

Maths Questions By Topic:

Moments

Mark Scheme

A-Level Edexcel

\# www.expert-tuition.co.uk
\boxminus online.expert-tuition.co.uk
enquiries@expert-tuition.co.uk
〇 The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 3 (A2) ... Page 1
Old Spec
Mechanics 1 .. Page 17
Mechanics 2 ... Page 41

Question	Scheme	Marks	AOs
1(a)	The horizontal component of T acts to the left and since the only other horizontal force is friction, it must act to the right oe	B1	2.4
		(1)	
1(b)	Take moments about A or any other complete method to obtain an equation in T, M and θ only. (see possible equations below that they may use)	M1	3.1b
	$T .2 a=M g a \cos \theta+2 M g \times 1.5 a \cos \theta$ (A0 if a 's missing)	A1	1.1b
	Other possible equations but F and R would need to be eliminated. (\nwarrow),$R \cos \theta+T=F \sin \theta+M g \cos \theta+2 M g \cos \theta$ (\nearrow),$R \sin \theta+F \cos \theta=M g \sin \theta+2 M g \sin \theta$ $(\rightarrow), F=T \sin \theta$ $\mathrm{M}(B), R .2 a \cos \theta=M g a \cos \theta+2 M g \times 0.5 a \cos \theta+F .2 a \sin \theta$ $\mathrm{M}(G), F a \sin \theta+T a=R a \cos \theta+2 M g \times 0.5 a \cos \theta$ $\mathrm{M}(C), R \times 1.5 a \cos \theta=T \times 0.5 a+M g \times 0.5 a \cos \theta+F \times 1.5 a \sin \theta$		
	$T=2 M g \cos \theta^{*}$	A1*	1.1 b
		(3)	
1(c)	e.g. Resolve vertically	M1	3.4
	(\uparrow), $R+T \cos \theta=M g+2 M g$	A1	1.1b
	$R=\frac{57 M g}{25}$ *	A1*	1.1b
		(3)	
	Other possible equations but F would need to be eliminated. (\nwarrow),$R \cos \theta+T=F \sin \theta+M g \cos \theta+2 M g \cos \theta$ (\nearrow),$R \sin \theta+F \cos \theta=M g \sin \theta+2 M g \sin \theta$ $(\rightarrow), F=T \sin \theta$ $\mathrm{M}(B), R .2 a \cos \theta=M g a \cos \theta+2 M g \times 0.5 a \cos \theta+F .2 a \sin \theta$ $\mathrm{M}(G), F a \sin \theta+T a=R a \cos \theta+2 M g \times 0.5 a \cos \theta$ $\mathrm{M}(C), R \times 1.5 a \cos \theta=T \times 0.5 a+M g \times 0.5 a \cos \theta+F \times 1.5 a \sin \theta$		
1(d)	Find an equation containing F e.g. Resolve horizontally	M1	3.4
	$(\rightarrow), F=T \sin \theta$	A1	1.1b
Other possible equations			

$\left.\begin{array}{|l|l|l|l|}\hline & & \begin{array}{l}(\nwarrow), R \cos \theta+T=F \sin \theta+M g \cos \theta+2 M g \cos \theta \\ (\nearrow), R \sin \theta+F \cos \theta=M g \sin \theta+2 M g \sin \theta \\ (\rightarrow), F=T \sin \theta \\ \mathrm{M}(B), R .2 a \cos \theta=M g a \cos \theta+2 M g \times 0.5 a \cos \theta+F .2 a \sin \theta \\ \mathrm{M}(G), F a \sin \theta+T a=R a \cos \theta+2 M g \times 0.5 a \cos \theta \\ \mathrm{M}(C), R \times 1.5 a \cos \theta=T \times 0.5 a+M g \times 0.5 a \cos \theta+F \times 1.5 a \sin \theta\end{array} & \\ \hline & & F=\mu R \text { used i.e. both } F \text { and } R \text { are substituted. }\end{array}\right)$

Question	Scheme	Marks	AOs
	Part (a) is a 'Show that..' so equations need to be given in full to earn A marks		
2(a)			
	Moments equation: (M1A0 for a moments inequality)	M1	3.3
	$\mathrm{M}(A), m g a \cos \theta=2 S a \sin \theta$ $\mathrm{M}(B), m g a \cos \theta+2 F a \sin \theta=2 R a \cos \theta$ $\mathrm{M}(C), F \times 2 a \sin \theta=m g a \cos \theta$ $\mathrm{M}(D), 2 R a \cos \theta=m g a \cos \theta+2 \operatorname{Sa} \sin \theta$ $\mathrm{M}(G), R a \cos \theta=F a \sin \theta+S a \sin \theta$.	A1	1.1b
	$(\downarrow) R=m g$ OR $(\leftrightarrow) F=S$	B1	3.4
	Use their equations (they must have enough) and $F \leq \mu R$ to give an inequality in μ and θ only (allow DM1 for use of $F=\mu R$ to give an equation in μ and θ only)	DM1	2.1
	$\mu \geq \frac{1}{2} \cot \theta^{*}$	A1*	2.2a
		(5)	
2(b)			
	Moments equation:	M1	3.4
	$\begin{aligned} & \mathrm{M}(A), m g a \cos \theta=2 N a \sin \theta \\ & \mathrm{M}(B), m g a \cos \theta+2 k m g a \sin \theta=2 R a \cos \theta+\frac{1}{2} m g 2 a \sin \theta \\ & \mathrm{M}(D), 2 R a \cos \theta=m g a \cos \theta+N 2 a \sin \theta \\ & \mathrm{M}(G), k m g a \sin \theta+N a \sin \theta=\frac{1}{2} m g a \sin \theta+R a \cos \theta \end{aligned}$	A1	1.1b

Question	Scheme	Marks	AOs
3(a)	Take moments about A	M1	3.3
	$N \times \frac{4 a}{\sin \alpha}=M g \times 3 a \cos \alpha$	A1	1.1b
	$\frac{9 M g}{25} *$	A1*	1.1b
		(3)	
3(b)	Resolve horizontally	M1	3.4
	$(\rightarrow) F=\frac{9 M g}{25} \sin \alpha$	A1	1.1b
	Resolve vertically	M1	3.4
	$(\uparrow) R+\frac{9 M g}{25} \cos \alpha=M g$	A1	1.1b
	Other possible equations: $\begin{aligned} & (\nwarrow), R \cos \alpha+\frac{9 M g}{25}=M g \cos \alpha+F \sin \alpha \\ & (\nearrow), M g \sin \alpha=F \cos \alpha+R \sin \alpha \\ & \mathrm{M}(C), M g .2 a \cos \alpha+F .5 a \sin \alpha=R .5 a \cos \alpha \\ & \mathrm{M}(G), \frac{9 M g}{25} \cdot 2 a+F .3 a \sin \alpha=R .3 a \cos \alpha \\ & \mathrm{M}(B), M g .3 a \cos \alpha+F \cdot 6 a \sin \alpha=R .6 a \cos \alpha+\frac{9 M g}{25} a \\ & \left(F=\frac{36 M g}{125}, R=\frac{98 M g}{125}\right) \end{aligned}$		
	$F=\mu R$ used	M1	3.4
	Eliminate R and F and solve for μ	M1	3.1b
	Alternative equations if they have at A : X horizontally and Y perpendicular to the rod. $\begin{aligned} & \left(\mathbb{)}, Y+\frac{9 M g}{25}=M g \cos \alpha+X \sin \alpha\right. \\ & (\nearrow), M g \sin \alpha=X \cos \alpha \\ & (\uparrow), \frac{9 M g}{25} \cos \alpha+Y \cos \alpha=M g \\ & (\rightarrow), Y \sin \alpha+\frac{9 M g}{25} \sin \alpha=X \end{aligned}$		

		$\mathrm{M}(\mathrm{C}), \mathrm{Mg} .2 a \cos \alpha+X .5 a \sin \alpha=Y .5 a$ $\mathrm{M}(G), \frac{9 M g}{25} \cdot 2 a+X .3 a \sin \alpha=Y .3 a$ $\mathrm{M}(B), M g .3 a \cos \alpha+X .6 a \sin \alpha=Y .6 a+\frac{9 M g}{25} a$ $\left(X=\frac{4 M g}{3}, Y=\frac{98 M g}{75}\right)$ Then $F=\mu R \quad$ becomes: $X-Y \sin \alpha=\mu Y \cos \alpha$ Eliminate X and Y and solve for μ		

Question	Scheme	Marks	AO
4(a)	Drum smooth, or no friction, (therefore reaction is perpendicular to the ramp)	B1	2.4
		(1)	
(b)	N.B. In (b), for a moments equation, if there is an extra $\sin \theta$ or $\cos \theta$ on a length, give M 0 for the equation e.g. $\mathrm{M}(A): 20 g \times 4 \cos \theta=5 N \sin \theta$ would be given M0A0		
	Possible equns$\begin{aligned} & (\nearrow): F \cos \theta+R \sin \theta=20 g \sin \theta \\ & (\nwarrow): N+R \cos \theta=20 g \cos \theta+F \sin \theta \\ & (\uparrow) R+N \cos \theta=20 g \\ & (\rightarrow): F=N \sin \theta \\ & \mathrm{M}(A): 20 g \times 4 \cos \theta=5 N \\ & \mathrm{M}(B): 3 N+R \times 8 \cos \theta=F \times 8 \sin \theta+20 g \times 4 \cos \theta \\ & \mathrm{M}(C): R \times 5 \cos \theta=F \times 5 \sin \theta+20 g \times \cos \theta \\ & \mathrm{M}(G): R \times 4 \cos \theta=F \times 4 \sin \theta+N \end{aligned}$	M1	3.3
		A1	1.1b
		M1	3.4
		A1	1.1b
		M1	3.4
		A1	1.1b
	(The values of the 3 unknowns are: $N=150.528 ; F=42.14784 ; R=51.49312)$		
	Alternative 1: using cpts along ramp (X) and perp to $\operatorname{ramp}(Y)$ Possible equations: $\begin{aligned} & (\nearrow): X=20 g \sin \theta \\ & (\nwarrow): Y+N=20 g \cos \theta \\ & (\uparrow): X \sin \theta+Y \cos \theta+N \cos \theta=20 g \\ & (\rightarrow): X \cos \theta=Y \sin \theta+N \sin \theta \\ & \mathrm{M}(A): 20 g \times 4 \cos \theta=5 N \\ & \mathrm{M}(B): 20 g \times 4 \cos \theta=8 Y+3 N \\ & \mathrm{M}(C): 20 g \times \cos \theta=5 Y \\ & \mathrm{M}(G): 4 Y=N \times 1 \end{aligned}$	M1	3.3
		A1	1.1b
		M1	3.4
		A1	1.1b
		M1	3.4
		A1	1.1b
	(The values of the 3 unknowns are: $N=150.528 ; X=54.88 ; Y=37.632)$		

Marks	Notes	
$\mathbf{4 a}$	B1	$\begin{array}{l}\text { Ignore any extra incorrect comments. } \\ \hline\end{array}$
		$\begin{array}{l}\text { Generally 3 independent equations required so at least one moments equation.: } \\ \text { M1A1M1A1M1A1. } \\ \text { More than 3 equations, give marks for the best 3. For each: } \\ \text { M1 All terms required. Must be dimensionally correct so if a length is missing } \\ \text { from a moments equation it's M0 Condone sin/cos confusion. } \\ \text { A1 For a correct equation (trig ratios do not need to be substituted and allow e.g. } \\ \text { cos(24/25) if they recover } \\ \text { Enter marks on ePEN in order in which equations appear. }\end{array}$
N.B. If reaction at C is not perpendicular to the ramp, can only score marks for		
M(C)		
Allow use of (μR) for F		

A1	Correct unsimplified equation
M1	All terms required. Must be dimensionally correct.
A1	Correct unsimplified equation
	N.B. They can find H and S using only TWO equations, the $1^{\text {st }}$ and $7^{\text {th }}$ in the list. Mark the better equation as M2A2 (-1 each error). Mark the second equation as M1A1
M1	Substitute for trig and solve for their two cpts. This is an independent mark but must use 3 equations (unless it's the special case when 2 is sufficient)
M1	Use Pythagoras to find magnitude (this is an independent M mark but must have found a value for F (or X) and a value for R (or Y)) OR a complete method to find magnitude e.g. cosine rule but must have found a value for H and a value for S
A1	Correct answer only
B1	Ignore reasons

Question	Scheme	Marks	AOs
5(a)	Moments about A (or any other complete method)	M1	3.3
	$T 2 a \sin =M g a+3 M g x$	A1	1.1b
	$T=\frac{M g(a+3 x)}{2 a \frac{3}{5}}=\frac{5 M g(3 x+a)}{6 a} * \quad \text { GIVEN ANSWER }$	A1*	2.1
		(3)	
(b)	$\frac{5 M g(3 x+a)}{6 a} \cos \quad=2 M g \quad$ OR $\quad 2 M g .2 a \tan \alpha=M g a+3 M g x$	M1	3.1b
	$x=\frac{2 a}{3}$	A1	2.2a
		(2)	
(c)	Resolve vertically OR Moments about B	M1	3.1 b
	$Y=3 M g+M g \quad \frac{5 M g\left(3 \cdot \frac{2 a}{3}+a\right)}{6 a} \sin \quad 2 a Y=M g a+3 M g\left(2 a-\frac{2 a}{3}\right)$ Or: $Y=3 M g+M g-\left(\frac{2 M g}{\cos \alpha}\right) \sin \alpha$	Alft	1.1b
	$Y=\frac{5 M g}{2}$ N.B. May use $R \sin \beta$ for Y and/or $R \cos \beta$ for X throughout	A1	1.1b
	$\tan \beta=\frac{Y}{X} \quad \text { or } \frac{R \sin \beta}{R \cos \beta}=\frac{\frac{5 M g}{2}}{2 M g}$	M1	3.4
	$=\frac{5}{4}$	A1	2.2a
		(5)	
(d)	$\frac{5 M g(3 x+a)}{6 a} \leq 5 M g$ and solve for x	M1	2.4
	$x \leq \frac{5 a}{3}$	A1	2.4
	For rope not to break, block can't be more than $\frac{5 a}{3}$ from A oe Or just: $\quad x \leq \frac{5 a}{3}$, if no incorrect statement seen. N.B. If the correct inequality is not found, their comment must mention 'distance from A '.	B1 A1	2.4
		(3)	
(13 marks)			

Notes:

(a)

M1: Using $\mathrm{M}(A)$, with usual rules, or any other complete method to obtain an equation in a, M, x and T only.
A1: Correct equation
A1*: Correct PRINTED ANSWER, correctly obtained, need to see $\sin \alpha=\frac{3}{5}$ used.
(b)

M1: Using an appropriate strategy to find x. e.g. Resolve horizontally with usual rules applying OR Moments about C. Must use the given expression for T.
A1: Accept $0.67 a$ or better
(c)

M1: Using a complete method to find $Y($ or $R \sin \beta)$ e.g. resolve vertically or Moments about B, with usual rules
A1 ft: Correct equation with their x substituted in T expression or using $T=\frac{2 M g}{\cos \alpha}$
A1: $\quad Y($ or $R \sin \beta)=\frac{5 M g}{2}$ or 2.5 Mg or 2.50 Mg
M1: For finding an equation in $\tan \beta$ only using $\tan \beta=\frac{Y}{X}$ or $\tan \beta=\frac{X}{Y}$
This is independent but must have found a Y.
A1: Accept $\frac{-5}{4}$ if it follows from their working.
(d)

M1: Allow $T=5 M g$ or $T<5 M g$ and solves for x, showing all necessary steps (M0 for $T>5 M g$)
A1: Allow $x=\frac{5 a}{3}$ or $x<\frac{5 a}{3}$. Accept $1.7 a$ or better.
B1: Treat as A1. For any appropriate equivalent fully correct comment or statement. E.g. maximum value of x is $\frac{5 a}{3}$

Question	Scheme	Marks	AOs
6(a)	Moments about A (or any other complete method)	M1	3.3
	$T \cos 30^{\circ} \times\left(1 \sin 30^{\circ}\right)=20 \mathrm{~g} \times 1.5$	A1	1.1.b
	$T \cos 30^{\circ} \times\left(1 \sin 30^{\circ}\right)=20 g \times 1.5$	A1	1.1.b
	$T=679$ or $680(\mathrm{~N})$	A1	1.1.b
		(4)	
(b)	Resolve horizontally	M1	3.1b
	$X=T \cos 60^{\circ}$	A1	1.1b
	Resolve vertically	M1	3.1 b
	$Y=T \cos 30^{\circ}-20 g$	A1	1.1b
	Use of $\tan =\frac{Y}{X}$ and sub for T	M1	3.4
	49° (or better), below horizontal, away from wall	A1	2.2a
		(6)	
(c)	Tension would increase as you move from D to C	B1	3.5a
	Since each point of the rope has to support the length of rope below it	B1	2.4
		(2)	
(d)	Take moments about $G, 1.5 Y=0$	M1	3.3
	$Y=0$ hence force acts horizontally.*	A1*	2.2a
		(2)	

(14 marks)

Notes:

(a)

M1: Correct overall strategy e.g. $\mathrm{M}(A)$, with usual rules, to give equation in T only
A1: (A1A0 one error) Condone 1 error
A1: (A0A0 two or more errors)
A1: Either 679 or 680 (since $g=9.8$ used)
(b)

M1: Using an appropriate strategy to set up first of two equations, with usual rules applying e.g. Resolve horiz. or $\mathrm{M}(C)$

A1: Correct equation in X only
M1: Using an appropriate strategy to set up second of two equations, with usual rules applying
e.g. Resolve vert. or $\mathrm{M}(D)$

A1: Correct equation in Y only

M1: Using the model and their X and Y
A1: 49 or better (since g cancels) Need all three bits of answer to score this mark or any other appropriate angle e.g 41° to wall, downwards and away from wall
(c)

B1: Appropriate equivalent comment
B1: Appropriate equivalent reason
(d)

M1: Using the model and any other complete method e.g. the three force condition for equilibrium A1*: Correct conclusion GIVEN ANSWER

Question	Scheme	Marks	AOs
7(a)	Take moments about A (or any other complete method to produce an equation in S, W and α only)	M1	3.3
	$W a \cos \alpha+7 W 2 a \cos \alpha=S 2 a \sin \alpha$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Use of $\tan \alpha=\frac{5}{2}$ to obtain S	M1	2.1
	$S=3 W^{*}$	A1*	2.2a
		(5)	
(b)	$R=8 \mathrm{~W}$	B1	3.4
	$F=\frac{1}{4} R(=2 W)$	M1	3.4
	$P_{\mathrm{MAX}}=3 W+F$ or $P_{\mathrm{MIN}}=3 W-F$	M1	3.4
	$P_{\mathrm{MAX}}=5 W$ or $P_{\mathrm{MIN}}=W$	A1	1.1 b
	$W \leq P \leq 5 W$	A1	2.5
		(5)	
(c)	$\mathrm{M}(A)$ shows that the reaction on the ladder at B is unchanged	M1	2.4
	also R increases (resolving vertically)	M1	2.4
	which increases max F available	M1	2.4
		(3)	
(13 marks)			

Question 7 continued
 Notes:

(a)
$1^{\text {st }}$ M1: for producing an equation in S, W and α only
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for an equation that is correct, or which has one error or omission
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for a fully correct equation
$\mathbf{2}^{\text {nd }} \mathbf{M} 1$: for use of $\tan \alpha=\frac{5}{2}$ to obtain S in terms of W only
$\mathbf{3}^{\text {rd }} \mathbf{A 1}$: for given answer $S=3 W$ correctly obtained
(b)

B1: \quad for $R=8 W$
$1^{\text {st }}$ M1: for use of $F=\frac{1}{4} R$
$\mathbf{2}^{\text {nd }} \mathbf{M 1}$: for either $P=(3 W+$ their $F)$ or $P=(3 W$ - their $F)$
$\mathbf{1}^{\text {st }}$ A1: for a correct max or min value for a correct range for P
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for a correct range for P
(c)
$\mathbf{1}^{\text {st }}$ M1: for showing, by taking moments about A, that the reaction at B is unchanged by the builder's assistant standing on the bottom of the ladder
$\mathbf{2}^{\text {nd }} \mathbf{M 1}$: for showing, by resolving vertically, that R increases as a result of the builder's assistant standing on the bottom of the ladder
$\mathbf{3}^{\text {rd }}$ M1: for concluding that this increases the limiting friction at A

Question Number	Scheme	Marks
8.(a)	$M(D),(150 g \times 1)+(60 g \times 2.5)=T c \times 4$	M1 A1
	$T c=75 \mathrm{~g}$ or 735 N or $740 \mathrm{~N} \quad$ Allow omission of N	A1 (3)
(b)	$M(B),(150 g \times 4.5)+(60 g \times 6)=T_{D} \times 3.5$	M1 A2
	$T_{D}=2900 \mathrm{~N}$ or $\frac{2070 \mathrm{~g}}{7} \quad$ Allow omission of N	A1 (4)
		(7)
	Notes for Qu 8	
	8(a) M1 for a complete method to find T_{c} (M0 if they assume $T_{C=} T_{D}$) i.e. for producing an equation in $T c$ only. Each equation used must have correct no. of terms and be dimensionally correct. First A1 for correct equation. Second A1 for any of the 3 possible answers Other possible equations: $(\uparrow), T c+T_{D}=60 g+150 g$ $M(A),(150 g \times 4.5)+(60 g \times 3)=(T C \times 1.5)+\left(T_{D} \times 5.5\right)$ $M(C), \quad(150 g \times 3)+(60 g \times 1.5)=T_{D} \times 4$ $M(B),(150 g \times 4.5)+(60 g \times 6)=(T c \times 7.5)+\left(T_{D} \times 3.5\right)$ $M(G),\left(T_{D} \times 1\right)+(60 g \times 1.5)=T_{C} \times 3$	
	8(b) N.B. (M0 if T_{C} is never equated to 0) M1 for a complete method to obtain an equation in T_{D} only. If they use more than one equation, each equation used must have correct no. of terms and be dimensionally correct. First and second A1 for a correct equation in T_{D} only. A1A0 if one error.Consistent omission of g is one error except in $M(D)$ where it's not an error. Third A1 for either answer Other possible equations: $(\uparrow), T_{D}=60 g+150 g+M g$ $M(A),(150 g \times 4.5)+(60 g \times 3)+9 M g=T_{D} \times 5.5$ $M(C),(150 g \times 3)+(60 g \times 1.5)+7.5 M g=T_{D} \times 4$ $M(D),(150 g \times 1)+(60 g \times 2.5)=3.5 M g$ $M(G),\left(T_{D} \times 1\right)+(60 g \times 1.5)=4.5 \mathrm{Mg}$	

Question Number	Scheme	Marks
9(a)	() $R+5 R=75 g+30 g+75 g$ $M(A) \quad 75 g x+75 g 2 x+30 g \times 3=5 R \times 4$ $x=\frac{34}{15}=2.3$ or better (N.B. Or another Moments Equation)	$\begin{array}{r} \text { M1 A2 } \\ \\ \text { M1 A2 } \\ \text { A1 } \\ \text { (M1 A2) } \end{array}$
(b)	uniform - mass is or acts at midpoint of plank; centre of mass is at middle of plank; weight acts at the middle of the plank, centre of gravity is at midpoint rod - plank does not bend, remains straight, is inflexible, is rigid	B1 B1 (2) 9
	Notes	
(a)	First M1 for either a vertical resolution (with correct of terms) or a moments equation (all terms dim correct and correct no. of terms) First A1 and Second A1 for a correct equation in R (or S where $S=5 R$) only or R and x only or S and x only. (1 each error, A1A0 or A0A0) Second M1 for a moments equation (all terms dim correct and correct no. of terms) Third A1 and Fourth A1 for a correct equation in R (or S where $S=5 R$) only or R and x only or S and x only. (1 each error, A1A0 or A0A0) Fifth A1 for $x={ }^{34} / 15$ oe or 2.3 (or better) (i) In a moments equation, if R and $5 R$ (or S and $0.2 S$) are interchanged, treat as 1 error. (ii) Ignore diagram if it helps the candidate. (iii) If an equation is correct but contains both R and S, or $S=5 R$ is never used, treat as 1 error. (iv) Full marks possible if all g 's omitted. (v) For inconsistent omission of g, penalise each omission.	
(b)	First B1 for first correct answer seen. Second B1 for the other answer, but only award this second mark if no extras given.	

Question Number	Scheme	Marks
10.	$d \mathrm{~m}$ G T 2 m$\quad B$	M1 A1 M1 A1 DM1 A1 A1 7
10.	Notes N.B. They may use a different variable, other than d, in their moments equations e.g. say they use $x=S G$ consistently, they can score all the marks for their two equations and if they eliminate x correctly, DM1 A1 (for M), and, if they found x correctly, then added 0.5 to obtain d, the other A1 also.	
	First M1 for moments about S (need correct no. of terms, so if they don't realise that the reaction at T is zero it's M0) to give an equation in d and M only.	
	First A1 for a correct first equation in d and M only. (A1 for both g's or no g 's but A0 if one g is missing)	
	N.B. They may use 2 equations and eliminate to obtain their equation in d and M only e.g. $M(A) 0.5 R_{S}=30 g d$ and $(\wedge) R_{S}=30 g+M g$ and then eliminate R_{S}. The M mark is only earned once they have produced an equation in d and M only, with all the usual rules about correct no. of terms etc applying to all the equations they use to obtain it.	
	Second M1 for moments about T (need correct no. of terms, so if they don't realise that the reaction at S is zero it's M0) to give an equation in d and M only	
	Second A1 for a correct second equation in d and Monly. (A1 for both g 's or no g's but A0 if one g is missing)	
	N.B. They may use 2 equations and eliminate to obtain their equation in d and M only e.g. $M(B) 2 R_{T}=30 \mathrm{~g}(6-d)$ and $(\wedge) R_{T}=30 g+M g$ and then eliminate R_{T}. The M mark is only earned once they have produced an equation in d and M only, with all the usual rules about correct no. of terms etc applying to all the equations they use to obtain it.	

	Third M1, dependent on $1^{\text {st }}$ and $2^{\text {nd }} \mathrm{M}$ marks, for eliminating either M or d to produce an equation in either d only or M only.	
	Third A1 for $(d=) 1.2$ oe (N.B. Neither this A mark nor the next one can be awarded if there are any errors in the equations.) Beware: If one g is missing consistently from each of their equations, they can obtain $d=1.2$ but award A0	
	Fourth A1 for ($M=$) 42	
	Scenario 1: Below are the possible equations, (if they don't use $M(S)$), any two of which can be used, by eliminating R_{S}, to obtain an equation in d and M only, for the first M1. N.B. If R_{T} appears in any of these and doesn't subsequently become zero then it's M0.	
	$M(A) \quad 0.5 R_{S}=30 \mathrm{gd}$	
	$M(B) \quad 5.5 R_{S}=30 g(6-d)+6 M g$	
	$M(T) \quad 3.5 R_{S}=30 g(4-d)+4 M g$	
	(^) $\quad R_{S}=30 g+M g$	
	Scenario 2: Below are the possible equations, (if they don't use $M(T)$), any two of which can be used, by eliminating R_{T}, to obtain an equation in d and M only, for the second M1. N.B. If R_{S} appears in any of these and doesn't subsequently become zero then it's M0.	
	$M(A) \quad 4 R_{T}=30 g d+6 M g$	
	$M(B) \quad 2 R_{T}=30 \mathrm{~g}(6-d)$	
	$M(S) \quad 3.5 R_{T}=30 g(d-0.5)+5.5 M g$	
	(^) $\quad R_{T}=30 g+M g$	

Question	Scheme	Marks
11(a)	$\begin{align*} & T_{A}+T_{C}=85 \mathrm{~g} \\ & \text { OR } M(A), \quad 25 \mathrm{~g} \times 2.5+60 \mathrm{~g} \times 5=4.5 \times T_{C} \\ & \text { OR } M(C), \quad T_{A} \times 4.5+60 \mathrm{~g} \times 0.5=25 \mathrm{~g} \times 2 \\ & \text { OR } M(B), T_{A} \times 5+T_{C} \times 0.5=25 \mathrm{~g} \times 2.5 \\ & \text { OR } M(G), T_{A} \times 2.5+60 \mathrm{~g} \times 2.5=2 \times T_{C} \\ & T_{A}=\frac{40 \mathrm{~g}}{9}=44 \mathrm{~N} \text { or } 43.6 \mathrm{~N} ; T_{C}=\frac{725 \mathrm{~g}}{9}=790 \mathrm{~N} \text { or } 789 \mathrm{~N} \tag{6} \end{align*}$	M1 A1 M1 A1 A1; A1
(b)	$\mathrm{M}(C), 25 g \times 2=\mathrm{Mg} \times 0.5$	M1 A1
(i)	$M=100$	A1
(ii)	$\begin{aligned} & T_{c}=25 g+100 g \\ & T_{c}=125 g(1200 \text { or } 1230) \mathrm{N} \end{aligned}$	M1 A1 B1 (6) 12
	Notes	
11(a)	First M1 for a moments or vertical resolution equation, with correct no. of terms and dimensionally correct. First A1 for a correct equation. Second M1 for a moments equation, with correct no. of terms and dimensionally correct. Second A1 for a correct equation. Third A1 for $44(\mathrm{~N})$ or $43.6(\mathrm{~N})$ or $40 \mathrm{~g} / 9$ Fourth A1 for $790(\mathrm{~N})$ or $789(\mathrm{~N})$ or $725 \mathrm{~g} / 9$ Deduct 1 mark for inexact multiples of g N.B. If they assume that both tensions are the same, can only score max M1 in (a) for $M(A)$ or $M(C)$. If a vertical resolution is used, please give marks for this equation FIRST. If not, enter marks for each moments equation in the order in which they appear.	
11(b)	SCHEME CHANGE B1 BECOMES THE FOURTH A1 First M1 for a moments equation with $T_{A}=0$ First A1 for a correct equation Second A1 for $M=100$ Second M1 for a(nother) moments or vertical resolution equation with $T_{A}=0$ Third A1 for a correct equation Fourth A1 (B1) for $T_{C}=125 \mathrm{~g}$ or $1230(\mathrm{~N})$ or $1200(\mathrm{~N})$ N.B. Some candidates may need to solve 2 simult. equations in M and T_{C} and so will earn the 'equation' marks before they earn Second and Fourth A (B) marks. If a vertical resolution is used, please give marks for this equation SECOND. If not, enter marks for each moments equation in the order	

| $\underline{\text { in which they appear. }}$ | |
| :--- | :--- | :--- |
| The possible equations are: | |
| $T_{\mathrm{C}}=25 g+M g$ | |
| $M(C), 25 g \times 2=M g \times 0.5$ | |
| $M(A), 25 g \times 2.5+5 M g=4.5 T_{\mathrm{C}}$ | |
| $M(B), 25 g \times 2.5=T_{\mathrm{C}} \times 0.5$ | |
| $M(G), T_{\mathrm{C}} \times 2=M g \times 2.5$ | |
| Any two of these can each earn M1A1 (M0 if incorrect no. of terms) | |
| Then Second A1 for $M=100$ | |
| And Fourth A1 (B1) for $T_{\mathrm{C}}=125 g$ or 1230 or 1200 | |
| N.B. No marks in (b) if they use any answers from (a) or $M=60$ | |\quad.

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Mar \\
\hline 12a \& \begin{tabular}{l}
Resolving vertically: \(T+2 T(=3 T)=W\) \\
Moments about \(A\) : \(2 W=2 T \times d\) \\
Substitute and solve: \(2 W=2 \frac{W}{3} d\)
\[
d=3
\]
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
M1A1 \\
DM1 \\
A1
\end{tabular} \\
\hline b \& \begin{tabular}{l}
Resolving vertically: \(T+4 T=W+k W \quad(5 T=W(1+k))\) \\
Moments about A: \(2 W+4 k W=3 \times 4 T\) \\
Substitute and solve:
\[
\begin{array}{rlr}
2 W+4 k W \& =\frac{12}{5} W(1+k) \& \\
2+4 k \& =\frac{12}{5}+\frac{12}{5} k \& \\
\frac{8}{5} \& k=\frac{2}{5}, \quad k=\frac{1}{4}
\end{array}
\]
\end{tabular} \& M1A1 ft
M1A1 ft
DM1

A1

\hline \& \&

\hline \multicolumn{3}{|c|}{Notes for Question 12}

\hline \multicolumn{3}{|l|}{| N.B. In moments equations, for the M mark, all terms must be force x distance but take care in the cases when the distance is 1 . |
| :--- |
| Question 12(a) |
| N.B. If $W g$ is used, mark as a misread. If T and $2 T$ are reversed, mark as per scheme NOT as a misread. |
| First M1 for an equation in W and T and possibly d (either resolve vertically or moments about any point other than the mid-pt), with usual rules. |
| First A1 for a correct equation. |
| Second M1 for an equation in W and T and possibly d (either resolve vertically or moments about any point other than the mid-pt), with usual rules. |
| Second A1 for a correct equation. |
| Third M1, dependent on first and second M marks, for solving for d |
| Third A1 for $d=3$ cso |
| N.B. If a single equation is used (see below) by taking moments about the mid-point of the rod, $2 T=2 T(d-2)$, this scores M2A2 (-1 each error) |
| Third M1, dependent on first and second M marks, for solving for d |
| Third A1 for $d=3$ cso |
| Question 12(b) |
| N.B. If $W g$ and $k W g$ are used, mark as a misread. |
| If they use any results from (a), can score max M1A1 in (b) for one equation. |
| If T and $4 T$ are reversed, mark as per scheme NOT as a misread. |
| First M1 for an equation in W and a tension T_{1} and possibly their d or their d and k (either resolve vertically or moments about any point), with usual rules. |
| First A1 ft on their d, for a correct equation. |
| Second M1 for an equation in W and the same tension T_{1} and possibly their d or their d and k (either resolve vertically or moments about any point), with usual rules. |
| Second A1 ft on their d, for a correct equation. |
| Third M1, dependent on first and second M marks, for solving to give a numerical value of k Third A1 for $k=1 / 4$ oe cso |}

\hline
\end{tabular}

Question Number	Scheme	Marks
13a	Resolving vertically: $T+2 T(=3 T)=W$ Moments about B: $2 \times 2 T=(d-1) W$ Substitute and solve for $\mathrm{d}: 2 \times 2 T=(d-1) 3 T$ $d=\frac{7}{3}(\mathrm{~m})$	M1A1 M1A1 DM1 A1 (6)
13b	Moments about C: $\begin{aligned} & \left(T_{B} \times 2\right)+(k W \times 1)=W \times \frac{2}{3} \\ & T_{B}=W \frac{(2-3 k)}{6} \quad \text { or equivalent } \end{aligned}$	M1A1 A1 (3)
13c	solving $T_{B} \geq 0$ or $T_{B}>0$ for k. $0<k \leq 2 / 3$ or $0<k<2 / 3$ only	M1 A1 (2)
		[11]

Notes for Question 13

Question 13(a)

N.B. If $W g$ is used, mark as a misread.

First M1 for an equation in W and T and possibly d (either resolve vertically or moments about any point other than the centre of mass of the rod), with usual rules.
First A1 for a correct equation.
Second M1 for an equation in W and T and possibly d (either resolve vertically or moments about any point other than the centre of mass of the rod), with usual rules.
Second A1 for a correct equation.
N.B. The above 4 marks can be scored if their d is measured from a different point

Third M1, dependent on first and second M marks, for solving for d
Third A1 for $d=7 / 3,2.3(\mathrm{~m})$ or better

N.B. Alternative

If a single equation is used (see below) by taking moments about the centre of mass of the rod, $2 T$ (3 $-d)=T(d-1)$, this scores M2A2 (-1 each error)
Third M1, dependent on first and second M marks, for solving for d
Third A1 for $d=7 / 3$

Question 13(b)

First M 1 for producing an equation in T_{B} and W only, either by taking moments about C, or using two equations and eliminating
First A1 for a correct equation
Second A1 for $W(2-3 k) / 6$ oe.
N.B. M0 if they use any information about the tension(s) from part (a).

Question 13(c)

M1 for solving $T_{B} \geq 0$ or $T_{B}>0$ for k.
A1 for $0<k \leq 2 / 3$ or $0<k<2 / 3$ only.
N.B.
$T=0=>k=2 / 3$ then answer is M0.
If they also solve $T_{C} \geq 0$ or $T_{C}>0$, can still score M1 and possibly A1.

Question Number	Scheme	Marks
$14 .$ (a)		
	$\mathrm{M}(P), \quad 50 \mathrm{~g} \times 2=\mathrm{Mg} \times(\mathrm{x}-2)$	M1 A1
	$\mathrm{M}(Q), \quad 50 \mathrm{~g} \times 3=\mathrm{Mg} \times(12-x)$	M1 A1
(i)	$M=25(\mathrm{~kg})$	DM1 A1
(ii)	$x=6$ (m)	DM1 A1
		(8)
(b)		
	$(\uparrow) R+R=25 g+50 g$	M1 A1 ft
	$\mathrm{M}(A), 2 R+12 R=25 g \times 6+50 g \times A X$	M1 A1 ft
	$A X=7.5$ (m)	DM1 A1
		(6)
		[14]

Notes for Question 14		
Q14(a)	First M1 for moments about P equation with usual rules (or moments about a different point AND vertical resolution and R then eliminated) (M0 if non-zero reaction at Q) Second M1 for moments about Q equation with usual rules (or moments about a different point AND vertical resolution) (M0 if non-zero reaction at P) Second A1 for a correct equation in M and same unknown. Third M1, dependent on first and second M marks, for solving for M Third A1 for 25 (kg) Fourth M1, dependent on first and second M marks, for solving for x Fourth A1 for 6 (m) N.B. No marks available if rod is assumed to be uniform but can score max $5 / 6$ in part (b), provided they have found values for M and x to f.t. on. If they have just invented values for M and x in part (a), they can score the M marks in part (b) but not the A marks.	
Q14(b)	First M1 for vertical resolution or a moments equation, with usual rules. First A1 $\mathbf{f t}$ on their M and x from part (a), for a correct equation. (must have equal reactions in vertical resolution to earn this mark) Second M1 for a moments equation with usual rules. Second A1 ft on their M and x from part (a), for a correct equation in R and same unknown length. Third M1, dependent on first and second M marks, for solving for $A X$ (not their unknown length) with $A X \leq 15$ Third A1 for $A X=7.5$ (m) N.B. If a single equation is used (see below), equating the sum of the moments of the child and the weight about P to the sum of the moments of the child and the weight about Q, this can score M2 A2 $\mathbf{f t}$ on their M and x from part (a), provided the equation is in one unknown. Any method error, loses both M marks. e.g. $25 g .4+50 g(x-2)=25 g .6+50 g(12-x)$ oe.	

Notes for Question 15

$\mathbf{1 5 (a)}$	In both parts consistent omission of g's can score all the marks. First M1 for vertical resolution or a moments equation, with usual rules. (allow R and N at this stage) First A1 for a correct equation (with $N=2 R$ substituted) Second M1 for a moments equation in R and one unknown length with usual rules. Second A1 for a correct equation. Third M1, dependent on first and second M marks, for solving for x Third A1 for $x=0.6$. S.C. Moments about centre of rod: R x $0.8=2 R(1-x) \quad$ M2 A2	
	B1 for S and 4S placed correctly. First M1 for vertical resolution or a moments equation, with usual rules. (allow S and 4S reversed) First A1 for a correct equation. Second M1 for a moments equation in S (and m) with usual rules. Second A1 for a correct equation. Third M1, dependent on first and second M marks, for eliminating S to give an equation in m only. Third A1 for m = 400/17 oe or 24 or better. N.B. SC If they use the reaction(s) found in part (a) in their equations, can score max B1M1A0M1A0DM0A0.	

Question Number	Scheme	Marks
16.(a)	$\begin{aligned} M(D), \quad 8 R & =(80 g \times 6)+(200 g \times 4) \\ R & =160 g, 1600,1570 \end{aligned}$	M1 A1 A1 (3)
(b)	$\begin{aligned} (\uparrow), \quad 2 S & =80 g+200 g \\ S & =140 g, 1400,1370 \end{aligned}$	$\mathrm{M}^{\text {M1 }} \text { A1 (2) }$
(c)	$\begin{gathered} M(B), S x+(S \times 10)=(80 g \times 8)+(200 g \times 6) \\ 140 x+1400=640+1200 \\ 140 x=440 \end{gathered}$	M1 A2
	$x=\frac{22}{7}$	$\begin{array}{r} \text { A1 (4) } \\ 9 \end{array}$

Question 17(a)

First M1 for a complete method for finding R_{Q}, either by resolving vertically, or taking moments twice, with usual criteria (allow M1 even if $R_{P}=2 R_{Q}$ not substituted)
First A1 for a correct equation in either R_{Q} or R_{P} ONLY.
Second A1 for 1.5 g or 14.7 or 15 (A0 for a negative answer)

Question 17(b)

First M1 for taking moments about any point, with usual criteria.
A2 ft for a correct equation (A1A0 one error, A0A0 for two or more errors, ignoring consistent omission of g 's) in terms of X and their x (which may not be $A G$ at this stage)
Third A1 for $A G=4 / 3,1.3,1.33, \ldots$. (any number of decimal places, since g cancels) need ' $A G=$ ' or x marked on diagram
N.B. if $R_{Q}=2 R_{P}$ throughout, mark as a misread as follows:
(a) M1A1A0 (resolution method) (b) M1A0A1A1, assuming all work follows through correctly..

Question Number	Scheme	Marks
19. (a)		
(i) (ii)	EITHER $\quad \mathrm{M}(R), 8 X+2 X=40 \mathrm{~g} \times 6+20 \mathrm{~g} x 4$ solving for $X, X=32 \mathrm{~g}=314$ or 310 N (\uparrow) $X+X=40 \mathrm{~g}+20 \mathrm{~g}+M \mathrm{~g}$ (or another moments equation) solving for $M, M=4$	M1 A2 M1 A1 M1 A2 M1 A1
(i) (ii)	OR $\quad \mathrm{M}(\mathrm{P}), 6 \mathrm{X}=40 \mathrm{~g} x 2+20 \mathrm{~g} \mathrm{x} 4+\mathrm{Mg} \mathrm{x} 8$ solving for $X, X=32 \mathrm{~g}=314$ or 310 N (\uparrow) $X+X=40 \mathrm{~g}+20 \mathrm{~g}+M \mathrm{~g}$ (or another moments equation)	M1 A2 M1 A1 M1 A2
(ii)	solving for $M, M=4$	$\begin{array}{ll} \text { M1 A1 } \\ & (10) \\ \hline \end{array}$
(b)	Masses concentrated at a point or weights act at a point	B1 (1) 11

Question Number	Scheme	Marks
$20 .$ (a)	Taking moments about B: $5 \times \mathrm{R}_{C}=20 \mathrm{~g} \mathrm{x} 3$ $R_{C}=12 \mathrm{~g}$ or $60 \mathrm{~g} / 5$ or 118 or 120 Resolving vertically: $\begin{aligned} R_{C}+R_{B} & =20 \mathrm{~g} \\ R_{B} & =8 \mathrm{~g} \text { or } 78.4 \text { or } 78 \end{aligned}$	M1A1 A1 M1 A1 (5)
(b)	Resolving vertically: 50g = R + R Taking moments about B : $\begin{aligned} 5 \times 25 g & =3 \times 20 g+(6-x) \times 30 g \\ 30 x & =115 \\ x & =3.8 \text { or better or } 23 / 6 \text { oe } \end{aligned}$	B1 M1 A1 A1 A1 (5) [10]

Question Number	Scheme	Marks
23 (a)	$M(Q), \quad 50 g(1.4-x)+20 g \times 0.7=T_{P} \times 1.4$	M1 A1
	$T_{P}=588-350 x \quad$ Printed answer	A1 (3)
	$M(P), 50 \mathrm{gx}+20 \mathrm{gx} 0.7=T_{Q} \times 1.4 \quad$ or $\quad \mathrm{R}(\uparrow), T_{P}+T_{Q}=70 \mathrm{~g}$	M1 A1
	$T_{Q}=98+350 x$	A1 (3)
(c)	Since $0<x<1.4, \quad 98<T_{P}<588$ and $98<T_{Q}<588$	M1 A1 A1 (3)
(d)	$98+350 x=3(588-350 x)$	M1
	$x=1.19$	$\begin{array}{r} \text { DM1 A1 (3) } \\ {[12]} \end{array}$

Q	Scheme	Marks	Notes
27			
	$\begin{aligned} & \mathrm{M}(A): 2 a T=m g a \cos \theta \quad\left(T=\frac{1}{2} m g \cos \theta\right) \\ & \mathrm{M}(B): m g a \cos \theta+F r \times 2 a \sin \theta=R \times 2 a \cos \theta \end{aligned}$	M1A1	First equation Need all terms. Condone sign errors and sin/cos confusion
	Resolve $\leftrightarrow: \operatorname{Fr}=T \sin \theta\left(=\frac{1}{2} m g \cos \theta \sin \theta\right)$	M1A1	Second equation Need all terms. Condone sign errors and sin/cos confusion
	$\downarrow: R+T \cos \theta=m g$	M1A1	Third equation Need all terms. Condone sign errors and \sin / \cos confusion
	Use $F r=\mu R: ~ \mu R=T \sin \theta$	B1	Condone correct inequality
	Form equation in μ and θ : $\begin{aligned} & R=m g-\frac{1}{2} m g \cos \theta \cos \theta \\ & \quad \text { and } \quad \mu R=\frac{1}{2} m g \cos \theta \sin \theta \Rightarrow \end{aligned}$	DM1	Eliminate T and R Dependent on first 3 M marks
	$\mu=\frac{\frac{1}{2} m g \cos \theta \sin \theta}{m g-\frac{1}{2} m g \cos \theta \cos \theta}$	DM1	Solve for μ Dependent on previous M
	$\mu=\frac{\cos \theta \sin \theta}{2-\cos ^{2} \theta}$	A1	Obtain given answer from correct working Must explain if inequality becomes equality
		[10]	

Alt	Moments (about B): $m g a \cos \theta+F r \times 2 a \sin \theta=R \times 2 a \cos \theta$	M1	
		A1	Correct unsimplified
	Resolving (parallel to rod): $F r \cos \theta+R \sin \theta=m g \sin \theta$	M2	
		A2	-1 each error
	$\begin{aligned} & \text { Use of } F r=\mu R: \\ & m g \cos \theta+\mu R \times 2 \sin \theta=R \times 2 \cos \theta \\ & \mu R \cos \theta+R \sin \theta=m g \sin \theta \end{aligned}$	B1	
	Form equation in μ and θ : $\frac{m g \sin \theta}{m g \cos \theta}=\frac{\mu R \cos \theta+R \sin \theta}{2 R \cos \theta-2 \mu R \sin \theta}$ $\frac{\sin \theta}{\cos \theta}=\frac{\mu \cos \theta+\sin \theta}{2 \cos \theta-2 \mu \sin \theta}$	DM1	
	Solve for μ : $2 \cos \theta \sin \theta-2 \mu \sin ^{2} \theta=\mu \cos ^{2} \theta+\cos \theta \sin \theta$	DM1	
	$\mu=\frac{\sin \theta \cos \theta}{\cos ^{2} \theta+2 \sin ^{2} \theta}=\frac{\sin \theta \cos \theta}{2-\cos ^{2} \theta}$	A1	Obtain given answer from correct working
	NB for alternatives using moments and resolving: e.g. Resolve $\leftrightarrow: F r=T \sin \theta$ M (centre): $a T=a \cos \theta R-a \sin \theta F r$		First equation M1A1 Sufficient equations to solve M2A2

Alt			3 concurrent forces
	$\tan (\theta+\alpha)=\frac{\tan \theta+\tan \alpha}{1-\tan \theta \tan \alpha}$	M1A1	
	$\tan \theta=\frac{a}{2 a \tan \alpha} \Rightarrow \tan \alpha=\frac{1}{2 \tan \theta}$	M1	
	$\begin{aligned} \tan (\theta+\alpha) & =\frac{\tan \theta+\frac{1}{2 \tan \theta}}{1-\tan \theta \times \frac{1}{2 \tan \theta}} \\ & =2\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{2 \sin \theta}\right) \end{aligned}$	$\begin{aligned} & \text { M1A1 } \\ & \text { A1 } \end{aligned}$	
	$\begin{aligned} & F=\mu R \Rightarrow \\ & \quad \mu=\frac{1}{\tan (\theta+\alpha)} \end{aligned}$	B1 DM1	
	$=\frac{1}{2}\left(\frac{2 \sin \theta \cos \theta}{2 \sin ^{2} \theta+\cos ^{2} \theta}\right)=\frac{\cos \theta \sin \theta}{2-\cos ^{2} \theta}$	$\begin{aligned} & \text { DM1 } \\ & \text { A1 } \end{aligned}$	Obtain given answer from correct working
		(10)	

Q.	Scheme	Marks	Notes
$\mathbf{2 8 a}$			

Q.	Scheme	Marks	Notes
28b	$\begin{array}{ll} \text { Resolve } \uparrow: \quad & T \cos \theta+R=5 g \\ & R+T \sin (\beta-\alpha)=5 g \end{array}$	M1	Need all terms. Condone sin/cos confusion and sign error(s).
		A1	Correct in R or their R
	$\begin{array}{ll} \text { Resolve } \leftrightarrow: & T \sin \theta=F(=28) \\ & F\left(=\frac{2}{3} R\right)=T \cos (\beta-\alpha) \end{array}$	M1	Need both terms. Condone sin/cos confusion
		A1	Correct in R or their R
	Solve simultaneous equations for $\beta-\alpha$		
	$\tan (\beta-\alpha)=4, \beta=50.9^{\circ} \quad\left(51^{\circ}\right)$	A1	cso . Max 3 s.f.
		(5)	
Alt 28b	$\mathrm{M}(B): 7 \times T \sin \beta=5 \mathrm{~g} \cos \alpha \times 4$	M1	Moments equation. Dimensionally correct. Condone sin/cos confusion and sign error(s).
	$\left(T \sin \beta=\frac{16}{7} g\right)$	A1	
	OR: resolve perpendicular to the rod: $T \sin \beta+R \cos \alpha=5 g \cos \alpha+\frac{2}{3} R \sin \alpha$	$\begin{aligned} & \text { (M1) } \\ & \text { (A1) } \end{aligned}$	
	Resolve parallel to rod: $\begin{aligned} & T \cos \beta+5 g \sin \alpha=F \cos \alpha+R \sin \alpha \\ & \left(=\frac{2}{3} R \cos \alpha+R \sin \alpha\right) \end{aligned}$	M1	All terms needed. Condone $\sin /$ cos confusion and sign error(s).
	$\left(T \cos \beta=\frac{13}{7} g\right)$	A1	
	Solve simultaneous equations for β		
	$\tan \beta=\frac{16}{13}, \beta=50.9^{\circ} \quad\left(51^{\circ}\right)$	A1	cso. Max 3 s.f.
		(5)	
		[11]	

Q	Scheme	Marks	Notes
29a	$\mathrm{M}(A): d \cos \theta \times 5 g=4 P$	M1	Terms must be dimensionally correct. Condone trig confusion
		A1	
	Resolving horizontally: $P \sin \theta=F$	B1	
	Resolving vertically: $P \cos \theta+R=5 g$	M1	Requires all 3 terms. Condone trig confusion and sign errors
		A1	Correct equation
		DM1	Substitute for P to find R or F Dependent on both previous M marks
	$R=5 g-\frac{5 g d \cos ^{2} \theta}{4}$	A1	One force correct. Accept equivalent forms e.g. $R=\frac{20 g-5 g d+20 g \tan ^{2} \theta}{4\left(1+\tan ^{2} \theta\right)}$
	$F=\frac{5 g d \cos \theta \sin \theta}{4}$	A1	Both forces correct. Accept equivalent forms e.g. $F=\frac{5 g d \tan \theta}{4 \sec ^{2} \theta}$
		(8)	
29a alt	$\mathrm{M}(B)$: $5 g \cos \theta \times(4-d)+F \sin \theta \times 4=R \cos \theta \times 4$	M1	Needs all three terms. Terms must be dimensionally correct. Condone trig confusion
		A1	At most one error
	Resolve parallel to the rod: $5 g \sin \theta=R \sin \theta+F \cos \theta$	M1	Requires all 3 terms. Condone trig confusion and sign errors
		B1	At most one error
		A1	Correct equation
	$\Rightarrow R=5 g-\frac{F \cos \theta}{\sin \theta}$		
	$\begin{aligned} 5 g \cos \theta & \times(4-d)+F \sin \theta \times 4 \\ & =4 \cos \theta\left(5 g-\frac{F \cos \theta}{\sin \theta}\right) \end{aligned}$	DM1	Eliminate one variable to find F or R Dependent on both previous M marks
	$\begin{aligned} & 4 F\left(\sin \theta+\frac{\cos ^{2} \theta}{\sin \theta}\right) \\ & \quad=20 g \cos \theta-20 g \cos \theta+5 g d \cos \theta \end{aligned}$		
	$F=\frac{5 g d \cos \theta \sin \theta}{4}$	A1	One force correct
	$R=5 g-\frac{5 g d \cos ^{2} \theta}{4}$	A1	Both forces correct
			See next page for part (b)

29b	$\mu=\frac{\frac{5 g d \cos \theta \sin \theta}{4}}{5 g-\frac{5 g d \cos ^{2} \theta}{4}}$	M1	Use of $F=\mu R$
	$\frac{1}{2}\left(5 g-\frac{5 g d \cos ^{2} \theta}{4}\right)=\frac{5 g d \cos \theta \sin \theta}{4}$	A1	$\left(4-d \cos ^{2} \theta=2 d \cos \theta \sin \theta\right)$
	$4 \times 169=120 d+144 d$	M1	Use $\tan \theta=\frac{5}{12}$ and solve for d
	$d=\frac{169}{66}$	A1	($=2.6 \mathrm{~m}$ or better)
		(4)	
29balt	$F=5 g d \times \frac{12}{13} \times \frac{5}{13} \times \frac{1}{4}\left(=\frac{75 g d}{169}\right)$	M1	Use $\tan \theta=\frac{5}{12}$
	$R=5 g-\frac{5 g d}{4} \times \frac{144}{169}$	A1	Both unsimplified expressions
	$75 g d=\frac{1}{2}(5 \times 169 g-180 g d)$	M1	Use of $F=\mu R$ and solve for d
	$150 g d+180 g d=845 g, d=\frac{169}{66}$	A1	($=2.6 \mathrm{~m}$ or better)
		(4)	
29balt	$R=5 g-\frac{12}{13} P, F=\frac{5}{13} P$	M1	Substitute trig in their equations from resolving.
	$\frac{5}{13} P=\frac{1}{2}\left(5 g-\frac{12}{13} P\right)$	M1	use $F=\mu R$ and solve for d
	$\Rightarrow P=\frac{65}{22} \mathrm{~g}$	A1	
	$d=\frac{4 P}{5 g \cos \theta}=\frac{169}{66}$	A1	
		[12]	

Question Number	Scheme		Marks
30			

Alt 1	Resolve horizontally or vertically:	M1	Allow without friction $=\mu R$
	$\mu R=N$ or $W=R+\frac{1}{3} N$	A1	With coefficient(s) of friction
	$M(A): 2 l N \sin \theta+2 l \frac{N}{3} \cos \theta=W l \cos \theta$ $M(B): 2 l \cos \theta R=W l \cos \theta+\mu R 2 l \sin \theta$	M1	Take moments about A or B. All terms required but condone sign errors and sin/cos confusion. Terms must be resolved.
	$2 l N \sin \theta+2 l \frac{N}{3} \cos \theta=2 l \cos \theta R-\mu R 2 l \sin \theta$	-1 each error, Could be in terms of $F s$. -1 if $W g$ used. Mark the equation, not what they have called it. Any Friction force used should be acting in the right direction. For this method they need two moments equations - allows the marks for their best equation.	
	Use of $\tan \theta: 2 \mu \times \frac{5}{3}+\frac{2}{3} \mu=2-2 \mu \times \frac{5}{3}$	DM1	Use two moments equations to eliminate W Dependent on the moments equation
	Solve for $\mu:\left(\frac{20}{3}+\frac{2}{3}\right) \mu=2$,	M1	Substitute for the trig ratios
	$\mu=\frac{3}{11}(\simeq 0.273)$	DM1	Dependent on the moments equation
		0.27 or better	

Question Number	Scheme	Marks	Notes
31(a)	Resolving vertically: $Y+P \cos \theta=W$ Moments about A : $W l \cos \theta=2 l P$ $P=\frac{W \cos \theta}{2} \Rightarrow Y=W-\frac{W \cos ^{2} \theta}{2}=\frac{W}{2}\left(2-\cos ^{2} \theta\right) \quad * *$	M1 A1 M1 A1 DM1 A1	Needs all 3 terms. Condone sign errors and sin/cos confusion. Condone Wg Terms need to be of the correct structure, but condone l implied if not seen. Substitute for P to obtain simplified Y Requires both preceding M marks Obtain given result correctly.
	NB $W+Y=P \cos \theta$ with correct conclusion is possible		
	They need to find two independent equations that do not include X . If they have equations involving X they need to attempt to eliminate X before they score any marks		
(b)	$\begin{aligned} & \theta=45^{\circ} \Rightarrow Y=\frac{3 W}{4} \\ & X=P \sin 45 \\ & \quad=\frac{W \cos 45}{2} \cdot \sin 45\left(=\frac{W}{4}\right) \end{aligned}$ Resultant at $A=\frac{W}{4} \sqrt{3^{2}+1^{2}}=\frac{W \sqrt{10}}{4} \quad(0.79 W)$	B1	Resolving horizontally. Accept in terms of θ. Express X in terms of W. Accept in terms of θ. Requires preceding M mark. Correct unsimplified but substituted.
		M1	
		DM1	
		A1	
		DM1	Use of Pythagoras with X, Y in terms of W only. Dependent on the first M1
		A1 (6)	Or equivalent (0.79 W or better)
Alternative moments equations: about the centre $P l+X \sin \theta l=y \cos \theta l$			
About the point where the lines of action of P and X intersect $Y \times \frac{2 l}{\cos \theta}=W\left(\frac{2 l}{\cos \theta}-l \cos \theta\right)$			

Question Number	Scheme	Marks	Notes
32.			NB As the rod is not uniform, the use of moments equations is not helpful in part (a).
(a)	$\begin{aligned} & R=F \\ & S+Q=m g \\ & Q=\frac{2}{3} R, \quad F=\frac{1}{4} S \end{aligned}$	B1 B1 B1	Re lve horizontally Resolve vertically (requires Q acting upwards) Use both coefficients of friction
	$Q=\frac{2}{3} R=\frac{2}{3} \times \frac{1}{4} S, \quad S+\frac{1}{6} S=m g, S=\frac{6}{7} m g$	M1 A1 (5)	Solve to find S in terms of $m \& g$. (Can be scored if Q is acting downwards)
(b)	$\mathrm{M}(A) m g \times x \cos 60=Q \times 2 l \cos 60+R \times 2 l \sin 60$ $\mathrm{M}(B) m g(2 l-x) \cos 60+F \times 2 l \sin 60=S \times 2 l \cos 60$	M1	Moments equation - must include all terms. Condone sign errors and sin/cos confusion
	M (c of m) $S x \cos 60=F x \sin 60+R(2 l-x) \sin 60+Q(2 l-x) \cos 60$	A2	Correct unsimplified equation (for their S.) -1 each error
	$\begin{aligned} & m g x \cos 60=\frac{1}{6} \times \frac{6}{7} m g \times 2 l \cos 60+\frac{1}{4} \times \frac{6}{7} m g \times 2 l \sin 60 \\ & \frac{1}{2} x=\frac{1}{7} \times 2 l \times \frac{1}{2}+\frac{3}{14} \times l \sqrt{3} \end{aligned}$	DM1	Form an equation in x. Depends on the preceding M
	$A G=x=1.028 \ldots . . . l \quad x=1.03 l$	A1	1.031 or better $\frac{l(2+3 \sqrt{3})}{7}$

Question Number	Scheme	Marks	Notes
33a	Moments about A: $\begin{aligned} & b F=a \cos \theta m g+2 a \cos \theta m g(=3 a \cos \theta m g) \\ & F=\frac{3 a m g \cos \theta}{b} \text { *Answer given* } \end{aligned}$	M1 A2 A1 [4]	Moments about A. Requires all three terms and terms of correct structure (force x distance). Condone consistent trig confusion -1 each error
33b	$\begin{aligned} & \rightarrow: \quad H=F \sin \theta=\frac{3 a m g \cos \theta \sin \theta}{b} \\ & \uparrow: \quad 2 m g= \pm V+F \cos \theta \\ & \pm V=2 m g-\frac{3 a m g \cos \theta}{b} \times \cos \theta\left(=2 m g-\frac{3 a m g \cos ^{2} \theta}{b}\right) \end{aligned}$	M1 A1 M1 A1 A1 [5]	Resolve horizontally. Condone trig confusion RHS correct. Or equivalent. Resolve vertically. Condone sign error and trig confusion Correct equation RHS correct. Or equivalent

Question Number	Scheme	Marks	Notes
33c	$\begin{aligned} & \frac{2 m g-\frac{3 a m g \cos ^{2} \theta}{b}}{\frac{3 a m g \cos \theta \sin \theta}{b}}=\tan \theta \\ & \frac{2 b-3 a \cos ^{2} \theta}{3 a \cos \theta \sin \theta}=\frac{\sin \theta}{\cos \theta} \\ & \Rightarrow 2 b-3 a \cos ^{2} \theta=3 a \sin ^{2} \theta \Rightarrow 2 b=3 a, \quad a=\frac{b}{3} \end{aligned}$	M1 A1 DM1 A1 [4]	Use of tan, either way up. V, H, F substituted. Correct for their components in θ only Simplify to obtain the ratio of a and b, or equivalent
33c alt 2	The centre of mass of the combined rod + particle is ${ }_{2}^{3} a$ from A 3 forces in equilibrium must be concurrent $\Rightarrow b=\frac{3}{2} a$ $\Rightarrow \frac{a}{b}=\frac{2}{3}$	M1A1 M1 A1	Not on the spec, but you might see it.
alt c 3	R acts along the rod, so resolve forces perpendicular to the rod. $\begin{aligned} & F=m g \cos \theta+m g \cos \theta \\ & 2 m g \cos \theta=\frac{3 a m g \cos \theta}{b} \\ & \Rightarrow \frac{a}{b}=\frac{2}{3} \end{aligned}$	M1 A1 DM1 A1 [4]	Resolve and substitute for F Eliminate θ
alt c 4	R acts along the rod. Take moments about C $m g \cos \theta 2 a-b=m g \cos \theta \quad b-a$ $2 a-b=b-a, \quad \Rightarrow \begin{aligned} & a \\ & b \end{aligned}=\frac{2}{3}$	M1 A1 DM1A1	Moments about B gives $2 a-b \quad F=a m g \cos \theta$ and substitute for F
c alt 5	Resultant parallel to the rod $\Rightarrow R=2 m g \sin \theta$ And $V^{2}+H^{2}=R^{2}$ $2 m g \sin \theta^{2}=\left(\frac{3 a m g \cos \theta \sin \theta}{b}\right)^{2}+\left(2 m g-\frac{3 a m g \cos ^{2} \theta}{b}\right)^{2}$ Eliminate θ $\Rightarrow \begin{gathered} a \\ b \end{gathered}=\frac{2}{3}$	M1 A1 DM1 A1 [4]	Substitute for V, H and R in terms of θ

Question Number	Scheme		Notes
34.			
(a)	$A C=4 a \tan 60^{\circ}=4 a \sqrt{3}$.	M1 A1	Or $\frac{4 a}{\tan 30}$ or $\sqrt{(8 a)^{2}-(4 a)^{2}}$
		(2)	
(b)	use of $F=\mu R$ at either A or C	M1	
3 independent equations required. Award M1A1 for each in the order seen. If more than 3 relevant equations seen, award the marks for the best 3.	3 independent equations required. Award M1A1 for each in the order seen. If more than 3 relevant equations seen, award the marks for the best 3 .		
	$M(A), \quad R_{C} \cdot 4 a \sqrt{3}=W \cdot 3 a \sqrt{3} \cos 60^{\circ}$	M1 A1	$R_{C}=\frac{3 W}{8}$
	$(\uparrow), \quad R_{A}+R_{C} \cos 60^{\circ}+F_{C} \cos 30^{\circ}=W$	M1 A1	$R_{A}=\frac{5 W}{8}$
	$(\rightarrow), \quad F_{A}-R_{C} \cos 30^{\circ}+F_{C} \cos 60^{\circ}=0$	M1 A1	$F_{A}=R_{C} \frac{\sqrt{3}}{3}$
	$\mathrm{M}(\mathrm{C}) a \sqrt{3} \cos 60 W+F_{A} \cdot 4 a \sqrt{3} \sin 60=R_{A} \cdot 4 a \sqrt{3} \cos 60$		
	Parallel: $F_{A} \cos 60+R_{A} \cos 30+F_{C}=W \cos 30$		
	Perpendicular: $R_{C}+R_{A} \cos 60=F_{A} \cos 30+W \cos 60$		
	solving to give $\mu=\frac{\sqrt{3}}{5} ; 0.346$ or 0.35 .	$\begin{array}{\|l} \hline \text { DM1 } \\ \text { A1 } \\ \hline \end{array}$	Equation in μ only. Dependent on 4 M marks for their equations.
	Reactions in the wrong direction(s) - check carefully		
		(9)	
		[11]	

Q	Scheme		Marks
35			
	$\begin{array}{lr} F=\mu N & \\ \mathrm{R}(\uparrow) & 18 g+60 g=N \\ & =78 g \\ \mathrm{R}(\rightarrow) & R=F=\mu N \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Used. Condone an inequality. Resolve vertically
P A C B W	$\begin{aligned} & 2.5 \times 18 g \cos \alpha+3 \times 60 g \cos \alpha=5 F \sin \alpha \\ & 18 g \times 2.5 \cos \alpha+60 g \times 3 \cos \alpha=R \times 5 \sin \alpha \\ & \frac{1}{2} \cos \alpha \times 18 g+3 \sin \alpha F+2 \sin \alpha R=3 \cos \alpha N \\ & 5 \cos \alpha N=5 \sin \alpha F+2.5 \cos \alpha \times 18 g+2 \cos \alpha \times 60 \\ & 60 g \times \frac{1}{2} \cos \alpha+2.5 N \cos \alpha=2.5 R \sin \alpha+2.5 F \sin \alpha \\ & \quad 45 \times \frac{3}{5} g+180 \times \frac{3}{5} g=4 R \end{aligned}$	M1A2	Moments equation. Condone sign errors. Condone sin/cos confusion -1 each error
		DM1	Eliminate α. Dependent on the second M1.
	$\begin{aligned} & 78 g \mu=\frac{135}{4} g \\ & \mu=\frac{135}{4 \times 78}=\frac{135}{312}=0.432 \ldots=0.43 \end{aligned}$ NB If use just two moments equations, M1A2 for the Remaining marks as above.	DM1 A1 (9) better at	Equation in μ only. (Dependent on the first two M marks.) NB g cancels. 0.43269..., $225 \quad 45$ $\overline{520}, \overline{104}$, awrt 0.433 Do not accept an inequality. empt, M1A1 for the other.

Question Number	Scheme	Marks
$\begin{gathered} 36 \\ \text { (a) } \end{gathered}$	Taking moments about A : $\begin{aligned} & 4 g \times 0.7 \times \cos 20^{\circ}=1.4 T \\ & T=18.4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 A1 } \\ & \text { A1 } \end{aligned}$ (4)
(b)	$\begin{aligned} & \uparrow \quad R+T \cos 20=4 g \\ & \quad R=4 g-T \cos 20^{\circ} \\ & \rightarrow F=T \sin 20 \\ & F=\mu R \Rightarrow T \sin 20^{\circ}=\mu\left(4 g-T \cos 20^{\circ}\right) \\ & \mu=\frac{T \sin 20^{\circ}}{4 g-T \cos 20^{\circ}}=0.29 \end{aligned}$	M1 A1 M1 A1 DM1 A1 A1
		(7) 11

Question Number	Scheme	Marks
37. (a)	$\begin{aligned} & \mathrm{M}(\mathrm{~A}) \quad 3 m g \times 2 a+3 m g x= \\ & =T \cos \theta \times 4 a \\ & \\ & =\frac{12}{5} a T \\ & \frac{12}{5} a T=6 m g a+3 m g x \\ & T=\frac{25}{4} m g \quad \frac{12}{5} a \times \frac{25}{4} m g=6 m g a+3 m g x \\ & 15 a=6 a+3 x \end{aligned}$	M1 A2,1,0 M1
		(5)
(b)	$\begin{aligned} \mathrm{R}(\rightarrow) \quad R & =T \sin \theta \\ & =\frac{25}{4} m g \times \frac{4}{5} \\ & =5 m g \quad * * \end{aligned}$	M1 A1 A1 (3)
(c)	$\begin{gathered} \mathrm{R}(\uparrow) \quad F+\frac{25}{4} m g \times \frac{3}{5}=3 m g+3 m g \\ F=6 m g-\frac{15}{4} m g=\frac{9}{4} m g \\ \mu=\frac{F}{R}=\frac{\frac{9}{4} m g}{5 m g}=\frac{9}{20} \end{gathered}$	M1 A2,1,0 DM1 A1

Question Number	Scheme	Marks
38.	Taking moments about A: $3 S=100 \times 2 \times \cos \alpha$	M1 A1
	Resolving vertically: $R+S \cos \alpha=100$	M1 A1
	Resolving horizontally: $S \sin \alpha=F$ (Most alternative methods need 3 independent equations, each one worth M1A1. Can be done in 2 e.g. if they resolve horizontally and take moments about X then $R \times 2 \times \cos \alpha=S \times\left(3-2 \times \cos ^{2} \alpha\right)$ scores M2A2)	M1 A1
	Substitute trig values to obtain correct values for F and R (exact or decimal equivalent). $\begin{aligned} & \left(S=\frac{200 \sqrt{8}}{9}\right), R=100-\frac{1600}{27}=\frac{1100}{27} \approx 40.74, F=\frac{200 \sqrt{8}}{27} \approx 20.95 \ldots \\ & F \leq \mu R, 200 \sqrt{8} \leq \mu \times 1100, \quad \mu \geq \frac{200 \sqrt{8}}{1100}=\frac{2 \sqrt{8}}{11} . \end{aligned}$	DM1 A1 M1 A1
		[10]

Question Number	Scheme	Marks
40.	$m(B): R \times 4 \cos \alpha=F \times 4 \sin \alpha+20 g \times 2 \cos \alpha$	M1 A2
	Use of $F=\frac{1}{2} R$	M1
	Use of correct trig ratios	
	$R=160 \mathrm{~N}$ or 157 N	B1
		DM1 A1

Question Number	Scheme	Marks
(a) (b)		M1A1A1 A1 (4) B1
	$\begin{aligned} & \uparrow \pm V+\frac{T}{\sqrt{2}}=3 g \quad\left(\Rightarrow V=3 g-\frac{9 g}{2}=\frac{-3 g}{2} \approx-14.7 \mathrm{~N}\right) \\ & \Rightarrow\|R\|=\sqrt{81+9} \times \frac{g}{2} \approx 46.5(\mathrm{~N}) \end{aligned}$ at angle $\tan ^{-1} \frac{1}{3}=18.4^{\circ}$ (0.322 radians) below the line of BA 161.6° (2.82 radians) below the line of AB (108.4° or 1.89 radians to upward vertical)	M1A1 M1A1 M1A1 (7) [11]

Question Number	Scheme	Marks
42 (a)	$\begin{aligned} & \mathrm{R}(\uparrow): R=25 g+75 g(=100 g) \\ & F=\mu R \end{aligned} \begin{aligned} & F=F=\frac{11}{25} \times 100 g \\ &=44 \mathrm{~g}(=431) \end{aligned}$	B1 M1 A1
(b)	$\begin{aligned} & \mathrm{M}(A): \\ & 25 g \times 2 \cos \beta+75 g \times 2.8 \cos \beta \\ & =S \times 4 \sin \beta \end{aligned}$	M1 A2,1,0
		$\begin{aligned} & \text { M1A1 } \\ & \text { A1 } \end{aligned}$
		(6)
(c)	So that Reece's weight acts directly at the point C.	B1 [10]

| Question |
| :---: | :---: | :---: | :---: |
| Number | (a)

Question Number	Scheme	Marks
44.	(a) $\mathrm{M}(A)$ $\begin{aligned} & N \times 4 a \cos 30^{\circ}=3 m g \times a \sin 30^{\circ}+m g \times 2 a \sin 30^{\circ} \\ & N=\frac{5}{4} m g \tan 30^{\circ}\left(=\frac{5}{4 \sqrt{3}} m g=7.07 \ldots \mathrm{~m}\right) \\ & \rightarrow \quad F_{r}=N \quad, \quad \uparrow R=4 m g \end{aligned}$ Using $F_{r}=\mu R$ $\frac{5}{4 \sqrt{ } 3} m g=\mu R \quad$ for their R $\mu=\frac{5}{16 \sqrt{ } 3}$ awrt 0.18 Alternative method: $\mathrm{M}(\mathrm{B}): m g \times 2 a \sin 30+3 m g \times 3 a \sin 30+F \times 4 a \cos 30=R \times 4 a \sin 30$ $11 m g a \sin 30+F \times 4 a \cos 30=R \times 4 a \sin 30$ $\frac{11 m g}{2}+F \frac{4 \sqrt{3}}{2}=2 R$ $\uparrow R=4 m g$, Using $F_{r}=\mu R$ $8 \mu \sqrt{3}=\frac{5}{2}, \quad \mu=\frac{5}{16 \sqrt{ } 3}$	M1 A2 $(1,0)$ DM1 A1 B1, B1 B1 M1 A1 (10) [10] M1A3(2,1,0) DM1A1 B1 B1 M1 A1

