EXPERT TUITION

Maths Questions By Topic:

Probability

Mark Scheme

A-Level Edexcel

\# www.expert-tuition.co.ukonline.expert-tuition.co.uk
《enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 2 (AS) Page 1
Paper 3 (A2)
Page 9
Old Spec
Statistics 1 ... Page 19
Statistics 2
Page 51

Qu	Scheme	Marks	AO
2 (a)	$[p=1-(0.2+0.2+0.1+0.2)]=\underline{\mathbf{0 . 3}}$	B1	1.1 b
		(1)	
(b)	A and C are mutually exclusive. [NOT $\mathrm{P}(A)$ and $\mathrm{P}(C)$]	B1	1.2
		(1)	
		(2 marks)	
	Notes		
(a)	B1 for		
(b)	B1 for A and C [NB $A \cap C$ or $A \cap C=\varnothing$ is B0] If more than one case given they must all be correct e.g. $A \cap B$ and C		

Qu	Scheme	Marks	AO
3	Must end up with 3 of each colour or 4 of each colour $\underline{\boldsymbol{n}=\mathbf{2}}$ requires $1^{\text {st }}$ red and $2^{\text {nd }}$ green or red from \mathbf{A} and green from \mathbf{B} $P\left(1^{\text {st }} \text { red and } 2^{\text {nd }} \text { green }\right)=\frac{4}{9} \times \frac{1}{10}=\frac{4}{90} \text { or } \frac{2}{45} \quad p=\underline{\underline{\underline{45}}}$ $\underline{\boldsymbol{n}=5}$ requires $1^{\text {st }}$ green and $2^{\text {nd }}$ yellow or green from \mathbf{A} and yellow from \mathbf{B} $\mathrm{P}\left(1^{\text {st }} \text { green and } 2^{\text {nd }} \text { yellow }\right)=\frac{5}{12} \times \frac{3}{10}=\frac{15}{120} \quad \text { or } \frac{1}{8} \quad \boldsymbol{p}=\frac{1}{\underline{8}}$	M1 M1 A1 M1 A1 (5) (5 marks)	3.1b 2.2a 1.1b 2.2a 1.1b
	Notes		
	$1^{\text {st }} \mathrm{M} 1$ for an overall strategy realising there are 2 options. Award when evidence of both cases (3 of each colour or 4 of each colour) seen. $2^{\text {nd }}$ M1 for $n=2$ and attempt at $1^{\text {st }}$ red and $2^{\text {nd }}$ green May be implied by e.g. $\frac{4}{9} \times \frac{1}{9}$ $1^{\text {st }} \mathrm{A} 1$ for $p=\frac{2}{45}$ or exact equivalent $3^{\text {rd }} \mathrm{M} 1$ for $n=5$ and attempt at $1^{\text {st }}$ green and $2^{\text {nd }}$ yellow May be implied by e.g. $\frac{5}{12} \times \frac{3}{9}$ $2^{\text {nd }} \mathrm{A} 1$ for $p=\frac{1}{8}$ or exact equivalent		
NB	If both correct values of p are found and then added (get $\frac{61}{360}$), deduct final A1 only (i.e. 4/5)		

Question			Scheme	Marks	AOs		
4		Overall method		M1	2.1		
		$a+b=2 c+0.5$ oe or $a+b=2(1-a-b)$		B1	2.2a		
		$a+b+c=0.75$ oe		B1	1.1b		
		$3 c=0.25 \quad\left[c=0.0833 \ldots\right.$ or $\left.\frac{1}{12}\right]$		M1	1.1b		
		$\mathrm{P}(\text { scoring } 2,4 \text { or } 4,2 \text { or } 3,3)=2 \times{ }^{1} \frac{1}{12} " \times 0.15+0.1^{2}$		M1	3.1b		
		$=0.035 \mathrm{oe}$		Alcso	1.1 b		
		(6)					
(6 marks)							
Notes							
4	M1:			A fully correct method with all the required steps. For gaining 2 correct equations with at least one correct(allow if unsimplified). Attempting to solve to find a value of c followed by correct method to find the probability			
	B1:	Forming a correct equation from the information given in the question					
	B1:	A correct equation using the sum of the probabilities equals 1					
	M1:	Correct method for solving 2 equations to find c Implied by $c=\frac{1}{12}$					
	M1:	Recognising the ways to get a total of 6 . Condone missing arrangments or repeats. Do not ignore extras written unless ignored in the calculation. May be implied by $m \times " \frac{1}{12} " \times 0.15+n \times 0.1^{2}$ where m and n are positive integers					
	A1cso:	$\text { Cao } 0.035, \frac{7}{200} \text { oe }$					

Question	Scheme	Marks	AOs
5	$x=0$	B1	2.2a
	$\mathrm{P}(A)=0.1+z+y \quad \mathrm{P}(C)=0.39+z[+x] \quad \mathrm{P}(A$ and $C)=z$	M1	2.1
	$\mathrm{P}(A$ and $C)=\mathrm{P}(A) \times \mathrm{P}(C) \rightarrow z=(0.1+z+y) \times(0.39+z[+x])$	M1	1.1b
	$\begin{aligned} & {\left[\sum p=1\right]} \\ & 0.06+0.3+0.39+0.1+z+y[+x]=1 \rightarrow \quad[z+y[+x]=0.15] \end{aligned}$	M1	1.1b
	Solving (simultaneously) leading to $\quad z=0.13 \quad y=0.02$	A1	1.1b
(5 marks)			
Notes			
	B1: for $x=0$, may be seen on Venn diagram		
	M1: Identifying the probabilities required for independence a These must be labelled If there are no labels, then this may be implied by $z=(0.1+z+y)$ allow one numerical slip Allow e.g. $\mathrm{P}\left(A^{\prime}\right)=0.39+0.30+0.06[+x] \quad \mathrm{P}(C)=0.39+z[+x] \quad \mathrm{P}\left(A^{\prime}\right. \text { ar }$ [Not on spec. but you may see use of conditional probabilities	dat least y)(0.39 $\mathrm{d} C)=0 .$	correct $[+x])$
	M1: Use of independence equation with their labelled probabilities in terms $y, z[\text { and } x]$ All their probabilities must be substituted into a correct formula Sight of a correct equation e.g. $z=(0.1+z+y)(0.39+z[+x])$ scores M1M1		
	M1: Using $\Sigma p=1$ Implied by $[x+] y+z=0.15$ or their $x+y+z=0.15$ where x, y, and z are all probabilities or e.g. $\mathrm{P}(A)=0.25$		
	A1: both $y=0.02$ and $z=0.13$		

(a) M1 for selecting a suitable method to find the missing probability e.g. sight of tree diagram with $0.1,0.3,0.6$ and $0.09,0.03, p$ suitably placed
e.g. sight of VD with 0.009 for $A \cap F$ and $B \cap F$ and $0.6 p$ suitably placed
or attempt an equation with at least one correct numerical and one " p " product (not necessarily correct) on LHS or for sight of $0.06-(0.009+0.009)$ (o.e. e.g. $6-1.8=4.2 \%$)
$1^{\text {st }} \mathrm{A} 1$ for a correct equation for p (May be implied by a correct answer)
or for the expression $\frac{0.06-(0.009+0.009)}{0.6}$ (o.e.)
$2^{\text {nd }}$ A1 for 7% (accept 0.07)
Correct Ans: Provided there is no incorrect working seen award 3/3
e.g. may just see tree diagram with 0.07 for p (probably from trial and improv')
(b) B1 for a suitable explanation...may talk about $2^{\text {nd }}$ branches on tree diagram and point out that $0.03 \neq 0.06$ but need some supporting calculation/words

Can condone incorrect use of set notation (it is not on AS spec) provided the rest of the calculations and words are correct.

Question	Scheme	Marks	AOs
7(a)	S and A since there is no intersection between A and S or the probability of S and A happening is zero	B1	1.2
		(1)	
(b)	$(0.1+p)^{\prime} 0.25=0.1[p=0.3]$	M1	3.1b
	$q=0.15$ or $1-q=0.85$	M1	1.1b
	$r=1-" p$ "-"q"-0.25	M1dd	3.1b
	$=0.3$	A1	1.1b
		(4)	
(c)	Independent since 0.25×10.2 " $=0.05$	B1	2.2a
		(1)	
(d)	The teacher's belief would appear not to be justified as D and S are independent	B1ft	2.4
		(1)	
(7 marks)			
Notes:			
(a) B1: For S and A and a sensible reason			
(b) M1: For forming a correct equation in terms of p using the information given. M1: Writing or using $q=0.15$ or $1-q=0.85$ M1dd: dependent on both previous M marks being awarded. For using their values for p and q to form a correct equation to enable them to find r A1: cao			
(c) B1: Yes and a suitable reason to support their answer bringing together the two pieces of information to draw the correct conclusion			
(d) B1: A correct comment following their answer to part (c) with reference to the teachers belief.			

Question	Scheme	Marks	AOs
8(a)	$p=[1-0.75-0.05=] \underline{\mathbf{0 . 2 0}}$	B1	1.1b
		(1)	
(b)	$q=\underline{0.15}$	B1ft	1.1b
	$\mathrm{P}(A)=0.35 \quad \mathrm{P}(T)=0.6 \quad \mathrm{P}(A \text { and } T)=0.20$ $\mathrm{P}(A) \times \mathrm{P}(T)=0.21$	M1	2.1
	Since $0.20 \neq 0.21$ therefore A and T are not independent	A1	2.4
		(3)	
(c)	$\mathrm{P}(\operatorname{not}[A$ or $C])=\underline{\mathbf{0 . 4 5}}$	B1	1.1b
		(1)	
(5 marks)			
Notes:			
(a) B1: cao for $p=0.20$			
(b) B1: Ft for use of their p and $\mathrm{P}(A$ or $T)$ to find q i.e. $0.75-" p$ " -0.40 or $q=0.15$ M1: For the statement of all probabilities required for a suitable test and sight of any appropriate calculations required			
(c) A1: All probabilities correct, correct comparison and suitable comment cao for 0.45			

Question		Scheme	Marks	AOs
9(a)		$\frac{365}{1825}$ or $\frac{1}{5}$ or 0.2 oe	B1	1.1b
			(1)	
(b)		$\frac{170}{1825}$ or $\frac{34}{365}$ or awrt 0.093	B1	1.1b
			(1)	
(c)		$\begin{aligned} & 90 \times 0.4+80 \times 0.05[=40] \quad \text { or } \quad 90 \times 0.6+80 \times 0.95[=130] \text { or } \\ & 740 \times 0.65[=481] \text { or } 740 \times 0.35[=259] \end{aligned}$	M1 B1 B1 A1	$3.1 \mathrm{~b}$ $\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
			(4)	
(d)		$\mathrm{P}\left(R^{\prime} \cap F\right)=\frac{380}{1825}\left[=\frac{76}{365}=0.208 \ldots\right]$ oe awrt 0.208	B1	1.1b
			(1)	
(e)		$\left[\frac{133+\text { "130" }}{1825}=\right] \frac{263 "}{1825} \quad$ awrt 0.144	B1ft	1.1b
			(1)	
(f)		$\frac{247+4481 "}{247+" 481 "+123+" 40 "}$	M1	3.4
		$=\frac{728}{891} \quad$ awrt 0.817	A1	1.1b
			(2)	
Notes:				
		Look out for answers given in the question. If you see answers in the question and in the answer space those in the answer space take precedence.		
(a)	B1	Allow equivalent		
(b)	B1	Allow equivalent		
(c)	M1	Correct method to find one of the values 40 or 130 or 481 or 259 Implied by 40, 481, 259 or 130 seen in correct place on diagram		
	B1	One of the highlighted correct		
	B1	A second value highlighted correct or their ("259"+" 481") $=740$ or their $(" 40 "+" 481 ")=521$ or their $(" 40 "+" 130 ")=170$		
	A1	Fully correct		
(d)	B1	380/1825oe or awrt 0.208		
(e) B	B1ft	Correct answer or Ft their $130(>0)$ do not allow if blank Allow ft correct to 3 sf .		
(f)	M1	For a single fraction with the numerator $<$ denominator and n is an integer we will award for $n / 891$ or $n /($ sum of their 4 values in H, each >0) or awrt 0.817		
	A1	728/891 oe or awrt 0.817		

Qu 11	Scheme	Marks	AO
(a)	A, C or D, B or D, C		1.2
		(1)	
(b)	$[p=0.4-0.07-0.24=] \quad \underline{\mathbf{0 . 0 9}}$		1.1 b
		(1)	
(c)	A and B independent implies	M1	1.1b
	$\mathrm{P}(A) \times 0.4=0.24 \text { or }(q+0.16+0.24) \times 0.4=0.24$	M1	
	so $\mathrm{P}(A)=0.6$ and $q=\underline{\mathbf{0 . 2 0}}$	A1cso	1.1b
		(2)	
(d)(i)	$\mathrm{P}\left(B^{\prime} \mid C\right)=0.64 \text { gives } \frac{r}{r+n}=0.64 \text { or } \frac{r}{r+00^{\prime \prime}}=0.64$	M1	3.1a
	$r=0.64 r+0.64 \text { " } p \text { " so } 0.36 r=0.0576 \text { so } r=\underline{\mathbf{0 . 1 6}}$	A1	1.1b
(ii)	Using sum of probabilities $=1$ e.g. " 0.6 " $+0.07+$ " 0.25 " $+s=1$		1.1b
	so $s=\underline{\mathbf{0 . 0 8}}$	A1	1.1b
		(4)	
		(8 marks)	
	Notes		
(a)	B1 for one correct pair. If more than one pair they must all be correct. Condone in a correct probability statement such as $\mathrm{P}(A \cap C)=0$ or correct use of set notation e.g. $A \cap C=\varnothing$ BUT e.g. " $\mathrm{P}(A)$ and $\mathrm{P}(C)$ are mutually exclusive" alone is B 0		
(b)	B1 for $p=0.09$ (Maybe stated in Venn Diagram [VD]) [If values in VD and text conflict, take text or a value used in a later part]		
(c)	M1 for a correct equation in one variable for $\mathrm{P}(A)$ or q using indep or for seeing both $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)$ and $0.24=0.6 \times 0$ A1cso for $q=0.20$ or exact equivalent (dep on correct use of indepe	endence 4 ndence)	
Beware	Use of $\mathrm{P}(A)=1-\mathrm{P}(B)=0.6$ leading to $q=0.2$ scores M0A0		
(d)(i)	$1^{\text {st }} \mathrm{M} 1$ for use of $\mathrm{P}\left(B^{\prime} \mid C\right)=0.64$ leading to a correct equation in r and possibly p.		
(ii)	$2^{\text {nd }} \mathrm{M} 1$ for use of total probability $=1$ to form a linear equation in s. Allow p, q, r etc Can follow through their values provided each of p, q, r are in $[0,1)$ $2^{\text {nd }} \mathrm{A} 1$ for $s=0.08$ or exact equivalent		

Question	Scheme	Marks	AOs
13(a)		B1 dB1	1.1 b 1.1 b
		(2)	
(b)	$\frac{9}{10} \times \frac{4}{5} \times \frac{2}{3}$	M1	1.1b
	$=\frac{12}{25}(=0.48)$	A1	1.1b
		(2)	
(c)	$\frac{9}{10} \times \frac{1}{5}+\frac{9}{10} \times \frac{4}{5} \times \frac{1}{3} \quad$ or $\quad 1-\left(\frac{1}{10}+\frac{9}{10} \times \frac{4}{5} \times \frac{2}{3}\right)$	M1	3.1b
	$=\frac{21}{50}(=0.42)$	A1	1.1b
		(2)	
(d)	$[\mathrm{P}($ Red from $B \mid$ Red selected $)]=\frac{\frac{9}{10} \times \frac{1}{5}}{\frac{1}{10}+\frac{9}{10} \times \frac{1}{5}+\frac{9}{10} \times \frac{4}{5} \times \frac{1}{3}}\left[\frac{\frac{9}{50}}{\frac{10}{13}}\right.$	M1	3.1b
	$=\frac{9}{26}$	A1	1.1b
		(2)	
(8 marks)			
Notes			
	Allow decimals or percentages throughout this question.		
(a)	B1: for correct shape (3 pairs) and at least one label on at least two pairs G (reen) and R (ed) allow G and G^{\prime} or R and R' as labels, etc. condone 'extra' pairs if they are labelled with a probability of 0 dB1: (dep on previous B1) all correct i.e. for all 6 correct probabilities on the correct branches with at least one label on each pair		
(b)	M1: Multiplication of 3 correct probabilities (allow ft from their tree diagram) A1: $\frac{12}{25}$ oe		
(c)	M1: Either addition of only two correct products (product of two probs + product of three probs) which may ft from their tree diagram or for $1-\left('^{\prime} \frac{1}{10}{ }^{\prime}+(b)\right.$ ') A1: $\quad \frac{21}{50}$ oe		
(d)	M1: Correct ratio of probabilities A1: $\quad \frac{9}{26}$ (allow awrt 0.346)		

Question	Scheme	Marks	AOs
14	$\frac{132}{184}=0.71739 \ldots \quad$ awrt $\underline{\mathbf{0 . 7 1 7}}$	B1	1.1b
		(1)	
(1 mark)			
Notes			
	Allow fractions, decimals or percentages throughout this question.		
	Allow equivalent fraction, e.g. $\frac{33}{46}$		

Qu 15	Scheme										Marks	AO
(a)	c	0	1	2	3	4	5	6	7	8	B1	1.2
	$\mathrm{P}(C=c)$	$\frac{1}{9}$	B1ft	1.2								
											(2)	
(b)	$\mathrm{P}(C<4)=\frac{4}{9} \quad$ (accept 0.444 or better)										B1	3.4
											(1)	
(c)	Probability lower than expected suggests model is not good										B1ft	3.5a
	e.g. Cloud cover will vary from month to month and place to place So e.g. use a non-uniform distribution										(1)	
(d)											B1	3.5c
											(5 ma	
	Notes											
(a)	$1^{\text {st }}$ B1 for a correct set of values for c. Allow $\left\{\frac{1}{8}, \frac{2}{8}, \ldots \frac{8}{8}\right\}$ $2^{\text {nd }}$ B1 ft for correct probs from their values for c, consistent with discrete uniform distrib'n Maybe as a prob. function. Allow $\mathrm{P}(X=x)=\frac{1}{9}$ for $0 \leqslant x \leqslant 8$ provided $x=\{0,1,2, \ldots, 8\}$ is clearly defined somewhere.											
(b)	B1 for using correct model to get $\frac{4}{9}$ (o.e.)											
SC	Sample space $\{1, \ldots, 8\}$ If scored B0B1 in (a) for this allow $\mathrm{P}(C<4)=\frac{3}{8}$ to score B1 in (b)											
(c)	B1 ft for comment that states that the model proposed is or is not a good one based on their model in part (a) and their probability in (b) $\|(\mathbf{b})-\mathbf{0 . 3 1 5}\|>\mathbf{0 . 0 5}$ Allow e.g. "it is not suitable"; "it is not accurate" etc $\|(b)-\mathbf{0 . 3 1 5}\| \leqslant \mathbf{0 . 0 5}$ Allow a comment that suggests it is suitable No prob in (b) Allow a comparison that mentions 50% or 0.5 and rejects the model No prob in (b) and no $\mathbf{5 0 \%}$ or $\mathbf{0 . 5}$ or (b) $>\mathbf{1}$ scores B0 Ignore any comments about location or weather patterns.											
(d)	B1 for a sensible refinement considering variations in month or location Just saying "not uniform" is B0 Context \& "non-uniform" Allow mention of different locations, months and non-uniform or use more locations to form a new distribution with probabilities based on frequencies Context \& "binomial" Allow mention of different locations, months and binomial Just refined model Model must be outlined and discrete and non-uniform e.g. higher probabilities for more cloud cover or lower probabilities for less cloud cover Continuous model Any model that is based on a continuous distribution. e.g. normal is B0											

(11 marks)

Notes:

(a) B1: correct answer only
(b) M1: for a correct ratio of probabilities formula with at least one correct value and multiplying by 80
A1: a correct answer
(c) M1: for translating the problem and realising the equation $\mathrm{P}(C) \times \mathrm{P}(S)=P(C \cap S)$ needs to be used with at least 2 parts correct.
A1: a correct equation
M1: for a correct probability formula with $\mathrm{P}(D \cap C)=0.27+v$
A1: a second correct equation
M1dd: dependent on the previous 2 method marks being awarded. Solving the two simultaneous equations by eliminating one variable. May be implied by either u or v correct
A1: u correct
A1: v correct
A1ft: $\mathrm{w}=0.22$, ft their u, v provided that $u+v+w<0.4$

Question	Scheme	Marks	AOs	
$\mathbf{1 7}$	e.g. It requires extrapolation so will be unreliable (o.e.)	B1	1.2	
		(1)		
(1 mark)				
Notes:				
B1: \quad for a correct statement (unreliable) with a suitable reason				

Question	Scheme	Marks	AOs
18(a)	$\mathrm{P}\left(A^{\prime} \mid B^{\prime}\right)=\frac{\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}$ or $\frac{0.33}{0.55}$	M1	3.1a
	$=\frac{3}{5}$ or 0.6	A1	1.1b
		(2)	
(b)	$\begin{aligned} & \text { e.g. } \mathrm{P}(A) \times \mathrm{P}(B)=\frac{7}{20} \times \frac{9}{20}=\frac{63}{400} \neq \mathrm{P}(A \cap B)=0.13=\frac{52}{400} \\ & \text { or } \quad \mathrm{P}\left(A^{\prime} \mid B^{\prime}\right)=0.6 \neq \mathrm{P}\left(A^{\prime}\right)=0.65 \end{aligned}$	B1	2.4
		(1)	
(c)		B1	2.5
		M1	3.1a
		A1	1.1b
		M1	1.1 b
		A1	1.1b
		(5)	
(d)	$\begin{aligned} & \mathrm{P}(B \cup C)^{\prime}=0.22+0.22 \text { or } 1-[0.56] \\ & \text { or } 1-[0.13+0.23+0.09+0.11] \end{aligned}$	M1	1.1b
	$=0.44$	A1	1.1b
		(2)	
(10 marks)			
Notes:			
(a) M1: for a correct ratio of probabilities formula and at least one correct value. A1: a correct answer			
(b) for a fully correct explanation: correct probabilities and correct comparisons.			
(c) B1: for inte M1: for A1: for M1: for A1: fully	with B intersecting A and C but C not intersecting A. ecting circles, but with zeros entered for $A \cap C$ and ethod for finding $\mathrm{P}(B \cap C)$ 09 13 and their 0.09 in correct places and method for their correct	three No box	
(d) M1: for a correct expression - ft their probabilities from their Venn diagram. A1: cao			

Question Number	Scheme	Marks
19. (a)	$\begin{gathered} \mathrm{P}\left(G_{1}\right)+\mathrm{P}\left(R_{1} \cap G_{2}\right)+\mathrm{P}\left(Y_{1} \cap G_{2}\right) \quad \underline{\text { or }} \mathrm{P}(G Y)+\mathrm{P}(G R)+\mathrm{P}(R G)+\mathrm{P}(Y G) \\ =\frac{1}{64}+\frac{r}{64} \times \frac{1}{63}+\frac{y}{64} \times \frac{1}{63}=\frac{1}{64}+\frac{r+y}{64 \times 63} \text { or } 2 \times \frac{r+y}{64 \times 63} \\ =\frac{1}{64}+\frac{63}{64 \times 63} \text { or } \frac{2 \times 63}{64 \times 63} \text { or } \frac{1}{64}+\frac{1}{64} \underline{\text { or }} \\ =\frac{1}{\underline{32}} \text { or } 0.03125 \end{gathered}$	M1 A1 M1 A1
(b)	$\begin{aligned} & \mathrm{P}\left(R_{1} \cap R_{2}\right)=\frac{r}{64} \times \frac{r-1}{63}=\frac{5}{84} \\ & \left.r(r-1)=5 \times 64 \times 63 \div 84=240 \text { hence } r^{2}-r-240=0 \text { or } r^{2}-r=240 \quad{ }^{*}\right) \end{aligned}$	M1A1 A1cso
(c)	$\begin{gathered} r^{2}-r-240=(r-16)(r+15)\{=0\} \text { or } 16^{2}-16-240=256-256 \\ \text { so } r=16 \text { and rejecting }-15\left(^{*}\right) \end{gathered} \begin{aligned} & \text { or } \frac{16}{64} \times \frac{15}{63}=\frac{5}{84} \end{aligned}$	M1 A1cso
(d)	$\mathrm{P}(\geqslant 1 \mathrm{red})=\mathrm{P}(R G)+\mathrm{P}(G R)+\mathrm{P}(R Y)+\mathrm{P}(Y R)+\mathrm{P}(R R) \text { of } \frac{2}{252}+\frac{2 y}{252}+\frac{15}{252} \quad \text { (o.e.) }$ or $\mathrm{P}\left(R_{1}\right)+\mathrm{P}\left(R_{1}^{\prime} \cap R_{2}\right)$ or $\frac{16}{64}+\frac{48}{64} \times \frac{16}{63}$ or $1-\frac{48}{64} \times \frac{47}{63}, \quad=\frac{37}{\underline{84}}$ Require: $\frac{\mathrm{P}\left(R_{1} \cap R_{2}\right)}{\mathrm{P}(\text { at least one red })}=\frac{\frac{5}{84}}{7 \frac{37}{84}} \quad,=\frac{5}{\underline{37}}$ or $0.13 \dot{5}$	M1, A1 M1, A1 (4) [Total 13]
	Notes	
(a)	$1^{\text {st }} \mathrm{A} 1$ for all cases and their assosciated probs added $2^{\text {nd }} \mathrm{M} 1$ for combining probabilities and using $r+y=63$ $2^{\text {nd }}$ A1 for $\frac{1}{32}$ or an exact equivalent (correct answer only 4/4)	
(b)	M1 for $\frac{r}{64} \times \mathrm{g}(r)=\ldots$ where $\mathrm{g}(r)$ is any linear function of r $1^{\text {st }} \mathrm{A} 1 \quad$ for any correct equation in r $2^{\text {nd }} \mathrm{A} 1$ cso for correctly simplifying to the given equation with no incorrect working seen. There should be at least 1 intermediate step seen	
(c)	M1 for correct factors or completing square or use of formula or substitution A1cso for concluding $r=16$ and rejecting -15 (e.g. crossing out etc)	
(d)	$1^{\text {st }}$ M1 for a correct expression for at least one red. May be in symbols or probs. or in a tree $1^{\text {st }} \mathrm{A} 1$ for $\frac{37}{84}$ (o.e.) as a single fraction or awrt 0.440 [May be implied by correct answer] $2^{\text {nd }}$ M1 for a ratio of probabilities (denom may be in symbols) with numerator of $\frac{5}{84}$ (o.e.) $2^{\text {nd }} \mathrm{A} 1$ for $\frac{5}{37}$ or an exact equivalent	

Question	Scheme	Marks
22. (a)		B1 M1 A1 A1 B1
(b)	$\frac{' 13 '}{80} \quad \underline{o r} 0.1625$	B1ft
(c)	$\frac{28+30-11}{80}$ or $\frac{2+3+4+8+13+17}{80}$ or $1-\frac{(11+22)}{80}=\frac{47}{80} \underline{\text { or }} 0.587$	M1 A1 ${ }^{(1)}$
(d)	$\frac{" 17+8+13 "}{" 47 "}$ or $\frac{\frac{38 "}{80}}{\frac{874 "}{80}}$ or $1-\frac{" 2+3+4 "}{" 47 "}=\frac{38}{47}$ (condone awrt 0.809)	M1 A1cao
(e)	$\begin{aligned} & \mathrm{P}(B \mid C)=\frac{7}{28}, \mathrm{P}(B)=\frac{20}{80} \\ & \mathrm{P}(C \mid B)=\frac{7}{20}, \mathrm{P}(C)=\frac{28}{80} \\ & \mathrm{P}(B \cap C)=\frac{7}{80}, \mathrm{P}(B)=\frac{20}{80} \mathrm{P}(C)=\frac{28}{80} \end{aligned}$ $\mathrm{P}(B \mid C)=\mathrm{P}(B), \mathrm{P}(C \mid B)=\mathrm{P}(C)$ these may be implied by correct conclusion $\mathrm{P}(B \cap C)=\mathrm{P}(B) \times \mathrm{P}(C)$ this approach requires the product to be seen So, they are independent.	(2) M1 M1 A1 (3) (13 marks)
	Notes	
(a)	B1 for 3 intersecting circles with 3 in the centre. Allow probs. or integers in diagram. M1 for some correct subtraction e.g. at least one of $2,4,8$ or for $B: 20-$ their $(2+3+4)$ etc A1 for 2,4 and 8 (ignore labels) A1 for 11,13 and 17 (must be in compatible regions with 2, 4, 8 if no labels) B1 for correct labels and 22 and box (Do not treat "blank" as 0 so can't use 0 for ft in (c)) M1 for a correct expression seen in (c) (or ft their diagram). Correct ans M1A1 M1 for denominator of 47 or ft their numerator from part (c) and numerator of 38 or their $(17+8+13)$ or (their 47$)$ - their $(2+3+4)$. Correct ans M1A1 M1 for stating at least the required probs.\& labelled for a correct test (can ft their diagram) M1 for use of a correct test with B and C Must see product attempted for $\mathrm{P}(B \cap C)$ test. A1 for a correct test with all probabilities correct and a correct concluding statement. NB M0M1A0 should be possible but A1 requires both Ms	
(e)		

Question	Scheme	Marks
23.	To score 15 points, 2 correct and 1 not correct $\begin{array}{r} {[0.6 \times 0.6 \times 0.4]+[0.6 \times 0.4 \times 0.6]+[0.4 \times 0.6 \times 0.6] \text { or } 3 \times(0.6 \times 0.6 \times 0.4)} \\ =0.432(*) \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1cso } \end{aligned}$
	$1-(0.216+0.432+0.064)=\underline{\mathbf{0 . 2 8 8}}$ or $3 \times 0.6 \times(0.4)^{2}$	B1
	$\begin{array}{r} {[(30,0),(0,30) \text { or }(15,15)] \quad 0.216 \times 10.2888^{\prime}+0.288 ' \times 0.216+0.432 \times 0.432} \\ \text { awrt } \underline{0.311} \end{array}$	$\begin{array}{\|l} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$
		(3)
		(6 marks)
	Notes	
(a)	M1 for $0.6^{2} \times 0.4$ may be \Rightarrow by tree diagram with $0.6 \& 0.4$ but just 3×0.144 or 2×0.216 is M0 A1 cso for $3 \times 0.6^{2} \times 0.4$ (seen) and no incorrect working seen	
(b)	0.288 or $\frac{36}{125}$ answer may be seen in table. [NB Fractions: $\frac{27}{125}, \frac{54}{125}, \frac{36}{125}$ and $\frac{8}{125}$]	
(c)	M1 for either $0.216 \times{ }^{\prime} 0.288=(0.062208)$ or $0.432 \times 0.432=0.186624$ (ft (b) provided their (b) is a probability)	
	$1^{\text {st }}$ A1ft for a fully correct expression $\quad 2^{\text {nd }}$ A1 for awrt 0.311 or $\frac{972}{3125}$	
SC	6 questions 4 correct Award M1\& ${ }^{\text {st }} \mathrm{A} 1$ for $6 \mathrm{C} 4 \times 0.6^{4} \times 0.4^{2}$ or $15 \times 0.6^{4} \times 0.4^{2}$	

Question Number	Scheme	Marks
24 (a)		M1
(b)	$0.25 \times 0.98, \quad=\mathbf{0 . 2 4 5} \text { (or exact equiv. e.g. } \frac{49}{200} \text {) }$	M1A1 (2)
(c)	$0.25 \times 0.02+0.45 \times 0.03+0.3 \times 0.05, \quad=\mathbf{0 . 0 3 3 5}\left(\text { or exact equiv. e.g. } \frac{67}{2000}\right)$	M1A1 (2)
(d)	$\begin{aligned} {[\mathrm{P}(J \cup L \mid B)] } & =\frac{0.25 \times 0.02+0.3 \times 0.05}{0.0335} & & \text { or } \frac{0.0335-0.45 \times 0.03}{0.0335} \\ & =0.5970 \ldots & & \text { awrt } \mathbf{0 . 5 9 7} \text { (or } \frac{40}{67} \text { or exact equiv.) } \end{aligned}$	M1A1ft A1
		(3)
	Notes	Total 9
(a) (b) (c) (d)	Allow fractions or percentages throughout this question Allow $3+6$ tree diagram with the 6 correct "end" probs and labels to get $2 / 2\left(1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}\right.$ gets M1) M1 for (3+6) tree drawn with $0.25,0.45,0.02,0.03,0.05$ on correct branches A1 for $0.3,0.98,0.97,0.95$ on the correct branches and labels, condone missing $B^{\prime} \mathrm{s}$ Correct answer only scores full marks for parts (b), (c) and (d) When using "their probability \boldsymbol{p} " for M1 and A1ft they must have $0<\boldsymbol{p}<1$ M1 for $0.25 \times$ 'their 0.98 ' o.e. M1 for $0.25 \times$ their $0.02+0.45 \times$ their $0.03+$ their $0.3 \times$ their 0.05 Condone 1 transcription error. Or $1-(0.25 \times$ their $0.98+0.45 \times$ their $0.97+$ their $0.3 \times$ their 0.95$)$ M1 for use of conditional probability with their (c) as denominator. Also exactly 2 products on num' and at least one correct (or correct ft) or their (c) - one of the products from their (c). Ignore an incorrect expression inside their probability statement A1ft for $\frac{0.25 \times \text { their } 0.02+\text { their } 0.3 \times \text { their } 0.05}{\text { their }(\mathrm{c})}$ or $\frac{\text { their }(\mathrm{c})-0.45 \times \text { their } 0.03}{\text { their (c) }}$ or $\frac{0.02}{\text { their (c) }}$ A1 awrt 0.597 or exact fraction e.g. $\frac{40}{67}$	

Question Number	Scheme	Marks	
26. (a)	(Discrete) Uniform	B1	(1)
	(b)	(i) $\mathrm{P}(X=10)=\frac{1}{10}$	B1
	(ii) $\mathrm{P}(X<10)=\frac{9}{10}$	(2) Total 3]	
	(a)	B1 for seeing the word uniform	
Condone "continuous" uniform			

(d) $|$| M 1 for using 1-'their $\mathrm{P}(B)$ ' or $(\mathrm{P}(A \cup B)-\mathrm{P}(A)) / \mathrm{P}(A)$ or $(\mathrm{P}(A)-\mathrm{P}(A \cap B)) / \mathrm{P}(A)$ |
| :--- |
| with a correct attempt at the numerator and denominator. If mutually exclusive is |
| assumed then the last option gives $\frac{\frac{1}{4}}{\frac{1}{4}}$ for M 1. |
| A1 for $\frac{4}{9}$ or exact equivalent. |
| For part (c) follow through their stated values; do not follow through incorrectly |
| labelled regions on a Venn Diagram. |
| Throughout the question we require probabilities between 0 and 1 for method marks. |
| Venn Diagram: |

Question Number	Scheme	Marks
35 (a)		M1 A1 A1 B1
(b)	All values/100 or equivalent fractions award accuracy marks. 7/100 or $0.07 \quad$ M1 for ('their 7'in diagram or here)/100	M1 A1 ${ }^{(4)}$
(c)	$(3+5) / 100=2 / 25$ or 0.08	M1A1 ${ }^{(2)}$
(d)	$(25+15+10+5) / 100=11 / 20$ or 0.55	M1 A1
(e)		M1
		A1
		A1
		(3)
		Total 13
NOTES (b)	M1 for 'their 7'/100 seen.	
	In parts (c) and (d) we require " 100 " for methods to be awarded. Also check their values and award correct method if they follow from their Venn Diagram.	
(c)	M1 For ('their 3'+'their 5')/100. $\frac{8}{48}$ award M0.	
	A1 Correct answer only or equivalent.	
(d)	M1 Accept sum of their 4 values from the Venn diagram /100.	
(e)	M1 Attempt to use correct formula for conditional probability. Award for correct formula and a denominator of 'their 65 ' or 'their $65 / 100$ '. A1 for 'their 15 '/65 only. A1 for exact equivalent answers, including 15/65. In all parts correct answers with no working award full marks.	

Question Number	Scheme	Marks
36. (a)	$\mathrm{P}(J \cup K)=1-0.7$ or $0.1+0.15+0.05=\underline{0.3}$	B1 (1)
(b)	$\mathrm{P}(\mathrm{K})=0.05+0.15$ or " 0.3 " $-0.25+0.15$ or " 0.3 " $=0.25+\mathrm{P}(\mathrm{K})-0.15$	M1
	May be seen on Venn diagram $=\underline{0.2}$	A1
(c)	$[\mathrm{P}(K \mid J)]=\frac{\mathrm{P}(K \cap J)}{\mathrm{P}(J)}$	M1
	$\frac{0.15}{0.25}$	A1
	$=\frac{3}{5} \text { or } 0.6$	A1
		(3)
(d)	$\begin{aligned} & \mathrm{P}(J) \times \mathrm{P}(K)=0.25 \times 0.2(=0.05), \quad \mathrm{P}(J \cap K)=0.15 \quad \text { or } \\ & \mathrm{P}(K \mid J)=0.6, \mathrm{P}(K)=0.2 \quad \text { or may see } \mathrm{P}(J \mid K)=0.75 \text { and } \mathrm{P}(J)=0.25 \end{aligned}$	M1
	not equal therefore not independent	A1ft
(e)	Not independent so confirms the teacher's suspicion or they are linked	B1ft
	(This requires a statement about independence in (d) or in (e))	$\begin{array}{r} (1) \\ \text { (9 marks) } \end{array}$
	Notes	
(b)	$\begin{array}{ll} \hline \text { M1 } & \text { for a complete method, follow through their 0.3, leading to a linear equation for } \\ \mathrm{P}(\mathrm{~K}) \end{array}$	
	NB You may see this Venn diagram. A correct diagram (Venn or table) implies M1 in (b) Need not include box or 0.7 Correct answer only is $\mathbf{2 / 2}$	
(c)	In parts (c) and (d) they must have defined A and B M1 for a correct expression (including ratio) in symbols.	\qquad
	M1 for a correct expression (including ratio) in symbols. $1^{\text {st }} \mathrm{A} 1$ for a correct ratio of probabilities (if this is seen the M1 is awarded by implication) Must be in (c). Condone no LHS but wrong LHS (e.g. $\mathrm{P}(K)$ or $\mathrm{P}(J \mid K)$) is M0A0 $2^{\text {nd }}$ A1 for correct answer as printed only. Correct answer only $3 / 3$	
(d)	Mark (d) and (e) together	
	M1 for a correct comparison of known probabilities for an independence test - ft their values. E.g. $\mathrm{P}(J) \times \mathrm{P}(K)$ with $\mathrm{P}(J \cap K)$ or $\mathrm{P}(K \mid J)$ with $\mathrm{P}(K)$ [Must have	
	The values of these probabilities should be given unless they are in stated elsewhere.	he question or
	A1ft for correct calculations and correct comment for their probabilities	
(e)	B1ft ft their conclusion on independence so not independent confirms teacher...independent contradicts teacher. Methods leading to negative probabilities should score M0	0

Question Number	Scheme	Marks
$37 .$ (a)		B1 B1 B1 B1 (4)
(b)	$\mathrm{P}(A)=\mathrm{P}(R R)+\mathrm{P}(Y Y)=\frac{1}{2} \times \frac{2}{5}+\frac{1}{2} \times 4 \frac{2}{5}=\frac{2}{5} \quad \begin{aligned} & \text { B1 for } \frac{1}{2} \times \frac{2}{5}(\text { oe) seen at least } \\ & \text { once }\end{aligned}$	B1 M1 A1 (3)
(c)	$\mathrm{P}(B)=\mathrm{P}(R R R)+\mathrm{P}(R Y R)+\mathrm{P}(Y R R)+\mathrm{P}(Y Y R)$ M1 for at least 1 case of 3 balls identified. (Implied by 2 $\left.{ }^{\text {nd }} \mathrm{M} 1\right)$ $\left(\frac{1}{2} \times \frac{2}{5} \times " \frac{2}{3} "\right)+\left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right)+\left(\frac{1}{2} \times " \frac{3}{5} " \times \frac{5}{9}\right)+\left(\frac{1}{2} \times \frac{2}{5} " \times \frac{4}{9} "\right)=\frac{5}{9}(*)$	M1 M1,A1cso (3)
(d)	$\mathrm{P}(A \cap B)$ $=\mathrm{P}(R R R)+\mathrm{P}(Y Y R)$ M1 for identifying both cases and + probs. may be implied by correct expressions $=\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right)+\left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right)$ $=\frac{2}{9}\left(^{*}\right)$	M1 Alcso (2)
(e)	$\begin{array}{rlr} \mathrm{P}(A \cup B) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(A \cap B) \quad \text { Must have some attempt to use } \\ & =" \frac{2}{5} "+\frac{5}{9}-\frac{2}{9}=\frac{11}{15} & \end{array}$	M1 Alcao (2)

Question Number	Scheme		Marks
37. (f)	$\frac{\mathrm{P}(R R R)}{\mathrm{P}(R R R)+\mathrm{P}(Y Y Y)}=\frac{\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right)+\left(\frac{1}{2} \times \frac{2}{5} \times \frac{5}{9}\right)}=\frac{6}{11}$	Probabilities must come from the product of 3 probs. from their tree diagram.	M1 Alft Al cao
	Notes		
(b)	M1 for both cases, and +, attempted, ft their values from tree diagram. May be 4 cases of 3 balls.		
(c)	$2^{\text {nd }} \mathrm{M} 1$ for all 4 correct expressions, ft their values from tree diagram. A1 is cso		
(e)	M1 for clear attempt to use the correct formula, must have some correct substitution. ft their (b)		
(f)	M1 for identifying the correct probabilities and forming appropriate fraction of probs. $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct expression using probabilities from their tree Accept exact decimal equivalents. Correct answer only is full marks except in (c) and (d)		

Question Number	Scheme Marks
(a) (b) (c) (d)	$\mathrm{P}(R)$ and $\mathrm{P}(B)$ $\mathrm{P}(H)=\frac{5}{12} \times \frac{2}{3}+\frac{7}{12} \times \frac{1}{2},=\frac{41}{72}$ or awrt 0.569 $\mathrm{P}(R \mid H)=\frac{\frac{5}{12} \times \frac{2}{3}}{" \frac{41}{72} "},=\frac{20}{41}$ or awrt 0.488 $\left(\frac{5}{12}\right)^{2}+\left(\frac{7}{12}\right)^{2}$ $=\frac{25}{144}+\frac{49}{144}=\frac{74}{144}$ or $\frac{37}{72}$ or awrt 0.514
(a) (b) (c) Formula seen Formula not seen (d)	$1^{\text {st }} \mathrm{B} 1$ for the probabilities on the first 2 branches. Accept $0.41 \dot{6}$ and $0.58 \dot{3}$ $2^{\text {nd }}$ B1 for probabilities on the second set of branches. Accept $0 . \dot{6}, 0 . \dot{3}, 0.5$ and $\frac{1.5}{3}$ Allow exact decimal equivalents using clear recurring notation if required. M1 for an expression for $\mathrm{P}(H)$ that follows through their sum of two products of probabilities from their tree diagram M1 for $\frac{\mathrm{P}(R \cap H)}{\mathrm{P}(H)}$ with denominator their (b) substituted e.g. $\frac{\mathrm{P}(R \cap H)}{\mathrm{P}(H)}=\frac{\frac{5}{12}}{\text { (their (b)) }}$ award M1. M1 for $\frac{\text { probability } \times \text { probability }}{\text { their } b}$ but M0 if fraction repeated e.g. $\frac{\frac{5}{12} \times \frac{2}{3}}{\frac{2}{3}}$. $1^{\text {st }}$ A1ft for a fully correct expression or correct follow through $2^{\text {nd }}$ A1 for $\frac{20}{41}$ o.e. M1 for $\left(\frac{5}{12}\right)^{2}$ or $\left(\frac{7}{12}\right)^{2}$ can follow through their equivalent values from tree diagram $1^{\text {st }}$ A1 for both values correct or follow through from their original tree and + $2^{\text {nd }}$ A1 for a correct answer Special Case $\frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{6}{11}$ seen award M1A0A0

Question Number	Scheme	Marks
39 (a)	$\frac{2+3}{\text { their total }}=\frac{5}{\text { their total }}=\frac{1}{6}\left(* * \text { given answer }{ }^{* *}\right)$	M1 Alcso (2)
(b)	$\frac{4+2+5+3}{\text { total }},=\frac{14}{30} \text { or } \frac{7}{15} \text { or } 0.4 \dot{6}$	M1 A1 (2)
(c)	$\mathrm{P}(A \cap C)=0$	B1 (1)
(d)	$\begin{equation*} \mathrm{P}(\mathrm{C} \mid \text { reads at least one magazine })=\frac{6+3}{20}=\frac{9}{20} \tag{2} \end{equation*}$	M1 A1
(e)	$\mathrm{P}(B)=\frac{10}{30}=\frac{1}{3}, \quad \mathrm{P}(C)=\frac{9}{30}=\frac{3}{10}, \quad \mathrm{P}(B \cap C)=\frac{3}{30}=\frac{1}{10} \quad \text { or } \mathrm{P}(B \mid C)=\frac{3}{9}$	M1
	$\mathrm{P}(B) \times \mathrm{P}(C)=\frac{1}{3} \times \frac{3}{10}=\frac{1}{10}=\mathrm{P}(B \cap C) \quad \text { or } \mathrm{P}(B \mid C)=\frac{3}{9}=\frac{1}{3}=\mathrm{P}(B)$	M1
	So yes they are statistically independent	Alcso
		Total 10
(a)	M1 for $\frac{2+3}{\text { their total }}$ or $\frac{5}{30}$	
(b)	M1 for adding at least 3 of " $4,2,5,3$ " and dividing by their total to give a probability Can be written as separate fractions substituted into the completely correct Addition Rule	
(c)	B1 for 0 or 0/30	
(d)	M1 for a denominator of 20 or $\frac{20}{30}$ leading to an answer with denominator of 20 $\frac{9}{20}$ only, $2 / 2$	
(e)	$1^{\text {st }} \mathrm{M} 1$ for attempting all the required probabilities for a suitable test $2^{\text {nd }}$ M1 for use of a correct test - must have attempted all the correct probabilities. Equality can be implied in line 2. A1 for fully correct test carried out with a comment	

Question Number	Scheme ${ }^{\text {arks }}$
40 (a)	
(b) Special Case	M1 for shape and labels: 3 branches followed by $3,2,2$ with some R, B and G seen Allow 3 branches followed by 3,3 , 3 if 0 probabilities are seen implying that $3,2,2$ intended Allow blank branches if the other probabilities imply probability on blanks is zero Ignore further sets of branches $1^{\text {st }}$ A1 for correct probabilities and correct labels on $1^{\text {st }}$ set of branches. $2^{\text {nd }} \mathrm{A} 1$ for correct probabilities and correct labels on $2^{\text {nd }}$ set of branches. (accept $0.33,0.67$ etc or better here) M1 for identifying the 2 cases $B G$ and $G B$ and adding 2 products of probabilities. These cases may be identified by their probabilities e.g. $\left(\frac{1}{4} \times \frac{1}{3}\right)+\left(\frac{1}{4} \times \frac{1}{3}\right)$ NB $\frac{1}{6}$ (or exact equivalent) with no working scores $2 / 2$ With Replacement (This oversimplifies so do not apply Mis-Read: max mark 2/5) (a) B1 for 3 branches followed by 3, 3, 3 with correct labels and probabilities of $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$ on each. (b) M1 for identifying 2, possibly correct cases and adding 2 products of probabilities but A0 for wrong answer $\left[\left(\frac{1}{4} \times \frac{1}{4}\right)+\left(\frac{1}{4} \times \frac{1}{4}\right)\right]$ will be sufficient for M1A0 here but $\frac{1}{4} \times \frac{1}{2}+\ldots$ would score M0

Question Number	Scheme ${ }^{\text {a }}$ Marks
(a) (b)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or $\mathrm{P}(E \mid B) \times \mathrm{P}(B)$ and at least one correct value seen. A1 for 0.24 or exact equiv. NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks. $1^{\text {st }} \mathrm{M} 1$ for use of the addition rule. Must have 3 terms and some values, can ft their (a) Or a full method for $\mathrm{P}\left(E^{\prime} \mid B^{\prime}\right)$ requires $1-\mathrm{P}\left(E \mid B^{\prime}\right)$ and equation for $\mathrm{P}\left(E \mid B^{\prime}\right)$: (a) $+\frac{x}{3}=\frac{2}{5}$ Or a full method for $\mathrm{P}\left(B^{\prime} \cap E\right)$ or $\mathrm{P}\left(B \cap E^{\prime}\right)$ [or other valid method] $2^{\text {nd }} \mathrm{M} 1 \quad$ for a method leading to answer e.g. $1-\mathrm{P}(E \cup B)$ $\text { or } \mathrm{P}\left(B^{\prime}\right) \times \mathrm{P}\left(E^{\prime} \mid B^{\prime}\right) \text { or } \mathrm{P}\left(B^{\prime}\right)-\mathrm{P}\left(B^{\prime} \cap E\right) \text { or } \mathrm{P}\left(E^{\prime}\right)-\mathrm{P}\left(B \cap E^{\prime}\right)$ Venn Diagram $1^{\text {st }} \mathrm{M} 1$ for diagram with attempt at $\frac{2}{5}-\mathrm{P}(B \cap E)$ or $\frac{2}{3}-\mathrm{P}(B \cap E)$. Can ft their (a) $1^{\text {st }}$ A1 for a correct first probability as listed or 32, 18 and 12 on Venn Diagram $2^{\text {nd }}$ M1 for attempting 75 - their $(18+32+12)$ M1 for identifying suitable values to test for independence e.g. $\mathrm{P}(E)=0.40$ and $\mathrm{P}(E \mid B)=0.36$ Or $\mathrm{P}(E) \times \mathrm{P}(B)=\ldots$ and $\mathrm{P}(E \cap B)=$ their (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values seen somewhere A1 for correct values and a correct comment Diagrams You may see these or find these useful for identifying probabilities. Common Errors (a) $\frac{9}{25}$ is M0A0 (b) $\mathrm{P}(E \cup B)=\frac{53}{75}$ scores M1A0 $1-\mathrm{P}(E \cup B)=\frac{22}{75}$ scores M1A0 (b) $\mathrm{P}\left(B^{\prime}\right) \times \mathrm{P}\left(E^{\prime}\right)=\frac{1}{3} \times \frac{3}{5}$ scores 0/4

Question Number	Scheme	Marks
$\begin{aligned} & 45 \\ & \text { (a) } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$
(b)	$\begin{aligned} \mathrm{P}(\text { Positive Test }) & =0.02 \times 0.95+0.98 \times 0.03 \\ & =0.0484 \end{aligned}$	$\begin{aligned} & \text { M1A1ft } \\ & \text { A1 } \end{aligned}$
(c)	$\begin{aligned} \mathrm{P}(\text { Do not have disease } \mid \text { Postive test }) & =\frac{0.98 \times 0.03}{0.0484} \\ & =0.607438 . . \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \end{array}$
(d)	Test not very useful OR High probability of not having the disease for a person with a positive test	B1 Total 9
	Notes: (a) M1:All 6 branches. Bracketed probabilities not required. (b) M1 for sum of two products, at least one correct from their diagram A1ft follows from the probabilities on their tree A1 for correct answer only or $\frac{121}{2500}$ (c) M1 for conditional probability with numerator following from their tree and denominator their answer to part (b). A1 also for $\frac{147}{242}$.	

Question Number	Scheme	Marks
46 (a)	3 closed intersecting curves with labels 100 100,30 $12,10,3,25$ Box	M1 A1 A1 B1 [4]
(b)	$P($ Substance $C)=\frac{100+100+10+25}{300}=\frac{235}{300}=\frac{47}{60}$ or exact equivalent	M1A1ft [2]
(c)	$\mathrm{P}($ All $3 \mid A)=\frac{10}{30+3+10+100}=\frac{10}{143}$ or exact equivalent	M1A1ft [2]
(d)	$\mathrm{P}($ Universal donor $)=\frac{20}{300}=\frac{1}{15}$ or exact equivalent	M1A1 cao [2] Total 10
	Notes: (a) 20 not required. Fractions and exact equivalent decimals or percentages. (b) M1 For adding their positive values in C and finding a probability A1ft for correct answer or answer from their working (c) M1 their 10 divided by their sum of values in A A1ft for correct answer or answer from their working (d) M1 for 'their 20' divided by 300 A1 correct answer only	

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number \& \multicolumn{3}{|c|}{cheme} \& Marks \\
\hline 51(a) \& \multicolumn{3}{|l|}{\[
\begin{aligned}
\& (5,5,5) \text { or }(1,5,5) \text { or }(2,5,5) \\
\& (5,5,5)(5,5,1)(5,1,5)(1,5,5)(5,5,2)(5,2,5)(2,5,5) \\
\& \text { or }(5,5,5) \text { and }(5,5,1)(\times 3) \text { and }(5,5,2)(\times 3)
\end{aligned}
\]} \& \begin{tabular}{l}
B1 \\
B1 \\
(2)
\end{tabular} \\
\hline 51(b) \& \multicolumn{3}{|l|}{\[
\begin{array}{ll}
(5,5,5) \& \left(\frac{3}{10}\right)^{3}=\frac{27}{1000}=0.027 \\
(5,5,1) \& 3 \times \frac{1}{2} \times\left(\frac{3}{10}\right)^{2}=\frac{135}{1000} \text { or } \frac{27}{200}=0.135 \\
(5,5,2) \& 3 \times \frac{1}{5} \times\left(\frac{3}{10}\right)^{2}=\frac{54}{1000}=\frac{27}{500}=0.054 \\
P(M=5)=\left(\frac{3}{10}\right)^{3}+3 \times \frac{1}{2} \times\left(\frac{3}{10}\right)^{2}+3 \times \frac{1}{5} \times\left(\frac{3}{10}\right)^{2}=\frac{27}{125}=0.216 \mathrm{oe}
\end{array}
\]} \& \begin{tabular}{l}
B1 \\
M1 \\
A1A1 \\
(4)
\end{tabular} \\
\hline 51(c) \& \multicolumn{3}{|l|}{\[
\begin{aligned}
\mathrm{P}(M=1) \& =(0.5)^{3}+3(0.5)^{2}(0.2)+3(0.5)^{2}(0.3) \\
\& =0.5 \\
\mathrm{P}(M=2) \& =\left(\frac{1}{5}\right)^{3}+3 \times\left(\frac{1}{5}\right)^{2} \times \frac{1}{2}+3 \times\left(\frac{1}{5}\right)^{2} \times \frac{3}{10}+6 \times \frac{1}{2} \times \frac{1}{5} \times \frac{3}{10} \\
\& =0.284 \text { or } \frac{71}{250} \text { oe }
\end{aligned}
\]} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1 \\
(5) \\
Total 11 marks
\end{tabular} \\
\hline \& \multicolumn{3}{|c|}{Notes} \& \\
\hline 51(a)
51(b)

51(c) \& \multicolumn{4}{|l|}{| $1^{\text {st }} \mathrm{B} 1$ for two of the given triples, any order |
| :--- |
| $2^{\text {nd }} \mathrm{B} 1$ for all 7 cases. no incorrect extras |
| B1 $\left(\frac{3}{10}\right)^{3}$ or 0.027 oe . This can be a single term in a summation |
| M1 either " 3 " $\times \frac{1}{2} \times\left(\frac{3}{10}\right)^{2}$ or " 3 " $\times \frac{1}{5} \times\left(\frac{3}{10}\right)^{2}$ oe. May omit the $3 \times$ or have another positive integer in place of the 3 . These may be seen as a single term in a summation |
| A1 $\quad\left(\frac{3}{10}\right)^{3}+3 \times \frac{1}{2} \times\left(\frac{3}{10}\right)^{2}+3 \times \frac{1}{5} \times\left(\frac{3}{10}\right)^{2}$ oe |
| A1 0.216 oe |
| $1^{\text {st }} \mathrm{M} 1$ correct calculation for $\mathrm{P}(M=1)$ or $\mathrm{P}(M=2)$, working must be shown and not implied by a correct answer. |
| $1^{\text {st }} \mathrm{A} 1$ either $\mathrm{P}(M=1)$ or $\mathrm{P}(M=2)$ correct |
| $2^{\text {nd }}$ M1 correct calculation for both $\mathrm{P}(M=1)$ and $\mathrm{P}(M=2)$, or their probabilities |
| adding up to 1 , but do not allow probabilities of $0.5,0.2$ and 0.3 |
| $2^{\text {nd }} \mathrm{A} 1$ both $\mathrm{P}(M=1)$ and $\mathrm{P}(M=2)$ correct |
| $3^{\text {rd }}$ Aldep on both M marks awarded. All three values written down with their correct probabilities. They must be in part (c) but they do not need to be in a table. |
| NB A fully correct table with no working will get M0 A0 M1 A1 A0. |}

\hline
\end{tabular}

Question Number	Scheme Marks
52. (a) (b)	$(1,1,1),(5,5,5),(1,5,5),(1,5,1)$ $(1,1,1) ;(5,5,5) ;(1,5,5) ;(5,1,5) ;(5,5,1)(5,1,1) ;(1,5,1) ;(1,1,5)$ B1 $r: 0$ and 4 B1 $\mathrm{P}(R=0)=\frac{9}{27}$ or $\frac{1}{3} \quad \mathrm{P}(R=4)=\frac{18}{27}$ or $\frac{2}{3}$ B1
	Notes
(a)	$1^{\text {st }}$ B1 for any two of the triples $2^{\text {nd }}$ B1 for all 8 cases. No incorrect extras - condone repeats. Allow ($1,5,5$) (x 3) and (1,1 , 5) (x 3) instead of writing all three cases down B1 for both values of r M1 d dependent on previous B1. For an attempt to evaluate one of the probabilities for r correctly e.g. for $r=0 ;\left(\frac{2}{3}\right)^{3}+\left(\frac{1}{3}\right)^{3}$ and for $r=4 ; 3 \times\left(\frac{1}{3}\right)^{2} \times\left(\frac{2}{3}\right)+3 \times\left(\frac{1}{3}\right) \times\left(\frac{2}{3}\right)^{2}$ Working must be shown. A1 for both values of r and their correct corresponding probabilities. Allow awrt 0.333 and 0.667 NB Correct answer with no working will gain B1M0A0

Question Number	Scheme	Marks
31	Attempt to write down combinations at least one seen	M1
	$(1,1,1),(1,1,2)$ any order (1,2,2) any order, (2,2,2) no extra combinations	A1
	Range 0 and $1 \quad 0$ and 1 only	B1
	$\begin{aligned} {[\mathrm{P}(\text { range }=0)} & =](0.65)^{3}+(0.35)^{3} \\ & =0.3175 \text { or } \frac{127}{400} \end{aligned}$ either range	M1 A1cao
	$\begin{aligned} {[\mathrm{P}(\text { range }=1)} & =](0.35)^{2}(0.65) \times 3+(0.65)^{2}(0.35) \times 3 \\ & =0.6825 \text { or } \frac{273}{400} \end{aligned}$	A1cao
		Total 6
	Notes	
	First M1 may be implied by either $(0.65)^{3}$ or $(0.35)^{3}$ or $(0.65)^{2}(0.35)$ or $(0.35)^{2}(0.65)$ First A1 may be implied by $(0.65)^{3}$ and $(0.35)^{3}$ and $(0.65)^{2}(0.35)$ and $(0.35)^{2}(0.65)$ No need for x 3 $2^{\text {nd }} \mathrm{M} 1(p)^{3}+(1-p)^{3}$ or $(1-p)^{2}(p) \times 3+(p)^{2}(1-p) \times 3$	
	A1 for 0.3175 cao or exact equivalent e.g $\frac{254}{800}$	
	A1 for 0.6825 cao or exact equivalent e.g $\frac{546}{800}$	
	NB These probabilities do not need to be associated with the correct range	

