctly integrated. Can be un-simplified.
A1ft
All 3 terms from $\pm \frac{A}{x}, \pm \frac{B}{x^{2}}$ and $\frac{C}{(2 x+1)}$ correctly integrated. Can be un-simplified.
Note
The $1^{\text {st }} \mathrm{A} 1$ and $2^{\text {nd }} \mathrm{A} 1$ marks in part (b) are both follow through accuracy marks.
dM1 Dependent on the previous M mark.
Applies limits of 4 and 1 and subtracts the correct way round.
A1
Final correct exact answer in the form $a+b \ln c$. i.e. either $\frac{75}{4} \pi+50 \pi \ln \left(\frac{3}{4}\right)$ or $50 \pi \ln \left(\frac{3}{4}\right)+\frac{75}{4} \pi$ or $50 \pi \ln \left(\frac{9}{12}\right)+\frac{75}{4} \pi$ or $\frac{75}{4} \pi-50 \pi \ln \left(\frac{4}{3}\right)$ or $\frac{75}{4} \pi+25 \pi \ln \left(\frac{9}{16}\right)$ etc. Also allow $\pi\left(\frac{75}{4}+50 \ln \left(\frac{3}{4}\right)\right)$ or equivalent.
Note A candidate who achieves full marks in (a), but then mixes up the correct constants when writing their partial fraction can only achieve a maximum of B1M1A1A0M1A0 in part (b).
Note
The π in the volume formula is only required for the B1 mark and the final A1 mark.
108. (b) Alternative method of integration

B1 For $\pi \int\left(\frac{5}{x \sqrt{(2 x+1)}}\right)^{2}$
Ignore limits and $\mathrm{d} x$. Can be implied.

$$
\begin{array}{l|l}
\hline \text { M1 } & \text { Achieves } \pm \alpha \pm \frac{\beta}{(k+u)} \text { and integrates to give }
\end{array}
$$

Applies limits of $\frac{1}{4}$ and 1 in u or 4 and 1 in x
dM1 in their integrated function and subtracts the correct way round.

A1 $\frac{75}{4} \pi+50 \pi \ln \left(\frac{3}{4}\right)$ or allow $\pi\left(\frac{75}{4}+50 \ln \left(\frac{3}{4}\right)\right)$

$$
\begin{aligned}
& V=\pi \int_{1}^{4}\left(\frac{5}{x \sqrt{(2 x+1)}}\right)^{2} \mathrm{~d} x \\
& \int \frac{25}{x^{2}(2 x+1)} \mathrm{d} x ; u=\frac{1}{x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=-\frac{1}{x^{2}} \\
& =-25 \int 1-\frac{2}{(2+u)} \mathrm{d} u=-25(u-2 \ln (2+u)) \\
& \left\{\int_{1}^{4} \frac{25}{x^{2}(2 x+1)} \mathrm{d} x=[-25 u+50 \ln (2+u)]_{1}^{\frac{1}{4}}\right\} \\
& =\left(-\frac{25}{4}+50 \ln \left(\frac{9}{4}\right)\right)-(-25+50 \ln 3) \\
& =50 \ln \left(\frac{9}{4}\right)-50 \ln 3-\frac{25}{4}+25 \\
& =50 \ln \left(\frac{3}{4}\right)+\frac{75}{4} \\
& \text { So, } V=\frac{75}{4} \pi+50 \pi \ln \left(\frac{3}{4}\right)
\end{aligned}
$$

\begin{tabular}{|c|c|c|}
\hline \& \multicolumn{2}{|r|}{Question 109 Notes} \\
\hline 109. (a) \& B1
M1
A1
A1
Note
A1
NOTE \& \begin{tabular}{l}
Separates variables as shown. \(\mathrm{d} N\) and \(\mathrm{d} t\) should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs. \\
Either \(\pm \lambda \ln (5000-N)\) or \(\pm \lambda \ln (N-5000)\) or \(k t-\ln t\) where \(\lambda \neq 0\) is a constant. \\
For \(-\ln (5000-N)=k t-\ln t\) or \(\ln (5000-N)=-k t+\ln t\) or \(-\frac{1}{k} \ln (5000-N)=t-\frac{1}{k} \ln t\) oe \\
which is dependent on the \(1^{\text {st }}\) M1 mark being awarded. \\
For applying a constant of integration, eg. \(+c\) or \(+\ln \mathrm{e}^{c}\) or \(+\ln c\) or \(A\) to their integrated equation \(+c\) can be on either side of their equation for the \(2^{\text {nd }} \mathrm{A} 1\) mark. \\
Uses a constant of integration eg. " \(c\) " or " \(\ln \mathrm{e}^{c "}\) " \(\ln c\) " or and applies a fully correct method to prove the result \(N=5000-\) Ate \(^{-k t}\) with no incorrect working seen. (Correct solution only.) \\
IMPORTANT \\
There needs to be an intermediate stage of justifying the \(A\) and the \(\mathrm{e}^{-k t}\) in \(A t \mathrm{e}^{-k t}\) by for example \\
- either \(5000-N=e^{\ln t-k t+c}\) \\
- or \(5000-N=t e^{-k t+c}\) \\
- or \(5000-N=t \mathrm{e}^{-k t} \mathrm{e}^{c}\) \\
or equivalent needs to be stated before achieving \(N=5000-\) Ate \(^{-k t}\)
\end{tabular} \\
\hline (b)

(c) \& \begin{tabular}{l}
B1

M1

A1

A1

Note

Note

B1

 \&

At least one of either $1200=5000-A \mathrm{e}^{-k}$ (or equivalent) or $1800=5000-2 A \mathrm{e}^{-2 k}$ (or equivalent)

- Either an attempt to eliminate A by producing an equation in only k.

- or an attempt to eliminate k by producing an equation in only A

At least one of $A=9025$ cao or $k=\ln \left(\frac{7600}{3200}\right)$ or equivalent

Both $A=9025$ cao or $k=\ln \left(\frac{7600}{3200}\right)$ or equivalent

Alternative correct values for k are $k=\ln \left(\frac{19}{8}\right)$ or $k=-\ln \left(\frac{8}{19}\right)$ or $k=\ln 7600-\ln 3200$ or $k=-\ln \left(\frac{3800}{9025}\right)$ or equivalent.

$k=0.8649 \ldots$ without a correct exact equivalent is A0. anything that rounds to 4400
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \({ }^{\text {a }}\) Marks \\
\hline 110. (a)

(b) \&

\hline \multicolumn{2}{|r|}{Notes for Question 110}

\hline (a)

(b) \& | M1: Integration by parts is applied in the form $x^{2} \mathrm{e}^{x}-\int \lambda x \mathrm{e}^{x}\{\mathrm{~d} x\}$, where $\lambda>0$. (must be in this form). |
| :--- |
| A1: $\quad x^{2} \mathrm{e}^{x}-\int 2 x \mathrm{e}^{x}\{\mathrm{~d} x\}$ or equivalent. |
| M1: Either achieving a result in the form $\pm A x^{2} \mathrm{e}^{x} \pm B x \mathrm{e}^{x} \pm C \int \mathrm{e}^{x}\{d x\}$ (can be implied) |
| (where $A \neq 0, B \neq 0$ and $C \neq 0$) or for $\pm K \int x \mathrm{e}^{x}\{\mathrm{~d} x\} \rightarrow \pm K\left(x \mathrm{e}^{x}-\int \mathrm{e}^{x}\{\mathrm{~d} x\}\right)$ |
| M1: $\pm A x^{2} \mathrm{e}^{x} \pm B x \mathrm{e}^{x} \pm C \mathrm{e}^{x}$ (where $A \neq 0, B \neq 0$ and $C \neq 0$) |
| A1: $x^{2} \mathrm{e}^{x}-2\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right)$ or $x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}$ or $\left(x^{2}-2 x+2\right) \mathrm{e}^{x}$ or equivalent with/without $+c$. |
| M1: Complete method of applying limits of 1 and 0 to their part (a) answer in the form $\pm A x^{2} \mathrm{e}^{x} \pm B x \mathrm{e}^{x} \pm C \mathrm{e}^{x}$, (where $A \neq 0, B \neq 0$ and $C \neq 0$) and subtracting the correct way round. |
| Evidence of a proper consideration of the limit of 0 (as detailed above) is needed for M1. So, just subtracting zero is M0. |
| A1: $e-2$ or $e^{1}-2$ or $-2+e$. Do not allow $e-2 e^{0}$ unless simplified to give $e-2$. |
| Note: that 0.718 ... without seeing e -2 or equivalent is A0. |
| WARNING: Please note that this A1 mark is for correct solution only. |
| So incorrect $[\ldots]_{0}^{1}$ leading to e -2 is A0. |
| Note: If their part (a) is correct candidates can get M1A1 in part (b) for e-2 from no working. |

\hline
\end{tabular}

Question Number	Scheme ${ }_{\text {a }}$ Marks
111	$\begin{aligned} V & =\pi \int_{0}^{\frac{\pi}{2}}\left(\sec \left(\frac{x}{2}\right)\right)^{2} \mathrm{~d} x \\ & =\{\pi\}\left[2 \tan \left(\frac{x}{2}\right)\right]_{0}^{\frac{\pi}{2}} \\ & =2 \pi \end{aligned}$ $\text { For } \pi \int\left(\sec \left(\frac{x}{2}\right)\right)^{2}$ $\text { Ignore limits and } \mathrm{d} x \text {. }$ Can be implied. $\pm \lambda \tan \left(\frac{x}{2}\right)$ M1 $2 \tan \left(\frac{x}{2}\right)$ or equivalent A1
Notes for Question 111	
111	B1: For a correct statement of $\pi \int\left(\sec \left(\frac{x}{2}\right)\right)^{2}$ or $\pi \int \sec ^{2}\left(\frac{x}{2}\right)$ or $\pi \int \frac{1}{\left(\cos \left(\frac{x}{2}\right)\right)^{2}}\{d x\}$. Ignore limits and $\mathrm{d} x$. Can be implied. Note: Unless a correct expression stated $\pi \int \sec \left(\frac{x^{2}}{4}\right)$ would be B0. M1: $\pm \lambda \tan \left(\frac{x}{2}\right)$ from any working. A1: $2 \tan \left(\frac{x}{2}\right)$ or $\frac{1}{\left(\frac{1}{2}\right)} \tan \left(\frac{x}{2}\right)$ from any working. A1: 2π from a correct solution only. Note: The π in the volume formula is only required for the B1 mark and the final A1 mark. Note: Decimal answer of $6.283 \ldots$ without correct exact answer is A0. Note: The B1 mark can be implied by later working - as long as it is clear that the candidate has applied $\pi \int y^{2}$ in their working. Note: Writing the correct formula of $V=\pi \int y^{2}\{\mathrm{~d} x\}$, but incorrectly applying it is B0.

M1: A full substitution producing an integral in u only (including the $\mathrm{d} u$) (Integral sign not necessary). The candidate needs to deal with the " x ", the " $(2 \sqrt{x}-1)$ " and the " $\mathrm{d} x$ " and converts from an integral term in x to an integral in u. (Remember the integral sign is not necessary for M1).
A1*: leading to the result printed on the question paper (including the $\mathrm{d} u$). (Integral sign is needed).
(b)

M1: Writing $\frac{2}{u(2 u-1)} \equiv \frac{A}{u}+\frac{B}{(2 u-1)}$ or writing $\frac{1}{u(2 u-1)} \equiv \frac{P}{u}+\frac{Q}{(2 u-1)}$ and a complete method for finding the value of at least one of their A or their B (or their P or their Q).
A1: Both their $A=-2$ and their $B=4$. (Or their $P=-1$ and their $Q=2$ with the multiplying factor of 2 in front of the integral sign).
M1: Integrates $\frac{M}{u}+\frac{N}{(2 u-1)}, M \neq 0, N \neq 0$ (i.e. atwo term partial fraction) to obtain any one of $\pm \lambda \ln u$ or $\pm \mu \ln (2 u-1)$ or $\pm \mu \ln \left(u-\frac{1}{2}\right)$
A1ft: At least one term correctly followed through from their A or from their B (or their P and their Q).
A1: $-2 \ln u+2 \ln (2 u-1)$

Notes for Question 112 Continued

112. (b) M1: Applies limits of 3 and 1 in u or 9 and 1 in x in their (i.e. any) changed function and subtracts the ctd
correct way round.
Note: If a candidate just writes $(-2 \ln 3+2 \ln (2(3)-1))$ oe , this is ok for M1.
A1: $2 \ln \left(\frac{5}{3}\right)$ correct answer only. (Note: $a=5, b=3$).
Important note: Award M0A0M1A1A0 for a candidate who writes
$\int \frac{2}{u(2 u-1)} \mathrm{d} u=\int \frac{2}{u}+\frac{2}{(2 u-1)} \mathrm{d} u=2 \ln u+\ln (2 u-1)$
AS EVIDENCE OF WRITING $\frac{2}{u(2 u-1)}$ AS PARTIAL FRACTIONS IS GIVEN.
Important note: Award M0A0M0A0A0 for a candidate who writes down either
$\int \frac{2}{u(2 u-1)} \mathrm{d} u=2 \ln u+2 \ln (2 u-1)$ or $\int \frac{2}{u(2 u-1)} \mathrm{d} u=2 \ln u+\ln (2 u-1)$
WITHOUT ANY EVIDENCE OF WRITING $\frac{2}{u(2 u-1)}$ as partial fractions.
Important note: Award M1A1M1A1A1 for a candidate who writes down
$\int \frac{2}{u(2 u-1)} \mathrm{d} u=-2 \ln u+2 \ln (2 u-1)$
WITHOUT ANY EVIDENCE OF WRITING $\frac{2}{u(2 u-1)}$ as partial fractions.
Note: In part (b) if they lose the " 2 " and find $\int \frac{1}{u(2 u-1)} \mathrm{d} u$ we can allow a maximum of M1A0 M1A1ftA0 M1A0.

Question Number	Scheme		Marks
113. (a)	$\begin{aligned} & \frac{\mathrm{d} \theta}{\mathrm{~d} t}=\lambda(120-\theta), \quad \theta \leqslant 100 \\ & \int \frac{1}{120-\theta} \mathrm{d} \theta=\int \lambda \mathrm{d} t \quad \text { or } \int \frac{1}{\lambda(120-\theta)} \mathrm{d} \theta=\int \mathrm{d} t \\ & -\ln (120-\theta) ;=\lambda t+c \quad \text { or } \quad-\frac{1}{\lambda} \ln (120-\theta) ;=t+c \\ & \{t=0, \theta=20 \Rightarrow\}-\ln (120-20)=\lambda(0)+c \\ & \begin{array}{l} c=-\ln 100 \Rightarrow-\ln (120-\theta)=\lambda t-\ln 100 \\ \text { then either... } \\ \text { or... } \end{array} \end{aligned}$		
			B1
		c See notes	M1 A1; M1 A1
		See notes	M1
	$-\lambda t$ $=\ln (120-\theta)-\ln 100$ $\lambda t=\ln 100-\ln (120$ $-\lambda t$ $=\ln \left(\frac{120-\theta}{100}\right)$ $\lambda t=\ln \left(\frac{100}{120-\theta}\right)$ $\mathrm{e}^{-\lambda t}$ $=\frac{120-\theta}{100}$ $\mathrm{e}^{\lambda t}=\frac{100}{120-\theta}$		dddM1
	$100 \mathrm{e}^{-\lambda t}=120-\theta$ leading to $\theta=120-100 \mathrm{e}^{-\lambda t}$		A1 *
(b)	$\begin{aligned} & \left\{\lambda=0.01, \theta=100 \Rightarrow \quad 100=120-100 \mathrm{e}^{-0.01 t}\right. \\ & \Rightarrow 100 \mathrm{e}^{-0.01 t}=120-100 \Rightarrow-0.01 t=\ln \left(\frac{120-100}{100}\right) \\ & t=\frac{1}{-0.01} \ln \left(\frac{120-100}{100}\right) \\ & \left\{t=\frac{1}{-0.01} \ln \left(\frac{1}{5}\right)=100 \ln 5\right\} \\ & t=160.94379 \ldots=161 \text { (s) (nearest second) } \end{aligned}$		M1 ${ }^{[8]}$
		Uses correct order of operations by moving from $100=120-100 \mathrm{e}^{-0.01 t}$ to give $t=\ldots$ and $t=A \ln B$, where $B>0$	dM1
		awrt 161	A1 $[3]$ $\mathbf{1 1}$

Notes for Question 113

(a) B1: Separates variables as shown. $\mathrm{d} \theta$ and $\mathrm{d} t$ should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.

Either

M1: $\int \frac{1}{120-\theta} \mathrm{d} \theta \rightarrow \pm A \ln (120-\theta) \quad \int \frac{1}{\lambda(120-\theta)} \mathrm{d} \theta \rightarrow \pm A \ln (120-\theta), A$ is a constant.
A1: $\int \frac{1}{120-\theta} \mathrm{d} \theta \rightarrow-\ln (120-\theta)$
$\int \frac{1}{\lambda(120-\theta)} \mathrm{d} \theta \rightarrow-\frac{1}{\lambda} \ln (120-\theta)$ or $-\frac{1}{\lambda} \ln (120 \lambda-\lambda \theta)$,
M1: $\int \lambda \mathrm{d} t \rightarrow \lambda t$ $\int 1 \mathrm{~d} t \rightarrow t$
A1: $\int \lambda \mathrm{d} t \rightarrow \lambda t+c$
or $\int 1 \mathrm{~d} t \rightarrow t+c$ The $+c$ can appear on either side of the equation.
IMPORTANT: $+c$ can be on either side of their equation for the $2^{\text {nd }} \mathrm{A} 1$ mark.
M1: Substitutes $t=0$ AND $\theta=20$ in an integrated or changed equation containing c (or A or $\ln A$).
Note that this mark can be implied by the correct value of c. $\{$ Note that $-\ln 100=-4.60517 \ldots\}$.
dddM1: Uses their value of c which must be a ln term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on all three previous method marks being awarded.
A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in the candidate's working. Do not accept huge leaps in working at the end. So a minimum of either:
(1): $\mathrm{e}^{-\lambda t}=\frac{120-\theta}{100} \Rightarrow 100 \mathrm{e}^{-\lambda t}=120-\theta \Rightarrow \theta=120-100 \mathrm{e}^{-\lambda t}$
or (2): $\mathrm{e}^{\lambda t}=\frac{100}{120-\theta} \Rightarrow(120-\theta) \mathrm{e}^{\lambda t}=100 \Rightarrow 120-\theta=100 \mathrm{e}^{-\lambda t} \Rightarrow \theta=120-100 \mathrm{e}^{-\lambda t}$
is required for A 1 .
Note: $\int \frac{1}{(120 \lambda-\lambda \theta)} \mathrm{d} \theta \rightarrow-\frac{1}{\lambda} \ln (120 \lambda-\lambda \theta)$ is ok for the first M1A1 in part (a).
(b) M1: Substitutes $\lambda=0.01$ and $\theta=100$ into the printed equation or one of their earlier equations connecting θ and t. This mark can be implied by subsequent working.
dM1: Candidate uses correct order of operations by moving from $100=120-100 \mathrm{e}^{-0.01 t}$ to $t=\ldots$
Note: that the $2^{\text {nd }}$ Method mark is dependent on the $1^{\text {st }}$ Method mark being awarded in part (b).
A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units).

Aliter

113. (a)

Way 2

$$
\begin{aligned}
& \int \frac{1}{120-\theta} \mathrm{d} \theta=\int \lambda \mathrm{d} t \\
& -\ln (120-\theta)=\lambda t+c \\
& -\ln (120-\theta)=\lambda t+c \\
& \ln (120-\theta)=-\lambda t+c \\
& 120-\theta=A \mathrm{e}^{-\lambda t} \\
& \theta=120-A \mathrm{e}^{-\lambda t} \\
& \{t=0, \theta=20 \Rightarrow\} 20=120-A \mathrm{e}^{0} \\
& A=120-20=100 \\
& \text { So, } \theta=120-100 \mathrm{e}^{-\lambda t}
\end{aligned}
$$

Notes for Question 113 Continued

(a) B1M1A1M1A1: Mark as in the original scheme.

M1: Substitutes $t=0$ AND $\theta=20$ in an integrated equation containing their constant of integration which could be c or A. Note that this mark can be implied by the correct value of c or A.
dddM1: Uses a fully correct method to eliminate their logarithms and writes down an equation containing their evaluated constant of integration.
Note: This mark is dependent on all three previous method marks being awarded.
Note: $\ln (120-\theta)=-\lambda t+c \quad$ leading to $120-\theta=\mathrm{e}^{-\lambda t}+\mathrm{e}^{c}$ or $120-\theta=\mathrm{e}^{-\lambda t}+A$, would be dddM0.
A1*: Same as the original scheme.
Note: The jump from $\ln (120-\theta)=-\lambda t+c$ to $120-\theta=A \mathrm{e}^{-\lambda t}$ with no incorrect working is condoned in part (a).

B1: Mark as in the original scheme.
M1: Mark as in the original scheme ignoring the modulus.
A1: $\int \frac{1}{120-\theta} \mathrm{d} \theta \rightarrow-\ln |\theta-120|$. (The modulus is required here).
M1A1: Mark as in the original scheme.
M1: Substitutes $t=0$ AND $\theta=20$ in an integrated equation containing their constant of integration which could be c or A. Mark as in the original scheme ignoring the modulus.
dddM1: Mark as in the original scheme AND the candidate must demonstrate that they have converted $\ln |\theta-120|$ to $\ln (120-\theta)$ in their working. Note: This mark is dependent on all three previous method marks being awarded.
A1: Mark as in the original scheme.

Notes for Question 113 Continued

Aliter 113. (a) Way 4	Use of an integrating factor 	$\frac{\mathrm{d} \theta}{\mathrm{d} t}=\lambda(120-\theta) \Rightarrow \frac{\mathrm{d} \theta}{\mathrm{d} t}+\lambda \theta=120 \lambda$
	$\mathrm{IF}=\mathrm{e}^{\lambda t}$	
	$\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{\lambda t} \theta\right)=120 \lambda \mathrm{e}^{\lambda t}$,	B1
$\mathrm{e}^{\lambda t} \theta=120 \lambda \mathrm{e}^{\lambda t}+k$	M1A1	
	$\theta=120+K \mathrm{e}^{-\lambda t}$	M1A1
	$\{t=0, \theta=20 \Rightarrow\}-100=K$	M1
	$\theta=120-100 \mathrm{e}^{-\lambda t}$	M1A1

Question Number	Scheme	Marks
114.		M1 A1 A1 dM1 ddM1 A1 ft M1 A1 cao cso
Notes for Question 114		
	M1: Also allow $\mathrm{d} u= \pm \lambda \frac{1}{(u-2)} \mathrm{d} x$ or $(u-2) \mathrm{d} u= \pm \lambda \mathrm{d} x$ Note: The expressions must contain $\mathrm{d} u$ and $\mathrm{d} x$. They can be simplified or un-simplified. A1: Also allow $\mathrm{d} u=\frac{1}{(u-2)} \mathrm{d} x$ or $(u-2) \mathrm{d} u= \pm \lambda \mathrm{d} x$ Note: The expressions must contain $\mathrm{d} u$ and $\mathrm{d} x$. They can be simplified or un-simplified. A1: $\int \frac{1}{u}(u-2) \mathrm{d} u$. (Ignore integral sign and $\mathrm{d} u$). dM1: An attempt to divide each term by u. Note that this mark is dependent on the previous M1 mark being awarded. Note that this mark can be implied by later working. ddM1: $\pm A u \pm B \ln u, A \neq 0, B \neq 0$ Note that this mark is dependent on the two previous M1 marks being awarded. A1ft: $u-2 \ln u$ or $\pm A u \pm B \ln u$ being correctly followed through, $A \neq 0, B \neq 0$ M1: Applies limits of 5 and 3 in u or 4 and 0 in x in their integrated function and subtracts the correct way round. A1: cso and cao. $2+2 \ln \left(\frac{3}{5}\right)$ or $2+2 \ln (0.6),\left(=A+2 \ln B\right.$, so $\left.A=2, B=\frac{3}{5}\right)$ Note: $2-2 \ln \left(\frac{3}{5}\right)$ is A0.	

Notes for Question 114 Continued

114. ctd Note: $\int \frac{1}{u}(u-2) \mathrm{d} u=u-2 \ln u$ with no working is $2^{\text {nd }} \mathrm{M} 1,3^{\text {rd }} \mathrm{M} 1,3^{\text {rd }} \mathrm{A} 1$. but Note: $\int \frac{1}{u}(u-2) \mathrm{d} u=(u-2) \ln u$ with no working is $2^{\text {nd }} \mathrm{M} 0,3^{\text {rd }} \mathrm{M} 0,3^{\text {rd }} \mathrm{A} 0$.

Notes for Question 115 Continued

115. (b) ctd Alternative method for part (b): Adding individual trapezia

Area $\approx 2 \times\left[\frac{3+7.107}{2}+\frac{7.107+7.218}{2}+\frac{7.218+6.248}{2}+\frac{6.248+5.223}{2}\right]=49.369$
B1: 2 and a divisor of 2 on all terms inside brackets.
M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.
A1: anything that rounds to 49.37
(c)

M1: For $4 t \mathrm{e}^{-\frac{1}{3} t} \rightarrow \pm A t \mathrm{e}^{-\frac{1}{3} t} \pm B \int \mathrm{e}^{-\frac{1}{3} t}\{\mathrm{~d} t\}, A \neq 0, B \neq 0$
A1: For $t \mathrm{e}^{-\frac{1}{3} t} \rightarrow\left(-3 t \mathrm{e}^{-\frac{1}{3} t}-\int-3 \mathrm{e}^{-\frac{1}{3} t}\right) \quad$ (some candidates lose the 4 and this is fine for the first A1 mark). or $4 t \mathrm{e}^{-\frac{1}{3} t} \rightarrow 4\left(-3 t \mathrm{e}^{-\frac{1}{3} t}-\int-3 \mathrm{e}^{-\frac{1}{3} t}\right)$ or $-12 t \mathrm{e}^{-\frac{1}{3} t}-\int-12 \mathrm{e}^{-\frac{1}{3} t}$ or $12\left(-t \mathrm{e}^{-\frac{1}{3} t}-\int-\mathrm{e}^{-\frac{1}{3} t}\right)$
These results can be implied. They can be simplified or un-simplified.
B1: $3 \rightarrow 3 t$ or $3 \rightarrow 3 x$ (bod).
Note: Award B0 for 3 integrating to $12 t$ (implied), which is a common error when taking out a factor of 4.
Be careful some candidates will factorise out 4 and have $4\left(\ldots .+\frac{3}{4}\right) \rightarrow 4\left(\ldots .+\frac{3}{4} t\right)$ which would then be fine for B 1 .
Note: Allow B1 for $\int_{0}^{8} 3 \mathrm{~d} t=24$
A1: For correct integration of $4 t \mathrm{e}^{-\frac{1}{3} t}$ to give $-12 t \mathrm{e}^{-\frac{1}{3} t}-36 \mathrm{e}^{-\frac{1}{3} t}$ or $4\left(-3 t \mathrm{e}^{-\frac{1}{3} t}-9 \mathrm{e}^{-\frac{1}{3} t}\right)$ or equivalent.
This can be simplified or un-simplified.
dM1: Substitutes limits of 8 and 0 into an integrated function of the form of either $\pm \lambda t \mathrm{e}^{-\frac{1}{3} t} \pm \mu \mathrm{e}^{-\frac{1}{3} t}$ or $\pm \lambda t \mathrm{e}^{-\frac{1}{3} t} \pm \mu \mathrm{e}^{-\frac{1}{3} t}+B t$ and subtracts the correct way round.
Note: Evidence of a proper consideration of the limit of 0 (as detailed in the scheme) is needed for dM 1 .
So, just subtracting zero is M0.
A1: An exact answer of $60-132 \mathrm{e}^{-\frac{8}{3}}$. A decimal answer of $50.82818444 \ldots$ without a correct answer is A0.
Note: A decimal answer of $50.82818444 . .$. without a correct exact answer is A0.
Note: If a candidate gains M1A1B1A1 and then writes down 50.8 or awrt 50.8 with no method for substituting limits of 8 and 0 , then award the final M1A0.
IMPORTANT: that is fine for candidates to work in terms of x rather than t in part (c).
(d) B1: 1.46 or awrt 1.46 or -1.46 or awrt -1.46 .

Candidates may give correct decimal answers of $1.458184439 \ldots$ or $1.459184439 . .$.
Note: You can award this mark whether or not the candidate has answered part (c) correctly.

Notes for Question 116 Continued

	Note: Please check that their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ is differentiated correctly.

Eg. Note that $x=27 \sec ^{3} t=27(\cos t)^{-3} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} t}=-81(\cos t)^{-2}(-\sin t)$ is correct.
(b) M1: Either:

- Applying a correct trigonometric identity (usually $1+\tan ^{2} t=\sec ^{2} t$) to give a Cartesian equation in x and y only.
- Starting from the RHS and goes on to achieve $\sqrt{9 \tan ^{2} t}$ by using a correct trigonometric identity.
- Starts from the LHS and goes on to achieve $\sqrt{9 \sec ^{2} t-9}$ by using a correct trigonometric identity.

A1*: For a correct proof of $y=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}$.
Note this result is printed on the Question Paper, so no incorrect working is allowed.
B1: Both $a=27$ and $b=216$. Note that $27 \leqslant x \leqslant 216$ is also fine for B1.
(c)

B1: For a correct statement of $\pi \int\left(\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}\right)^{2}$ or $\pi \int\left(x^{\frac{2}{3}}-9\right)$. Ignore limits and $\mathrm{d} x$. Can be implied.
M1: Either integrates to give $\pm A x^{\frac{5}{3}} \pm B x, A \neq 0, B \neq 0$ or integrates $x^{\frac{2}{3}}$ correctly to give $\frac{3}{5} x^{\frac{5}{3}}$ oe
A1: $\frac{3}{5} x^{\frac{5}{3}}-9 x$ or. $\frac{x^{\frac{5}{3}}}{\left(\frac{5}{3}\right)}-9 x$ oe.
dM1: Substitutes limits of 125 and 27 into an integrated function and subtracts the correct way round.
Note: that this mark is dependent upon the previous method mark being awarded.
A1: A correct exact answer of $\frac{4236 \pi}{5}$ or 847.2π.
Note: The π in the volume formula is only required for the B1 mark and the final A1 mark.
Note: A decimal answer of 2661.557 ... without a correct exact answer is A0.
Note: If a candidate gains the first B1M1A1 and then writes down 2661 or awrt 2662 with no method for substituting limits of 125 and 27, then award the final M1A0.
(a)

Alternative response using the Cartesian equation in part (a)

Way 2
$\left\{y=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}} \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(x^{\frac{2}{3}}-9\right)^{-\frac{1}{2}}\left(\frac{2}{3} x^{-\frac{1}{3}}\right)$

$$
\begin{gathered}
\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm K x^{-\frac{1}{3}}\left(x^{\frac{2}{3}}-9\right)^{-\frac{1}{2}} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}\left(x^{\frac{2}{3}}-9\right)^{-\frac{1}{2}}\left(\frac{2}{3} x^{-\frac{1}{3}}\right) \text { ое }
\end{gathered}
$$

At $t=\frac{\pi}{6}, x=27 \sec ^{3}\left(\frac{\pi}{6}\right)=24 \sqrt{3}$
$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left((24 \sqrt{3})^{\frac{2}{3}}-9\right)^{-\frac{1}{2}}\left(\frac{2}{3}(24 \sqrt{3})^{-\frac{1}{3}}\right)$
So, $\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(\frac{1}{\sqrt{3}}\right)\left(\frac{1}{3 \sqrt{3}}\right)=\frac{1}{18}$

Uses $t=\frac{\pi}{6}$ to find x and substitutes their x into an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$. $\frac{1}{18}$

Note: Way 2 is marked as M1 A1 dM1 A1
Note: For way 2 the second M1 mark is dependent on the first M1 being gained.

Notes for Question 116 Continued

116. (b) Alternative responses for M1A1 in part (b): STARTING FROM THE RHS

Way 2

$$
\begin{array}{rl|r}
\{\text { RHS }=\}\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}=\sqrt{\left(27 \sec ^{3} t\right)^{\frac{2}{3}}-9}=\sqrt{9 \sec ^{2} t-9}=\sqrt{9 \tan ^{2} t} & \begin{array}{r}
\text { For applying } 1+\tan ^{2} t=\sec ^{2} t \text { oe } \\
\text { to achieve } \sqrt{9 \tan ^{2} t}
\end{array} & \text { M1 } \\
=3 \tan t=y\{=\text { LHS }\} \text { cso } & \text { Correct proof from }\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}} \text { to } y . & \text { A1* }
\end{array}
$$

M1: Starts from the RHS and goes on to achieve $\sqrt{9 \tan ^{2} t}$ by using a correct trigonometric identity.
116.
(b)

Way 3

$$
\left\{\begin{array}{l}
\{\text { LHS }=\} y
\end{array}\right)=3 \tan t=\sqrt{\left(9 \tan ^{2} t\right)}=\sqrt{9 \sec ^{2} t-9}
$$

For applying $1+\tan ^{2} t=\sec ^{2} t$ oe to achieve $\sqrt{9 \sec ^{2} t-9}$

Alternative responses for M1A1 in part (b): STARTING FROM THE LHS

$$
\text { Correct proof from } y \text { to }\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}} \cdot \mathrm{~A}^{*}
$$

M1: Starts from the LHS and goes on to achieve $\sqrt{9 \sec ^{2} t-9}$ by using a correct trigonometric identity.
116. Alternative response for part (c) using parametric integration
(c)

Way 2

$$
\begin{aligned}
& V=\pi \int 9 \tan ^{2} t\left(81 \sec ^{2} t \sec t \tan t\right) \mathrm{d} t \\
& =\{\pi\} \int 729 \sec ^{2} t \tan ^{2} t \sec t \tan t \mathrm{~d} t \\
& =\{\pi\} \int 729 \sec ^{2} t\left(\sec ^{2} t-1\right) \sec t \tan t \mathrm{~d} t \\
& =\{\pi\} \int 729\left(\sec ^{4} t-\sec ^{2} t\right) \sec t \tan t \mathrm{~d} t \\
& =\{\pi\} \int 729\left(\sec ^{4} t-\sec ^{2} t\right) \sec t \tan t \mathrm{~d} t \\
& =\{\pi\}\left[729\left(\frac{1}{5} \sec ^{5} t-\frac{1}{3} \sec ^{3} t\right)\right] \\
& V=\{\pi\}\left[729\left(\frac{1}{5}\left(\frac{5}{3}\right)^{5}-\frac{1}{3}\left(\frac{5}{3}\right)^{3}\right)-729\left(\frac{1}{5} 1^{5}-\frac{1}{3} 1^{3}\right)\right] \\
& \text { Substitutes } \sec t=\frac{5}{3} \text { and } \sec t=1 \text { into an } \\
& \text { integrated function and subtracts the correct } \\
& \text { way round. } \\
& =729 \pi\left[\left(\frac{250}{243}\right)-\left(-\frac{2}{15}\right)\right] \\
& =\frac{4236 \pi}{5} \text { or } 847.2 \pi \quad \frac{4236 \pi}{5} \text { or } 847.2 \pi
\end{aligned}
$$

Question Number	Scheme		Marks
117. (a)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=k(M-x), \quad$ where M is a constant $\frac{\mathrm{d} x}{\mathrm{~d} t}$ is the rate of increase of the mass of waste products.	Any one correct explanation.	B1
(b)	M is the total mass of unburned fuel and waste fuel (or the initial mass of unburned fuel)	Both explanations are correct.	B1 [2]
	$\int \frac{1}{M-x} \mathrm{~d} x=\int k \mathrm{~d} t \quad \text { or } \quad \int \frac{1}{k(M-x)} \mathrm{d} x=\int \mathrm{d} t$		B1
	$-\ln (M-x)=k t\{+c\} \quad \text { or } \quad-\frac{1}{k} \ln (M-x)=t\{+c\}$	See notes	M1 A1
	$\begin{gathered} \{t=0, x=0 \Rightarrow\}-\ln (M-0)=k(0)+c \\ c=-\ln M \Rightarrow-\ln (M-x)=k t-\ln M \end{gathered}$ then either... or...	See notes	M1
	$-k t$ $=\ln (M-x)-\ln M$ $k t=\ln M-\ln (M-x)$ $-k t$ $=\ln \left(\frac{M-x}{M}\right)$ $k t=\ln \left(\frac{M}{M-x}\right)$ $\mathrm{e}^{-k t}$ $=\frac{M-x}{M}$ $\mathrm{e}^{k t}=\frac{M}{M-x}$		ddM1
	$M \mathrm{e}^{-k t}=M-x$ $(M-x) \mathrm{e}^{k t}=M$ $M-x=M \mathrm{e}^{-k t}$ leading to $\quad x=M-M \mathrm{e}^{-k t}$ or $x=M\left(1-\mathrm{e}^{-k t}\right)$ oe		A1 * cso
(c)	$\begin{aligned} & \left\{x=\frac{1}{2} M, t=\ln 4 \Rightarrow\right\} \quad \frac{1}{2} M=M\left(1-\mathrm{e}^{-k \ln 4}\right) \\ & \Rightarrow \frac{1}{2}=1-\mathrm{e}^{-k \ln 4} \Rightarrow e^{-k \ln 4}=\frac{1}{2} \Rightarrow-k \ln 4=-\ln 2 \end{aligned}$		M1
	$\text { So } k=\frac{1}{2}$		A1
	$x=M\left(1-\mathrm{e}^{-\frac{1}{2} \ln 9}\right)$		dM1
	$x=\frac{2}{3} M$	$x=\frac{2}{3} M$	A1 cso
			[4] 12

Notes for Question 117 Continued

117. (a) B1: At least one explanation correct.

B1: Both explanations are correct.
$\frac{\mathrm{d} x}{\mathrm{~d} t}$ is the rate of increase of the mass of waste products.
or the rate of change of the mass of waste products.
M is the total mass of unburned fuel and waste fuel or the initial mass of unburned fuel or the total mass of rocket fuel and waste fuel or the initial mass of rocket fuel or the initial mass of fuel or the total mass of waste and unburned products.
(b)

B1: Separates variables as shown. $\mathrm{d} x$ and $\mathrm{d} t$ should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.
M1: Both $\pm \lambda \ln (M-x)$ or $\pm \lambda \ln (x-M)$ and $\pm \mu t$ where λ and μ are any constants.
A1: For $-\ln (M-x)=k t$ or $-\ln (x-M)=k t$ or $-\frac{1}{k} \ln (M-x)=t$ or $-\frac{1}{k} \ln (x-M)=t$

$$
\text { or }-\frac{1}{k} \ln (k M-k x)=t \quad \text { or }-\frac{1}{k} \ln (k x-k M)=t
$$

Note: $+c$ is not needed for this mark.
IMPORTANT: $+c$ can be on either side of their equation for the $1^{\text {st }} \mathrm{A} 1$ mark.
M1: Substitutes $t=0$ AND $x=0$ in an integrated or changed equation containing c (or A or $\ln A$, etc.)
Note that this mark can be implied by the correct value of c.
ddM1: Uses their value of c which must be a \ln term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on both previous method marks being awarded.
A1: $\quad x=M-M \mathrm{e}^{-k t}$ or $x=M\left(1-\mathrm{e}^{-k t}\right)$ or $x=\frac{M\left(\mathrm{e}^{k t}-1\right)}{\mathrm{e}^{k t}}$ or equivalent where x is the subject.
Note: Please check their working as incorrect working can lead to a correct answer.
Note: $\left\{\frac{\mathrm{d} x}{\mathrm{~d} t}=k(M-x) \Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{k M-k x} \Rightarrow\right\} x=-\frac{1}{k} \ln (k M-k x)\{+c\}$ is B1(Implied) M1A1.
(c)

M1: Substitutes $x=\frac{1}{2} M$ and $t=\ln 4$ into one of their earlier equations connecting x and t.
A1: $k=\frac{1}{2}$, which can be an un-simplified equivalent numerical value. i.e. $k=\frac{\ln 2}{\ln 4}$ is fine for A1.
dM1: Substitutes $t=\ln 4$ and their evaluated k (which must be a numerical value) into one of their earlier equations connecting x and t.
Note: that the $2^{\text {nd }}$ Method mark is dependent on the $1^{\text {st }}$ Method mark being awarded in part (c).
A1: $\quad x=\frac{2}{3} M$ cso.
Note: Please check their working as incorrect working can lead to a correct answer.

Notes for Question 117 Continued

Aliter 117. (b) Way 2	$\begin{aligned} & \int \frac{1}{M-x} \mathrm{~d} x=\int k \mathrm{~d} t \\ & -\ln (M-x)=k t\{+c\} \\ & \ln (M-x)=-k t+c \\ & M-x=A \mathrm{e}^{-k t} \\ & \{t=0, x=0 \Rightarrow\}-0=A \mathrm{e}^{-k(0)} \\ & \Rightarrow M=A \\ & M-x=M \mathrm{e}^{-k t} \end{aligned}$ $\text { So, } x=M-M \mathrm{e}^{-k t}$	B1 M1 A1 M1 ddM1 A1 [6]
(b)	B1M1A1: Mark as in the original scheme. M1: Substitutes $t=0$ AND $x=0$ in an integrated equation containing their constant of inte could be c or A. Note that this mark can be implied by the correct value of c or A. ddM1: Uses a fully correct method to eliminate their logarithms and writes down an equatio their evaluated constant of integration. Note: This mark is dependent on both previous method marks being awarded. Note: $\ln (M-x)=-k t+c \quad$ leading to $\ln (M-x)=\mathrm{e}^{-k t}+\mathrm{e}^{c}$ or $\ln (M-x)=\mathrm{e}^{-k t}+A$ w A1: Same as the original scheme.	gration which containing uld be dddM0.
$\begin{aligned} & \hline \text { Aliter } \\ & \text { 117. (b) } \\ & \text { Way } 3 \end{aligned}$	$\begin{aligned} & \int_{0}^{x} \frac{1}{M-x} \mathrm{~d} x=\int_{0}^{t} k \mathrm{~d} t \\ & {[-\ln (M-x)]_{0}^{x}=[k t]_{0}^{t}} \\ & -\ln (M-x)-(-\ln M)=k t \\ & -\ln (M-x)+\ln M=k t \end{aligned}$ Applies limits of and then follows the original scheme.	B1 M1 A1 M1
(a)	B1M1A1: Mark as in the original scheme (ignoring the limits). ddM1: Applies limits 0 and x on their integrated LHS and limits of 0 and t. M1A1: Same as the original scheme.	

Notes for Question 117 Continued

B1: Mark as in the original scheme.
M1A1M1: Mark as in the original scheme ignoring the modulus.
ddM1: Mark as in the original scheme AND the candidate must demonstrate that they have converted $\ln |x-M|$ to $\ln (M-x)$ in their working.
Note: This mark is dependent on both the previous method marks being awarded.
A1: Mark as in the original scheme.

Aliter
 117.

(b)

Way 5

Use of an integrating factor (I.F.)

$\frac{\mathrm{d} x}{\mathrm{~d} t}=k(M-x) \Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} t}+k x=k M$	
I.F. $=\mathrm{e}^{k t}$	B1
$\frac{\mathrm{d}}{\mathrm{d} t}\left(\mathrm{e}^{k t} x\right)=k M \mathrm{e}^{k t}$,	
$\mathrm{e}^{k t} x=M \mathrm{e}^{k t}+c$	M1A1
$x=M+c \mathrm{e}^{-k t}$	
$\{t=0, x=0 \Rightarrow\} 0=M+c \mathrm{e}^{-k(0)}$	M1
$\Rightarrow c=-M$	
$x=M-M \mathrm{e}^{-k t}$	ddM1A1

	Notes on Question 121 continued	
(a)	Alternative Method for part (a)	
	$\frac{\mathrm{d}}{\mathrm{~d} t}\left(\pi 40^{2} h\right)=-32 \pi \sqrt{h}$	B1B1: $\frac{\mathrm{d}}{\mathrm{d} t}\left(\pi 40^{2} h\right)=-32 \pi \sqrt{h}$
	$\Rightarrow \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{-32 \pi \sqrt{h}}{\pi 40^{2}}$ So, $\frac{\mathrm{d} h}{\mathrm{~d} t}=-0.02 \sqrt{h} \quad *$	M1: Simplifies to give an expression for $\frac{\mathrm{d} h}{\mathrm{~d} t}$. A1: Correct proof.
(b)	Alternative Method for part (b)	
	$\begin{aligned} & \int_{100}^{50} \frac{\mathrm{~d} h}{\sqrt{h}}=\int_{0}^{T}-0.02 \mathrm{~d} t \\ \Rightarrow & \int_{100}^{50} h^{-\frac{1}{2}} \mathrm{~d} h=\int_{0}^{T}-0.02 \mathrm{~d} t \end{aligned}$	B1: Attempt to separate variables. Integral signs and limits not necessary.
	$\Rightarrow\left[\frac{h^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}\right]_{100}^{50}=[-0.02 t]_{0}^{T}$	M1: $\pm \alpha h^{\frac{1}{2}}= \pm \beta t(+c)$ A1: Correct integration with/without limits
	$\begin{aligned} & 2 \sqrt{50}-2 \sqrt{100}=-0.02 T \\ & \text { So, } 0.02 T=20-2 \sqrt{50} \\ & \Rightarrow T=1000-500 \sqrt{2}=292.8932188 \ldots \end{aligned}$	M1: Attempts to use limits in order to find T.
	$\Rightarrow T=293$ (minutes) (nearest minute)	A1: A correct solution (with a correct application of limits) leading to awrt 293.

(a) M1: Integration by parts is applied in the form $\frac{ \pm \lambda}{x^{2}} \ln x \pm \int \mu \frac{1}{x^{2}} \cdot \frac{1}{x}$ or equivalent.

A1: $\frac{-1}{\underline{2 x^{2}} \ln x}$ simplified or un-simplified.
A1: $\underline{\underline{-\int \frac{-1}{2 x^{2}} \cdot \frac{1}{x}} \text { or equivalent. You can ignore the } \mathrm{d} x \text {. } ~}$
$\mathbf{d M 1}:$ Depends on the previous M1. $\pm \int \mu \frac{1}{x^{2}} \cdot \frac{1}{x} \rightarrow \pm \beta x^{-2}$.
A1: $-\frac{1}{2 x^{2}} \ln x+\frac{1}{2}\left(-\frac{1}{2 x^{2}}\right)\{+c\}$ or $=-\frac{1}{2 x^{2}} \ln x-\frac{1}{4 x^{2}}\{+c\} \quad$ or $\frac{x^{-2}}{-2} \ln x-\frac{x^{-2}}{4}\{+c\}$
or $\frac{-1-2 \ln x}{4 x^{2}}\{+c\}$ or equivalent.
(b) M1: Some evidence of applying limits of 2 and 1 to their part (a) answer and subtracts the correct way round.

A1: Two term exact answer of either $\frac{3}{16}-\frac{1}{8} \ln 2 \quad$ or $\quad \frac{3}{16}-\ln 2^{\frac{1}{8}}$ or $\frac{1}{16}(3-2 \ln 2)$ or $\frac{\ln \left(\frac{1}{4}\right)+3}{16}$ or $0.1875-0.125 \ln 2$. Also allow awrt 0.1 . Also note the fraction terms must be combined.
Note: Award the final A0 in part (b) for a candidate who achieves awrt 0.1 in part (b), when their answer to part (a) is incorrect.
122. (b) ctd

Note: Decimal answer is 0.100856... in part (b).

Alternative Solution

$$
\begin{aligned}
& \int \frac{1}{x^{3}} \ln x \mathrm{~d} x,\left\{\begin{array}{l}
u=x^{-3} \Rightarrow \\
\frac{\mathrm{~d} u}{\mathrm{~d} x}=-3 x^{-4} \\
\frac{\mathrm{~d} v}{\mathrm{~d} x} \ln x \Rightarrow \quad v=x \ln x-x
\end{array}\right\} \\
& \begin{array}{l}
\int \frac{1}{x^{3}} \ln x \mathrm{~d} x=\frac{1}{x^{3}}(x \ln x-x)-\int(x \ln x-x) \frac{-3}{x^{4}} \mathrm{~d} x
\end{array} \\
& -2 \int \frac{1}{x^{3}} \ln x \mathrm{~d} x=\frac{1}{x^{3}}(x \ln x-x)-\int \frac{3}{x^{3}} \mathrm{~d} x \\
& -2 \int \frac{1}{x^{3}} \ln x \mathrm{~d} x=\frac{1}{x^{3}}(x \ln x-x)+\frac{3}{2 x^{2}}\{+c\} \\
& \begin{array}{l}
\int \frac{1}{x^{3}} \ln x \mathrm{~d} x=-\frac{1}{2 x^{3}}(x \ln x-x)-\frac{3}{4 x^{2}}\{+c\} \\
=-\frac{1}{2 x^{2}} \ln x-\frac{1}{4 x^{2}}\{+c\}
\end{array}
\end{aligned}
$$

123. (b) Alternative method for part (b): Adding individual trapezia
ctd
Area $\approx 1 \times\left[\frac{0.5+0.8284}{2}+\frac{0.8284+1.0981}{2}+\frac{1.0981+1.3333}{2}\right]=2.84315$
B1: 1 and a divisor of 2 on all terms inside brackets.
M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.
(c)

A1: anything that rounds to 2.843
B1: $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$ or $\mathrm{d} u=\frac{1}{2 \sqrt{x}} \mathrm{~d} x$ or $2 \sqrt{x} \mathrm{~d} u=\mathrm{d} x$ or $\mathrm{d} x=2(u-1) \mathrm{d} u \quad$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}=2(u-1)$ oe. $\mathbf{1}^{\text {st }}$ M1: $\frac{x}{1+\sqrt{x}}$ becoming $\frac{(u-1)^{2}}{u}$ (Ignore integral sign).
$\mathbf{1}^{\text {st }} \mathbf{A 1}$ (B1 on epen): $\frac{x}{1+\sqrt{x}} \mathrm{~d} x$ becoming $\frac{(u-1)^{2}}{u} .2(u-1)\{\mathrm{d} u\}$ or $\frac{(u-1)^{2}}{u} \cdot \frac{2}{(u-1)^{-1}}\{\mathrm{~d} u\}$.
You can ignore the integral sign and the $\mathrm{d} u$.
$\mathbf{2}^{\text {nd }} \mathbf{M 1}$: Expands to give a "four term" cubic in $u, \quad \pm A u^{3} \pm B u^{2} \pm C u \pm D$ where $A \neq 0, B \neq 0, C \neq 0$ and $D \neq 0 \quad$ The cubic does not need to be simplified for this mark.
$\mathbf{3}^{\text {rd }}$ M1: An attempt to divide at least three terms in their cubic by u.
Ie. $\frac{\left(u^{3}-3 u^{2}+3 u-1\right)}{u} \rightarrow u^{2}-3 u+3-\frac{1}{u}$
2 ${ }^{\text {nd }}$ A1: $\int \frac{(u-1)^{3}}{u} \mathrm{~d} u \rightarrow\left(\frac{u^{3}}{3}-\frac{3 u^{2}}{2}+3 u-\ln u\right)$
$4^{\text {th }}$ M1: Some evidence of limits of 3 and 2 in u and subtracting either way round.
$\mathbf{3}^{\text {rd }} \mathbf{A 1}:$ Exact answer of $\frac{11}{3}+2 \ln 2-2 \ln 3$ or $\frac{11}{3}+2 \ln \left(\frac{2}{3}\right)$ or $\frac{11}{3}-\ln \left(\frac{9}{4}\right)$ or $2\left(\frac{11}{6}+\ln 2-\ln 3\right)$ or $\frac{22}{6}+2 \ln \left(\frac{2}{3}\right)$, etc. Note: that fractions must be combined to give either $\frac{11}{3}$ or $\frac{22}{6}$ or $3 \frac{2}{3}$

Alternative method for $2^{\text {nd }}$ M1 and $3^{\text {rd }}$ M1 mark

$\{2\} \int \frac{(u-1)^{2}}{u} \cdot(u-1) \mathrm{d} u=\{2\} \int \frac{\left(u^{2}-2 u+1\right)}{u} .(u-1) \mathrm{d} u \quad$ An attempt to expand $(u-1)^{2}$, then divide the result by u and then go on to multiply by ($u-1$) .
to give three out of four of $\pm A u^{2}, \pm B u, \pm C$ or $\pm \frac{D}{u}$
123. (c)

Final two marks in part (c): $u=1+\sqrt{x}$
ctd

$$
\begin{aligned}
& \text { Area }(R)=\left[\frac{2(1+\sqrt{x})^{3}}{3}-3(1+\sqrt{x})^{2}+6(1+\sqrt{x})-2 \ln (1+\sqrt{x})\right]_{1}^{4} \\
& =\left(\frac{2(1+\sqrt{4})^{3}}{3}-3(1+\sqrt{4})^{2}+6(1+\sqrt{4})-2 \ln (1+\sqrt{4})\right) \\
& -\left(\frac{2(1+\sqrt{1})^{3}}{3}-3(1+\sqrt{1})^{2}+6(1+\sqrt{1})-2 \ln (1+\sqrt{1})\right) \\
& =(18-27+18-2 \ln 3)-\left(\frac{16}{3}-12+12-2 \ln 2\right) \\
& =\frac{11}{3}+2 \ln 2-2 \ln 3 \text { or } \frac{11}{3}+2 \ln \left(\frac{2}{3}\right) \text { or } \frac{11}{3}-\ln \left(\frac{9}{4}\right), \text { etc }
\end{aligned}
$$

M1: Applies limits of 4 and 1 in x and subtracts either way round.

A1: Correct exact answer or equivalent.

Alternative method for the final 5 marks in part (b)

$$
\begin{aligned}
& \int \frac{(u-1)^{3}}{u} \mathrm{~d} u, \quad\left\{\begin{array}{lll}
" u "=u^{-1} & \Rightarrow & \frac{\mathrm{~d} " u "}{\mathrm{~d} x}=-u^{-2} \\
\frac{\mathrm{~d} v}{\mathrm{~d} x}=(u-1)^{3} & \Rightarrow & v=\frac{(u-1)^{4}}{4}
\end{array}\right\} \\
& =\frac{(u-1)^{4}}{4 u}--\frac{1}{4} \int \frac{(u-1)^{4}}{u^{2}} \mathrm{~d} u \\
& =\frac{(u-1)^{4}}{4 u}+\frac{1}{4} \int \frac{u^{4}-4 u^{3}+6 u^{2}-4 u+1}{u^{2}} \mathrm{~d} u \\
& =\frac{(u-1)^{4}}{4 u}+\frac{1}{4} \int u^{2}-4 u+6-\frac{4}{u}+\frac{1}{u^{2}} \mathrm{~d} u \\
& =\frac{(u-1)^{4}}{4 u}+\frac{1}{4}\left(\frac{u^{3}}{3}-2 u^{2}+6 u-4 \ln u-\frac{1}{u}\right) \\
& \int_{2}^{3} \frac{(u-1)^{3}}{u} \mathrm{~d} u=\left[\frac{(u-1)^{4}}{4 u}+\frac{u^{3}}{12}-\frac{u^{2}}{2}+\frac{3 u}{2}-\ln u-\frac{1}{4 u}\right]_{2}^{3} \\
& =\left(\frac{16}{12}+\frac{27}{12}-\frac{9}{2}+\frac{9}{2}-\ln 3-\frac{1}{12}\right)-\left(\frac{1}{8}+\frac{8}{12}-\frac{4}{2}+\frac{6}{2}-\ln 2-\frac{1}{8}\right) \\
& =(7-\ln 3)-\left(\frac{5}{3}-\ln 2\right) \\
& =\frac{11}{6}+\ln \frac{2}{3} \\
& \operatorname{Area}(R)=2 \int_{2}^{3} \frac{(u-1)^{3}}{u} \mathrm{~d} u=2\left(\frac{11}{6}+\ln \frac{2}{3}\right)
\end{aligned}
$$

Question Number	Scheme		Marks
124.	Working parametrically: $x=1-\frac{1}{2} t, \quad y=2^{t}-1 \text { or } y=\mathrm{e}^{t \ln 2}-1$		
(a)	$\{x=0 \Rightarrow\} 0=1-\frac{1}{2} t \Rightarrow t=2$ When $t=2, y=2^{2}-1=3$	Applies $x=0$ to obtain a value for t. Correct value for y.	M1 A1
(b)	$\{y=0 \Rightarrow\} 0=2^{t}-1 \Rightarrow t=0$	Applies $y=0$ to obtain a value for t. (Must be seen in part (b)).	M1 ${ }^{[2]}$
	When $t=0, x=1-\frac{1}{2}(0)=1$	$x=1$	A1
(c)	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{2} \text { and either } \frac{\mathrm{d} y}{\mathrm{~d} t}=2^{t} \ln 2 \text { or } \frac{\mathrm{d} y}{\mathrm{~d} t}=\mathrm{e}^{t \ln 2} \ln 2 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2^{t} \ln 2}{-\frac{1}{2}} \end{aligned}$	Attempts their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ divided by their $\frac{\mathrm{d} x}{\mathrm{~d} t}$.	B1
	At $A, t=" 2$ ", so $m(\mathbf{T})=-8 \ln 2 \Rightarrow m(\mathbf{N})=\frac{1}{8 \ln 2}$ $y-3=\frac{1}{8 \ln 2}(x-0) \quad$ or $y=3+\frac{1}{8 \ln 2} x$ or equivalent	Applies $t=" 2$ " and $m(\mathbf{N})=\frac{-1}{m(\mathbf{T})}$ See notes.	M1 M1 A1 oe cso
(d)	$\operatorname{Area}(R)=\int\left(2^{t}-1\right) \cdot\left(-\frac{1}{2}\right) \mathrm{d} t$	Complete substitution for both y and x	M1 B1
	$=\left\{-\frac{1}{2}\right\}\left(\frac{2^{t}}{\ln 2}-t\right)$	$\begin{array}{r} \text { Either } 2^{t} \rightarrow \frac{2^{t}}{\ln 2} \\ \text { or }\left(2^{t}-1\right) \rightarrow \frac{\left(2^{t}\right)}{ \pm \alpha(\ln 2)}-t \\ \text { or }\left(2^{t}-1\right) \rightarrow \pm \alpha(\ln 2)\left(2^{t}\right)-t \end{array}$	M1*
		$\left(2^{t}-1\right) \rightarrow \frac{2^{t}}{\ln 2}-t$	A1
	$\left\{-\frac{1}{2}\left[\frac{2^{t}}{\ln 2}-t\right]_{4}^{0}\right\}=-\frac{1}{2}\left(\left(\frac{1}{\ln 2}\right)-\left(\frac{16}{\ln 2}-4\right)\right)$	Depends on the previous method mark. Substitutes their changed limits in t and subtracts either way round	dM1*
	$=\frac{15}{2 \ln 2}-2$	$\frac{15}{2 \ln 2}-2$ or equivalent.	A1
			$[6]$ 15

124. (a) M1: Applies $x=0$ and obtains a value of t.

A1: For $y=2^{2}-1=3$ or $y=4-1=3$

Alternative Solution 1:

M1: For substituting $t=2$ into either x or y.
A1: $x=1-\frac{1}{2}(2)=0$ and $y=2^{2}-1=3$

Alternative Solution 2:

M1: Applies $y=3$ and obtains a value of t.
A1: For $x=1-\frac{1}{2}(2)=0$ or $x=1-1=0$.

Alternative Solution 3:

M1: Applies $y=3$ or $x=0$ and obtains a value of t.
A1: Shows that $t=2$ for both $y=3$ and $x=0$.
(b) M1: Applies $y=0$ and obtains a value of t. Working must be seen in part (b).

A1: For finding $x=1$.
Note: Award M1A1 for $x=1$.
B1: Both $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ correct. This mark can be implied by later working.
M1: Their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ divided by their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ or their $\frac{\mathrm{d} y}{\mathrm{~d} t} \times \frac{1}{\text { their }\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)}$. Note: their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ must be a function of t.
M1: Uses their value of t found in part (a) and applies $m(\mathbf{N})=\frac{-1}{m(\mathbf{T})}$.
M1: $y-3=($ their normal gradient $) x$ or $y=($ their normal gradient $) x+3$ or equivalent.
A1: $y-3=\frac{1}{8 \ln 2}(x-0)$ or $y=3+\frac{1}{8 \ln 2} x$ or $y-3=\frac{1}{\ln 256}(x-0)$ or $(8 \ln 2) y-24 \ln 2=x$ or $\frac{y-3}{(x-0)}=\frac{1}{8 \ln 2} . \quad$ You can apply isw here.
Working in decimals is ok for the three method marks. B1, A1 require exact values.
(d)

M1: Complete substitution for both y and $\mathrm{d} x$. So candidate should write down $\int\left(2^{t}-1\right)$. (their $\left.\frac{\mathrm{d} x}{\mathrm{~d} t}\right)$
B1: Changes limits from $x \rightarrow t . \quad x=-1 \rightarrow t=4$ and $x=1 \rightarrow t=0$. Note $t=4$ and $t=0$ seen is B1. M1*: Integrates 2^{t} correctly to give $\frac{2^{t}}{\ln 2}$
... or integrates $\left(2^{t}-1\right)$ to give either $\frac{\left(2^{t}\right)}{ \pm \alpha(\ln 2)}-t$ or $\pm \alpha(\ln 2)\left(2^{t}\right)-t$.
A1: Correct integration of $\left(2^{t}-1\right)$ with respect to t to give $\frac{2^{t}}{\ln 2}-t$.

dM1*: Depends upon the previous method mark.

Substitutes their limits in t and subtracts either way round.
A1: Exact answer of $\frac{15}{2 \ln 2}-2$ or $\frac{15}{\ln 4}-2$ or $\frac{15-4 \ln 2}{2 \ln 2}$ or $\frac{7.5}{\ln 2}-2$ or $\frac{15}{2} \log _{2} \mathrm{e}-2$ or equivalent.

$$
\begin{aligned}
\operatorname{Area}(R) & =\int\left(2^{u}-1\right)\{\mathrm{d} x\}, \text { where } u=2-2 x & & \text { M0: Unless a candidate writes } \int\left(2^{2-2 x}-1\right)\{\mathrm{d} x\} \\
& =\int_{4}^{0}\left(2^{u}-1\right)\left(-\frac{1}{2}\right)\{\mathrm{d} u\} & & \text { Then apply the "working parametrically" mark scheme. }
\end{aligned}
$$

125. (a) M1: $1-2 \cos x=0$.

This can be implied by either $\cos x=\frac{1}{2}$ or any one of the correct values for x in radians or in degrees.
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: Any one of either $\frac{\pi}{3}$ or $\frac{5 \pi}{3}$ or 60 or 300 or awrt 1.05 or 5.23 or awrt 5.24 .
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: Both $\frac{\pi}{3}$ and $\frac{5 \pi}{3}$.
(b)

B1: (M1 on epen) For $\pi \int(1-2 \cos x)^{2}$. Ignore limits and $\mathrm{d} x$.
$\mathbf{1}^{\text {st }} \mathbf{M 1}$: Any correct form of $\cos 2 x=2 \cos ^{2} x-1$ used or written down in the same variable.
This can be implied by $\cos ^{2} x=\frac{1+\cos 2 x}{2}$ or $4 \cos ^{2} x \rightarrow 2+2 \cos 2 x$ or $\cos 2 A=2 \cos ^{2} A-1$.
$\mathbf{2}^{\text {nd }}$ M1: Attempts $\int y^{2}$ to give any two of $\pm A \rightarrow \pm A x, \pm B \cos x \rightarrow \pm B \sin x$ or $\pm \lambda \cos 2 x \rightarrow \pm \mu \sin 2 x$.
Do not worry about the signs when integrating $\cos x$ or $\cos 2 x$ for this mark.
Note: $\int(1-2 \cos x)^{2}=\int 1+4 \cos ^{2} x$ is ok for an attempt at $\int y^{2}$.
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: Correct integration. Eg. $3 x-4 \sin x+\frac{2 \sin 2 x}{2}$ or $x-4 \sin x+\frac{2 \sin 2 x}{2}+2 x$ oe.
$\mathbf{3}^{\text {rd }} \mathbf{d d M 1 : ~ D e p e n d s ~ o n ~ b o t h ~ o f ~ t h e ~ t w o ~ p r e v i o u s ~ m e t h o d ~ m a r k s . ~ (I g n o r e ~} \pi$).
Some evidence of substituting their $x=\frac{5 \pi}{3}$ and their $x=\frac{\pi}{3}$ and subtracting the correct way round.
You will need to use your calculator to check for correct substitution of their limits into their integrand if a candidate does not explicitly give some evidence.
Note: For correct integral and limits decimals gives: $\pi((18.3060 \ldots)-(0.5435 \ldots))=17.7625 \pi=55.80$ $\mathbf{2}^{\text {nd }} \mathbf{A 1}$: Two term exact answer of either $\pi(4 \pi+3 \sqrt{3})$ or $4 \pi^{2}+3 \pi \sqrt{3}$ or equivalent.

Note: The π in the volume formula is only required for the B1 mark and the final A1 mark.
Note: Decimal answer of $58.802 \ldots$ without correct exact answer is A0.
Note: Applying $\int(1-2 \cos x) \mathrm{d} x$ will usually be given no marks in this part.

126. (a)

B1: (M1 on epen) Separates variables as shown. $\mathrm{d} \theta$ and $\mathrm{d} t$ should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.
M1: Both $\pm \lambda \ln (3-\theta)$ or $\pm \lambda \ln (\theta-3)$ and $\pm \mu t$ where λ and μ are constants.
A1: For $-\ln (\theta-3)=\frac{1}{125} t$ or $-\ln (3-\theta)=\frac{1}{125} t$ or $-125 \ln (\theta-3)=t$ or $-125 \ln (3-\theta)=t$
Note: $+c$ is not needed for this mark.
A1: Correct completion to $\theta=A \mathrm{e}^{-0.008 t}+3$. Note: $+c$ is needed for this mark.
Note: $\ln (\theta-3)=-\frac{1}{125} t+c \quad$ leading to $\theta-3=\mathrm{e}^{-\frac{1}{125} t}+\mathrm{e}^{c}$ or $\theta-3=e^{-\frac{1}{125} t}+A$, would be final A0.
Note: From $-\ln (\theta-3)=\frac{1}{125} t+c$, then $\ln (\theta-3)=-\frac{1}{125} t+c$
$\Rightarrow \theta-3=\mathrm{e}^{-\frac{1}{125} t+c}$ or $\theta-3=\mathrm{e}^{-\frac{1}{125} t} \mathrm{e}^{c} \Rightarrow \theta=A \mathrm{e}^{-0.008 t}+3$ is required for A 1 .
Note: From $-\ln (3-\theta)=\frac{1}{125} t+c$, then $\ln (3-\theta)=-\frac{1}{125} t+c$
$\Rightarrow 3-\theta=\mathrm{e}^{-\frac{1}{125} t+c}$ or $3-\theta=\mathrm{e}^{-\frac{1}{125} t} \mathrm{e}^{c} \quad \Rightarrow \theta=A \mathrm{e}^{-0.008 t}+3$ is sufficient for A1.
Note: The jump from $3-\theta=A \mathrm{e}^{-\frac{1}{125} t}$ to $\theta=A \mathrm{e}^{-0.008 t}+3$ is fine.

Note: $\quad \ln (\theta-3)=-\frac{1}{125} t+c \Rightarrow \theta-3=A e^{-\frac{1}{125} t}$, where candidate writes $A=\mathrm{e}^{c}$ is also acceptable.
126. (b)

M1: (B1 on epen) Substitutes $\theta=16, t=0$, into either their equation containing an unknown constant or the printed
equation. Note: You can imply this method mark.
A1: (M1 on epen) $A=13$. Note: $\theta=13 \mathrm{e}^{-0.008 t}+3$ without any working implies the first two marks, M1A1.
M1: Substitutes $\theta=10$ into an equation of the form $\theta=A \mathrm{e}^{-0.008 t}+3$, or equivalent. where A is a positive or negative numerical value and A can be equal to 1 or -1 .
M1: Uses correct algebra to rearrange their equation into the form $-0.008 t=\ln k$, where k is a positive numerical value.
A1: awrt 77 or awrt 1 hour 17 minutes.

Alternative Method 1 for part (b)

$\int \frac{1}{3-\theta} \mathrm{d} \theta=\int \frac{1}{125} \mathrm{~d} t \Rightarrow-\ln (\theta-3)=\frac{1}{125} t+c$
$\{t=0, \theta=16 \Rightarrow\}^{-\ln (16-3)}=\frac{1}{125}(0)+c$ $\Rightarrow c=-\ln 13$

M1: Substitutes $t=0, \theta=16$,
into $-\ln (\theta-3)=\frac{1}{125} t+c$
A1: $c=-\ln 13$
$-\ln (\theta-3)=\frac{1}{125} t-\ln 13$ or $\ln (\theta-3)=-\frac{1}{125} t+\ln 13$
M1: Substitutes $\theta=10$ into an equation of the
$-\ln (10-3)=\frac{1}{125} t-\ln 13$
$\ln 13-\ln 7=\frac{1}{125} t$
$t=77.3799 . . .=77$ (nearest minute)
Alternative Method 2 for part (b)
$\int \frac{1}{3-\theta} \mathrm{d} \theta=\int \frac{1}{125} \mathrm{~d} t \Rightarrow-\ln |3-\theta|=\frac{1}{125} t+c$
$\{t=0, \theta=16 \Rightarrow\}^{-\ln |3-16|=\frac{1}{125}(0)+c}$
$\Rightarrow c=-\ln 13$
form $\pm \lambda \ln (\theta-3)= \pm \frac{1}{125} t \pm \mu$
where λ, μ are numerical values.
M1: Uses correct algebra to rearrange their
equation into the form $\pm 0.008 t=\ln C-\ln D$, where C, D are positive numerical values.
A1: awrt 77.

M1: Substitutes $t=0, \theta=16$,
into $-\ln (3-\theta)=\frac{1}{125} t+c$
A1: $c=-\ln 13$
$-\ln |3-\theta|=\frac{1}{125} t-\ln 13 \quad$ or $\quad \ln |3-\theta|=-\frac{1}{125} t+\ln 13$
M1: Substitutes $\theta=10$ into an equation of the
$-\ln (3-10)=\frac{1}{125} t-\ln 13$
$\ln 13-\ln 7=\frac{1}{125} t$
where λ, μ are numerical values.
M1: Uses correct algebra to rearrange their equation into the form $\pm 0.008 t=\ln C-\ln D$,
126. (b) Alternative Method 3 for part (b)
$\int_{16}^{10} \frac{1}{3-\theta} \mathrm{d} \theta=\int_{0}^{t} \frac{1}{125} \mathrm{~d} t$
$=[-\ln |3-\theta|]_{16}^{10}=\left[\frac{1}{125} t\right]_{0}^{t}$
$-\ln 7--\ln 13=\frac{1}{125} t$
$t=77.3799 \ldots=77$ (nearest minute)
M1A1: $\ln 13$
M1: Substitutes limit of $\theta=10$ correctly.
M1: Uses correct algebra to rearrange their own equation into the form
$\pm 0.008 t=\ln C-\ln D$, where C, D are positive numerical values.
A1: awrt 77.

Alternative Method 4 for part (b)

$\{\theta=16 \Rightarrow\} \quad 16=A \mathrm{e}^{-0.008 t}+3$
$\{\theta=10 \Rightarrow\} \quad 10=A \mathrm{e}^{-0.008 t}+3$
A1: Two equations with an unknown A.
M1: Uses correct algebra to solve both of
$-0.008 t=\ln \left(\frac{13}{A}\right)$ or $\quad-0.008 t=\ln \left(\frac{7}{A}\right)$
$t_{(1)}=\frac{\ln \left(\frac{13}{A}\right)}{-0.008} \quad$ and $\quad t_{(2)}=\frac{\ln \left(\frac{7}{A}\right)}{-0.008}$
$t=t_{(1)}-t_{(2)}=\frac{\ln \left(\frac{13}{A}\right)}{-0.008}-\frac{\ln \left(\frac{7}{A}\right)}{-0.008}$
$\left\{t=\frac{\ln \left(\frac{7}{13}\right)}{(-0.008)}\right\}=77.3799 \ldots=77$ (nearest minute)
M1*: Writes down a pair of equations in A and t , for $\theta=16$ and $\theta=10$ with either A unknown or A being a positive or negative value. their equations leading to answers of the form $-0.008 t=\ln k$, where k is a positive numerical value.

M1: Finds difference between the two times. (either way round).

A1: awrt 77. Correct solution only.

Question Number		eme	Marks
128.	$\begin{aligned} \int y \mathrm{~d} y & =\int \frac{3}{\cos ^{2} x} \mathrm{~d} x \\ & =\int 3 \sec ^{2} x \mathrm{~d} x \\ \frac{1}{2} y^{2} & =3 \tan x \quad(+C) \\ y=2, x & =\frac{\pi}{4} \\ \frac{1}{2} 2^{2} & =3 \tan \frac{\pi}{4}+C \end{aligned}$ Leading to $\begin{aligned} & C=-1 \\ & \frac{1}{2} y^{2}=3 \tan x-1 \end{aligned}$	Can be implied. Ignore integral signs or equivalent	B1 M1 A1 M1 A1 (5)

Question Number	Scheme	Marks
129.	$\text { (a) } \begin{aligned} \int x^{\frac{1}{2}} \ln 2 x \mathrm{~d} x & =\frac{2}{3} x^{\frac{3}{2}} \ln 2 x-\int \frac{2}{3} x^{\frac{3}{2}} \times \frac{1}{x} \mathrm{~d} x \\ & =\frac{2}{3} x^{\frac{3}{2}} \ln 2 x-\int \frac{2}{3} x^{\frac{1}{2}} \mathrm{~d} x \\ & =\frac{2}{3} x^{\frac{3}{2}} \ln 2 x-\frac{4}{9} x^{\frac{3}{2}} \quad(+C) \end{aligned}$	M1 A1 M1 A1 (4)
	(b)	M1 M1 A1 (3) [7]

Question Number	Scheme		Marks
$\begin{aligned} & 130 \\ & \text { (a) } \end{aligned}$	$\begin{aligned} \int x \sin 3 x \mathrm{~d} x & =-\frac{1}{3} x \cos 3 x-\int-\frac{1}{3} \cos 3 x\{\mathrm{~d} x\} \\ & =-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x\{+c\} \end{aligned}$		M1 A1 A1
(b)	$\begin{aligned} \int x^{2} \cos 3 x \mathrm{~d} x & =\frac{1}{3} x^{2} \sin 3 x-\int \frac{2}{3} x \sin 3 x\{\mathrm{~d} x\} \\ & =\frac{1}{3} x^{2} \sin 3 x-\frac{2}{3}\left(-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x\right)\{+c\} \\ \{ & \left.=\frac{1}{3} x^{2} \sin 3 x+\frac{2}{9} x \cos 3 x-\frac{2}{27} \sin 3 x \quad\{+c\}\right\} \end{aligned}$	Ignore subsequent working	M1 A1 A1 isw

(a) M1: Use of 'integration by parts' formula $u v-\int v u$ ' (whether stated or not stated) in the correct direction, where $u=x \rightarrow u^{\prime}=1$ and $v^{\prime}=\sin 3 x \rightarrow v=k \cos 3 x$ (seen or implied), where k is a positive or negative constant. (Allow $k=1$).
This means that the candidate must achieve $x(k \cos 3 x)-\int(k \cos 3 x)$, where k is a consistent constant.
If x^{2} appears after the integral, this would imply that the candidate is applying integration by parts in the wrong direction, so M0.
A1: $-\frac{1}{3} x \cos 3 x-\int-\frac{1}{3} \cos 3 x\{\mathrm{~d} x\}$. Can be un-simplified. Ignore the $\{\mathrm{d} x\}$.
A1: $-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x$ with/without $+c$. Can be un-simplified.
(b)

M1: Use of 'integration by parts' formula $u v-\int v u$ ' (whether stated or not stated) in the correct direction, where $u=x^{2} \rightarrow u^{\prime}=2 x$ or x and $v^{\prime}=\cos 3 x \rightarrow v=\lambda \sin 3 x$ (seen or implied), where λ is a positive or negative constant. (Allow $\lambda=1$).
This means that the candidate must achieve $x^{2}(\lambda \sin 3 x)-\int 2 x(\lambda \sin 3 x)$, where $u^{\prime}=2 x$ or $x^{2}(\lambda \sin 3 x)-\int x(\lambda \sin 3 x)$, where $u^{\prime}=x$.
If x^{3} appears after the integral, this would imply that the candidate is applying integration by parts in the wrong direction, so M0.
A1: $\frac{1}{3} x^{2} \sin 3 x-\int \frac{2}{3} x \sin 3 x\{\mathrm{~d} x\}$. Can be un-simplified. Ignore the $\{\mathrm{d} x\}$.
A1: $\frac{1}{3} x^{2} \sin 3 x-\frac{2}{3}\left(-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x\right)$ with/without $+c$, can be un-simplified.
You can ignore subsequent working here.
Special Case: If the candidate scores the first two marks of M1A1 in part (b), then you can award the final A1 as a follow through for $\frac{1}{3} x^{2} \sin 3 x-\frac{2}{3}$ (their follow through part(a) answer).

Question Number	Scheme		Marks
131.	Volume $=\pi \int_{0}^{2}\left(\sqrt{\left(\frac{2 x}{3 x^{2}+4}\right)}\right)^{2} \mathrm{~d} x$	Use of $V=\pi \int y^{2} \mathrm{~d} x$.	B1
	$=(\pi)\left[\frac{1}{3} \ln \left(3 x^{2}+4\right)\right]_{0}^{2}$	$\begin{gathered} \pm k \ln \left(3 x^{2}+4\right) \\ \frac{1}{3} \ln \left(3 x^{2}+4\right) \end{gathered}$	M1 A1
	$\begin{aligned} & \quad=(\pi)\left[\left(\frac{1}{3} \ln 16\right)-\left(\frac{1}{3} \ln 4\right)\right] \\ & \text { So Volume }=\frac{1}{3} \pi \ln 4 \end{aligned}$	Substitutes limits of 2 and 0 and subtracts the correct way round. $\frac{1}{3} \pi \ln 4 \text { or } \frac{2}{3} \pi \ln 2$	dM1 A1 oe isw
			$[5]$ 5

NOTE: π is required for the B 1 mark and the final A 1 mark. It is not required for the 3 intermediate marks.
B1: For applying $\pi \int y^{2}$. Ignore limits and $\mathrm{d} x$. This can be implied by later working,
but the pi and $\int \frac{2 x}{3 x^{2}+4}$ must appear on one line somewhere in the candidate's working.
B1 can also be implied by a correct final answer. Note: $\pi\left(\int y\right)^{2}$ would be B0.

Working in x

M1: For $\pm k \ln \left(3 x^{2}+4\right)$ or $\pm k \ln \left(x^{2}+\frac{4}{3}\right)$ where k is a constant and k can be 1 .
Note: M0 for $\pm k x \ln \left(3 x^{2}+4\right)$.
Note: M1 can also be given for $\pm k \ln \left(p\left(3 x^{2}+4\right)\right)$, where k and p are constants and k can be 1 .
A1: For $\frac{1}{3} \ln \left(3 x^{2}+4\right)$ or $\frac{1}{3} \ln \left(\frac{1}{3}\left(3 x^{2}+4\right)\right)$ or $\frac{1}{3} \ln \left(x^{2}+\frac{4}{3}\right)$ or $\frac{1}{3} \ln \left(p\left(3 x^{2}+4\right)\right)$.
You may allow M1 A1 for $\frac{1}{3}\left(\frac{x}{x}\right) \ln \left(3 x^{2}+4\right)$ or $\frac{1}{3}\left(\frac{2 x}{6 x}\right) \ln \left(3 x^{2}+4\right)$
dM1: Substitutes limits of 2 and 0 and subtracts the correct way round. Working in decimals is fine for dM1.
A1: For either $\frac{1}{3} \pi \ln 4, \frac{1}{3} \ln 4^{\pi}, \frac{2}{3} \pi \ln 2, \pi \ln 4^{\frac{1}{3}}, \pi \ln 2^{\frac{2}{3}}, \frac{1}{3} \pi \ln \left(\frac{16}{4}\right), 2 \pi \ln \left(\frac{16^{\frac{1}{6}}}{4^{\frac{1}{6}}}\right)$, etc.
Note: $\frac{1}{3} \pi(\ln 16-\ln 4)$ would be A0.
Working in u : where $u=3 x^{2}+4$,
M1: For $\pm k \ln u$ where k is a constant and k can be 1 .
Note: M1 can also be given for $\pm k \ln (p u)$, where k and p are constants and k can be 1 .
A1: For $\frac{1}{3} \ln u$ or $\frac{1}{3} \ln 3 u$ or $\frac{1}{3} \ln p u$.
dM1: Substitutes limits of 16 and 4 in u or limits of 2 and 0 in x and subtracts the correct way round.
A1: As above!

132. (c)

B1: $\frac{\mathrm{d} u}{\mathrm{~d} x}=-\sin x$ or $\mathrm{d} u=-\sin x \mathrm{~d} x$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}=\frac{1}{-\sin x} \quad$ oe.
B1: For seeing, applying or implying $\sin 2 x=2 \sin x \cos x$.
M1: After applying substitution candidate achieves $\pm k \int \frac{(u-1)}{u}(\mathrm{~d} u)$ or $\pm k \int \frac{(1-u)}{u}(\mathrm{~d} u)$.
Allow M1 for "invisible" brackets here, eg: $\pm \int \frac{(\lambda u-1)}{u}(\mathrm{~d} u)$ or $\pm \int \frac{(-\lambda+u)}{u}(\mathrm{~d} u)$, where λ is a positive constant.
dM1: An attempt to divide through each term by u and $\pm k \int\left(\frac{1}{u}-1\right) \mathrm{d} u \rightarrow \pm k(\ln u-u)$ with/without $+c$. Note that this mark is dependent on the previous M1 mark being awarded.
Alternative method: Candidate can also gain this mark for applying integration by parts followed by a correct method for integrating $\ln u$. (See below).
A1: Correctly combines their $+c$ and " -4 " together to give $4 \ln (1+\cos x)-4 \cos x+k$
As a minimum candidate must write either $4 \ln (1+\cos x)-4(1+\cos x)+c \rightarrow 4 \ln (1+\cos x)-4 \cos x+k$ or $4 \ln (1+\cos x)-4(1+\cos x)+k \rightarrow 4 \ln (1+\cos x)-4 \cos x+k$
Note: that this mark is also for a correct solution only.
(d)

Note: those candidates who attempt to find the value of k will usually achieve A0.
M1: Substitutes limits of $x=\frac{\pi}{2}$ and $x=0$ into $\{4 \ln (1+\cos x)-4 \cos x\}$ or their answer from part (c) and subtracts the either way round. Note that: $\left[4 \ln \left(1+\cos \frac{\pi}{2}\right)-4 \cos \frac{\pi}{2}\right]-[0]$ is M0.
A1: $4(1-\ln 2)$ or $4-4 \ln 2$ or awrt 1.2, however found.
This mark can be implied by the final answer of either awrt ± 0.077 or awrt ± 6.3
A1: For either awrt ± 0.077 or awrt ± 6.3 (for percentage error). Note this mark is for a correct solution only. Therefore if there if a candidate substitutes limits the incorrect way round and final achieves (usually fudges) the final correct answer then this mark can be withheld. Note that awrt 6.7 (for percentage error) is A0.
Alternative method for dM1 in part (c)
$\int \frac{(1-u)}{u} \mathrm{~d} u=\left((1-u) \ln u-\int-\ln u d u\right)=\left((1-u) \ln u+u \ln u-\int \frac{u}{u} \mathrm{~d} u\right)=((1-u) \ln u+u \ln u-u)$
or $\int \frac{(u-1)}{u} \mathrm{~d} u=\left((u-1) \ln u-\int \ln u \mathrm{~d} u\right)=\left((u-1) \ln u-\left(u \ln u-\int \frac{u}{u} \mathrm{~d} u\right)\right)=((u-1) \ln u-u \ln u+u)$
So dM1 is for $\int \frac{(1-u)}{u} \mathrm{~d} u$ going to $((1-u) \ln u+u \ln u-u)$ or $((u-1) \ln u-u \ln u+u)$ oe.

Alternative method for part (d)

M1A1 for $\left\{4 \int_{2}^{1}\left(\frac{1}{u}-1\right) \mathrm{d} u=\right\} 4[\ln u-u]_{2}^{1}=4[(\ln 1-1)-(\ln 2-2)]=4(1-\ln 2)$

Alternative method for part (d): Using an extra constant λ from their integration.

$\left[4 \ln \left(1+\cos \frac{\pi}{2}\right)-4 \cos \frac{\pi}{2}+\lambda\right]-[4 \ln (1+\cos 0)-4 \cos 0+\lambda]$
λ is usually -4 , but can be a value of k that the candidate has found in part (d).
Note: The extra constant λ should cancel out and so the candidate can gain all three marks using this method, even the final A1 cso.

(a) M1: Forming a correct identity. For example, $1=A(5-P)+B P$. Note A and B not referred to in question.

A1: Either one of $A=\frac{1}{5}$ or $B=\frac{1}{5}$.
A1: $\frac{\frac{1}{5}}{P}+\frac{\frac{1}{5}}{(5-P)}$ or any equivalent form, eg: $\frac{1}{5 P}+\frac{1}{25-5 P}$, etc. Ignore subsequent working.
This answer must be stated in part (a) only.
A1 can also be given for a candidate who finds both $A=\frac{1}{5}$ and $B=\frac{1}{5}$ and $\frac{A}{P}+\frac{B}{5-P}$ is seen in their working.
Candidate can use 'cover-up' rule to write down $\frac{\frac{1}{5}}{P}+\frac{\frac{1}{5}}{(5-P)}$, as so gain all three marks.
Candidate cannot gain the marks for part (a) in part (b).
133. (b) B1: Separates variables as shown. $\mathrm{d} P$ and $\mathrm{d} t$ should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.
M1*: Both $\pm \lambda \ln P$ and $\pm \mu \ln (\pm 5 \pm P)$, where λ and μ are constants.
Or $\pm \lambda \ln m P$ and $\pm \mu \ln (n(\pm 5 \pm P))$, where λ, μ, m and n are constants.
A1ft: Correct follow through integration of both sides from their $\int \frac{\lambda}{P}+\frac{\mu}{(5-P)} \mathrm{d} P=\int K \mathrm{~d} t$ with or without $+c$
dM1*: Use of $t=0$ and $P=1$ in an integrated equation containing c
dM1*: Using ANY of the subtraction (or addition) laws for logarithms CORRECTLY.
dM1*: Apply logarithms (or take exponentials) to eliminate ln's CORRECTLY from their equation.
dM1*: A full ACCEPTABLE method of rearranging to make P the subject. (See below for examples!)
A1: $P=\frac{5}{\left(1+4 \mathrm{e}^{-\frac{1}{3} t}\right)}\{$ where $a=5, b=1, c=4\}$.
Also allow any "integer" multiples of this expression. For example: $P=\frac{25}{\left(5+20 \mathrm{e}^{-\frac{1}{3} t}\right)}$
Note: If the first method mark (M^{*} *) is not awarded then the candidate cannot gain any of the six remaining marks for this part of the question.
Note: $\int \frac{1}{P(5-P)} \mathrm{d} P=\int 15 \mathrm{~d} t \Rightarrow \int \frac{\frac{1}{5}}{P}+\frac{\frac{1}{5}}{(5-P)} \mathrm{d} P=\int 15 \mathrm{~d} t \Rightarrow \ln P-\ln (5-P)=15 t$ is B0M1A1ft.

dM1* for making P the subject

Note there are three type of manipulations here which are considered acceptable to make P the subject.
(1) M1 for $\frac{P}{5-P}=\mathrm{e}^{\frac{1}{3} t} \Rightarrow P=5 \mathrm{e}^{\frac{1}{\frac{1}{2} t}}-P \mathrm{e}^{\frac{1}{2} t} \Rightarrow P\left(1+\mathrm{e}^{\frac{1}{t} t}\right)=5 \mathrm{e}^{\frac{1}{3} t} \Rightarrow P=\frac{5}{\left(1+\mathrm{e}^{-\frac{1}{3} t}\right)}$
(2) M1 for $\frac{P}{5-P}=\mathrm{e}^{\frac{1}{3} t} \Rightarrow \frac{5-P}{P}=\mathrm{e}^{\frac{1}{3} t} \Rightarrow \frac{5}{P}-1=\mathrm{e}^{\frac{1}{3} t} \Rightarrow \frac{5}{P}=\mathrm{e}^{\frac{1}{3} t}+1 \Rightarrow P=\frac{5}{\left(1+\mathrm{e}^{\frac{1}{3} t}\right)}$
(3) M1 for $P(5-P)=4 \mathrm{e}^{\frac{1}{3} t} \Rightarrow P^{2}-5 P=-4 \mathrm{e}^{\frac{1}{t} t} \Rightarrow\left(P-\frac{5}{2}\right)^{2}-\frac{25}{4}=-4 \mathrm{e}^{\frac{1}{3} t}$ leading to $P=\ldots$

Note: The incorrect manipulation of $\frac{P}{5-P}=\frac{P}{5}-1$ or equivalent is awarded this $\mathrm{dM} 0^{*}$.
Note: $(P)-(5-P)=\mathrm{e}^{\frac{1}{3} t} \Rightarrow 2 P-5=\frac{1}{3} t$ leading to $P=\ldots$ or equivalent is awarded this $\mathrm{dM} 0^{*}$
(c)

B1: $1+4 \mathrm{e}^{-\frac{1}{3} t}>1$ and $P<5$ and a conclusion relating population (or even P) or meerkats to 5000 .
For $P=\frac{25}{\left(5+20 \mathrm{e}^{-\frac{1}{3} t}\right)}, \quad$ B1 can be awarded for $5+20 \mathrm{e}^{-\frac{1}{3^{t}}}>5$ and $P<5$ and a conclusion relating population (or even P) or meerkats to 5000 .

B1 can only be obtained if candidates have correct values of a and b in their $P=\frac{a}{\left(b+c \mathrm{e}^{-\frac{1}{3} t}\right)}$.
Award B0 for: As $t \rightarrow \infty, \mathrm{e}^{-\frac{1}{3} t} \rightarrow 0$. So $P \rightarrow \frac{5}{(1+0)}=5$, so population cannot exceed 5000,

$$
\text { unless the candidate also proves that } P=\frac{5}{\left(1+4 \mathrm{e}^{-\frac{1}{3} t}\right)} \text { oe. is an increasing function. }
$$

If unsure here, then send to review!

133. Alternative method for part (b)

B1M1*A1: as before for $\frac{1}{5} \ln P-\frac{1}{5} \ln (5-P)=\frac{1}{15} t(+c)$
Award $3^{\text {rd }}$ M1for

$$
\ln \left(\frac{P}{5-P}\right)=\frac{1}{3} t+c
$$

Award $4^{\text {th }}$ M1 for

$$
\frac{P}{5-P}=A \mathrm{e}^{\frac{1}{b^{t} t}}
$$

Award $2^{\text {nd }}$ M1 for

$$
\begin{gathered}
t=0, P=1 \Rightarrow \frac{1}{5-1}=A \mathrm{e}^{0}\left\{\Rightarrow A=\frac{1}{4}\right\} \\
\frac{P}{5-P}=\frac{1}{4} \mathrm{e}^{\frac{1}{3^{t}}}
\end{gathered}
$$

then award the final M1A1 in the same way.

Question Number	Scheme	Marks
137.	$\int x \sin 2 x \mathrm{~d} x=-\frac{x \cos 2 x}{2}+\int \frac{\cos 2 x}{2} \mathrm{~d} x$	M1 A1 A1
	$=\ldots \quad+\frac{\sin 2 x}{4}$	M1
	$[\ldots]_{0}^{\frac{\pi}{2}}=\frac{\pi}{4}$	M1 A1
		[6]

Question Number	Scheme	Marks
$138 .$ (a)	$\begin{array}{rl} \frac{5}{(x-1)(3 x+2)}=\frac{A}{x-1}+\frac{B}{3 x+2} \\ & 5=A(3 x+2)+B(x-1) \\ x \rightarrow 1 & 5=5 A \Rightarrow A=1 \\ x \rightarrow-\frac{2}{3} & 5=-\frac{5}{3} B \Rightarrow B=-3 \end{array}$	M1 A1 A1 (3)
(b)	$\begin{aligned} \int \frac{5}{(x-1)(3 x+2)} \mathrm{d} x=\int & \left(\frac{1}{x-1}-\frac{3}{3 x+2}\right) \mathrm{d} x \\ & =\ln (x-1)-\ln (3 x+2) \quad(+C) \quad \text { ft constants } \end{aligned}$	M1 A1ft Alft
(c)	$\begin{aligned} \int \frac{5}{(x-1)(3 x+2)} \mathrm{d} x=\int\left(\frac{1}{y}\right) \mathrm{d} y & \\ \ln (x-1)-\ln (3 x+2)=\ln y & (+C) \\ y & =\frac{K(x-1)}{3 x+2} \\ 8 & =\frac{K}{8} \\ \text { Using (2,8) } & \text { depends on first two Ms in (c) } \\ y & =\frac{64(x-1)}{3 x+2} \end{aligned}$	M1 M1 A1 M1 dep M1 dep A1 (6) [12]

Question Number	Scheme	Marks
$139 .$ (a)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{t}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 t$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 t^{2}$ Using $m m^{\prime}=-1$, at $t=3$ $\begin{aligned} m^{\prime} & =-\frac{1}{18} \\ y-7 & =-\frac{1}{18}(x-\ln 3) \end{aligned}$	M1 A1 M1 A1 M1 A1 (6)
(b)	$x=\ln t \Rightarrow t=\mathrm{e}^{x}$ $y=\mathrm{e}^{2 x}-2$	B1 M1 A1 (3)
(c)	$\begin{aligned} & V=\pi \int\left(\mathrm{e}^{2 x}-2\right)^{2} \mathrm{~d} x \\ & \int\left(\mathrm{e}^{2 x}-2\right)^{2} \mathrm{~d} x=\int\left(\mathrm{e}^{4 x}-4 \mathrm{e}^{2 x}+4\right) \mathrm{d} x \\ &=\frac{\mathrm{e}^{4 x}}{4}-\frac{4 \mathrm{e}^{2 x}}{2}+4 x \\ & \pi\left[\frac{\mathrm{e}^{4 x}}{4}-\frac{4 \mathrm{e}^{2 x}}{2}+4 x\right]_{\ln 2}^{\ln 4}=\pi[(64-32+4 \ln 4)-(4-8+4 \ln 2)] \\ &=\pi(36+4 \ln 2) \end{aligned}$	M1 M1 M1 A1 M1 A1 (6) [15]
	Alternative to (c) using parameters $\begin{gathered} V=\pi \int\left(t^{2}-2\right)^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t \\ \begin{aligned} \int\left(\left(t^{2}-2\right)^{2} \times \frac{1}{t}\right) \mathrm{d} t & =\int\left(t^{3}-4 t+\frac{4}{t}\right) \mathrm{d} t \\ & =\frac{t^{4}}{4}-2 t^{2}+4 \ln t \end{aligned} \end{gathered}$ The limits are $t=2$ and $t=4$ $\begin{aligned} \pi\left[\frac{t^{4}}{4}-2 t^{2}+4 \ln t\right]_{2}^{4} & =\pi[(64-32+4 \ln 4)-(4-8+4 \ln 2)] \\ & =\pi(36+4 \ln 2) \end{aligned}$	M1 M1 M1 A1 M1 A1

Question Number	Scheme		Marks
$140 .$ (a)	$\begin{aligned} & x=3 \Rightarrow y=0.1847 \\ & x=5 \Rightarrow y=0.1667 \end{aligned}$	awrt awrt or $\frac{1}{6}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
(b)	$\begin{gathered} I \approx \frac{1}{\underline{2}}[0.2+0.1667+2(0.1847+0.1745)] \\ \\ \approx 0.543 \end{gathered}$	$0.542 \text { or } 0.543$	B1 M1 A1ft A1 (4)
(c)	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} u}=2(u-4) \\ & \begin{aligned} \int \frac{1}{4+\sqrt{(x-1)}} \mathrm{d} & =\int \frac{1}{u} \times 2(u-4) \mathrm{d} u \\ & =\int\left(2-\frac{8}{u}\right) \mathrm{d} u \\ & =2 u-8 \ln u \\ x=2 \Rightarrow u & =5, x=5 \Rightarrow u=6 \\ {[2 u-8 \ln u]_{5}^{6} } & =(12-8 \ln 6)-(10-8 \ln 5) \\ & =2+8 \ln \left(\frac{5}{6}\right) \end{aligned} \end{aligned}$		B1 M1 A1 M1 A1 B1 M1 A1 (8) [14]

Question Number	Scheme		Marks
141.	$\begin{aligned} \frac{\mathrm{d} u}{\mathrm{~d} x} & =-\sin x \\ \int \sin x \mathrm{e}^{\cos x+1} \mathrm{~d} x & =-\int \mathrm{e}^{u} \mathrm{~d} u \\ & =-\mathrm{e}^{u} \\ & =-\mathrm{e}^{\cos x+1} \\ {\left[-\mathrm{e}^{\cos x+1}\right]_{0}^{\frac{\pi}{2}} } & =-\mathrm{e}^{1}-\left(-\mathrm{e}^{2}\right) \\ & =\mathrm{e}(\mathrm{e}-1) * \end{aligned}$	ft sign error or equivalent with u cso	B1 M1 A1 A1ft M1 A1 (6)

Question Number	Scheme	Marks
143.	(a) $\begin{gathered} \frac{\mathrm{d} V}{\mathrm{~d} t}=0.48 \pi-0.6 \pi h \\ V=9 \pi h \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} t}=9 \pi \frac{\mathrm{~d} h}{\mathrm{~d} t} \end{gathered}$	M1 A1 B1
	$9 \pi \frac{\mathrm{~d} h}{\mathrm{~d} t}=0.48 \pi-0.6 \pi h$ Leading to $75 \frac{\mathrm{~d} h}{\mathrm{~d} t}=4-5 h$	M1 A1
	(b) $\begin{gathered} \int \frac{75}{4-5 h} \mathrm{~d} h=\int 1 \mathrm{~d} t \\ -15 \ln (4-5 h)=t(+C) \\ -15 \ln (4-5 h)=t+C \end{gathered}$ separating variables When $t=0, h=0.2$	M1 M1 A1
	$\begin{gathered} -15 \ln 3=C \\ t=15 \ln 3-15 \ln (4-5 h) \end{gathered}$	M1
	When $h=0.5$ $t=15 \ln 3-15 \ln 1.5=15 \ln \left(\frac{3}{1.5}\right)=15 \ln 2 \quad \text { awrt } 10.4$	M1 A1
	Alternative for last 3 marks $\begin{aligned} t & =[-15 \ln (4-5 h)]_{0.2}^{0.5} \\ & =-15 \ln 1.5+15 \ln 3 \\ & =15 \ln \left(\frac{3}{1.5}\right)=15 \ln 2 \end{aligned}$ awrt 10.4	M1 M1 A1 (6)
		[11]

Question Number	Scheme		Marks	
148 (a)	1.14805	awrt 1.14805	B1	(1)
	$A \approx \frac{1}{2} \times \frac{3 \pi}{8}(\ldots)$		B1	
	$=\ldots(3+2(2.77164+2.12132+1.14805)+0)$	0 can be implied	M1	
	$=\frac{3 \pi}{16}(3+2(2.77164+2.12132+1.14805))$	ft their (a)	A1ft	
	$=\frac{3 \pi}{16} \times 15.08202 \ldots=8.884$	cao		(4)
	$\int 3 \cos \left(\frac{x}{3}\right) \mathrm{d} x=\frac{3 \sin \left(\frac{x}{3}\right)}{\frac{1}{3}}$		M1 A1	
	$\begin{aligned} & =9 \sin \left(\frac{x}{3}\right) \\ A=\left[9 \sin \left(\frac{x}{3}\right)\right]_{0}^{\frac{3 \pi}{2}} & =9-0=9 \end{aligned}$	cao		(3)
				[8]

Question		
Number	Scheme	Marks

(c) $\int \frac{\mathrm{e}^{3 x}}{1+\mathrm{e}^{x}} \mathrm{~d} x$
$\left\{u=1+\mathrm{e}^{x} \Rightarrow \frac{\mathrm{~d} u}{\frac{\mathrm{~d} x}{}=\mathrm{e}^{x}}, \underline{\frac{\mathrm{~d} x}{\mathrm{~d} u}=\frac{1}{\mathrm{e}^{x}}, \frac{\mathrm{~d} x}{\mathrm{~d} u}=\frac{1}{u-1}}\right\}$
$=\int \frac{(u-1)^{2}}{u} \mathrm{~d} u$
$=\int \frac{u^{2}-2 u+1}{u} \mathrm{~d} u$
$=\int u-2+\frac{1}{u} \mathrm{~d} u$
$=\frac{u^{2}}{2}-2 u+\ln u(+c)$
$=\frac{\left(1+\mathrm{e}^{x}\right)^{2}}{2}-2\left(1+\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{x}\right)+c$
$=\frac{1}{2}+\mathrm{e}^{x}+\frac{1}{2} \mathrm{e}^{2 x}-2-2 \mathrm{e}^{x}+\ln \left(1+\mathrm{e}^{x}\right)+c$
$=\frac{1}{2}+\mathrm{e}^{x}+\frac{1}{2} \mathrm{e}^{2 x}-2-2 \mathrm{e}^{x}+\ln \left(1+\mathrm{e}^{x}\right)+c$
$=\frac{1}{2} \mathrm{e}^{2 x}-\mathrm{e}^{x}+\ln \left(1+\mathrm{e}^{x}\right)-\frac{3}{2}+c$
$=\frac{1}{2} \mathrm{e}^{2 x}-\mathrm{e}^{x}+\ln \left(1+\mathrm{e}^{x}\right)+k \quad$ AG

Differentiating to find any one of the
Differentiating to find any one of the
three underlined

Attempt to substitute for $\mathrm{e}^{2 x}=\mathrm{f}(u)$,
their $\frac{\mathrm{d} x}{\mathrm{~d} u}=\frac{1}{\mathrm{e}^{x}}$ and $u=1+\mathrm{e}^{x}$
or $\mathrm{e}^{3 x}=\mathrm{f}(u)$, their $\frac{\mathrm{d} x}{\mathrm{~d} u}=\frac{1}{u-1}$ and

$$
u=1+\mathrm{e}^{x} .
$$

M1*
$\underline{\int \frac{(u-1)^{2}}{u}} \mathrm{~d} u$

An attempt to
multiply out their numerator to give at least three terms and divide through each term by u

Correct integration
with/without +c

Substitutes $u=1+\mathrm{e}^{x}$ back into their integrated expression with at least two terms.
dM1*

Question Number	Scheme		Marks
154. (a)	$\left\{\begin{array}{l}u=x \Rightarrow \frac{d u}{d x}=1 \\ \frac{d v}{d x}=\mathrm{e}^{x} \Rightarrow v v^{\text {a }}=\mathrm{e}^{x}\end{array}\right\}$		
	$\int x \mathrm{e}^{x} \mathrm{~d} x=x \mathrm{e}^{x}-\int \mathrm{e}^{x} \cdot 1 \mathrm{~d} x$	Use of 'integration by parts' formula in the correct direction. (See note.) Correct expression. (Ignore dx)	M1 A1
	$\begin{aligned} & =x \mathrm{e}^{x}-\int \mathrm{e}^{x} \mathrm{~d} x \\ & =x \mathrm{e}^{x}-\mathrm{e}^{x}(+c) \end{aligned}$	Correct integration with/without $+c$	A1 [3]
(b)	$\left\{\begin{array}{l} u=x^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{dx}}=2 x \\ \frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{e}^{x} \Rightarrow \quad v=\mathrm{e}^{x} \end{array}\right\}$		
	$\begin{aligned} \int x^{2} \mathrm{e}^{x} \mathrm{~d} x & =x^{2} \mathrm{e}^{x}-\int \mathrm{e}^{x} \cdot 2 x \mathrm{~d} x \\ & =x^{2} \mathrm{e}^{x}-2 \int x \mathrm{e}^{x} \mathrm{~d} x \\ & =x^{2} \mathrm{e}^{x}-2\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right)+c \end{aligned}$	Use of 'integration by parts' formula in the correct direction. Correct expression. (Ignore dx)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		Correct expression including $+\mathbf{c}$. (seen at any stage! in part (b)) You can ignore subsequent working.	A1 ISW
	$\left\{\begin{array}{l} =x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+c \\ =\mathrm{e}^{x}\left(x^{2}-2 x+2\right)+c \end{array}\right\}$	Ignore subsequent working	
			6 marks

Note integration by parts in the correct direction means that u and $\frac{\mathrm{dv}}{\mathrm{d} x}$ must be assigned/ used as $u=x$ and $\frac{\mathrm{dv}}{\mathrm{d} x}=\mathrm{e}^{x}$ in part (a) for example
$+c$ is not required in part
(a).

Question Number	Scheme		Marks
155. (a)	$\begin{aligned} & \frac{2}{4-y^{2}} \equiv \frac{2}{(2-y)(2+y)} \equiv \frac{A}{(2-y)}+\frac{B}{(2+y)} \\ & 2 \equiv A(2+y)+B(2-y) \\ & \text { Let } y=-2, \quad 2=B(4) \Rightarrow B=\frac{1}{2} \\ & \text { Let } y=2, \quad 2=A(4) \Rightarrow A=\frac{1}{2} \\ & \text { giving } \frac{\frac{1}{2}}{\frac{(2-y)}{2}+\frac{\frac{1}{2}}{(2+y)}} \end{aligned}$ (If no working seen, but candidate writes down correct partial fraction then award all three marks. If no working is seen but one of A or B is incorrect then M0A0A0.)	Forming this identity. NB: A \& B are not assigned in this question Either one of $A=\frac{1}{2}$ or $B=\frac{1}{2}$ $\frac{\frac{1}{2}}{\underline{(2-y)}+\frac{\frac{1}{2}}{(2+y)}}$, aef	M1 A1 A1 cao

155. (b)

$$
\begin{aligned}
& \int \frac{2}{4-y^{2}} \mathrm{~d} y=\int \frac{1}{\cot x} \mathrm{~d} x \\
& \int \frac{\frac{1}{2}}{(2-y)}+\frac{\frac{1}{2}}{(2+y)} \mathrm{d} y=\int \tan x \mathrm{~d} x \\
& \therefore-\frac{1}{2} \ln (2-y)+\frac{1}{2} \ln (2+y)=\ln (\sec x)+(c) \\
& y=0, x=\frac{\pi}{3} \Rightarrow-\frac{1}{2} \ln 2+\frac{1}{2} \ln 2=\ln \left(\frac{1}{\cos \left(\frac{\pi}{3}\right)}\right)+c \\
& \left\{0=\ln 2+c \Rightarrow \frac{c=-\ln 2}{}\right\} \\
& -\frac{1}{2} \ln (2-y)+\frac{1}{2} \ln (2+y)=\ln (\sec x)-\ln 2 \\
& \frac{1}{2} \ln \left(\frac{2+y}{2-y}\right)=\ln \left(\frac{\sec x}{2}\right) \\
& \ln \left(\frac{2+y}{2-y}\right)=2 \ln \left(\frac{\sec x}{2}\right) \\
& \ln \left(\frac{2+y}{2-y}\right)=\ln \left(\frac{\sec x}{2}\right)^{2}
\end{aligned}
$$

Separates variables as shown. Can be implied. Ignore the integral signs, and the ' 2 '.
$\ln (\sec x)$ or $-\ln (\cos x)$
Either $\pm a \ln (\lambda-y)$ or $\pm b \ln (\lambda+y)$ their $\int \frac{1}{\cot x} \mathrm{~d} x=$ LHS correct with ft
for their A and B and no error with the " 2 " with or without $+c$

Use of $y=0$ and $x=\frac{\pi}{3}$ in an integrated equation containing c

Using either the quotient (or product) or power laws for logarithms CORRECTLY.

Using the log laws correctly to obtain a single log term on both sides of the equation.

B1

B1
M1;

$$
\frac{2+y}{2-y}=\frac{\sec ^{2} x}{4}
$$

$$
\text { Hence, } \quad \sec ^{2} x=\frac{8+4 y}{2-y}
$$

Note that π is not required for the middle three marks of this question.

Question Number	Scheme		Marks
$\begin{gathered} \text { Aliter } \\ 157 . \\ \text { Way } 2 \end{gathered}$	$\begin{aligned} \text { Volume } & =\frac{\pi \int_{a}^{b}\left(\frac{1}{2 x+1}\right)^{2}}{} \mathrm{~d} x=\pi \int_{a}^{b} \frac{1}{(2 x+1)^{2}} \mathrm{~d} x \\ & =\pi \int_{a}^{b}(2 x+1)^{-2} \mathrm{~d} x \end{aligned}$ Applying substitution $u=2 x+1 \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2$ and changing limits $x \rightarrow u$ so that $a \rightarrow 2 a+1$ and $b \rightarrow 2 b+1$, gives $\begin{aligned} & =(\pi) \int_{2 a+1}^{2 b+1} \frac{u^{-2}}{2} \mathrm{~d} u \\ & =(\pi)\left[\frac{u^{-1}}{(-1)(2)}\right]_{2 a+1}^{2 b+1} \\ & =(\pi)\left[\frac{-\frac{1}{2} u^{-1}}{2 b+1}\right]_{2 a+1}^{2 b+1} \\ & =(\pi)\left[\left(\frac{-1}{2(2 b+1)}\right)-\left(\frac{-1}{2(2 a+1)}\right)\right] \\ & =\frac{\pi}{2}\left[\frac{-2 a-1+2 b+1}{(2 a+1)(2 b+1)}\right] \\ & =\frac{\pi}{2}\left[\frac{2(b-a)}{(2 a+1)(2 b+1)}\right] \\ & =\frac{\pi(b-a)}{(2 a+1)(2 b+1)} \end{aligned}$ Integrating to give $\underline{ \pm p u^{-1}}$ $-\frac{1}{2} u^{-1}$ Substitutes limits of $2 b+1$ and $2 a+1$ and subtracts the correct way round.		B1
			dM1
			A1 aef
			5 marks

Note that π is not required for the middle three marks of this question.

Allow other equivalent forms such as

$$
\frac{\pi b-\pi a}{(2 a+1)(2 b+1)} \text { or } \frac{-\pi(a-b)}{(2 a+1)(2 b+1)} \text { or } \frac{\pi(b-a)}{4 a b+2 a+2 b+1} \text { or } \frac{\pi b-\pi a}{4 a b+2 a+2 b+1} .
$$

[^0]$$
\text { Note } \frac{\pi}{8}+\frac{1}{4}=0.64269 \ldots
$$

Question Number	Scheme	Marks
Aliter 158. (i) Way 2	$\int \ln \left(\frac{x}{2}\right) \mathrm{d} x=\int(\ln x-\ln 2) \mathrm{d} x=\int \ln x \mathrm{~d} x-\int \ln 2 \mathrm{~d} x$	
	$\int \ln x \mathrm{~d} x=\int 1 \cdot \ln x \mathrm{~d} x \Rightarrow\left\{\begin{array}{ll} u=\ln x & \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x} \\ \frac{\mathrm{~d} v}{\mathrm{~d} x}=1 & \Rightarrow v=x \end{array}\right\}$	
	$\int \ln x \mathrm{~d} x=x \ln x-\int x \cdot \frac{1}{x} \mathrm{~d} x$ Use of 'integration by parts’ formula in the correct direction. $=x \ln x-x+c$ Correct integration of $\ln x$ with or without $+c$	M1 A1
	$\int \ln 2 \mathrm{~d} x=x \ln 2+c$ Correct integration of $\ln 2$ with or without $+c$	M1
	Hence, $\int \ln \left(\frac{x}{2}\right) \mathrm{d} x=x \ln x-x-x \ln 2+c$ Correct integration with $+c$	A1 aef [4]
	Note: $\int \ln x \mathrm{~d} x=($ their $v) \ln x-\int($ their $v) .\left(\right.$ their $\left.\frac{\mathrm{d} u}{\mathrm{~d} x}\right) \mathrm{d} x$ for M1 in part (i).	

Question Number	Scheme		Marks
Aliter 158. (ii) Way 2		An attempt to use the correct by parts formula. For the LHS becoming $2 I$ Correct integration Substitutes limits of $\frac{\pi}{2}$ and $\frac{\pi}{4}$ and subtracts the correct way round. $\frac{1}{2}\left(\frac{\pi}{4}+\frac{1}{2}\right) \text { or } \frac{\pi}{8}+\frac{1}{4} \text { or } \frac{\pi}{8}+\frac{2}{8}$ Candidate must collect their π term and constant term together for A1 No fluked answers, hence cso.	M1 dM1 A1 ddM1 A1 aef cso [5]

Note $\frac{\pi}{8}+\frac{1}{4}=0.64269$...

Question Number	Scheme		Marks
159. (c)	$x=\ln (t+2), \quad y=\frac{1}{t+1}$		
	$\mathrm{e}^{x}=t+2 \Rightarrow t=\mathrm{e}^{x}-2$	Attempt to make $t=\ldots$ the subject giving $t=\mathrm{e}^{x}-2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$y=\frac{1}{\mathrm{e}^{x}-2+1} \Rightarrow y=\frac{1}{\mathrm{e}^{x}-1}$	Eliminates t by substituting in y giving $y=\frac{1}{\mathrm{e}^{x}-1}$	dM1 A1
			[4]
Aliter 7. (c) Way 2	$\begin{aligned} & t+1=\frac{1}{y} \Rightarrow t=\frac{1}{y}-1 \text { or } t=\frac{1-y}{y} \\ & y(t+1)=1 \Rightarrow y t+y=1 \Rightarrow y t=1-y \Rightarrow t=\frac{1-y}{y} \end{aligned}$	Attempt to make $t=\ldots$ the subject	M1
		Giving either $t=\frac{1}{y}-1$ or $t=\frac{1-y}{y}$	A1
	$x=\ln \left(\frac{1}{y}-1+2\right) \quad$ or $\quad x=\ln \left(\frac{1-y}{y}+2\right)$	Eliminates t by substituting in x	dM1
	$x=\ln \left(\frac{1}{y}+1\right)$		
	$e^{x}=\frac{1}{y}+1$		
	$e^{x}-1=\frac{1}{y}$		
	$y=\frac{1}{\mathrm{e}^{x}-1}$	giving $y=\frac{1}{\mathrm{e}^{x}-1}$	A1
			[4]
(d)	Domain : $\underline{x>0}$	$\underline{x>0}$ or just >0	B1
			15 marks

[^0]: Note: $\int \ln \left(\frac{x}{2}\right) \mathrm{d} x=($ their $v) \ln \left(\frac{x}{2}\right)-\int($ their $v) .\left(\right.$ their $\left.\frac{\mathrm{d} u}{\mathrm{~d} x}\right) \mathrm{d} x$ for M1 in part (i).

