

Maths Questions By Topic:

Numerical Methods
 Mark Scheme

A-Level Edexcel

\#www.expert-tuition.co.uk
\square online.expert-tuition.co.uk

- enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 Page 1Paper 2Page 10
Old Spec
Core 2 Page 27Core 3Page 41Core 4Page 73

Question	Scheme	Marks	AOs
1 (a)	25	B1	3.4
		(1)	
(b)	Attempts to differentiate using the product rule $\frac{\mathrm{d} v}{\mathrm{~d} t}=\ln (t+1) \times-0.4+\frac{(10-0.4 t)}{t+1}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Sets their $\frac{\mathrm{d} v}{\mathrm{~d} t}=0 \Rightarrow \frac{(10-0.4 \boldsymbol{t})}{(\boldsymbol{t}+1)}=0.4 \ln (t+1)$ and then makes progress towards making " t " the subject (See notes for this)	dM1	1.1b
	$\begin{aligned} & t=\frac{25-\ln (t+1)}{1+\ln (t+1)} \\ & \quad t=\frac{26}{1+\ln (t+1)}-1 * \end{aligned}$	A1*	2.1
		(4)	
(c)	(i) Attempts $t_{2}=\frac{26}{1+\ln 8}-1$	M1	1.1b
	awrt 7.298	A1	1.1b
	(ii) awrt 7.33 seconds	A1	3.2a
		(3)	
(8 marks)			
Notes:			

(a)

B1: 25 but condone 25 seconds. If another value is given (apart from 0) it is B0
(b)

M1: Attempts to use the product rule in an attempt to differentiate $v=(10-0.4 t) \ln (t+1)$
Look for $(10-0.4 t) \times \frac{1}{(t+1)} \pm k \ln (t+1)$, where k is a constant, condoning slips.
If you see direct evidence of an incorrect rule used e.g. $v u^{\prime}-u v^{\prime}$ it is M0
You will see attempts from $v=10 \ln (t+1)-0.4 t \ln (t+1)$ which can be similarly marked.
In this case look for $\frac{a}{t+1} \pm \frac{b t}{t+1} \pm c \ln (t+1)$

A1: Correct differentiation. Condone a missing left hand or it seen as $v^{\prime}, \frac{\mathrm{d} y}{\mathrm{~d} x}$ or even $=0$ $\left(\frac{\mathrm{d} v}{\mathrm{~d} t}\right)=\ln (t+1) \times-0.4+\frac{(10-0.4 t)}{t+1}$ or equivalent such as $\left(\frac{\mathrm{d} v}{\mathrm{~d} t}\right)=\frac{10}{t+1}-\frac{0.4 t}{(t+1)}-0.4 \ln (t+1)$
dM 1 : Score for setting their $\mathrm{d} V / \mathrm{d} t=0$ (which must be in an appropriate form) and proceeding to an equation where the variable t occurs only once - ignoring $\ln (t+1)$.
See two examples of how this can be achieved below. It is dependent upon the previous M. Look for the following steps

- An allowable derivative set (or implied) $=0 \quad$ E.g. $\ln (t+1) \times 0.4=\frac{(10-0.4 t)}{t+1}$
- Cross multiplication (or division) and rearrangement to form an equation where the variable t only occurs once.
E.g.1.

$$
\begin{gathered}
\ln (t+1) \times 0.4=\frac{(10-0.4 t)}{t+1} \\
\Rightarrow \ln (t+1)=\frac{25-t}{t+1} \\
\Rightarrow \ln (t+1)=-1+\frac{26}{t+1}
\end{gathered}
$$

E.g 2

$$
\begin{aligned}
\ln (t+1) \times 0.4 & =\frac{(10-0.4 t)}{t+1} \\
\Rightarrow 0.4 t \ln (t+1)+0.4 \ln (t+1) & =10-0.4 t \\
\Rightarrow 0.4 t(1+\ln (t+1)) & =10-0.4 \ln (t+1)
\end{aligned}
$$

A1*: Correctly proceeds to the given answer of $t=\frac{26}{1+\ln (t+1)}-1$ showing all key steps.
The key steps must include

- use of $\frac{\mathrm{d} v}{\mathrm{~d} t}$ or v^{\prime} which must be correct
- a correct line preceding the given answer, usually $t=\frac{25-\ln (t+1)}{1+\ln (t+1)}$ or $\frac{26}{t+1}-1=\ln (t+1)$
(c) (i)

M1: Attempts to use the iteration formula at least once.
Usually to find $t_{2}=\frac{26}{1+\ln 8}-1$ which may be implied by awrt 7.44
A1: awrt 7.298. This alone will score both marks as iteration is implied. ISW after sight of this value. As t_{3} is the only value that rounds to 7.298 just score the rhs, it does not need to be labelled t_{3}
(c)(ii)

A1: Uses repeated iteration until value established as awrt 7.33 seconds. Allow awrt $7.33 \mathbf{s}$
Requires units. It also requires some evidence of iteration which will be usually be awarded from the award of the M

Question	Scheme	Marks	AOs
2(a)	$\mathrm{f}^{\prime}(x)=2 x+\frac{4 x-4}{2 x^{2}-4 x+5}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & \hline 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$2 x+\frac{4 x-4}{2 x^{2}-4 x+5}=0 \Rightarrow 2 x\left(2 x^{2}-4 x+5\right)+4 x-4=0$	dM1	1.1b
	$2 x^{3}-4 x^{2}+7 x-2=0 *$	A1*	2.1
		(4)	
(b)	(i) $x_{2}=\frac{1}{7}\left(2+4(0.3)^{2}-2(0.3)^{3}\right)$	M1	1.1b
	$x_{2}=0.3294$	A1	1.1b
	(ii) $x_{4}=0.3398$	A1	1.1b
		(3)	
(c)	$\begin{gathered} \mathrm{h}(x)=2 x^{3}-4 x^{2}+7 x-2 \\ \mathrm{~h}(0.3415)=0.00366 \ldots \quad \mathrm{~h}(0.3405)=-0.00130 \ldots \end{gathered}$	M1	3.1a
	States: - there is a change of sign - $\mathrm{f}^{\prime}(x)$ is continuous - $\alpha=0.341$ to 3dp	A1	2.4
		(2)	
(9 marks)			
Notes			

(a)

M1: Differentiates $\ln \left(2 x^{2}-4 x+5\right)$ to obtain $\frac{\mathrm{g}(x)}{2 x^{2}-4 x+5}$ where $\mathrm{g}(x)$ could be 1
A1: For $\mathrm{f}^{\prime}(x)=2 x+\frac{4 x-4}{2 x^{2}-4 x+5}$
dM 1 : Sets their $\mathrm{f}^{\prime}(x)=a x+\frac{\mathrm{g}(x)}{2 x^{2}-4 x+5}=0$ and uses "correct'' algebra, condoning slips, to obtain a cubic equation. E.g Look for $a x\left(2 x^{2}-4 x+5\right) \pm \mathrm{g}(x)=0$ o.e., condoning slips, followed by some attempt to simplify
A1*: Achieves $2 x^{3}-4 x^{2}+7 x-2=0$ with no errors. (The dM1 mark must have been awarded)
(b)(i)

M1: Attempts to use the iterative formula with $x_{1}=0.3$. If no method is shown award for $x_{2}=$ awrt 0.33
A1: $x_{2}=$ awrt 0.3294 Note that $\frac{1153}{3500}$ is correct
Condone an incorrect suffix if it is clear that a correct value has been found
(b)(ii)

A1: $x_{4}=$ awrt 0.3398 Condone an incorrect suffix if it is clear that a correct value has been found (c)

M1: Attempts to substitute $x=0.3415$ and $x=0.3405$ into a suitable function and gets one value correct (rounded or truncated to 1 sf). It is allowable to use a tighter interval that contains the root 0.340762654 Examples of suitable functions are $2 x^{3}-4 x^{2}+7 x-2, x-\frac{1}{7}\left(4 x^{2}-2 x^{3}+2\right)$ and $\mathrm{f}^{\prime}(x)$ as this has been found in part (a) with $\mathrm{f}^{\prime}(0.3405)=-0.00067 . ., \mathrm{f}^{\prime}(0.3415)=(+) 0.0018$
There must be sufficient evidence for the function, which would be for example, a statement such as $\mathrm{h}(x)=2 x^{3}-4 x^{2}+7 x-2$ or sight of embedded values that imply the function, not just a value or values even if both are correct. Condone $\mathrm{h}(x)$ being mislabelled as f

$$
h(0.3415)=2 \times 0.3415^{3}-4 \times 0.3415^{2}+7 \times 0.3415-2
$$

A1: Requires

- both calculations correct (rounded or truncated to 1 sf)
- a statement that there is a change in sign and that the function is continuous
- a minimal conclusion e.g. \checkmark, proven, $\alpha=0.341$, root

Question	Scheme	Marks	AOs
3 (a)	Attempts $\mathrm{f}(3)=$ and $\mathrm{f}(4)=$ where $\mathrm{f}(x)= \pm(2 \ln (8-x)-x)$	M1	2.1
	$\mathrm{f}(3)=(2 \ln (5)-x)=(+) 0.22 \text { and } \mathrm{f}(4)=(2 \ln (4)-4)=-1.23$ Change of sign and function continuous in interval $[3,4] \Rightarrow \underline{\text { Root }}$ *	A1*	2.4
		(2)	
(b)	For annotating the graph by drawing a cobweb diagram starting at $x_{1}=4 \quad$ It should have at least two spirals	M1	2.4
	Deduces that the iteration formula can be used to find an approximation for α because the cobweb spirals inwards for the cobweb diagram	A1	2.2a
		(2)	
(4 marks)			
Notes: (a) M1: Attempts $\mathrm{f}(3)=$ and $\mathrm{f}(4)=$ where $\mathrm{f}(x)= \pm(2 \ln (8-x)-x)$ or alternatively compares $2 \ln 5$ to 3 and $2 \ln 4$ to 4 . This is not routine and cannot be scored by substituting 3 and 4 in both functions A1: Both values (calculations) correct to at least 1 sf with correct explanation and conclusion. (See underlined statements) When comparing terms, allow reasons to be $2 \ln 8=3.21>3,2 \ln 4=2.77<4$ or similar (b) M1: For an attempt at using a cobweb diagram. Look for 5 or more correct straight lines. It may not start at 4 but it must show an understanding of the method. If there is no graph then it is M0 A0 A1: For a correct attempt starting at 4 and deducing that the iteration can be used as the iterations converge to the root. You must statement that it can be used with a suitable reason. Suitable reasons could be " it spirals inwards", it gets closer to the root", it converges "			

Question	Scheme	Marks	AOs
5 (a)	$\mathrm{f}(3.5)=-4.8, \mathrm{f}(4)=(+) 3.1$	M1	1.1b
	Change of sign and function continuous in interval $[3.5,4] \Rightarrow$ Root *	A1*	2.4
		(2)	
(b)	Attempts $x_{1}=x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)} \Rightarrow x_{1}=4-\frac{3.099}{16.67}$	M1	1.1b
	$x_{1}=3.81$	A1	1.1b
	$y=\ln (2 x-5)$	(2)	
(c)	 Attempts to sketch both $y=\ln (2 x-5)$ and $y=30-2 x^{2}$	M1	3.1a
	States that $y=\ln (2 x-5)$ meets $y=30-2 x^{2}$ in just one place, therefore $y=\ln (2 x-5)=30-2 x$ has just one root $\Rightarrow \mathrm{f}(x)=0$ has just one root	A1	2.4
		(2)	
(6 marks)			
Notes:			
(a) M1: Attempts $\mathrm{f}(x)$ at both $x=3.5$ and $x=4$ with at least one correct to 1 significant figure A1\%: $f(3.5)$ and $f(4)$ correct to 1 sig figure (rounded or truncated) with a correct reason and conclusion. A reason could be change of sign, or $\mathrm{f}(3.5) \times \mathrm{f}(4)<0$ or similar with $\mathrm{f}(x)$ being continuous in this interval. A conclusion could be 'Hence root' or 'Therefore root in interval'			
(b) M1: At A1:	mpts $x_{1}=x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)}$ evidenced by $x_{1}=4-\frac{3.099}{16.67}$ ect answer only $x_{1}=3.81$		
(c) M1: For a valid attempt at showing that there is only one root. This can be achieved by - Sketching graphs of $y=\ln (2 x-5)$ and $y=30-2 x^{2}$ on the same axes - Showing that $\mathrm{f}(x)=\ln (2 x-5)+2 x^{2}-30$ has no turning points - Sketching a graph of $\mathrm{f}(x)=\ln (2 x-5)+2 x^{2}-30$ A1: Scored for correct conclusion			

Question	Scheme	Marks	AOs
6(a)	Uses or implies $h=0.5$	B1	1.1 b
	For correct form of the trapezium rule $=$	M1	1.1b
	$\frac{0.5}{2}\{3+2.2958+2(2.3041+1.9242+1.9089)\}=4.393$	A1	1.1b
		(3)	
(b)	Any valid statement reason, for example - Increase the number of strips - Decrease the width of the strips - Use more trapezia	B1	2.4
		(1)	
(c)	For integration by parts on $\int x^{2} \ln x \mathrm{~d} x$	M1	2.1
	$=\frac{x^{3}}{3} \ln x-\int \frac{x^{2}}{3} \mathrm{~d} x$	A1	1.1b
	$\int-2 x+5 \mathrm{~d} x=-x^{2}+5 x \quad(+c)$	B1	1.1b
	All integration attempted and limits used Area of $S=\int_{1}^{3} \frac{x^{2} \ln x}{3}-2 x+5 \mathrm{~d} x=\left[\frac{x^{3}}{9} \ln x-\frac{x^{3}}{27}-x^{2}+5 x\right]_{x=1}^{x=3}$	M1	2.1
	Uses correct \ln laws, simplifies and writes in required form	M1	2.1
	Area of $S=\frac{28}{27}+\ln 27 \quad(a=28, b=27, c=27)$	A1	1.1b
		(6)	
(10 marks)			

Question 6 continued

Notes:

(a)

B1: States or uses the strip width $h=0.5$. This can be implied by the sight of $\frac{0.5}{2}\{\ldots\}$ in the trapezium rule
M1: For the correct form of the bracket in the trapezium rule. Must be y values rather than x values $\{$ first y value + last y value $+2 \times($ sum of other y values $)\}$
A1: 4.393
(b)

B1: See scheme
(c)

M1: Uses integration by parts the right way around.
Look for $\int x^{2} \ln x \mathrm{~d} x=A x^{3} \ln x-\int B x^{2} \mathrm{~d} x$
A1: $\quad \frac{x^{3}}{3} \ln x-\int \frac{x^{2}}{3} \mathrm{~d} x$
B1: Integrates the $-2 x+5$ term correctly $=-x^{2}+5 x$
M1: All integration completed and limits used
M1: Simplifies using $\ln \operatorname{law}(\mathrm{s})$ to a form $\frac{a}{b}+\ln c$
A1: Correct answer only $\frac{28}{27}+\ln 27$

Question	Scheme	Marks	AOs
7(a)	States or uses $h=1.5$	B1	1.1a
	Full attempt at the trapezium rule $=\frac{\cdots}{2}\{1.63+2.63+2 \times(2+2.26+2.46)\}$	M1	1.1b
	$=\operatorname{awrt} 13.3$ or $\frac{531}{40}$	A1	1.1b
		(3)	
(b)(i)	$\int_{3}^{9} \log _{3}(2 x)^{10} \mathrm{~d} x=10 \times 113.3$ " $=$ awrt 133 or e.g. $\frac{531}{4}$	B1ft	2.2a
(ii)	$\begin{gathered} \int_{3}^{9} \log _{3} 18 x \mathrm{~d} x=\int_{3}^{9} \log _{3}(9 \times 2 x) \mathrm{d} x=\int_{3}^{9} 2+\log _{3} 2 x \mathrm{~d} x \\ =[2 x]_{3}^{9}+\int_{3}^{9} \log _{3} 2 x \mathrm{~d} x=18-6+\int_{3}^{9} \log _{3} 2 x \mathrm{~d} x=\ldots \end{gathered}$	M1	3.1a
	Awrt 25.3 or $\frac{1011}{40}$	A1ft	1.1b
		(3)	
(6 marks)			
Notes:			

(a)

B1: States or uses $h=1.5$
M1: A full attempt at the trapezium rule.
Look for $\frac{\text { their } h}{2}\{1.63+2.63+2 \times(2+2.26+2.46)\}$ but condone copying slips
Note that $\frac{\text { their } h}{2} 1.63+2.63+2 \times(2+2.26+2.46)$ scores M0 unless the missing brackets are recovered or implied by their answer. You may need to check.
Allow this mark if they add the areas of individual trapezia e.g.
$\frac{\text { their } h}{2}\{1.63+2\}+\frac{\text { their } h}{2}\{2+2.26\}+\frac{\text { their } h}{2}\{2.26+2.46\}+\frac{\text { their } h}{2}\{2.46+2.63\}$
Condone copying slips but must be a complete method using all the trapezia.
A1: awrt 13.3 (Note full accuracy is 13.275) or exact equivalent.
Note that the calculator answer is $\mathbf{1 3 . 3 2 4}$ so you must see correct working to award awrt 13.3
Use of $h=-1.5$ leading to a negative area can score B1M1A0 but allow full marks if then stated as positive.
(b)(i)

B1ft: Deduces that $\int_{3}^{9} \log _{3}(2 x)^{10} \mathrm{~d} x=10 \times$ " 13.3 " $=$ awrt 133
FT on their 13.3 look for 3sf accuracy but follow through on e.g. their rounded answer to part (a) so if 13 was their answer to part (a) then allow 130 here following a correct method.

A correct method must be seen here but a minimum is e.g. $10 \times$ " $13.3 "=" 133 "$
Note that $\int_{3}^{9} \log _{3}(2 x)^{10} \mathrm{~d} x=133.2414316 \ldots$ so a correct method must be seen to award marks.
Attempts to apply the trapezium rule again in any way score $M 0$ as the instruction in the question was to use the answer to part (a).
(b)(ii)

M1: Shows correct log work to relate the given question to part (a)
Must reach as far as e.g. $[2 x]_{3}^{9}+\int_{3}^{9} \log _{3} 2 x \mathrm{~d} x=\ldots$ with correct use of limits on $[2 x]_{3}^{9}$ which may be implied or equivalent work e.g. finds the area of the rectangle as 2×6
A1ft: Correct working followed by awrt 25.3 but ft on their 13.3 so allow for $12+$ their answer to part (a) following correct work as shown.
Note that $\int_{3}^{9} \log _{3} 18 x \mathrm{~d} x=25.32414 \ldots$ so a correct method must be seen to award marks.
Some examples of an acceptable method are:

$$
\begin{aligned}
& \int_{3}^{9} \log _{3} 18 x \mathrm{~d} x=\int_{3}^{9} \log _{3}(9 \times 2 x) \mathrm{d} x=\int_{3}^{9} 2+\log _{3} 2 x \mathrm{~d} x=6 \times 2+" 13.3 "=25.3 \\
& \int_{3}^{9} \log _{3} 18 x \mathrm{~d} x=\int_{3}^{9} \log _{3}(9 \times 2 x) \mathrm{d} x=\int_{3}^{9} 2+\log _{3} 2 x \mathrm{~d} x=12+" 13.3 "=25.3 \\
& \int_{3}^{9} \log _{3} 18 x \mathrm{~d} x=\int_{3}^{9} \log _{3}(9 \times 2 x) \mathrm{d} x=\int_{3}^{9} 2+\log _{3} 2 x \mathrm{~d} x=[2 x]_{3}^{9}+\int_{3}^{9} \log _{3} 2 x \mathrm{~d} x=25.3
\end{aligned}
$$

BUT just $12+$ " 13.3 " $=25.3$ scores M0
Attempts to apply the trapezium rule again in any way score $M 0$ as the instruction in the question was to use the answer to part (a).

Question	Scheme	Marks	AOs
8(a)	$\left(\mathrm{f}^{\prime}(x)=\right) 4 \cos \left(\frac{1}{2} x\right)-3$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Sets $\mathrm{f}^{\prime}(x)=4 \cos \left(\frac{1}{2} x\right)-3=0 \Rightarrow x=$	dM1	3.1a
	$x=14.0$ Cao	A1	3.2a
		(4)	
(b)	Explains that $\mathrm{f}(4)>0, \mathrm{f}(5)<0$ and the function is continuous	B1	2.4
		(1)	
(c)	$\begin{gathered} \text { Attempts } x_{1}=5-\frac{8 \sin 2.5-15+9}{" 4 \cos 2.5-3 "} \\ \left(\mathrm{NB} \mathrm{f}(5)=-1.212 \ldots \text { and } \mathrm{f}^{\prime}(5)=-6.204 \ldots\right) \end{gathered}$	M1	1.1b
	$x_{1}=$ awrt 4.80	A1	1.1b
		(2)	
(7 marks)			
Notes:			

(a)

M1: Differentiates to obtain $k \cos \left(\frac{1}{2} x\right) \pm \alpha$ where α is a constant which may be zero and no other terms. The brackets are not required.
A1: Correct derivative $\mathrm{f}^{\prime}(x)=4 \cos \left(\frac{1}{2} x\right)-3$. Allow unsimplified e.g. $\mathrm{f}^{\prime}(x)=\frac{1}{2} \times 8 \cos \left(\frac{1}{2} x\right)-3 x^{0}$ There is no need for $\mathrm{f}^{\prime}(x)=\ldots$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ just look for the expression and the brackets are not required.
dM1: For the complete strategy of proceeding to a value for x.
Look for

- $\mathrm{f}^{\prime}(x)=a \cos \left(\frac{1}{2} x\right)+b=0, a, b \neq 0$
- Correct method of finding a valid solution to $a \cos \left(\frac{1}{2} x\right)+b=0$

Allow for $a \cos \left(\frac{1}{2} x\right)+b=0 \Rightarrow \cos \left(\frac{1}{2} x\right)= \pm k \Rightarrow x=2 \cos ^{-1}(\pm k)$ where $|k|<1$
If this working is not shown then you may need to check their value(s).
For example $4 \cos \left(\frac{1}{2} x\right)-3=0 \Rightarrow x=1.4 \ldots$ or $11.1 \ldots$ (or $82.8 \ldots$ or $637 \ldots$ or 803 in degrees) would indicate this method.
A1: Selects the correct turning point $x=14.0$ and not just 14 or unrounded e.g. 14.011 \ldots
Must be this value only and no other values unless they are clearly rejected or 14.0 clearly selected. Ignore any attempts to find the y coordinate.
(b) Correct answer with no working scores no marks.

B1: See scheme. Must be a full reason, (e.g. change of sign and continuous)
Accept equivalent statements for $f(4)>0, f(5)<0$ e.g. $f(4) \times f(5)<0$,"there is a change of sign", "one negative one positive". A minimum is "change of sign and continuous" but do not allow this mark if the comment about continuity is clearly incorrect e.g. "because x is continuous" or "because the interval is continuous"
(c)

M1: Attempts $x_{1}=5-\frac{\mathrm{f}(5)}{\mathrm{f}^{\prime}(5)}$ to obtain a value following through on their $\mathrm{f}^{\prime}(x)$ as long as it is a "changed" function.
Must be a correct N -R formula used - may need to check their values.
Allow if attempted in degrees. For reference in degrees $f(5)=-5.65 \ldots$ and $f^{\prime}(5)=0.996 \ldots$ and gives $x_{1}=10.67 \ldots$
There must be clear evidence that $5-\frac{\mathrm{f}(5)}{\mathrm{f}^{\prime}(5)}$ is being attempted.
so e.g. $x_{n+1}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)} \Rightarrow x_{1}=4.80$ scores M0 as does e.g. $x_{1}=x-\frac{8 \sin \left(\frac{1}{2} x\right)-3 x+9}{4 \cos \left(\frac{1}{2} x\right)-3}=4.80$
BUT evidence may be provided by the accuracy of their answer. Note that the full $\mathrm{N}-\mathrm{R}$ accuracy is 4.804624337 so e.g. 4.805 or 4.804 (truncated) with no evidence of incorrect work may imply the method.
A1: $x_{1}=$ awrt 4.80 not awrt 4.8 but isw if awrt 4.80 is seen. Ignore any subsequent iterations.
Note that work for part (a) cannot be recovered in part (c)
Note also:
$5-\frac{\mathrm{f}(5)}{\mathrm{f}^{\prime}(5)}=$ awrt 4.80 following a correct derivative scores M1A1
$5-\frac{\mathrm{f}(5)}{\mathrm{f}^{\prime}(5)} \neq$ awrt 4.80 with no evidence that $5-\frac{\mathrm{f}(5)}{\mathrm{f}^{\prime}(5)}$ was attempted scores M0

Question	Scheme	Marks	AOs
9(a)	$h=0.5$	B1	1.1a
	$A \approx \frac{0.5}{2}\{0.5774+0.8452+2(0.7071+0.7746+0.8165)\}$	M1	1.1b
	= awrt 1.50	A1	1.1b
	For reference: The integration on a calculator gives 1.511549071 The full accuracy for \boldsymbol{y} values gives $\mathbf{1 . 5 0 4 7 2 6 1 4 7}$ The accuracy from the table gives 1.50475		
		(3)	
(b)	$3 \times \text { their (a) }$ If (a) is correct, allow awrt 4.50 or awrt 4.51 even with no working. Only allow 4.5 if (a) is correct and working is shown e.g. 3×1.5 If (a) is incorrect allow $3 \times$ their (a) given to at least 3 sf but do not be too concerned about the accuracy (as they may use rounded or rounded value from (a))	B1ft	2.2a
	For reference the integration on a calculator gives 4.534647213		
		(1)	
(c)	This mark depends on the B1 having been awarded in part (b) with awrt 4.5 Look for a sensible comment. Some examples: - The answer is accurate to 2 sf or one decimal place - Answer to (b) is accurate as $4.535 \approx 4.50$ - Very accurate as 4.535 to 2 sf is 4.5 - $4.51425<4.535$ so my answer is underestimate but not too far off - It is an underestimate but quite close - It is a very good estimate - High accuracy - (Quite) accurate - It is less than 1% out - $4.535-4.5=0.035$ so not far out But not just "it is an underestimate" or Calculates percentage error correctly using awrt 4.50 or awrt 4.51 or 4.5 (No comment is necessary in these cases although one may be given) Examples: $\begin{aligned} & \left\|\frac{4.535-4.50}{4.535}\right\| \times 100=0.77 \% \text { or }\left\|\frac{4.535-4.51}{4.535}\right\| \times 100=0.55 \% \\ & \left\|\frac{4.535-4.51425}{4.535}\right\| \times 100=0.46 \% \text { or }\left\|\frac{4.50}{4.535}\right\| \times 100=99 \% \end{aligned}$ In these cases don't be too concerned about accuracy e.g. allow 1sf. This mark should be withheld if there are any contradictory statements	B1	3.2b
		(1)	
(5 marks)			

(a)

B1: States or uses $h=0.5$. May be implied by $\frac{1}{4} \times\{\ldots$ below.
M1: Correct attempt at the trapezium rule.
Look for $\frac{1}{2} h \times\{0.5774+0.8452+2(0.7071+0.7746+0.8165)\}$ condoning slips on the terms but must use all y values with no repeats.
There must be a clear attempt at $\frac{1}{2} h \times$ (first $y+$ last $y+2 \times$ "sum of the rest")
Give M0 for $\frac{1}{2} \times \frac{1}{2} 0.5774+0.8452+2(0.7071+0.7746+0.8165)$ unless the missing brackets are implied.
NB this incorrect method gives 5.85...
May be awarded for separate trapezia e.g.

$$
\frac{1}{4}(0.5774+0.7071)+\frac{1}{4}(0.7071+0.7746)+\frac{1}{4}(0.7746+0.8165)+\frac{1}{4}(0.8165+0.8452)
$$

May be awarded for using the function e.g. $\frac{1}{2} h \times\left\{\sqrt{\frac{0.5}{1+0.5}}+\sqrt{\frac{2.5}{1+2.5}}+2\left(\sqrt{\frac{1}{1+1}}+\sqrt{\frac{1.5}{1+1.5}}+\sqrt{\frac{2}{1+2}}\right)\right\}$
A1: Awrt 1.50 (Apply isw if necessary)
Correct answers with no working - send to review
(b)

B1ft: See main scheme. Must be considering $3 \times(\mathrm{a})$ and not e.g. attempting trapezium rule again.
(c)

B1: See scheme

10(a)	$\ln x \rightarrow \frac{1}{x}$	B1	1.1a
	Method to differentiate $\frac{4 x^{2}+x}{2 \sqrt{x}}$ - see notes	M1	1.1b
	E.g. $2 \times \frac{3}{2} x^{\frac{1}{2}}+\frac{1}{2} \times \frac{1}{2} x^{-\frac{1}{2}}$	A1	1.1b
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sqrt{x}+\frac{1}{4 \sqrt{x}}-\frac{4}{x}=\frac{12 x^{2}+x-16 \sqrt{x}}{4 x \sqrt{x}} *$	A1*	2.1
		(4)	
(b)	$12 x^{2}+x-16 \sqrt{x}=0 \Rightarrow 12 x^{\frac{3}{2}}+x^{\frac{1}{2}}-16=0$	M1	1.1b
	E.g. $12 x^{\frac{3}{2}}=16-\sqrt{x}$	dM1	1.1b
	$x^{\frac{3}{2}}=\frac{4}{3}-\frac{\sqrt{x}}{12} \Rightarrow x=\left(\frac{4}{3}-\frac{\sqrt{x}}{12}\right)^{\frac{2}{3}} *$	A1*	2.1
		(3)	
(c)	$x_{2}=\sqrt[3]{\left(\frac{4}{3}-\frac{\sqrt{2}}{12}\right)^{2}}$	M1	1.1b
	$x_{2}=$ awrt 1.13894	A1	1.1b
	$x=1.15650$	A1	2.2a
		(3)	
(10 marks)			

Notes:

(a)

B1: Differentiates $\ln x \rightarrow \frac{1}{x}$ seen or implied
M1: Correct method to differentiate $\frac{4 x^{2}+x}{2 \sqrt{x}}$:
Look for $\frac{4 x^{2}+x}{2 \sqrt{x}} \rightarrow \ldots x^{\frac{3}{2}}+\ldots x^{\frac{1}{2}}$ being then differentiated to $P x^{\frac{1}{2}}+\ldots$ or $\ldots+Q x^{-\frac{1}{2}}$
Alternatively uses the quotient rule on $\frac{4 x^{2}+x}{2 \sqrt{x}}$.
Condone slips but if rule is not quoted expect $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=\frac{2 \sqrt{x}(A x+B)-\left(4 x^{2}+x\right) C x^{-\frac{1}{2}}}{(2 \sqrt{x})^{2}}(A, B, C>0)$
But a correct rule may be implied by their $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{u}^{\prime}, \boldsymbol{v}^{\prime}$ followed by applying $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$ etc.
Alternatively uses the product rule on $\left(4 x^{2}+x\right)(2 \sqrt{x})^{-1}$
Condone slips but expect $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=A x^{-\frac{1}{2}}(B x+C)+D\left(4 x^{2}+x\right) x^{-\frac{3}{2}}(A, B, C>0)$
In general condone missing brackets for the M mark. If they quote $u=4 x^{2}+x$ and $v=2 \sqrt{ } x$ and don't make the differentiation easier, they can be awarded this mark for applying the correct rule. Also allow this mark if they quote the correct quotient rule but only have \boldsymbol{v} rather than $\boldsymbol{v}^{\mathbf{2}}$ in the denominator.
A1: Correct differentiation of $\frac{4 x^{2}+x}{2 \sqrt{x}}$ although may not be simplified.

Examples: $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=\frac{2 \sqrt{x}(8 x+1)-\left(4 x^{2}+x\right) x^{-\frac{1}{2}}}{(2 \sqrt{x})^{2}}, \frac{1}{2} x^{-\frac{1}{2}}(8 x+1)-\frac{1}{4}\left(4 x^{2}+x\right) x^{-\frac{3}{2}}, 2 \times \frac{3}{2} x^{\frac{1}{2}}+\frac{1}{2} \times \frac{1}{2} x^{-\frac{1}{2}}$
A1*: Obtains $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12 x^{2}+x-16 \sqrt{x}}{4 x \sqrt{x}}$ via $3 \sqrt{x}+\frac{1}{4 \sqrt{x}}-\frac{4}{x}$ or a correct application of the quotient or product rule and with sufficient working shown to reach the printed answer.
There must be no errors e.g. missing brackets.
(b)

M1: Sets $12 x^{2}+x-16 \sqrt{x}=0$ and divides by \sqrt{x} or equivalent e.g. divides by x and multiplies by $\sqrt{ } x$
dM1: Makes the term in $x^{\frac{3}{2}}$ the subject of the formula
A1*: A correct and rigorous argument leading to the given solution.

Alternative - working backwards:

$x=\left(\frac{4}{3}-\frac{\sqrt{x}}{12}\right)^{\frac{2}{3}} \Rightarrow x^{\frac{3}{2}}=\frac{4}{3}-\frac{\sqrt{x}}{12} \Rightarrow 12 x^{\frac{3}{2}}=16-\sqrt{x} \Rightarrow 12 x^{2}=16 \sqrt{x}-x \Rightarrow 12 x^{2}-16 \sqrt{x}+x=0$
M1: For raising to power of $3 / 2$ both sides. dM1: Multiplies through by $\sqrt{ } x$. A1: Achieves printed answer and makes a minimal comment e.g. tick, \#, QED, true etc.
(c)

M1: Attempts to use the iterative formula with $x_{1}=2$. This is implied by sight of $x_{2}=\left(\frac{4}{3}-\frac{\sqrt{2}}{12}\right)^{\frac{2}{3}}$ or awrt 1.14
A1: $x_{2}=$ awrt 1.13894
A1: Deduces that $x=1.15650$

Question	Scheme							Marks	AOs																		
11	Time (s)	0	5	10	15	20	25																				
	Speed ($\mathrm{m} \mathrm{s}^{-1}$)	2	5	10	18	28	42																				
(a)	Uses an allowable method to estimate the area under the curve. E.g. Way 1: an attempt at the trapezium rule (see below)																										
	Way 2: $\{s=\}\left(\frac{2+42}{2}\right)(25)\{=550\}$																										
	Way 3: $42=2+25(a) \Rightarrow a=1.6 \Rightarrow s=2(25)+(0.5)(1.6)(25)^{2}\{=550\}$																										
	Way 4: $\{d=\}(2)(5)+5(5)+10(5)+18(5)+28(5)\{=63(5)=315\}$							M1	3.1a																		
	Way 5: $\{d=\} 5(5)+10(5)+18(5)+28(5)+42(5)\{=103(5)=515\}$																										
	Way 6: $\{d=\} \frac{315+515}{2}\{=415\}$																										
	Way 7: $\{d=\}\left(\frac{2+5+10+18+28+42}{6}\right)(25)\{=437.5\}$																										
	$\frac{1}{2} \times(5) \times[2+2(5+10+18+28)+42] \text { or } \frac{1}{2} \times[" 315 "+" 515 "]$							M1	1.1b																		
	$=415\{\mathrm{~m}\}$							A1	1.1b																		
								(3)																			
(b) Alt 1	Uses a Way 1, Way 2, Way 3, Way 5, Way 6 or Way 7 method in (a)																										
	Overestimate and a relevant explanation e.g. - \{top of $\}$ trapezia lie above the curve - Area of trapezia > area under curve - An appropriate diagram which gives reference to the extra area - Curve is convex - $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0$ - Acceleration is \{continually\} increasing - The gradient of the curve is \{continually\} increasing - All the rectangles are above the curve (Way 5)							B1ft	2.4																		
								(1)																			
$\begin{gathered} \hline \text { (b) } \\ \text { Alt } 2 \end{gathered}$	Uses a Way 4 method in (a)																										
	Underestimate and a relevant explanation e.g. - All the rectangles are below the curve							B1ft	2.4																		
	(1)																										
Notes for Question 11 (4 marks)																											
(a)	A low-level problem-solving mark for using an allowable method to estimate the area under the curve. E.g.																										
M1:																											
	Way 1: See scheme. Allow $\lambda(2+2(5+10+18+28)+42) ; \lambda>0$ for $1^{\text {st }} \mathrm{M} 1$																										
	ay 2: Uses $s=\left(\frac{u+v}{2}\right) t$ which is equivalent to finding the area of a large trapezium																										
	Way 3: Complete method using a uniform acceleration equation.																										
	ay 4: Sums rectangles lying below the curve. Condone a slip on one of the speeds.																										
	Way 5: Sums rectangles lying above the curve. Condone a slip on one of the speeds.																										
	Way 6: Average the result of Way 3 and Way 4. Equivalent to Way 1.																										
	Way 7: Applies (average speed) \times (time)																										

Notes for Question 11 Continued	
(a)	continued
M1:	Correct trapezium rule method with $h=5$. Condone a slip on one of the speeds. The ' 2 ' and ' 42 ' should be in the correct place in the [......].
A1:	415
Note:	Units do not have to be stated
Note:	Give final A0 for giving a final answer with incorrect units. e.g. give final A 0 for 415 km or $415 \mathrm{~ms}^{-1}$
Note:	Only the $1^{\text {st }} \mathrm{M} 1$ can only be scored for Way 2, Way 3, Way 4, Way 5 and Way 7 methods
Note:	Full marks in part (a) can only be scored by using a Way 1 or a Way 6 method.
Note:	Give M0 M0 A0 for $\{d=\} 2(5)+5(5)+10(5)+18(5)+28(5)+42(5)\{=105(5)=525\}$ (i.e. using too many rectangles)
Note	Condone M1 M0 A0 for $\left[\frac{(2+10)}{2}(10)+\frac{(10+18)}{2}(5)+\frac{(18+28)}{2}(5)+\frac{(28+42)}{2}(5)\right]=395 \mathrm{~m}$
Note:	Give M1 M1 A1 for $5\left[\frac{(2+5)}{2}+\frac{(5+10)}{2}+\frac{(10+18)}{2}+\frac{(18+28)}{2}+\frac{(28+42)}{2}\right]=415 \mathrm{~m}$
Note:	Give M1 M1 A1 for $\frac{5}{2}(2+42)+5(5+10+18+28)=415 \mathrm{~m}$
Note:	Bracketing mistake:
	Unless the final calculated answer implies that the method has been applied correctly
	$\text { give M1 M0 A0 for } \frac{5}{2}(2)+2(5+10+18+28)+42\{=169\}$
	give M1 M0 A0 for $\frac{5}{2}(2+42)+2(5+10+18+28)\{=232\}$
Note:	Give M0 M0 A0 for a Simpson's Rule Method
(b)	Alt 1 This mark depends on both an answer to part (a) being obtained and the first M in part (a) See scheme
B1ft:	
Note:	Allow the explanation "curve concaves upwards"
Note:	Do not allow explanations such as "curve is concave" or "curve concaves downwards"
Note:	Do not allow explanation "gradient of the curve is positive"
Note:	Do not allow explanations which refer to "friction" or "air resistance"
Note:	The diagram opposite is sufficient as an explanation. It must show the top of a trapezium lying above the curve.
(b)	Alt 2
B1ft:	This mark depends on both an answer to part (a) being obtained and the first M in part (a) See scheme
Note:	Do not allow explanations which refer to "friction" or "air-resistance"

Question		Scheme	Marks	AOs
12 (a) Way 1	$\left\{y=x^{x} \Rightarrow\right\} \ln y=x \ln x$		B1	1.1a
	$\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+\ln x$		M1	1.1 b
			A1	2.1
	$\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow\right\} \frac{x}{x}+\ln x=0 \text { or } 1+\ln x=0 \Rightarrow \ln x=k \Rightarrow x=\ldots$		M1	1.1 b
	$x=\mathrm{e}^{-1}$ or awrt 0.368		A1	1.1 b
	Note: $k \neq 0$		(5)	
(a) Way 2	$\left\{y=x^{x} \Rightarrow\right\} \quad y=\mathrm{e}^{x \ln x}$		B1	1.1a
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{x}{x}+\ln x\right) \mathrm{e}^{x \ln x}$		M1	1.1 b
			A1	2.1
	$\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow\right\} \frac{x}{x}+\ln x=0 \text { or } 1+\ln x=0 \Rightarrow \ln x=k \Rightarrow x=\ldots$		M1	1.16
	$x=\mathrm{e}^{-1}$ or awrt 0.368		A1	1.1b
	Note: $k \neq 0$		(5)	
(b) Way 1	Attempts both $1.5^{15}=1.8 \ldots$ and $1.6^{16}=2.1 \ldots$ and at least one result is correct to awrt 1 dp		M1	1.1 b
	$1.8 \ldots<2$ and 2.1... >2 and as C is continuous then $1.5<\alpha<1.6$		A1	2.1
			(2)	
(c)	Attempts $x_{n+1}=2 x_{n}^{1-x_{n}}$ at least once with $x_{1}=1.5$ Can be implied by $2(1.5)^{1-15}$ or awrt 1.63		M1	1.1 b
	$\left\{x_{4}=1.67313 \ldots \Rightarrow x_{4}=1.673(3 \mathrm{dp})\right.$ cao		A1	1.1 b
			(2)	
(d)			B1	2.5
			B1	2.5
			(2)	
			(11 marks)	
Note $\quad \begin{aligned} & \underline{A} \\ & \\ & \\ & \\ & \end{aligned}$	A common solution A maximum of 3 marks (i.e. B1 $1^{\text {st }} \mathrm{M} 1$ and $2^{\text {nd }} \mathrm{M} 1$) can be given for the solution $\log y=x \log x \Rightarrow \frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+\log x$ $\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow\right\} 1+\log x=0 \Rightarrow x=10^{-1}$			
	- $1^{\text {st }} \mathrm{B} 1$ for $\log y=x \log x$ - $1^{\text {st }}$ M1 for $\log y \rightarrow \lambda \frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x} ; \lambda \neq 0$ or $x \log x \rightarrow 1+\log x$ or $\frac{x}{x}+\log x$ - $2^{\text {nd }}$ M1 can be given for $1+\log x=0 \Rightarrow \log x=k \Rightarrow x=\ldots ; \quad k \neq 0$			

Question	Scheme	Marks	AOs
$\begin{aligned} & \hline 12 \text { (b) } \\ & \text { Way } 2 \end{aligned}$	For $x^{x}-2$, attempts both $1.5^{15}-2=-0.16 \ldots$ and $1.6^{16}-2=0.12 \ldots$ and at least one result is correct to awrt 1 dp	M1	1.1b
	$-0.16 \ldots<0$ and $0.12 \ldots>0$ and as C is continuous then $1.5<\alpha<1.6$	A1	2.1
		(2)	
12 (b) Way 3	For $\ln y=x \ln x$, attempts both $1.5 \ln 1.5=0.608 \ldots$ and $1.6 \ln 1.6=0.752 \ldots$ and at least one result is correct to awrt 1 dp	M1	1.1b
	$0.608 \ldots<0.69 \ldots$ and $0.752 \ldots>0.69 \ldots$ and as C is continuous then $1.5<\alpha<1.6$	A1	2.1
		(2)	
12 (b) Way 4	For $\log y=x \log x$, attempts both $1.5 \log 1.5=0.264 \ldots$ and $1.6 \log 1.6=0.326 \ldots$ and at least one result is correct to awrt 2 dp	M1	1.1b
	$0.264 \ldots<0.301 \ldots$ and $0.326 \ldots>0.301 \ldots$ and as C is continuous then $1.5<\alpha<1.6$	A1	2.1
		(2)	
Notes for Question 12			
(a) W	Way 1		
B1: $\quad \ln$	$\ln y=x \ln x$. Condone $\log _{x} y=x \log _{x} x$ or $\log _{x} y=x$		
M1: \quad F	For either $\ln y \rightarrow \frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $x \ln x \rightarrow 1+\ln x$ or $\frac{x}{x}+\ln x$		
A1: \quadC i.e	Correct differentiated equation. i.e. $\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+\ln x$ or $\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x}{x}+\ln x$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=y(1+\ln x)$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{x}(1+\ln x)$		
M1: ${ }^{\text {S }}$	Sets $1+\ln x=0$ and rearranges to make $\ln x=k \Rightarrow x=\ldots ; k$ is a constant and $k \neq 0$		
A1: $\quad x$	$x=\mathrm{e}^{-1}$ or awrt 0.368 only (with no other solutions for x)		
Note: G	Give no marks for no working leading to 0.368		
Note: G	Give M0 A0 M0 A0 for $\ln y=x \ln x \rightarrow x=0.368$ with no intermediate working		
(a) W	Way 2		
B1:	$y=\mathrm{e}^{x \ln x}$		
M1: \quad F	For either $y=\mathrm{e}^{x \ln x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{f}(\ln x) \mathrm{e}^{x \ln x}$ or $x \ln x \rightarrow 1+\ln x$ or $\frac{x}{x}+\ln x$		
A1: \quadC i.e	Correct differentiated equation. i.e. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{x}{x}+\ln x\right) \mathrm{e}^{x \ln x}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=(1+\ln x) \mathrm{e}^{x \ln x}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{x}(1+\ln x)$		
M1: S	Sets $1+\ln x=0$ and rearranges to make $\ln x=k \Rightarrow x=\ldots ; k$ is a constant and $k \neq 0$		
A1: $\quad x$	$x=\mathrm{e}^{-1}$ or awrt 0.368 only (with no other solutions for x)		
Note: G $\{$	Give B1 M1 A0 M1 A1 for the following solution:$\left\{y=x^{x} \Rightarrow\right\} \ln y=x \ln x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+\ln x \Rightarrow 1+\ln x=0 \Rightarrow x=\mathrm{e}^{-1} \quad \text { or awrt } 0.368$		

Notes for Question 12 Continued	
(b)	Way 1
M1:	Attempts both $1.5^{15}=1.8 \ldots$ and $1.6^{16}=2.1 \ldots$ and at least one result is correct to awrt 1 dp
A1:	Both $1.5^{15}=$ awrt 1.8... and $1.6^{16}=$ awrt 2.1... reason (e.g. $1.8 \ldots<2$ and $2.1 \ldots>2$ or states C cuts through $y=2$), C continuous and conclusion
(b)	Way 2
M1:	Attempts both $1.5^{15}-2=-0.16 \ldots$ and $1.6^{16}-2=0.12 \ldots$ and at least one result is correct to awrt 1 dp
A1:	Both $1.5^{15}-2=-0.16 \ldots$ and $1.6^{16}-2=0.12 \ldots$ correct to awrt 1 dp, reason (e.g. $-0.16 \ldots<0$ and $0.12 \ldots>0$, sign change or states C cuts through $y=0$), C continuous and conclusion
(b)	Way 3
M1:	Attempts both $1.5 \ln 1.5=0.608 \ldots$ and $1.6 \ln 1.6=0.752 \ldots$ and at least one result is correct to awrt 1 dp
A1:	Both $1.5 \ln 1.5=0.608 \ldots$ and $1.6 \ln 1.6=0.752 \ldots$ correct to awrt 1 dp , reason (e.g. $0.608 \ldots<0.69 \ldots$ and $0.752 \ldots>0.69 \ldots$ or states they are either side of $\ln 2$), C continuous and conclusion.
(b)	Way 4
M1:	Attempts both $1.5 \log 1.5=0.264 \ldots$ and $1.6 \log 1.6=0.326 \ldots$ and at least one result is correct to awrt 2 dp
A1:	Both $1.5 \log 1.5=0.264 \ldots$ and $1.6 \log 1.6=0.326 \ldots$ correct to awrt 2 dp , reason (e.g. $0.264 \ldots<0.301 \ldots$ and $0.326 \ldots>0.301 \ldots$ or states they are either side of $\log 2$), C continuous and conclusion.
(c)	
M1:	An attempt to use the given or their formula once. Can be implied by $2(1.5)^{1-15}$ or awrt 1.63
A1:	States $x_{4}=1.673$ cao (to 3 dp)
Note:	Give M1 A1 for stating $x_{4}=1.673$
Note:	M1 can be implied by stating their final answer $x_{4}=$ awrt 1.673
Note:	$x_{2}=1.63299 \ldots, x_{3}=1.46626 \ldots, x_{4}=1.67313 \ldots$
(d)	
B1:	see scheme
B1:	see scheme
Note:	Only marks of B1B0 or B1B1 are possible in (d)
Note:	Give B0 B0 for "Converges in a cob-web pattern" or "Converges up and down to α "

Question		Scheme	Marks	AOs
13		The equation $2 x^{3}+x^{2}-1=0$ has exactly one real root		
(a)		$\left\{\mathrm{f}(x)=2 x^{3}+x^{2}-1 \Rightarrow\right\} \mathrm{f}^{\prime}(x)=6 x^{2}+2 x$	B1	1.1b
		$\left\{x_{n+1}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)} \Rightarrow\right\}\left\{x_{n+1}\right\}=x_{n}-\frac{2 x_{n}^{3}+x_{n}{ }^{2}-1}{6 x_{n}{ }^{2}+2 x_{n}}$	M1	1.1b
		$=\frac{x_{n}\left(6 x_{n}{ }^{2}+2 x_{n}\right)-\left(2 x_{n}{ }^{3}+x_{n}{ }^{2}-1\right)}{6 x_{n}{ }^{2}+2 x_{n}} \Rightarrow x_{n+1}=\frac{4 x_{n}{ }^{3}+x_{n}{ }^{2}+1}{6 x_{n}{ }^{2}+2 x_{n}} *$	A1*	2.1
			(3)	
(b)		$\left\{x_{1}=1 \Rightarrow\right\} x_{2}=\frac{4(1)^{3}+(1)^{2}+1}{6(1)^{2}+2(1)} \quad$ or $x_{2}=1-\frac{2(1)^{3}+(1)^{2}-1}{6(1)^{2}+2(1)}$	M1	1.1b
		$\Rightarrow x_{2}=\frac{3}{4}, x_{3}=\frac{2}{3}$	A1	1.1b
			(2)	
(c)		Accept any reasons why the Newton-Raphson method cannot be used with $x_{1}=0$ which refer or allude to either the stationary point or the tangent. E.g. - There is a stationary point at $x=0$ - Tangent to the curve (or $y=2 x^{3}+x^{2}-1$) would not meet the x-axis - Tangent to the curve (or $y=2 x^{3}+x^{2}-1$) is horizontal	B1	2.3
			(1)	
(6 marks)				
Notes for Question 13				
(a)				
B1:	States that $\mathrm{f}^{\prime}(x)=6 x^{2}+2 x$ or states that $\mathrm{f}^{\prime}\left(x_{n}\right)=6 x_{n}{ }^{2}+2 x_{n}$ (Condone $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}+2 x$)			
M1:	Substitutes $\mathrm{f}\left(x_{n}\right)=2 x_{n}{ }^{3}+x_{n}{ }^{2}-1$ and their $\mathrm{f}^{\prime}\left(x_{n}\right)$ into $x_{n+1}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)}$			
A1*:	A correct intermediate step of making a common denominator which leads to the given answer			
Note:	Allow B1 if $\mathrm{f}^{\prime}(x)=6 x^{2}+2 x$ is applied as $\mathrm{f}^{\prime}\left(x_{n}\right)$ (or $\left.\mathrm{f}^{\prime}(x)\right)$ in the NR formula $\left\{x_{n+1}\right\}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)}$			
Note: A	- $x_{n+1}=x-\frac{2 x^{3}+x^{2}-1}{6 x^{2}+2 x}=\frac{x\left(6 x^{2}+2 x\right)-\left(2 x^{3}+x^{2}-1\right)}{6 x^{2}+2 x} \Rightarrow x_{n+1}=\frac{4 x_{n}^{3}+x_{n}^{2}+1}{6 x_{n}{ }^{2}+2 x_{n}}$			
Note	Condone $x=x-\frac{2 x^{3}+x^{2}-1}{46 x^{2}+2 x^{\prime \prime}}$ for M1			
Note	Condone $x_{n}-\frac{2 x_{n}^{3}+x_{n}{ }^{2}-1}{" 6 x_{n}{ }^{2}+2 x_{n} "}$ or $x-\frac{2 x^{3}+x^{2}-1}{" 6 x^{2}+2 x^{\prime \prime}}$ (i.e. no $x_{n+1}=\ldots$) for M1			
Note:	Give M0 for $x_{n+1}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)}$ followed by $x_{n+1}=2 x_{n}{ }^{3}+x_{n}{ }^{2}-1-\frac{2 x_{n}{ }^{3}+x_{n}{ }^{2}-1}{6 x_{n}{ }^{2}+2 x_{n}}$			
Note:	Correct notation, i.e. x_{n+1} and x_{n} must be seen in their final answer for A1*			

Notes for Question 13 Continued	
(b)	
M1:	An attempt to use the given or their formula once. Can be implied by $\frac{4(1)^{3}+(1)^{2}+1}{6(1)^{2}+2(1)}$ or 0.75 o.e.
Note:	Allow one slip in substituting $x_{1}=1$
A1:	$x_{2}=\frac{3}{4} \text { and } x_{3}=\frac{2}{3}$
Note:	Condone $x_{2}=\frac{3}{4}$ and $x_{3}=$ awrt 0.667 for A1
Note:	Condone $\frac{3}{4}, \frac{2}{3}$ listed in a correct order ignoring subscripts
(c)	
B1:	See scheme
Note:	Give B0 for the following isolated reasons: e.g. - You cannot divide by 0 - The fraction (or the NR formula) is undefined at $x=0$ - At $x=0, \mathrm{f}^{\prime}\left(x_{1}\right)=0$ - x_{1} cannot be 0 - $6 x^{2}+2 x$ cannot be 0 - the denominator is 0 which cannot happen - if $x_{1}=0,6 x^{2}+2 x=0$

Question	Scheme	Marks	AOs
14(a)	$\mathrm{f}(x)=(8-x) \ln x, x>0$		
	Crosses x-axis $\Rightarrow \mathrm{f}(x)=0 \Rightarrow(8-x) \ln x=0$		
	x coordinates are 1 and 8	B1	1.1b
		(1)	
(b)	Complete strategy of setting $\mathrm{f}^{\prime}(x)=0$ and rearranges to make $x=\ldots$	M1	3.1a
	$\left\{\begin{array}{ll}u=(8-x) & v=\ln x \\ \frac{\mathrm{~d} u}{\mathrm{~d} x}=-1 & \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{x}\end{array}\right\}$		
	$\mathrm{f}^{\prime}(x)=-\ln x+\frac{8-x}{x}$	M1	1.1b
		A1	1.1b
	$\begin{aligned} & -\ln x+\frac{8-x}{x}=0 \Rightarrow-\ln x+\frac{8}{x}-1=0 \\ & \Rightarrow \frac{8}{x}=1+\ln x \Rightarrow x=\frac{8}{1+\ln x} * \end{aligned}$	A1*	2.1
		(4)	
(c)	Evaluates both $\mathrm{f}^{\prime}(3.5)$ and $\mathrm{f}^{\prime}(3.6)$	M1	1.1b
	$f^{\prime}(3.5)=0.032951317 \ldots \text { and } f^{\prime}(3.6)=-0.058711623 \ldots$ Sign change and as $\mathrm{f}^{\prime}(x)$ is continuous, the x coordinate of Q lies between $x=3.5$ and $x=3.6$	A1	2.4
		(2)	
(d)(i)	$\left\{x_{5}=\right\} 3.5340$	B1	1.1b
(d)(ii)	$\left\{x_{Q}=\right\} 3.54(2 \mathrm{dp})$	B1	2.2a
		(2)	
(9 marks)			

Question 14 Notes:

(a)

B1:
Either

- 1 and 8
- on Figure 2, marks 1 next to A and 8 next to B
(b)

M1: \quad Recognises that Q is a stationary point (and not a root) and applies a complete strategy of setting $\mathrm{f}^{\prime}(x)=0$ and rearranges to make $x=\ldots$

M1: \quad Applies $v u^{\prime}+u v^{\prime}$, where $u=8-x, v=\ln x$
Note: This mark can be recovered for work in part (c)
A1:
$(8-x) \ln x \rightarrow-\ln x+\frac{8-x}{x}$, or equivalent
Note: This mark can be recovered for work in part (c)
A1*: Correct proof with no errors seen in working.
(c)

M1:
Evaluates both $\mathrm{f}^{\prime}(3.5)$ and $\mathrm{f}^{\prime}(3.6)$
A1:
$\mathrm{f}^{\prime}(3.5)=$ awrt 0.03 and $\mathrm{f}^{\prime}(3.6)=$ awrt -0.06 or $\mathrm{f}^{\prime}(3.6)=-0.05$ (truncated)
and a correct conclusion
(d)(i)

B1:
(d)(ii)

B1:
See scheme

Deduces (e.g. by the use of further iterations) that the x coordinate of Q is 3.54 accurate to 2 dp
Note: $3.5 \rightarrow 3.55119 \rightarrow 3.52845 \rightarrow 3.53848 \rightarrow 3.53404 \rightarrow 3.53600 \rightarrow 3.53514(\rightarrow 3.535518 \ldots)$

Notes

(a) B1:2 and $4 \sqrt{ } 2$ or $2 \sqrt{ } 8$ or awrt 5.7 (or any correct unsimplified surd equivalent given as the final answer to part (a)) These may be stated as a final answer and not appear in the table, or may appear in the table. If a correct surd appears in the working (unsimplified) and is then simplified to give an incorrect answer to (a) which is used in the table and in part (b) then this is B0.
(b) B1: for using $\frac{1}{2} \times 4$ or 2 or equivalent or for stating h

M1: requires the correct $\{. . . .$.$\} bracket structure.$
It needs the first bracket to contain first y value (as this is zero it may be omitted) plus last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from 2 nd bracket this may be regarded as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark however). M0 if values used in brackets are x values instead of y values
A1ft: for the correct bracket $\{\ldots \ldots$.$\} following through candidate's y$ values found in part (a).
A1: for answer which rounds to 51.412 then isw
NB: Separate trapezia may be used : B1 for 4, M1 for $\frac{1}{2} h(a+b)$ used 3 times (and A1ft if it is all correct) Then A1 as before.

Special case: Bracketing mistake $2 \times(0+6 \sqrt{3})+2(2+4 \sqrt{2})$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). An answer of 36.098 usually indicates this error.

Question Number	Scheme					Marks
18.(a)	x	1.25	1.5	1.75	2	
	 y 1.414	1.601	1.803	2.016	2.236	
	$\{$ At $x=1.25\} y=$,1.601 (only)		1.601 (May not be in the table and can score if seen as part of their working in (b))			B1 cao
						[1]
(b)	$\frac{1}{2} \times 0.25 ; \times \underline{\{1.414+2.236+2(\text { their } 1.601+1.803+2.016)\}}$					B1; M1 A1ft
	B1; for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent.	$\frac{\text { M1: }}{\{\ldots}$	cture of\}	A1ft: as sh candi part	he correct expression following through $s y$ value found in	
	M1 requires the correct structure for the y values. It needs to contain first y value plus last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from $2(\ldots .$.$) bracket this may be regarded as a slip and the \mathrm{M}$ mark can be allowed (nb: an extra repeated term, however, forfeits the M mark). M0 if any values used are x values instead of y values. A1ft: for the correct underlined expression as shown following through candidate's y value found in part (a). Bracketing mistakes: e.g. $\begin{aligned} & \left(\frac{1}{2} \times \frac{1}{4}\right)(1.414+2.236)+2(\text { their } 1.601+1.803+2.016)(=11.29625) \\ & \left(\frac{1}{2} \times \frac{1}{4}\right) 1.414+2.236+2(\text { their } 1.601+1.803+2.016)(=13.25275) \end{aligned}$ Both score B1 M1 A0 unless the final answer implies that the calculation has been done correctly (then full marks could be given). Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{8}(1.414+1.601)+\frac{1}{8}(1.601+1.803)+\frac{1}{8}(1.803+2.016)+\frac{1}{8}(2.016+2.236)\right]$ B1 for $\frac{1}{8}$ (aef), M1 for correct structure, 1st A1ft for correct expression, ft their 1.601					
	$\left\{=\frac{1}{8}(14.49)\right\}=1.81125$		1.81 or awrt 1.81			A1
	Correct answer only in (b) scores no marks If required accuracy is not seen in (a), full marks can still be scored in (b) (e.g. uses 1.6)					
						[4]
						Total 5

Question Number	Scheme		Marks
19. (a)	$\sqrt{7}$ and $\sqrt{15}$	Both $\sqrt{7}$ and $\sqrt{15}$. Allow awrt 2.65 and 3.87	B1
			[1]
(b)	Area $(R) \approx \frac{1}{2} \times 2 ; \times\{\sqrt{3}+2(\sqrt{7}+\sqrt{11}+\sqrt{15})+\sqrt{19}\}$	Outside brackets $\frac{1}{2} \times 2$ or 1 (may be implied)	B1;
		For structure of $\{\ldots \ldots$.	M1
	Note decimal values are$\frac{1}{2} \times 2 ; \times\{\sqrt{3}+\sqrt{19}+2(\sqrt{7}+\sqrt{11}+\sqrt{15})\}=\frac{1}{2} \times 2 ; \times\{\underline{6.0909 . .+19.6707 \ldots\}}$		
	M1 requires the correct structure for the y values. It needs to contain first y value plus last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from $2(\ldots .$.$) bracket this may be regarded as a slip$ and the M mark can be allowed (nb: an extra repeated term, however, forfeits the M mark). M0 if any values used are x values instead of y values. Bracketing mistakes: e.g. $\begin{aligned} & \left(\frac{1}{2} \times 2\right) \times(\sqrt{3}+\sqrt{19})+2(\sqrt{7}+\sqrt{11}+\sqrt{15}) \\ & \left(\frac{1}{2} \times 2\right) \times \sqrt{3}+\sqrt{19}+2(\sqrt{7}+\sqrt{11}+\sqrt{15}) \end{aligned}$ Both score B1 M1 Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{2} \times 2(\sqrt{3}+\sqrt{7})+\frac{1}{2} \times 2(\sqrt{7}+\sqrt{11})+\frac{1}{2} \times 2(\sqrt{11}+\sqrt{15})+\frac{1}{2} \times 2(\sqrt{15}+\sqrt{19})\right]$ B1 for $\frac{1}{2} \times 2$, M1 for correct structure		
	$=1 \times 25.76166865 \ldots=25.76166 . . .=\underline{25.76}$ (2dp)	$\underline{25.76}$	A1 cao
			[3]
(c)	underestimate	Accept 'under', 'less than' etc.	B1
			[1]
			Total 5

Question	Scheme								Marks
24 (a)\boldsymbol{x} 1 1 1.5 2 2.5 3 3.5									
	y		7.361	4	2.31	1.278	0.556	0	B1, B1
(b)	$\begin{aligned} & \frac{1}{2} \times 0.5, \quad\{(16.5+0)+2(7.361+4+2.31+1.278+0.556)\} \\ = & 11.88(\text { or answers listed below in note }) \end{aligned}$								B1, M1A1ft A1 (4)
Notes	(a) $\mathbf{B 1}$ for 4 or any correct equivalent e.g. $4.000 \mathbf{B 1}$ for 2.31 or 2.310 (b) B1: Need 0.25 or $1 / 2$ of 0.5 M1: requires first bracket to contain first y value plus last y value (0 may be omitted or be at end) and second bracket to include no additional y values from those in the scheme. They may however omit one value as a slip. N.B. Special Case - Bracketing mistake $\frac{1}{2} \times 0.5(16.5+0)+2(7.361+4+2.31+1.278+0.556)$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks) A1ft: This should be correct but ft their 4 and 2.31 A1: Accept 11.8775 or 11.878 or 11.88 only								
Alternative Method for (b)	Separate trapezia may be used : B1 for 0.25 , M1 for $\frac{1}{2} h(a+b)$ used 5 or 6 times (and A1ft all correct for their " 4 " and " 2.31 ") final A1 for 11.88 etc. as before								
	In part (b) Need to use trapezium rule - answer only (with no working) is $0 / 4$-any doubts send to review In part (c) need to see integration								

Question Number	Scheme	Marks
25.	(a) $2.35,3.13,4.01$ (One or two correct B1 B0, all correct B1 B1) Important: If part (a) is blank, or if answers have been crossed out and no replacement answers are visible, please send to Review as 'out of clip'.	B1 B1
	(b) $\frac{1}{2} \times 0.2 \ldots \ldots$ (or equivalent numerical value) $k\{(1+5)+2(1.65+p+q+r)\}, k$ constant, $k \neq 0 \quad$ (See notes below) $=2.828 \quad$ (awrt 2.83, allowed even after minor slips in values) The fractional answer $\frac{707}{250}$ (or other fraction wrt 2.83) is also acceptable. Answers with no working score no marks.	B1 M1 A1 A1 (4)
	(a) Answers must be given to 2 decimal places. No marks for answers given to only 1 decimal place. (b) The p, q and r below are positive numbers, none of which is equal to any of: $1,5,1.65,0.2,0.4,0.6$ or 0.8 M1 A1: $k\{(1+5)+2(1.65+p+q+r)\}$ M1 A0: $k\{(1+5)+2(1.65+p+q)\}$ or $k\{(1+5)+2(p+q+r)\}$ M0 A0: $k\{(1+5)+2(1.65+p+q+r+$ other value $(s))\}$ Note that if the only mistake is to omit a value from the second bracket, this is considered as a slip and the M mark is allowed. Bracketing mistake: i.e. $\frac{1}{2} \times 0.2(1+5)+2(1.65+2.35+3.13+4.01)$ instead of $\frac{1}{2} \times 0.2\{(1+5)+2(1.65+2.35+3.13+4.01)\}$, so that only the $(1+5)$ is multiplied by 0.1 scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). Alternative: Separate trapezia may be used, and this can be marked equivalently.	

Question Number	Scheme	Marks
$26(\mathrm{a})$ (b) (c)	$\begin{array}{\|llll} x=2 & \text { gives } 2.236 & \text { (allow AWRT) Accept } \sqrt{ } 5 \\ x=2.5 & \text { gives } 2.580 \quad \text { (allow AWRT) Accept } 2.58 \\ \left(\frac{1}{2} \times \frac{1}{2}\right), & {[(1.414+3)+2(1.554+1.732+1.957+2.236+2.580)]} \\ & =6.133 \quad \text { (AWRT 6.13, even following minor slips) } \end{array}$ Overestimate 'Since the trapezia lie above the curve', or an equivalent explanation, or sketch of (one or more) trapezia above the curve on a diagram (or on the given diagram, in which case there should be reference to this). (Note that there must be some reference to a trapezium or trapezia in the explanation or diagram).	
(b)	B1 for $\frac{1}{2} \times \frac{1}{2}$ or equivalent. For the M mark, the first bracket must contain the 'first and last' values, and the second bracket (which must be multiplied by 2) must have no additional values. If the only mi omit one of the values from the second bracket, this can be considered as a slip and the be allowed. Bracketing mistake: i.e. $\left(\frac{1}{2} \times \frac{1}{2}\right)(1.414+3)+2(1.554+1.732+1.957+2.236+2.580)$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{4}(1.414+1.554)+\frac{1}{4}(1.554+1.732)+\ldots+\frac{1}{4}(2.580+3)\right]$ $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for correct expression, ft their 2.236 and their 2.580 $1^{\text {st }} \mathrm{B} 1$ for 'overestimate', ignoring earlier mistakes and ignoring any reasons given. $2^{\text {nd }} \mathrm{B} 1$ is dependent upon the $1^{\text {st }} \mathrm{B} 1$ (overestimate).	ke is to mark can

Question number	Scheme	Marks
28.	(a) 1.732, 2.058, 5.196 awrt (One or two correct B1 B0, All correct B1 B1) (b) $\frac{1}{2} \times 0.5 \ldots \ldots$ $\begin{aligned} & \ldots . . .\{(1.732+5.196)+2(2.058+2.646+3.630)\} \\ & \quad=5.899 \quad \text { (awrt } 5.9, \text { allowed even after minor slips in values) } \end{aligned}$	B1 B1 (2) B1 M1 A1ft A1 (4)
	(a) Accept awrt (but less accuracy loses these marks). Also accept exact answers, e.g. $\sqrt{3}$ at $x=0, \sqrt{27}$ or $3 \sqrt{3}$ at $x=2$. (b) For the M mark, the first bracket must contain the 'first and last' values, and the second bracket must have no additional values. If the only mistake is to omit one of the values from the second bracket, this can be considered as a slip and the M mark can be allowed. Bracketing mistake: i.e. $\frac{1}{2} \times 0.5(1.732+5.196)+2(2.058+2.646+3.630)$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). x values: M0 if the values used in the brackets are x values instead of y values. Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{4}(1.732+2.058)+\frac{1}{4}(2.058+2.646)+\frac{1}{4}(2.646+3.630)+\frac{1}{4}(3.630+5.196)\right]$	

(a)

M1: Attempts to differentiate with $\mathrm{e}^{-2 x} \rightarrow A \mathrm{e}^{-2 x}$ with any non -zero A, even 1 .
Watch for $\mathrm{e}^{-2 x} \rightarrow A \mathrm{e}^{2 x}$ which is M0 A0
A1: $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \mathrm{e}^{-2 x}+2 x$
M1: A correct method of finding the gradient of the normal at $x=0$
To score this the candidate must find the negative reciprocal of $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}$
So for example candidates who find $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{-2 x}+2 x$ should be using a gradient of -1
Candidates who write down $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2$ (from their calculators?) have an opportunity to score this mark and the next.

M1: An attempt at the equation of the normal at $(0,-2)$
To score this mark the candidate must be using the point $(0,-2)$ and a gradient that has been changed from $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}$
Look for $y-(-2)=$ changed $\left|\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}(x-0)$ or $y=m x-2$ where $m=$ changed $\left|\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}$
If there is an attempt using $y=m x+c$ then it must proceed using $(0,-2)$ with $m=$ changed $\left|\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}$

A1: $y=\frac{1}{2} x-2$ cso with as well as showing the correct differentiation.
So reaching $y=\frac{1}{2} x-2$ from $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \mathrm{e}^{2 x}+2 x$ is A0
If it is not simplified (or written in the required form) you may award this if $y=\frac{1}{2} x-2$ is seen in part (b)
(b)

M1: Equates $y=\mathrm{e}^{-2 x}+x^{2}-3$ and their $y=m x+c, m \neq 0$ and proceeds to $x^{2}=\ldots$
Condone an attempt for this M mark where the candidate uses an adapted $y=m x+c$ in an attempt to get the printed answer.

A1*: Proceeds to $x=\sqrt{1+\frac{1}{2} x-\mathrm{e}^{-2 x}}$. It is a printed answer but you may accept a different order $x=\sqrt{1-\mathrm{e}^{-2 x}+\frac{1}{2} x}$
For this mark, the candidate must start with a normal equation of $y=\frac{1}{2} x-2$ oe found in (a). It can be awarded when the candidate finds the equation incorrectly, for example from $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \mathrm{e}^{2 x}+2 x$
(c)

M1: Sub $x_{1}=1$ in $x=\sqrt{1+\frac{1}{2} x-\mathrm{e}^{-2 x}}$ to find x_{2}. May be implied by $\sqrt{1+0.5-\mathrm{e}^{-2}}$ oe or awrt 1.17
A1: $x_{2}=\operatorname{awrt} 1.168, x_{3}=\operatorname{awrt} 1.2203 \mathrm{dp} . \quad$ Condone 1.22 for x_{3}
Mark these in the order given, the subscripts are not required and incorrect ones may be ignored.

Question Number	Scheme	Marks
30. (a)	At P $x=-2 \Rightarrow y=3$	B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{2 x+5}-\frac{3}{2}$	M1, A1
	$\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right\|_{x=-2}=\frac{5}{2} \Rightarrow$ Equation of normal is $y-3^{\prime}=-\frac{2}{5}(x-(-2))$	M1
	$\Rightarrow 2 x+5 y=11$	A1
(b)	Combines $5 y+2 x=11$ and $y=2 \ln (2 x+5)-\frac{3 x}{2}$ to form equation in x	
	$5\left(2 \ln (2 x+5)-\frac{3 x}{2}\right)+2 x=11$	M1
	$\Rightarrow x=\frac{20}{11} \ln (2 x+5)-2$	dM1 A1*
		(3)
(c)	Substitutes $x_{1}=2 \Rightarrow x_{2}=\frac{20}{11} \ln 9-2$	M1
	Awrt $x_{2}=1.9950$ and $x_{3}=1.9929$.	A1
		(2)
		(10 marks)

(a)

B1 $\quad y=3$ at point P. This may be seen embedded within their equation which may be a tangent
M1 Differentiates $\ln (2 x+5) \rightarrow \frac{A}{2 x+5}$ or equivalent. You may see $\ln (2 x+5)^{2} \rightarrow \frac{A(2 x+5)}{(2 x+5)^{2}}$
A1 $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{2 x+5}-\frac{3}{2}$ oe. It need not be simplified.
M1 For using a correct method of finding the equation of the normal using their numerical value of $-\left.\frac{\mathrm{d} x}{\mathrm{~d} y}\right|_{x=-2}$ as the gradient. Allow for $\left(y-3^{\prime}\right)=-\left.\frac{\mathrm{d} x}{\mathrm{~d} y}\right|_{x=-2}(x--2)$, oe.

At least one bracket must be correct for their $(-2,3)$
If the form $y=m x+c$ is used it is scored for proceeding as far as $c=.$.
A1 $\pm k(5 y+2 x=11) \quad$ It must be in the form $a x+b y=c$ as stated in the question
Score this mark once it is seen. Do not withhold it if they proceed to another form, $y=m x+c$ for example If a candidate uses a graphical calculator to find the gradient they can score a maximum of B1 M0 A0 M1 A1
(b)

M1 For combining 'their' linear $5 y+2 x=11$ with $y=2 \ln (2 x+5)-\frac{3 x}{2}$ to form equation in just x, condoning slips on the rearrangement of their $5 y+2 x=11 . \operatorname{Eg} 2 \ln (2 x+5)-\frac{3 x}{2}=\frac{11 \pm 2 x}{5}$ is OK
dM1 Collects the two terms in x and proceeds to $a x=b \ln (2 x+5)+c$ Allow numerical slips
A1* This is a given answer. All aspects must be correct including bracketing
(c)

M1 Score for substituting $x_{1}=2 \Rightarrow x_{2}=\frac{20}{11} \ln (2 \times 2+5)-2$ or exact equivalent This may implied by $x_{2}=1.99 \ldots$

A1 Both values correct. Allow awrt $x_{2}=1.9950$ and $x_{3}=1.9929$ but condone $x_{2}=1.995$ Ignore subscripts. Mark on the first and second values given.

In part (a) accept points marked on the graph. If they appear on the graph and in the text, the text takes precedence. If they don't mark (a) as (i) (ii) and (iii) mark in the order given. If you feel unsure then please use the review system and your team leader will advise.
(a) (i)

B1 Sight of 21. Accept $(0,21)$
Do not accept just $|4-25|$ or $(21,0)$
(a) (ii)

M1 Sets $4 \mathrm{e}^{2 x}-25=0$ and proceeds via $\mathrm{e}^{2 x}=\frac{25}{4}$ or $\mathrm{e}^{x}=\frac{5}{2} \quad$ to $x=$..
Alternatively sets $4 \mathrm{e}^{2 x}-25=0$ and proceeds via $\left(2 \mathrm{e}^{x}-5\right)\left(2 \mathrm{e}^{x}+5\right)=0$ to $\mathrm{e}^{x}=.$.
A1 $\quad \frac{1}{2} \ln \left(\frac{25}{4}\right)$ or awrt 0.92
A1 cao $\ln \left(\frac{5}{2}\right)$ or $\ln 5-\ln 2$. Accept $\left(\ln \left(\frac{5}{2}\right), 0\right)$
(a) (iii)

B1 $\quad k=25$ Accept also 25 or $y=25$
Do not accept just $|-25|$ or $x=25$ or $y= \pm 25$
(b)

M1 Sets $4 \mathrm{e}^{2 x}-25=2 x+43$ and makes $\mathrm{e}^{2 x}$ the subject. Look for $\mathrm{e}^{2 x}=\frac{1}{4}(2 x+43+25)$ condoning sign slips.Condone $\left|4 \mathrm{e}^{2 x}-25\right|=2 x+43$ and makes $\left|\mathrm{e}^{2 x}\right|$ the subject. Condone for both marks a solution with $x=a / \alpha$
An acceptable alternative is to proceed to $2 \mathrm{e}^{2 x}=x+34 \Rightarrow \ln 2+2 x=\ln (x+34)$ using \ln laws
A1* Proceeds correctly without errors to the correct solution. This is a given answer and the bracketing must be correct throughout. The solution must have come from $4 \mathrm{e}^{2 x}-25=2 x+43$ with the modulus having been taken correctly.
Allow $\mathrm{e}^{2 x}=\frac{1}{4}(2 x+43+25)$ going to $x=\frac{1}{2} \ln \left(\frac{1}{2} x+17\right)$ without explanation
Allow $\frac{1}{2} \ln \left(\frac{1}{2} x+17\right)$ appearing as $\frac{1}{2} \log _{\mathrm{e}}\left(\frac{1}{2} x+17\right)$ but not as $\frac{1}{2} \log \left(\frac{1}{2} x+17\right)$
If a candidate attempts the solution backwards they must proceed from
$x=\frac{1}{2} \ln \left(\frac{1}{2} x+17\right) \Rightarrow \mathrm{e}^{2 x}=\frac{1}{2} x+17 \Rightarrow 4 \mathrm{e}^{2 x}-25=2 x+43$ for the M1
For the A1 it must be tied up with a minimal statement that this is $\mathrm{g}(x)=2 x+43$
(c)

M1 Subs 1.4 into the iterative formula in an attempt to find x_{1}
Score for $x_{1}=\frac{1}{2} \ln \left(\frac{1}{2} \times 1.4+17\right) x_{1}=\frac{1}{2} \ln (17.7)$ or awrt 1.44
A1 awrt $x_{1}=1.4368, x_{2}=1.4373$ Subscripts are not important, mark in the order given please.
(d)

M1 For a suitable interval. Accept 1.4365 and 1.4375 (or any two values of a smaller range spanning the root=1.4373) Continued iteration is M0
A1 Substitutes both values into a suitable function, which must be defined or implied by their working calculates both values correctly to 1 sig fig (rounded or truncated)
Suitable functions could be $\pm\left(4 \mathrm{e}^{2 x}-2 x-68\right), \pm\left(x-\frac{1}{2} \ln \left(\frac{1}{2} x+17\right)\right), \pm\left(2 x-\ln \left(\frac{1}{2} x+17\right)\right)$.
Using $4 \mathrm{e}^{2 x}-2 x-68 \quad \mathrm{f}(1.4365)=-0.1, \mathrm{f}(1.4375)=+0.02$ or +0.03
Using $2 \mathrm{e}^{2 x}-x-34 \mathrm{f}(1.4365)=-0.05 /-0.06, \mathrm{f}(1.4375)=+0.01$
Using $x-\frac{1}{2} \ln \left(\frac{1}{2} x+17\right) \mathrm{f}(1.4365)=-0.0007$ or -0.0008 , $\mathrm{f}(1.4375)=+0.0001$ or +0.0002
Using $2 x-\ln \left(\frac{1}{2} x+17\right) \mathrm{f}(1.4365)=-0.001$ or -0.002 , $\mathrm{f}(1.4375)=+0.0003$ or +0.0004
and states a reason (eg change of sign)
and a gives a minimal conclusion (eg root or tick)
It is valid to compare the two functions. $\mathrm{Eg} \mathrm{g}(1.4365)=45.7(6)<2 \times 1.4365+43=45.8(73)$
$g(1.4375)=45.90>2 \times 1.4375+43=45.8(75)$
but the conclusion should be $\mathrm{g}(x)=2 x+43$ in between, hence root .
Similarly candidates can compare the functions x and $\frac{1}{2} \ln \left(\frac{1}{2} x+17\right)$

(a)

M1 Setting equations in x equal to each other and proceeding to make 2^{x+1} the subject
dM1 Take ln's or logs of both sides, use the power law and proceed to $x=$..
A1* This is a given answer and all aspects must be correct including \ln or $\log _{\mathrm{e}}$ rather than $\log _{10}$ Bracketing on both $(x+1)$ and $\ln (20-x)$ must be correct.

$$
\text { Eg } x+1 \ln 2=\ln (20-x) \mathrm{P} \quad x=\frac{\ln (20-x)}{\ln 2}-1 \text { is } \mathrm{A} 0^{*}
$$

Special case: Students who start from the point $2^{x+1}=20-x$ can score M1 dM1A0*
(b)

M1 Sub $x_{0}=3$ into $x_{n+1}=\frac{\ln \left(20-x_{n}\right)}{\ln 2}-1$ to find $x_{1}=$..
Accept as evidence $x_{1}=\frac{\ln (20-3)}{\ln 2}-1$, awrt $x_{1}=3.1$
Allow $x_{0}=3$ into the miscopied iterative equation $x_{1}=\frac{\ln (20-3)}{\ln 2}$ to find $x_{1}=$..
Note that the answer to this, 4.087, on its own without sight of $\frac{\ln (20-3)}{\ln 2}$ is M0
A1 awrt $3 \mathrm{dp} x_{1}=3.087$
A1 awrt $x_{2}=3.080, x_{3}=3.081$. Tolerate 3.08 for 3.080
Note that the subscripts are not important, just mark in the order seen
(c) Note that this appears as B1B1 on e pen. It is marked M1A1

M1 For sight of 3.1
Alternatively it can be scored for substituting their value of x or a rounded value of x from (b) into either $2^{x+1}-3$ or $17-x$ to find the y coordinate.
A1 (3.1,13.9)

(a)

M1 Sub both $x=2.1$ and $x=2.2$ into y and achieve at least one correct to 1 sig fig
In radians $y_{2.1}=$ awrt $-0.2 \quad y_{2.2}=$ awrt/truncating to 0.5
In degrees $y_{2.1}=\operatorname{awrt} 3 \quad y_{2.2}=\operatorname{awrt} 4$
A1 Both values correct to 1 sf with a reason and a minimal conclusion.
$y_{2.1}=$ awrt $-0.2 \quad y_{2.2}=$ awrt/truncating to 0.5
Accept change of sign, positive and negative, $y_{2.1} \times y_{2.2}=-1$ as reasons and hence root, Q lies between 2.1 and 2.2 , QED as a minimal conclussion.

Accept a smaller interval spanning the root of 2.131528 , say 2.13 and 2.14 , but the A1 can only be scored when the candidate refers back to the question, stating that as root lies between 2.13 and 2.14 it lies between 2.1 and 2.2
(b)

M1 Differentiating to get $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots \sin \left(\frac{1}{2} x^{2}\right)+3 x^{2}-3$ where \ldots is a constant, or a linear function in x.
A1 $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 x \sin \left(\frac{1}{2} x^{2}\right)+3 x^{2}-3$
M1 Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and proceeds to make the x of their $3 x^{2}$ the subject of the formula

Alternatively they could state $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and write a line such as
$2 x \sin \left(\frac{1}{2} x^{2}\right)=3 x^{2}-3$, before making the x of $3 x^{2}$ the subject of the formula
A1* Correct given solution. $x=\sqrt{1+\frac{2}{3} x \sin \left(\frac{1}{2} x^{2}\right)}$
Watch for missing x 's in their formula
(c)

M1 Subs $x=1.3$ into the iterative formula to find at least X_{1}.
This can be implied by $x_{1}=$ awrt 1.3 (not just 1.3)
or $x_{1}=\sqrt{1+\frac{2}{3} \times 1.3 \sin \left(\frac{1}{2} \times 1.3^{2}\right)}$ or $x_{1}=\operatorname{awrt1.006~(degrees)~}$
A1 Both answers correct (awrt 3 decimal places). The subscripts are not important. Mark as the first and second values seen. $x_{1}=$ awrt $1.284 \quad x_{2}=$ awrt 1.276

(a)

M1 Two (of the four) terms differentiated correctly
A1 All correct $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 \mathrm{e}^{4 x}+4 x^{3}+8$
A1*States or sets $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$, and proceeds correctly to achieve printed answer $x^{3}=-2-\mathrm{e}^{4 x}$.
(b)

B1 Correct shape and position for $y=x^{3}$. It must appear to go through the origin.
It must only appear in Quadrants 1 and 3 and have a gradient that is always $\geqslant 0$. The gradient should appear large at either end. Tolerate slips of the pen.See practice and qualification for acceptable curves.

B1 Correct shape for $y=-2-\mathrm{e}^{4 x}$, its position is not important for this mark. The gradient must be approximately zero at the left hand end and increase negatively as you move from left to right along the curve. See practice and qualification for acceptable curves.
B1 Score for $y=-2-\mathrm{e}^{4 x}$ cutting or meeting the y axis at ($0,-3$). Its shape is not important.
Accept for the intention of $(0,-3),-3$ being marked on the $y-a x i s$ as well as $(-3,0)$
Do not accept 3 being marked on the negative y axis.
B1 Score for $y=-2-\mathrm{e}^{4 x}$ having an asymptote stated as $y=-2$. This is dependent upon the curve appearing to have an asymptote there. Do not accept the asymptote marked as ' -2 ' or indeed $x=-2$. See practice and qualification for acceptable solutions.
(c)

B1 Score for a statement to the effect that the graphs cross at one point. Accept minimal statements such as 'one intersection'. Do not award if their diagram shows more than one intersection. They must have a diagram (which may be incorrect)
(d)

M1 Awarded for applying the iteration formula once. Possible ways in which this can be scored are the sight of $\sqrt[3]{-2-e^{-4}},\left(-2-e^{4 x-1}\right)^{\frac{1}{3}}$ or awrt -1.264
A1 Both values correct awrt $-1.26376,-1.261265 d p s$. The subscripts are unimportant for this mark. Score as the first and second values seen.
(e)

M1 Score for EITHER rounding their value in part (c) to 2 dp OR finding turning point of C by substituting a value of x generated from part (d) into $y=\mathrm{e}^{4 x}+x^{4}+8 x+5$ in order to find the y value. You may accept the appearance of a y value as evidence of finding the turning point (as long as an x value appears to be generated from part (d) and the correct equation is used.)

A1 (-1.26, -2.55) and correct solution only. It is a deduction and you cannot accept the appearance of a correct answer for two marks.

Notes for Question 35 Continued

(b)

B1 This is a show that question and all elements must be seen
Candidates must 1) State that $\mathrm{f}(x)=0$ or writes $25 x^{2} \mathrm{e}^{2 x}-16=0$ or $25 x^{2} \mathrm{e}^{2 x}=16$
2) Show at least one intermediate (correct) line with either x^{2} or x the subject. Eg $x^{2}=\frac{16}{25} e^{-2 x}, \quad x=\sqrt{\frac{16}{25} e^{-2 x}}$ oe or square rooting $25 x^{2} \mathrm{e}^{2 x}=16 \Rightarrow 5 x \mathrm{e}^{x}= \pm 4$ or factorising by DOTS to give $\left(5 x \mathrm{e}^{x}+4\right)\left(5 x \mathrm{e}^{x}-4\right)=0$
3) Show the given answer $x= \pm \frac{4}{5} \mathrm{e}^{-x}$.

Condone the minus sign just appearing on the final line.
A 'reverse' proof is acceptable as long as there is a statement that $f(x)=0$
(c)

M1 Substitutes $x_{0}=0.5$ into $x=\frac{4}{5} \mathrm{e}^{-x} \Rightarrow x_{1}=\ldots$.
This can be implied by $x_{1}=\frac{4}{5} \mathrm{e}^{-0.5}$, or awrt 0.49
$x_{1}=$ awrt 0.485 3dp. Mark as the first value given. Don't be concerned by the subscript.
A1 $\quad x_{2}=$ awrt $0.492, x_{3}=$ awrt 0.489 3dp. Mark as the second and third values given.
(d)

B1 \quad States $\alpha=0.49$
B1
Justifies by
either calculating correctly $f(0.485)$ and $f(0.495)$ to awrt 1 sf or 1 dp , $f(0.485)=-0.5, f(0.495)=(+) 0.5$ rounded $f(0.485)=-0.4, f(0.495)=(+) 0.4$ truncated giving a reason - accept change of sign, $>0<0$ or $\mathrm{f}(0.485) \times \mathrm{f}(0.495)<0$ and giving a minimal conclusion. Eg. Accept hence root or $\alpha=0.49$ A smaller interval containing the root may be used, eg $f(0.49)$ and f (0.495). Root $=0.49007$
or by stating that the iteration is oscillating
or by calculating by continued iteration to at least the value of $x_{4}=$ awrt 0.491 and stating (or seeing each value round to) 0.49

Question Number	Scheme	Marks
Alt 1 37(e)	Sub $x=-2.425$ and -2.435 into cubic part of $\mathrm{f}^{\prime}(x)=2 x^{3}+6 x^{2}+4 x+3$ and start to compare signs Adapted $\mathrm{f}^{\prime}(-2.425)=+0.06, \mathrm{f}^{\prime}(-2.435)=-0.04$ Change in sign, hence $\mathrm{f}^{\prime}(x)=0$ in between. Therefore $\alpha=-2.43$ (2dp)	M1 A1 (2)
$\begin{aligned} & \text { Alt } 2 \\ & 37(\mathbf{e}) \end{aligned}$	Sub $x=-2.425,-2.43$ and -2.435 into $\mathrm{f}(x)=\left(x^{2}+3 x+1\right) e^{x^{2}}$ and start to compare sizes $f(-2.425)=-141.2, f(-2.435)=-141.2, f(-2.43)=-141.3$ $\mathrm{f}(-2.43)<\mathrm{f}(-2.425), \mathrm{f}(-2.43)<\mathrm{f}(-2.435) \text {. Therefore } \alpha=-2.43 \text { (2dp) }$	M1 A1 (2)

Notes for Question 37

(a)

M1 Solves $x^{2}+3 x+1=0$ by completing the square or the formula, producing two 'non integer answers. Do not accept factorisation here. Accept awrt -0.4 and -2.6 for this mark
A1 Answers correct. Accept awrt -0.382, -2.618 .
Accept just the answers for both marks. Don’t withhold the marks for incorrect labelling.
(b)

M1 Applies the product rule $v u$ ' $+u v^{\prime}$ to $\left(x^{2}+3 x+1\right) e^{x^{2}}$.
If the rule is quoted it must be correct and there must have been some attempt to differentiate both terms.
If the rule is not quoted (nor implied by their working, ie. terms are written out
$\mathrm{u}=\ldots, \mathrm{u}^{\prime}=\ldots, \mathrm{v}=\ldots ., \mathrm{v} \mathrm{v}^{\prime}=\ldots .$. followed by their vu'+uv') only accept answers of the form

$$
\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=\mathrm{f}^{\prime}(x)=e^{x^{2}}(A x+B)+\left(x^{2}+3 x+1\right) C x e^{x^{2}}
$$

A1 One term of $\mathrm{f}^{\prime}(x)=e^{x^{2}}(2 x+3)+\left(x^{2}+3 x+1\right) e^{x^{2}} \times 2 x$ correct.
There is no need to simplify
A1 A fully correct (un simplified) answer $\mathrm{f}^{\prime}(x)=e^{x^{2}}(2 x+3)+\left(x^{2}+3 x+1\right) e^{x^{2}} \times 2 x$
(c)

M1 Sets their $\mathrm{f}^{\prime}(x)=0$ and either factorises out, or cancels by $e^{x^{2}}$ to produce a polynomial equation in x
M1 Rearranges the cubic polynomial to $A x^{3}+B x=C x^{2}+D$ and factorises to reach
$x\left(A x^{2}+B\right)=C x^{2}+D$ or equivalent
A1* Correctly proceeds to $x=-\frac{3\left(2 x^{2}+1\right)}{2\left(x^{2}+2\right)}$. This is a given answer

Notes on Question 37 Continued

(c) Alternative to (c) working backwards

M1 Moves correctly from $x=-\frac{3\left(2 x^{2}+1\right)}{2\left(x^{2}+2\right)}$ to $2 x^{3}+6 x^{2}+4 x+3=0$

M1 States or implies that $\mathrm{f}^{\prime}(x)=0$
A1 Makes a conclusion to tie up the argument
For example, hence the minimum point occurs when $x=-\frac{3\left(2 x^{2}+1\right)}{\left(2 x^{2}+4\right)}$
(d)

M1 Sub $x_{0}=-2.4$ into $\quad x_{n+1}=-\frac{3\left(2 x_{n}^{2}+1\right)}{2\left(x_{n}^{2}+2\right)}$
This may be implied by awrt -2.42 , or $x_{n+1}=-\frac{3\left(2 \times-2.4^{2}+1\right)}{2\left(-2.4^{2}+2\right)}$
A1 Awrt. $x_{1}=-2.420$.
The subscript is not important. Mark as the first value given
A1 awrt $x_{2}=-2.427$ awrt $x_{3}=-2.430$
The subscripts are not important. Mark as the second and third values given
(e)

Note that continued iteration is not allowed

M1 Sub $x=-2.425$ and -2.435 into $\mathrm{f}^{\prime}(x)$, starts to compare signs and gets at least one correct to 1 sf rounded or truncated.

A1 Both values correct (1sf rounded or truncated), a reason and a minimal conclusion
Acceptable reasons are change in sign, positive and negative and $\mathrm{f}^{\prime}(a) \times \mathrm{f}^{\prime}(b)<0$
Minimal conclusions are hence $\alpha=-2.43$, hence shown, hence root

Alt 1 using adapted $\mathrm{f}^{\prime}(x)$
(e)

M1 Sub $x=-2.425$ and -2.435 into cubic part of $\mathrm{f}^{\prime}(x)$, starts to compare signs and gets at least one correct to 1 sf rounded or truncated.

A1 Both values correct of adapted $\mathrm{f}^{\prime}(x)$ correct (1sf rounded or truncated), a reason and a minimal conclusion

Acceptable reasons are change in sign, positive and negative and $\mathrm{f}^{\prime}(a) \times \mathrm{f}^{\prime}(b)<0$
Minimal conclusions are hence $\alpha=-2.43$, hence shown, hence root

Alt 2 using $\mathrm{f}(x)$
(e)

M1 Sub $x=-2.425,-2.43$ and -2.435 into $\mathrm{f}(x)$, starts to compare sizes and gets at least one correct to 4sf rounded

A1 All three values correct of $\mathrm{f}(x)$ correct (4sf rounded), a reason and a minimal conclusion
Acceptable reasons are $\mathrm{f}(-2.43)<\mathrm{f}(-2.425), \mathrm{f}(-2.43)<\mathrm{f}(-2.435)$, a sketch
Minimal conclusions are hence $\alpha=-2.43$, hence shown, hence root

(a) M1 Sets $\mathrm{g}(x)=0$, and using correct \ln work, makes the x of the e^{x-1} term the subject of the formula.

Look for $e^{x-1}+x-6=0 \Rightarrow e^{x-1}= \pm 6 \pm x \Rightarrow x=\ln (\pm 6 \pm x) \pm 1$
Do not accept $e^{x-1}=6-x$ without firstly seeing $e^{x-1}+x-6=0$ or a statement that $\mathbf{g}(x)=\mathbf{0} \Rightarrow$
A1* $\quad \operatorname{cso} . \quad x=\ln (6-x)+1$ Note that this is a given answer (and a proof).
'Invisible' brackets are allowed for the M but not the A
Do not accept recovery from earlier errors for the A mark. The solution below scores 0 marks. $0=e^{x-1}+x-6 \Rightarrow 0=x-1+\ln (x-6) \Rightarrow x=\ln (6-x)+1$
(b) M1 Sub $x_{0}=2$ into $x_{n+1}=\ln \left(6-x_{n}\right)+1$ to produce a numerical value for x_{1}.

Evidence for the award could be any of $\ln (6-2)+1, \ln 4+1,2.3 \ldots$. or awrt 2.4
A1 Answer correct to $4 \mathrm{dp} x_{1}=2.3863$.
The subscript is not important. Mark as the first value given/found.
A1 Awrt 4 dp. $x_{2}=2.2847$ and $x_{3}=2.3125$
The subscripts are not important. Mark as the second and third values given/found
(c) M1 Chooses the interval [2.3065,2.3075] or smaller containing the root 2.306558641
dM1 Calculates $g(2.3065)$ and $g(2.3075)$ with at least one of these correct to 1sf.
The answers can be rounded or truncated
$g(2.3065)=-0.0003$ rounded, $g(2.3065)=-0.0002$ truncated
$g(2.3075)=(+) 0.004$ rounded and truncated
A1 Both values correct (rounded or truncated),
A reason which could include change of sign, $>0<0, g(2.3065) \times g(2.3075)<0$
AND a minimal conclusion such as hence root, $\alpha=2.307$ or
Do not accept continued iteration as question demands an interval to be chosen.

Alternative solution to (a) working backwards

M1 Proceeds from $x=\ln (6-x)+1$ using correct exp work to $\ldots \ldots . .=0$
A1 Arrives correctly at $e^{x-1}+x-6=0$ and makes a statement to the effect that this is $\mathrm{g}(\mathrm{x})=0$
Alternative solution to (c) using $\mathrm{f}(x)=\ln (6-x)+1-x \quad$ \{Similarly $\mathrm{h}(x)=x-1-\ln (6-x)\}$
M1 Chooses the interval [2.3065,2.3075] or smaller containing the root 2.306558641
dM1 Calculates $f(2.3065)$ and $f(2.3075)$ with at least 1 correct rounded or truncated $f(2.3065)=0.000074$. Accept 0.00007 rounded or truncated. Also accept 0.0001
$f(2.3075)=-0.0011 .$. Accept -0.001 rounded or truncated

Question Number	Scheme	Marks
39.	(a) $\begin{align*} x^{3}+3 x^{2}+4 x-12=0 & \Rightarrow x^{3}+3 x^{2}=12-4 x \\ & \Rightarrow x^{2}(x+3)=12-4 x \\ & \Rightarrow x^{2}=\frac{12-4 x}{(x+3)} \Rightarrow x=\sqrt{\frac{4(3-x)}{(x+3)}} \tag{3} \end{align*}$	M1 dM1A1*
	(b) $x_{1}=1.41, \quad$ awrt $x_{2}=1.20 \quad x_{3}=1.31$	M1A1,A1 (3)
	(c) Choosing ($1.2715,1.2725$) or tighter containing root 1.271998323	M1
	$\mathrm{f}(1.2725)=(+) 0.00827 \ldots \quad \mathrm{f}(1.2715)=-0.00821 \ldots$	M1
	Change of sign $\Rightarrow \alpha=1.272$	A1 (3) (9 marks)

Notes

(a) M1 Moves from $\mathrm{f}(x)=0$, which may be implied by subsequent working, to $x^{2}(x \pm 3)= \pm 12 \pm 4 x$ by separating terms and factorising in either order. No need to factorise rhs for this mark.
dM1 Divides by ' $(x+3)$ ' term to make x^{2} the subject, then takes square root. No need for rhs to be factorised at this stage
A1* CSO. This is a given solution. Do not allow sloppy algebra or notation with root on just numerator for instance. The $12-4 x$ needs to have been factorised.
(b) Note that this appears B1,B1,B1 on EPEN

M1 An attempt to substitute $x_{0}=1$ into the iterative formula to calculate x_{1}.
This can be awarded for the sight of $\sqrt{\frac{4(3-1)}{(3+1)}}, \sqrt{\frac{8}{4}}, \sqrt{2}$ and even 1.4
A1 $\quad x_{1}=1.41$. The subscript is not important. Mark as the first value found, $\sqrt{2}$ is A0
A1 $\quad x_{2}=$ awrt $1.20 \quad x_{3}=$ awrt 1.31. Mark as the second and third values found. Condone 1.2 for x_{2}
(c) Note that this appears M1A1A1 on EPEN
M1 Choosing the interval $(1.2715,1.2725)$ or tighter containing the root 1.271998323. Continued iteration is not allowed for this question and is M0
M1 Calculates $\mathrm{f}(1.2715)$ and $\mathrm{f}(1.2725)$, or the tighter interval with at least 1 correct to 1 sig fig rounded or truncated.
Accept $f(1.2715)=-0.0081$ sf rounded or truncated. Also accept $f(1.2715)=-0.012 \mathrm{dp}$
Accept $f(1.2725)=(+) 0.0081$ sf rounded or truncated. Also accept $f(1.2725)=(+) 0.012 d p$
A1 Both values correct (see above),
A valid reason; Accept change of sign, or $>0<0$, or $\mathrm{f}(1.2715) \times f(1.2725)<0$
And a (minimal) conclusion; Accept hence root or $\alpha=1.272$ or QED or

Alternative to (a) working backwards

39(a)

$x=\sqrt{\frac{4(3-x)}{(x+3)}} \Rightarrow x^{2}=\frac{4(3-x)}{(x+3)} \Rightarrow x^{2}(x+3)=4(3-x)$	
$x^{3}+3 x^{2}=12-4 x \Rightarrow x^{3}+3 x^{2}+4 x-12=0$	M 1
States that this is $\mathrm{f}(x)=0$	dM 1
A1*	

Alternative starting with the given result and working backwards
M1 Square (both sides) and multiply by ($x+3$)
dM1 Expand brackets and collect terms on one side of the equation $=0$
A1 A statement to the effect that this is $\mathrm{f}(x)=0$

An acceptable answer to (c) with an example of a tighter interval

M1 Choosing the interval (1.2715, 1.2720). This contains the root 1.2719 (98323)
M1 Calculates $f(1.2715)$ and $f(1.2720)$, with at least 1 correct to 1 sig fig rounded or truncated.
Accept $f(1.2715)=-0.0081$ sf rounded or truncated $f(1.2715)=-0.012 \mathrm{dp}$
Accept $\mathrm{f}(1.2720)=(+) 0.000031$ sf rounded or $\mathrm{f}(1.2720)=(+) 0.00002$ truncated 1 sf
A1 Both values correct (see above),
A valid reason; Accept change of sign, or $>0<0$, or $\mathrm{f}(1.2715) \times \mathrm{f}(1.2720)<0$
And a (minimal) conclusion; Accept hence root or $\alpha=1.272$ or QED or

\boldsymbol{x}	$\mathbf{f}(\boldsymbol{x})$
1.2715	-0.00821362
1.2716	-0.00656564
1.2717	-0.00491752
1.2718	-0.00326927
1.2719	-0.00162088
1.2720	+0.00002765
1.2721	+0.00167631
1.2722	+0.00332511
1.2723	+0.00497405
1.2724	+0.00662312
1.2725	+0.00827233

An acceptable answer to (c) using $g(x)$ where $g(x)=\sqrt{\frac{4(3-x)}{(x+3)}}-x$
$2^{\text {nd }}$ M1 Calculates $\mathrm{g}(1.2715)$ and $\mathrm{g}(1.2725)$, or the tighter interval with at least 1 correct to 1 sig fig rounded or truncated.
$g(1.2715)=0.0007559$. Accept $g(1.2715)=$ awrt $(+) 0.00081$ sf rounded or awrt 0.0007 truncated. $g(1.2725)=-0.00076105$. Accept $g(1.2725)=$ awrt -0.00081 sf rounded or awrt -0.0007 truncated.

(a)

M1 Calculates both $\mathrm{f}(0.8)$ and $\mathrm{f}(0.9)$. Evidence of this mark could be, either, seeing both ' x ' substitutions written out in the expression, or, one value correct to 1 sig fig, or the appearance of incorrect values of $f(0.8)=$ awrt 0.2 or $f(0.9)=$ awrt 0.1 from use of degrees
A1 This requires both values to be correct as well as a reason and a conclusion.
Accept $f(0.8)=0.08$ truncated or rounded (2 dp) or 0.1 rounded (1 dp) and $f(0.9)=-0.08$ truncated or rounded as -0.09 (2 dp) or $-0.1(1 \mathrm{dp})$
Acceptable reasons are change of sign, $<0>0,+$ ve $-\mathrm{ve}, \mathrm{f}(0.8) \mathrm{f}(0.9)<0$. Acceptable conclusion is hence root or
M1 Attempts to differentiate $\mathrm{f}(\mathrm{x})$. Seeing any of $2 \mathrm{x}, 3$ or $\pm \mathrm{A} \sin (1 / 2 \mathrm{x})$ is sufficient evidence.
A1 $\mathrm{f}^{\prime}(\mathrm{x})$ correct. Accept $\frac{d y}{d x}=2 x-3-\sin \left(\frac{1}{2} x\right)$
M1 Sets their $\mathrm{f}^{\prime}(\mathrm{x})=0$ and proceeds to $\mathrm{x}=\ldots .$. You must be sure that they are setting what they think is $\mathrm{f}^{\prime}(\mathrm{x})=0$.
Accept $2 x=3+\sin \left(\frac{1}{2} x\right)$ going to $\mathrm{x}=.$. only if $\mathrm{f}^{\prime}(\mathrm{x})=0$ is stated first
A1 * $\quad x=\frac{3+\sin \left(\frac{1}{2} x\right)}{2}$. This is a given answer so don't accept just the sight of this answer. It is cso
(c) M1 Substitutes $\mathrm{x}_{0}=2$ into $x_{n+1}=\frac{3+\sin \left(\frac{1}{2} x_{n}\right)}{2}$. Evidence of this mark could be awrt 1.9 or 1.5 (from degrees)

A1 $\mathrm{x}_{1}=$ awrt 1.921
A1 $x_{2}=a w r t 1.91(0)$ and $x_{3}=$ awrt 1.908
(d) Continued iteration is not acceptable for this part. Question states 'By choosing a suitable interval...'

M1 Chooses the interval [1.90775,1.90785] or tighter containing the root= 1.907845522
M1 Calculates $f^{\prime}(1.90775)$ and $f^{\prime}(1.90785)$ or tighter with at least one correct, rounded or truncated
$f^{\prime}(1.90775)=-0.0001$ truncated or awrt -0.0002 rounded
$f^{\prime}(1.90785)=0.000007$ truncated or awrt 0.000008 rounded
Accept versions of $g(x)-x$ where $g(x)=\frac{3+\sin \left(\frac{1}{2} x\right)}{2}$.
When $\mathrm{x}=1.90775, g(x)-x=8 \times 10^{-5}$ rounded and truncated
When $\mathrm{x}=1.90785, g(x)-x=-3 \times 10^{-6}$ truncated or $=-4 \times 10^{-6}$ rounded
A1 Both values correct, rounded or truncated, a valid reason (see part a) and a minimal conclusion (see part a). Saying hence root is acceptable. There is no need to refer to the 'turning point'.

Question Number	Scheme	Marks
41 (a)	$\begin{aligned} & f(0.75)=-0.18 \ldots \\ & f(0.85)=0.17 \ldots \ldots \end{aligned}$ Change of sign, hence root between $x=0.75$ and $x=0.85$	M1 A1
(b)	Sub $x_{0}=0.8$ into ${ }^{-}$to obtain x_{1} Awrt $x_{1}=0.80219$ and $x_{2}=0.80133$ Awrt $x_{3}=0.80167$	M1 A1 A1
(c)	$\begin{aligned} & \mathrm{f}(0.801565)=-2.7 \ldots . \times 10^{-5} \\ & \mathrm{f}(0.801575)=+8.6 \ldots \times 10^{-6} \end{aligned}$	M1A1
	Change of sign and conclusion See Notes for continued iteration method	A1 (3)
		8 Marks

Question Number	Scheme		Marks
$42 .$ (a)	Crosses x-axis $\Rightarrow \mathrm{f}(x)=0 \Rightarrow(8-x) \ln x=0$ Either $(8-x)=0$ or $\ln x=0 \Rightarrow x=8,1$ Coordinates are $A(1,0)$ and $B(8,0)$.	Either one of $\{x\}=1$ OR $x=\{8\}$ Both $A(1,\{0\})$ and $B(8,\{0\})$	B1 B1 (2)
(b)	Apply product rule: $\left\{\begin{array}{ll}u=(8-x) & v=\ln x \\ \frac{\mathrm{~d} u}{\mathrm{~d} x}=-1 & \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{x}\end{array}\right\}$ $\mathrm{f}^{\prime}(x)=-\ln x+\frac{8-x}{x}$	$v u^{\prime}+u v^{\prime}$ Any one term correct Both terms correct	M1 A1 A1 (3)
(c)	$\begin{aligned} & \mathrm{f}^{\prime}(3.5)=0.032951317 \ldots \\ & \mathrm{f}^{\prime}(3.6)=-0.058711623 \ldots \end{aligned}$ Sign change (and as $\mathrm{f}^{\prime}(x)$ is continuous) therefore the x-coordinate of Q lies between 3.5 and 3.6.	Attempts to evaluate both $f^{\prime}(3.5)$ and $f^{\prime}(3.6)$ both values correct to at least 1 sf , sign change and conclusion	M1 A1 (2)
(d)	At $Q, \quad \mathrm{f}^{\prime}(x)=0 \Rightarrow-\ln x+\frac{8-x}{x}=0$ $\begin{aligned} & \Rightarrow-\ln x+\frac{8}{x}-1=0 \\ & \Rightarrow \frac{8}{x}=\ln x+1 \Rightarrow 8=x(\ln x+1) \\ & \Rightarrow x=\frac{8}{\ln x+1} \text { (as required) } \end{aligned}$	Setting $\mathrm{f}^{\prime}(x)=0$. Splitting up the numerator and proceeding to $\mathrm{x}=$ For correct proof. No errors seen in working.	M1 M1 A1 (3)

Question Number	Scheme		Marks
(e)	Iterative formula: $\quad x_{n+1}=\frac{8}{\ln x_{n}+1}$		
	$\begin{aligned} & x_{1}=\frac{8}{\ln (3.55)+1} \\ & x_{1}=3.528974374 \ldots \\ & x_{2}=3.538246011 \ldots \\ & x_{3}=3.534144722 \ldots \end{aligned}$	An attempt to substitute $x_{0}=3.55$ into the iterative formula. Can be implied by $x_{1}=3.528(97)$... Both $x_{1}=$ awrt 3.529 and $x_{2}=$ awrt 3.538	M1 A1
	$x_{1}=3.529, x_{2}=3.538, x_{3}=3.534, \text { to } 3 \mathrm{dp} .$	x_{1}, x_{2}, x_{3} all stated correctly to 3 dp	A1 (3) [13]

Question Number	Scheme		Marks
45 (a)	Iterative formula: $x_{n+1}=\frac{2}{\left(x_{n}\right)^{2}}+2, x_{0}=2.5$		
	$x_{1}=\frac{2}{(2.5)^{2}}+2$	An attempt to substitute $x_{0}=2.5$ into the iterative formula. Can be implied by $x_{1}=2.32$ or 2.320	M1
	$x_{1}=2.32$	Both $x_{1}=2.32(0)$	A1
	$x_{2}=2.371581451 \ldots$	and $x_{2}=$ awrt 2.372	
	$\begin{aligned} & x_{3}=2.355593575 \ldots \\ & x_{4}=2.360436923 \ldots \end{aligned}$	Both $x_{3}=$ awrt 2.356 and $x_{4}=$ awrt 2.360 or 2.36	A1 cso
			(3)
(b)	Let $\mathrm{f}(x)=-x^{3}+2 x^{2}+2=0$		
	$f(2.3585)=0.00583577 \ldots$	Choose suitable interval for x, e.g. [2.3585, 2.3595] or tighter	M1
	Sign change (and $\mathrm{f}(x)$ is continuous) therefore a root	any one value awrt 1 sf or truncated 1 sf	dM1
	α is such that $\alpha \in(2.3585,2.3595) \Rightarrow \alpha=2.359$ (3 dp)	both values correct, sign change and conclusion	A1
		At a minimum, both values must be correct to 1 sf or truncated 1sf, candidate states "change of sign, hence root".	(3)
			[6]

Question Number	Scheme	Marks
46.	(a) $\begin{align*} \mathrm{f}^{\prime}(x) & =3 \mathrm{e}^{x}+3 x \mathrm{e}^{x} \\ 3 \mathrm{e}^{x}+3 x \mathrm{e}^{x} & =3 \mathrm{e}^{x}(1+x)=0 \\ x & =-1 \\ \mathrm{f}(-1) & =-3 \mathrm{e}^{-1}-1 \tag{5} \end{align*}$	M1 A1 M1 A1 B1
	(b) $\begin{align*} & x_{1}=0.2596 \\ & x_{2}=0.2571 \\ & x_{3}=0.2578 \tag{3} \end{align*}$	B1 B1 B1
	(c) Choosing $(0.25755,0.25765)$ or an appropriate tighter interval. $\begin{aligned} & \mathrm{f}(0.25755)=-0.000379 \ldots \\ & \mathrm{f}(0.25765)=0.000109 \ldots \end{aligned}$ Change of sign (and continuity) \Rightarrow root $\in(0.25755,0.25765) * \quad$ cso ($\Rightarrow x=0.2576$, is correct to 4 decimal places) Note: $x=0.25762765 \ldots$ is accurate	M1 A1 A1 (3) [11]

Question Number	Scheme			Notes			Marks
49.	x 0 0.2	0.4	0.6	0.8	1	$y=\frac{6}{\left(2+\mathrm{e}^{x}\right)}$	
	 y 2 $1.8625426 .$.	1.71830	1.56981	1.41994	1.27165		
(a)	$\{$ At $x=0.2\} y=,1.86254(5 \mathrm{dp})$					1.86254	B1 cao
	Note: Look for this value on the given table or in their working.						[1]
(b)	$\frac{1}{2}(0.2) \underline{[2+1.27165+2(\text { their } 1.86254+1.71830+1.56981+1.41994)]}$				Outside brackets $\frac{1}{2} \times(0.2)$$\text { or } \frac{1}{10} \text { or } \frac{1}{2} \times \frac{1}{5}$		B1 o.e.
						acture of $[\cdots \cdots$.	M1
	$\left\{=\frac{1}{10}(16.41283)\right\}=1.641283=1.6413(4 \mathrm{dp})$			anything that rounds to 1.6413			A1
							[3]

	Question 49 Notes	
49. (b)	Note	M1: Do not allow an extra y-value $\boldsymbol{o r}$ a repeated y value in their [...] Do not allow an omission of a y-ordinate in their [...] for M1 unless they give the correct answer of awrt 1.6413, in which case both M1 and A1 can be scored.
	Note	A1: Working must be seen to demonstrate the use of the trapezium rule. (Actual area is $1.64150274 \ldots$...)
	Note	Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a)
	Note	Award B1M1A1 for $\frac{1}{10}(2+1.27165)+\frac{1}{5}(\text { their } 1.86254+1.71830+1.56981+1.41994)=\text { awrt } 1.6413$
	Bracketing mistakes: Unless the final answer implies that the calculation has been done correctly Award B1M0A0 for $\begin{array}{l}1 \\ 2\end{array}(0.2)+2+2$ (their $\left.1.86254+1.71830+1.56981+1.41994\right)+1.27165 \quad(=16.51283)$ Award B1M0A0 for $\frac{1}{2}(0.2)(2+1.27165)+2($ their $1.86254+1.71830+1.56981+1.41994) \quad(=13.468345)$ Award B1M0A0 for $\frac{1}{2}(0.2)(2)+2($ their $1.86254+1.71830+1.56981+1.41994)+1.27165 \quad(=14.61283)$	
	Alter Area B1 M1 A1	ative method: Adding individual trapezia $\begin{aligned} & 0.2 \times\left[\begin{array}{c} 2+" 1.86254 " ~ \\ 2 \end{array}+\begin{array}{c} \text { " } 1.86254 "+1.71830 \\ 2 \end{array}+\begin{array}{c} 1.71830+1.56981 \\ 2 \end{array}+\begin{array}{c} 1.56981+1.41994 \\ 2 \end{array}+\begin{array}{c} 1.41994+1.27165 \\ 2 \end{array}\right] \\ & 1.641283 \\ & 0.2 \text { and a divisor of } 2 \text { on all terms inside brackets } \\ & \text { First and last ordinates once and two of the middle ordinates inside brackets ignoring the } 2 \\ & \text { anything that rounds to } 1.6413 \end{aligned}$

Question Number	Scheme								Marks
50. (a)	x	1	1.2	1.4	1.6	1.8	2	$y=x^{2} \ln x$	
	y	0	0.2625	0.659485...	1.2032	1.9044	2.7726		
	\{ At $x=1.4,\} y=0.6595$ (4 dp)							0.6595	B1 cao
									[1]
(b)	$\frac{1}{2} \times(0.2) \times \underline{[0+2.7726+2(0.2625+\text { their } 0.6595+1.2032+1.9044)]}$ \{Note: The " 0 " does not have to be included in [......]\}							Outside brackets $\frac{1}{2} \times(0.2) \text { or } \frac{1}{10}$	B1 o.e.
								$\frac{\text { For structure of }}{[\ldots \ldots \ldots]}$	M1
	$\left\{=\frac{1}{10}(10.8318)\right\}=1.08318=1.083(3 \mathrm{dp})$						anything that rounds to 1.083		A1
									[3] 4

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
51. \\
(b) contd
\end{tabular} \& Note \& \begin{tabular}{l}
Award B1M1A1 for \(\frac{1}{2}(1.42857+0.55556)+(0.90326+\) their 0.68212\()=2.577445\) \\
Bracketing mistake: Unless the final answer implies that the calculation has been done correctly award B1M0A0 for \(\frac{1}{2} \times 1+1.42857+2(0.90326+\) their 0.68212\()+0.55556\) (nb: answer of 5.65489\()\). award B1M0A0 for \(\frac{1}{2} \times 1(1.42857+0.55556)+2(0.90326+\) their 0.68212\()\) (nb: answer of 4.162825\()\). \\
Alternative method: Adding individual trapezia
\[
\text { Area } \approx 1 \times\left[\frac{1.42857+0.90326}{2}+\frac{0.90326+" 0.68212 "}{2}+\frac{" 0.68212 "+0.55556}{2}\right]=2.577445
\] \\
B1: 1 and a divisor of 2 on all terms inside brackets. \\
M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2. \\
A1: anything that rounds to 2.5774
\end{tabular} \\
\hline (c) \& B1

Note \& | Overestimate and either trapezia lie above curve or a diagram that gives reference to the extra area |
| :--- |
| eg. This diagram is sufficient. It must show the top of a trapezium lying above the curve. |
| or concave or convex or $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0$ (can be implied) or bends inwards or curves downwards. |
| Reason of "gradient is negative" by itself is B0. |

\hline
\end{tabular}

52. (a) Bracketing mistake: Unless the final answer implies that the calculation has been done correctly.

Award B1M0A0 for $\frac{1}{2} \times 0.5+2+2(4.077+7.389+10.043)+0 \quad$ (nb: answer of 45.268$)$.
Alternative method for part (a): Adding individual trapezia
Area $\approx 0.5 \times\left[\frac{2+4.077}{2}+\frac{4.077+7.389}{2}+\frac{7.389+10.043}{2}+\frac{10.043+0}{2}\right]=11.2545=11.25(2 \mathrm{dp})$ сао

B1	0.5 and a divisor of 2 on all terms inside brackets.

M1 First and last ordinates once and the middle ordinates twice inside brackets ignoring the 2.
A1 11.25 cao
(b) \quad B0 \quad Give B0 for

- smaller values of x and/or y.
- use more decimal places

Question Number	Scheme	Marks
	$6.248046798 \ldots=6.248(3 \mathrm{dp}) \quad 6.248$ or awrt 6.248	B1
(b)	$\begin{aligned} \text { Area } & \approx \frac{1}{2} \times 2 ; \times[3+2(7.107+7.218+\text { their } 6.248)+5.223] \\ & =49.369=49.37(2 \mathrm{dp}) \end{aligned}$ 49.37 or awrt 49.37	B1; M1 A1
		[3]
		4
Notes for Question 54		
	B1: 6.248 or awrt 6.248 . Look for this on the table or in the candidate's working. B1: Outside brackets $\frac{1}{2} \times 2$ or 1 M1: For structure of trapezium rule [\qquad]. Allow one miscopy of their values. A1: 49.37 or anything that rounds to 49.37 Note: It can be possible to award : (a) B0 (b) B1M1A1 (awrt 49.37) Note: Working must be seen to demonstrate the use of the trapezium rule. Note: actual area is $50.828 . .$. Bracketing mistake: Unless the final answer implies that the calculation has been done correctly, Award B1M0A0 for $1+3+2(7.107+7.218+$ their 6.248$)+5.223$ (nb: answer of 50.369).	
54. (b) ctd	Alternative method for part (b): Adding individual trapezia $\text { Area } \approx 2 \times\left[\frac{3+7.107}{2}+\frac{7.107+7.218}{2}+\frac{7.218+6.248}{2}+\frac{6.248+5.223}{2}\right]=49.369$ B1: 2 and a divisor of 2 on all terms inside brackets. M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2. A1: anything that rounds to 49.37	

Question Number	Scheme	Marks
56. (a) (b)	$\begin{aligned} & 1.0981 \\ & \text { Area } \begin{aligned} & \approx \frac{1}{2} \times 1 ; \times[0.5+2(0.8284+\text { their } 1.0981)+1.3333] \\ & =\frac{1}{2} \times 5.6863=2.84315=2.843(3 \mathrm{dp}) \end{aligned} \end{aligned}$	B1 cao B1; M1 A1
(a) (b)	B1: 1.0981 correct answer only. Look for this on the table or in the candidate's working. B1: Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ M1: For structure of trapezium rule $[$............. $]$ A1: anything that rounds to 2.843 Note: Working must be seen to demonstrate the use of the trapezium rule. Note: actual area is $2.85573645 \ldots$ Note: Award B1M1 A1 for $\frac{1}{2}(0.5+1.3333)+(0.8284+$ their 1.0981$)=2.84315$ Bracketing mistake: Unless the final answer implies that the calculation has been done correctly Award B1M0A0 for $\frac{1}{2} \times 1+0.5+2(0.8284+$ their 1.0981$)+1.3333$ (nb: answer of 6.1863). Award B1M0A0 for $\frac{1}{2} \times 1(0.5+1.3333)+2(0.8284+$ their 1.0981$)$ (nb: answer of 4.76965$)$.	
56. (b) ctd	Alternative method for part (b): Adding individual trapezia $\text { Area } \approx 1 \times\left[\frac{0.5+0.8284}{2}+\frac{0.8284+1.0981}{2}+\frac{1.0981+1.3333}{2}\right]=2.84315$ B1: 1 and a divisor of 2 on all terms inside brackets. M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the A1: anything that rounds to 2.843	

Question Number	Scheme						
57.	x	1	2	3	4	M1	
	y	$\ln 2$	$\sqrt{2} \ln 4$	$\sqrt{3} \ln 6$	$2 \ln 8$		
		0.6931	1.9605	3.1034	4.1589		
	$\begin{aligned} \text { Area } & =\frac{1}{2} \times 1(\ldots) \\ & \approx \ldots(0.6931+2(1.9605+3.1034)+4.1589) \\ & \approx \frac{1}{2} \times 14.97989 \ldots \approx 7.49 \end{aligned}$					B1M1	
						A1	(4)

Question Number	Scheme ${ }_{\text {a }}$ Marks
58. (a) (b)	0.73508 $\left.\left.\begin{array}{rl\|l}\text { Area } & \approx \frac{1}{2} \times \frac{\pi}{8} ; \times \underline{[0+2(\text { their } 0.73508+1.17157+1.02280)+0]} \\ & =\frac{\pi}{16} \times 5.8589 \ldots=1.150392325 \ldots=1.1504(4 \mathrm{dp}) & \text { B1 cao } \\ \text { [1] }\end{array}\right] \begin{array}{ll}\text { B1 } \underline{\mathrm{M} 1} \\ \text { A1 } & \text { [3] } 1.1504\end{array}\right]$
(a) (b)	B1: 0.73508 correct answer only. Look for this on the table or in the candidate's working. B1: Outside brackets $\frac{1}{2} \times \frac{\pi}{8}$ or $\frac{\pi}{16}$ or awrt 0.196 M1: For structure of trapezium rule $[\ldots \ldots$.$] ; (0$ can be implied). A1: anything that rounds to 1.1504 Bracketing mistake: Unless the final answer implies that the calculation has been done correctly Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8}+2($ their $0.73508+1.17157+1.02280)$ (nb: answer of 6.0552). Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8}(0+0)+2($ their $0.73508+1.17157+1.02280)(\mathrm{nb}$: answer of 5.8589$)$. Alternative method for part (b): Adding individual trapezia $\text { Area } \approx \frac{\pi}{8} \times\left[\frac{0+0.73508}{2}+\frac{0.73508+1.17157}{2}+\frac{1.17157+1.02280}{2}+\frac{1.02280+0}{2}\right]=1.150392325 \ldots$ B1: $\frac{\pi}{8}$ and a divisor of 2 on all terms inside brackets. M1: One of first and last ordinates, two of the middle ordinates inside brackets ignoring the 2 . A1: anything that rounds to 1.1504

Question Number	Scheme	Marks	
59.	(a) $0.0333,1.3596$ awrt 0.0333, 1.3596	B1 B1	(2)
	(b) $\operatorname{Area}(R) \approx \frac{1}{2} \times \frac{\sqrt{ } 2}{4}[\ldots]$	B1	
	$\approx \ldots[0+2(0.0333+0.3240+1.3596)+3.9210]$	M1	
	1.3	A1	(3)
			[5]

Question Number	Scheme	Marks	
62	(a) 1.386, 2.291 awrt 1.386, 2.291	B1 B1	(2)
	(b) $A \approx \frac{1}{2} \times 0.5(\ldots)$	B1	
	$=\ldots(0+2(0.608+1.386+2.291+3.296+4.385)+5.545)$	M1	
	$=0.25(0+2(0.608+1.386+2.291+3.296+4.385)+5.545) \mathrm{ft}$ their (a)	Alft	
	$=0.25 \times 29.477 \ldots \approx 7.37$ cao		(4)
			[6]

Question Number	Scheme		Marks	
63 (a)	1.14805	awrt 1.14805	B1	(1)
	$A \approx \frac{1}{2} \times \frac{3 \pi}{8}(\ldots)$		B1	
	$=\ldots(3+2(2.77164+2.12132+1.14805)+0)$	0 can be implied	M1	
	$=\frac{3 \pi}{16}(3+2(2.77164+2.12132+1.14805))$	ft their (a)	A1ft	
	$=\frac{3 \pi}{16} \times 15.08202 \ldots=8.884$	cao		
				[5]

Note an expression like Area $\approx \frac{1}{2} \times 0.4+\mathrm{e}^{0}+2\left(\mathrm{e}^{0.08}+\mathrm{e}^{0.32}+\mathrm{e}^{0.72}+\mathrm{e}^{1.28}\right)+\mathrm{e}^{2}$ would score B1M1A0
Allow one term missing (slip!) in the () brackets for

The M1 mark for structure is for the material found in the curly brackets ie [first y ordinate +2 (intermediate ft y ordinate $)+$ final y ordinate $]$

Note an expression like Area $\approx \frac{1}{2} \times \frac{\pi}{4}+2(1.84432+4.81048+8.87207)$ would score B1M1A0A0

