EXPERT TUITION

Maths Questions By Topic:

Numerical Methods Mark Scheme

A-Level Edexcel

الارم 0207 060 4494 رام ⁰

www.expert-tuition.co.uk

online.expert-tuition.co.uk

🖂 enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents
New Spec
Paper 1 Page 1
Paper 2 Page 10
<u>Old Spec</u>
Core 2 Page 27
Core 3 Page 41
Core 4 Page 73

Question	Scheme	Marks	AOs
1 (a)	25	B1	3.4
		(1)	
(b)	Attempts to differentiate using the product rule	M1	3.1b
	$\frac{\mathrm{d}v}{\mathrm{d}t} = \ln(t+1) \times -0.4 + \frac{(10-0.4t)}{t+1}$	Al	1.1b
	$\frac{dv}{dt} = \ln(t+1) \times -0.4 + \frac{(10-0.4t)}{t+1}$ Sets their $\frac{dv}{dt} = 0 \Rightarrow \frac{(10-0.4t)}{(t+1)} = 0.4 \ln(t+1)$ and then makes	dM1	1.1b
	progress towards making "t " the subject (See notes for this)		
	$t = \frac{25 - \ln(t+1)}{1 + \ln(t+1)}$	A1*	2.1
	$t = \frac{26}{1 + \ln(t+1)} - 1 *$	AI.	2.1
		(4)	
(c)	(i) Attempts $t_2 = \frac{26}{1 + \ln 8} - 1$	M1	1.1b
	awrt 7.298	A1	1.1b
	(ii) awrt 7.33 seconds	A1	3.2a
		(3)	
			(8 marks)
Notes:			

(a) B1: 25 but condone 25 seconds. If another value is given (apart from 0) it is B0

(b)

M1: Attempts to use the product rule in an attempt to differentiate $v = (10 - 0.4t) \ln(t+1)$ Look for $(10 - 0.4t) \times \frac{1}{(t+1)} \pm k \ln(t+1)$, where k is a constant, condoning slips.

If you see direct evidence of an incorrect rule used e.g. vu'-uv' it is M0 You will see attempts from $v = 10 \ln(t+1) - 0.4t \ln(t+1)$ which can be similarly marked.

In this case look for $\frac{a}{t+1} \pm \frac{bt}{t+1} \pm c \ln(t+1)$

A1: Correct differentiation. Condone a missing left hand or it seen as v', $\frac{dv}{dx}$ or even = 0 $\begin{pmatrix} dv \\ - \ln(t+1)v & 0.4 \\ + \frac{(10-0.4t)}{2} & \text{or equivalent such as } \begin{pmatrix} dv \\ - 10 \\ - 0.4t \\ - 0.4\ln(t+1)v & 0.4 \\ + 10 \\$

$$\left(\frac{\mathrm{d}v}{\mathrm{d}t}\right) = \ln(t+1) \times -0.4 + \frac{(10-0.4t)}{t+1} \text{ or equivalent such as } \left(\frac{\mathrm{d}v}{\mathrm{d}t}\right) = \frac{10}{t+1} - \frac{0.4t}{(t+1)} - 0.4\ln(t+1)$$

dM1: Score for setting their dV/dt = 0 (which must be in an appropriate form) and proceeding to an equation where the variable *t* occurs only once – ignoring $\ln(t + 1)$.

See two examples of how this can be achieved below. It is dependent upon the previous M. Look for the following steps

- An allowable derivative set (or implied) = 0 E.g. $\ln(t+1) \times 0.4 = \frac{(10-0.4t)}{t+1}$
- Cross multiplication (or division) and rearrangement to form an equation where the variable *t* only occurs once.

E.g.1.
$$\ln(t+1) \times 0.4 = \frac{(10-0.4t)}{t+1}$$
$$\Rightarrow \ln(t+1) = \frac{25-t}{t+1}$$
$$\Rightarrow \ln(t+1) = -1 + \frac{26}{t+1}$$

2

$$\ln(t+1) \times 0.4 = \frac{(10-0.4t)}{t+1}$$

$$\Rightarrow 0.4t \ln(t+1) + 0.4 \ln(t+1) = 10 - 0.4t$$

$$\Rightarrow 0.4t (1 + \ln(t+1)) = 10 - 0.4 \ln(t+1)$$

A1*: Correctly proceeds to the given answer of $t = \frac{26}{1 + \ln(t+1)} - 1$ showing all key steps.

The key steps must include

E.g

- use of $\frac{dv}{dt}$ or v'which must be correct
- a correct line preceding the given answer, usually $t = \frac{25 \ln(t+1)}{1 + \ln(t+1)}$ or $\frac{26}{t+1} 1 = \ln(t+1)$

(c) (i)

M1: Attempts to use the iteration formula at least once.

Usually to find $t_2 = \frac{26}{1 + \ln 8} - 1$ which may be implied by awrt 7.44

A1: awrt 7.298. This alone will score both marks as iteration is implied. ISW after sight of this value. As t_3 is the only value that rounds to 7.298 just score the rhs, it does not need to be labelled t_3

(c)(ii)

A1: Uses repeated iteration until value established as awrt 7.33 **seconds**. Allow awrt 7.33 **s** Requires units. It also requires some evidence of iteration which will be usually be awarded from the award of the M

Question	Scheme	Marks	AOs			
2(a)	$f'(x) = 2x + \frac{4x - 4}{2x^2 - 4x + 5}$	M1	1.1b			
	$1^{-1}(x) = 2x^{-1} + 2x^{2} - 4x + 5$	A1	1.1b			
	$2x + \frac{4x - 4}{2x^2 - 4x + 5} = 0 \Longrightarrow 2x(2x^2 - 4x + 5) + 4x - 4 = 0$	dM1	1.1b			
	$2x^3 - 4x^2 + 7x - 2 = 0*$	A1*	2.1			
		(4)				
(b)	(i) $x_2 = \frac{1}{7} \left(2 + 4 \left(0.3 \right)^2 - 2 \left(0.3 \right)^3 \right)$	M1	1.1b			
	$x_2 = 0.3294$	A1	1.1b			
	(ii) $x_4 = 0.3398$	A1	1.1b			
		(3)				
(c)	$h(x) = 2x^3 - 4x^2 + 7x - 2$					
	h(0.3415) = 0.00366 $h(0.3405) = -0.00130$	M1	3.1a			
	States:					
	• there is a change of sign	A1	2.4			
	• $f'(x)$ is continuous	AI	2.4			
	• $\alpha = 0.341$ to 3dp					
		(2)				
		(9	marks)			
	Notes					

M1: Differentiates $\ln(2x^2 - 4x + 5)$ to obtain $\frac{g(x)}{2x^2 - 4x + 5}$ where g(x) could be 1

A1: For $f'(x) = 2x + \frac{4x-4}{2x^2-4x+5}$

dM1: Sets their $f'(x) = ax + \frac{g(x)}{2x^2 - 4x + 5} = 0$ and uses "**correct**" algebra, condoning slips, to obtain a

cubic equation. E.g Look for $ax(2x^2-4x+5)\pm g(x) = 0$ o.e., condoning slips, followed by some attempt to simplify

A1*: Achieves $2x^3 - 4x^2 + 7x - 2 = 0$ with no errors. (The dM1 mark must have been awarded) (b)(i)

M1: Attempts to use the iterative formula with $x_1 = 0.3$. If no method is shown award for $x_2 = awrt 0.33$

A1: $x_2 =$ awrt 0.3294 Note that $\frac{1153}{3500}$ is correct

Condone an incorrect suffix if it is clear that a correct value has been found (b)(ii)

A1: $x_4 = awrt 0.3398$ Condone an incorrect suffix if it is clear that a correct value has been found (c)

M1: Attempts to substitute x = 0.3415 and x = 0.3405 into a suitable function and gets one value correct (rounded or truncated to 1 sf). It is allowable to use a tighter interval that contains the root 0.340762654

Examples of suitable functions are $2x^3 - 4x^2 + 7x - 2$, $x - \frac{1}{7}(4x^2 - 2x^3 + 2)$ and f'(x) as this has been

found in part (a) with f '(0.3405)= - 0.00067..., f '(0.3415)= (+) 0.0018 There must be sufficient evidence for the function, which would be for example, a statement such as $h(x)=2x^3-4x^2+7x-2$ or sight of embedded values that imply the function, not just a value or values

even if both are correct. Condone h(x) being mislabelled as f

 $h(0.3415) = 2 \times 0.3415^3 - 4 \times 0.3415^2 + 7 \times 0.3415 - 2$

A1: Requires

- both calculations correct (rounded or truncated to 1sf)
- a statement that there is a change in sign and that the function is continuous
- a minimal conclusion e.g. \checkmark , proven, $\alpha = 0.341$, root

Question	Scheme	Marks	AOs
3 (a)	Attempts $f(3) = \text{and } f(4) = \text{where } f(x) = \pm (2\ln(8-x)-x)$	M1	2.1
	$f(3) = (2\ln(5) - x) = (+)0.22 \text{ and } f(4) = (2\ln(4) - 4) = -1.23$ <u>Change of sign</u> and function <u>continuous</u> in interval [3,4] \Rightarrow <u>Root</u> *	A1*	2.4
		(2)	
(b)	For annotating the graph by drawing a cobweb diagram starting at $x_1 = 4$ It should have at least two spirals	M1	2.4
	Deduces that the iteration formula can be used to find an approximation for α because the cobweb spirals inwards for the cobweb diagram	A1	2.2a
		(2)	
		(4 mark
	empts $f(3) =$ and $f(4) =$ where $f(x) = \pm (2\ln(8-x) - x)$ or alternativel 3 and $2\ln 4$ to 4. This is not routine and cannot be scored by substitu- ctions		
underline	values (calculations) correct to at least 1 sf with correct explanation and con d statements)		ee
w nen cor	nparing terms, allow reasons to be $2ln8 = 3.21 > 3$, $2ln4 = 2.77 < 4$ or similar		
at 4 but it	an attempt at using a cobweb diagram. Look for 5 or more correct straight lir must show an understanding of the method. If there is no graph then it is l correct attempt starting at 4 and deducing that the iteration can be used as t	M0 A0	

converge to the root. You must statement that it can be used with a suitable reason. Suitable reasons could be " it spirals inwards", it gets closer to the root", it converges "

Quest	ion Scheme	Marks	AOs		
4 (a	$1 - (1) = \frac{1}{2} + \frac{1}$	B1	1.1b		
	Area(R) $\approx \frac{1}{2} \times 0.5 \times \left[\frac{0.5 + 2(0.6742 + 0.8284 + 0.9686) + 1.0981}{1.0981} \right]$	<u>M1</u>	1.1b		
	$\left\{ = \frac{1}{4} \times 6.5405 = 1.635125 \right\} = 1.635 (3 \mathrm{dp})$		1.1b		
		(3)			
(b)	 Any valid reason, for example Increase the number of strips Decrease the width of the strips Use more trapezia between x = 1 and x = 3 	B1	2.4		
		(1)			
(c)(i) $\left\{\int_{1}^{3} \frac{5x}{1+\sqrt{x}} \mathrm{d}x\right\} = 5("1.635") = 8.175$	B1ft	2.2a		
(c)(ii) $\left\{ \int_{1}^{3} \left(6 + \frac{x}{1 + \sqrt{x}} \right) dx \right\} = 6(2) + ("1.635") = 13.635$	B1ft	2.2a		
		(2)			
		(6 n	narks)		
Questi	on 4 Notes:				
(a)	1 0.5 1				
B1:	Outside brackets $\frac{1}{2} \times 0.5$ or $\frac{0.5}{2}$ or 0.25 or $\frac{1}{4}$				
M1:	For structure of trapezium rule				
	No errors are allowed, e.g. an omission of a <i>y</i> -ordinate or an extra <i>y</i> -ordinate or a <i>y</i> -ordinate.	repeated			
A1:	Correct method leading to a correct answer only of 1.635				
(b) B1:	See scheme				
(c) D1					
B1:	8.175 or a value which is $5 \times$ their answer to part (a) Note: Allow B1ft for 8.176 (to 3 dp) which is found from $5(1.63125) = 8.175625$				
	Note: Do not allow an answer of 8.1886 which is found directly from integration				
(d)	Note: Do not allow an answer of 8.1880 which is found directly from integration				
B1:	13.635 or a value which is 12 + their answer to part (a)				
	Note: Do not allow an answer of 13.6377 which is found directly from integration				

Questio	n Scheme	Marks	AOs
5 (a)	f(3.5) = -4.8, f(4) = (+)3.1	M1	1.1b
	Change of sign and function continuous in interval $[3.5, 4] \Rightarrow \text{Root } *$	A1*	2.4
		(2)	
(b)	Attempts $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \Rightarrow x_1 = 4 - \frac{3.099}{16.67}$	M1	1.1b
	$x_1 = 3.81$	A1	1.1b
	$y = \ln(2x - 5)$	(2)	
(c)	Attempts to sketch both $y = \ln(2x - 5)$ and $y = 30 - 2x^2$ States that $y = \ln(2x - 5)$ meets $y = 30 - 2x^2$ in just one place, therefore $y = \ln(2x - 5) = 30 - 2x$ has just one root \Rightarrow f (x) = 0 has just one root	M1 A1	3.1a 2.4
		(2)	
		(6 n	narks)
Notes:			
A1*: f co bo ir	ttempts $f(x)$ at both $x = 3.5$ and $x = 4$ with at least one correct to 1 signific (3.5) and $f(4)$ correct to 1 sig figure (rounded or truncated) with a correct onclusion. A reason could be change of sign, or $f(3.5) \times f(4) < 0$ or simila- eing continuous in this interval. A conclusion could be 'Hence root' or 'Th- terval'	reason and x with $f(x)$	
(b) M1: A	ttempts $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ evidenced by $x_1 = 4 - \frac{3.099}{16.67}$		
A1: C	orrect answer only $x_1 = 3.81$		
(c) M1: F	or a valid attempt at showing that there is only one root. This can be achie • Sketching graphs of $y = \ln(2x - 5)$ and $y = 30 - 2x^2$ on the same axe • Showing that $f(x) = \ln(2x - 5) + 2x^2 - 30$ has no turning points • Sketching a graph of $f(x) = \ln(2x - 5) + 2x^2 - 30$	•	

Question	Scheme	Marks	AOs
6(a)	Uses or implies $h = 0.5$	B1	1.1b
	For correct form of the trapezium rule =	M1	1.1b
	$\frac{0.5}{2} \{3 + 2.2958 + 2(2.3041 + 1.9242 + 1.9089)\} = 4.393$	A1	1.1b
		(3)	
(b)	 Any valid statement reason, for example Increase the number of strips Decrease the width of the strips Use more trapezia 	B1	2.4
		(1)	
(c)	For integration by parts on $\int x^2 \ln x dx$	M1	2.1
	$=\frac{x^{3}}{3}\ln x - \int \frac{x^{2}}{3} \mathrm{d}x$	A1	1.1b
	$\int -2x + 5 \mathrm{d}x = -x^2 + 5x (+c)$	B1	1.1b
	All integration attempted and limits used		
	Area of $S = \int_{1}^{3} \frac{x^2 \ln x}{3} - 2x + 5 dx = \left[\frac{x^3}{9} \ln x - \frac{x^3}{27} - x^2 + 5x\right]_{x=1}^{x=3}$	M1	2.1
	Uses correct ln laws, simplifies and writes in required form	M1	2.1
	Area of $S = \frac{28}{27} + \ln 27$ (a = 28, b = 27, c = 27)	A1	1.1b
		(6)	
		(10 n	narks)

Question 6 continued

••••	
Note	s:
(a)	
B1:	States or uses the strip width $h = 0.5$. This can be implied by the sight of $\frac{0.5}{2} \{\}$ in the
	trapezium rule
M1:	For the correct form of the bracket in the trapezium rule. Must be y values rather than x values $\{$ first y value + last y value + 2×(sum of other y values) $\}$
A1:	4.393
(b)	
B1:	See scheme
(c)	
M1:	Uses integration by parts the right way around.
	Look for $\int x^2 \ln x dx = Ax^3 \ln x - \int Bx^2 dx$
A1:	$\frac{x^3}{3}\ln x - \int \frac{x^2}{3} \mathrm{d}x$
B1:	Integrates the $-2x+5$ term correctly $= -x^2 + 5x$
M1:	All integration completed and limits used
M1:	Simplifies using ln law(s) to a form $\frac{a}{b} + \ln c$
A1:	Correct answer only $\frac{28}{27} + \ln 27$

Question	Scheme	Marks	AOs
7(a)	States or uses $h = 1.5$	B1	1.1a
	Full attempt at the trapezium rule = ${2} \{ 1.63 + 2.63 + 2 \times (2 + 2.26 + 2.46) \}$	M1	1.1b
-	$= awrt 13.3 \text{ or } \frac{531}{40}$	A1	1.1b
		(3)	
(b)(i)	$\int_{3}^{9} \log_{3} (2x)^{10} dx = 10 \times "13.3" = \text{awrt } 133 \text{ or e.g. } \frac{531}{4}$	B1ft	2.2a
(ii)	$\int_{3}^{9} \log_{3} 18x dx = \int_{3}^{9} \log_{3} (9 \times 2x) dx = \int_{3}^{9} 2 + \log_{3} 2x dx$ $= [2x]_{3}^{9} + \int_{3}^{9} \log_{3} 2x dx = 18 - 6 + \int_{3}^{9} \log_{3} 2x dx = \dots$	M1	3.1a
	Awrt 25.3 or $\frac{1011}{40}$	Alft	1.1b
		(3)	
			(6 marks

B1: States or uses h = 1.5

M1: A full attempt at the trapezium rule.

Look for $\frac{\text{their }h}{2}$ {1.63 + 2.63 + 2×(2 + 2.26 + 2.46)} but condone copying slips Note that $\frac{\text{their }h}{2}$ 1.63 + 2.63 + 2×(2 + 2.26 + 2.46) scores M0 unless the missing brackets are

recovered or implied by their answer. You may need to check.

Allow this mark if they add the areas of individual trapezia e.g.

$$\frac{\text{their }h}{2}\left\{1.63+2\right\} + \frac{\text{their }h}{2}\left\{2+2.26\right\} + \frac{\text{their }h}{2}\left\{2.26+2.46\right\} + \frac{\text{their }h}{2}\left\{2.46+2.63\right\}$$

Condone copying slips but must be a complete method using all the trapezia.

A1: awrt 13.3 (Note full accuracy is 13.275) or exact equivalent.

Note that the calculator answer is 13.324 so you must see correct working to award awrt 13.3 Use of h = -1.5 leading to a negative area can score B1M1A0 but allow full marks if then stated as positive.

(b)(i)

B1ft: Deduces that
$$\int_{3}^{9} \log_{3} (2x)^{10} dx = 10 \times "13.3" = a \text{ wrt } 133$$

FT on their 13.3 look for 3sf accuracy but follow through on e.g. their rounded answer to part (a) so if 13 was their answer to part (a) then allow 130 here following a correct method.

A correct method must be seen here but a minimum is e.g. $10 \times "13.3" = "133"$

Note that $\int_{1}^{9} \log_3(2x)^{10} dx = 133.2414316...$ so a correct method must be seen to award marks.

Attempts to apply the trapezium rule again in any way score M0 as the instruction in the question was to use the answer to part (a).

(b)(ii)

M1: Shows correct log work to relate the given question to part (a)

Must reach as far as e.g. $[2x]_3^9 + \int_3^9 \log_3 2x \, dx = \dots$ with correct use of limits on $[2x]_3^9$ which

may be implied or equivalent work e.g. finds the area of the rectangle as 2×6

A1ft: Correct working followed by awrt 25.3 but ft on their 13.3 so allow for 12 + their answer to part (a) following correct work as shown.

Note that $\int_{3}^{9} \log_{3} 18x \, dx = 25.32414...$ so a correct method must be seen to award marks.

Some examples of an acceptable method are:

$$\int_{3}^{9} \log_{3} 18x \, dx = \int_{3}^{9} \log_{3} (9 \times 2x) \, dx = \int_{3}^{9} 2 + \log_{3} 2x \, dx = 6 \times 2 + "13.3" = 25.3$$
$$\int_{3}^{9} \log_{3} 18x \, dx = \int_{3}^{9} \log_{3} (9 \times 2x) \, dx = \int_{3}^{9} 2 + \log_{3} 2x \, dx = 12 + "13.3" = 25.3$$
$$\int_{3}^{9} \log_{3} 18x \, dx = \int_{3}^{9} \log_{3} (9 \times 2x) \, dx = \int_{3}^{9} 2 + \log_{3} 2x \, dx = [2x]_{3}^{9} + \int_{3}^{9} \log_{3} 2x \, dx = 25.3$$

BUT just 12+"13.3" = 25.3 scores M0

Attempts to apply the trapezium rule again in any way score M0 as the instruction in the question was to use the <u>answer</u> to part (a).

Question	Scheme	Marks	AOs
8(a)	$\left(\mathbf{f}'(x)=\right)4\cos\left(\frac{1}{2}x\right)-3$	M1 A1	1.1b 1.1b
	Sets $f'(x) = 4\cos\left(\frac{1}{2}x\right) - 3 = 0 \Longrightarrow x =$	dM1	3.1a
	x = 14.0 Cao	Al	3.2a
		(4)	
(b)	Explains that $f(4) > 0$, $f(5) < 0$ and the function is continuous	B1	2.4
		(1)	
(c)	Attempts $x_1 = 5 - \frac{8 \sin 2.5 - 15 + 9}{"4 \cos 2.5 - 3"}$ (NB f(5) = -1.212 and f'(5) = -6.204)	M1	1.1b
	$x_1 = $ awrt 4.80	Al	1.1b
		(2)	
		(7	mark

M1: Differentiates to obtain $k \cos\left(\frac{1}{2}x\right) \pm \alpha$ where α is a constant which may be zero and

no other terms. The brackets are not required.

A1: Correct derivative $f'(x) = 4\cos\left(\frac{1}{2}x\right) - 3$. Allow unsimplified e.g. $f'(x) = \frac{1}{2} \times 8\cos\left(\frac{1}{2}x\right) - 3x^0$

There is no need for f'(x) = ... or $\frac{dy}{dx} = ...$ just look for the expression and the brackets are not required.

dM1: For the complete strategy of proceeding to a value for *x*.

Look for

•
$$f'(x) = a \cos\left(\frac{1}{2}x\right) + b = 0, \ a, b \neq 0$$

• Correct method of finding a valid solution to $a\cos\left(\frac{1}{2}x\right) + b = 0$

Allow for
$$a\cos\left(\frac{1}{2}x\right) + b = 0 \Rightarrow \cos\left(\frac{1}{2}x\right) = \pm k \Rightarrow x = 2\cos^{-1}(\pm k)$$
 where $|k| < 1$

If this working is not shown then you may need to check their value(s).

degrees) would indicate this method.

A1: Selects the correct turning point x = 14.0 and not just 14 or unrounded e.g. 14.011... Must be this value only and no other values unless they are clearly rejected or 14.0 clearly selected. Ignore any attempts to find the *y* coordinate.

(b) Correct answer with no working scores no marks.

B1: See scheme. Must be a full reason, (e.g. change of sign and continuous) Accept equivalent statements for f(4) > 0, f(5) < 0 e.g. $f(4) \times f(5) < 0$, "there is a change of

sign", "one negative one positive". A minimum is "change of sign and continuous" but do **not** allow this mark if the comment about continuity is clearly incorrect e.g. "because *x* is continuous" or "because the interval is continuous"

M1: Attempts $x_1 = 5 - \frac{f(5)}{f'(5)}$ to obtain a value following through on their f'(x) as long as it is a

"changed" function.

(c)

Must be a correct N-R formula used - may need to check their values.

Allow if attempted in degrees. For reference in degrees f(5) = -5.65... and f'(5) = 0.996...and gives $x_1 = 10.67...$

There must be clear evidence that $5 - \frac{f(5)}{f'(5)}$ is being attempted.

so e.g.
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Rightarrow x_1 = 4.80$$
 scores M0 as does e.g. $x_1 = x - \frac{8\sin(\frac{1}{2}x) - 3x + 9}{4\cos(\frac{1}{2}x) - 3} = 4.80$

BUT evidence may be provided by the accuracy of their answer. Note that the full N-R accuracy is 4.804624337 so e.g. 4.805 or 4.804 (truncated) with no evidence of incorrect work may imply the method.

A1: $x_1 =$ awrt 4.80 not awrt 4.8 but isw if awrt 4.80 is seen. Ignore any subsequent iterations.

Note that work for part (a) cannot be recovered in part (c)

Note also:

$$5 - \frac{f(5)}{f'(5)} = a wrt \ 4.80$$
 following a correct derivative scores M1A1
 $5 - \frac{f(5)}{f'(5)} \neq a wrt \ 4.80$ with no evidence that $5 - \frac{f(5)}{f'(5)}$ was attempted scores M0

Question	Scheme	Marks	AOs
9(a)	h = 0.5	B1	1.1a
	$A \approx \frac{0.5}{2} \left\{ 0.5774 + 0.8452 + 2 \left(0.7071 + 0.7746 + 0.8165 \right) \right\}$	M1	1.1b
	= awrt 1.50	A1	1.1b
	For reference: The integration on a calculator gives 1.511549071 The full accuracy for y values gives 1.504726147 The accuracy from the table gives 1.50475		
		(3)	
(b)	$3 \times$ their (a) If (a) is correct, allow awrt 4.50 or awrt 4.51 even with no working. Only allow 4.5 if (a) is correct and working is shown e.g. 3×1.5	B1ft	2.2a
	If (a) is incorrect allow $3 \times$ their (a) given to at least 3sf but do not be too concerned about the accuracy (as they may use rounded or rounded value from (a))		
	For reference the integration on a calculator gives 4.534647213	(1)	
(c)	This mark depends on the B1 having been awarded in part (b) with awrt 4.5Look for a sensible comment. Some examples:Look for a sensible comment. Some examples:The answer is accurate to 2 sf or one decimal placeAnswer to (b) is accurate as $4.535 \approx 4.50$ Very accurate as 4.535 to 2 sf is 4.5 4.51425 < 4.535 so my answer is underestimate but not too far offIt is an underestimate but quite closeIt is a very good estimateHigh accuracy(Quite) accurateIt is less than 1% out4.535 - $4.5 = 0.035$ so not far out But not just "it is an underestimate"OrCalculates percentage error correctly using awrt 4.50 or awrt 4.51 or 4.5 (No comment is necessary in these cases although one may be given) Examples: $\left \frac{4.535 - 4.50}{4.535} \right \times 100 = 0.77\%$ or $\left \frac{4.535 - 4.50}{4.535} \right \times 100 = 0.77\%$ or $\left \frac{4.535 - 4.51}{4.535} \right \times 100 = 0.46\%$ or $\left \frac{4.535 - 4.51}{4.535} \right \times 100 = 0.46\%$ or $\left \frac{4.535 - 4.51}{4.535} \right \times 100 = 0.46\%$ or $\left \frac{4.535 - 4.51}{4.535} \right \times 100 = 99\%$ In these cases don't be too concerned about accuracy e.g. allow 1sf.This mark should be withheld if there are any contradictory	Β1	3.2b
	statements	1	
	statements	(1)	

B1: States or uses h = 0.5. May be implied by $\frac{1}{4} \times \{\dots \text{ below.}\}$

M1: Correct attempt at the trapezium rule.

Look for $\frac{1}{2}h \times \{0.5774 + 0.8452 + 2(0.7071 + 0.7746 + 0.8165)\}$ condoning slips on the terms but must use all y values with no repeats.

There must be a clear attempt at $\frac{1}{2}h \times (\text{first } y + \text{last } y + 2 \times \text{"sum of the rest"})$

Give M0 for $\frac{1}{2} \times \frac{1}{2} 0.5774 + 0.8452 + 2(0.7071 + 0.7746 + 0.8165)$ unless the missing brackets are implied.

NB this incorrect method gives 5.85...

May be awarded for separate trapezia e.g.

$$\frac{1}{4} (0.5774 + 0.7071) + \frac{1}{4} (0.7071 + 0.7746) + \frac{1}{4} (0.7746 + 0.8165) + \frac{1}{4} (0.8165 + 0.8452)$$

awarded for using the function e.g. $\frac{1}{2} h \times \left\{ \sqrt{\frac{0.5}{1+0.5}} + \sqrt{\frac{2.5}{1+2.5}} + 2\left(\sqrt{\frac{1}{1+1}} + \sqrt{\frac{1.5}{1+1.5}} + \sqrt{\frac{2}{1+2}}\right) \right\}$

A1: Awrt 1.50 (Apply isw if necessary)

Correct answers with no working - send to review

(b)

B1ft: See main scheme. Must be considering $3 \times (a)$ and not e.g. attempting trapezium rule again.

(c)

B1: See scheme

May be

10(a)	$\ln x \rightarrow \frac{1}{-}$		
	$\ln x \rightarrow -\frac{1}{x}$	B1	1.1a
	Method to differentiate $\frac{4x^2 + x}{2\sqrt{x}}$ - see notes	M1	1.1b
	E.g. $2 \times \frac{3}{2}x^{\frac{1}{2}} + \frac{1}{2} \times \frac{1}{2}x^{-\frac{1}{2}}$	A1	1.1b
	$\frac{dy}{dx} = 3\sqrt{x} + \frac{1}{4\sqrt{x}} - \frac{4}{x} = \frac{12x^2 + x - 16\sqrt{x}}{4x\sqrt{x}} *$	A1*	2.1
		(4)	
(b)	$12x^2 + x - 16\sqrt{x} = 0 \Longrightarrow 12x^{\frac{3}{2}} + x^{\frac{1}{2}} - 16 = 0$	M1	1.1b
	E.g. $12x^{\frac{3}{2}} = 16 - \sqrt{x}$	dM1	1.1b
	$x^{\frac{3}{2}} = \frac{4}{3} - \frac{\sqrt{x}}{12} \Longrightarrow x = \left(\frac{4}{3} - \frac{\sqrt{x}}{12}\right)^{\frac{2}{3}} *$	A1*	2.1
		(3)	
(c)	$x_{2} = \sqrt[3]{\left(\frac{4}{3} - \frac{\sqrt{2}}{12}\right)^{2}}$	M1	1.1b
	$x_2 = awrt \ 1.13894$	A1	1.1b
	<i>x</i> = 1.15650	A1	2.2a
		(3)	
			(10 marks)

Notes:

B1: Differentiates $\ln x \to \frac{1}{x}$ seen or implied **M1:** Correct method to differentiate $\frac{4x^2 + x}{2\sqrt{x}}$: Look for $\frac{4x^2 + x}{2\sqrt{x}} \to \dots x^{\frac{3}{2}} + \dots x^{\frac{1}{2}}$ being then differentiated to $Px^{\frac{1}{2}} + \dots$ or $\dots + Qx^{-\frac{1}{2}}$ Alternatively uses the quotient rule on $\frac{4x^2 + x}{2\sqrt{x}}$. Condone slips but if rule is not quoted expect $\left(\frac{dy}{dx}\right) = \frac{2\sqrt{x}(Ax+B) - (4x^2 + x)}{(Ax+B)^2}$

adone slips but if rule is not quoted expect
$$\left(\frac{dy}{dx}\right) = \frac{2\sqrt{x}\left(Ax+B\right) - \left(4x^2 + x\right)Cx^{-\frac{1}{2}}}{\left(2\sqrt{x}\right)^2} (A, B, C > 0)$$

1

But a correct rule may be implied by their u, v, u', v' followed by applying $\frac{vu' - uv'}{v^2}$ etc.

Alternatively uses the product rule on $(4x^2 + x)(2\sqrt{x})^{-1}$

Condone slips but expect $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = Ax^{-\frac{1}{2}}(Bx+C) + D(4x^2+x)x^{-\frac{3}{2}}(A,B,C>0)$

In general condone missing brackets for the M mark. If they quote $u = 4x^2 + x$ and $v = 2\sqrt{x}$ and don't make the differentiation easier, they can be awarded this mark for applying the correct rule. Also allow this mark if they quote the correct quotient rule but only have *v* rather than v^2 in the denominator.

A1: Correct differentiation of $\frac{4x^2 + x}{2\sqrt{x}}$ although may not be simplified.

Examples:
$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{2\sqrt{x}\left(8x+1\right) - \left(4x^2+x\right)x^{-\frac{1}{2}}}{\left(2\sqrt{x}\right)^2}, \ \frac{1}{2}x^{-\frac{1}{2}}\left(8x+1\right) - \frac{1}{4}\left(4x^2+x\right)x^{-\frac{3}{2}}, \ 2 \times \frac{3}{2}x^{\frac{1}{2}} + \frac{1}{2} \times \frac{1}{2}x^{-\frac{1}{2}}$$

A1*: Obtains $\frac{dy}{dx} = \frac{12x^2 + x - 16\sqrt{x}}{4x\sqrt{x}}$ via $3\sqrt{x} + \frac{1}{4\sqrt{x}} - \frac{4}{x}$ or a correct application of the quotient or product rule and with sufficient working shown to reach the printed answer.

There must be no errors e.g. missing brackets.

(b)

M1: Sets $12x^2 + x - 16\sqrt{x} = 0$ and divides by \sqrt{x} or equivalent e.g. divides by x and multiplies by \sqrt{x}

dM1: Makes the term in $x^{\frac{3}{2}}$ the subject of the formula

A1*: A correct and rigorous argument leading to the given solution.

Alternative - working backwards:

$$x = \left(\frac{4}{3} - \frac{\sqrt{x}}{12}\right)^{\frac{2}{3}} \Rightarrow x^{\frac{3}{2}} = \frac{4}{3} - \frac{\sqrt{x}}{12} \Rightarrow 12x^{\frac{3}{2}} = 16 - \sqrt{x} \Rightarrow 12x^{2} = 16\sqrt{x} - x \Rightarrow 12x^{2} - 16\sqrt{x} + x = 0$$

M1: For raising to power of 3/2 both sides. dM1: Multiplies through by \sqrt{x} . A1: Achieves printed answer and makes a minimal comment e.g. tick, #, QED, true etc.

(c)

M1: Attempts to use the iterative formula with $x_1 = 2$. This is implied by sight of $x_2 = \left(\frac{4}{3} - \frac{\sqrt{2}}{12}\right)^{\frac{4}{3}}$ or awrt 1.14

A1: *x*₂ = awrt 1.13894 **A1:** Deduces that *x* = 1.15650

Questi	on Scheme	Marks	AOs			
11	Time (s) 0 5 10 15 20 25 Speed (m s ⁻¹) 2 5 10 18 28 42					
(a)	Uses an allowable method to estimate the area under the curve. E.g. Way 1: an attempt at the trapezium rule (see below) Way 2: $\{s = \} \left(\frac{2+42}{2}\right)(25) \{= 550\}$ Way 3: $42 = 2 + 25(a) \Rightarrow a = 1.6 \Rightarrow s = 2(25) + (0.5)(1.6)(25)^2 \{= 550\}$ Way 4: $\{d = \}(2)(5) + 5(5) + 10(5) + 18(5) + 28(5) \{= 63(5) = 315\}$ Way 5: $\{d = \} 5(5) + 10(5) + 18(5) + 28(5) + 42(5) \{= 103(5) = 515\}$ Way 6: $\{d = \} \frac{315 + 515}{2} \{= 415\}$ Way 7: $\{d = \} \left(\frac{2 + 5 + 10 + 18 + 28 + 42}{6}\right)(25) \{= 437.5\}$)} M1 3.1a				
	$\frac{1}{2} \times (5) \times [2 + 2(5 + 10 + 18 + 28) + 42] \text{ or } \frac{1}{2} \times ["315" + "515"]$ = 415 {m}	M1	1.1b			
	= 415 {m}	Al	1.1b			
(b)	Uses a Way 1, Way 2, Way 3, Way 5, Way 6 or Way 7 method in (a)	(3)				
Alt 1	Overestimate and a relevant explanation e.g. • {top of} trapezia lie above the curve • Area of trapezia > area under curve • An appropriate diagram which gives reference to the extra area • Curve is convex • $\frac{d^2 y}{dx^2} > 0$ • Acceleration is {continually} increasing • The gradient of the curve is {continually} increasing • All the rectangles are above the curve (Way 5)	B1ft	2.4			
	The the restangles are accere the starte ((+a) 5)	(1)				
(b) Alt 2	 <u>Uses a Way 4 method in (a)</u> Underestimate and a relevant explanation e.g. All the rectangles are below the curve 	B1ft (1)	2.4			
		(*	4 marks)			
	Notes for Question 11					
(a) M1:	A low-level problem-solving mark for using an allowable method to estimate curve. E.g. Way 1: See scheme. Allow $\lambda(2+2(5+10+18+28)+42); \lambda > 0$ for 1 st M1 Way 2: Uses $s = \left(\frac{u+v}{2}\right)t$ which is equivalent to finding the area of a large tr Way 3: Complete method using a uniform acceleration equation.		ler the			
	 Way 5: Complete method using a uniform acceleration equation. Way 4: Sums rectangles lying below the curve. Condone a slip on one of the Way 5: Sums rectangles lying above the curve. Condone a slip on one of the Way 6: Average the result of Way 3 and Way 4. Equivalent to Way 1. Way 7: Applies (average speed)×(time) 					

	Notes for Question 11 Continued					
(a)	continued					
M1:	Correct trapezium rule method with $h = 5$. Condone a slip on one of the speeds. The '2' and '42' should be in the correct place in the [].					
A1:	415					
Note:	Units do not have to be stated					
Note:	Give final A0 for giving a final answer with incorrect units.					
	e.g. give final A0 for 415 km or 415 ms^{-1}					
Note:	Only the 1st M1 can only be scored for Way 2, Way 3, Way 4, Way 5 and Way 7 methods					
Note:	Full marks in part (a) can only be scored by using a Way 1 or a Way 6 method.					
Note:	Give M0 M0 A0 for $\{d = \} 2(5) + 5(5) + 10(5) + 18(5) + 28(5) + 42(5) \{= 105(5) = 525\}$					
Note	(i.e. using too many rectangles) Condone M1 M0 A0 for $\left[\frac{(2+10)}{2}(10) + \frac{(10+18)}{2}(5) + \frac{(18+28)}{2}(5) + \frac{(28+42)}{2}(5)\right] = 395 \text{ m}$					
Note:	Give M1 M1 A1 for $5\left[\frac{(2+5)}{2} + \frac{(5+10)}{2} + \frac{(10+18)}{2} + \frac{(18+28)}{2} + \frac{(28+42)}{2}\right] = 415 \text{ m}$					
Note:	Give M1 M1 A1 for $\frac{5}{2}(2+42) + 5(5+10+18+28) = 415$ m					
Note:	Bracketing mistake:					
	Unless the final calculated answer implies that the method has been applied correctly					
	give M1 M0 A0 for $\frac{5}{2}(2) + 2(5+10+18+28) + 42 \{= 169 \}$					
	give M1 M0 A0 for $\frac{5}{2}(2+42) + 2(5+10+18+28) \{= 232 \}$					
Note:	Give M0 M0 A0 for a Simpson's Rule Method					
(b)	Alt 1					
B1ft:	This mark depends on both an answer to part (a) being obtained and the first M in part (a) See scheme					
Note:	Allow the explanation "curve concaves upwards"					
Note:	Do not allow explanations such as "curve is concave" or "curve concaves downwards"					
Note:	Do not allow explanation "gradient of the curve is positive"					
Note:	Do not allow explanations which refer to "friction" or "air resistance"					
Note:	The diagram opposite is sufficient as an explanation. It must show the top of a trapezium lying above the curve.					
(b)	Alt 2					
B1ft:	This mark depends on both an answer to part (a) being obtained and the first M in part (a) See scheme					
Note:	Do not allow explanations which refer to "friction" or "air-resistance"					
- 1000						

Questic	n Scheme	Marks	AOs
12 (a)	$\{y = x^x \Longrightarrow\}$ $\ln y = x \ln x$	B1	1.1a
Way 1	$\frac{1}{1}\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + \ln x$	M1	1.1b
	$\frac{1}{y}\frac{1}{dx} = 1 + \ln x$	A1	2.1
	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow\right\} \frac{x}{x} + \ln x = 0 \text{or} 1 + \ln x = 0 \implies \ln x = k \implies x = \dots$	M1	1.1b
	$x = e^{-1}$ or awrt 0.368	A1	1.1b
	Note: $k \neq 0$	(5)	
(a)	$\{y = x^x \Longrightarrow\}$ $y = e^{x \ln x}$	B1	1.1a
Way 2	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{x}{x} + \ln x\right) \mathrm{e}^{x\ln x}$	M1	1.1b
	$dx = \left(\frac{1}{x} + \frac{1}{x} \right)^2$	A1	2.1
	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x}=0 \Longrightarrow\right\} \frac{x}{x}+\ln x=0 \text{or} 1+\ln x=0 \implies \ln x=k \implies x=\dots$	M1	1.1b
	$x = e^{-1}$ or awrt 0.368	A1	1.1b
	Note: $k \neq 0$	(5)	
(b) Way 1	Attempts both $1.5^{15} = 1.8$ and $1.6^{16} = 2.1$ and at least one result is correct to awrt 1 dp	M1	1.1b
	1.8 < 2 and 2.1 > 2 and as C is continuous then $1.5 < \alpha < 1.6$	A1	2.1
(c)	Attempts $x_{n+1} = 2x_n^{1-x_n}$ at least once with $x_1 = 1.5$ Can be implied by $2(1.5)^{1-1.5}$ or awrt 1.63	(2) M1	1.1b
	$\{x_4 = 1.67313 \Rightarrow\} x_4 = 1.673 (3 dp)$ cao	A1	1.1b
		(2)	
(d)	Give 1st B1 for any ofGive B1 B1 for any of• oscillates• periodic {sequence} with period 2• periodic• oscillates between 1 and 2	B1	2.5
	 non-convergent divergent fluctuates goes up and down 1, 2, 1, 2, 1, 2 alternates (condone) Condone B1 B1 for any of fluctuates between 1 and 2 alternates between 1 and 2 goes up and down between 1 and 2 1, 2, 1, 2, 1, 2 	B1	2.5
		(2)	
No4a	A common solution	(1	1 marks)
	A maximum of 3 marks (i.e. B1 1 st M1 and 2 nd M1) can be given for the solut $\log y = x \log x \implies \frac{1}{y} \frac{dy}{dx} = 1 + \log x$ $\left\{\frac{dy}{dx} = 0 \implies \right\} 1 + \log x = 0 \implies x = 10^{-1}$ • 1 st B1 for log y = x log x	ion	

• 1st M1 for $\log y \to \lambda \frac{1}{y} \frac{dy}{dx}$; $\lambda \neq 0$ or $x \log x \to 1 + \log x$ or $\frac{x}{x} + \log x$ • 2nd M1 can be given for $1 + \log x = 0 \Rightarrow \log x = k \Rightarrow x = ...; k \neq 0$

Questi	on Scheme	Marks	AOs				
12 (b) Way 2		M1	1.1b				
	$-0.16 < 0$ and $0.12 > 0$ and as <i>C</i> is continuous then $1.5 < \alpha < 1.6$	A1 (2)	2.1				
12 (b) Way 3	2 (b) For $\ln y = x \ln x$, attempts both 1.5ln1.5 = 0.608 and						
	0.608 < 0.69 and $0.752 > 0.69$ and as <i>C</i> is continuous then $1.5 < \alpha < 1.6$	A1	2.1				
12 (b)	For $\log y = x \log x$, attempts both 1.5log1.5 = 0.264 and	(2)					
Way 4		M1	1.1b				
	0.264 < 0.301 and $0.326 > 0.301$ and as <i>C</i> is continuous then $1.5 < \alpha < 1.6$	A1	2.1				
		(2)					
(a)	Notes for Question 12 Way 1						
(a) B1:	$\ln y = x \ln x. \text{ Condone } \log_x y = x \log_x x \text{ or } \log_x y = x$						
M1:	For either $\ln y \rightarrow \frac{1}{y} \frac{dy}{dx}$ or $x \ln x \rightarrow 1 + \ln x$ or $\frac{x}{x} + \ln x$						
A1:	Correct differentiated equation. i.e. $\frac{1}{y}\frac{dy}{dx} = 1 + \ln x$ or $\frac{1}{y}\frac{dy}{dx} = \frac{x}{x} + \ln x$ or $\frac{dy}{dx} = y(1 + \ln x)$ or $\frac{dy}{dx} = x^x(1 + \ln x)$	<i>x</i>)					
M1:	Sets $1 + \ln x = 0$ and rearranges to make $\ln x = k \implies x =; k$ is a constant and	$k \neq 0$					
A1:	$x = e^{-1}$ or awrt 0.368 only (with no other solutions for x)						
Note:	Give no marks for no working leading to 0.368						
Note:	Give M0 A0 M0 A0 for $\ln y = x \ln x \rightarrow x = 0.368$ with no intermediate working	ng					
(a)	$\frac{\text{Way 2}}{y = e^{x \ln x}}$						
B1: M1:	y = e For either $y = e^{x \ln x} \Rightarrow \frac{dy}{dx} = f(\ln x)e^{x \ln x}$ or $x \ln x \to 1 + \ln x$ or $\frac{x}{x} + \ln x$						
A1:	Correct differentiated equation.						
	i.e. $\frac{dy}{dx} = \left(\frac{x}{x} + \ln x\right) e^{x \ln x}$ or $\frac{dy}{dx} = (1 + \ln x) e^{x \ln x}$ or $\frac{dy}{dx} = x^x (1 + \ln x)$						
M1:	Sets $1 + \ln x = 0$ and rearranges to make $\ln x = k \Rightarrow x =; k$ is a constant and	$k \neq 0$					
A1:	$x = e^{-1}$ or awrt 0.368 only (with no other solutions for x)						
Note:	Give B1 M1 A0 M1 A1 for the following solution: $\{y = x^x \Rightarrow\}$ ln $y = x \ln x \Rightarrow \frac{dy}{dx} = 1 + \ln x \Rightarrow 1 + \ln x = 0 \Rightarrow x = e^{-1}$ or awrt	0.368					
	dx						

	Notes for Question 12 Continued
(b)	Way 1
M1:	Attempts both $1.5^{15} = 1.8$ and $1.6^{16} = 2.1$ and at least one result is correct to awrt 1 dp
A1:	Both 1.5^{15} = awrt 1.8 and 1.6^{16} = awrt 2.1, reason (e.g. $1.8 < 2$ and $2.1 > 2$
	or states C cuts through $y = 2$), C continuous and conclusion
(b)	Way 2
M1:	Attempts both $1.5^{15} - 2 = -0.16$ and $1.6^{16} - 2 = 0.12$ and at least one result is correct to awrt 1 dp
A1:	Both $1.5^{15} - 2 = -0.16$ and $1.6^{16} - 2 = 0.12$ correct to awrt 1 dp, reason (e.g. $-0.16 < 0$
	and $0.12>0$, sign change or states C cuts through $y = 0$), C continuous and conclusion
(b)	Way 3
M1:	Attempts both $1.5 \ln 1.5 = 0.608$ and $1.6 \ln 1.6 = 0.752$ and at least one result is correct
	to awrt 1 dp
A1:	Both $1.5 \ln 1.5 = 0.608$ and $1.6 \ln 1.6 = 0.752$ correct to awrt 1 dp, reason
	(e.g. $0.608 < 0.69$ and $0.752 > 0.69$ or states they are either side of $\ln 2$),
<i>(</i> 1)	<i>C</i> continuous and conclusion.
(b)	Way 4
M1:	Attempts both $1.5 \log 1.5 = 0.264$ and $1.6 \log 1.6 = 0.326$ and at least one result is correct
A1:	to awrt 2 dp Both $1.5\log_{1.5}=0.264$ and $1.6\log_{1.6}=0.326$ correct to awrt 2 dp, reason
A1:	(e.g. $0.264 < 0.301$ and $0.326 > 0.301$ or states they are either side of $\log 2$),
	C continuous and conclusion.
(c)	
M1:	An attempt to use the given or their formula once. Can be implied by $2(1.5)^{1-1.5}$ or awrt 1.63
A1:	States $x_4 = 1.673$ cao (to 3 dp)
Note:	Give M1 A1 for stating $x_4 = 1.673$
Note:	M1 can be implied by stating their final answer $x_4 = awrt 1.673$
Note:	$x_2 = 1.63299, x_3 = 1.46626, x_4 = 1.67313$
(d)	
B1:	see scheme
<u>B1:</u>	see scheme
Note:	Only marks of B1B0 or B1B1 are possible in (d)
Note:	Give B0 B0 for "Converges in a cob-web pattern" or "Converges up and down to α "

Questi	on Scheme	Marks	AOs				
13	The equation $2x^3 + x^2 - 1 = 0$ has exactly one real root						
(a)	$\left\{ \mathbf{f}(x) = 2x^3 + x^2 - 1 \Longrightarrow \right\} \mathbf{f}'(x) = 6x^2 + 2x$	B1	1.1b				
	$\left\{ x_{n+1} = x_n - \frac{\mathbf{f}(x_n)}{\mathbf{f}'(x_n)} \Rightarrow \right\} \left\{ x_{n+1} \right\} = x_n - \frac{2x_n^3 + x_n^2 - 1}{6x_n^2 + 2x_n}$	M1	1.1b				
	$= \frac{x_n(6x_n^2 + 2x_n) - (2x_n^3 + x_n^2 - 1)}{6x_n^2 + 2x_n} \implies x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n} *$	A1*	2.1				
		(3)					
(b)	$ \{x_1 = 1 \Rightarrow \} \ x_2 = \frac{4(1)^3 + (1)^2 + 1}{6(1)^2 + 2(1)} \text{or} x_2 = 1 - \frac{2(1)^3 + (1)^2 - 1}{6(1)^2 + 2(1)} $ $ \Rightarrow x_2 = \frac{3}{4}, \ x_3 = \frac{2}{3} $	M1	1.1b				
	$\Rightarrow x_2 = \frac{3}{4}, \ x_3 = \frac{2}{3}$	A1	1.1b				
		(2)					
(c)	Accept any reasons why the Newton-Raphson method cannot be used with $x_1 = 0$ which refer or <i>allude</i> to either the stationary point or the tangent. E.g.	B1	2.3				
	 There is a stationary point at x = 0 Tangent to the curve (or y = 2x³ + x² - 1) would not meet the x-axis 	DI	2.5				
	• Tangent to the curve (or $y = 2x^3 + x^2 - 1$) is horizontal						
		(1)	•				
	Notes for Question 13	(0	marks)				
(a)	Notes for Question 13						
B1:	States that $f'(x) = 6x^2 + 2x$ or states that $f'(x_n) = 6x_n^2 + 2x_n$ (Condone $\frac{dy}{dx} =$	$6x^2 + 2x$)					
M1:	Substitutes $f(x_n) = 2x_n^3 + x_n^2 - 1$ and their $f'(x_n)$ into $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$						
A1*:	A correct intermediate step of making a common denominator which leads to t						
Note:	Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$) in the NR formula	$\{x_{n+1}\} = x_n$	$-\frac{\mathbf{f}(x_n)}{\mathbf{f}'(x_n)}$				
Note:	Allow M1A1 for $2x^3 + x^2 - 1$ $x(6x^2 + 2x) - (2x^3 + x^2 - 1)$ $4x^3 + x^2$	² + 1					
	• $x_{n+1} = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x} = \frac{x(6x^2 + 2x) - (2x^3 + x^2 - 1)}{6x^2 + 2x} \implies x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n}$						
		$2x_n$					
Note	Condone $x = x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ for M1	2 <i>x</i> _n					
Note Note		2x _n					
	Condone $x = x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ for M1						

	Notes for Question 13 Continued						
(b)							
M1:	An attempt to use the given or their formula once. Can be implied by $\frac{4(1)^3 + (1)^2 + 1}{6(1)^2 + 2(1)}$ or 0.75 o.e.						
Note:	Allow one slip in substituting $x_1 = 1$						
A1:	$x_2 = \frac{3}{4}$ and $x_3 = \frac{2}{3}$						
Note:	Condone $x_2 = \frac{3}{4}$ and $x_3 = awrt 0.667$ for A1						
Note:	Condone $\frac{3}{4}, \frac{2}{3}$ listed in a correct order ignoring subscripts						
(c)							
B1:	See scheme						
Note:	 Give B0 for the following isolated reasons: e.g. You cannot divide by 0 The fraction (or the NR formula) is undefined at x = 0 At x = 0, f'(x₁) = 0 x₁ cannot be 0 6x² + 2x cannot be 0 the denominator is 0 which cannot happen if x₁ = 0, 6x² + 2x = 0 						

	Scheme	Marks	AOs
14(a)	$f(x) = (8 - x) \ln x, \ x > 0$		
	Crosses x-axis $\Rightarrow f(x) = 0 \Rightarrow (8 - x)\ln x = 0$		
	x coordinates are 1 and 8	B1	1.1b
		(1)	
(b)	Complete strategy of setting $f'(x) = 0$ and rearranges to make $x =$	M1	3.1a
	$\begin{cases} u = (8 - x) v = \ln x \\ \frac{\mathrm{d}u}{\mathrm{d}x} = -1 \qquad \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{x} \end{cases}$		
	$f'(x) = -\ln x + \frac{8-x}{x}$	M1	1.1b
	$1(x) = - \ln x + \frac{1}{x}$	A1	1.1b
	$-\ln x + \frac{8-x}{x} = 0 \implies -\ln x + \frac{8}{x} - 1 = 0$ $\implies \frac{8}{x} = 1 + \ln x \implies x = \frac{8}{1 + \ln x} *$	A1*	2.1
		(4)	
(c)	Evaluates both $f'(3.5)$ and $f'(3.6)$	M1	1.1b
	f'(3.5) = 0.032951317 and $f'(3.6) = -0.058711623Sign change and as f'(x) is continuous, the x coordinate of Q lies between x = 3.5 and x = 3.6$	A1	2.4
		(2)	
(d)(i)	${x_5 =} 3.5340$	B1	1.1b
(d)(ii)	${x_{Q}} = 3.54 \ (2 \text{ dp})$	B1	2.2a
		(2)	
		(9 n	narks)

Quest	ion 14 Notes:
(a)	
B1:	Either
	• 1 and 8
	• on Figure 2, marks 1 next to A and 8 next to B
(b)	
M1:	Recognises that Q is a stationary point (and not a root) and applies a complete strategy of setting $f'(x) = 0$ and rearranges to make $x =$
M1:	Applies $vu' + uv'$, where $u = 8 - x$, $v = \ln x$
	Note: This mark can be recovered for work in part (c)
A1:	$(8-x)\ln x \rightarrow -\ln x + \frac{8-x}{x}$, or equivalent
	Note: This mark can be recovered for work in part (c)
A1*:	Correct proof with no errors seen in working.
(c)	
M1:	Evaluates both $f'(3.5)$ and $f'(3.6)$
A1:	$f'(3.5) = awrt \ 0.03 \ and \ f'(3.6) = awrt \ -0.06 \ or \ f'(3.6) = -0.05 \ (truncated)$
	and a correct conclusion
(d)(i)	
B1:	See scheme
(d)(ii)	
B1:	Deduces (e.g. by the use of further iterations) that the x coordinate of Q is 3.54 accurate to 2 dp
	Note: $3.5 \rightarrow 3.55119 \rightarrow 3.52845 \rightarrow 3.53848 \rightarrow 3.53404 \rightarrow 3.53600 \rightarrow 3.53514 (\rightarrow 3.535518)$

Question Number				S	cheme				Marks
16.		x	0	0.5	1	1.5	2		
		у	1	2.821	6	12.502	26.585		
(a)	$\left\{ \text{At } x = 1, \right\}$	y = 6 (allo	ow 6.000 or	r even 6.00)					B1 cao
(b)	1								(1)
	$\frac{1}{2} \times 0.5$;								B1 oe
	$\{1 -$	+ 26.585 +	2(2.821+	their $6 + 12.3$	502)}	For s	structure of $\frac{1}{2}$	{}; .56	M1 <u>A1ft</u>
	$\frac{1}{2} \times 0.5 \frac{1}{1+1}$	- 26.585 + 2	2(2.821+	6+12.502)	$= \frac{1}{4}(70.23)$	1) = 17.557.	$\} = awrt 17.$.56	A1
(c)	10 + "17.56" = "27.56"							(4) B1ft (1)	
					Notes				[6]
(a)	B1: 6				INULES				
(b)	B1: for usin		. –		T. 1	(1 C (1	1	· 1	
	M1: requires the correct $\{\dots, \}$ bracket structure. It needs the first bracket to contain first y value plus last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be regarded as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark however). M0 if values used in brackets are x values instead of y values								alues in from 2nd
				,	through can	didate's y va	alue found in	n part (a).	
	A1: for answ NB: Separat correct) The	te trapezia	may be use		25, M1 for 1	/2 h(a + b)	used 3 or 4 t	imes (and A1ft	if it is all
	unless the fi	nal answer	implies th		ation has bee		,	scores B1 M1 A full marks can be	
(c)	B1ft: 10 + tl (May be obt		1		again with a	all values for	r y increased	l by 5)	

Number		Scheme	Marks			
	y = 8 - 2	2^{x-1} $0 \leq x \leq 4$				
17. (a)	7		B1 cao			
			[1			
		Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$	B1;			
(b)	$\int_{0}^{4} (8-2)$	$2^{x-1} dx \approx \frac{1}{2} \times 1; \times \left\{ 7.5 + 2 \left(\text{"their 7"} + 6 + 4 \right) + 0 \right\} \qquad $				
	$\frac{\text{rule}}{\frac{1}{2}}$ for a					
	(1	candidate's y-ordinates.				
	$\left\{=\frac{1}{2}\times4\right.$	1.5 = 20.75 o.e. 20.75	A1 cao			
			[3			
(c)	$\operatorname{Area}(R)$	$= "20.75" - \frac{1}{2}(7.5)(4)$ = 5.75 5.75	M1			
		= 5.75 5.75	A1 cao			
			[2			
		Question 17 Notes				
		inner bracket needs to be multiplied by 2 and to be the summation of the remaining y val	lues in the			
		inner bracket needs to be multiplied by 2 and to be the summation of the remaining y valuable with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark he (unless it is 0)). M0 is awarded if values used in brackets are x values instead of y values $E = 20.75$ for the mark of $y = 20.3$ meV.	be regarded bwever			
	A1	table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark he (unless it is 0)). M0 is awarded if values used in brackets are x values instead of y values For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$	be regarded bwever			
	A1 Note	table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark be (unless it is 0)). M0 is awarded if values used in brackets are x values instead of y values	be regarded bwever			
	Note Special	table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark here (unless it is 0)). M0 is awarded if values used in brackets are <i>x</i> values instead of <i>y</i> values. For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$ NB: Separate trapezia may be used : B1 for 0.5, M1 for $1/2 h(a + b)$ used 3 or 4 times.	be regarded owever 5 5 Then A1			
	Note	table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark be (unless it is 0)). M0 is awarded if values used in brackets are <i>x</i> values instead of <i>y</i> values. For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$. NB: Separate trapezia may be used : B1 for 0.5, M1 for $1/2 h(a + b)$ used 3 or 4 times as before. Bracketing mistake $0.5 \times (7.5 + 0) + 2($ their $7 + 6 + 4)$ scores B1 M1 A0 unless the final implies that the calculation has been done correctly (then full marks can be given). An at 37.75 usually indicates this error.	be regarded owever Then A1 al answer nswer of			
	Note Special case: Common	table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark be (unless it is 0)). M0 is awarded if values used in brackets are <i>x</i> values instead of <i>y</i> values. For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$. NB: Separate trapezia may be used : B1 for 0.5, M1 for $1/2 h(a + b)$ used 3 or 4 times as before. Bracketing mistake $0.5 \times (7.5 + 0) + 2($ their $7 + 6 + 4)$ scores B1 M1 A0 unless the final implies that the calculation has been done correctly (then full marks can be given). An at 37.75 usually indicates this error.	be regarded owever Then A1 al answer nswer of			
	Note Special case:	table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark be (unless it is 0)). M0 is awarded if values used in brackets are <i>x</i> values instead of <i>y</i> values. For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$ NB: Separate trapezia may be used : B1 for 0.5, M1 for $1/2 h(a + b)$ used 3 or 4 times as before. Bracketing mistake $0.5 \times (7.5 + 0) + 2($ their $7 + 6 + 4)$ scores B1 M1 A0 unless the final implies that the calculation has been done correctly (then full marks can be given). An at	be regarded owever Then A1 al answer nswer of			
(c)	Note Special case: Common	table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark here (unless it is 0)). M0 is awarded if values used in brackets are <i>x</i> values instead of <i>y</i> values. For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$ NB: Separate trapezia may be used : B1 for 0.5, M1 for $1/2 h(a + b)$ used 3 or 4 times as before. Bracketing mistake $0.5 \times (7.5 + 0) + 2($ their $7 + 6 + 4)$ scores B1 M1 A0 unless the final implies that the calculation has been done correctly (then full marks can be given). An au 37.75 usually indicates this error. Many candidates use $\frac{1}{2} \times \frac{4}{5}$ and score B0 Then they proceed with $\frac{7.5 + 2($ "their 7 " + $6 + 4)}{$ and score M1 This usually gives 16.6 for B0M1A0 their answer to (b) – area of triangle with base 4 and height 7.5 or alternative correct met	the regarded by the regarded of the			
(c)	Note Special case: Common error:	table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark be (unless it is 0)). M0 is awarded if values used in brackets are <i>x</i> values instead of <i>y</i> values. For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$ NB: Separate trapezia may be used : B1 for 0.5, M1 for $1/2 h(a + b)$ used 3 or 4 times as before. Bracketing mistake $0.5 \times (7.5 + 0) + 2($ their $7 + 6 + 4)$ scores B1 M1 A0 unless the final implies that the calculation has been done correctly (then full marks can be given). An at 37.75 usually indicates this error. Many candidates use $\frac{1}{2} \times \frac{4}{5}$ and score B0 Then they proceed with $7.5 + 2($ "their 7" + 6 + 4) and score M1 This usually gives 16.6 for B0M1A0	the regarded by the regarded owever Then A1 al answer nswer of (+ 4) + 0 ethod			

Question Number	Scheme						Marks
	<i>x</i>	1	1.25	1.5	1.75	2	
	У	1.414	1.601	1.803	2.016	2.236	
18. (a)					-	the table and can of their working in	B1 cao
							[1]
	$\frac{1}{2} \times 0.$	25;×{1.4	14 + 2.236 + 2	2(their 1.601	1+1.803+2	.016)}	B1; <u>M1 A1ft</u>
	B1; for using $\frac{1}{2} \times 0.25$ or equivalent.	or $\frac{1}{8}$	<u>M1: Str</u> {	$\frac{\text{A1ft: for the correct expression}}{\text{as shown following through}}$ $\frac{\text{A1ft: for the correct expression}}{\text{as shown following through}}$ $\frac{\text{candidate's } y \text{ value found in}}{\text{part (a).}}$			
	M1 requires the correct structure for the y values. It needs to contain first y value plus last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from $2()$ bracket this may be regarded as a slip and the M mark can be allowed (nb: an extra repeated term, however, forfeits the M mark). M0 if any values used are x values instead of y values.						
(b)	A1ft: for the correct underlined expression as shown following through candidate's y value found in part (a). Bracketing mistakes: e.g. $\left(\frac{1}{2} \times \frac{1}{4}\right) (1.414 + 2.236) + 2 (\text{their } 1.601 + 1.803 + 2.016) (= 11.29625)$						
	$\left(\frac{1}{2} \times \frac{1}{4}\right) 1.414 + 2.236 + 2(\text{their } 1.601 + 1.803 + 2.016)(=13.25275)$ Both score B1 M1 A0 unless the final answer implies that the calculation has been done correctly (then full marks could be given).						
	Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{8}(1.414+1.601) + \frac{1}{8}(1.601+1.803) + \frac{1}{8}(1.803+2.016) + \frac{1}{8}(2.016+2.236)\right]$						
	$\begin{bmatrix} 8 & 8 & 8 \\ 8 & 8 & 9 \end{bmatrix}$ B1 for $\frac{1}{8}$ (aef), M1 for correct structure, 1st A1ft for correct expression, ft their 1.601						
	$\left\{=\frac{1}{8}(14.49)\right\}=1.8112$	25		1.81 or a	wrt 1.81		A1
	If required accuracy		t answer <u>only</u> en in (a), full			ed in (b) (e.g. uses 1.6)	
							[4]
							Total 5

Question Number	Scheme					
19. (a)	$\sqrt{7}$ and $\sqrt{15}$	Both $\sqrt{7}$ and $\sqrt{15}$. Allow awrt 2.65 and 3.87	B1			
			[1]			
(b)	Area $(R) \approx \frac{1}{2} \times 2; \times \left\{ \sqrt{3} + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right) + \sqrt{19} \right\}$	Outside brackets $\frac{1}{2} \times 2$ or 1 (may be implied)	B1;			
	$\frac{1}{2}$	For structure of {}	<u>M1</u>			
	Note decimal value	es are				
	$\frac{1}{2} \times 2; \times \left\{ \sqrt{3} + \sqrt{19} + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right) \right\} = \frac{1}{2} \times 2; \times \left\{ \underline{6.0909+19.6707} \right\}$					
	M1 requires the correct structure for the <i>y</i> values. It needs to contain first <i>y</i> value plus last <i>y</i> value and the second bracket to be multiplied by 2 and to be the summation of the remaining <i>y</i> values in the table with no additional values. If the only mistake is a copying error or is to omit one value from 2() bracket this may be regarded as a slip and the M mark can be allowed (nb: an extra repeated term, however, forfeits the M mark). M0 if any values used are <i>x</i> values instead of <i>y</i> values. Bracketing mistakes: e.g. $\left(\frac{1}{2} \times 2\right) \times \left(\sqrt{3} + \sqrt{19}\right) + 2\left(\sqrt{7} + \sqrt{11} + \sqrt{15}\right)$ Both score B1 M1 Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{2} \times 2(\sqrt{3} + \sqrt{7}) + \frac{1}{2} \times 2(\sqrt{7} + \sqrt{11}) + \frac{1}{2} \times 2(\sqrt{11} + \sqrt{15}) + \frac{1}{2} \times 2(\sqrt{15} + \sqrt{19})\right]$ B1 for $\frac{1}{2} \times 2$, M1 for correct structure					
	2					
	$= 1 \times 25.76166865 = 25.76166 = 25.76$ (2dp)	<u>25.76</u>	A1 cao			
(c)	underestimate	Accept 'under', 'less than' etc.	[3] B1			
	underestimute		[1]			
			Total 5			

Question	Nenomo								Marks		
Number		x	0	0.5	1	1.5	2	2.5	3		
20.		x y	5	4	2.5	1.538	1	0.690	0.5	-	
(a)	{At $x = 1.5$,} $y = 1.538$ (only)					B1 cao					
(b)	$\frac{1}{2} \times $										[1] B1 oe
		{ 5 -	+ 0.5 + 2(4 + 2.5 + t	heir 1.538	+1+0.690)}		For structu	<u>re of </u> {	};	M1 <u>A1ft</u>
	¹ × (<u>ر</u> ارت ا	(5 + 0.5)	+2(4+2)	5 thoir 1	.538 + 1 + 0.6	(0,0) = 1	(24.956) - 1	(230) = 30	vrt 6 24	
	$\frac{1}{2}$ × 0).5 × <u>{</u>	(3 + 0.3)	+2(4+2.)	3 + them 1	.558 + 1 + 0.0	$\frac{50}{30} = \frac{1}{4}$	(24.950) =	(0.239) = av	vit 0.24	Al
											[4]
(c)	Adds	s Area	a of Recta	angle or fir	st integral	$= 3 \times 4$ or [$\left[4x\right]_{a}^{3}$ to pr	evious ans	wer		M1
						"18.239"} = "				swer).	A1ft
				-		added 4 seven					[2]
			1		Ň					,	7
						Notes for	Question 2	0			
(a) (b)	B1: 1.538 B1: for using 1 × 0.5 or 1 or equivalent										
(b)	B1: for using $\frac{1}{2} \times 0.5$ or $\frac{1}{4}$ or equivalent.									nlue last	
	M1: requires the correct {} bracket structure. It needs the first bracket to contain first y value plus last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from 2n bracket this may be regarded as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark however). M0 if values used in brackets are x values instead of y values									values in from 2nd	
	A1ft	ft: for the correct bracket $\{\dots, \}$ following through candidate's y value found in part (a).									
	NB:	A1: for answer which rounds to 6.24. NB: Separate trapezia may be used : B1 for 0.25, M1 for $1/2 h(a + b)$ used 5 or 6 times (and A1ft correct) Then A1 as before.								if it is all	
	Special case: Bracketing mistake $0.25 \times (5 + 0.5) + 2(4 + 2.5 + \text{their } 1.538 + 1 + 0.690)$ scores B1									M1 A0	
(c)	A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). An answer of 20.831 usually indicates this error. M1: Relates previous answer (not integral of previous answer) to this question by integrating 4 between limits, and adding, or by using geometry to find rectangle and adding.						n be				
	A1ft: for 12 + answer to (b)								a tabla		
Alternative method	Those who do a trapezium rule for part (b)- using the table from (a) with 4 added to each cell of the Get: M1 for " <i>their</i> ¹ "× $\{0, +4, 5, +2(8, +6, 5, +1)\}$ their 5,538 + 5 + 4,690) = (structure must be correct										
(c)	Get: M1 for " <i>their</i> $\frac{1}{4}$ "× $\left\{9 + 4.5 + 2(8 + 6.5 + \text{their } 5.538 + 5 + 4.690)\right\}$ = (structure must be correct one copying error only)								i – anow		
	ono	onvi	na orror o	(1 1 1 1 1 1							

Question Number	Scheme	Marks					
21. (a)	$\{x=1.3\}\ y=0.8572$ (only)	B1 cao					
		(1)					
(b)	$\frac{1}{2} \times 0.1$	B1					
	$\{0.7071 + 0.9487 + 2(0.7591 + 0.8090 + "0.8572" + 0.9037)\}$	M1					
	${0.7071+0.9487+2(0.7591+0.8090+"0.8572"+0.9037)}$	A1ft					
	$\{0.05(8.3138)\} = 0.41569 = awrt 0.416$	A1					
		(4) Total 5					
	Notes for Question 21						
(a)	B1: 0.8572 cao						
(b)	B1 for using $\frac{1}{2} \times 0.1$ or 0.05 or equivalent.						
	M1 It needs the first bracket to contain first <i>y</i> value plus last <i>y</i> value and the second bracket multiplied by 2 and to be the summation of the remaining <i>y</i> values in the table with no add values. If the only mistake is a copying error or is to omit one value from 2nd bracket this regarded as a slip and the M mark can be allowed (An extra repeated term forfeits the M n however). M0 if values used in brackets are <i>x</i> values instead of <i>y</i> values						
	A1ft for the correct bracket $\{\dots, \}$ following through candidate's y value found in particular particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate's y value found in particular of the correct bracket $\{\dots, \}$ following through candidate $\{\dots, \}$ fol						
	NB: Separate trapezia may be used : B1 for 0.05, M1 for $1/2 h(a + b)$ used 4 or 5 times (a it is all correct) Then A1 as before. (Equivalent correct formulae may be used) Special case: Bracketing mistake						
	$0.05 \times (0.7071 + 0.9487) + 2(0.7591 + 0.8090 + "0.8572" + 0.9037)$ scores B1 M1 A0 A0 (usua 6.74079) unless the final answer implies that the calculation has been done correctly (then fulcan be given).						

22.	$y = 27 - 2x - 9\sqrt{x} - \frac{16}{x^2}$					
(a)	6.272 , 3.634	B1, B1				
			(2)			
(b)	$\frac{1}{2} \times \frac{1}{2}$ or $\frac{1}{4}$		B1			
	$\dots \{(0+0) + 2(5.866 + "6.272" + 5.210 + "3.634" + 1.856)\}$	Need {} or implied later for A1ft	M1A1ft			
	$\frac{1}{2} \times 0.5 \left\{ (0+0) + 2 \left(5.866 + "6.272" + 5.210 + "3.634" + 1.856 \right) \right\}$					
	$= \frac{1}{4} \times 45.676$					
	= 11.42 cao		A1			
			(4)			
			[6]			

Question number	Scheme	Marks
23 (a)	x00.250.50.751y11.2511.4941.7412	B1, B1 (2)
(b)	$\frac{1}{2} \times 0.25$, $\{(1+2)+2(1.251+1.494+1.741)\}$ o.e.	B1, M1,A1 ft
	=1.4965	A1 (4)
		6 marks
Notes	 (a) first B1 for 1.494 and second B1 for 1.741 (1.740 is B0) Wrong accuracy e.g. 1.49, 1.74 is B1B0 (b) B1: Need ½ of 0.25 or 0.125 o.e. M1: requires first bracket to contain first plus last values and second bracket additional values from the three in the table. If the only mistake is to omit of second bracket this may be regarded as a slip and M mark can be allowed (A term forfeits the M mark however) 	one value from
	x values: M0 if values used in brackets are x values instead of y values	
	A1ft follows their answers to part (a) and is for {correct expression} Final A1: Accept 1.4965, 1.497. or 1.50 only after correct work. (No follow the special case below following 1.740 in table) Separate trapezia may be used : B1 for 0.125, M1 for $\frac{1}{2}h(a+b)$ used 3 or 4 to if it is all correct) e.g., 0.125(1+ 1.251) + 0.125(1.251+1.494) + 0.125(1.741 + 2) is M1 A0 equivalent to missing one term in { } in main scheme	
	Special Case: Bracketing mistake: i.e. $0.125(1+2) + 2(1.251+1.494+1.741)$ scores B1 M1 A0 A0 for 9.347 If the final answer implies that the calculati has been done correctly i.e. 1.4965 (then full marks can be given). Need to see trapezium rule – answer only (with no working) is 0/4 any d review	
	Special Case; Uses 1.740 to give 1.49625 or 1.4963 or 1.496 or 1.50 gets, B1 B0 B1M1A1ft then A1 (lose 1 mark)	
	NB Bracket is 11.972	

Question number 24 (a)					Sch	eme				Marks
27 (a)			1	1.5	2	2.5	3	3.5	4	
		x	1	1.5	2	2.3	5	5.5	4	
		у	16.5	7.361	4	2.31	1.278	0.556	0	B1, B1
	1									(2)
(b)	$\frac{1}{2}$	×0.5,	{(16.5+	(0) + 2(7.3)	61+4+2	2.31+1.2	78+0.556	j)}		B1, M1A1ft
	= 1	1.88 (or	answers	listed belov	w in note)				A1 (4)
Notes										6
Alternative	$\frac{1}{\text{or } 1}$ sch $\frac{1}{2}$ fina A1 A1	(a) B1 for 4 or any correct equivalent e.g. 4.000 B1 for 2.31 or 2.310 (b) B1: Need 0.25 or $\frac{1}{2}$ of 0.5 M1: requires first bracket to contain first y value plus last y value (0 may be omitted for be at end) and second bracket to include no additional y values from those in the scheme. They may however omit one value as a slip. N.B. Special Case - Bracketing mistake $\frac{1}{2} \times 0.5(16.5+0) + 2(7.361+4+2.31+1.278+0.556)$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks) A1ft: This should be correct but ft their 4 and 2.31 A1 : Accept 11.8775 or 11.878 or 11.88 only								
Alternative Method for (b)	-	-	-	nay be use their "4"			2			times (and
				o use traj view In p	-		-		working	g) is 0/4 -any

Question Number	Scheme	Marks
25.	(a) 2.35, 3.13, 4.01 (One or two correct B1 B0, all correct B1 B1) <u>Important</u> : If part (a) is blank, or if answers have been crossed out and no replacement answers are visible, please send to Review as 'out of clip'.	B1 B1 (2)
	(b) $\frac{1}{2} \times 0.2$ (or equivalent numerical value)	B1
	$k \{(1+5)+2(1.65+p+q+r)\}, k \text{ constant}, k \neq 0 \text{(See notes below)} \\ = 2.828 \text{(awrt 2.83, allowed even after minor slips in values)}$	M1 A1 A1
	The fractional answer $\frac{707}{250}$ (or other fraction wrt 2.83) is also acceptable. Answers with no working score no marks.	(4)
	 (a) Answers must be given to 2 decimal places. <u>No marks</u> for answers given to only 1 decimal place. 	6
	(b) The <i>p</i> , <i>q</i> and <i>r</i> below are positive numbers, none of which is equal to any of: 1, 5, 1.65, 0.2, 0.4, 0.6 or 0.8	
	M1 A1: $k\{(1+5)+2(1.65+p+q+r)\}$ M1 A0: $k\{(1+5)+2(1.65+p+q)\}$ or $k\{(1+5)+2(p+q+r)\}$ M0 A0: $k\{(1+5)+2(1.65+p+q+r+other value(s))\}$	
	Note that if the only mistake is to <u>omit</u> a value from the second bracket, this is considered as a slip and the M mark is allowed.	
	<u>Bracketing mistake</u> : i.e. $\frac{1}{2} \times 0.2(1+5) + 2(1.65+2.35+3.13+4.01)$	
	instead of $\frac{1}{2} \times 0.2\{(1+5)+2(1.65+2.35+3.13+4.01)\}$, so that only	
	the $(1 + 5)$ is multiplied by 0.1 scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given).	
	<u>Alternative</u> : Separate trapezia may be used, and this can be marked equivalently.	

Question Number	Scheme	Ma	arks
26 (a)	$x = 2$ gives 2.236 (allow AWRT) Accept $\sqrt{5}$	B1	
	x = 2.5 gives 2.580 (allow AWRT) Accept 2.58	B1	(2)
(b)	$x = 2.5 \text{ gives } 2.580 \text{ (allow AWRT) Accept } 2.58$ $\left(\frac{1}{2} \times \frac{1}{2}\right), \left[(1.414 + 3) + 2(1.554 + 1.732 + 1.957 + 2.236 + 2.580)\right]$ $= 6.133 \text{ (AWPT } 6.13 \text{ even following minor slips)}$	B1,[N	11A1ft]
	= 6.133 (AWRT 6.13, even following minor slips)	A1	(4)
(c)	Overestimate	D1	
		B1	
	'Since the trapezia lie <u>above the curve</u> ', or an equivalent explanation, or sketch of (one or more) trapezia above the curve on a diagram (or on the given diagram, in which case there should be reference to this). (Note that there must be some reference to a trapezium or trapezia in the explanation or diagram).	dB1	(2) [8]
(b)	B1 for $\frac{1}{2} \times \frac{1}{2}$ or equivalent.		
	For the M mark, the first bracket must contain the 'first and last' values, and the second bracket (which must be multiplied by 2) must have no additional values. If the only mis <u>omit</u> one of the values from the second bracket, this can be considered as a slip and the be allowed.	stake is	
	Bracketing mistake: i.e. $\left(\frac{1}{2} \times \frac{1}{2}\right)(1.414 + 3) + 2(1.554 + 1.732 + 1.957 + 2.236 + 2.580)$		
	scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given).		
	<u>Alternative</u> : Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{4}(1.414+1.554) + \frac{1}{4}(1.554+1.732) + \dots + \frac{1}{4}(2.580+3)\right]$		
	1 st A1ft for correct expression, ft their 2.236 and their 2.580		
(c)	1^{st} B1 for 'overestimate', ignoring earlier mistakes and ignoring any reasons given. 2^{nd} B1 is dependent upon the 1^{st} B1 (overestimate).		

Ques Numb		Scheme	Marks		
27		3.84, 4.14, 4.58 (Any one correct B1 B0. All correct B1 B1)	B1 B1	(2)	
	(b)	$\frac{1}{2} \times 0.4, \left\{ (3+4.58) + 2(3.47+3.84+4.14+4.39) \right\}$ = 7.852 (awrt 7.9)	B1, M1 A1	ft	
		= 7.852 (awrt 7.9)	A1	(4) [6]	
Notes	s (a)	B1 for one answer correct Second B1 for all three correct			
		Accept awrt ones given or exact answers so $\sqrt{21}$, $\sqrt{\left(\frac{369}{25}\right)}$ or $\frac{3\sqrt{41}}{5}$, and	$\sqrt{\left(\frac{429}{25}\right)}$ or	[
	(b)	$\frac{\sqrt{429}}{5}$, score the marks. B1 is for using 0.2 or $\frac{0.4}{2}$ as $\frac{1}{2}h$.			
		M1 requires first bracket to contain first plus last values and second bracket to include no additional values from those in the table. If the only mistake is to omit one value from 2^{nd} bracket this may be regarded as a slip an can be allowed (An extra repeated term forfeits the M mark however) <i>x</i> values: M0 if values used in brackets are <i>x</i> values instead of <i>y</i> values. Separate trapezia may be used : B1 for 0.2, M1 for $\frac{1}{2}h(a+b)$ used 4 or 5 times (and A1 ft all e.g $0.2(3+3.47)+0.2(3.47+3.84)+0.2(3.84+4.14)+0.2(4.14+4.58)$ is M1 A0			
		equivalent to missing one term in { } in main scheme A1ft follows their answers to part (a) and is for {correct expression}			
Speci	ial	Final A1 must be correct. (No follow through)			
cases		Bracketing mistake: i.e. $\frac{1}{2} \times 0.4(3+4.58) + 2(3.47+3.84+4.14+4.39)$			
		scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given).			
		Need to see trapezium rule – answer only (with no working) is 0/4.			

Question number	Scheme	Marks	
28.	(a) 1.732, 2.058, 5.196 awrt (One or two correct B1 B0, All correct B1 B1)	B1 B1 (2)	
	(b) $\frac{1}{2} \times 0.5$	B1	
	$ = \{(1.732 + 5.196) + 2(2.058 + 2.646 + 3.630)\} $	M1 A1ft	
	= 5.899 (awrt 5.9, allowed even after minor slips in values)	A1	(4)
			6
	(a) Accept awrt (but <u>less</u> accuracy loses these marks). Also accept <u>exact</u> answers, e.g. $\sqrt{3}$ at $x = 0$, $\sqrt{27}$ or $3\sqrt{3}$ at $x = 2$.		
	(b) For the M mark, the first bracket must contain the 'first and last' values, and the second bracket must have no additional values. If the only mistake is to <u>omit</u> one of the values from the second bracket, this can be considered as a slip and the M mark can be allowed.		
	Bracketing mistake: i.e. $\frac{1}{2} \times 0.5(1.732 + 5.196) + 2(2.058 + 2.646 + 3.630)$		
	scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given).		
	<u>x values</u> : M0 if the values used in the brackets are x values instead of y values.		
	Alternative: Separate trapezia may be used, and this can be marked equivalently.		
	$\left[\frac{1}{4}(1.732+2.058) + \frac{1}{4}(2.058+2.646) + \frac{1}{4}(2.646+3.630) + \frac{1}{4}(3.630+5.196)\right]$		
		<u> </u>	

Question Number	Scheme	Marks
29. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{e}^{-2x} + 2x$	M1A1
	At $x = 0$ $\frac{dy}{dx} = -2 \Rightarrow \frac{dx}{dy} = \frac{1}{2}$	M1
	Equation of normal is $y - (-2) = \frac{1}{2}(x - 0) \Rightarrow y = \frac{1}{2}x - 2$	M1 A1
		(5)
(b)	$y = e^{-2x} + x^2 - 3$ meets $y = \frac{1}{2}x - 2$ when $e^{-2x} + x^2 - 3 = "\frac{1}{2}x - 2"$	
	$x^2 = 1 + \frac{1}{2}x - e^{-2x}$	M1
	$x = \sqrt{1 + \frac{1}{2}x - e^{-2x}} *$	A1*
		(2)
(c)	$x_{2} = \sqrt{1 + 0.5 - e^{-2}}$ $x_{2} = 1.168, x_{3} = 1.220$	M1
	$x_2 = 1.168, x_3 = 1.220$	A1
		(2)
a)		(9 marks)

M1: Attempts to differentiate with $e^{-2x} \rightarrow Ae^{-2x}$ with any non -zero A, even 1.

Watch for $e^{-2x} \rightarrow Ae^{2x}$ which is M0 A0

$$\mathbf{A1:} \ \frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{e}^{-2x} + 2x$$

M1: A correct method of finding the gradient of the normal at x = 0

To score this the candidate must find the negative reciprocal of $\frac{dy}{dx}\Big|_{x=0}$

So for example candidates who find $\frac{dy}{dx} = e^{-2x} + 2x$ should be using a gradient of -1Candidates who write down $\frac{dy}{dx} = -2$ (from their calculators?) have an opportunity to score this mark and the next.

M1: An attempt at the equation of the normal at (0, -2)

To score this mark the candidate must be using the point (0, -2) and a gradient that has been

Look for
$$y - (-2) = changed \left| \frac{dy}{dx} \right|_{x=0} (x-0)$$
 or $y = mx - 2$ where $m = changed \left| \frac{dy}{dx} \right|_{x=0}$

If there is an attempt using y = mx + c then it must proceed using (0, -2) with $m = changed \left| \frac{dy}{dx} \right|_{x=0}$

A1: $y = \frac{1}{2}x - 2$ cso with as well as showing the correct differentiation.

So reaching
$$y = \frac{1}{2}x - 2$$
 from $\frac{dy}{dx} = -2e^{2x} + 2x$ is A0

If it is not simplified (or written in the required form) you may award this if $y = \frac{1}{2}x - 2$ is seen in part (b)

(b)

M1: Equates $y = e^{-2x} + x^2 - 3$ and their y = mx + c, $m \neq 0$ and proceeds to $x^2 = ...$ Condone an attempt for this M mark where the candidate uses an adapted y = mx + c in an attempt to get the printed answer.

A1*: Proceeds to
$$x = \sqrt{1 + \frac{1}{2}x - e^{-2x}}$$
. It is a printed answer but you may accept a different order
 $x = \sqrt{1 - e^{-2x} + \frac{1}{2}x}$

For this mark, the candidate must start with a normal equation of $y = \frac{1}{2}x - 2$ oe found in (a). It can be awarded when the candidate finds the equation incorrectly, for example from $\frac{dy}{dx} = -2e^{2x} + 2x$

(c) **M1:** Sub $x_1 = 1$ in $x = \sqrt{1 + \frac{1}{2}x - e^{-2x}}$ to find x_2 . May be implied by $\sqrt{1 + 0.5 - e^{-2}}$ oe or awrt 1.17 **A1:** $x_2 = awrt 1.168$, $x_3 = awrt 1.220$ 3dp. Condone 1.22 for x_3

Mark these in the order given, the subscripts are not required and incorrect ones may be ignored.

Question Number	Scheme	Marks
30. (a)	At P $x = -2 \Longrightarrow y = 3$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{2x+5} - \frac{3}{2}$	M1, A1
	$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right _{x=-2} = \frac{5}{2} \Rightarrow \text{ Equation of normal is } y-3' = -\frac{2}{5} \left(x - (-2) \right)$	M1
	$\Rightarrow 2x + 5y = 11$	A1
		(5)
(b)	Combines $5y+2x=11$ and $y=2\ln(2x+5)-\frac{3x}{2}$ to form equation in x	
	$5\left(2\ln(2x+5)-\frac{3x}{2}\right)+2x=11$	M1
	$\Rightarrow x = \frac{20}{11}\ln(2x+5) - 2$	dM1 A1*
		(3)
(c)	Substitutes $x_1 = 2 \Longrightarrow x_2 = \frac{20}{11} \ln 9 - 2$	M1
	Awrt $x_2 = 1.9950$ and $x_3 = 1.9929$.	A1
		(2)
		(10 marks)

B1 y = 3 at point *P*. This may be seen embedded within their equation which may be a tangent

M1 Differentiates
$$\ln(2x+5) \rightarrow \frac{A}{2x+5}$$
 or equivalent. You may see $\ln(2x+5)^2 \rightarrow \frac{A(2x+5)}{(2x+5)^2}$

- A1 $\frac{dy}{dx} = \frac{4}{2x+5} \frac{3}{2}$ oe. It need not be simplified.
- M1 For using a correct method of finding the equation of the normal using their numerical value of $-\frac{dx}{dy}\Big|_{x=-2}$ as

the gradient. Allow for $(y-3') = -\frac{dx}{dy}\Big|_{x=-2}(x--2)$, oe.

At least one bracket must be correct for their (-2,3)

If the form y = mx + c is used it is scored for proceeding as far as c = ...

A1 $\pm k(5y+2x=11)$ It must be in the form ax+by=c as stated in the question

Score this mark once it is seen. Do not withhold it if they proceed to another form, y = mx + c for example If a candidate uses a graphical calculator to find the gradient they can score a maximum of B1 M0 A0 M1 A1

M1 For combining 'their' **linear** 5y + 2x = 11 with $y = 2\ln(2x+5) - \frac{3x}{2}$ to form equation in just *x*,

condoning slips on the rearrangement of their 5y + 2x = 11. Eg $2\ln(2x+5) - \frac{3x}{2} = \frac{11\pm 2x}{5}$ is OK

- dM1 Collects the two terms in x and proceeds to $ax = b \ln(2x+5) + c$ Allow numerical slips
- A1* This is a given answer. All aspects must be correct including bracketing
- (c)
- M1 Score for substituting $x_1 = 2 \Rightarrow x_2 = \frac{20}{11} \ln (2 \times 2 + 5) 2$ or exact equivalent This may implied by $x_2 = 1.99...$
- A1 Both values correct. Allow awrt $x_2 = 1.9950$ and $x_3 = 1.9929$ but condone $x_2 = 1.995$ Ignore subscripts. Mark on the first and second values given.

Question	Scheme	Marks
31.(a)	(i) 21 (ii) $4e^{2x} - 25 = 0 \Rightarrow e^{2x} = \frac{25}{4} \Rightarrow 2x = \ln\left(\frac{25}{4}\right) \Rightarrow x = \frac{1}{2}\ln\left(\frac{25}{4}\right), \Rightarrow x = \ln\left(\frac{5}{2}\right)$	B1 M1A1, A1
(b)	(iii) 25 $4e^{2x} - 25 = 2x + 43 \Rightarrow e^{2x} = \frac{1}{2}x + 17$	B1 (5) M1
	$\Rightarrow 2x = \ln\left(\frac{1}{2}x + 17\right) \Rightarrow x = \frac{1}{2}\ln\left(\frac{1}{2}x + 17\right)$	A1* (2)
(c)	$x_{1} = \frac{1}{2} \ln \left(\frac{1}{2} \times 1.4 + 17 \right) = awrt \ 1.44$ awrt $x_{1} = 1.4368, x_{2} = 1.4373$	M1
(d)	Defines a suitable interval 1.4365 and 1.4375	A1 (2) M1
	and substitutes into a suitable function $\text{Eg} 4e^{2x} - 2x - 68$, obtains correct values with both a reason and conclusion	A1 (11 marks) (2)

In part (a) accept points marked on the graph. If they appear on the graph and in the text, the text takes precedence. If they don't mark (a) as (i) (ii) and (iii) mark in the order given. If you feel unsure then please use the review system and your team leader will advise.

(a) (i)

B1 Sight of 21. Accept (0,21)

Do not accept just |4-25| or (21,0)

(a) (ii)

M1 Sets
$$4e^{2x} - 25 = 0$$
 and proceeds via $e^{2x} = \frac{25}{4}$ or $e^x = \frac{5}{2}$ to $x = ...$

Alternatively sets $4e^{2x} - 25 = 0$ and proceeds via $(2e^x - 5)(2e^x + 5) = 0$ to $e^x = ...$

A1
$$\frac{1}{2}\ln\left(\frac{25}{4}\right)$$
 or awrt 0.92

A1 cao
$$\ln\left(\frac{5}{2}\right)$$
 or $\ln 5 - \ln 2$. Accept $\left(\ln\left(\frac{5}{2}\right), 0\right)$

(a) (iii)

B1 k = 25 Accept also 25 or y = 25Do not accept just |-25| or x = 25 or $y = \pm 25$

(b)
M1 Sets
$$4e^{2x} - 25 = 2x + 43$$
 and makes e^{2x} the subject. Look for $e^{2x} = \frac{1}{4}(2x + 43 + 25)$ condoning sign slips. Condone $|4e^{2x} - 25| = 2x + 43$ and makes $|e^{2x}|$ the subject. Condone for both marks a solution with $x = a/a$.
An acceptable alternative is to proceed to $2e^{2x} = x + 34 \Rightarrow \ln 2 + 2x = \ln(x + 34)$ using In laws
A1* Proceeds correctly without errors to the correct solution. This is a given answer and the bracketing must be correct throughout. The solution must have come from $4e^{2x} - 25 = 2x + 43$ with the modulus having been taken correctly.
Allow $e^{2x} = \frac{1}{4}(2x + 43 + 25)$ going to $x = \frac{1}{2}\ln(\frac{1}{2}x + 17)$ without explanation
Allow $\frac{1}{2}\ln(\frac{1}{2}x + 17)$ appearing as $\frac{1}{2}\log_x(\frac{1}{2}x + 17)$ but not as $\frac{1}{2}\log(\frac{1}{2}x + 17)$.
If a candidate attempts the solution backwards they must proceed from
 $x = \frac{1}{2}\ln(\frac{1}{2}x + 17) \Rightarrow e^{2x} = \frac{1}{2}x + 17 \Rightarrow 4e^{2x} - 25 = 2x + 43$ for the M1
For the A1 it must be tied up with a minimal statement that this is $g(x) = 2x + 43$
(c)
M1 Subs 1.4 into the iterative formula in an attempt to find x_1 .
Score for $x_1 = \frac{1}{2}\ln(\frac{1}{2}x + 17)$ $x_1 = \frac{1}{2}\ln(17.7)$ or awrt 1.44
A1 awrt $x_1 = 1.4368$, $x_2 = 1.4373$ Subscripts are not important, mark in the order given please.
(d)
M1 For a suitable interval. Accept 1.4365 and 1.4375 (or any two values of a smaller range spanning the root: 1.4373) Continued iteration is M0
A1 Subslitues both values into a suitable function, which must be defined or implied by their working calculates both values correctly to 1 sig fig (rounded or truncated)
Suitable functions could be $\pm (4e^{2x} - 2x - 68)$, $\pm (x - \frac{1}{2}\ln(\frac{1}{2}x + 17))$, $\pm (2x - \ln(\frac{1}{2}x + 17))$.
Using $x - \frac{1}{2}\ln(\frac{1}{2}x + 17)$ f (1.4365) = -0.007 or -0.0008, f (1.4375) = +0.0001 or +0.0002
Using $2x^2 - x - 34$ f (1.4365) = -0.001 or -0.0002, f (1.4375) = +0.0001 or +0.0002
Using $2x^2 - \ln(\frac{1}{2}x + 17)$ f (1.4365) = -0.001 or -0.0002, f (1.4375) = +0.0001 or +0.0002
It is valid

Question Number	Scheme	Marks
32.(a)	2^{x+1} - $3 = 17$ - $x \neq 2^{x+1} = 20$ - x	M1
	$(x+1)\ln 2 = \ln(20-x) =$	dM1
	$x = \frac{\ln(20 - x)}{\ln 2} - 1$	A1*
		(3)
(b)	Sub $x_0 = 3$ into $x_{n+1} = \frac{\ln(20 - x_n)}{\ln 2} - 1, \Rightarrow x_1 = 3.087$ (awrt)	M1A1
	$x_2 = 3.080, x_3 = 3.081$ (awrt)	A1
		(3)
(c)	A = (3.1, 13.9) cao	M1,A1
		(2) (8 marks)
32.(a)Alt	2^{x+1} - $3 = 17$ - $x \neq 2^x = \frac{20 - x}{2}$	M1
	$x \ln 2 = \ln \frac{20 - x}{2} $ $P_x =$	dM1
	$x = \frac{\ln(20 - x)}{\ln 2} - 1$	A1*
		(3)
32. (a)	$x = \frac{\ln(20 - x)}{\ln 2} - 1 \Longrightarrow (x + 1)\ln 2 = \ln(20 - x)$	M1
backwards		dM1
	Hence $y = 2^{x+1} - 3$ meets $y = 17 - x$	A1*
		(3)

- (a)
- M1 Setting equations in x equal to each other and proceeding to make 2^{x+1} the subject
- dM1 Take ln's or logs of both sides, use the power law and proceed to x = ...
- A1* This is a given answer and all aspects must be correct including ln or \log_e rather than \log_{10} Bracketing on both (x+1) and $\ln(20-x)$ must be correct.

Eg
$$x + 1 \ln 2 = \ln(20 - x)$$
 P $x = \frac{\ln(20 - x)}{\ln 2} - 1$ is A0*

Special case: Students who start from the point $2^{x+1} = 20$ - x can score M1 dM1A0* (b)

- M1 Sub $x_0 = 3$ into $x_{n+1} = \frac{\ln(20 x_n)}{\ln 2} 1$ to find $x_1 = ..$ Accept as evidence $x_1 = \frac{\ln(20 - 3)}{\ln 2} - 1$, awrt $x_1 = 3.1$ Allow $x_0 = 3$ into the miscopied iterative equation $x_1 = \frac{\ln(20 - 3)}{\ln 2}$ to find $x_1 = ..$ Note that the answer to this, 4.087, on its own without sight of $\frac{\ln(20 - 3)}{\ln 2}$ is M0 A1 awrt 3 dp $x_1 = 3.087$
- A1 awrt $x_2 = 3.080$, $x_3 = 3.081$. Tolerate 3.08 for 3.080 Note that the subscripts are not important, just mark in the order seen
- (c) Note that this appears as B1B1 on e pen. It is marked M1A1

M1 For sight of 3.1 Alternatively it can be scored for substituting their value of x or a rounded value of x from (b) into either 2^{x+1} - 3 or 17 - x to find the y coordinate.

A1 (3.1,13.9)

Question Number	Scheme	Marks
33.(a)	$y_{2.1} = -0.224$, $y_{2.2} = (+)0.546$	M1
	Change of sign $\Rightarrow Q$ lies between	A1 (2)
(b)	At R $\frac{dy}{dx} = -2x\sin\left(\frac{1}{2}x^2\right) + 3x^2 - 3$	M1A1
	$-2x\sin\left(\frac{1}{2}x^{2}\right)+3x^{2}-3=0 \Rightarrow \qquad x=\sqrt{1+\frac{2}{3}x\sin\left(\frac{1}{2}x^{2}\right)} \qquad \text{cso}$	M1A1*
		(4)
(c)	$x_1 = \sqrt{1 + \frac{2}{3} \times 1.3 \sin\left(\frac{1}{2} \times 1.3^2\right)}$	M1
	$x_1 = $ awrt 1.284 $x_2 = $ awrt 1.276	A1 (2)
		(8 marks)

- M1 Sub both x = 2.1 and x = 2.2 into y and achieve at least one correct to 1 sig fig In radians $y_{2.1} = awrt - 0.2$ $y_{2.2} = awrt/truncating to 0.5$ In degrees $y_{2.1} = awrt 3$ $y_{2.2} = awrt 4$
- A1 Both values correct to 1 sf with a reason and a minimal conclusion. $y_{2.1} = awrt - 0.2$ $y_{2.2} = awrt/truncating to 0.5$

Accept change of sign, positive and negative, $y_{2.1} \times y_{2.2} = -1$ as reasons and hence root, Q lies between 2.1 and 2.2, QED as a minimal conclusion.

Accept a smaller interval spanning the root of 2.131528, say 2.13 and 2.14, but the A1 can only be scored when the candidate refers back to the question, stating that as root lies between 2.13 and 2.14 it lies between 2.1 and 2.2 (b)

M1 Differentiating to get
$$\frac{dy}{dx} = ...\sin\left(\frac{1}{2}x^2\right) + 3x^2 - 3$$
 where ... is a constant, or a

linear function in *x*.

A1
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2x\sin\left(\frac{1}{2}x^2\right) + 3x^2 - 3$$

M1 Sets their $\frac{dy}{dx} = 0$ and proceeds to make the x of their $3x^2$ the subject of the formula

formula

Alternatively they could state $\frac{dy}{dx} = 0$ and write a line such as

$$2x\sin\left(\frac{1}{2}x^2\right) = 3x^2 - 3$$
, before making the x of $3x^2$ the subject of the formula

A1* Correct given solution.
$$x = \sqrt{1 + \frac{2}{3}x\sin(\frac{1}{2}x^2)}$$

Watch for missing x's in their formula

(c)

M1 Subs x= 1.3 into the iterative formula to find at least x_1 .

This can be implied by $x_1 = awrt 1.3$ (not just 1.3)

or
$$x_1 = \sqrt{1 + \frac{2}{3} \times 1.3 \sin\left(\frac{1}{2} \times 1.3^2\right)}$$
 or $x_1 = \text{awrt } 1.006 \text{ (degrees)}$

A1 Both answers correct (awrt 3 decimal places). The subscripts are not important. Mark as the first and second values seen. $x_1 = awrt 1.284$ $x_2 = awrt 1.276$

Question Number	Scheme	Marks	
34. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\mathrm{e}^{4x} + 4x^3 + 8$	M1, A1	
	Puts $\frac{dy}{dx} = 0$ to give $x^3 = -2 - e^{4x}$	A1 *	(3)
	$y = x^3$ Shape of $y = -2 - e^{4x}$	B1 B1	
(b)	$y = -2 - e^{4x}$ cuts y axis at (0,-3) $y = -2 - e^{4x}$ has asymptote at	B1 B1	
	y = 2 c has asymptote at $y = -2$	B1	(4)
(c)	Only one crossing point	B1	(1)
(d)	-1.26376, -1.26126 Accept answers which round to these answers to 5dp	M1 A1	(2)
(e)	α = -1.26 and so turning point is at (-1.26, -2.55)	M1 A1ca (12 mark	(2)

M1 Two (of the four) terms differentiated correctly

A1 All correct
$$\frac{dy}{dx} = 4e^{4x} + 4x^3 + 8$$

A1*States or sets $\frac{dy}{dx} = 0$, and proceeds correctly to achieve printed answer $x^3 = -2 - e^{4x}$.

(b)

- B1 Correct shape and position for $y = x^3$. It must appear to go through the origin. It must only appear in Quadrants 1 and 3 and have a gradient that is always ≥ 0 . The gradient should appear large at either end. Tolerate slips of the pen.See practice and qualification for acceptable curves.
- B1 Correct shape for $y = -2 e^{4x}$, its position is not important for this mark. The gradient must be approximately zero at the left hand end and increase negatively as you move from left to right along the curve. See practice and qualification for acceptable curves.
- B1 Score for $y = -2 e^{4x}$ cutting or meeting the y axis at (0,-3). Its shape is not important. Accept for the intention of (0,-3), -3 being marked on the y – axis as well as (-3,0) Do not accept 3 being marked on the negative y axis.
- B1 Score for $y = -2 e^{4x}$ having an asymptote stated as y = -2. This is dependent upon the curve appearing to have an asymptote there. Do not accept the asymptote marked as '-2' or indeed x = -2. See practice and qualification for acceptable solutions.
- (c)
- B1 Score for a statement to the effect that the graphs cross at one point. Accept minimal statements such as 'one intersection'. Do not award if their diagram shows more than one intersection. They must have a diagram (which may be incorrect)
- (d)
- M1 Awarded for applying the iteration formula once. Possible ways in which this can be scored are the sight of $\sqrt[3]{-2-e^{-4}}$, $(-2-e^{4\times-1})^{\frac{1}{3}}$ or awrt -1.264
- A1 Both values correct awrt –1.26376, -1.26126 5dps. The subscripts are unimportant for this mark. Score as the first and second values seen.
- (e)
- M1 Score for EITHER rounding their value in part (c) to 2 dp OR finding turning point of *C* by substituting a value of *x* generated from part (d) into $y = e^{4x} + x^4 + 8x + 5$ in order to find the *y* value. You may accept the appearance of a *y* value as evidence of finding the turning point (as long as an *x* value appears to be generated from part (d) and the correct equation is used.)
- A1 (-1.26, -2.55) and correct solution only. It is a deduction and you cannot accept the appearance of a correct answer for two marks.

Question Number	Scheme	Marks		
35(a)	$f'(x) = 50x^2e^{2x} + 50xe^{2x} \qquad \text{oe.}$	M1A1		
	Puts $f'(x) = 0$ to give $x = -1$ and $x = 0$ or one coordinate	dM1A1		
	Obtains $(0,-16)$ and $(-1, 25e^{-2}-16)$ CSO	A1		
		(5)		
(b)	Puts $25x^2e^{2x} - 16 = 0 \Rightarrow x^2 = \frac{16}{25}e^{-2x} \Rightarrow x = \pm \frac{4}{5}e^{-x}$	B1*		
		(1)		
(c)	Subs $x_0 = 0.5$ into $x = \frac{4}{5}e^{-x} \implies x_1 = awrt \ 0.485$	M1A1		
	$\Rightarrow x_2 = \text{awrt } 0.492, x_3 = \text{awrt } 0.489$	A1 (3)		
(d)	$\alpha = 0.49$ f (0.485) = -0.487, f (0.495) = (+)0.485, sign change and deduction	B1 B1		
		(2) (11 marks)		
	Notes for Question 35			
No marks (a)	can be scored in part (a) unless you see differentiation as required by the questi	on.		
M1	Uses $vu'+uv'$. If the rule is quoted it must be correct.			
	It can be implied by their $u =, v =, u' =, v' =$ followed by their $vu'+uv'$			
A1	If the rule is not quoted nor implied only accept answers of the form $Ax^2e^{2x} + Bxe^{2x}$ f'(x) = $50x^2e^{2x} + 50xe^{2x}$.	x		
	Allow un simplified forms such as $f'(x) = 25x^2 \times 2e^{2x} + 50x \times e^{2x}$			
dM1	Sets $f'(x) = 0$, factorises out/ or cancels the e^{2x} leading to at least one solution of x. This is dependent upon the first M1 being scored.	x		
A1	Both $x = -1$ and $x = 0$ or one complete coordinate. Accept $(0, -16)$ and $(-1, 25e^{-2}-16)$ or $(-1, awrt - 12.6)$			
A1	CSO. Obtains both solutions from differentiation. Coordinates can be given in any $x = -1, 0$ $y = \frac{25}{e^2} - 16, -16$ or linked together by coordinate pairs (0,-16) and (-the 'pairs' must be correct and exact.	-		

	Notes for Question 35 Continued
-	
	This is a show that question and all elements must be seen
	Candidates must 1) State that $f(x)=0$ or writes $25x^2e^{2x}-16=0$ or $25x^2e^{2x}=16$
	2) Show at least one intermediate (correct) line with either
	x^{2} or x the subject. Eg $x^{2} = \frac{16}{25}e^{-2x}$, $x = \sqrt{\frac{16}{25}e^{-2x}}$ oe
	or square rooting $25x^2e^{2x} = 16 \Longrightarrow 5xe^x = \pm 4$
	or factorising by DOTS to give $(5xe^{x} + 4)(5xe^{x} - 4) = 0$
	3) Show the given answer $x = \pm \frac{4}{5} e^{-x}$.
	Condone the minus sign just appearing on the final line. A 'reverse' proof is acceptable as long as there is a statement that $f(x)=0$
	Substitutes $x_0 = 0.5$ into $x = \frac{4}{5}e^{-x} \Longrightarrow x_1 = \dots$
	This can be implied by $x_1 = \frac{4}{5}e^{-0.5}$, or awrt 0.49
	$x_1 = $ awrt 0.485 3dp. Mark as the first value given. Don't be concerned by the subscript.
	$x_2 = $ awrt 0.492, $x_3 = $ awrt 0.489 3dp. Mark as the second and third values given.
	States $\alpha = 0.49$
	Justifies by
	either calculating correctly $f(0.485)$ and $f(0.495)$ to awrt 1sf or 1dp,
	f(0.485) = -0.5, f(0.495) = (+)0.5 rounded
	f(0.485) = -0.4, $f(0.495) = (+)0.4$ truncated
	giving a reason – accept change of sign, $>0 < 0$ or $f(0.485) \times f(0.495) < 0$
	and giving a minimal conclusion. Eg. Accept hence root or $\alpha = 0.49$ A smaller interval containing the root may be used, eg f (0.49) and f (0.495). Root = 0.49007
	or by stating that the iteration is oscillating
	or by calculating by continued iteration to at least the value of x_4 = awrt 0.491 and stating (or seeing each value round to) 0.49

Question Number	Scheme	
36	(a)	
	$y=10-x$ $y = e^x$ Shape for $y=10-x$	B1
	10 Shape for $y = e^x$	B1
	$\begin{array}{c} 1 \\ \hline 10 \\ x \end{array}$ co- ordinates correct (0,10),(10,0) and (0,1)	B1
		(3)
	(b) One solution as there is one point of intersection	B1√
		(1)
	(c) Sub $x=2$ and $x=3$ into $f(x) = e^x - 10 + x$	
	f(2)=-0.61, f(3)=(+)13.1	M1
	Both correct to 1sf, reason (change of sign) and conclusion (hence root)	A1
		(2)
	(d) Substitutes $x_1 = 2$ into $x_{n+1} = \ln(10 - x_n)$	M1
	$x_2 = 2.0794, x_3 = 2.0695 x_4 = 2.0707$	A1,A1
		(3)
		(9 marks)

Question Number	Scheme	Marks
37.(a)	$f(x) = 0 \Longrightarrow x^2 + 3x + 1 = 0$	
	$\Rightarrow x = \frac{-3 \pm \sqrt{5}}{2} = \text{awrt -} 0.382, -2.618$	M1A1
		(2)
(b)	Uses $vu'+uv'$ f'(x) = $e^{x^2}(2x+3) + (x^2+3x+1)e^{x^2} \times 2x$	M1A1A1
		(3)
(c)	$e^{x^2}(2x+3) + (x^2+3x+1)e^{x^2} \times 2x = 0$	
	$\Rightarrow e^{x^2} \left\{ 2x^3 + 6x^2 + 4x + 3 \right\} = 0$	M1
	$\Rightarrow x(2x^2+4) = -3(2x^2+1)$	M1
	$\Rightarrow x = -\frac{3(2x^2 + 1)}{2(x^2 + 2)}$	A1*
		(3)
(d)	Sub $x_0 = -2.4$ into $x_{n+1} = -\frac{3(2x_n^2 + 1)}{2(x_n^2 + 2)}$	
	$x_1 = awrt - 2.420, \ x_2 = awrt - 2.427 \ x_3 = awrt - 2.430$	M1A1,A1
		(3)
(e)	Sub x = - 2.425 and -2.435 into f '(x) and start to compare signs	
	f '(-2.425) = +22.4, f '(-2.435) = -15.02	M1
	Change in sign, hence $f'(x) = 0$ in between. Therefore $\alpha = -2.43$ (2dp)	A1
		(2)
		(13 marks)
Alt 7.(c)	$x = -\frac{3(2x^2 + 1)}{2(x^2 + 2)} \implies 2x(x^2 + 2) = -3(2x^2 + 1) \implies 2x^3 + 6x^2 + 4x + 3 = 0$	M1
	f'(x) = $e^{x^2} \{ 2x^3 + 6x^2 + 4x + 3 \} = 0$ when $2x^3 + 6x^2 + 4x + 3 = 0$	M1
	Hence the minimum point occurs when $x = -\frac{3(2x^2 + 1)}{(2x^2 + 4)}$	A1

Questio Numbe	Nenomo	Marks
Alt 1 37	(e) Sub $x = -2.425$ and -2.435 into cubic part of $f'(x) = 2x^3 + 6x^2 + 4x + 3$ and start to compare signs	
	Adapted f'(-2.425) = +0.06, f'(-2.435) = -0.04	M1
	Change in sign, hence $f'(x) = 0$ in between. Therefore $\alpha = -2.43$ (2dp)	A1
		(2)
Alt 2 37 (e)	Sub x= - 2.425, -2.43 and -2.435 into $f(x) = (x^2 + 3x + 1)e^{x^2}$ and start to compare sizes	
	f(-2.425) = -141.2, f(-2.435) = -141.2, f(-2.43) = -141.3	M1
	$f(-2.43) < f(-2.425), f(-2.43) < f(-2.435)$. Therefore $\alpha = -2.43$ (2dp)	A1
		(2)
	Notes for Question 37	
A1	Solves $x^2 + 3x + 1 = 0$ by completing the square or the formula, producing two 'non integrate accept factorisation here . Accept awrt -0.4 and -2.6 for this mark Answers correct. Accept awrt -0.382, -2.618. Accept just the answers for both marks. Don't withhold the marks for incorrect labelling.	er answers. Do
M1 A1 (b) M1 If the	Solves $x^2 + 3x + 1 = 0$ by completing the square or the formula, producing two 'non integrated accept factorisation here . Accept awrt -0.4 and -2.6 for this mark Answers correct. Accept awrt -0.382, -2.618. . ccept just the answers for both marks. Don't withhold the marks for incorrect labelling. pplies the product rule $vu'+uv'$ to $(x^2+3x+1)e^{x^2}$. f the rule is quoted it must be correct and there must have been some attempt to differentiate rule is not quoted (nor implied by their working, ie. terms are written out $u=,v=$	
M1 A1 (b) M1 A1 A1	Solves $x^2 + 3x + 1 = 0$ by completing the square or the formula, producing two 'non integrated accept factorisation here . Accept awrt -0.4 and -2.6 for this mark Answers correct. Accept awrt -0.382, -2.618. .ccept just the answers for both marks. Don't withhold the marks for incorrect labelling. pplies the product rule $vu' + uv'$ to $(x^2 + 3x + 1)e^{x^2}$. f the rule is quoted it must be correct and there must have been some attempt to differentiate e rule is not quoted (nor implied by their working, ie. terms are written out u=, u'=, v'=, v'=, of lowed by their vu'+uv') only accept answers of the form $\left(\frac{dy}{dx}\right) = f'(x) = e^{x^2}(Ax + B) + (x^2 + 3x + 1)Cxe^{x^2}$ One term of $f'(x) = e^{x^2}(2x+3) + (x^2 + 3x + 1)e^{x^2} \times 2x$ correct. There is no need to simplify	
M1 A1 (b) M1 A1 A1	Solves $x^2 + 3x + 1 = 0$ by completing the square or the formula, producing two 'non integrate accept factorisation here . Accept awrt -0.4 and -2.6 for this mark Answers correct. Accept awrt -0.382, -2.618. Accept just the answers for both marks. Don't withhold the marks for incorrect labelling. pplies the product rule $vu'+uv'$ to $(x^2 + 3x + 1)e^{x^2}$. If the rule is quoted it must be correct and there must have been some attempt to differentiate e rule is not quoted (nor implied by their working, ie. terms are written out 1=, u'=, v'=, v'=followed by their vu'+uv') only accept answers of the form $\left(\frac{dy}{dx}\right) = f'(x) = e^{x^2}(Ax + B) + (x^2 + 3x + 1)Cxe^{x^2}$ One term of $f'(x) = e^{x^2}(2x+3) + (x^2 + 3x + 1)e^{x^2} \times 2x$ correct.	
M1 A1 (b) M1 A1 A1 (c)	Solves $x^2 + 3x + 1 = 0$ by completing the square or the formula, producing two 'non integrated accept factorisation here . Accept awrt -0.4 and -2.6 for this mark Answers correct. Accept awrt -0.382, -2.618. .ccept just the answers for both marks. Don't withhold the marks for incorrect labelling. pplies the product rule $vu' + uv'$ to $(x^2 + 3x + 1)e^{x^2}$. f the rule is quoted it must be correct and there must have been some attempt to differentiate e rule is not quoted (nor implied by their working, ie. terms are written out u=, u'=, v'=, v'=, of lowed by their vu'+uv') only accept answers of the form $\left(\frac{dy}{dx}\right) = f'(x) = e^{x^2}(Ax + B) + (x^2 + 3x + 1)Cxe^{x^2}$ One term of $f'(x) = e^{x^2}(2x+3) + (x^2 + 3x + 1)e^{x^2} \times 2x$ correct. There is no need to simplify	ate both terms.
M1 A1 (b) M1 A1 A1 A1 (c) M1	Solves $x^2 + 3x + 1 = 0$ by completing the square or the formula, producing two 'non integrate accept factorisation here . Accept awrt -0.4 and -2.6 for this mark Answers correct. Accept awrt -0.382, -2.618. ccept just the answers for both marks. Don't withhold the marks for incorrect labelling. pplies the product rule $vu' + uv'$ to $(x^2 + 3x + 1)e^{x^2}$. f the rule is quoted it must be correct and there must have been some attempt to differentiate e rule is not quoted (nor implied by their working, ie. terms are written out 1=, u'=, v=, v'=followed by their $vu'+uv'$) only accept answers of the form $\left(\frac{dy}{dx}\right) = f'(x) = e^{x^2}(Ax + B) + (x^2 + 3x + 1)Cxe^{x^2}$ One term of $f'(x) = e^{x^2}(2x+3) + (x^2 + 3x+1)e^{x^2} \times 2x$ correct. There is no need to simplify A fully correct (un simplified) answer $f'(x) = e^{x^2}(2x+3) + (x^2 + 3x+1)e^{x^2} \times 2x$	ate both terms.

Notes on Question 37 Continued		
(c) Alt	ernative to (c) working backwards	
M1	Moves correctly from $x = -\frac{3(2x^2 + 1)}{2(x^2 + 2)}$ to $2x^3 + 6x^2 + 4x + 3 = 0$	
M1	States or implies that $f'(x) = 0$	
A1	Makes a conclusion to tie up the argument	
	For example, hence the minimum point occurs when $x = -\frac{3(2x^2 + 1)}{(2x^2 + 4)}$	
(d)		
M1	Sub $x_0 = -2.4$ into $x_{n+1} = -\frac{3(2x_n^2 + 1)}{2(x_n^2 + 2)}$	
	This may be implied by awrt -2.42, or $x_{n+1} = -\frac{3(2 \times -2.4^2 + 1)}{2(-2.4^2 + 2)}$	
A1	Awrt. $x_1 = -2.420$.	
A1	The subscript is not important. Mark as the first value given awrt $x_2 = -2.427$ awrt $x_3 = -2.430$	
AI	The subscripts are not important. Mark as the second and third values given	
(e)		
M1	Note that continued iteration is not allowed Sub x = - 2.425 and -2.435 into f'(x), starts to compare signs and gets at least one correct to 1 sf rounded or truncated.	
A1	Both values correct (1sf rounded or truncated), a reason and a minimal conclusion Acceptable reasons are change in sign, positive and negative and $f'(a) \times f'(b) < 0$	
	Minimal conclusions are hence $\alpha = -2.43$, hence shown, hence root	
Alt 1 u (e)	using adapted $f'(x)$	
M1	Sub x = - 2.425 and -2.435 into cubic part of f'(x), starts to compare signs and gets at least one correct to 1 sf rounded or truncated.	
A1 conclu	Both values correct of adapted $f'(x)$ correct (1sf rounded or truncated), a reason and a minimal usion	
	Acceptable reasons are change in sign, positive and negative and $f'(a) \times f'(b) < 0$	
	Minimal conclusions are hence $\alpha = -2.43$, hence shown, hence root	
	using $f(x)$	
(e) M1	Sub x= - 2.425, -2.43 and -2.435 into $f(x)$, starts to compare sizes and gets at least one correct to 4sf	
rounde		
A1	All three values correct of $f(x)$ correct (4sf rounded), a reason and a minimal conclusion	
	Acceptable reasons are $f(-2.43) < f(-2.425)$, $f(-2.43) < f(-2.435)$, a sketch	
	Minimal conclusions are hence $\alpha = -2.43$, hence shown, hence root	

	Question Number	Scheme	Marks
	38.	(a) $0 = e^{x-1} + x - 6 \Rightarrow x = \ln(6-x) + 1$	M1A1* (2)
		(b) Sub $x_0 = 2$ into $x_{n+1} = \ln(6 - x_n) + 1 \Rightarrow x_1 = 2.3863$ AWRT 4 dp. $x_2 = 2.2847 x_3 = 2.3125$	M1, A1 A1
		(c) Chooses interval [2.3065,2.3075]	(3) M1
		g(2.3065)=-0.0002(7), g(2.3075)=0.004(4)	dM1
		Sign change, hence root (correct to 3dp)	A1 (3)
			(8 marks)
(a)	M1 A1*	Sets $g(x)=0$, and using correct <i>ln</i> work, makes the <i>x</i> of the e^{x-1} term the subject Look for $e^{x-1} + x - 6 = 0 \Rightarrow e^{x-1} = \pm 6 \pm x \Rightarrow x = \ln(\pm 6 \pm x) \pm 1$ Do not accept $e^{x-1} = 6 - x$ without firstly seeing $e^{x-1} + x - 6 = 0$ or a statement cso. $x = \ln(6-x) + 1$ Note that this is a given answer (and a proof).	
		'Invisible' brackets are allowed for the M but not the A Do not accept recovery from earlier errors for the A mark. The solution belo $0 = e^{x-1} + x - 6 \Rightarrow 0 = x - 1 + \ln(x - 6) \Rightarrow x = \ln(6 - x) + 1$	w scores 0 marks.
(b)	M1	Sub $x_0 = 2$ into $x_{n+1} = \ln(6 - x_n) + 1$ to produce a numerical value for x_1 . Evidence for the award could be any of $\ln(6-2)+1$, $\ln 4+1$, 2.3 or awrt	2.4
	A1	Answer correct to 4 dp $x_1 = 2.3863$.	
	A1	The subscript is not important. Mark as the first value given/found. Awrt 4 dp. $x_2 = 2.2847$ and $x_3 = 2.3125$	
		The subscripts are not important. Mark as the second and third values given/f	ound
(c) M1 dM1	Chooses the interval [2.3065,2.3075] or smaller containing the root 2.306558 Calculates $g(2.3065)$ and $g(2.3075)$ with at least one of these correct to 1sf. The answers can be rounded or truncated g(2.3065) = -0.0003 rounded, $g(2.3065) = -0.0002$ truncated g(2.3075) = (+) 0.004 rounded and truncated	3641
	A1	Both values correct (rounded and truncated), A reason which could include change of sign, $>0 < 0$, $g(2.3065) \times g(2.3075) \times $	
Alte	ernative so	olution to (a) working backwards	

- M1 Proceeds from $x = \ln(6 x) + 1$ using correct exp work to=0
- A1 Arrives correctly at $e^{x-1} + x 6 = 0$ and makes a statement to the effect that this is g(x)=0

Alternative solution to (c) using $f(x) = \ln(6-x) + 1 - x$ {Similarly $h(x) = x - 1 - \ln(6-x)$ }

- M1 Chooses the interval [2.3065,2.3075] or smaller containing the root 2.306558641
- dM1 Calculates f(2.3065) and f(2.3075) with at least 1 correct rounded or truncated f(2.3065) = 0.000074. Accept 0.00007 rounded or truncated. Also accept 0.0001

f(2.3075) = -0.0011.. Accept -0.001 rounded or truncated

Question Number	Scheme	Marks
39.	(a) $x^3 + 3x^2 + 4x - 12 = 0 \Rightarrow x^3 + 3x^2 = 12 - 4x$ $\Rightarrow x^2(x+3) = 12 - 4x$ $\Rightarrow x^2 = \frac{12 - 4x}{(x+3)} \Rightarrow x = \sqrt{\frac{4(3-x)}{(x+3)}}$	M1 dM1A1*
	(b) $x_1 = 1.41$, <i>awrt</i> $x_2 = 1.20$ $x_3 = 1.31$ (c) Choosing (1.2715, 1.2725)	(3) M1A1,A1 (3)
	or tighter containing root 1.271998323	M1
	f(1.2725) = (+)0.00827 $f(1.2715) = -0.00821$	M1
	Change of sign⇒α=1.272	A1 (3) (9 marks)

Notes

- (a) M1 Moves from f(x)=0, which may be implied by subsequent working, to $x^2(x\pm 3) = \pm 12 \pm 4x$ by separating terms and factorising in either order. No need to factorise rhs for this mark.
 - dM1 Divides by '(x+3)' term to make x^2 the subject, then takes square root. No need for rhs to be factorised at this stage
 - A1* CSO. This is a given solution. Do not allow sloppy algebra or notation with root on just numerator for instance. The 12-4x needs to have been factorised.

(b) Note that this appears B1,B1,B1 on EPEN

M1 An attempt to substitute $x_0 = 1$ into the iterative formula to calculate x_1 .

This can be awarded for the sight of $\sqrt{\frac{4(3-1)}{(3+1)}}$, $\sqrt{\frac{8}{4}}$, $\sqrt{2}$ and even 1.4

- A1 $x_1 = 1.41$. The subscript is not important. Mark as the first value found, $\sqrt{2}$ is A0
- A1 $x_2 = awrt 1.20$ $x_3 = awrt 1.31$. Mark as the second and third values found. Condone 1.2 for x_2

(c) Note that this appears M1A1A1 on EPEN

- M1 Choosing the interval (1.2715,1.2725) or tighter containing the root 1.271998323. Continued iteration is not allowed for this question and is M0
- M1 Calculates f(1.2715) and f(1.2725), or **the** tighter interval with at least 1 correct to 1 sig fig rounded or truncated. Accept f(1.2715) = -0.008 1sf rounded or truncated. Also accept f(1.2715) = -0.01 2dp Accept f(1.2725) = (+)0.008 1sf rounded or truncated. Also accept f(1.2725) = (+)0.01 2dp
- A1 Both values correct (see above), A valid reason; Accept change of sign, or >0 <0, or $f(1.2715) \times f(1.2725) <0$ And a (minimal) conclusion; Accept hence root or α =1.272 or QED or

Alternative to (a) working backwards

39(a)

$$x = \sqrt{\frac{4(3-x)}{(x+3)}} \Rightarrow x^2 = \frac{4(3-x)}{(x+3)} \Rightarrow x^2(x+3) = 4(3-x)$$
 M1

$$x^{3} + 3x^{2} = 12 - 4x \Longrightarrow x^{3} + 3x^{2} + 4x - 12 = 0$$
 dM1

A1*

(3)

States that this is f(x)=0

Alternative starting with the given result and working backwards

- M1 Square (both sides) and multiply by (*x*+3)
- dM1 Expand brackets and collect terms on one side of the equation =0
- A1 A statement to the effect that this is f(x)=0

An acceptable answer to (c) with an example of a tighter interval

- M1 Choosing the interval (1.2715, 1.2720). This contains the root 1.2719(98323)
- M1 Calculates f(1.2715) and f(1.2720), with at least 1 correct to 1 sig fig rounded or truncated. Accept f(1.2715) = -0.008 1sf rounded or truncated f(1.2715) = -0.01 2dp Accept f(1.2720) = (+)0.00003 1sf rounded or f(1.2720) = (+)0.00002 truncated 1sf
- A1 Both values correct (see above),

A valid reason; Accept change of sign, or >0 <0, or f(1.2715) ×f(1.2720)<0 And a (minimal) conclusion; Accept hence root or α =1.272 or QED or

x	f (x)
1.2715	-0.00821362
1.2716	-0.00656564
1.2717	-0.00491752
1.2718	-0.00326927
1.2719	-0.00162088
1.2720	+0.00002765
1.2721	+0.00167631
1.2722	+0.00332511
1.2723	+0.00497405
1.2724	+0.00662312
1.2725	+0.00827233

An acceptable answer to (c) using g(x) where g(x) = $\sqrt{\frac{4(3-x)}{(x+3)}} - x$

 2^{nd} M1 Calculates g(1.2715) and g(1.2725), or **the** tighter interval with at least 1 correct to 1 sig fig rounded or truncated.

g(1.2715) = 0.0007559. Accept g(1.2715) = awrt (+)0.0008 1sf rounded or awrt 0.0007 truncated. g(1.2725)=-0.00076105. Accept g(1.2725) = awrt -0.0008 1sf rounded or awrt -0.0007 truncated.

Question No		Marks
40	(a) $f(0.8) = 0.082, f(0.9) = -0.089$	M1
	Change of sign \Rightarrow root (0.8,0.9)	A1
		(2)
	(b)	
	$f'(x) = 2x - 3 - \sin\left(\frac{1}{2}x\right)$	M1 A1
	Sets $f'(x) = 0 \Rightarrow x = \frac{3 + \sin(\frac{1}{2}x)}{2}$	
	Sets $f'(x) = 0 \Rightarrow x = \frac{2}{2}$	M1A1*
		(4)
	(c) Sub x ₀ =2 into $x_{n+1} = \frac{3+\sin(\frac{1}{2}x_n)}{2}$	
	(c) Sub $x_0=2$ into $x_{n+1} = \frac{2}{2}$	M1
	x_1 =awrt 1.921, x_2 =awrt 1.91(0) and x_3 =awrt 1.908	A1,A1
		(3)
	(d) [1.90775,1.90785]	M1
	f'(1.90775)=-0.00016 AND f'(1.90785)= 0.0000076	M1
	Change of sign \Rightarrow x=1.9078	A1
		(3)
		(12 marks)

- **M**1 Calculates both f(0.8) and f(0.9). Evidence of this mark could be, either, seeing both 'x' substitutions written out in the expression, or, one value correct to 1 sig fig, or the appearance of incorrect values of f(0.8)=awrt 0.2 or f(0.9)=awrt 0.1 from use of degrees A1 This requires both values to be correct as well as a reason and a conclusion.
 - Accept f(0.8) = 0.08 truncated or rounded (2dp) or 0.1 rounded (1dp) and f(0.9) = -0.08 truncated or rounded as -0.09 (2dp) or -0.1(1dp)

Acceptable reasons are change of sign, <0>0, +ve -ve, f(0.8)f(0.9)<0. Acceptable conclusion is hence root or **(b)**

Attempts to differentiate f(x). Seeing any of 2x, $3 \text{ or } \pm A\sin(\frac{1}{2}x)$ is sufficient evidence. M1

A1 f'(x) correct. Accept
$$\frac{dy}{dx} = 2x - 3 - \sin(\frac{1}{2}x)$$

f'(x) correct. Accept $\frac{1}{dx} = 2x - 3 - \sin(\frac{1}{2}x)$ Sets their f'(x)=0 and proceeds to x=.... You must be sure that they are setting what they think is f'(x)=0. **M**1

Accept $2x = 3 + \sin(\frac{1}{2}x)$ going to x=..only if f'(x) =0 is stated first

A1 *
$$x = \frac{3+\sin(\frac{1}{2}x)}{2}$$
. This is a given answer so don't accept just the sight of this answer. It is cso

- Substitutes $x_0=2$ into $x_{n+1} = \frac{3+\sin(\frac{1}{2}x_n)}{2}$. Evidence of this mark could be awrt 1.9 or 1.5 (from degrees) M1 (c) A1 x₁=awrt 1.921
- A1
- x₂=awrt 1.91(0) and x₃=awrt 1.908 (**d**) Continued iteration is not acceptable for this part. Question states 'By choosing a suitable interval...'
- **M**1 Chooses the interval [1.90775,1.90785] or tighter containing the root= 1.907845522
- Calculates f'(1.90775) and f'(1.90785) or tighter with at least one correct, rounded or truncated **M**1 f'(1.90775)=-0.0001 truncated or awrt -0.0002 rounded
 - f'(1.90785)= 0.000007 truncated or awrt 0.000008 rounded

Accept versions of g(x)-x where $g(x) = \frac{3+\sin(\frac{1}{2}x)}{2}$.

When x= 1.90775, $g(x) - x = 8 \times 10^{-5}$ rounded and truncated

- When x= 1.90785, $g(x) x = -3 \times 10^{-6}$ truncated or $= -4 \times 10^{-6}$ rounded
- A1 Both values correct, rounded or truncated, a valid reason (see part a) and a minimal conclusion (see part a). Saying hence root is acceptable. There is no need to refer to the 'turning point'.

Question Number	Scheme	Marks
41 (a)	f(0.75) = -0.18 f(0.85) = 0.17 Change of sign, hence root between x=0.75 and x=0.85	M1 A1 (2)
(b) (c)	Sub $x_0=0.8$ into Awrt $x_1=0.80219$ and $x_2=0.80133$ Awrt $x_3=0.80167$ $f(0.801565) = -2.7\times 10^{-5}$ $f(0.801575) = +8.6\times 10^{-6}$	M1 A1 A1 (3) M1A1
	Change of sign and conclusion See Notes for continued iteration method	A1 (3)
		8 Marks

Scheme		Ma	rks
Crosses x-axis $\Rightarrow f(x) = 0 \Rightarrow (8 - x)\ln x = 0$			
Either $(8 - x) = 0$ or $\ln x = 0 \Rightarrow x = 8, 1$	Either one of $\{x\}=1$ OR $x=\{8\}$	B1	
Coordinates are $A(1, 0)$ and $B(8, 0)$.	Both $A(1, \{0\})$ and $B(8, \{0\})$	B1	
			(2)
Apply product rule: $\begin{cases} u = (8 - x) & v = \ln x \\ \frac{du}{dx} = -1 & \frac{dv}{dx} = \frac{1}{x} \end{cases}$	vu' + uv'	M1	
$f'(x) = -\ln x + \frac{8-x}{x}$	Any one term correct	A1	
	Both terms correct	A1	(3)
f'(3.5) = 0.032951317 f'(3.6) = -0.058711623 Sign change (and as $f'(x)$ is continuous) therefore	Attempts to evaluate both $f'(3.5)$ and $f'(3.6)$	M1	
the <i>x</i> -coordinate of Q lies between 3.5 and 3.6.	both values correct to at least 1 sf, sign change and conclusion	A1	(2)
At Q , $f'(x) = 0 \implies -\ln x + \frac{8-x}{x} = 0$	Setting $f'(x) = 0$.	M1	
$\Rightarrow -\ln x + \frac{8}{x} - 1 = 0$	Splitting up the numerator and proceeding to x=	M1	
$\Rightarrow \frac{8}{x} = \ln x + 1 \Rightarrow 8 = x(\ln x + 1)$			
$\Rightarrow x = \frac{8}{\ln x + 1}$ (as required)	For correct proof. No errors seen in working.	A1	(3)
	Either $(8 - x) = 0$ or $\ln x = 0 \Rightarrow x = 8, 1$ Coordinates are $A(1, 0)$ and $B(8, 0)$. Apply product rule: $\begin{cases} u = (8 - x) v = \ln x \\ \frac{du}{dx} = -1 \qquad \frac{dv}{dx} = \frac{1}{x} \end{cases}$ $f'(x) = -\ln x + \frac{8 - x}{x}$ f'(3.5) = 0.032951317 f'(3.6) = -0.058711623 Sign change (and as f'(x) is continuous) therefore the x-coordinate of Q lies between 3.5 and 3.6. At Q, $f'(x) = 0 \Rightarrow -\ln x + \frac{8 - x}{x} = 0$ $\Rightarrow -\ln x + \frac{8}{x} - 1 = 0$ $\Rightarrow \frac{8}{x} = \ln x + 1 \Rightarrow 8 = x(\ln x + 1)$	Either $(8 - x) = 0$ or $\ln x = 0 \Rightarrow x = 8, 1$ Coordinates are $A(1, 0)$ and $B(8, 0)$. Apply product rule: $\begin{cases} u = (8 - x) v = \ln x \\ \frac{du}{dx} = -1 \frac{dv}{dx} = \frac{1}{x} \end{cases}$ F'(x) = $-\ln x + \frac{8 - x}{x}$ f'(3.5) = 0.032951317 f'(3.6) = -0.058711623 Sign change (and as f'(x) is continuous) therefore the x-coordinate of Q lies between 3.5 and 3.6. Attempts to evaluate both f'(3.5) = 0 $\Rightarrow -\ln x + \frac{8 - x}{x} = 0$ Attempts to evaluate both f'(3.6) = $-\ln x + \frac{8 - x}{x} = 0$ Setting f'(x) = 0. $\Rightarrow -\ln x + \frac{8}{x} - 1 = 0$ $\Rightarrow x = -\frac{8}{x}$ (as required) For correct proof.	Either $(8 - x) = 0$ or $\ln x = 0 \Rightarrow x = 8, 1$ Coordinates are $A(1, 0)$ and $B(8, 0)$. Apply product rule: $\begin{cases} u = (8 - x) v = \ln x \\ \frac{du}{dx} = -1 \frac{dv}{dx} = \frac{1}{x} \end{cases}$ $f'(x) = -\ln x + \frac{8 - x}{x}$ f'(3.5) = 0.032951317 f'(3.6) = -0.058711623 Sign change (and asf '(x) is continuous) therefore the x-coordinate of Q lies between 3.5 and 3.6. Attempts to evaluate both f'(3.5) = 0.032951317 f'(3.6) = -0.058711623 Sign change (and asf '(x) is continuous) therefore the x-coordinate of Q lies between 3.5 and 3.6. Attempts to evaluate both $f'(3.5) = nx + \frac{8 - x}{x} = 0$ Setting $f'(x) = 0$ $r(x) = -\ln x + \frac{8 - x}{x} = 0$ Setting $f'(x) = 0$. M1 $\Rightarrow -\ln x + \frac{8}{x} - 1 = 0$ $\Rightarrow \frac{8}{x} = \ln x + 1 \Rightarrow 8 = x(\ln x + 1)$ $\Rightarrow x = \frac{8}{x}$ (as required) For correct proof. A1

Question Number	Scheme		Marks
(e)	Iterative formula: $x_{n+1} = \frac{8}{\ln x_n + 1}$		
	$x_{1} = \frac{8}{\ln(3.55) + 1}$ $x_{1} = 3.528974374$ $x_{2} = 3.538246011$ $x_{3} = 3.534144722$	An attempt to substitute $x_0 = 3.55$ into the iterative formula. Can be implied by $x_1 = 3.528(97)$ Both $x_1 = awrt 3.529$ and $x_2 = awrt 3.538$	M1 A1
	$x_1 = 3.529, x_2 = 3.538, x_3 = 3.534$, to 3 dp.	x_1 , x_2 , x_3 all stated correctly to 3 dp	A1 (3) [13]

Question Number	Scheme	Marks	
43 .(a)	f(1.2) = 0.49166551, f(1.3) = -0.048719817 Sign change (and as f(x) is continuous) therefore a root α is such that $\alpha \in [1.2, 1.3]$	M1A1	
(b)	$4\operatorname{cosec} x - 4x + 1 = 0 \implies 4x = 4\operatorname{cosec} x + 1$	M1	(2)
	$\Rightarrow x = \csc x + \frac{1}{4} \Rightarrow \frac{x = \frac{1}{\sin x} + \frac{1}{4}}{\frac{1}{\sin x} + \frac{1}{4}}$	A1 *	(2)
(c)	$x_1 = \frac{1}{\sin(1.25)} + \frac{1}{4}$	M1	(2)
	$x_1 = 1.303757858, x_2 = 1.286745793$ $x_3 = 1.291744613$	A1 A1	
(d)	f(1.2905) = 0.00044566695, f(1.2915) = -0.00475017278 Sign change (and as $f(x)$ is continuous) therefore a root α is such that	M1	(3)
	$\alpha \in (1.2905, 1.2915) \Rightarrow \alpha = 1.291 \ (3 \text{ dp})$	A1	(2)
	(a) M1: Attempts to evaluate both $f(1.2)$ and $f(1.3)$ and evaluates at least one of them correctly to awrt (or truncated) 1 sf. A1: both values correct to awrt (or truncated) 1 sf, sign change and conclusion. (b) M1: Attempt to make $4x$ or x the subject of the equation. A1: Candidate must then rearrange the equation to give the required result. It must be clear that candidate has made their initial $f(x) = 0$. (c) M1: An attempt to substitute $x_0 = 1.25$ into the iterative formula		[9]
	Eg = $\frac{1}{\sin(1.25)} + \frac{1}{4}$. Can be implied by x_1 = awrt 1.3 or x_1 = awrt 46°. A1: Both x_1 = awrt 1.3038 and x_2 = awrt 1.2867 A1: x_3 = awrt 1.2917 (d) M1: Choose suitable interval for <i>x</i> , e.g. [1.2905, 1.2915] or tighter and at least one attempt to evaluate f(<i>x</i>). A1: both values correct to awrt (or truncated) 1 sf, sign change and conclusion.		

Question Number	Scheme		Marks	
44	$f(x) = x^3 + 2x^2 - 3x - 11$			
(a)	$f(x) = 0 \implies x^3 + 2x^2 - 3x - 11 = 0$ $\implies x^2(x+2) - 3x - 11 = 0$	Sets $f(x) = 0$ (can be implied) and takes out a factor of x^2 from $x^3 + 2x^2$, or x from $x^3 + 2x$ (slip).	M1	
	$\Rightarrow x^{2}(x+2) = 3x + 11$ $\Rightarrow \qquad x^{2} = \frac{3x + 11}{x+2}$ $\Rightarrow \qquad x = \sqrt{\left(\frac{3x + 11}{x+2}\right)}$	then rearranges to give the quoted result on the question paper.	A1 AG (2	
(b)	Iterative formula: $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$, $x_1 = 0$		(2	
	$x_2 = \sqrt{\left(\frac{3(0) + 11}{(0) + 2}\right)}$	An attempt to substitute $x_1 = 0$ into the iterative formula. Can be implied by $x_2 = \sqrt{5.5}$ <i>or</i> 2.35 or awrt 2.345	M1	
	$x_2 = 2.34520788$ $x_3 = 2.037324945$ $x_4 = 2.058748112$	Both $x_2 = awrt \ 2.345$ and $x_3 = awrt \ 2.037$ $x_4 = awrt \ 2.059$	A1 A1 (3	
(c)	Let $f(x) = x^3 + 2x^2 - 3x - 11 = 0$			
	f (2.0565) = −0.013781637 f (2.0575) = 0.0041401094 Sign change (and f(x) is continuous) therefore a root α is such that $\alpha \in (2.0565, 2.0575) \Rightarrow \alpha = 2.057$ (3 dp)	Choose suitable interval for <i>x</i> , e.g. [2.0565, 2.0575] or tighter any one value awrt 1 sf both values correct awrt 1sf, sign change and conclusion As a minimum, both values must be correct to 1 sf, candidate states "change of sign, hence root".	M1 dM1 A1 (3	
		¥	[8]	

Question Number	Scheme		Mark	S
45 (a)	Iterative formula: $x_{n+1} = \frac{2}{(x_n)^2} + 2$, $x_0 = 2.5$			
(b)	$x_{1} = \frac{2}{(2.5)^{2}} + 2$ $x_{1} = 2.32$ $x_{2} = 2.371581451$ $x_{3} = 2.355593575$ $x_{4} = 2.360436923$ Let $f(x) = -x^{3} + 2x^{2} + 2 = 0$	An attempt to substitute $x_0 = 2.5$ into the iterative formula. Can be implied by $x_1 = 2.32$ or 2.320 Both $x_1 = 2.32(0)$ and $x_2 = awrt 2.372$ Both $x_3 = awrt 2.356$ and $x_4 = awrt 2.360$ or 2.36	M1 A1 A1 cso	(3)
	f(2.3585) = 0.00583577 f(2.3595) = −0.00142286 Sign change (and f(x) is continuous) therefore a root α is such that $\alpha \in (2.3585, 2.3595) \Rightarrow \alpha = 2.359$ (3 dp)	Choose suitable interval for <i>x</i> , e.g. [2.3585, 2.3595] or tighter any one value awrt 1 sf or truncated 1 sf both values correct, sign change and conclusion At a minimum, both values must be correct to 1sf or truncated 1sf, candidate states "change of sign, hence root".	M1 dM1 A1	(3)
				[6]

Question Number	Scheme		Marks	
46.	(a) $f'(x) = 3e^x + 3xe^x$	M1 A1		
	$3e^{x} + 3xe^{x} = 3e^{x}(1+x) = 0$			
	x = -1	M1 A1		
	$f(-1) = -3e^{-1}-1$	B1	(5)	
	(b) $x_1 = 0.2596$	B1		
	$x_2 = 0.2571$	B1		
	$x_3 = 0.2578$	B1	(3)	
	(c) Choosing $(0.25755, 0.25765)$ or an appropriate tighter interval. f $(0.25755) = -0.000379$	M1		
	$f(0.257\ 65) = 0.000\ 109\ \dots$	A1		
	Change of sign (and continuity) \Rightarrow root $\in (0.25755, 0.25765)$ * cso	A1		
	$(\Rightarrow x = 0.2576$, is correct to 4 decimal places)		(3)	
	<i>Note</i> : $x = 0.257\ 627\ 65\ \dots$ is accurate		[11]	

Question Number	Scheme	Marl	ks
47.	(a) $f(1.4) = -0.568 \dots < 0$		
	$f(1.45) = 0.245 \dots > 0$	M 1	
	Change of sign (and continuity) $\Rightarrow \alpha \in (1.4, 1.45)$	A1	(2)
	(b) $3x^3 = 2x + 6$ $x^3 = \frac{2x}{3} + 2$		
	$x^{2} = \frac{2}{3} + \frac{2}{x}$	M1 A1	
	$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)} $ cso	A1	(3)
	(c) $x_1 = 1.4371$	B1	
	$x_2 = 1.4347$	B1	
	$x_3 = 1.4355$	B1	(3)
	(d) Choosing the interval $(1.4345, 1.4355)$ or appropriate tighter interval. f $(1.4345) = -0.01 \dots$	M1	
	$f(1.4355) = 0.003 \dots$	M 1	
	Change of sign (and continuity) $\Rightarrow \alpha \in (1.4345, 1.4355)$		
	$\Rightarrow \alpha = 1.435$, correct to 3 decimal places * csc	A1	(3) [11]
	<i>Note:</i> $\alpha = 1.435304553$		_

Question Number		Marks			
48.	(a)	$f(2) = 0.38 \dots$			
		$f(3) = -0.39 \dots$		M1	
	Chan	age of sign (and continuity) \Rightarrow root in (2,3) *	cso	A1	(2)
	(b)	$x_1 = \ln 4.5 + 1 \approx 2.50408$		M1	
		$x_2 \approx 2.50498$		A1	
		$x_3 \approx 2.50518$		A1	(3)
	(c) S	belecting [2.5045, 2.5055], or appropriate tighter range, and			
	e	valuating at both ends.		M1	
		$f(2.5045) \approx 6 \times 10^{-4}$			
		$f(2.5055) \approx -2 \times 10^{-4}$			
	Chang	ge of sign (and continuity) \Rightarrow root $\in (2.5045, 2.5055)$			
		\Rightarrow root = 2.505 to 3 dp *	cso	A1	(2)
	NI-4 TTI				[7]
	Note: The	e root, correct to 5 dp, is 2.50524			

Question Number	Scheme					No	otes	Marks
49.	x 0 0.2 y 2 1.8625426	0.4	0.6 1.56981	0.8		1 1.27165	$y = \frac{6}{(2 + e^x)}$	
(a)	{At $x = 0.2$,} $y = 1.86254$ (5 c	lp)					1.86254	B1 cao
	Note: Look for this value on the given table or in their working.					[1]		
(b)	$\frac{1}{2}(0.2)\left[2+1.27165+2\left(\text{their } 1.86254+1.71830+1.56981+1.41994\right)\right]}{12}$ Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{10}$ or $\frac{1}{2} \times \frac{1}{5}$		B1 o.e.					
						For str	ructure of []	M1
	$\left\{ = \frac{1}{10} (16.41283) \right\} = 1.641283 = 1.6413 (4 \text{ dp}) $ anything that rounds to 1.6413			A1				
								[3]

		Question 49 Notes					
49. (b)	Note	M1: Do not allow an extra <i>y</i> -value <i>or</i> a repeated <i>y</i> value in their [] Do not allow an omission of a <i>y</i> -ordinate in their [] for M1 unless they give the correct answer of awrt 1.6413, in which case both M1 and A1 can be scored.					
	Note	A1: Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 1.64150274)					
	Note	Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a)					
	Note	Award B1M1A1 for					
		$\frac{1}{10}(2+1.27165) + \frac{1}{5}(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) = \text{awrt } 1.6413$					
	Bracketing mistakes: Unless the final answer implies that the calculation has been done correctly						
	Award	B1M0A0 for $\frac{1}{2}(0.2) + 2 + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=16.51283)					
	Award	B1M0A0 for $\frac{1}{2}(0.2)(2 + 1.27165) + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) (=13.468345)					
	Award	B1M0A0 for $\frac{1}{2}(0.2)(2) + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=14.61283)					
	Altern	ative method: Adding individual trapezia					
	Area ≈	$0.2 \times \left[\begin{array}{c} 2 + "1.86254" + "1.86254" + 1.71830 + 1.71830 + 1.56981 + 1.56981 + 1.41994 + 1.41994 + 1.27165 \\ 2 & 2 & 2 & 2 \\ \end{array} \right]$					
	=	1.641283					
	B1	0.2 and a divisor of 2 on all terms inside brackets					
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2					
	A1	anything that rounds to 1.6413					

Question Number				Scheme	-			Marks
50.	<u>x 1</u>	1.2	1.4	1.6	1.8	2	$y = x^2 \ln x$	
	y 0	0.2625	0.659485	1.2032	1.9044	2.7726	$y = x \prod x$	
(a)	{At $x = 1.4$,} $y = 0.6595 (4 dp)$ 0.6595					B1 cao		
								[1]
							Outside brackets	
	$\frac{1}{2}$ × (0.2) × $\left[0\right]$	$\pm 27726 \pm 2$	(0.2625 _ thei	r06505 ⊥	1 2032 ± 1	0011)]	$\frac{1}{2} \times (0.2)$ or $\frac{1}{10}$	B1 o.e.
(b)	$\frac{1}{2}$ (0.2) \times $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	+ 2.1120+2	(0.2023 + ther)	1 0.0393 +	1.2032 + 1.	<u> </u>	$\frac{1}{2}$ × (0.2) or $\frac{1}{10}$	
(0)	For structure						For structure of	
	{ Note: The "0	" does not ha	ive to be includ	e to be included in []}		[]] M1	
	(1)						
	$\left\{ = \frac{1}{10} (10.8318) \right\} = 1.08318 = 1.083 (3 \text{ dp}) $ anything that rounds to 1.083				A1			
								[3]
								4

		Question 50 Notes				
50. (a)	B1	0.6595 correct answer only. Look for this on the table or in the candidate's working.				
(b)	B1	Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{2} \times \frac{1}{5}$ or $\frac{1}{10}$ or equivalent.				
	M1	For structure of trapezium rule []				
	Note	No errors are allowed [eg. an omission of a y-ordinate or an extra y-ordinate				
		or a repeated y ordinate].				
	A1	anything that rounds to 1.083				
	Note	Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 1.070614704)				
	Note	Full marks can be gained in part (b) for using an incorrect part (a) answer of 0.6594				
	Note Award B1M1A1 for $\frac{1}{10}(2.7726) + \frac{1}{5}(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) = awrt 1.083$					
	Brack	eting mistake: Unless the final answer implies that the calculation has been done correctly				
	Award	B1M0A0 for $\frac{1}{2}(0.2) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) + 2.7726$ (answer of 10.9318)				
	Award	B1M0A0 for $\frac{1}{2}(0.2)(2.7726) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044)$ (answer of 8.33646)				
	Alternative method: Adding individual trapezia					
	Area $\approx 0.2 \times \left[\frac{0+0.2625}{2} + \frac{0.2625 + "0.6595"}{2} + \frac{"0.6595" + 1.2032}{2} + \frac{1.2032 + 1.9044}{2} + \frac{1.9044 + 2.7726}{2}\right] = 1.083$					
	B1	0.2 and a divisor of 2 on all terms inside brackets				
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2				
	A1	anything that rounds to 1.083				

Question Number	Scheme	Marks
51.	x 1 2 3 4 $y = \frac{10}{2x + 5\sqrt{x}}$ y 1.42857 0.90326 0.682116 0.55556 $y = \frac{10}{2x + 5\sqrt{x}}$	
(a)	{At $x = 3$,} $y = 0.68212$ (5 dp) 0.68212	B1 cao
(b)	$\frac{1}{2} \times 1 \times \left[1.42857 + 0.55556 + 2(0.90326 + \text{their } 0.68212) \right] $ Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ For structure of []	[1] B1 aef M1
	$\left\{=\frac{1}{2}(5.15489)\right\}=2.577445=2.5774$ (4 dp) anything that rounds to 2.5774	A1
(c)	 Overestimate and a reason such as {top of} trapezia lie above the curve a diagram which gives reference to the extra area concave or convex d² y/dx² > 0 (can be implied) bends inwards curves downwards 	[3] B1
	Question 51 Notes	5
51. (a)	B1 0.68212 correct answer only. Look for this on the table or in the candidate's working.	
(b)	B1 Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or equivalent.	
	M1 For structure of trapezium rule []	
	Note A1No errors are allowed [eg. an omission of a y-ordinate or an extra y-ordinate or a repeated anything that rounds to 2.5774	y ordinate].
	Note Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 2.513)	4428)

51. (b) contd	Note	Award B1M1A1 for $\frac{1}{2}(1.42857 + 0.55556) + (0.90326 + \text{their } 0.68212) = 2.577445$				
		Bracketing mistake: Unless the final answer implies that the calculation has been done correctly				
		award B1M0A0 for $\frac{1}{2} \times 1 + 1.42857 + 2(0.90326 + \text{their } 0.68212) + 0.55556$ (nb: answer of 5.65489).				
		award B1M0A0 for $\frac{1}{2} \times 1$ (1.42857 + 0.55556) + 2(0.90326 + their 0.68212) (nb: answer of 4.162825).				
		Alternative method: Adding individual trapezia				
		Area $\approx 1 \times \left[\frac{1.42857 + 0.90326}{2} + \frac{0.90326 + "0.68212"}{2} + \frac{"0.68212" + 0.55556}{2} \right] = 2.577445$				
	B1	B1: 1 and a divisor of 2 on all terms inside brackets.				
	M1	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.				
	A1	A1: anything that rounds to 2.5774				
(c)	B 1	Overestimate and either trapezia lie above curve or a diagram that gives reference to the extra area				
		eg. This diagram is sufficient. It must				
		eg. This diagram is sufficient. It must show the top of a trapezium lying				
		above the curve.				
		or concave or convex or $\frac{d^2 y}{dx^2} > 0$ (can be implied) or bends inwards or curves downwards.				
	Note	Reason of "gradient is negative" by itself is B0.				

Question Number		Scheme	М	larks
52. (a)		$\frac{1}{2} \times 0.5; \times \left[\frac{2 + 2(4.077 + 7.389 + 10.043) + 0}{2} \right]$	B1;	<u>M1</u>
	=	$\frac{1}{4} \times 45.018 = 11.2545 = 11.25(2 \text{ dp})$ 11.25	A1	cao
(b)	Any on	e of		[3]
	•	Increase the number of strips		
	•	Use more trapezia Make <i>h</i> smaller		
	•	Increase the number of x and/or y values used	B1	
	•	Shorter /smaller intervals for x	DI	
	•	More values of y. More intervals of x		
	•	Increase <i>n</i>		
				[1]
				9
		Question 52 Notes	1	-
(a)	B1	Outside brackets $\frac{1}{2} \times 0.5$ or $\frac{0.5}{2}$ or 0.25 or $\frac{1}{4}$.		
	M1	For structure of trapezium rule		
	Note	No errors are allowed [eg. an omission of a y-ordinate or an extra y-ordinate or a repeated	y ordi	nate].
	A1	11.25 cao	0050	
	Note	Working must be seen to demonstrate the use of the trapezium rule. The actual area is 12.3	9953	/51
	Note	Award B1M1A1 for $\frac{0.5}{2}(2+0) + \frac{1}{2}(4.077+7.389+10.043) = 11.25$		

Bracketing mistake: Unless the final answer implies that the calculation has been done correctly.
Award B1M0A0 for $\frac{1}{2} \times 0.5 + 2 + 2(4.077 + 7.389 + 10.043) + 0$ (nb: answer of 45.268).
lternative method for part (a): Adding individual trapezia
Area $\approx 0.5 \times \left[\frac{2+4.077}{2} + \frac{4.077+7.389}{2} + \frac{7.389+10.043}{2} + \frac{10.043+0}{2}\right] = 11.2545 = 11.25 \ (2 \text{ dp}) \text{ cao}$
B1 0.5 and a divisor of 2 on all terms inside brackets.
M1 First and last ordinates once and the middle ordinates twice inside brackets ignoring the 2.
A1 11.25 cao
 B0 Give B0 for smaller values of x and/or y. use more decimal places

Question Number	Scheme	Marks
53. (a)	1.154701	B1 cao [1]
(b)	Area $\approx \frac{1}{2} \times \frac{\pi}{6}$; $\times [1 + 2(1.035276 + \text{their } 1.154701) + 1.414214]$	B1; <u>M1</u>
	$=\frac{\pi}{12} \times 6.794168 = 1.778709023 = 1.7787 $ (4 dp) 1.7787 or awrt 1.7787	A1
		[3] 4
	Notes for Question 53	
(a)	B1: 1.154701 correct answer only. Look for this on the table or in the candidate's working.	
(b)	B1 : Outside brackets $\frac{1}{2} \times \frac{\pi}{6}$ or $\frac{\pi}{12}$ or awrt 0.262	
	M1: For structure of trapezium rule []	
	A1: anything that rounds to 1.7787	
	Note: It can be possible to award : (a) B0 (b) B1M1A1 (awrt 1.7787) <u>Note:</u> Working must be seen to demonstrate the use of the trapezium rule. <u>Note</u> : actual area is 1.7	62747174
	<u>Note:</u> Award B1M1A1 for $\frac{\pi}{12}(1+1.414214) + \frac{\pi}{6}(1.035276 + \text{their } 1.154701) = 1.778709023$	
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly	у,
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{6} + 1 + 2(1.035276 + \text{their } 1.154701) + 1.414214$ (nb: answer of 7.05596	.).
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{6}$ (1 + 1.414214) + 2(1.035276 + their 1.154701) (nb: answer of 5.01199.)).
	Alternative method for part (b): Adding individual trapezia	
	Area $\approx \frac{\pi}{6} \times \left[\frac{1+1.035276}{2} + \frac{1.035276+1.154701}{2} + \frac{1.154701+1.414214}{2} \right] = 1.778709023$	
	B1: $\frac{\pi}{6}$ and a divisor of 2 on all terms inside brackets.	
	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring th A1: anything that rounds to 1.7787	e 2.

Question Number	Scheme	Mar	ks
54. (a)	6.248046798 = 6.248 (3dp) 6.248 or awrt 6.248	B1	[1]
(b)	Area $\approx \frac{1}{2} \times 2$; $\times [3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223]$	B1; <u>M</u>	<u>1</u>
	= 49.369 = 49.37 (2 dp) 49.37 or awrt 49.37	A1	[3]
			4
()	Notes for Question 54		
(a)	B1: 6.248 or awrt 6.248. Look for this on the table or in the candidate's working.		
(b)	B1 : Outside brackets $\frac{1}{2} \times 2$ or 1		
	M1: For structure of trapezium rule		
	A1: 49.37 or anything that rounds to 49.37		
	Note: It can be possible to award : (a) B0 (b) B1M1A1 (awrt 49.37)		
	Note: Working must be seen to demonstrate the use of the trapezium rule. Note: actual area is 50.		
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly	у,	
	Award B1M0A0 for $1 + 3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223$ (nb: answer of 50.369).		
54. (b) ctd	Alternative method for part (b): Adding individual trapezia		
	Area $\approx 2 \times \left[\frac{3+7.107}{2} + \frac{7.107+7.218}{2} + \frac{7.218+6.248}{2} + \frac{6.248+5.223}{2} \right] = 49.369$		
	B1: 2 and a divisor of 2 on all terms inside brackets.		
	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the	e 2.	
	A1: anything that rounds to 49.37		

		Scheme						
<u> </u>	0	$\frac{1}{e^{-\frac{1}{2}}}$	$\frac{2}{2e^{-1}}$	3 $3e^{-\frac{3}{2}}$	$\frac{4}{4e^{-2}}$	-		
1	<u> </u>	$2\left(e^{-\frac{1}{2}}+2e^{-1}\right)$			For struct	Dutside brackets $\frac{1}{2} \times 1$ or 0.5; ure of trapezium <u>rule {}</u>	B1 [1] B1 [1] M1 [1]	
$=\frac{1}{2} \times 4.564$	$= \frac{1}{2} \times 4.564701 = 2.282351 = \underline{2.28} (2dp)$						A1 cao [4] 5	
Notes on Q	Question 55							
	y Area(R) ≈ $= \frac{1}{2} \times 4.564$ Notes on Q	$y = 0$ Area(R) $\approx \frac{1}{2} \times 1; \times \left\{ 0 + \frac{1}{2} \times 4.564701 = 2.2 \right\}$ Notes on Question 55	$\frac{x}{y} = \frac{1}{2} \times 1; \times \begin{cases} 0 & 1 \\ e^{-\frac{1}{2}} \end{cases}$ Area (R) $\approx \frac{1}{2} \times 1; \times \begin{cases} 0 + 2\left(e^{-\frac{1}{2}} + 2e^{-1}\right) \\ e^{-\frac{1}{2}} + 2e^{-1} \end{cases}$ $= \frac{1}{2} \times 4.564701 = 2.282351 = 2$ Notes on Question 55	$\frac{x 0}{y 0} \frac{1}{e^{-\frac{1}{2}}} \frac{2e^{-1}}{2e^{-1}}$ Area (R) $\approx \frac{1}{2} \times 1$;× $\left\{ 0 + 2\left(e^{-\frac{1}{2}} + 2e^{-1} + 3e^{-\frac{3}{2}}\right) + 4e^{-2}\right\}$ $= \frac{1}{2} \times 4.564701 = 2.282351 = 2.28 (2dp)$ Notes on Question 55	$\frac{x 0}{y 0} \frac{1}{e^{-\frac{1}{2}}} \frac{2e^{-1}}{2e^{-1}} 3e^{-\frac{3}{2}}$ $\operatorname{Area}(R) \approx \frac{1}{2} \times 1; \times \left\{ 0 + 2\left(e^{-\frac{1}{2}} + 2e^{-1} + 3e^{-\frac{3}{2}}\right) + 4e^{-2} \right\}$ $= \frac{1}{2} \times 4.564701 = 2.282351 = \underline{2.28} (2dp)$ $\operatorname{Notes on Question 55}$	$\frac{x 0}{y 0} \frac{1}{e^{-\frac{1}{2}}} \frac{2}{2e^{-1}} 3e^{-\frac{3}{2}} 4e^{-2}$ $\frac{2}{2e^{-1}} 5e^{-\frac{3}{2}} 4e^{-2}$ $\frac{2}{2e^{-1}} 3e^{-\frac{3}{2}} 4e^{-2}$ $\frac{2}{2e^{-1}} 4e^{-2} 4e^{-2} 4e^{-2} 4e^{-2}$ $\frac{2}{2e^{-1}} 4e^{-2} 4$	$\frac{x 0}{y 0} \frac{1}{e^{-\frac{1}{2}}} \frac{2e^{-1}}{2e^{-1}} 3e^{-\frac{3}{2}} 4e^{-2}$ $\frac{2e^{-1}}{2e^{-1}} or \; awrt \; 0.74$ Outside brackets $\frac{1}{2} \times 1 \text{ or } 0.5;$ For structure of trapezium $\frac{\text{rule}\left\{\dots,\dots,\dots\right\}}{\frac{1}{2} \times 1}; \times \left\{ 0 + 2\left(e^{-\frac{1}{2}} + 2e^{-1} + 3e^{-\frac{3}{2}}\right) + 4e^{-2}\right\}$ $= \frac{1}{2} \times 4.564701 = 2.282351 = 2.28 \; (2dp)$ 2.28	

Question Number	Scheme	Marks							
56. (a)	1.0981	B1 cao							
	1	[1]							
(b)	Area $\approx \frac{1}{2} \times 1$; $\times [0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333]$	B1; <u>M1</u>							
	$= \frac{1}{2} \times 5.6863 = 2.84315 = 2.843 \text{ (3 dp)}$ 2.843 or awrt 2.843	A1							
		[3] 4							
(a)	B1: 1.0981 correct answer only. Look for this on the table or in the candidate's working.								
(b)	B1 : Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$								
	M1: For structure of trapezium rule [
	A1: anything that rounds to 2.843								
	Note: Working must be seen to demonstrate the use of the trapezium rule. <u>Note</u> : actual area is 2.83	5573645							
	<u>Note:</u> Award B1M1 A1 for $\frac{1}{2}(0.5 + 1.3333) + (0.8284 + \text{their } 1.0981) = 2.84315$								
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly	у							
	Award B1M0A0 for $\frac{1}{2} \times 1 + 0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333$ (nb: answer of 6.1863).								
	Award B1M0A0 for $\frac{1}{2} \times 1$ (0.5 + 1.3333) + 2(0.8284 + their 1.0981) (nb: answer of 4.76965).								
56. (b) ctd	Alternative method for part (b): Adding individual trapezia								
	Area $\approx 1 \times \left[\frac{0.5 + 0.8284}{2} + \frac{0.8284 + 1.0981}{2} + \frac{1.0981 + 1.3333}{2} \right] = 2.84315$								
	B1: 1 and a divisor of 2 on all terms inside brackets.								
	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the	e 2.							
	A1: anything that rounds to 2.843								

Question Number			Scheme				Mark	s
	X	1	2	3	4		2.61	
57.	у	ln2	$\sqrt{2}\ln 4$	$\sqrt{3}\ln 6$	2ln8		M1	
		0.6931	1.9605	3.1034	4.1589			
	_	Area $=\frac{1}{2} \times 1(\ldots)$						
	≈ (0	0.6931+2(1	.9605+3.103	64)+4.1589)			M1	
	$\approx \frac{1}{2} \times 14$	$\approx \dots (0.6931 + 2(1.9605 + 3.1034) + 4.1589)$ $\approx \frac{1}{2} \times 14.97989 \dots \approx 7.49 $ 7.49 cao						(4)

Question Number	Scheme	Mark	īs
58. (a)	0.73508	B1 cao	
			[1]
(b)	Area $\approx \frac{1}{2} \times \frac{\pi}{8}$; $\times [0 + 2(\text{their } 0.73508 + 1.17157 + 1.02280) + 0]$	B1 <u>M1</u>	
	$=\frac{\pi}{16} \times 5.8589 = 1.150392325 = 1.1504 \ (4 \text{ dp}) \qquad \text{awrt } 1.1504$	A1	[3]
(a)	B1: 0.73508 correct answer only. Look for this on the table or in the candidate's working.		4
(b)	B1 : Outside brackets $\frac{1}{2} \times \frac{\pi}{8}$ or $\frac{\pi}{16}$ or awrt 0.196		
	M1: For structure of trapezium rule []; (0 can be implied).		
	A1: anything that rounds to 1.1504 <u>Bracketing mistake</u> : Unless the final answer implies that the calculation has been done correc	ctly	
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8} + 2$ (their 0.73508 + 1.17157 + 1.02280) (nb: answer of 6.0552).		
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8}$ (0 + 0) + 2(their 0.73508 + 1.17157 + 1.02280) (nb: answer of 5.8589)	9).	
	Alternative method for part (b): Adding individual trapezia		
	Area $\approx \frac{\pi}{8} \times \left[\frac{0 + 0.73508}{2} + \frac{0.73508 + 1.17157}{2} + \frac{1.17157 + 1.02280}{2} + \frac{1.02280 + 0}{2} \right] = 1.15$	50392325	
	B1: $\frac{\pi}{8}$ and a divisor of 2 on all terms inside brackets.		
	M1: One of first and last ordinates, two of the middle ordinates inside brackets ignoring the 2. A1: anything that rounds to 1.1504		

Question Number	Scheme	Mark	s
59.	(a) 0.0333, 1.3596 awrt 0.0333, 1.3596	B1 B1	(2)
	(b) Area $(R) \approx \frac{1}{2} \times \frac{\sqrt{2}}{4} []$ $\approx [0 + 2(0.0333 + 0.3240 + 1.3596) + 3.9210]$ ≈ 1.30 Accept 1.3	B1 M1 A1	(3) [5]

Question Number	Scheme		Marks	
60.				
(a)	$x = 3 \implies y = 0.1847$	awrt	B1	
	$x = 5 \implies y = 0.1667$ awrt o	$r \frac{1}{6}$	B1	
		0	(2	<u>?)</u>
(b)	$I \approx \frac{1}{\underline{2}} \Big[0.2 + 0.1667 + 2 \big(0.1847 + 0.1745 \big) \Big]$		<u>B1</u> M1 A1ft	
	≈ 0.543 0.542 or 0.	.543	A1 (4))
			[6]	

Question Number	Scheme	Marks
61.	(a) $y\left(\frac{\pi}{6}\right) \approx 1.2247, \ y\left(\frac{\pi}{4}\right) = 1.1180$ accept awrt 4 d.p.	B1 B1 (2)
	(b)(i) $I \approx \left(\frac{\pi}{12}\right) (1.3229 + 2 \times 1.2247 + 1)$ B1 for $\frac{\pi}{12}$ ≈ 1.249 cao	B1 M1 A1
	(ii) $I \approx \left(\frac{\pi}{24}\right) (1.3229 + 2 \times (1.2973 + 1.2247 + 1.1180) + 1)$ B1 for $\frac{\pi}{24}$ ≈ 1.257 cao	B1 M1 A1 (6) [8]

Question Number	Scheme	Mar	ks
62	(a) 1.386, 2.291 awrt 1.386, 2.291	B1 B1	(2)
	(b) $A \approx \frac{1}{2} \times 0.5 ()$	B1	
	$= \dots \left(0 + 2 \left(0.608 + 1.386 + 2.291 + 3.296 + 4.385 \right) + 5.545 \right)$	M1	
	= 0.25 (0 + 2 (0.608 + 1.386 + 2.291 + 3.296 + 4.385) + 5.545) ft their (a)	A1ft	
	$= 0.25 \times 29.477 \dots \approx 7.37$ cao	A1	(4)
			[6]

-	stion nber	NChomo		Mar	ks
63	(a)	1.14805	awrt 1.14805	B1	(1)
	(b)	$A \approx \frac{1}{2} \times \frac{3\pi}{8} (\dots)$		B1	
		$= \dots \left(3 + 2(2.77164 + 2.12132 + 1.14805) + 0\right)$	0 can be implied	M1	
		$= \frac{3\pi}{16} (3 + 2(2.77164 + 2.12132 + 1.14805))$	ft their (a)	A1ft	
		$=\frac{3\pi}{16}\times 15.08202\ldots = 8.884$	cao	A1	(4)
		10			[5]

Question		Sch	ieme				Marks	
64 . (a)	$\begin{array}{c c} x & 0 \\ \hline y & e^0 \end{array}$	0.4 e ^{0.08}	0.8 e ^{0.32}	1.2 e ^{0.72}	1.6 e ^{1.28}	2 e ²		
	or <i>y</i> 1	1.08329 	1.37713	2.05443	3.59664	7.38906		
					a	er e ^{0.32} and e ^{1.28} or wrt 1.38 and 3.60 nixture of e's and decimals)	B1 [1]	
		Outside brackets						
(b) Way 1	Area $\approx \frac{1}{2} \times 0.4$; × $\left[e^{0} + 2(e^{0.08} + e^{0.32} + e^{0.72} + e^{1.28}) + e^{2} \right]$ $\frac{\frac{1}{2} \times 0.4 \text{ or } 0.2}{\frac{\text{For structure of}}{\frac{\text{trapezium}}{2}}}$						<u>M1</u> √	
	= 0.2 × 24.6120316	4 = 4.92	2406 = <u>4.9</u>	<u>22</u> (4sf)		<u>4.922</u>	A1 cao [3]	
<i>Aliter</i> (b) Way 2	Area $\approx 0.4 \times \left[\frac{e^{0} + e^{0.08}}{2} + \frac{e^{0.08} + e^{0.32}}{2} + \frac{e^{0.32} + e^{0.72}}{2} + \frac{e^{0.72} + e^{1.28}}{2} + \frac{e^{1.28} + e^{2}}{2}\right]$ 0.4 and a divisor of 2 on all terms inside brackets.							
vvay z	which is equivalent to: Area $\approx \frac{1}{2} \times 0.4$; x $\left[e^{0} + 2\left(e^{0.08} + e^{0.32} + e^{0.72} + e^{1.28}\right) + e^{2} \right]$ One of first and last ordinates, two of the middle ordinates inside brackets ignoring the 2.							
	= 0.2×24.6120316	i4 = 4.92	2406 = <u>4.9</u>	<u>22</u> (4sf)		<u>4.922</u>	A1 cao [3]	
							4 marks	

Note an expression like Area $\approx \frac{1}{2} \times 0.4 + e^0 + 2(e^{0.08} + e^{0.32} + e^{0.72} + e^{1.28}) + e^2$ would score B1M1A0

Allow one term missing (slip!) in the () brackets for

The M1 mark for structure is for the material found in the curly brackets ie $\int \text{first } y \text{ ordinate} + 2(\text{intermediate ft } y \text{ ordinate}) + \text{final } y \text{ ordinate}$

Question Number	Schem	e			Marks
65. (a)	$\begin{array}{c ccc} x & 0 & \frac{\pi}{4} \\ \hline y & 0 & 1.844321332. \end{array}$	$\frac{\frac{\pi}{2}}{}$ 4.810477381	$\frac{\frac{3\pi}{4}}{8.87207}$	$\frac{\pi}{0}$	
(b) Way 1	Area $\approx \frac{1}{2} \times \frac{\pi}{4}$; $\times \{ 0 + 2(1.84432 + 4) \}$	0 can b implied .81048 + 8.87207) + 0}	e d awrt 0. <u>For str</u> <u>inside brac</u>	awrt 1.84432 4.81048 or 4.81047 Outside brackets 39 or $\frac{1}{2} \times$ awrt 0.79 $\frac{1}{2} \times \frac{\pi}{4}$ or $\frac{\pi}{8}$ ucture of trapezium <u>rule {}};</u> Correct expression <u>kets</u> which all must ed by their "outside constant".	$ \begin{array}{c} B1\\ B1\\ \hline B1\\ \underline{M1}\sqrt{}\\ \underline{A1}\sqrt{} \end{array} $
	$=\frac{\pi}{8} \times 31.05374 = 12.19477518$	3 = 12.1948 (4dp)		<u>12.1948</u>	A1 cao [4]
<i>Aliter</i> (b) Way 2	Area $\approx \frac{\pi}{4} \times \left\{ \frac{0+1.84432}{2} + \frac{1.84432+4.81048}{2} + \frac{4}{2} \right\}$ which is equivalent to: Area $\approx \frac{1}{2} \times \frac{\pi}{4}$; $\times \left\{ \frac{0+2(1.84432+4)}{2} + \frac{4}{2} \right\}$		of 2 One of firs two of th inside brac Correc	(0.79) and a divisor c on all terms inside brackets. t and last ordinates, he middle ordinates kets ignoring the 2. ct expression inside ekets if $\frac{1}{2}$ was to be	B1 $\underline{M1}$ $\underline{A1}$
	$=\frac{\pi}{4} \times 15.52687 = 12.19477518$	= 12.1948 (4dp)		factorised out. <u>12.1948</u>	A1 cao [4] 6 marks

Note an expression like Area $\approx \frac{1}{2} \times \frac{\pi}{4} + 2(1.84432 + 4.81048 + 8.87207)$ would score B1M1A0A0

