

## **Maths Questions By Topic:**

**Numerical Methods** 

**A-Level Edexcel** 

- **©** 0207 060 4494
- www.expert-tuition.co.uk
- $\square$  online.expert-tuition.co.uk
- ⊠ enquiries@expert-tuition.co.uk
- $\, igotimes \,$  The Foundry, 77 Fulham Palace Road, W6 8JA

## **Table Of Contents**

## New Spec

| Paper 1  | Page 1   |
|----------|----------|
| Paper 2  | Page 19  |
| Old Spec |          |
| Core 2   | Page 41  |
| Core 3   | Page 65  |
| Core 4   | Page 101 |

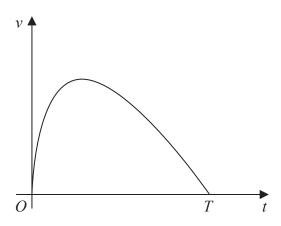


Figure 2

A car stops at two sets of traffic lights.

Figure 2 shows a graph of the speed of the car,  $v \,\text{ms}^{-1}$ , as it travels between the two sets of traffic lights.

The car takes T seconds to travel between the two sets of traffic lights.

The speed of the car is modelled by the equation

$$v = (10 - 0.4t) \ln(t+1)$$
  $0 \le t \le T$ 

where *t* seconds is the time after the car leaves the first set of traffic lights.

According to the model,

(a) find the value of T

**(1)** 

(b) show that the maximum speed of the car occurs when

$$t = \frac{26}{1 + \ln(t+1)} - 1 \tag{4}$$

Using the iteration formula

$$t_{n+1} = \frac{26}{1 + \ln(t_n + 1)} - 1$$

with  $t_1 = 7$ 

- (c) (i) find the value of  $t_3$  to 3 decimal places,
  - (ii) find, by repeated iteration, the time taken for the car to reach maximum speed.

**(3)** 

| Question 1 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 1 continued |  |  |  |  |
|----------------------|--|--|--|--|
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |



| Question 1 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 1 is 8 marks) |



| The curve with equation $y = f(x)$ where                                 |     |
|--------------------------------------------------------------------------|-----|
| $f(x) = x^2 + \ln(2x^2 - 4x + 5)$                                        |     |
| has a single turning point at $x = \alpha$                               |     |
| (a) Show that $\alpha$ is a solution of the equation                     |     |
| $2x^3 - 4x^2 + 7x - 2 = 0$                                               | (4) |
|                                                                          | (4) |
| The iterative formula                                                    |     |
| $x_{n+1} = \frac{1}{7} \left( 2 + 4x_n^2 - 2x_n^3 \right)$               |     |
| is used to find an approximate value for $\alpha$ .                      |     |
| Starting with $x_1 = 0.3$                                                |     |
| (b) calculate, giving each answer to 4 decimal places,                   |     |
| (i) the value of $x_2$                                                   |     |
| (ii) the value of $x_4$                                                  | (2) |
|                                                                          | (3) |
| Using a suitable interval and a suitable function that should be stated, |     |
| (c) show that $\alpha$ is 0.341 to 3 decimal places.                     | (2) |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |

| Question 2 continued |  |  |  |  |
|----------------------|--|--|--|--|
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |



| Question 2 continued |  |  |  |  |
|----------------------|--|--|--|--|
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |
|                      |  |  |  |  |



| Question 2 continued              |  |  |  |
|-----------------------------------|--|--|--|
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
| (Total for Question 2 is 9 marks) |  |  |  |



- 3. The curve with equation  $y = 2\ln(8 x)$  meets the line y = x at a single point,  $x = \alpha$ .
  - (a) Show that  $3 < \alpha < 4$

**(2)** 

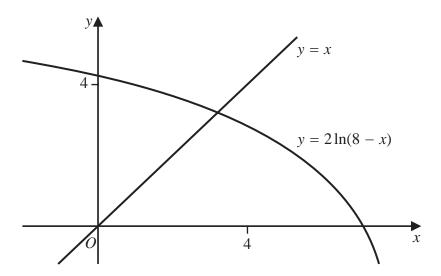


Figure 2

Figure 2 shows the graph of  $y = 2\ln(8 - x)$  and the graph of y = x.

A student uses the iteration formula

$$x_{n+1} = 2\ln(8 - x_n), \quad n \in \mathbb{N}$$

in an attempt to find an approximation for  $\alpha$ .

Using the graph and starting with  $x_1 = 4$ 

(b) determine whether or not this iteration formula can be used to find an approximation for  $\alpha$ , justifying your answer.

**(2)** 

| Question 3 continued              |  |  |  |
|-----------------------------------|--|--|--|
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
| (Total for Question 3 is 4 marks) |  |  |  |



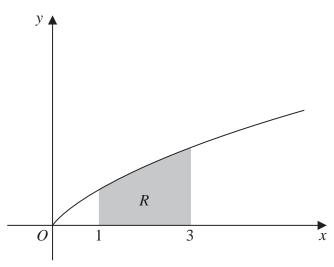


Figure 1

Figure 1 shows a sketch of the curve with equation  $y = \frac{x}{1 + \sqrt{x}}$ ,  $x \ge 0$ 

The finite region R, shown shaded in Figure 1, is bounded by the curve, the line with equation x = 1, the x-axis and the line with equation x = 3

The table below shows corresponding values of x and y for  $y = \frac{x}{1 + \sqrt{x}}$ 

| x | 1   | 1.5    | 2      | 2.5    | 3      |
|---|-----|--------|--------|--------|--------|
| у | 0.5 | 0.6742 | 0.8284 | 0.9686 | 1.0981 |

- (a) Use the trapezium rule, with all the values of *y* in the table, to find an estimate for the area of *R*, giving your answer to 3 decimal places.
- (b) Explain how the trapezium rule can be used to give a better approximation for the area of R.

(1)

**(3)** 

(c) Giving your answer to 3 decimal places in each case, use your answer to part (a) to deduce an estimate for

(i) 
$$\int_{1}^{3} \frac{5x}{1 + \sqrt{x}} \, \mathrm{d}x$$

(ii) 
$$\int_{1}^{3} \left(6 + \frac{x}{1 + \sqrt{x}}\right) \mathrm{d}x$$
 (2)

| Question 4 continued              |  |  |  |  |
|-----------------------------------|--|--|--|--|
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
|                                   |  |  |  |  |
| (Total for Question 4 is 6 marks) |  |  |  |  |



| 5. | $f(x) = \ln(2x - 5) + 2x^2 - 30,  x > 2.5$                                                  |     |
|----|---------------------------------------------------------------------------------------------|-----|
|    | (a) Show that $f(x) = 0$ has a root $\alpha$ in the interval [3.5, 4]                       | (2) |
|    | A student takes 4 as the first approximation to $\alpha$ .                                  | (2) |
|    | Given $f(4) = 3.099$ and $f'(4) = 16.67$ to 4 significant figures,                          |     |
|    | (b) apply the Newton-Raphson procedure once to obtain a second approximation for $\alpha$ , |     |
|    | giving your answer to 3 significant figures.                                                | (2) |
|    | (c) Show that $\alpha$ is the only root of $f(x) = 0$                                       | (2) |
|    |                                                                                             | (2) |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |
|    |                                                                                             |     |

| Question 5 continued |                                   |
|----------------------|-----------------------------------|
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      | (Total for Question 5 is 6 marks) |



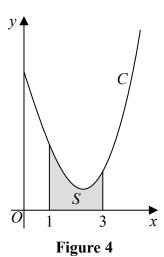


Figure 4 shows a sketch of part of the curve C with equation

$$y = \frac{x^2 \ln x}{3} - 2x + 5, \quad x > 0$$

The finite region S, shown shaded in Figure 4, is bounded by the curve C, the line with equation x = 1, the x-axis and the line with equation x = 3

The table below shows corresponding values of x and y with the values of y given to 4 decimal places as appropriate.

| x | 1 | 1.5    | 2      | 2.5    | 3      |
|---|---|--------|--------|--------|--------|
| y | 3 | 2.3041 | 1.9242 | 1.9089 | 2.2958 |

(a) Use the trapezium rule, with all the values of y in the table, to obtain an estimate for the area of S, giving your answer to 3 decimal places.

(3)

(b) Explain how the trapezium rule could be used to obtain a more accurate estimate for the area of *S*.

(1)

(c) Show that the exact area of S can be written in the form  $\frac{a}{b} + \ln c$ , where a, b and c are integers to be found.

**(6)** 

(In part c, solutions based entirely on graphical or numerical methods are not acceptable.)

| Question 6 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 6 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 6 continued |                                    |
|----------------------|------------------------------------|
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      | (Total for Question 6 is 10 marks) |
|                      |                                    |



7. The table below shows corresponding values of x and y for  $y = log_3 2x$ 

The values of y are given to 2 decimal places as appropriate.

| x | 3    | 4.5 | 6    | 7.5  | 9    |
|---|------|-----|------|------|------|
| y | 1.63 | 2   | 2.26 | 2.46 | 2.63 |

(a) Using the trapezium rule with all the values of y in the table, find an estimate for

$$\int_3^9 \log_3 2x \, \mathrm{d}x$$

**(3)** 

Using your answer to part (a) and making your method clear, estimate

(b) (i) 
$$\int_{3}^{9} \log_{3} (2x)^{10} dx$$
(ii) 
$$\int_{3}^{9} \log_{3} 18x dx$$

(ii) 
$$\int_3^9 \log_3 18x \, \mathrm{d}x$$

**(3)** 

| 工 | <b>EXPERT</b> |
|---|---------------|
| Ĺ | TUITION       |

| Question 7 continued |                                 |
|----------------------|---------------------------------|
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
| (Te                  | otal for Question 7 is 6 marks) |



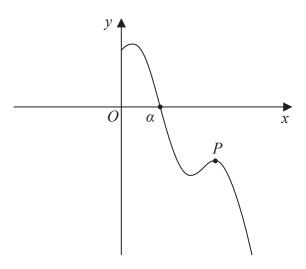


Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x) where

$$f(x) = 8\sin\left(\frac{1}{2}x\right) - 3x + 9 \qquad x > 0$$

and *x* is measured in radians.

The point *P*, shown in Figure 2, is a local maximum point on the curve.

Using calculus and the sketch in Figure 2,

(a) find the x coordinate of P, giving your answer to 3 significant figures.

**(4)** 

The curve crosses the *x*-axis at  $x = \alpha$ , as shown in Figure 2.

Given that, to 3 decimal places, f(4) = 4.274 and f(5) = -1.212

(b) explain why  $\alpha$  must lie in the interval [4, 5]

**(1)** 

(c) Taking  $x_0 = 5$  as a first approximation to  $\alpha$ , apply the Newton-Raphson method once to f(x) to obtain a second approximation to  $\alpha$ .

Show your method and give your answer to 3 significant figures.

**(2)** 

| Question 8 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 8 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 8 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 8 is 7 marks) |



| 9. | The table below shows corresponding values of $x$ and $y$ for $y$ | $y = \sqrt{\frac{x}{1+x}}$ |
|----|-------------------------------------------------------------------|----------------------------|
|----|-------------------------------------------------------------------|----------------------------|

The values of y are given to 4 significant figures.

| x | 0.5    | 1      | 1.5    | 2      | 2.5    |
|---|--------|--------|--------|--------|--------|
| у | 0.5774 | 0.7071 | 0.7746 | 0.8165 | 0.8452 |

(a) Use the trapezium rule, with all the values of y in the table, to find an estimate for

$$\int_{0.5}^{2.5} \sqrt{\frac{x}{1+x}} \, \mathrm{d}x$$

giving your answer to 3 significant figures.

**(3)** 

(b) Using your answer to part (a), deduce an estimate for 
$$\int_{0.5}^{2.5} \sqrt{\frac{9x}{1+x}} dx$$

(1)

Given that

$$\int_{0.5}^{2.5} \sqrt{\frac{9x}{1+x}} \, dx = 4.535 \text{ to 4 significant figures}$$

(c) comment on the accuracy of your answer to part (b).

**(1)** 

| Question 9 continued |                                   |
|----------------------|-----------------------------------|
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      | (Total for Question 9 is 5 marks) |



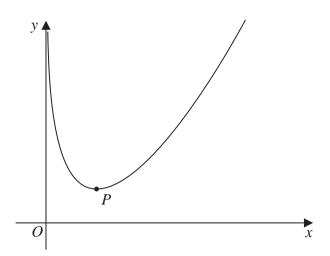


Figure 1

Figure 1 shows a sketch of the curve C with equation

$$y = \frac{4x^2 + x}{2\sqrt{x}} - 4\ln x \qquad x > 0$$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{12x^2 + x - 16\sqrt{x}}{4x\sqrt{x}}$$

**(4)** 

The point *P*, shown in Figure 1, is the minimum turning point on *C*.

(b) Show that the x coordinate of P is a solution of

$$x = \left(\frac{4}{3} - \frac{\sqrt{x}}{12}\right)^{\frac{2}{3}}$$

**(3)** 

(c) Use the iteration formula

$$x_{n+1} = \left(\frac{4}{3} - \frac{\sqrt{x_n}}{12}\right)^{\frac{2}{3}}$$
 with  $x_1 = 2$ 

to find (i) the value of  $x_2$  to 5 decimal places,

(ii) the *x* coordinate of *P* to 5 decimal places.

**(3)** 

| Question 10 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |



| Question 10 continued |   |
|-----------------------|---|
|                       | _ |
|                       | _ |
|                       | _ |
|                       |   |
|                       | _ |
|                       |   |
|                       |   |
|                       | _ |
|                       | _ |
|                       | _ |
|                       | _ |
|                       | _ |
|                       |   |
|                       | _ |
|                       | _ |
|                       |   |
|                       |   |
|                       |   |
|                       | _ |
|                       |   |
|                       | _ |
|                       | _ |
|                       |   |
|                       | _ |



| Question 10 continued |                                     |
|-----------------------|-------------------------------------|
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       | (Total for Question 10 is 10 marks) |



11. The speed of a small jet aircraft was measured every 5 seconds, starting from the time it turned onto a runway, until the time when it left the ground.

The results are given in the table below with the time in seconds and the speed in m s<sup>-1</sup>.

| Time (s)                   | 0 | 5 | 10 | 15 | 20 | 25 |
|----------------------------|---|---|----|----|----|----|
| Speed (m s <sup>-1</sup> ) | 2 | 5 | 10 | 18 | 28 | 42 |

Using all of this information,

| (a) | estimate | the | length | of | runway | used | by | the | jet | to | take | off |
|-----|----------|-----|--------|----|--------|------|----|-----|-----|----|------|-----|
|-----|----------|-----|--------|----|--------|------|----|-----|-----|----|------|-----|

(3)

Given that the jet accelerated smoothly in these 25 seconds,

| (b) | ) exp | lain wł  | nether | your | answer   | to part  | (a) | is an | undere | estimate | or an | overestin | nate | of the |
|-----|-------|----------|--------|------|----------|----------|-----|-------|--------|----------|-------|-----------|------|--------|
|     | leng  | gth of r | unway  | used | l by the | jet to t | ake | off.  |        |          |       |           |      |        |

**(1)** 

| <br> |  |      |
|------|--|------|
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
| <br> |  | <br> |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |
|      |  |      |

| Question 11 continued |                                 |
|-----------------------|---------------------------------|
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
| (То                   | tal for Question 11 is 4 marks) |
| (10                   |                                 |



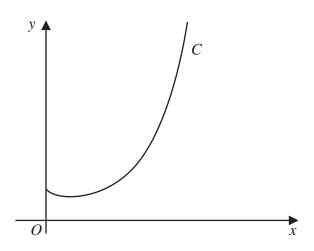


Figure 8

Figure 8 shows a sketch of the curve C with equation  $y = x^x$ , x > 0

(a) Find, by firstly taking logarithms, the x coordinate of the turning point of C.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

**(5)** 

The point  $P(\alpha, 2)$  lies on C.

(b) Show that  $1.5 < \alpha < 1.6$ 

**(2)** 

A possible iteration formula that could be used in an attempt to find  $\alpha$  is

$$x_{n+1} = 2x_n^{1-x_n}$$

Using this formula with  $x_1 = 1.5$ 

(c) find  $x_4$  to 3 decimal places,

**(2)** 

(d) describe the long-term behaviour of  $x_n$ 

**(2)** 

| Question 12 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |



| Question 12 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



| Question 12 continued |                                     |
|-----------------------|-------------------------------------|
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       |                                     |
|                       | (Total for Question 12 is 11 marks) |
|                       | (10tal for Question 12 is 11 marks) |



| 13. | The equation $2x^3 + x^2 - 1 = 0$ has exactly one real root.                                |     |
|-----|---------------------------------------------------------------------------------------------|-----|
|     | (a) Show that, for this equation, the Newton-Raphson formula can be written                 |     |
|     | $\frac{4x_n^3 + x_n^2 + 1}{x_n^2 + x_n^2}$                                                  |     |
|     | $x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n}$                                        |     |
|     |                                                                                             | (3) |
|     | Using the formula given in part (a) with $x_1 = 1$                                          |     |
|     | (b) find the values of $x_2$ and $x_3$                                                      | (2) |
|     |                                                                                             | (2) |
|     | (c) Explain why, for this question, the Newton-Raphson method cannot be used with $x_1 = 0$ |     |
|     | •                                                                                           | (1) |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |
|     |                                                                                             |     |

| Question 13 continued              |
|------------------------------------|
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
| (Total for Question 13 is 6 marks) |



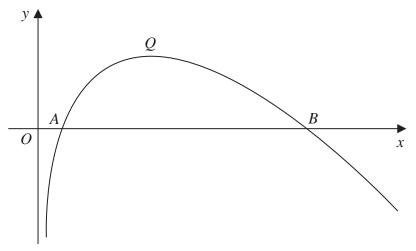


Figure 2

Figure 2 shows a sketch of the curve with equation y = f(x), where

$$f(x) = (8 - x) \ln x, \qquad x > 0$$

The curve cuts the x-axis at the points A and B and has a maximum turning point at Q, as shown in Figure 2.

(a) Find the x coordinate of A and the x coordinate of B. (1)

(b) Show that the x coordinate of Q satisfies

$$x = \frac{8}{1 + \ln x} \tag{4}$$

(c) Show that the x coordinate of Q lies between 3.5 and 3.6

(d) Use the iterative formula

$$x_{n+1} = \frac{8}{1 + \ln x_n} \qquad n \in \mathbb{N}$$

with  $x_1 = 3.5$  to

- (i) find the value of  $x_5$  to 4 decimal places,
- (ii) find the x coordinate of Q accurate to 2 decimal places.

**(2)** 

| Question 14 continued       |        |
|-----------------------------|--------|
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
|                             |        |
| (Total for Question 14 is 9 | marks) |



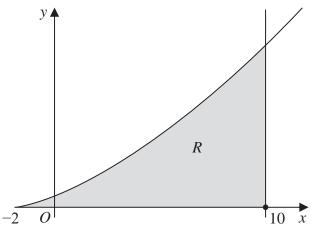


Figure 1

Figure 1 shows a sketch of part of the curve with equation

$$y = \frac{(x+2)^{\frac{3}{2}}}{4}, \quad x \geqslant -2$$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line with equation x = 10

The table below shows corresponding values of x and y for  $y = \frac{(x+2)^{\frac{3}{2}}}{4}$ 

(a) Complete the table, giving values of y corresponding to x = 2 and x = 6

| х | -2 | 2 | 6 | 10  |
|---|----|---|---|-----|
| у | 0  |   |   | 6√3 |

**(1)** 

(b) Use the trapezium rule, with all the values of y from the completed table, to find an approximate value for the area of R, giving your answer to 3 decimal places.

| 11 | 1 |
|----|---|
|    |   |

| estion 15 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |

**16.** (a) 
$$y = 5^x + \log_2(x+1), \quad 0 \le x \le 2$$

Complete the table below, by giving the value of y when x = 1

| x | 0 | 0.5   | 1 | 1.5    | 2      |
|---|---|-------|---|--------|--------|
| y | 1 | 2.821 |   | 12.502 | 26.585 |

**(1)** 

(b) Use the trapezium rule, with all the values of y from the completed table, to find an approximate value for

$$\int_{0}^{2} (5^{x} + \log_{2}(x+1)) \, \mathrm{d}x$$

giving your answer to 2 decimal places.

**(4)** 

(c) Use your answer to part (b) to find an approximate value for

$$\int_0^2 (5 + 5^x + \log_2(x+1)) \, \mathrm{d}x$$

giving your answer to 2 decimal places.

**(1)** 

|                       | Leave |
|-----------------------|-------|
|                       | blank |
| Question 16 continued |       |
| <b>(</b>              |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |



| puestion 16 continued | Le<br>bla |
|-----------------------|-----------|
|                       | _         |
|                       | _         |
|                       | _         |
|                       | _         |
|                       | _         |
|                       | _         |
|                       |           |
|                       | _         |
|                       | _         |
|                       | _         |
|                       | _         |
|                       | _         |
|                       |           |
|                       | _         |
|                       | _         |
|                       | _         |
|                       | _         |
|                       |           |
|                       | _         |
|                       | _         |
|                       | _         |



| uestion 16 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

## 17. The curve C has equation

$$y = 8 - 2^{x-1}, \qquad 0 \leqslant x \leqslant 4$$

(a) Complete the table below with the value of y corresponding to x = 1

| X | 0   | 1 | 2 | 3 | 4 |
|---|-----|---|---|---|---|
| у | 7.5 |   | 6 | 4 | 0 |

**(1)** 

(b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for  $\int_0^4 \left(8 - 2^{x-1}\right) dx$ 

**(3)** 

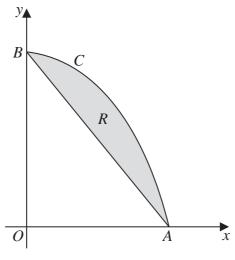


Figure 1

Figure 1 shows a sketch of the curve C with equation  $y = 8 - 2^{x-1}$ ,  $0 \le x \le 4$ 

The curve C meets the x-axis at the point A and meets the y-axis at the point B.

The region R, shown shaded in Figure 1, is bounded by the curve C and the straight line through A and B.

(c) Use your answer to part (b) to find an approximate value for the area of R.

| estion 17 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



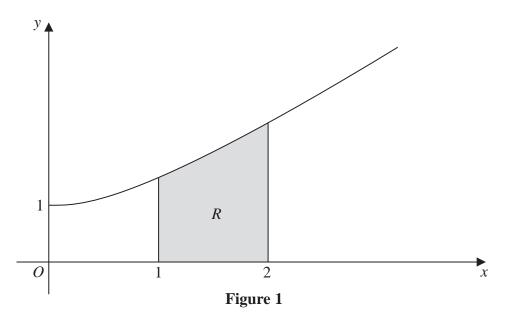


Figure 1 shows a sketch of part of the curve with equation  $y = \sqrt{(x^2 + 1)}$ ,  $x \ge 0$ 

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the lines x = 1 and x = 2

The table below shows corresponding values for x and y for  $y = \sqrt{(x^2 + 1)}$ .

| х | 1     | 1.25 | 1.5   | 1.75  | 2     |
|---|-------|------|-------|-------|-------|
| у | 1.414 |      | 1.803 | 2.016 | 2.236 |

(a) Complete the table above, giving the missing value of y to 3 decimal places.

**(1)** 

(b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for the area of R, giving your answer to 2 decimal places.

**(4)** 

|      | <br> |  |
|------|------|--|
|      |      |  |
| <br> |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

(Total 5 marks)

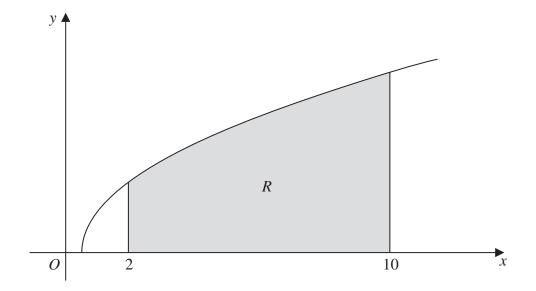


Figure 1

Figure 1 shows a sketch of part of the curve with equation  $y = \sqrt{(2x-1)}$ ,  $x \ge 0.5$ 

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the lines with equations x = 2 and x = 10.

The table below shows corresponding values of x and y for  $y = \sqrt{(2x - 1)}$ .

| x | 2  | 4 | 6   | 8 | 10  |
|---|----|---|-----|---|-----|
| у | √3 |   | √11 |   | √19 |

(a) Complete the table with the values of y corresponding to x = 4 and x = 8.

**(1)** 

(b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for the area of R, giving your answer to 2 decimal places.

**(3)** 

(c) State whether your approximate value in part (b) is an overestimate or an underestimate for the area of *R*.

**(1)** 

| <br> |      |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
| <br> |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |

| nestion 19 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



$$y = \frac{5}{(x^2 + 1)}$$

(a) Complete the table below, giving the missing value of y to 3 decimal places.

| х | 0 | 0.5 | 1   | 1.5 | 2 | 2.5   | 3   |
|---|---|-----|-----|-----|---|-------|-----|
| У | 5 | 4   | 2.5 |     | 1 | 0.690 | 0.5 |

(1)

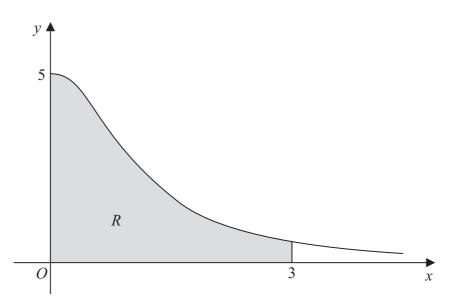


Figure 1

Figure 1 shows the region R which is bounded by the curve with equation  $y = \frac{5}{(x^2 + 1)}$ , the x-axis and the lines x = 0 and x = 3

(b) Use the trapezium rule, with all the values of *y* from your table, to find an approximate value for the area of *R*.

**(4)** 

(c) Use your answer to part (b) to find an approximate value for

$$\int_0^3 \left(4 + \frac{5}{(x^2 + 1)}\right) \mathrm{d}x$$

giving your answer to 2 decimal places.

|                       | Leave |
|-----------------------|-------|
| Question 20 continued | blank |
| Question 20 continued |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
| (Total 7 marks)       |       |



$$y = \frac{x}{\sqrt{(1+x)}}$$

(a) Complete the table below with the value of y corresponding to x = 1.3, giving your answer to 4 decimal places.

**(1)** 

| X | 1      | 1.1    | 1.2    | 1.3 | 1.4    | 1.5    |
|---|--------|--------|--------|-----|--------|--------|
| y | 0.7071 | 0.7591 | 0.8090 |     | 0.9037 | 0.9487 |

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an approximate value for

$$\int_{1}^{1.5} \frac{x}{\sqrt{(1+x)}} \, \mathrm{d}x$$

giving your answer to 3 decimal places.

You must show clearly each stage of your working.

**(4)** 

(Total 5 marks)

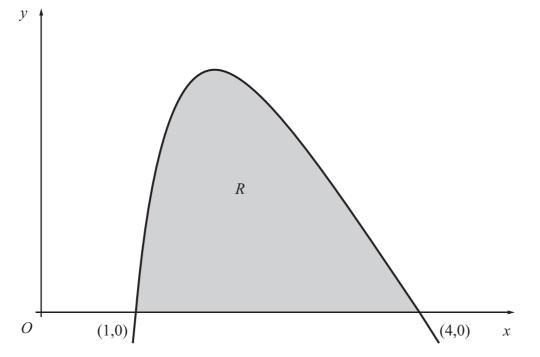


Figure 2

The finite region R, as shown in Figure 2, is bounded by the x-axis and the curve with equation

$$y = 27 - 2x - 9\sqrt{x - \frac{16}{x^2}}, \qquad x > 0$$

The curve crosses the x-axis at the points (1, 0) and (4, 0).

(a) Complete the table below, by giving your values of y to 3 decimal places.

| х | 1 | 1.5   | 2 | 2.5   | 3 | 3.5   | 4 |
|---|---|-------|---|-------|---|-------|---|
| y | 0 | 5.866 |   | 5.210 |   | 1.856 | 0 |

**(2)** 

(b) Use the trapezium rule with all the values in the completed table to find an approximate value for the area of *R*, giving your answer to 2 decimal places.

| 1  | 4\ |
|----|----|
| 14 | 41 |
| •  | •, |

| Question 22 continued |                 | Leave<br>blank |
|-----------------------|-----------------|----------------|
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       |                 |                |
|                       | (Total 6 marks) |                |
|                       |                 |                |
|                       |                 |                |



$$y = \sqrt{3^x + x}$$

(a) Complete the table below, giving the values of y to 3 decimal places.

| х | 0 | 0.25  | 0.5 | 0.75 | 1 |
|---|---|-------|-----|------|---|
| у | 1 | 1.251 |     |      | 2 |

**(2)** 

(b) Use the trapezium rule with all the values of y from your table to find an approximation for the value of  $\int_0^1 \sqrt{3^x + x} dx$ 

You must show clearly how you obtained your answer.

**(4)** 

(Total 6 marks)

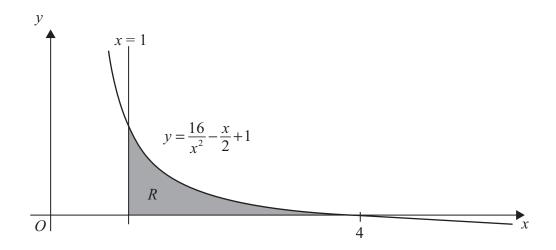


Figure 1

Figure 1 shows the graph of the curve with equation

$$y = \frac{16}{x^2} - \frac{x}{2} + 1, \qquad x > 0$$

The finite region R, bounded by the lines x = 1, the x-axis and the curve, is shown shaded in Figure 1. The curve crosses the x-axis at the point (4, 0).

(a) Complete the table with the values of y corresponding to x = 2 and 2.5

| х | 1    | 1.5   | 2 | 2.5 | 3     | 3.5   | 4 |
|---|------|-------|---|-----|-------|-------|---|
| у | 16.5 | 7.361 |   |     | 1.278 | 0.556 | 0 |

**(2)** 

(b) Use the trapezium rule with all the values in the completed table to find an approximate value for the area of *R*, giving your answer to 2 decimal places.

**(4)** 

| uestion 24 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



$$y = 3^x + 2x$$

(a) Complete the table below, giving the values of y to 2 decimal places.

| х | 0 | 0.2  | 0.4 | 0.6 | 0.8 | 1 |
|---|---|------|-----|-----|-----|---|
| у | 1 | 1.65 |     |     |     | 5 |

**(2)** 

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate

value for 
$$\int_0^1 (3^x + 2x) \, dx$$
.

**(4)** 

(Total 6 marks)

**26.** (a) Complete the table below, giving values of  $\sqrt{(2^x + 1)}$  to 3 decimal places.

| х                | 0     | 0.5   | 1     | 1.5   | 2 | 2.5 | 3 |
|------------------|-------|-------|-------|-------|---|-----|---|
| $\sqrt{(2^x+1)}$ | 1.414 | 1.554 | 1.732 | 1.957 |   |     | 3 |

**(2)** 

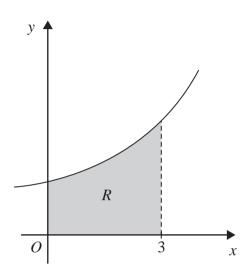


Figure 1

Figure 1 shows the region *R* which is bounded by the curve with equation  $y = \sqrt{(2^x + 1)}$ , the *x*-axis and the lines x = 0 and x = 3

(b) Use the trapezium rule, with all the values from your table, to find an approximation for the area of R.

**(4)** 

(c) By reference to the curve in Figure 1 state, giving a reason, whether your approximation in part (b) is an overestimate or an underestimate for the area of *R*.

| Question 26 continued |                 | Leave |
|-----------------------|-----------------|-------|
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       |                 |       |
|                       | (Total 8 marks) |       |



$$y = \sqrt{10x - x^2}.$$

(a) Complete the table below, giving the values of y to 2 decimal places.

| х | 1 | 1.4  | 1.8 | 2.2 | 2.6  | 3 |
|---|---|------|-----|-----|------|---|
| у | 3 | 3.47 |     |     | 4.39 |   |

**(2)** 

| (b) | Use the trapezium rule, with all the values of y from your table, to find an approximation | ion |
|-----|--------------------------------------------------------------------------------------------|-----|
|     | for the value of $\int_{1}^{3} \sqrt{(10x-x^2)} dx$ .                                      |     |

**(4)** 

(Total 6 marks)

$$y = \sqrt{(5^x + 2)}$$

(a) Complete the table below, giving the values of y to 3 decimal places.

| x | 0 | 0.5 | 1     | 1.5   | 2 |
|---|---|-----|-------|-------|---|
| у |   |     | 2.646 | 3.630 |   |

**(2)** 

(b) Use the trapezium rule, with all the values of y from your table, to find an approximation for the value of  $\int_0^2 \sqrt{(5^x+2)} \, dx$ .

**(4)** 

| <br> |  |
|------|--|
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |

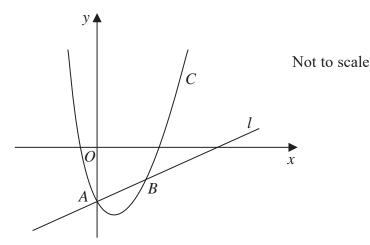


Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$y = e^{-2x} + x^2 - 3$$

The curve C crosses the y-axis at the point A.

The line l is the normal to C at the point A.

(a) Find the equation of l, writing your answer in the form y = mx + c, where m and c are constants. (5)

The line l meets C again at the point B, as shown in Figure 1.

(b) Show that the x coordinate of B is a solution of

$$x = \sqrt{1 + \frac{1}{2}x - e^{-2x}}$$
 (2)

Using the iterative formula

$$x_{n+1} = \sqrt{1 + \frac{1}{2}x_n - e^{-2x_n}}$$

with  $x_1 = 1$ 

(c) find  $x_2$  and  $x_3$  to 3 decimal places.

| nestion 29 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| estion 29 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



| Question 29 continued | ŀ |
|-----------------------|---|
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |



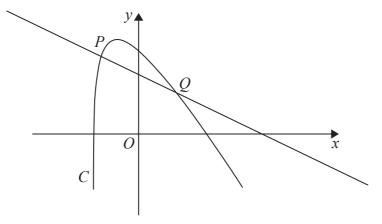


Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$y = 2\ln(2x+5) - \frac{3x}{2}, \quad x > -2.5$$

The point P with x coordinate -2 lies on C.

(a) Find an equation of the normal to C at P. Write your answer in the form ax + by = c, where a, b and c are integers.

(5)

The normal to C at P cuts the curve again at the point Q, as shown in Figure 2.

(b) Show that the x coordinate of Q is a solution of the equation

$$x = \frac{20}{11} \ln(2x+5) - 2 \tag{3}$$

The iteration formula

$$x_{n+1} = \frac{20}{11} \ln(2x_n + 5) - 2$$

can be used to find an approximation for the x coordinate of Q.

(c) Taking  $x_1 = 2$ , find the values of  $x_2$  and  $x_3$ , giving each answer to 4 decimal places.

| uestion 30 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| Question 30 continued | Leav<br>blan |
|-----------------------|--------------|
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |
|                       |              |



| uestion 30 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

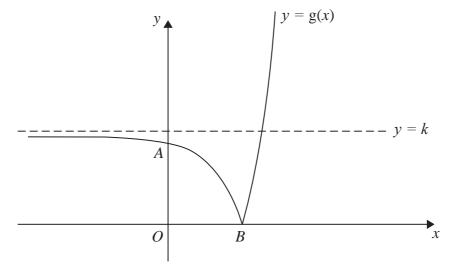


Figure 1

Figure 1 shows a sketch of part of the curve with equation y = g(x), where

$$g(x) = |4e^{2x} - 25|, \quad x \in \mathbb{R}$$

The curve cuts the y-axis at the point A and meets the x-axis at the point B. The curve has an asymptote y = k, where k is a constant, as shown in Figure 1

- (a) Find, giving each answer in its simplest form,
  - (i) the y coordinate of the point A,
  - (ii) the exact x coordinate of the point B,
  - (iii) the value of the constant k.

(5)

The equation g(x) = 2x + 43 has a positive root at  $x = \alpha$ 

(b) Show that 
$$\alpha$$
 is a solution of  $x = \frac{1}{2} \ln \left( \frac{1}{2} x + 17 \right)$  (2)

The iteration formula

$$x_{n+1} = \frac{1}{2} \ln \left( \frac{1}{2} x_n + 17 \right)$$

can be used to find an approximation for  $\alpha$ 

(c) Taking  $x_0 = 1.4$  find the values of  $x_1$  and  $x_2$  Give each answer to 4 decimal places.

**(2)** 

(d) By choosing a suitable interval, show that  $\alpha = 1.437$  to 3 decimal places.

| uestion 31 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



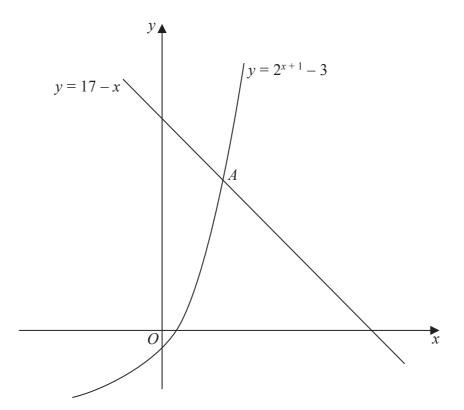


Figure 1

Figure 1 is a sketch showing part of the curve with equation  $y = 2^{x+1} - 3$  and part of the line with equation y = 17 - x.

The curve and the line intersect at the point A.

(a) Show that the x coordinate of A satisfies the equation

$$x = \frac{\ln(20 - x)}{\ln 2} - 1$$

**(3)** 

(b) Use the iterative formula

$$x_{n+1} = \frac{\ln(20 - x_n)}{\ln 2} - 1, \quad x_0 = 3$$

to calculate the values of  $x_1$ ,  $x_2$  and  $x_3$ , giving your answers to 3 decimal places.

**(3)** 

(c) Use your answer to part (b) to deduce the coordinates of the point A, giving your answers to one decimal place.

| stion 32 continued |   |
|--------------------|---|
|                    |   |
|                    |   |
|                    |   |
|                    |   |
|                    | - |
|                    |   |
|                    | _ |
|                    |   |
|                    |   |
|                    | - |
|                    |   |
|                    |   |
|                    | - |
|                    | - |
|                    |   |
|                    |   |
|                    |   |
|                    |   |
|                    |   |
|                    |   |
|                    | - |
|                    |   |
|                    | - |
|                    | - |
|                    | - |
|                    | - |
|                    |   |
|                    |   |



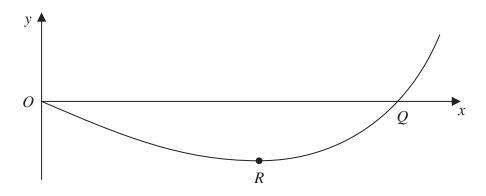


Figure 2

Figure 2 shows a sketch of part of the curve with equation

$$y = 2\cos\left(\frac{1}{2}x^2\right) + x^3 - 3x - 2$$

The curve crosses the x-axis at the point Q and has a minimum turning point at R.

- (a) Show that the x coordinate of Q lies between 2.1 and 2.2 (2)
- (b) Show that the x coordinate of R is a solution of the equation

$$x = \sqrt{1 + \frac{2}{3}x\sin\left(\frac{1}{2}x^2\right)}$$

**(4)** 

Using the iterative formula

$$x_{n+1} = \sqrt{1 + \frac{2}{3}x_n \sin\left(\frac{1}{2}x_n^2\right)}, \quad x_0 = 1.3$$

(c) find the values of  $x_1$  and  $x_2$  to 3 decimal places.

| 40         | ١,  |
|------------|-----|
| 14         | , , |
| \ <u> </u> | -,  |

| estion 33 continued |  |  |
|---------------------|--|--|
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |



- **34.** A curve *C* has equation  $y = e^{4x} + x^4 + 8x + 5$ 
  - (a) Show that the x coordinate of any turning point of C satisfies the equation

$$x^3 = -2 - e^{4x} {3}$$

- (b) On the axes given on page 5, sketch, on a single diagram, the curves with equations
  - (i)  $y = x^3$ ,
  - (ii)  $y = -2 e^{4x}$

On your diagram give the coordinates of the points where each curve crosses the *y*-axis and state the equation of any asymptotes.

**(4)** 

(c) Explain how your diagram illustrates that the equation  $x^3 = -2 - e^{4x}$  has only one root. (1)

The iteration formula

$$x_{n+1} = (-2 - e^{4x_n})^{\frac{1}{3}}, \quad x_0 = -1$$

can be used to find an approximate value for this root.

- (d) Calculate the values of  $x_1$  and  $x_2$ , giving your answers to 5 decimal places. (2)
- (e) Hence deduce the coordinates, to 2 decimal places, of the turning point of the curve *C*.

| 35. | $f(x) = 25x^2e^{2x} - 16,$ | $x \in \mathbb{R}$ |
|-----|----------------------------|--------------------|
|     |                            |                    |

(a) Using calculus, find the exact coordinates of the turning points on the curve with equation y = f(x).

**(5)** 

(b) Show that the equation f(x) = 0 can be written as  $x = \pm \frac{4}{5} e^{-x}$  (1)

The equation f(x) = 0 has a root  $\alpha$ , where  $\alpha = 0.5$  to 1 decimal place.

(c) Starting with  $x_0 = 0.5$ , use the iteration formula

$$x_{n+1} = \frac{4}{5} e^{-x_n}$$

to calculate the values of  $x_1$ ,  $x_2$  and  $x_3$ , giving your answers to 3 decimal places.

(3)

(d) Give an accurate estimate for  $\alpha$  to 2 decimal places, and justify your answer.

| uestion 35 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



Leave blank

36. (a) On the same diagram, sketch and clearly label the graphs with equations

$$y = e^x$$
 and  $y = 10 - x$ 

Show on your sketch the coordinates of each point at which the graphs cut the axes.

(3)

- (b) Explain why the equation  $e^x 10 + x = 0$  has only one solution. (1)
- (c) Show that the solution of the equation

$$e^x - 10 + x = 0$$

lies between x = 2 and x = 3

**(2)** 

(d) Use the iterative formula

$$x_{n+1} = \ln(10 - x_n), \quad x_1 = 2$$

to calculate the values of  $x_2$ ,  $x_3$  and  $x_4$ .

Give your answers to 4 decimal places.

**(3)** 

|                       | Leave<br>blank |
|-----------------------|----------------|
| Question 36 continued |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
| (Total 9 marks)       |                |

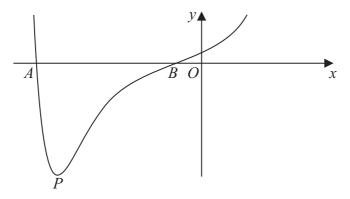


Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x) where

$$f(x) = (x^2 + 3x + 1)e^{x^2}$$

The curve cuts the *x*-axis at points *A* and *B* as shown in Figure 2.

(a) Calculate the *x* coordinate of *A* and the *x* coordinate of *B*, giving your answers to 3 decimal places.

**(2)** 

(b) Find f'(x).

**(3)** 

The curve has a minimum turning point at the point *P* as shown in Figure 2.

(c) Show that the x coordinate of P is the solution of

$$x = -\frac{3(2x^2 + 1)}{2(x^2 + 2)}$$

**(3)** 

(d) Use the iteration formula

$$x_{n+1} = -\frac{3(2x_n^2 + 1)}{2(x_n^2 + 2)}, \quad \text{with } x_0 = -2.4,$$

to calculate the values of  $x_1$ ,  $x_2$  and  $x_3$ , giving your answers to 3 decimal places.

**(3)** 

The *x* coordinate of *P* is  $\alpha$ .

(e) By choosing a suitable interval, prove that  $\alpha = -2.43$  to 2 decimal places.

| uestion 37 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



$$g(x) = e^{x-1} + x - 6$$

(a) Show that the equation g(x) = 0 can be written as

$$x = \ln(6 - x) + 1, \quad x < 6$$

**(2)** 

The root of g(x) = 0 is  $\alpha$ .

The iterative formula

$$x_{n+1} = \ln(6 - x_n) + 1,$$
  $x_0 = 2$ 

is used to find an approximate value for  $\alpha$ .

(b) Calculate the values of  $x_1$ ,  $x_2$  and  $x_3$  to 4 decimal places.

(3)

(c) By choosing a suitable interval, show that  $\alpha = 2.307$  correct to 3 decimal places.

|   | 2             |  |
|---|---------------|--|
| 1 | • •           |  |
| • | $\mathcal{I}$ |  |

(Total 8 marks)

$$f(x) = x^3 + 3x^2 + 4x - 12$$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \qquad x \neq -3$$
 (3)

The equation  $x^3 + 3x^2 + 4x - 12 = 0$  has a single root which is between 1 and 2

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{4(3-x_n)}{(3+x_n)}\right)}, n \geqslant 0$$

with  $x_0 = 1$  to find, to 2 decimal places, the value of  $x_1$ ,  $x_2$  and  $x_3$ .

(3)

The root of f(x) = 0 is  $\alpha$ .

(c) By choosing a suitable interval, prove that  $\alpha = 1.272$  to 3 decimal places.

(3)

(Total 9 marks)

$$f(x) = x^2 - 3x + 2\cos(\frac{1}{2}x), \quad 0 \le x \le \pi$$

(a) Show that the equation f(x)=0 has a solution in the interval 0.8 < x < 0.9

**(2)** 

The curve with equation y = f(x) has a minimum point P.

(b) Show that the x-coordinate of P is the solution of the equation

$$x = \frac{3 + \sin\left(\frac{1}{2}x\right)}{2} \tag{4}$$

(c) Using the iteration formula

$$x_{n+1} = \frac{3 + \sin(\frac{1}{2}x_n)}{2}, \quad x_0 = 2$$

find the values of  $x_1$ ,  $x_2$  and  $x_3$ , giving your answers to 3 decimal places.

(3)

(d) By choosing a suitable interval, show that the *x*-coordinate of *P* is 1.9078 correct to 4 decimal places.

**(3)** 

| uestion 40 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



41.  $f(x) = 2\sin(x^2) + x - 2, \quad 0 \le x < 2\pi$ 

(a) Show that f(x) = 0 has a root  $\alpha$  between x = 0.75 and x = 0.85

(2)

The equation f(x) = 0 can be written as  $x = \left[\arcsin(1 - 0.5x)\right]^{\frac{1}{2}}$ .

(b) Use the iterative formula

$$x_{n+1} = \left[\arcsin\left(1 - 0.5x_n\right)\right]^{\frac{1}{2}}, \quad x_0 = 0.8$$

to find the values of  $x_1$ ,  $x_2$  and  $x_3$ , giving your answers to 5 decimal places.

(3)

(c) Show that  $\alpha = 0.80157$  is correct to 5 decimal places.

**(3)** 

(Total 8 marks)

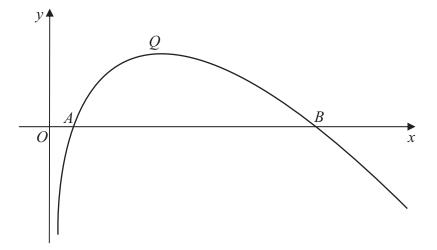


Figure 1

Figure 1 shows a sketch of part of the curve with equation y = f(x), where

$$f(x) = (8-x) \ln x, \quad x > 0$$

The curve cuts the x-axis at the points A and B and has a maximum turning point at Q, as shown in Figure 1.

(a) Write down the coordinates of A and the coordinates of B.

**(2)** 

(b) Find f'(x).

**(3)** 

(c) Show that the x-coordinate of Q lies between 3.5 and 3.6

**(2)** 

(d) Show that the x-coordinate of Q is the solution of

$$x = \frac{8}{1 + \ln x}$$

**(3)** 

To find an approximation for the x-coordinate of Q, the iteration formula

$$x_{n+1} = \frac{8}{1 + \ln x_n}$$

is used.

(e) Taking  $x_0 = 3.55$ , find the values of  $x_1$ ,  $x_2$  and  $x_3$ . Give your answers to 3 decimal places.

**(3)** 

| estion 42 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



 $f(x) = 4\csc x - 4x + 1$ , where x is in radians.

(a) Show that there is a root  $\alpha$  of f(x) = 0 in the interval [1.2, 1.3].

**(2)** 

(b) Show that the equation f(x) = 0 can be written in the form

$$x = \frac{1}{\sin x} + \frac{1}{4} \tag{2}$$

(c) Use the iterative formula

$$x_{n+1} = \frac{1}{\sin x_n} + \frac{1}{4}, \quad x_0 = 1.25,$$

to calculate the values of  $x_1$ ,  $x_2$  and  $x_3$ , giving your answers to 4 decimal places.

**(3)** 

(d) By considering the change of sign of f(x) in a suitable interval, verify that  $\alpha = 1.291$  correct to 3 decimal places.

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

|                       | Leave |
|-----------------------|-------|
| Question 43 continued | blank |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
| (Total 9 marks)       |       |



$$f(x) = x^3 + 2x^2 - 3x - 11$$

(a) Show that f(x) = 0 can be rearranged as

$$x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \quad x \neq -2.$$

**(2)** 

The equation f(x) = 0 has one positive root  $\alpha$ .

The iterative formula  $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$  is used to find an approximation to  $\alpha$ .

(b) Taking  $x_1 = 0$ , find, to 3 decimal places, the values of  $x_2$ ,  $x_3$  and  $x_4$ .

**(3)** 

(c) Show that  $\alpha = 2.057$  correct to 3 decimal places.

**(3)** 

(Total 8 marks)

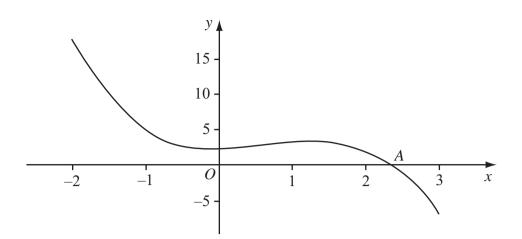


Figure 1

Figure 1 shows part of the curve with equation  $y = -x^3 + 2x^2 + 2$ , which intersects the x-axis at the point A where  $x = \alpha$ .

To find an approximation to  $\alpha$ , the iterative formula

$$x_{n+1} = \frac{2}{(x_n)^2} + 2$$

is used.

(a) Taking  $x_0 = 2.5$ , find the values of  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$ . Give your answers to 3 decimal places where appropriate.

**(3)** 

(b) Show that  $\alpha = 2.359$  correct to 3 decimal places.

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

(Total 6 marks)

| - 4 |          |  |
|-----|----------|--|
| /   | <b>h</b> |  |
|     |          |  |

$$f(x) = 3xe^x - 1$$

The curve with equation y = f(x) has a turning point P.

(a) Find the exact coordinates of P.

**(5)** 

The equation f(x) = 0 has a root between x = 0.25 and x = 0.3

(b) Use the iterative formula

$$x_{n+1} = \frac{1}{3} e^{-x_n}$$

with  $x_0 = 0.25$  to find, to 4 decimal places, the values of  $x_1$ ,  $x_2$  and  $x_3$ .

**(3)** 

(c) By choosing a suitable interval, show that a root of f(x) = 0 is x = 0.2576 correct to 4 decimal places.

**(3)** 

(Total 11 marks)

$$f(x) = 3x^3 - 2x - 6$$

(a) Show that f(x) = 0 has a root,  $\alpha$ , between x = 1.4 and x = 1.45

**(2)** 

(b) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)}, \quad x \neq 0.$$

**(3)** 

(c) Starting with  $x_0=1.43$ , use the iteration

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{2}{3}\right)}$$

to calculate the values of  $x_1$ ,  $x_2$  and  $x_3$ , giving your answers to 4 decimal places.

(3)

(d) By choosing a suitable interval, show that  $\alpha = 1.435$  is correct to 3 decimal places.

| 1 | 1 | ` |
|---|---|---|
| ( | Ĵ | 1 |

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

| Question 47 continued | Leave<br>blank |
|-----------------------|----------------|
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
| (Total 11 ma          | rks)           |



| 48. | $f(x) = \ln(x+2) - x + 1,  x > -2, x \in \mathbb{R}$ .                                   |     |
|-----|------------------------------------------------------------------------------------------|-----|
| (   | a) Show that there is a root of $f(x) = 0$ in the interval $2 < x < 3$ .                 |     |
|     |                                                                                          | (2) |
| (   | b) Use the iterative formula                                                             |     |
|     | $x_{n+1} = \ln(x_n + 2) + 1, \ x_0 = 2.5$                                                |     |
|     | to calculate the values of $x_1, x_2$ and $x_3$ giving your answers to 5 decimal places. |     |
|     |                                                                                          | (3) |
| (   | Show that $x = 2.505$ is a root of $f(x) = 0$ correct to 3 decimal places.               | (2) |
|     |                                                                                          | (2) |
|     |                                                                                          |     |
|     |                                                                                          |     |
|     |                                                                                          |     |
|     |                                                                                          |     |
|     |                                                                                          |     |
|     |                                                                                          |     |
|     |                                                                                          |     |
|     |                                                                                          |     |
|     |                                                                                          |     |
|     |                                                                                          |     |
|     |                                                                                          |     |

(Total 7 marks)

**(1)** 

**(3)** 

**49.** 

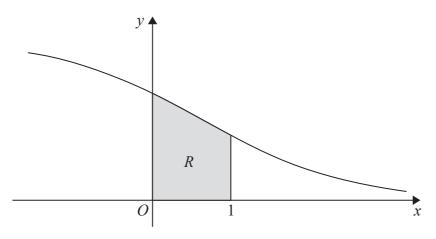


Figure 1

Figure 1 shows a sketch of part of the curve with equation  $y = \frac{6}{(e^x + 2)}$ ,  $x \in \mathbb{R}$ 

The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis and the line with equation x = 1

The table below shows corresponding values of x and y for  $y = \frac{6}{(e^x + 2)}$ 

| x | 0 | 0.2 | 0.4     | 0.6     | 0.8     | 1       |
|---|---|-----|---------|---------|---------|---------|
| y | 2 |     | 1.71830 | 1.56981 | 1.41994 | 1.27165 |

(a) Complete the table above by giving the missing value of y to 5 decimal places.

(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.

|                       | Leave<br>blank |
|-----------------------|----------------|
| Question 49 continued |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |



| uestion 49 continued |  |   |
|----------------------|--|---|
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  |   |
|                      |  | _ |
|                      |  |   |



|                       | Leave |
|-----------------------|-------|
|                       | blank |
| Question 49 continued |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
| (Total 4 marks)       |       |



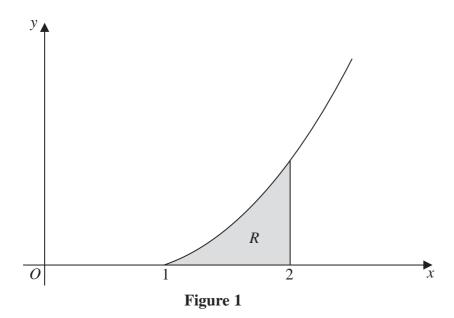


Figure 1 shows a sketch of part of the curve with equation  $y = x^2 \ln x$ ,  $x \ge 1$ 

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 2

The table below shows corresponding values of x and y for  $y = x^2 \ln x$ 

| х | 1 | 1.2    | 1.4 | 1.6    | 1.8    | 2      |
|---|---|--------|-----|--------|--------|--------|
| у | 0 | 0.2625 |     | 1.2032 | 1.9044 | 2.7726 |

(a) Complete the table above, giving the missing value of y to 4 decimal places.

**(1)** 

(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of R, giving your answer to 3 decimal places.

| (2) |
|-----|
|     |

| estion 50 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



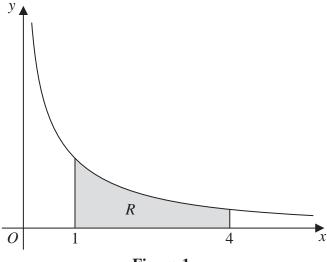


Figure 1

Figure 1 shows a sketch of part of the curve with equation  $y = \frac{10}{2x + 5\sqrt{x}}$ , x > 0

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, and the lines with equations x = 1 and x = 4

The table below shows corresponding values of x and y for  $y = \frac{10}{2x + 5\sqrt{x}}$ 

| X | 1       | 2       | 3 | 4       |
|---|---------|---------|---|---------|
| у | 1.42857 | 0.90326 |   | 0.55556 |

(a) Complete the table above by giving the missing value of y to 5 decimal places.

**(1)** 

(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.

**(3)** 

(c) By reference to the curve in Figure 1, state, giving a reason, whether your estimate in part (b) is an overestimate or an underestimate for the area of R.

**(1)** 

| estion 51 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



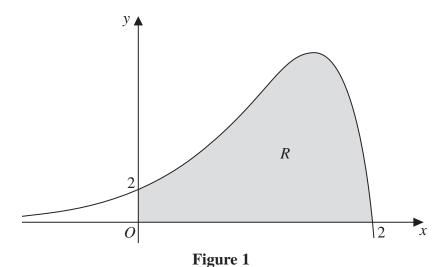


Figure 1 shows a sketch of part of the curve with equation

$$y = (2 - x)e^{2x}, \qquad x \in \mathbb{R}$$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the y-axis.

The table below shows corresponding values of x and y for  $y = (2 - x)e^{2x}$ 

| х | 0 | 0.5   | 1     | 1.5    | 2 |
|---|---|-------|-------|--------|---|
| у | 2 | 4.077 | 7.389 | 10.043 | 0 |

(a) Use the trapezium rule with all the values of y in the table, to obtain an approximation for the area of R, giving your answer to 2 decimal places.

**(3)** 

(b) Explain how the trapezium rule can be used to give a more accurate approximation for the area of R.

**(1)** 

| estion 52 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



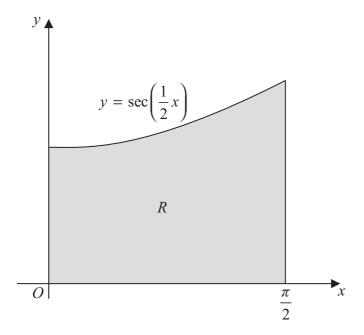


Figure 1

Figure 1 shows the finite region R bounded by the x-axis, the y-axis, the line  $x = \frac{\pi}{2}$  and the curve with equation

$$y = \sec\left(\frac{1}{2}x\right), \quad 0 \leqslant x \leqslant \frac{\pi}{2}$$

The table shows corresponding values of x and y for  $y = \sec\left(\frac{1}{2}x\right)$ .

| x | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ |
|---|---|-----------------|-----------------|-----------------|
| y | 1 | 1.035276        |                 | 1.414214        |

(a) Complete the table above giving the missing value of y to 6 decimal places.

**(1)** 

(b) Using the trapezium rule, with all of the values of y from the completed table, find an approximation for the area of R, giving your answer to 4 decimal places.

**(3)** 

| uestion 53 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



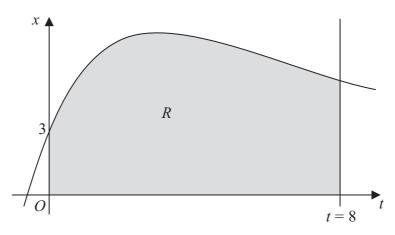


Figure 1

Figure 1 shows part of the curve with equation  $x = 4te^{-\frac{1}{3}t} + 3$ . The finite region R shown shaded in Figure 1 is bounded by the curve, the x-axis, the t-axis and the line t = 8.

(a) Complete the table with the value of x corresponding to t = 6, giving your answer to 3 decimal places.

| t | 0 | 2     | 4     | 6 | 8     |
|---|---|-------|-------|---|-------|
| X | 3 | 7.107 | 7.218 |   | 5.223 |

**(1)** 

(b) Use the trapezium rule with all the values of x in the completed table to obtain an estimate for the area of the region R, giving your answer to 2 decimal places.

| - 4 | 12 | ١ |
|-----|----|---|
|     | J  | • |

| uestion 54 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



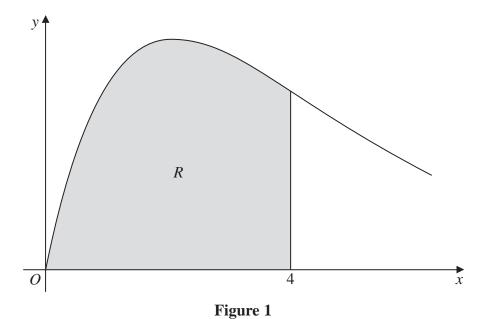


Figure 1 shows a sketch of part of the curve with equation  $y = xe^{-\frac{1}{2}x}$ ,  $x \ge 0$ .

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, and the line x = 4.

The table shows corresponding values of x and y for  $y = xe^{-\frac{1}{2}x}$ .

| X | 0 | 1                  | 2 | 3                   | 4         |
|---|---|--------------------|---|---------------------|-----------|
| у | 0 | $e^{-\frac{1}{2}}$ |   | $3e^{-\frac{3}{2}}$ | $4e^{-2}$ |

(a) Complete the table with the value of y corresponding to x = 2

**(1)** 

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.

| 1 | 4 | ١ |
|---|---|---|
|   |   |   |

| uestion 55 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



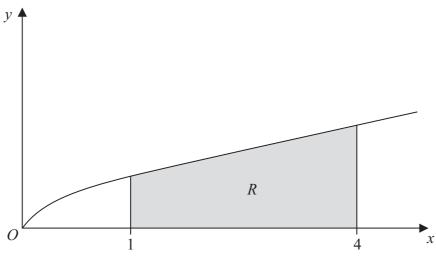


Figure 1

Figure 1 shows a sketch of part of the curve with equation  $y = \frac{x}{1 + \sqrt{x}}$ . The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the line with equation x = 1 and the line with equation x = 4.

(a) Complete the table with the value of y corresponding to x = 3, giving your answer to 4 decimal places.

**(1)** 

| X | 1   | 2      | 3 | 4      |
|---|-----|--------|---|--------|
| у | 0.5 | 0.8284 |   | 1.3333 |

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate of the area of the region R, giving your answer to 3 decimal places.

| 12 | 1 |
|----|---|
| O  | , |

|                       | Leave<br>blank |
|-----------------------|----------------|
| Question 56 continued | o lame         |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
| (Total 4 marks)       |                |



Leave blank

57.

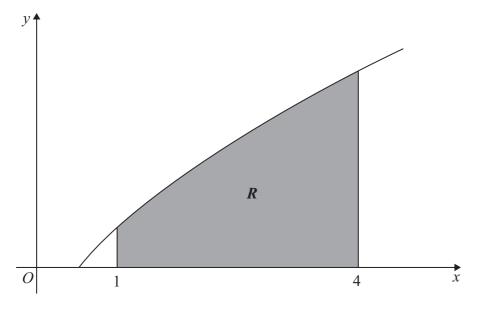


Figure 3

Figure 3 shows a sketch of part of the curve with equation  $y = x^{\frac{1}{2}} \ln 2x$ .

The finite region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the lines x = 1 and x = 4

Use the trapezium rule, with 3 strips of equal width, to find an estimate for the area of R, giving your answer to 2 decimal places.

**(4)** 

| uestion 57 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



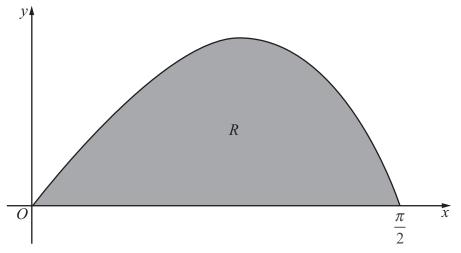


Figure 3

Figure 3 shows a sketch of the curve with equation  $y = \frac{2\sin 2x}{(1+\cos x)}$ ,  $0 \le x \le \frac{\pi}{2}$ .

The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

The table below shows corresponding values of x and y for  $y = \frac{2\sin 2x}{(1+\cos x)}$ .

| х | 0 | $\frac{\pi}{8}$ | $\frac{\pi}{4}$ | $\frac{3\pi}{8}$ | $\frac{\pi}{2}$ |
|---|---|-----------------|-----------------|------------------|-----------------|
| y | 0 |                 | 1.17157         | 1.02280          | 0               |

(a) Complete the table above giving the missing value of y to 5 decimal places.

**(1)** 

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 4 decimal places.

(3)

| uestion 58 continued | 1 |
|----------------------|---|
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |



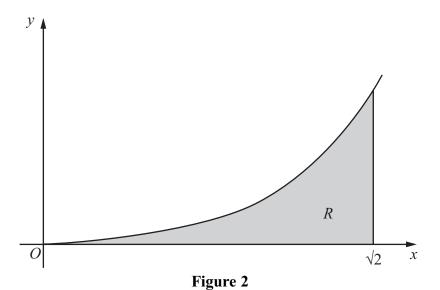


Figure 2 shows a sketch of the curve with equation  $y = x^3 \ln(x^2 + 2)$ ,  $x \ge 0$ . The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis and the line  $x = \sqrt{2}$ .

The table below shows corresponding values of x and y for  $y = x^3 \ln(x^2 + 2)$ .

| х | 0 | $\frac{\sqrt{2}}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{3\sqrt{2}}{4}$ | √2     |
|---|---|----------------------|----------------------|-----------------------|--------|
| у | 0 |                      | 0.3240               |                       | 3.9210 |

(a) Complete the table above giving the missing values of y to 4 decimal places.

**(2)** 

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.

(3)

| uestion 59 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



$$I = \int_{2}^{5} \frac{1}{4 + \sqrt{(x-1)}} \, \mathrm{d}x$$

(a) Given that  $y = \frac{1}{4 + \sqrt{(x-1)}}$ , complete the table below with values of y corresponding to x = 3 and x = 5. Give your values to 4 decimal places.

| x | 2   | 3 | 4      | 5 |
|---|-----|---|--------|---|
| y | 0.2 |   | 0.1745 |   |

**(2)** 

| (b) | Use the trapezium rule, with all of the values of y in the completed table, to obtain ar |
|-----|------------------------------------------------------------------------------------------|
|     | estimate of <i>I</i> , giving your answer to 3 decimal places.                           |

**(4)** 

| estion 60 continued |                 |
|---------------------|-----------------|
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     |                 |
|                     | (Total 6 marks) |



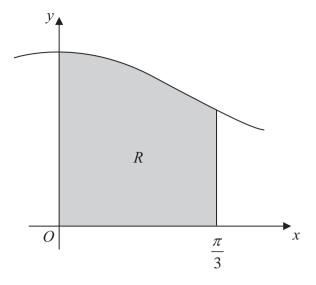


Figure 1

Figure 1 shows part of the curve with equation  $y = \sqrt{(0.75 + \cos^2 x)}$ . The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis and the line with equation  $x = \frac{\pi}{3}$ .

(a) Complete the table with values of y corresponding to  $x = \frac{\pi}{6}$  and  $x = \frac{\pi}{4}$ .

| x | 0      | $\frac{\pi}{12}$ | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ |
|---|--------|------------------|-----------------|-----------------|-----------------|
| У | 1.3229 | 1.2973           |                 |                 | 1               |

(b) Use the trapezium rule

- (i) with the values of y at x = 0,  $x = \frac{\pi}{6}$  and  $x = \frac{\pi}{3}$  to find an estimate of the area of R. Give your answer to 3 decimal places.
- (ii) with the values of y at x = 0,  $x = \frac{\pi}{12}$ ,  $x = \frac{\pi}{6}$ ,  $x = \frac{\pi}{4}$  and  $x = \frac{\pi}{3}$  to find a further estimate of the area of R. Give your answer to 3 decimal places.

**(6)** 

**(2)** 

|                       |   | Leave |
|-----------------------|---|-------|
| Question 61 continued |   | orank |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
|                       |   |       |
| (Total 8 marks)       | \ |       |



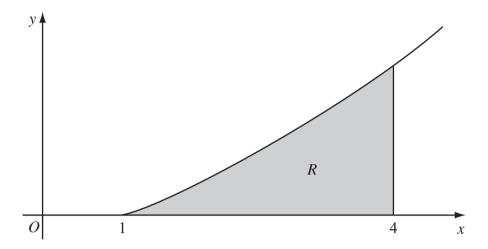


Figure 1

Figure 1 shows a sketch of the curve with equation  $y = x \ln x$ ,  $x \ge 1$ . The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 4.

The table shows corresponding values of x and y for  $y = x \ln x$ .

| x | 1 | 1.5   | 2 | 2.5 | 3     | 3.5   | 4     |
|---|---|-------|---|-----|-------|-------|-------|
| у | 0 | 0.608 |   |     | 3.296 | 4.385 | 5.545 |

(a) Complete the table with the values of y corresponding to x = 2 and x = 2.5, giving your answers to 3 decimal places.

**(2)** 

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.

| - | 4 | <b>\</b> |
|---|---|----------|
|   | / |          |

|      | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

|                       | Leave |
|-----------------------|-------|
| Question 62 continued | blank |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
| (Total 6 marks)       |       |



Leave blank

**63.** 

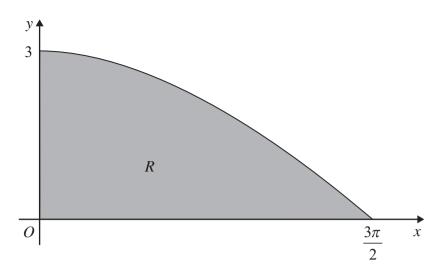


Figure 1

Figure 1 shows the finite region *R* bounded by the *x*-axis, the *y*-axis and the curve with equation  $y = 3\cos\left(\frac{x}{3}\right)$ ,  $0 \le x \le \frac{3\pi}{2}$ .

The table shows corresponding values of x and y for  $y = 3\cos\left(\frac{x}{3}\right)$ .

| X | 0 | $\frac{3\pi}{8}$ | $\frac{3\pi}{4}$ | $\frac{9\pi}{8}$ | $\frac{3\pi}{2}$ |
|---|---|------------------|------------------|------------------|------------------|
| y | 3 | 2.77164          | 2.12132          |                  | 0                |

(a) Complete the table above giving the missing value of y to 5 decimal places.

**(1)** 

(b) Using the trapezium rule, with all the values of y from the completed table, find an approximation for the area of R, giving your answer to 3 decimal places.

**(4)** 

| Question 63 continued | Le |
|-----------------------|----|
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |
|                       |    |



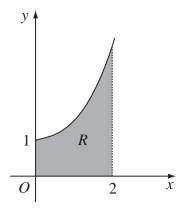


Figure 1

Figure 1 shows part of the curve with equation  $y = e^{0.5x^2}$ . The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the y-axis and the line x = 2.

(a) Complete the table with the values of y corresponding to x = 0.8 and x = 1.6.

| х | 0     | 0.4        | 0.8 | 1.2               | 1.6 | 2     |
|---|-------|------------|-----|-------------------|-----|-------|
| у | $e^0$ | $e^{0.08}$ |     | e <sup>0.72</sup> |     | $e^2$ |

**(1)** 

(b) Use the trapezium rule with all the values in the table to find an approximate value for the area of R, giving your answer to 4 significant figures.

| 1 | 7 | 1 |
|---|---|---|
| ( | Ĵ | ) |

| (T-4-1 4 l) |
|-------------|

(Total 4 marks)

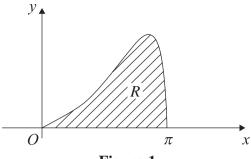


Figure 1

The curve shown in Figure 1 has equation  $y = e^x \sqrt{(\sin x)}$ ,  $0 \le x \le \pi$ . The finite region *R* bounded by the curve and the *x*-axis is shown shaded in Figure 1.

(a) Complete the table below with the values of y corresponding to  $x = \frac{\pi}{4}$  and  $\frac{\pi}{2}$ , giving your answers to 5 decimal places.

| X | 0 | $\frac{\pi}{4}$ | $\frac{\pi}{2}$ | $\frac{3\pi}{4}$ | $\pi$ |
|---|---|-----------------|-----------------|------------------|-------|
| у | 0 |                 |                 | 8.87207          | 0     |

**(2)** 

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region *R*. Give your answer to 4 decimal places.

**(4)** 

(Total 6 marks)