EXPERT TUITION

Maths Questions By Topic:

Probability Mark Scheme

A-Level Edexcel

الر 0207 060 4494

www.expert-tuition.co.uk

💻 online.expert-tuition.co.uk

🖂 enquiries@expert-tuition.co.uk

♡ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents	
<u>New Spec</u>	
Paper 2 (AS)	. Page 1
Paper 3 (A2)	. Page 9
<u>Old Spec</u>	
Statistics 1	Page 19
Statistics 2	Page 51

Qu	Scheme	Mark	AO
1. (a)(i)	Require $R = 3$ and $G = 4$ so probability is $\frac{3}{4} \times \frac{1}{3}$	M1	2.1
	$=\frac{1}{4}$ or <u>0.25</u>	A1	1.1b
(ii)	[<i>R</i> must be 2 and <i>G</i> = 1 so $\frac{1}{4} \times \frac{2}{3}$] = $\frac{1}{6}$	A1	1.1b
(b)	P(X = 50) = 0.25 must mean $R = 3$ and $G = 4$	(3) M1	3.1a
	$P(X = 20) = \frac{1}{6} \implies R = 2, G = 1$ so $3m + 4n = 50$ 2m + n = 20	Al Al	1.1b 2.1
	Solving: $3m + 4(20 - 2m) = 50$ (o.e.) <u>$m = 6$</u> and <u>$n = 8$</u>	M1 A1	1.1b 3.2a
		(5) (8 marks	5)
	Notes		
(a)(i)	M1 for sight of $\frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times \frac{2}{3}$ as a single product BUT allow e.g. $\frac{3}{4} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3}$	$<\frac{3}{4}$ to score	e M1
	However if the products are later added e.g. $\frac{3}{4} \times \frac{1}{3} + \frac{1}{4} \times \frac{2}{3}$ it is M0		
	May be implied by one correct answer to (i) or (ii)		
	A1 for $\frac{1}{4}$ or 0.25 or exact equivalent (allow 25%)		
(ii)	A1 for $\frac{1}{6}$ or exact equivalent		
(b)	For the 1 st 4 marks condone incorrect labelling e.g. <i>R</i> for <i>m</i> or <i>G</i> for <i>n</i> if in 1 st M1 for identifying either set of cases ($R = 2$, $G = 1$, $X = 20$) or ($R = 3$, $G = Allow 1^{st} M1$ for $P(X = 20) = \frac{1}{4} \times \frac{2}{3}$ or $P(X = 50) = \frac{3}{4} \times \frac{1}{3}$ NOT just P(A)	Example 1 tention is 4, X = 50) X = 20) = -	$\frac{1}{6}$ etc
	or $\frac{1}{4}m + \frac{2}{3}n = 20$ or $\frac{3}{4}m + \frac{1}{3}n = 50$ and might score 2^{nd} M1 (answer is	m = 64, n	= 6)
	or $\frac{1}{4}m + \frac{2}{3}n = \frac{1}{6}$ or $\frac{3}{4}m + \frac{1}{3}n = \frac{1}{4}$ and might score 2 nd M1 (answer is m	$n = \frac{4}{15}, n =$	$(\frac{3}{20})$
	or $2m + n = \frac{1}{6}$ or $3m + 4n = \frac{1}{4}$ and might score 2^{nd} M1 (answer is m	$n = \frac{1}{12}, n =$: 0)
	or $2m + n = 50$ and $3m + 4n = 20$ and might score 2^{nd} M1 (answer is m	n = 36, n =	- 22)
	 1st A1 for one correct equation 2nd A1 for both correct equations and no incorrect equations, unless they attend correct 2 equations only. 	npt to solv	e the
Calc	correct 2 equations only 2^{nd} M1 for attempt to solve <u>their</u> two linear equations in <i>m</i> and <i>n</i> (reduce to an equation in one variable, condone one sign error). May be implied by $m = 6$ and $n = 8$. If they use one of the 4 sets of equations for 1^{st} M1 and use a calculator to write down the answer, we will allow this mark for sight of the correct answers to those equations as given above.		
	3^{rd} A1 $m = 6$ and $n = 8$ only (no incorrect labelling here) Correct answer by trial can score 5/5 if no incorrect working seen.		

Qu	Scheme	Marks	AO
2 (a)	[p = 1 - (0.2 + 0.2 + 0.1 + 0.2)] = 0.3	B1	1.1b
(b)	A and C are mutually exclusive. [NOT $P(A)$ and $P(C)$]	(1) B1 (1)	1.2
		(2 marks)	
	Notes		
(a)	B1 for		
(b)	B1 for A and C [NB $A \cap C$ or $A \cap C = \emptyset$ is B0] If more than one case given they must <u>all</u> be correct e.g. $A \cap B$ and C		

Qu	Scheme	Marks	AO
3	Must end up with 3 of each colour or 4 of each colour	M1	3.1b
	<u>n</u> = 2 requires 1 st red and 2 nd green <u>or</u> red from A and green from B	M1	2.2a
	P(1 st red and 2 nd green) = $\frac{4}{9} \times \frac{1}{10} = \frac{4}{90}$ or $\frac{2}{45}$ $p = \frac{2}{45}$	A1	1.1b
	<u>n</u> = 5 requires 1 st green and 2 nd yellow or green from A and yellow from B	M1	2.2a
	P(1 st green and 2 nd yellow) = $\frac{5}{12} \times \frac{3}{10} = \frac{15}{120}$ or $\frac{1}{8}$ $p = \frac{1}{8}$	A1	1.1b
		(5)	
		(5 marks)	
	Notes	· · · · · ·	
	1 st M1 for an overall strategy realising there are 2 options. Award when evidence of both cases (3 of each colour or 4 of each col	our) seen.	
	2^{nd} M1 for $n = 2$ and attempt at 1^{st} red and 2^{nd} green		
	May be implied by e.g. $\frac{4}{9} \times \frac{1}{9}$		
	1 st A1 for $p = \frac{2}{45}$ or exact equivalent		
	3^{rd} M1 for $n = 5$ and attempt at 1^{st} green and 2^{rd} yellow		
	May be implied by e.g. $\frac{5}{12} \times \frac{3}{9}$		
	$2^{nd} A1$ for $p = \frac{1}{\underline{8}}$ or exact equivalent		
NB	If both correct values of p are found and then added (get $\frac{61}{360}$), deduct final	A1 only (i.e	e. 4/5)

Qu	estion	Scheme	Marks	AOs
	4	Overall method	M1	2.1
		a+b=2c+0.5 oe or $a+b=2(1-a-b)$	B1	2.2a
		a+b+c=0.75 oe	B1	1.1b
		$3c = 0.25$ $\left[c = 0.0833 \text{ or } \frac{1}{12}\right]$	M1	1.1b
		P(scoring 2,4 or 4,2 or 3,3) = $2 \times "\frac{1}{12}" \times 0.15 + 0.1^2$	M1	3.1b
		= 0.035 oe	Alcso	1.1b
			(6)	
	(6 marks)			
	1	Notes		-
4	M1:	A fully correct method with all the required steps. For gaining 2 correct eq least one correct(allow if unsimplified). Attempting to solve to find a value correct method to find the probability	uations will use of c follo	th at wed by
	B1:	Forming a correct equation from the information given in the question		
	B1:	A correct equation using the sum of the probabilities equals 1		
	M1:	Correct method for solving 2 equations to find c Implied by $c = \frac{1}{12}$		
	M1:	Recognising the ways to get a total of 6. Condone missing arrangements of ignore extras written unless ignored in the calculation. May be implied by $m \times "\frac{1}{12}" \times 0.15 + n \times 0.1^2$ where <i>m</i> and <i>n</i> are positive integers	r repeats. I	Do not
	A1cso:	Cao 0.035, $\frac{7}{200}$ oe		

Question	Scheme	Marks	AOs	
5	x = 0	B1	2.2a	
	P(A) = 0.1 + z + y $P(C) = 0.39 + z[+x]$ $P(A and C) = z$	M1	2.1	
	P(A and C) = P(A)×P(C) → z = (0.1+z+y)×(0.39+z[+x])	M1	1.1b	
	$\begin{bmatrix} \sum p = 1 \end{bmatrix}$ 0.06 + 0.3 + 0.39 + 0.1 + z + y[+x] = 1 \rightarrow [z + y[+x] = 0.15]	M1	1.1b	
	Solving (simultaneously) leading to $z = 0.13$ $y = 0.02$	A1	1.1b	
		(:	5 marks)	
	Notes			
	B1: for $x = 0$, may be seen on Venn diagram			
	M1: Identifying the probabilities required for independence and at least 2 correct These must be labelledIf there are no labels, then this may be implied by $z = (0.1 + z + y)(0.39 + z [+x])$, allow one numerical slipAllow e.g. $P(A') = 0.39 + 0.30 + 0.06[+x]$ $P(C) = 0.39 + z[+x]$ $P(A' and C) = 0.39$			
	[Not on spec. but you may see use of conditional probabilities] M1: Use of independence equation with their labelled probab	 ilities in te	rms	
	y, z [and x] All their probabilities must be substituted into a correct formula Sight of a correct equation e.g. $z = (0.1 + z + y)(0.39 + z [+x])$ scores M1M1 M1: Using $\Sigma p = 1$			
	Implied by $[x +] y + z = 0.15$ or their $x + y + z = 0.15$ where x, y, and z are all probabilities or e.g. $P(A) = 0.25$			
	A1: both $y = 0.02$ and $z = 0.13$			

Qu	Scheme	Marks	AO	
6 (a)	$[\text{Let } p = P(F \mid C)]$			
	Tree diagram or some other method to find an equation for p	M1	2.1	
	$0.1 \times 0.09 + 0.3 \times 0.03 + 0.6 \times p = 0.06$	A1	1.1b	
	p = 0.07 i.e. 7%	A1	1.1b	
		(3)		
(b)	e.g. $P(B \text{ and } F) = 0.3 \times 0.03 = 0.009$ but			
	$P(B) \times P(F) = 0.3 \times 0.06 = 0.018$	B1	2.4	
	These are not equal so not independent			
		(1)		
		(4 mark	(S)	
	Notes			
(a)	M1 for selecting a suitable method to find the missing probability			
	e.g. sight of tree diagram with $0.1, 0.3, 0.6$ and $0.09, 0.03, p$ suitably			
	placed (14) (VD) (4) (000 f) $(4 - E)$ (10 f) $(4 - E)$			
	$c.g.$ signt of VD with 0.009 for $A \cap T$ and $D \cap T$ and 0.0p	suitably		
	or attempt an equation with at least one correct numerical and			
	one "p" product (not necessarily correct) on LHS			
	<u>or</u> for sight of $0.06 - (0.009 + 0.009)$ (o.e. e.g. $6 - 1.8 = 4.2\%$)			
	$1^{st} A1$ for a correct equation for p (May be implied by a corr	ect answ	er)	
	or for the expression $\frac{0.06 - (0.009 + 0.009)}{0.06 - (0.009 + 0.009)}$ (0.8)			
	0.6 (0.c.)			
	2^{nd} A1 for 7% (accept 0.07)			
	Correct Ans: Provided there is no incorrect working seen award	1 3/3		
	e.g. may just see tree diagram with 0.07 for p (probably from tria	al and imp	prov')	
(b)	P1 for a suitable explanation may talk about 2 nd branches a	n traa dia	CHO 100	
(0)	B1 for a suitable explanationmay tak about 2 branches of and point out that $0.03 \neq 0.06$ but need some supporting	n nee uia	gram	
	calculation/words			
	Can condone incorrect use of set notation (it is not on AS	spec) pro	ovided	
	the rest of the calculations and words are correct.	1 7 1 1		

Question	Scheme	Marks	AOs	
7(a)	S and A since there is no intersection between A and S or the probability of S and A happening is zero	B1	1.2	
		(1)		
(b)	$(0.1+ p)' \ 0.25 = 0.1 \ [p = 0.3]$	M1	3.1b	
	q = 0.15 or $1 - q = 0.85$	M1	1.1b	
	r = 1 - p'' - q'' - 0.25	M1dd	3.1b	
	= 0.3	A1	1.1b	
		(4)		
(c)	Independent since $0.25 \times "0.2" = 0.05$	B1	2.2a	
		(1)		
(d)	The teacher's belief would appear not to be justified as <i>D</i> and <i>S</i> are independent	B1ft	2.4	
		(1)		
		(7 n	narks)	
Notes:				
(a) B1: For	S and A and a sensible reason			
(b) M1: Fo M1: W	r forming a correct equation in terms of p using the information given. Triting or using $q = 0.15$ or $1 - q = 0.85$			
M1dd: to f	dependent on both previous M marks being awarded. For using their val form a correct equation to enable them to find r	ues for <i>p</i> a	nd q	
A1: ca	0			
(c) B1: Ye informa	(c) B1: Yes and a suitable reason to support their answer bringing together the two pieces of information to draw the correct conclusion			
(d) B1: A c	correct comment following their answer to part (c) with reference to the t	eachers be	lief.	
1				

Question	Scheme	Marks	AOs		
8 (a)	p = [1 - 0.75 - 0.05 =] 0.20	B1	1.1b		
		(1)			
(b)	<i>q</i> = <u>0.15</u>	B1ft	1.1b		
	P(A) = 0.35 $P(T) = 0.6$ $P(A and T) = 0.20P(A) \times P(T) = 0.21$	M1	2.1		
	Since $0.20 \neq 0.21$ therefore <i>A</i> and <i>T</i> are not independent	A1	2.4		
		(3)			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
(c)	P(not [A or C]) = 0.45	B1	1.1b		
		(1)	a a milea)		
Notes:		(3 11	1a1 K5)		
(a) B1: cad	b for $p = 0.20$				
(b) B1: Ft M1: Fo an	 Ft for use of their p and P(A or T) to find q i.e. 0.75 - "p" - 0.40 or q = 0.15 For the statement of all probabilities required for a suitable test and sight of any appropriate calculations required 				
(c) A1: Al B1: cad	probabilities correct, correct comparison and suitable comment o for 0.45				

Quest	ion	Scheme	Marks	AOs
9(a))	$\frac{365}{100}$ or $\frac{1}{100}$ or 0.2 or	B1	1 1h
		1825 5 5		1.10
			(1)	
(b)		$\frac{170}{1000}$ or $\frac{34}{2000}$ or awrt 0.093	B1	1.1b
		1825 365		
			(1)	
(c)		$90 \times 0.4 + 80 \times 0.05 = 40$ or $90 \times 0.6 + 80 \times 0.95 = 130$ or	M1	3.1b
		$/40 \times 0.65[=481]$ or $/40 \times 0.35[=259]$		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1 A1	1.1b 1.1b 1.1b
			(4)	
(d)		$P(P(P) = 380 \begin{bmatrix} 76 \\ 0.000 \end{bmatrix} \rightarrow 0.000$		
		$P(R' \cap F) = \frac{1825}{1825} = \frac{0.208}{365}$ oe awrt 0.208	B1	1.1b
			(1)	
(e)		$\left[\frac{133 + "130"}{263"}\right] = \frac{"263"}{263"}$ awrt 0.144	B1ft	1 1b
			(1)	
(f)		$\frac{247 + "481"}{247 - "401" - 122 - "40"}$	M1	3.4
		247+"481"+123+"40"		
		$=\frac{720}{891}$ awrt 0.817	A1	1.1b
		071	(2)	
		Notes:	(10 n	narks)
		Look out for answers given in the question. If you see answers in th	e questior	1 and
		in the answer space those in the answer space take precedence.		
(a)	BI	Allow equivalent		
(D)	BI	Allow equivalent Correct method to find one of the values 40 or 130 or 481 or 250		
(c)	M1	Implied by 40, 481, 259 or 130 seen in correct place on diagram		
	B1	One of the highlighted correct		
	B1	A second value highlighted correct or their $("259"+"481") = 740$ or		
		their $("40"+" 481") = 521$ or their $("40"+"130") = 170$		
	A1	Fully correct		
(d)	B1	380/18250e or awrt 0.208		
(e)	B1ft	Correct answer or		
		Ft their 130 (>0) do not allow if blank		
		Allow ft correct to 3 sf.		
(f)	M1	For a single fraction with the numerator $<$ denominator and n is an interval of the single fraction with the numerator $<$ denominator n is an interval of the single fraction.	ger we wi	i11
		award for $n/891$ or $n/(sum of their 4 values in H, each > 0)$ or awrt (728/801 as an event 0.817).817	
		/20/091 OC OF AWIT 0.81/		

Qu 10	Scheme	Marks	AO
(a)	0.08 + 0.09 + 0.36 = 0.53	B1	1.1b
		(1)	
(b)(i)	$\begin{bmatrix} \mathbf{P}(G \cap E \cap S) = 0 \implies \mathbf{p} = 0 \end{bmatrix} \mathbf{p} = 0$	B1	1.1b
(ii)	$[P(G) = 0.25 \implies] 0.08 + 0.05 + q + "p" = 0.25$	M1	1.1b
	$\underline{q=0.12}$	A1	1.1b
$(-)(\cdot)$		(3)	
(C)(I)	$P(S E) = \frac{5}{12} \implies \left \frac{r + p^{n}}{12} - \frac{1}{2} \right = \frac{5}{12}$	M1	3.1a
	$\begin{bmatrix} 12 \\ 12 \end{bmatrix} r + p + 0.09 + 0.05 \\ 12 \end{bmatrix} r = 0.10$		1.10
	$\begin{bmatrix} 12r = 5r + 5 \times 0.14 \implies \end{bmatrix} \underline{r = 0.10}$	AI	1.1b
(11)	$\begin{bmatrix} 0.08 + 0.05 + "0.12" + "0" + 0.09 + "0.10" + 0.36 + t = 1 \implies \end{bmatrix} \underline{t = 0.20}$	B1ft	1.1b
		(4)	
(a)	$P(S \cap E') = 0.36 + "q" [= 0.48]$	B1ft	1.1b
	$P([(S \cap E')] \cap G) = "q"[=0.12]$ and $P(G) = 0.25$ and	MI	0.1
	$P(S \cap E') \times P(G) = "0.48" \times \frac{1}{4}$ or 0.12	M11	2.1
	$P(S \cap E') \times P(G) = 0.12 = P(\lceil (S \cap E') \rceil \cap G)$ so are independent	A1	2.2a
		(3)	
		(11 mar	ks)
	Notes		
(a)	B1 for 0.53 (or exact equivalent) [Allow 53%]		
(b)(i)	B1 for $p = 0$ (may be placed in Venn diagram)		
(ii)	M1 for a linear equation for q (ft letter "p" or their value if $0 \le p \le 0.12$) =	> by $p + q =$	= 0.12
	A1 for $q = 0.12$ (may be placed in Venn diagram)		
(a)(i)	M_1 for a ratio of probabilities (r on num and dan) (on LUS) with num < dan	and num	or don
(()(1)	correct ft. Allow ft of letter "p" or their p where $0 \le p < 0.86$ but "+ 0"	is not req	uired.
	1^{st} A1ft for a correct ratio of probabilities (on LHS) allowing ft of their p when	$e \ 0 \leq p < $	0.86
	2^{nd} A1 for $r = 0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only	y 3/3	
(ii)	B1ft for $t = 0.2(0)$ (o.e.) or correct ft i.e. $0.42 - (p + q + r)$ where p, q, r and	nd t are all	probs
(d)	B1ft for $P(S \cap E') = 0.48$ (with label) (ft letter "a" or their value if $0 \le a \le a$	< 0.12)	
	M1 for attempting all required probs (labelled) and using them in a correct test M^{2}	st (allow ft	of a)
	A1 for all probs correct and a correct deduction (no ft deduction here)		4)
SC	No "P" If correct argument seen apart from P for probability for all 3 marks, a	ward (BON	(11A1)
ŕ	If unsure about an attempt using conditional probabilities, please sen	d to reviev	W.
G	E		

Qu 11	Scheme	Marks	AO
(a)	A, C or D, B or D, C	B1	1.2
(b)	[p = 0.4 - 0.07 - 0.24 =] 0.09	(1) B1	1.1b
	A and D in dama dank in alian	(1)	1 11
(C)	A and B independent implies $P(A) \times 0.4 = 0.24$ or $(a + 0.16 + 0.24) \times 0.4 = 0.24$	2.61	1.10
	$P(A) \times 0.4 = 0.24$ <u>or</u> $(q+0.10+0.24) \times 0.4 = 0.24$	MI	
	so $P(A) = 0.6$ and $a = 0.20$	Alcso	1 11
	501(1) = 0.0 and $q = 0.20$	(2)	1.10
		(2)	
(d)(i)	$P(B' C) = 0.64$ gives $\frac{r}{r+p} = 0.64$ or $\frac{r}{r+"0.09"} = 0.64$	M1	3.1a
	r = 0.64r + 0.64 "p" so $0.36r = 0.0576$ so $r = 0.16$	A1	1.1b
(ii)	Using sum of probabilities = 1 e.g. " 0.6 " + 0.07 + " 0.25 " + s =1	M1	1.1b
	so $s = 0.08$	A1	1.1b
		(4)	
	NT 4	(8 mark	(s)
(9)	Notes B1 for one correct pair. If more than one pair they must all be correct		
(a)	Condone in a correct probability statement such as $P(A \cap C) = 0$		
	or correct use of set notation e.g. $A \cap C = \emptyset$		
	BUT e.g. " $P(A)$ and $P(C)$ are mutually exclusive" alone is B0		
(b)	B1 for $p = 0.09$ (Maybe stated in Venn Diagram [VD])		
	[If values in VD and text conflict, take text or a value <u>used</u> in a late	er part]	
(0)	M1 for a correct equation in one variable for $P(A)$ or q using indep	andanca	
	or for seeing both $P(A \cap B) = P(A) \times P(B)$ and $0.24 = 0.6 \times 0.100$	4	
	A1cso for $q = 0.20$ or exact equivalent (dep on correct use of independent)	ndence)	
Beware	Use of $P(A) = 1 - P(B) = 0.6$ leading to $q = 0.2$ scores M0A0		
(d)(i)	1 st M1 for use of $P(B' C) = 0.64$ leading to a correct equation in <i>r</i> and	l possibly	<i>p</i> .
	Can ft their p provided 0		
(**)	1 st A1 for $r = 0.16$ or exact equivalent	11.000	n oto
(11)	a In a linear equation in s. A Can follow through their values provided each of $p = a r$ are in	пож <i>р</i> , <i>q</i> , [0. 1)	rec
	2^{nd} A1 for $s = 0.08$ or exact equivalent	L~, * /	

Qu 12	Scheme	Marks	AO
(a)	$\frac{k}{10} + \frac{k}{20} + \frac{k}{30} + \frac{k}{40} + \frac{k}{50} = 1 \text{ or } \frac{1}{600} (60k + 30k + 20k + 15k + 12k) = 1$	M1	1.1b
	So $k = \frac{600}{137}$ (*)	A1cso	1.1b
(b)	(Cases are:) $D_1 = 30, D_2 = 50$ and $D_1 = 50, D_2 = 30$ and $D_1 = 40, D_2 = 40$	(2) M1	2.1
	$P(D_1 + D_2 = 80) = \frac{k}{50} \times \frac{k}{30} \times 2 + \left(\frac{k}{40}\right)^2$	M1	3.4
	= 0.0375619 awrt <u>0.0376</u>	A1 (3)	1.1b
(c)	Angles are: $a, a+d, a+2d, a+3d$	M1	3.1a
	$S_4 = a + (a + d) + (a + 2d) + (a + 3d) = 360$	M1	2.1
	2a + 3d = 180 (o.e.)	A1	2.2a
	Smallest angle is $a > 50$ consider cases: d = 10 so a = 75 or d = 20 so a = 60 [d = 20 gives a = 45 po good]	M1	3.1b
	u = 10 so u = 75 or u = 20 so u = 00 [u = 50 gives u = 45 ho good] 3k = 90		
	$P(D = 10 \text{ or } 20) = \frac{20}{20} = \frac{1}{137}$	A1	1.1b
		(5)	
		(10 ma	rks)
	Notes		
(a)	M1 for clear use of sum of probabilities = 1 (all terms seen) $A_1 \cos(*)$ M1 second and no incorrect working second		
Verify	A1 cso (*) M1 scored and no incorrect working seen. (Assume $k = \frac{600}{100}$) to score the final A1 they must have a final comment ": $k = \frac{600}{100}$	_ <u>600</u> ''	
, criij	$(135 \text{ time } k - \frac{1}{137})$ to score the final AT they must have a <u>final</u> comment $\dots k$ -	137	
(b)	1 st M1 for selecting at least 2 of the relevant cases (may be implied by their of	correct pr	obs)
	e.g. allow 30, 50 and 50,30 i.e. D_1 and D_2 labels not required	-	
	2^{nd} M1 for using the model to obtain a correct expression for two different pr May use letter k or their value for k.	obabilitie	es.
	Allow for $\frac{k}{50} \times \frac{k}{20} + \left(\frac{k}{40}\right)^2$ or $2 \times \left(\frac{k}{50} \times \frac{k}{20} + \left(\frac{k}{40}\right)^2\right)$		
	$50 \ 50 \ (40) \ (50 \ 50 \ (40))$		
	A1 for awrt 0.0376 (exact fraction is $\frac{700}{18769}$)		
(c)	1^{st} M1 for recognising the 4 angles and finding expressions in terms of d and	l their a	
	2^{nd} M1 for using property of quad with these 4 angles (equation can be un-sin	nplified)	
	Allow these two marks for use of a (possible) value of d		
	e.g. $a + a + 10 + a + 20 + a + 30 = 360$ (If at least 3 cases seen allow A1 f	or e.g. $4a$	t = 300)
	\underline{or} and within tota set of 4 angles with sum 500 and possible value of a e.g. (for $d = 20$) 60–80, 100–120	(5 cases	101 A1
	1^{st}A1 for $2a + 3d = 180$ condition (o.e.) [Must be in the form $pa + qd = N$]		
	3^{rd} M1 for examining cases and getting $d = 10$ and $d = 20$ only		
	$2^{n\alpha}$ A1 for $\frac{90}{137}$ or exact equivalent		
	The correct answer and no obviously incorrect working will score $5/5$		mag 1/5
	A linal answer of awrt 0.657 (0.65695) with no obviously incorrect we	rking sco	ores 4/5

Question	Scheme	Marks	AOs			
13(a)	4 C $\frac{2}{3}$ G	B1	1.1b			
	$\begin{array}{c} \frac{9}{10} \\ \frac{9}{10} \\ \frac{1}{5} \\ \frac{1}{5} \\ R \end{array}$	dB1	1.1b			
	$\frac{1}{10}$ R	(2)				
(b)	$\frac{9}{10} \times \frac{4}{5} \times \frac{2}{3}$	M1	1.1b			
	$=\frac{12}{25}(=0.48)$	A1	1.1b			
		(2)				
(c)	$\frac{9}{10} \times \frac{1}{5} + \frac{9}{10} \times \frac{4}{5} \times \frac{1}{3} \text{or} 1 - \left(\frac{1}{10} + \frac{9}{10} \times \frac{4}{5} \times \frac{2}{3}\right)$	M1	3.1b			
	$=\frac{21}{50}$ (= 0.42)	A1	1.1b			
		(2)				
(d)	$[P(\text{Red from } B \text{Red selected})] = \frac{\frac{9}{10} \times \frac{1}{5}}{\frac{1}{10} + \frac{9}{10} \times \frac{1}{5} + \frac{9}{10} \times \frac{4}{5} \times \frac{1}{3}} \left[= \frac{\frac{9}{50}}{\frac{13}{25}} \right]$	M1	3.1b			
	$=\frac{9}{26}$	A1	1.1b			
		(2)				
		(8	8 marks)			
	Notes					
	Allow decimals or percentages throughout this q	uestion.				
(a)	 B1: for correct shape (3 pairs) and at least one label on at least G(reen) and R(ed) allow G and G' or R and R' as labels, etc. condone 'extra' pairs if they are labelled with a probabil dB1: (dep on previous B1) all correct i.e. for all 6 correct production correct branches with at least one label on each pair 	ast two pai lity of 0 babilities o	n the			
	M1: Multiplication of 3 correct probabilities (allow ft from the	heir tree di	agram)			
(b)	A1: $\frac{12}{25}$ oe					
(c)	M1: Either addition of only two correct products (product of two probs + product of three probs) which may ft from their tree diagram or for $1 - (\frac{1}{10} + (b))$ A1: $\frac{21}{50}$ oe					
	M1: Correct ratio of probabilities	1				
(d)	or correct ft ratio of probabilities e.g. $\frac{1}{10} \times \frac{1}{5}$ or $\frac{1}{10} \times \frac{1}{5}$	with nun)'	n < den			
	A1: $\frac{9}{26}$ (allow awrt 0.346)					

Question	Scheme	Marks	AOs
14	$\frac{132}{184} = 0.71739$ awrt <u>0.717</u>	B1	1.1b
		(1)	
		(1 mark)
	Notes		
	Allow fractions, decimals or percentages throughout	this questi	ion.
	Allow equivalent fraction, e.g. $\frac{33}{46}$		

Qu 15					Sch	eme						Marks	AO
(a)	С	0	1	2	3	4	5	6	7	8		B1	1.2
	P(C=c)	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		B1ft	1.2
									(2)				
(b)	$P(C < 4) = \frac{4}{9}$	(acce	pt 0.44	44 or 1	better)							B1	3.4
										(1)			
(c)	Probability low	ver that	n expe	ected s	sugges	sts mo	del is	<u>not</u> go	ood			Bĺft	3.5a
												(1)	
(d)	e.g. Cloud cov	er will	vary	from	month	to mo	onth a	nd pla	ce to j	place		B1	3.5c
	So e.g. use a 1	10n-un	iform	distri	bution	l						(1)	<u> </u>
							NT 4					(5 mark	s)
(a)	1st D1_C			1	<u> </u>	A 11	Note:	6 (8)					
(a)	I st BI for a co	rrect se	et of v	alues	for c .	Allov	$V\left\{\frac{1}{8}, \frac{1}{8}\right\}$	$\frac{1}{8}, \dots, \frac{1}{8}$					
	2^{na} B1ft for co	orrect p	probs	from 1	their v	alues	for <i>c</i> ,	consis	stent v	vith d	iscrete unif	form distril	o'n
	Maybe as a pi	rob. fu	nction	. Alle	ow P(2	X = x	$=\frac{1}{9}$ 1	for $0 \leq$	$\leq x \leq x$	8 prov	vided $x = \{$	0, 1, 2,,	8} is
	clearly define	d some	ewher	e.									
(1-)				11.		(`						
(b)	BI for usin	g corre	ect mo	odel to	get $\frac{1}{9}$	(o.e	.)						
SC	Sample space	{1,,	8} If	score	d B0B	1 in (a	a) for 1	this al	low P	(C < 4)	$= \frac{3}{8}$ to sc	ore B1 in ((b)
	D1ft for oo		that	tataa	that th		101	magad	ia an	ianat	a acad and	haadan	
(C)	bill for col	nnneni nodel i	n nart	(a) at	nat m	ir nrok	iei pro abilit	posed	is or	is not	a good one	e based on	
	(b) - 0.315 >	0.05		v e.g.	"it is	not su	itable	": "it i	s not :	accura	te" etc		
	(b) – 0.315 ≤	0.05	Allow	v a coi	mmen	t that s	sugges	sts it <u>is</u>	s suita	ble			
	No prob in (b)	A	llow	a com	pariso	on that	ment	ions 5	0% o	r 0.5 a	nd rejects	the model	
	No prob in (b)	and n	io 50%	% or ().5 or	(b) >	1 scor	es B0					
	Ignor	re any	comm	nents a	ibout l	ocatic	on or v	veathe	r patte	erns.			
(4)	B1 for a se	nsihla	refine	ment	consid	dering	vario	tions i	n mor	th or	location		
(u)	Just sa	ving "r	not un	iform ²	" is B()	varia	10115 1			location		
	Context & "no	on-uni	form'	' Allo	w mer	ntion o	of diff	erent l	ocatio	ons, m	onths and r	non-unifori	n
	or use	more l	ocatio	ns to	form a	n new	distrib	ution	with p	probab	oilities base	d on frequ	encies
	Context & "bi	nomia	l" Al	low m	entior	n of di	fferen	t locat	ions,	month	s <u>and</u> binor	mial	
	Just refined m	odel N	Aodel	must	be out	tlined	and d	iscret	e and	non-ui	niform	1 1	1
	e.g. hi	gher p	robabi	ilities	for mo	ore clo	oud co	ver <u>or</u>	lowe	r prob	abilities for	r less cloud	1 cover
	Commuous M	ouel A	iny m	ouerti	nat is l	Jased		omm	ious d	istriot	nion. e.g. n	iormat is B	U U

Question	Scheme						
16(a)	$\mathbf{P}(S \cap D') = 0$	B1	1.1b				
		(1)					
(b)	$P(C \mid S \cap D) = \frac{0.27}{0.6} = \frac{9}{20} = 0.45$	M1	3.1b				
	∴80×"0.45"	M1	1.1b				
	=36	A1	1.1b				
		(3)					
(c)	$[P(C) \times P(S) = P(C \cap S)]$						
	$P(S) = 0.6, P(C) = 0.27 + v + u, P(S \cap C) = 0.27$	M1	3.1a				
	$0.6 \times (0.27 + u + v) = 0.27$ or $u + v = 0.18$ o.e	A1	1.1b				
	$\left[P(D \mid C) = \frac{P(D \cap C)}{P(C)} \right] P(D \cap C) = 0.27 + v$	M1	3.1a				
	$\frac{14}{15} = \frac{0.27 + v}{0.27 + v + u} \text{or} 14u - v = 0.27 \text{o.e}$	A1	1.1b				
	15u = 0.45	M1dd	1.1b				
	u = 0.03 $v = 0.15$	A1	1.1b				
	w = 0.22	Alft	1.1b				
		(7)					
	·	(11 n	narks)				
Notes:							
(a) B1: cor	rect answer only						
(b) M1: for 80	a correct ratio of probabilities formula with at least one correct value an	d multiply	ing by				
A1: a c	orrect answer $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$	<u>()</u> 1	4 1				
(C) MII: IO	r translating the problem and realising the equation $P(C) \times P(S) = P(C \cap A)$	S) needs	to be				
A1 . a correct equation							
M1: for a correct probability formula with $P(D \cap C) = 0.27 + v$							
A1: a second correct equation							
M1dd: dependent on the previous 2 method marks being awarded. Solving the two simultaneous							
equations by eliminating one variable. May be implied by either <i>u</i> or <i>v</i> correct							
A1: <i>u</i> co	rrect						
A1: v co	rrect 0.22 for d_1 is a subscript but that $d_2 = 10.4$						
Alft: W	A1ft: $w = 0.22$, ft <i>their</i> u, v provided that $u + v + w < 0.4$						

EXPERT TUITION

Question	Scheme	Marks	AOs			
17	e.g. It requires extrapolation so will be unreliable (o.e.)	B1	1.2			
		(1)				
		(1	mark)			
Notes:	Notes:					
B1: for a correct statement (unreliable) with a suitable reason						

Questi	on Scheme	Marks	AOs				
18(a)	$P(A' B') = \frac{P(A' \cap B')}{P(B')} \text{ or } \frac{0.33}{0.55}$	M1	3.1a				
	$=\frac{3}{5}$ or 0.6	A1	1.1b				
		(2)					
(b)	e.g. $P(A) \times P(B) = \frac{7}{20} \times \frac{9}{20} = \frac{63}{400} \neq P(A \cap B) = 0.13 = \frac{52}{400}$ or $P(A' B') = 0.6 \neq P(A') = 0.65$	B1	2.4				
		(1)					
(c)		B1	2.5				
	В	M1	3.1a				
		A1	1.1b				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	1.1b				
		A1	1.1b				
		(5)					
(d)	$P(B \cup C)' = 0.22 + 0.22 \text{ or } 1 - [0.56]$ or $1 - [0.13 + 0.23 + 0.09 + 0.11]$ o.e.	M1	1.1b				
	= 0.44	A1	1.1b				
		(2)					
		(1	0 marks)				
Notes:							
(a) M1: f A1: a	or a correct ratio of probabilities formula and at least one correct value correct answer	ue.					
(b)							
$\int f$	or a fully correct explanation: correct probabilities and correct comp	arisons.					
(c) B1: f	or box with B intersecting A and C but C not intersecting A (Or acce	ent three					
	tersecting circles, but with zeros entered for $A \cap C$ and $A \cap B \cap C$)No box is B0						
M1: f	for method for finding $P(B \cap C)$						
A1: f	or 0.09						
A1: f	ally correct						
(d) M1: f A1: c	or a correct expression – ft their probabilities from their Venn diagra	m.					

Question Number	Scheme	Marks
19. (a	$P(G_1) + P(R_1 \cap G_2) + P(Y_1 \cap G_2) \underline{\text{or}} P(GY) + P(GR) + P(RG) + P(YG) (\text{o.e.})$	M1
	$= \frac{1}{64} + \frac{r}{64} \times \frac{1}{63} + \frac{y}{64} \times \frac{1}{63} = \frac{1}{64} + \frac{r+y}{64 \times 63} \underline{\text{or}} 2 \times \frac{r+y}{64 \times 63}$	A1
	$= \frac{1}{64} + \frac{63}{64 \times 63} \underline{\text{or}} \frac{2 \times 63}{64 \times 63} \underline{\text{or}} \frac{1}{64} + \frac{1}{64} \underline{\text{or}}$	M1
	$=\frac{1}{32}$ or 0.03125	A1
(b	$P(R_1 \cap R_2) = \frac{r}{64} \times \frac{r-1}{63} = \frac{5}{84}$	(4) M1A1
	$r(r-1) = 5 \times 64 \times 63 \div 84 = 240$ hence $r^2 - r - 240 = 0$ or $r^2 - r = 240$ (*)	A1cso (2)
(c	$r^{2} - r - 240 = (r - 16)(r + 15) \{= 0\} \text{ or } 16^{2} - 16 - 240 = 256 - 256$ or $\frac{16}{16} \times \frac{15}{52} = \frac{5}{54}$	M1 (3)
	so $r = 16$ and rejecting -15 (*)	A1cso (2)
(d	$P(\ge 1 \text{ red}) = P(RG) + P(GR) + P(RY) + P(YR) + P(RR) \text{ or } \frac{2}{252} + \frac{2y}{252} + \frac{15}{252}$ (o.e.)	M1,
	$\underline{\text{or }} P(R_1) + P(R_1' \cap R_2) \underline{\text{or }} \frac{16}{64} + \frac{48}{64} \times \frac{16}{63} \underline{\text{or }} 1 - \frac{48}{64} \times \frac{47}{63}, = \frac{37}{\underline{84}}$	A1
	Require: $\frac{P(R_1 \cap R_2)}{P(\text{at least one red})} = \frac{\frac{5}{84}}{\frac{37}{84}}$, $= \frac{5}{\underline{37}}$ or $0.13\dot{5}$	M1, A1
		(4) [Total 13]
	Notes	
(a	1 st M1 for at least 2 correct cases. May be in symbols or probs. May be in tree Use of $r = 16$ or $y = 47$ can score maximum of 1 st M1 then A0M0A0	diagram
	1 st A1 for all cases and their assosciated probs added	
	2^{nd} M1 for combining probabilities and using $r + y = 63$	
	2^{nd} A1 for $\frac{1}{32}$ or an exact equivalent (correct answer only 4/4)	
(b	M1 for $\frac{r}{64} \times g(r) =$ where $g(r)$ is any linear function of r	
	1^{st} A1for any correct equation in r 2^{nd} A1csofor correctly simplifying to the given equation with no incorrect worThere should be at least 1 intermediate step seen	king seen.
(c	M1 for correct factors <u>or</u> completing square <u>or</u> use of formula <u>or</u> substitution A1cso for concluding $r = 16$ and rejecting -15 (e.g. crossing out etc)	n
(d	1 st M1 for a correct expression for at least one red. May be in symbols or probe 1 st A1 for $\frac{37}{84}$ (o.e.) as a single fraction <u>or</u> awrt 0.440 [May be implied by correct 2 nd M1 for a ratio of probabilities (denom may be in symbols) with numerator of 2 nd A1 for $\frac{5}{37}$ or an exact equivalent	s. or in a tree ect answer] of $\frac{5}{84}$ (o.e.)

Question Number	Scheme	Marks				
20 (9)	$p = P(B \cap C) = P(B) \times P(C) - 0.6 \times 0.25 = 0.15$	M1				
20. (u)	$p = 1(B + C) = 1(B) \times 1(C) = 0.0 \times 0.25 = \frac{0.15}{a - [P(C) - n] = 0.10}$	A 1				
	q = [1(C) - p] = 0.10	(2)				
(h)	r = 1 - 0.08 - [P(R) + a] - 1 - 0.08 - 0.6 - 0.1 (0.8) or 1 - 0.08 - (0.6+0.25 - n)					
(5)	= 0.22	Alcao				
		(2)				
(c)	$s = [P(A) - r] = \underline{0.28}$	B1ft				
	$t = [P(\overline{B}) - p - s \text{ or use } P(B \cap C') - s = 0.6 \times 0.75 - "0.28"] = 0.17$	B1ft				
		(2)				
(d)	$P(A) \times P(B) = 0.5 \times 0.6 = 0.3$ which is <u>not</u> equal to $s (= 0.28)$	M1				
	So A and B are <u>not</u> independent	Al				
		(2)				
(e)	$\frac{(s+p) \text{ or } (0.6-t)}{(0.6-t)} = \frac{("0.28"+"0.15") \text{ or } (0.6-"0.17")}{(0.6-"0.17")}$	M1. A1ft				
(0)	$P(A \cup C) \text{ or } [P(A) + P(C)] \text{ or } (r+s+p+q)$ 0.5+0.25					
	43					
	$=\frac{45}{75}$	A1 (3)				
		[11]				
	Notes					
(a)	M1 for a correct expression					
()	(using independence) for p or 0.15					
	A1 for $q = 0.10$ (both correct $2/2$)	C				
	0.17					
	Mark (b) & (c) together (0.15)					
(b)	M1 for a correct expression for r using	0				
	$P(B \cup C)$. Can fit their $q \in [0, 0.32]$ A Q_{22}					
	A lease for $r = 0.22$ (correct and only 2/2)					
	$1^{st} B1ft \text{ for } s = 0.28 \text{ or } 0.5 \text{ their "} 0.22"$					
(()	2^{nd} B1ft for $t = 0.17$ or Fully correct Venn diagram will	l score the				
	0.6 - their "0.15" - their "0.28"					
ALT	Find <i>t</i> then <i>s</i> then <i>r</i> If text and VD disagree use tex	xt values				
(c)	$2^{nd} B1$ for $t = 0.17$ [from $1 - 0.08 - P(A) - P(C)$]					
	1 st B1ft for $s = 0.28$ or $P(B) - "0.17" - "0.15"$					
(b)	M1 for $r = P(A) - s$ and the A1 for 0.22					
<i>s</i> = 0.3	They assume A and B are independent and get $s = 0.3$ [from P(A)×P(B)]					
(c)	1 st B0 for $s = 0.3$ BUT can get 2 nd B1ft for either case in the scheme					
(b)	M1 for $r = P(A) - s$ BUT then A0cao for $r = 0.2$					
(d)	M1 for a correct $P(A) \times P(B) = 0.5 \times 0.6$ or 0.3 and a clear comparison with the	eir $s \neq 0.3$				
	Or calculation of $P(A B) = \frac{7}{15}$ or 0.467 or $\frac{\text{their } s}{15}$ and comparison with $P(A) = 0$	0.5 (o.e.)				
	A1 dep. on M1 being earned and clear statement that A and B are <u>not</u> independe	ent				
$SC_{\alpha}=0.3$	don on 18 P1ft for $a = 0.5$, 0.2 in (a); for correct calc, and conclusion even (P1). On even M0.41					
SC 5 - 0.3	$\frac{1}{1}$ and $\frac{1}{1}$ bit for $3 = 0.5 = 0.2$ in (c), for context cale, and conclusion seen (b1). On epe					
(e)	M1 for a correct ratio expression of probs: num. $< den. Allow 1 - (0.08+their)$	<i>"t"</i>) on den				
	Any sight of multiplication on the numerator e.g. 0.6×0.75 is M0	, <u>, , , , , , , , , , , , , , , , , , </u>				
	1 st A1ft for correct ratio or ft using their values in numerator but correct denomin	ator.				
	2^{nd} A1 for $\frac{43}{25}$ or accept awrt 0.573					

Question Number	Scheme	Marks
21.(a)	$[P(B \cap R') =] \underline{0}$	B1
(b)	$P(B) = 0.27 + 0.33 = 0.6, P(D) = 0.27 + 0.15 + t, P(B \cap D) = 0.27$ [P(B)×P(D) = P(B \cap D) gives] 0.6×(0.42+t) = 0.27	(1) M1 M1
	$0.42 + t = \frac{0.27}{0.6}$ or $0.6t = 0.018$	A1
	$t = \underline{0.03}$	A1 (4)
(c)	[u =] 1 - (0.6 + 0.15 + t) u = 0.22	M1 A1ft (2)
(d)(i)	$\left[\frac{P(D \cap R \cap B)}{P(R \cap B)}\right] = \frac{0.27}{0.27 + 0.33} \text{or} \qquad P(D \mid R \cap B) = P(D \mid B) = P(D)$	M1
	$= \underline{0.45}$	A1
(ii)	$\left\lfloor \frac{P(D \cap [R \cap B'])}{P(R \cap B')} = \right\rfloor = \frac{0.15}{0.15 + u}$	M1
	$=\frac{15}{37}$	A1
(e)	$40 \times "0.45"$ and $37 \times "\frac{15}{37}"$	(4) M1
	= <u>33</u>	A1 (2)
		[13 marks]
(b)	Notes 1 st M1 for attempting 3 suitable probabilities, one involving <i>t</i> (at least 2 correctly labelled in terms of <i>B</i> , <i>D</i> , <i>R</i> or in a condition of the formula of th	rect) rrect equation.
	2 nd M1 for using the independence to form a linear equation in t. ft their pro 1 st A1 for solving leading to a correct equation as far as $p + t = q$ or $pt = 1$ 2 nd A1 for 0.03 or exact equivalent	bbs if stated. 9
(c)	M1 for a correct expression for u . Allow their t or just letter t in a correct A1ft for 0.22 (or exact equivalent) or ft their t . i.e. $u = 0.25 - t$ provided u Can score M1A1ft provided their u + their $t = 0.25$ where u and t are	ct expression <i>u</i> & <i>t</i> are probs both in [0, 1]
(d)(i)	M1 for a correct numerical ratio of probabilities	
(ii)	A1for 0.45 or exact equivalent (Answer only $2/2$)M1for a correct numerical ratio of probabilities, ft their u , provided u is	a probability
	A1 for $\frac{15}{37}$ or $0.\dot{4}0\dot{5}$ or allow awrt 0.41 following a correct expression	(Ans only 2/2)
(e)	M1 for a correct method for <u>both</u> 18 and 15 ft their 0.45 and their $\frac{15}{37}$ provid NB P(D)×77 is M0 A1 for 33 only	led both in [0,1]
	NB $\frac{27}{33} \times 40 = 32.7$ which rounds to 33 but scores M0A0. (Ans only sen	d to review)

Ques	stion	Scheme	Marks
22.	(a)		B1
			M1
		Biology 11 Chemistry	Al
			Al D1
			ВІ
		8	
		Physics 22	
			(5)
	(b)	$\frac{13'}{13}$ or 0.1625	B1ft
		80	
	()		(1)
	(C)	$\frac{28+30-11}{2} \text{ or } \frac{2+3+4+8+13+17}{2} \text{ or } 1-\frac{(11+22)}{2} = \frac{47}{20} \text{ or } 0.5875$	MIAI
		80 80 80 80	
	(d)		(2)
	(u)	$\frac{17+8+15}{1145} \text{ or } \frac{\frac{1}{80}}{\frac{1}{80}} \text{ or } 1 - \frac{2+5+4}{1145} = \frac{38}{45} \text{ (condone awrt 0.809)}$	M1 A1cao
		$\frac{4}{80}$ $\frac{4}{4}$ $\frac{4}{10}$ $\frac{4}{4}$	
	(\cdot)	7	(2)
	(e)	$P(B C) = \frac{7}{100}, P(B) = \frac{20}{200}$	
		$\begin{array}{ccc} 28 & 80 \\ 7 & 29 \end{array}$	
		$P(C B) = \frac{1}{20}, P(C) = \frac{28}{20}$	M1
		20 80 $20 20$ 28	
		$P(B \cap C) = \frac{7}{20}, P(B) = \frac{20}{20}P(C) = \frac{28}{20}$	
		80 80 $80P(P C) = P(P)$ $P(C P) = P(C)$ these may be implied by correct conclusion	
		$P(B \cap C) = P(B) \times P(C)$ this approach requires the product to be seen	M1
		$P(B \cap C) = P(B) \times P(C)$ uns approach requires the product to be seen	A 1 (2)
		so, they are independent.	$\begin{array}{c} AI (3) \\ (13 \text{ marks}) \end{array}$
		Notes	(15 marks)
	(a)	B1 for 3 intersecting circles with 3 in the centre. Allow probs. or integers in di	iagram.
		M1 for some correct subtraction e.g. at least one of 2, 4, 8 or for $B: 20$ – their	(2+3+4) etc
		A1 for 2, 4 and 8 (ignore labels)	
		A1 for 11, 13 and 17 (must be in compatible regions with 2, 4, 8 if no labels)	
		B1 for correct labels and 22 and box (Do not treat "blank" as 0 so can't use 0 for	ft in (c))
	(c)	M1 for a correct expression seen in (c) (or ft their diagram). Correct and $M1$	Δ 1
	(U) (d)	M1 for denominator of 47 or ft their numerator from part (c) and numerator of	of 38 or
	(u)	their $(17 + 8 + 13)$ or (their 47) – their $(2 + 3 + 4)$. Correct ans M1A1	
	(e)	M1 for stating at least the required probs.& labelled for a correct test (can ft th	neir diagram)
		M1 for <u>use</u> of a correct test with B and C Must see product attempted for $P(B)$	$B \cap C$) test.
		A1 for a correct test with all probabilities correct and a correct concluding sta	atement.
		NB M0M1A0 should be possible but A1 requires both Ms	

Question	1 Scheme	Marks
23. (a) To score 15 points, 2 correct and 1 not correct	
	$[0.6 \times 0.6 \times 0.4] + [0.6 \times 0.4 \times 0.6] + [0.4 \times 0.6 \times 0.6]$ or $3 \times (0.6 \times 0.6 \times 0.4)$	M1
	= 0.432 (*)	A1cso
		(2)
(b	$1 - (0.216 + 0.432 + 0.064) = 0.288 \text{ or } 3 \times 0.6 \times (0.4)^2$	B1
		(1)
(c	$ [(30, 0), (0, 30) \text{ or } (15, 15)] 0.216 \times 0.288' + 0.288' \times 0.216 + 0.432 \times 0.432 $	M1 A1ft
	awrt <u>0.311</u>	A1
		(3)
		(6 marks)
	Notes	
(a	M1 for $0.6^2 \times 0.4$ may be \Rightarrow by tree diagram with 0.6 & 0.4 but just 3×0.144 or 2×0.144	0.216 is M0
	A1 cso for $3 \times 0.6^2 \times 0.4$ (seen) and no incorrect working seen	
(b	0 0.288 or $\frac{36}{125}$ answer may be seen in table. [NB Fractions: $\frac{27}{125}, \frac{54}{125}, \frac{36}{125}$	and $\frac{8}{125}$]
	Correct answers to (c), (d) and (e) score full marks for these par	rts.
(c	M1 for either $0.216 \times 0.288' = (0.062208)$ or $0.432 \times 0.432 = 0.186624$	
	(ft (b) provided their (b) is a probability)	
	1 st A1ft for a fully correct expression 2^{nd} A1 for awrt 0.311 or $\frac{972}{3125}$	
SC	6 questions 4 correct Award M1&1 st A1 for $6C4 \times 0.6^4 \times 0.4^2$ or $15 \times 0.6^4 \times 0.4^2$	0.4 ²

Question Number	Scheme	Marks
24 (a)	0.02 B $P(JnB) = 0.005 \text{ or } \frac{1}{200}$	M1
	$J = 0.98$ B' P(JAB') = 0.245 or $\frac{47}{200}$	A1
	0.45 K 0.03 B P(KnB) = 0.0135 or 27 2000	
	0.97 B' $P(knB') = 0.4365 \text{ or } \frac{873}{2000}$	
	$L = \frac{0.05}{100} B P(LAB) = 0.015 \text{ or } \frac{3}{200}$	
	0.95 B' $P(LnB') = 0.285 \text{ or } \frac{57}{200}$	(2)
(b)	0.25×0.98 , = 0.245 (or exact equiv. e.g. $\frac{49}{200}$)	M1A1
(\mathbf{c})	$0.25 \times 0.02 \pm 0.45 \times 0.03 \pm 0.3 \times 0.05$ - 0.0335 (or exact equiv. e.g. $\frac{67}{10}$)	(2)
(0)	-0.0333 (or exact equiv. e.g. $\frac{1}{2000}$)	(2)
(d)	$[P(J \cup L B)] = \frac{0.25 \times 0.02 + 0.3 \times 0.05}{0.0335} \qquad \text{or} \frac{0.0335 - 0.45 \times 0.03}{0.0335}$	M1A1ft
	= 0.5970 awrt 0.597 (or $\frac{40}{67}$ or exact equiv.)	A1
		(3)
	Notes	Total 9
	Allow fractions or percentages throughout this question	
(a)	Allow 3+6 tree diagram with the 6 correct "end" probs and labels to get 2/2 (1 st , 3 rd , 5 st M1 for (3+6) tree drawn with 0.25, 0.45, 0.02, 0.03, 0.05 on correct branches	gets M1)
	A1 for 0.3, 0.98, 0.97, 0.95 on the correct branches and labels, condone missing <i>B</i> 's Correct answer only scores full marks for parts (b), (c) and (d) When using "their probability <i>p</i> " for M1 and A1ft they must have 0 < <i>p</i> <	1
(b)	M1 for $0.25 \times$ 'their 0.98' o.e.	
(c)	M1 for $0.25 \times \text{their } 0.02 + 0.45 \times \text{their } 0.03 + \text{their } 0.3 \times \text{their } 0.05$ Condone 1 transcriptor $\underline{\text{Or}} 1 - (0.25 \times \text{their } 0.98 + 0.45 \times \text{their } 0.97 + \text{their } 0.3 \times \text{their } 0.95)$	otion error.
(d)	M1 for use of conditional probability with their (c) as denominator. Also exactly 2 pro- num' and at least one correct (or correct ft) <u>or</u> their (c) – one of the products from Ignore an incorrect expression inside their probability statement	oducts on 1 their (c).
	A1ft for $\frac{0.25 \times \text{their } 0.02 + \text{their } 0.3 \times \text{their } 0.05}{\text{their(c)}} \underline{\text{or}} \frac{\text{their } (c) - 0.45 \times \text{their } 0.03}{\text{their } (c)} \underline{\text{or}} \frac{0}{\text{their}}$.02 ir (c)
	A1 awrt 0.597 or exact fraction e.g. $\frac{40}{67}$	

Question Number	Scheme		Marks		
25 (a) $[P(A) = 1 - 0.18 -$	0.22] = 0.6	(or exact equival	lent)	B1
					(1)
(t	$P(A \cup B) = "0.6]$	+0.22 = 0.82	(or exact equiva	llent)	B1ft
,		1			(1)
(6	$x = P(A \cap B)$	Use $P(B)P(A' B)$	$= \mathbf{P}(A' \cap B)$	Establish independence before or after 1 st M1and score marks for (d) (RH ver)	M1
	$\frac{x}{x+0.22} = 0.6$	$P(B) \times [1 - 0.6] = 0$.22	Find P(<i>B</i>)	
	x = 0.6x + 0.132	Use $P(A \cap B) = P(A \cap B)$	$A \mid B$)P(B)	Use $P(B)P(A) = P(A \cap B)$	dM1
	0.4x = 0.132	$P(A \cap B) = 0.6 \times 0.6$.55	$\mathbf{P}(A \cap B) = 0.6 \times 0.55$	
		x = 0.33 (c	or exact equivalent)		A1cso
((P(B) = 0.55				(3)
(-	$P(B) \times P(A) = 0.5$	5×0.6	or stating P(A)	= P(A B) [= 0.6]	M1
	= 0.3	3			
	$P(B) \times P(A) = P(A)$	$A \cap B$	or $P(A) = P(A A)$	B)	A1cso
	therefore (statistic	cally) independent	therefore (stat	istically) independent	(2) Total 7
			Notes		Total /
(t) B1ft for their	r(a) + 0.22 or 1 - 1	$P(A' \cap B')$ Do not ft	their (a) if it is > 0.78	L
	NB 3	8 versions for (c). (Check carefully that	t Ms are genuinely scored.	
	Look out for <u>ass</u>	suming independen	<u>ace</u> and if you see P((B) = 0.55 check it is <u>derived</u>	properly
(0	1^{st} M1 for a cor	rect equation for <i>x</i> e	.g. $\frac{x}{x+0.22} = 0.6$	or a correctly derived equation	n for $P(B)$
× ×	2^{nd} dM1 for solv	ving to get in form k	x = L or correct use	of P(B) to find P($A \cap B$) [2 nd	or 3 rd ver]
	$\underline{\text{or}} P(A)$	(-B) = P(B) - 0.22	1 • / 1		
((M1 for findin	Dep. on <u>both</u> Wis as g $P(B) \times P(A) = 0.33$	nd no incorrect work 3 (values needed) or	stating $P(A) = P(A B) (= 0.6 \text{ n})$	ot needed)
(-	Alcso for a correct statement: $P(B) \times P(A) = P(A \cap B)$ or $P(A) = P(A B)$ and stating inden			dependent	
	NB The M1 in (d	1) using $P(A \cap B)$ re	equires $P(B) = 0.55$	(-), - (-) <u></u>	
	There is no ft of a	in incorrect $P(B)$	()	A	B
	Full marks in (d)	is UK even if U/3 in	(C)	(0.27 (0.33) 0.22)	
	{This Venn diagr	am may be helpful.}	ł	0.	18

Question Number		Scheme	Marks
26.	(a)	(Discrete) Uniform	B1 (1)
	(b)	(i) $P(X = 10) = \frac{1}{10}$	B1
		(ii) $P(X < 10) = \frac{9}{10}$	B1
			(2) [Total 3]
		Notes	
	(a)	B1 for seeing the word uniform Condone "continuous" uniform	

Question Number	Scheme	Marks
27. (a)	$P(A \cap B) = P(A B) \times P(B)$	
	$P(A \cap B) = \frac{2}{5} \times \frac{1}{2} = \frac{1}{5}$	M1 A1
(b)	2 intersecting circles and 'P($A \cap B$)' $\underline{3}$ and $\underline{3}$	(2) B1ft B1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1
(c)	$\left[P(A) = \frac{3}{20} + \frac{1}{5}\right] = \frac{7}{20} \text{ or } 0.35$	(3) B1ft
		(1)
(d)	$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{5}}{\frac{7}{20}}$	M1
	_ 4	
	- 7	A1 cao
(e)	0.3	B1ft (2)
		(1) [Total 9]
	Notes	
(a)	M1 for $\frac{2}{5} \times \frac{1}{2}$ or a correct probability product expression and one correct prob. Ans	only 2/2
(b)	1 st B1 for 2 intersecting circles labelled A and B and ft their prob. for intersect Condone missing labels for 2^{nd} and 3^{rd} B marks	tion
(c)	B1ft for 0.35 (o.e.) if no Venn diagram <u>or</u> correct follow through from their <u>or</u> allow 0.35 (or correct ft) from correct working e.g. $0.65 - 0.5 + (a)$ B0 for 0.35 if their diagram does not give 0.35 unless it comes from correct Don't insist on P(A) = but do not award for P(A' \cap B') = $\frac{7}{20}$	diagram ect work
(d)	M1 for $\frac{\text{their (a)}}{\text{their (c)}} \underline{\text{or}}$ a correct ratio of probabilities from their diagram	
	NB incorrect use of $P(A' \cap B') = \frac{\gamma}{20}$ scores M0 and num \geq denom scores	s M0
	A1 for $\frac{4}{7}$ only	
(e)	B1ft for 0.3 <u>or correct</u> ft from their Venn diagram <u>or</u> ft from $\frac{13}{20}$ – their (c)	

Question Number	Scheme	Marks
28. (a)		
	$\begin{array}{c} 0.30 \\ \text{bike owner} \\ \frac{117}{500} \end{array}$	
	0.78 car owner (0.70) (0.70) (0.73)	B1
	(0.70) not bike owner $\frac{1}{500}$	B1
	$(0.22) \text{ not car owner} \qquad 0.85 \text{ bike owner} \qquad \frac{187}{1000}$	B1
	(0.15) not bike owner $\frac{33}{1000}$	
(b)	P(car or bike but not both)= $0.78 \times 0.70 + 0.22 \times 0.85 = 0.733$	(3) M1 A1 (2)
(c)	$[P(car bike)] = \frac{P(car \cap bike)}{P(bike)} = \frac{0.78 \times 0.30}{0.78 \times 0.30 + 0.22 \times 0.85}, = 0.555819$	M1A1
	awrt 0.556	A1 (3)
(d)	$P(bike) = 0.78 \times 0.30 + 0.22 \times 0.85 = 0.421, P(not bike) = 1 - 0.421$ $0.421 \times 0.579 + 0.579 \times 0.421$	M1 dM1
	= 0.487518 awrt 0.488	A1 (3) [Total 11]
	Notes	
(a)	1^{st} B1 for a (2+4) tree with 6 branches	
	2^{rd} B1 for 0.78 with label	
	3 B1 For 0.30 and 0.85 with label	
(U)	A_1 for 0.733 or exact equivalent e.g. 7^{33} and allow 73.3%	
	At 101 0.755 of exact equivalent e.g. $\frac{1}{1000}$ and allow 75.5%	1 /
(c)	M1 for a correct expression correct ft <u>or</u> correct formula and $\frac{1 \text{ pr}}{\text{sum of } 2}$	2 products
	With at least 2 products correct or correct ft. Ratio must be small	ler than 1
	1 st A1 for finding the denominator correctly. Fully correct expression or =	= 0.421 (oe)
	$2^{n\alpha}$ A1 for awrt 0.556 or exact equivalent e.g. $\frac{234}{421}$ and allow 55.6%	
(d)	M1 for their $P(bike) \times (1 - P(bike))$	
	$dM1$ for $\times 2$	
	A1 for awrt 0.488	

Question	Scheme	Marks
29. (a)	$\frac{35+75}{2}=0.55$	M1 A1
	200 - 0.55	
		(2)
(b)	$\frac{200-2}{200} = 0.99$	M1 A1
	200	
(c)	30/	(2)
(0)	$\left[P(W C) \right] = \frac{P(W \cap C)}{200} = \frac{30}{200} = -\frac{30}{200} = -0.375$	M1 A1
	$P(C) = \frac{80}{200} = \frac{80}{80}$	
		(2)
(d)	C = 64 F Allow diagrams with intersections between E	MI
	16 16 1 16 16 16 16 16	$\frac{M1}{B1 \text{ for } 9, 1}$
	(0) are marked with 0.	B1 for 77,33
	33 B (0) B B	B1 for 64,16
	(0) If their diagram indicates	
	H treat a blank as 0.	(4)
		(4)
	1+16+33 - 0.25	\mathbf{M}_{1} \mathbf{A}_{1} (2)
(e)	$\frac{-0.25}{200}$	MIAI (2)
		(12 marks)
	Notes Connect ongroup only soone full marks for each part	
	If a probability is not in [0, 1] award M0	
(a)	M1 for denominator of 200 and attempt to add $2 + 8$ or $35 + 75$ or $30 + 50$	
	A1 for 0.55 or exact equivalent fraction e.g. $\frac{11}{20}$	
(b)	M1 for a fully correct expression (e.g. $1-0.01$)	
	A1 for 0.99 of an exact equivalent fraction	
(c)	M1 for a correct ratio or a correct formula and at least one correct prob (i.e. a corre	ct num or
	denom). BUT award M0 if num is $P(W) \times P(C) = \frac{67}{200} \times \frac{80}{200}$ or if num>denom	
	A1 for 0.375 or 3/8 or any exact equivalent.	
(4)	M_1 for a bay and the 2 regions E C and U labellad or implied and single set B labellad. T	bara abauld
(u)	be no intersections between F. C and H unless marked by zeros. They may have 3	nere snould
	circles for F, C and B with $H = F' \cap C'$ etc. Condone lack of zero in the given diagr	am.
F	1 st B1 for the 9 and 1 or 0.045 and 0.005 (o.e.) in the correct regions May	have B in 3
H	2^{nd} B1 for the 77 and 33 or 0.385 and 0.165 (o.e.) in the correct regions bits the set of	hat are
	3^{-6} B1 for the 64 and 16 or 0.32 and 0.08 (o.e.) in the correct regions. disco	nnected.
(e)	M1 for a numerator made up of their 1 + their 16 + their 33 and a denom of 200 and num < 200	
	Also allow sum of their probabilities (provided sum < 1)	
	A1 for 0.25 or any exact equivalent	

Quest	tion	Scheme	Marks
30.	(a)	3a + 2b = 0.7	M1
		a + 2a + 3a + 4b + 5b + 1.8 = 4.2 <u>or</u> $6a + 9b = 2.4$	M1
		5b = 1 Attempt to solve	M1
		$b = \underline{0.2}$ cao	B1
		$a = \underline{0.1}$ cao	B1
			(5)
	(h)	[5k-1] so $k-0.2$	D1 (1)
	(0)		ы (1)
	(c)	P(Y = 1) = 0.1	B1
		e.g. $P(Y = 2) = F(2) - F(1) = 0.1$	M1
		y 1 2 3 4 5 Condone use of $Y(x)$ instead of $Y(y)$	
		P(Y = y) = 0.1 = 0.1 = 0.4 = 0.2 = 0.2 Ignore incorrect or no label if table fully correct	A1
			(3)
	(a)	$P(X = 1) \times P(Y = 1) = 0.01$ cao	MI, AI (2)
		Notos	(11 marks)
		Probabilities outside [0, 1] should be awarded M0	
	(a)	1^{st} M1 for an attempt at a linear equation in a and b based on sum of probs = 1	
	()	2^{nd} M1 for an attempt at a second linear equation in <i>a</i> and <i>b</i> based on E(X) = 4.2 Allo	ow one slip.
		3^{rd} M1 for an attempt to solve their 2 linear equations based on sum of probs and E(X). M	ust reduce to
		a linear equation in one variable. 1^{st} B1 for b and 2^{nd} B1 for a. Answers only score B1E	1 only
		The 3 rd M1 may be implied if M2 is scored and both correct answers are giv	en.
A	LT	B1B1 for stating b and a.	
		1^{st} M1 for showing that sum of probs. = 1	
		2^{rd} M1 for showing that $E(X) = 4.2$	
		3" M1 for an overall comment "(therefore) $a = \dots$ and $b = \dots$ " No comment loses the	nis mark.
	(a)	P1 for $P(V-1) = 0.1$	
	(0)	B1 for correct use of $F(y)$ to find one other prob. Can ft their k if finding $P(Y - y)$	for $v > 2$
		Can be implied by one other prob. correct or correct ft Look out for $P(3) = 3k - 0.2$ or P	(4) = P(5) = k.
		A1 for a fully correct probability distribution. Correct table only is 3/3	(.) 1(0)
	(d)	M1 for a correct expression or answer ft their $P(Y = 1)$ and their $P(X = 1)$	
		A1 for 0.01 or exact equivalent only	
		Don't ISW here e.g. $0.1 \times 0.1 + 0.1 \times 0.1$ or $2 \times 0.1 \times 0.1$ are M0A0	

Question	Scheme	Marks
31. (a	$P[P(B) = 0.4, P(A) = p + 0.1 \text{ so}] 0.4 \times (p + 0.1) = 0.1 \text{ or } 0.4 \times P(A) = 0.1$	M1
	$p = \frac{1}{4} - 0.1$ <u>$p = 0.15$</u>	M1A1 (3)
(b)	$\frac{5}{11} = \left[\frac{P(B \cap C)}{P(C)} = \right] \frac{0.2}{0.2 + q} \text{or} \frac{5}{11} = \frac{0.2}{P(C)}$	M1
	$11 \times 0.2 = 5 \times (0.2 + q)$	dM1
	r = 0.6 - (p+q) i.e. $r = 0.21$	A1 A1ft (4)
(c)	$\left[\frac{P((A \cup C) \cap B)}{P(B)}\right] = \frac{0.3}{0.4}$	M1
	= <u>0.75</u>	A1 (2) [9]
	Notes	
(a)	1 st M1 for using independence in an attempt to form an equation in p or P(A)	
	2^{nd} M1 for a correct attempt to solve their linear equation leading to $p = \dots$	
	AI IOI 0.15 OF exact equivalent	
(b)	1 st M1 for a clear attempt to use $P(B/C)$ to form an equation for q or $P(C)$. Assumi	ing indep M0
	2^{ind} dM1 Dep. on 1 st M1 for correctly simplifying to a linear equation in q or P(C) e.g. accept $11 \times 0.2 = 5 \times 0.2 \pm q$ or $5P(C) = 2.2$	
	1 st A1 for $q = 0.24$ or exact equivalent	
	2^{nd} A1ft for 0.6 – their $(p+q)$ Dependent on 1^{st} M1 in (b) only.	
(6	M1 for a correct ratio expression and one correct value (num $<$ denom) or a fully of	correct ratio
	$P(A \cup C \cap B)$	
	Allow $(P(B))$ with one probability correct but only if num < denom.	
	A numerator of $P(A \cup C) \times P(B)$ scores M0	
	A1 for 0.75 or an exact equivalent	

Ques Num	tion Iber	Scheme	Marks	
32.	(a)	b 1 3 5 P(B = b) $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ P(B = b) $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	B1 B1	(2)
	(b)	Discrete Uniform {distribution}	B1	(2)
				3
		Notes		
	(a)	1^{st} B1 for correctly identifying values of b as 1, 3, 5 or 1,1,3,3,5,5		
	(b)	$2^{nd} B1$ for probabilities all $=\frac{1}{3}$ or exact equivalent (or of course 6 cases of $\frac{1}{6}$) Any correct probability distribution or probability function is 2/2. Must be in part B1 for "Discrete Uniform". Both words required.	(a)	

Question Number	Scheme	Marks
33.	$P(A \cup B) = 0.35 + 0.45 - 0.13$	M1
(a)	$\frac{1}{0.000} (A \odot B) = 0.000 + 0.000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.00000 = 0.0000 = 0.0000 = 0.0000 = 0.00000 = 0.$	A1 (2)
(b)	$P(A' B') = \frac{P(A' \cap B')}{P(B')} \text{ or } \frac{0.33}{0.55}$	M1
	$=\frac{3}{5}$ or 0.6	A1
(c)	$P(B \cap C) = 0.45 \times 0.2$	(2) M1
	= <u>0.09</u>	A1 (2)
(d)	Allow 1 st B1 for 3 intersecting circles in a box with zeros in the regions for $A \cap C$ Do not accept "blank" for zero	B1 B1ft B1 B1
(e)	$P(B \cup C)' = 0.22 + 0.22$ or $1 - [0.56]$ or $1 - [0.13 + 0.23 + 0.09 + 0.11]$ o.e. = 0.44	(4) M1 A1 (2) 12
	Notes	
(a)	 NB May see Venn diagram for A and B only used for (a) and (b) but M marks are awarded for correct expressions only. No ft from an incorrect diagram for M marks. M1 for attempt to use the addition rule. Correct substitution i.e. correct expression seen A1 for 0.67 only. Correct answer only scores 2/2 	
(b)	M1 for a correct ratio of probabilities or a correct formula and at least one correct For a correct formula allow "1 – their (a)" instead of 0.33 but not for correct r	t prob atio case.
	Do not award for assuming independence i.e. $\frac{P(A' \cap B')}{P(B')} = \frac{0.65 \times 0.55}{0.55}$ is M0. M0 if r	num>denom
	A1 for 3/5 or any exact equivalent.	
(c)	M1 for correct expression. Need correct values for $P(B)$ and $P(C)$ seen. A1 for 0.09 or any exact equivalent. Correct answer only is $2/2$	
(d)	No labels A, B, C in (d) loses 1^{st} B1 but can score the other 3 by impliesB1for box with B intersecting A and C but C not intersecting A. No box is B0B1ftfor 0.13 and their 0.09 in correct places. [ft $P(B \cap C)$ from (c)]B1for any 2 of 0.22, 0.22, 0.11 and 0.23 correctB1for all 4 values correct	ication
(e)	M1 for a correct expression or follow through from their Venn diagram NB $P(B') \times P(C') = 0.55 \times 0.8$ is OK. Do not ft "blank" for zero and M0 for negative A1 for 0.44 only. Correct answer only is 2/2	ative probs.

Question Number	Scheme	Marks
34 (a)	(<i>R</i> and <i>S</i> are mutually) exclusive.	B1 (1)
(b)	$\frac{2}{3} = \frac{1}{4} + P(B) - P(A \cap B)$ use of Addition Rule	(1) M1
	$\frac{2}{3} = \frac{1}{4} + P(B) - \frac{1}{4} \times P(B)$ use of independence	M1 A1
	$\frac{5}{12} = \frac{3}{4} P(B)$	
	$P(B) = \frac{3}{9}$	A1
		(4)
(c)	$P(A' \cap B) = \frac{3}{4} \times \frac{5}{9} = \frac{15}{36} = \frac{5}{12}$	M1A1ft
	4 7 50 12	(2)
(d)	$P(B' A) = \frac{(1-(b)) \times 0.25}{0.25}$ or $P(B')$ or $\frac{\frac{1}{9}}{1}$	M1
	4	
	$=\frac{4}{9}$	A1
		(2)
		Total 9
(a)	B1 for '(mutually) exclusive' or 'cannot occur at the same time' seen or equivalent. 'Intersection is zero' or 'no overlaps' without further explanation is B0. M1 for use of Addition Formula, including an intersection, with at least one	
	probability substituted. Intersection must be explicitly considered for this mark. Accept $\frac{2}{2} = \frac{1}{2} + P(B) - 0$ for M1.	
	M1 for $P(A \cap B) = \frac{1}{4}P(B)$	
	A1 for completely correct equation or equivalent.	
	A1 for $\frac{1}{9}$ or exact equivalent	
	Venn Diagram with 2 overlapping closed curves and correct values possibly without	
	$\frac{1}{3}$, award MIMIAI.	
(c)	M1 for $\frac{3}{4}$ x 'their P(B)' or 'their P(B)' - P(A \cap B) or P(A \cap B) - P(B) = $\frac{2}{3} - \frac{1}{4}$	
	Or $P(A' \cap B) = P(A') + \text{'their } P(B)' - P(A'UB) = \frac{5}{4} + \frac{5}{9} - \frac{8}{9}$	
	A1 for $\frac{5}{12}$ or follow through from their method. Accept exact equivalent.	
	Correct answer only with no working M1A1 but must be clearly labelled (c).	
34	EXPERT TUITION	

Question Number	Scheme	Marks
(b) (c)	$3 \text{ closed curves and 25 in correct place} 15,10,5 \\ 15 \\ 15 \\ 15 \\ 20 \\ 20 \\ C \\ 10 \\ 20 \\ C \\ 10 \\ 15 \\ 15,3,20 \\ Labels R, S, C \text{ and box} \\ Labels R, S, C \text{ and box} \\ All values/100 \text{ or equivalent fractions award accuracy marks.} \\ 7/100 \text{ or } 0.07 \\ M1 \text{ for ('their 7'in diagram or here)/100} \\ (3+5)/100 = 2/25 \text{ or } 0.08 \\ \end{array}$	M1 A1 A1 B1 (4) M1 A1 (2) M1A1
(d)	(25+15+10+5)/100 = 11/20 or 0.55	(2) M1 A1
(e)	$P(S \cap C' R) = \frac{P(S \cap C' \cap R)}{P(R)}$ Require denominator to be 'their 65' or 'their $\frac{65}{100}$ ' = $\frac{15}{65}$ require 'their 15' and correct denominator of 65 = $\frac{3}{13}$ or exact equivalents.	(2) M1 A1 A1 (3)
NOTES (b) (c)	M1 for 'their 7'/100 seen. A1 Correct answer only In parts (c) and (d) we require "/100" for methods to be awarded. Also check their values and award correct method if they follow from their Venn Diagram. M1 For ('their 3'+'their 5')/100. $\frac{8}{48}$ award M0. A1 Correct answer only or equivalent.	10(4) 13
(d) (e)	 M1 Accept sum of their 4 values from the Venn diagram /100. A1 Correct answer only or equivalent M1 Attempt to use correct formula for conditional probability. Award for correct formula and a denominator of 'their 65' or 'their 65/100'. A1 for 'their 15'/65 only. A1 for exact equivalent answers, including 15/65. In all parts correct answers with no working award full marks. 	

Question Number	Scheme	Marks				
36. (a)	$P(J \cup K) = 1 - 0.7 \text{ or } 0.1 + 0.15 + 0.05 = 0.3$	B1 (1)				
(b)	P(K) = 0.05 + 0.15 or "0.3" - 0.25 + 0.15 or "0.3" = 0.25 + P(K) - 0.15	(1) M1				
	May be seen on Venn diagram $= 0.2$	A1 (2)				
(c)	$\left[P(K \mid J)\right] = \frac{P(K \cap J)}{P(J)}$	M1				
	$=\frac{0.15}{0.25}$	A1				
	$= \frac{3}{5} \text{ or } 0.6$	A1 (2)				
(d)	$P(J) \times P(K) = 0.25 \times 0.2 (= 0.05), P(J \cap K) = 0.15$ or $P(K \mid J) = 0.6$ $P(K) = 0.2$ or may see $P(J/K) = 0.75$ and $P(J) = 0.25$	(3) M1				
	P(K J) = 0.0, P(K) = 0.2 inay see $P(J/K) = 0.75$ and $P(J) = 0.25not equal therefore not independent$	A1ft (2)				
(e)	Not independent so confirms the teacher's suspicion <u>or</u> they are linked (This requires a statement about independence in (d) or in (e))	B1ft (1)				
	(9 marks)					
A >	M1 for a complete method, follow through their 0.3, leading to a linear	equation for				
(b)	P(<i>K</i>)	1				
	NB You may see this Venn diagram.	К				
	A correct diagram (venn or table) implies M1 in (b) Need not include box or 0.7					
	Correct answer only is 2/2					
	In parts (c) and (d) they must have defined A and B					
(c)	M1 for a correct expression (including ratio) in symbols. 1 st A1 for a correct ratio of probabilities (if this is seen the M1 is awarded	by implication)				
	Must be in (c). Condone no LHS but wrong LHS (e.g. $P(K)$ or $P(J)$	(K)) is M0A0				
	2^{nd} A1 for correct answer as printed only. Correct answer only 3/3					
	Mark (d) and (e) together					
(d)	M1 for a correct comparison of known probabilities for an independence test - ft their values. E.g. $P(J) \times P(K)$ with $P(J \cap K)$ or $P(K J)$ with $P(K)$ [Must have					
	expressions]					
	The values of these probabilities should be given unless they are in stated elsewhere	the question or				
	A1ft for correct calculations and correct comment for their probabilities					
(e)	B1ft ft their conclusion on independence so not independent confirms teacherindependent contradicts teacher. Methods leading to negative probabilities should score M	10				

Question Number	Scheme	Marks
37. (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1
	$\frac{\frac{1}{9}}{\frac{1}{2}} = \frac{3}{2} = \frac{R}{2} = \frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{2} = \frac{3}{2} = \frac{R}{2}$	B1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1
	$\frac{5}{9} r \left(\frac{1}{9}\right)$ all three of $\frac{4}{9}, \frac{4}{9}, \frac{5}{9}$	B1
(b)	$P(A) = P(RR) + P(YY) = \frac{1}{2} \times \frac{2}{5} + \frac{1}{2} \times \frac{2}{5} = \frac{2}{5}$ B1 for $\frac{1}{2} \times \frac{2}{5}$ (oe) seen at least once	(4) B1 M1 A1 (3)
(c)	P(B) = P(RRR) + P(RYR) + P(YRR) + P(YYR) M1 for at least 1 case of 3 balls identified. (Implied by 2 nd M1)	M1
	$\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right) = \frac{5}{9} (*)$	M1,A1cso
(d)	$P(A \cap B) = P(RRR) + P(YYR)$ M1 for identifying both cases and + probs. may be implied by correct expressions	M1
	$= \left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right) \qquad = \frac{2}{9} (*)$	A1cso
(e)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Must have some attempt to <u>use</u>	M1
	$= "\frac{2}{5}" + \frac{5}{9} - \frac{2}{9} = \frac{11}{15}$	A1cao
		(2)

Question Number	Scheme					
37. (f)	$\frac{P(RRR)}{P(RRR) + P(YYY)} = \frac{\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{5}{9}\right)} = \frac{6}{11}$ Probabilities must come from the product of 3 probs. from their tree diagram.	M1 A1ft A1 cao (3) [17]				
	Notes					
(b)	M1 for both cases, and +, attempted, ft their values from tree diagram. May be 4 cases of 3 balls.					
(c)	2^{nd} M1 for all 4 correct expressions, ft their values from tree diagram. A1 is cso					
(e)	M1 for clear attempt to <u>use</u> the correct formula, must have some correct substitution. ft their (b)					
(f)	M1 for identifying the correct probabilities and forming appropriate fraction 1 st A1ft for a correct expression using probabilities from their tree Accept exact decimal equivalents. Correct answer only is full marks except (d)	of probs. in (c) and				

Question Number	Scheme	Marks
38 (a)	P(R) and $P(B)$	B1
	$7/12$ B $1/3$ F 2^{nd} set of probabilities	B1
	$\frac{1}{2}$ T	(2)
(b)	$P(H) = \frac{5}{10} \times \frac{2}{10} + \frac{7}{10} \times \frac{1}{10}, = \frac{41}{10}$ or awrt 0.569	M1 A1
	12 3 12 2 72	(2)
(C)	$P(R H) = \frac{\frac{5}{12} \times \frac{2}{3}}{\frac{41}{12}}, = \frac{20}{41} \text{ or awrt } 0.488$	M1 A1ft A1
	12	(3)
(d)	$\left(\frac{5}{12}\right)^2 + \left(\frac{7}{12}\right)^2$	M1 A1ft
	$=\frac{25}{144}+\frac{49}{144}=\frac{74}{144}$ or $\frac{37}{72}$ or awrt 0.514	A1 (3)
		Total 10
(a)	1^{st} B1 for the probabilities on the first 2 branches. Accept $0.41\dot{6}$ and $0.58\dot{3}$	<u> </u>
	2^{nd} B1 for probabilities on the second set of branches. Accept 0.6 , 0.3 , 0.5 and $\frac{1.5}{3}$	
	Allow exact decimal equivalents using clear recurring notation if required.	
(b)	M1 for an expression for $P(H)$ that follows through their sum of two products of probabilitie tree diagram	es from their
(C)	5	
Formula seen	M1 for $\frac{P(R \cap H)}{P(H)}$ with denominator their (b) substituted e.g. $\frac{P(R \cap H)}{P(H)} = \frac{\overline{12}}{(\text{their (b)})}$ awa	rd M1.
Formula not seen	M1 for $\frac{\text{probability} \times \text{probability}}{\text{their } b}$ but M0 if fraction repeated e.g. $\frac{\frac{5}{12} \times \frac{2}{3}}{\frac{2}{12}}$.	
	1^{st} A1ft for a fully correct expression or correct follow through 2^{nd} A1 for $\frac{20}{41}$ o.e.	
(d)	M1 for $\left(\frac{5}{12}\right)^2$ or $\left(\frac{7}{12}\right)^2$ can follow through their equivalent values from tree diagram	
	$1^{st} A1$ for both values correct or follow through from their original tree and + $2^{nd} A1$ for a correct answer	
	Special Case $\frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{6}{11}$ seen award M1A0A0	

Question Number	Scheme	Marks	
39 (a)	$\frac{2+3}{\text{their total}} = \frac{5}{\text{their total}} = \frac{1}{6} (\text{** given answer**})$	M1 A1cso ((2)
(b)	$\frac{4+2+5+3}{\text{total}}$, $=\frac{14}{30}$ or $\frac{7}{15}$ or $0.4\dot{6}$	M1 A1 ((2)
(C)	$\mathbf{P}(A \cap C) = 0$	B1 ((1)
(d)	P(C reads at least one magazine) = $\frac{6+3}{20} = \frac{9}{20}$	M1 A1 ((2)
(e)	$P(B) = \frac{10}{30} = \frac{1}{3}, P(C) = \frac{9}{30} = \frac{3}{10}, P(B \cap C) = \frac{3}{30} = \frac{1}{10} \text{ or } P(B C) = \frac{3}{9}$	M1	
	$P(B) \times P(C) = \frac{1}{3} \times \frac{3}{10} = \frac{1}{10} = P(B \cap C)$ or $P(B C) = \frac{3}{9} = \frac{1}{3} = P(B)$	M1	
	So yes they are statistically independent	A1cso	(3)
		Total	10
(a)	M1 for $\frac{2+3}{\text{their total}}$ or $\frac{5}{30}$		
(b)	M1 for adding at least 3 of "4, 2, 5, 3" and dividing by their total to give a probability Can be written as separate fractions substituted into the completely correct Addition Rule		
(C)	B1 for 0 or 0/30		
(d)	M1 for a denominator of 20 or $\frac{20}{30}$ leading to an answer with denominator of 20		
	$\frac{9}{20}$ only, 2/2		
(e)	 1st M1 for attempting all the required probabilities for a suitable test 2nd M1 for use of a correct test - must have attempted all the correct probabilities. Equality can be implied in line 2. A1 for fully correct test carried out with a comment 		

Question Number	Scheme	Marks
40 (a)	$\frac{\frac{1}{3}}{\frac{1}{3}}$ Red $\frac{\frac{1}{3}}{\frac{1}{3}}$ Blue $\frac{\frac{1}{3}}{\frac{1}{3}}$ Green $\frac{\frac{1}{4}}{\frac{1}{4}}$ Blue $\frac{\frac{2}{3}}{\frac{1}{3}}$ Red $\frac{\frac{2}{3}}{\frac{1}{3}}$ Green $\frac{\frac{2}{3}}{\frac{2}{3}}$ Red $\frac{1}{\frac{1}{3}}$ Blue	M1 A1 A1 (3)
(b)	P(Blue bead and a green bead) = $\left(\frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{1}{4} \times \frac{1}{3}\right) = \frac{1}{6}$ (or any exact equivalent)	M1 A1 (2)
40 (a) (b)	M1for shape and labels: 3 branches followed by 3,2,2 with some <i>R</i> , <i>B</i> and <i>G</i> seen Allow 3 branches followed by 3, 3, 3 if 0 probabilities are seen implying that 3, Allow blank branches if the other probabilities imply probability on blanks is zer Ignore further sets of branches1 st A1for correct probabilities and correct labels on 1 st set of branches. (accept 0.33, 0.67 etc or better here)M1for identifying the 2 cases <i>BG</i> and <i>GB</i> and adding 2 products of probabilities. These cases may be identified by their probabilities e.g. $\left(\frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{1}{4} \times \frac{1}{3}\right)$ NB $\frac{1}{6}$ (or exact equivalent) with no working scores 2/2	2, 2 intended ero
Special Case	With Replacement(This oversimplifies so do not apply Mis-Read: max mark 2/5)(a) B1 for 3 branches followed by 3, 3, 3 with correct labels and probabilities of $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$ (b) M1 for identifying 2, possibly correct cases and adding 2 products of probabilities I wrong answer $\left[\left(\frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{4} \times \frac{1}{4}\right)\right]$ will be sufficient for M1A0 here but $\frac{1}{4} \times \frac{1}{2} + \dots$ would score	¹ 4 on each. but A0 for re M0

Que: Num	Question Scheme		Marks				
41	(a)	<i>S D S Closed curves and 4 in centre</i> Evidence of subtraction 31,36,24 41,17,11 Labels on loops, 16 and box					
	(b)	P(None of the 3 options) = $\frac{16}{180} = \frac{4}{45}$	(5) B1ft				
	(C)	$P(\text{Networking only}) = \frac{17}{180}$	B1ft (1)				
	(d)	P(All 3 options/technician) = $\frac{4}{40} = \frac{1}{10}$	(1) M1 A1 (2) Total [9]				
41	(a)	2 nd M1 There may be evidence of subtraction in "outer" portions, so with 4 in the centre 28 (instead of 31,36,24) along with 33, 9, 3 can score this mark but A0A0 N.B. This is a common error and their "16" becomes 28 but still scores B0 in particular.	e then 35, 40 art (a)				
	(b)	B1ft for $\frac{16}{180}$ or any exact equivalent. Can ft their "16" from their box. If there is no va "16" in the box only allow this mark if they have <u>shown</u> some working.	llue for their				
	(C)	B1ft ft their "17". Accept any exact equivalent					
	(d)	If a probability greater than 1 is found in part (d) score M0A0 M1 for clear sight of $\frac{P(S \cap D \cap N)}{P(S \cap N)}$ and an attempt at one of the probabilities, ft their values.					
		Allow P(all 3 $S \cap N$) = $\frac{4}{36}$ or $\frac{1}{9}$ to score M1 A0. Allow a correct ft from their diagram to score M1A0 e.g. in 33,3,9 case in (a): $\frac{4}{44}$ or $\frac{1}{11}$ is M1A0 A ratio of probabilities with a <u>product</u> of probabilities on top is M0, even with a correct formula. A1 for $\frac{4}{40}$ or $\frac{1}{10}$ or an exact equivalent Allow $\frac{4}{40}$ or $\frac{1}{10}$ to score both marks if this follows from their diagram, otherwise some explanation (method) is required.					

Question Number	Scheme	Mar	ks			
42 (a)	$\frac{\frac{1}{5}}{\frac{1}{2}} L$ Correct tree All labels Probabilities on correct branches $\frac{1}{3} = \frac{1}{10} L$ F Correct tree All labels Probabilities on correct branches Correct Correct tree All labels Probabilities On correct Dranches Correct Correct tree Correct Correct tree Correct Corr	B1 B1 B1	(2)			
(b)(i)	$\frac{1}{3} \times \frac{1}{10} = \frac{1}{30}$ or equivalent	M1 A1	(3)			
(ii)	CNL + BNL + FNL = $\frac{1}{2} \times \frac{4}{5} + \frac{1}{6} \times \frac{3}{5} + \frac{1}{3} \times \frac{9}{10}$	M1	(2)			
	$=\frac{4}{5}$ or equivalent					
(c)	$P(F'/L) = \frac{P(F' \cap L)}{P(L)}$ Attempt correct conditional probability but see notes	M1				
	$= \frac{\frac{1}{6} \times \frac{2}{5} + \frac{1}{2} \times \frac{1}{5}}{1 - (ii)} \frac{\text{numerator}}{\text{denominator}}$	$\frac{A1}{A1ft}$				
	$=\frac{\frac{5}{30}}{\frac{1}{5}} = \frac{5}{6} \text{or equivalent} \qquad \text{cao}$	A1	(4) [11]			
Notes	Exact decimal equivalents required throughout if fractions not used e.g. 42(b)(i) 0.03 Correct path through their tree given in their probabilities award Ms 42(a) All branches required for first B1. Labels can be words rather than symbols for second B1. Probabilities from question enough for third B1 i.e. bracketed probabilities not required. Probabilities and labels swapped i.e. labels on branches and probabilities at end can be awarded the marks if correct. 42(b)(i) Correct answer only award both marks. 42(b)(ii) At least one correct path identified and attempt at adding all three multiplied pairs award M1 42(c) Require probability on numerator and division by probability for M1.Require numerator correct for their tree for M1. Correct formula seen and used, accept denominator as attempt and award M1 No formula, denominator must be correct for their tree or 1-(ii) for M1 1/30 on numerator only is M0, P(L/F') is M0.					

Question Number	Scheme	Marks
43 (a) (i)	$\mathbf{P}(A \cup B) = a + b $ cao	B1
(ii)	$P(A \cup B) = a + b - ab$ or equivalent	B1 (2)
(b)	$P(R \cup Q) = 0.15 + 0.35 = 0.5 $ 0.5	B1 (1)
(C)	$P(R \cap Q) = P(R Q) \times P(Q)$ = 0.1 × 0.35	M1
	= 0.035 0.035	A1
		(2)
(d)	$P(R \cup Q) = P(R) + P(Q) - P(R \cap Q) OR P(R) = P(R \cap Q') + P(R \cap Q)$ = 0.15+their (c)	M1
	$\begin{array}{l} 0.5 = P(R) + 0.35 - 0.035 \\ P(R) = 0.185 \end{array} = \begin{array}{l} 0.15 + 0.035 \\ = 0.15 + 0.035 \\ = 0.185 \end{array} = 0.185 \end{array}$	A1 (2) [7]
Notes	 43(a) (i) Accept a + b - 0 for B1 Special Case If answers to (i) and (ii) are (i) P(A)+P(B) and (ii) P(A)+P(B)-P(A)P(B) award B0B1 43(a)(i) and (ii) answers must be clearly labelled or in correct order for marks to be awarded. 	

Question Number	Scheme		ŚŚ					
44 (a)	$E = \text{take regular exercise} \qquad B = \text{always eat breakfast} P(E \cap B) = P(E \mid B) \times P(B) = \frac{9}{25} \times \frac{2}{3} = 0.24 \text{ or } \frac{6}{25} \text{ or } \frac{18}{75}$	M1 A1	(2)					
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or } P(E' \mid B') \text{or } P(B' \cap E) \text{or } P(B \cap E')$ $= \frac{62}{75} = \frac{13}{25} = \frac{12}{75} = \frac{32}{75}$ $P(E' \cap B') = 1 - P(E \cup B) = \frac{13}{75} \text{or } 0.17\dot{3}$							
(c)	P(E B) = 0.36 \neq 0.40 = P(E) or P(E \cap B) = $\frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$ So E and B are <u>not</u> statistically independent	M1 A1	(2) [8]					
(a)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or P(<i>E</i> <i>B</i>)×P(<i>B</i>) and at least one correct value seen. A1 for 0.24 or example NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{35}$ alone scores M0A0. Correct answer scores full marks.	ct equiv.						
(b) (c)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or P(<i>E</i> <i>B</i>)×P(<i>B</i>) and at least one correct value seen. A1 for 0.24 or exact NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks. 1 st M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) Or a full method for P(<i>E</i> ' <i>B</i> ') requires $1 - P(E B')$ and equation for P(<i>E</i> <i>B</i> '): (a) + Or a full method for P(<i>B</i> ' \cap <i>E</i>) or P(<i>B</i> \cap <i>E</i> ') [or other valid method] 2 nd M1 for a method leading to answer e.g. $1 - P(E \cup B)$ or P(<i>B</i> ')×P(<i>E</i> ' <i>B</i> ') or P(<i>B</i> ') $- P(B' \cap E)$ or P(<i>E</i> ') $- P(B \cap E')$ Venn Diagram 1 st M1 for diagram with attempt at $\frac{2}{5} - P(B \cap E)$ or $\frac{2}{3} - P(B \cap E)$. Can 1 st A1 for a correct first probability as listed or 32, 18 and 12 on Venn Diagram 2 nd M1 for identifying suitable values to test for independence e.g. P(<i>E</i>) = 0.40 and P(<i>E</i> <i>B</i>) Or P(<i>E</i>)×P(<i>B</i>) = and P(<i>E</i> \cap <i>B</i>) = their (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values seen A1 for correct values and a correct comment Diagrams You may see these or find these useful for identifying probabilities. (a) $\frac{9}{25}$ is M0A0 (b) P(<i>E</i> U <i>B</i>) = $\frac{53}{75}$ sco 1 P(<i>E</i>) + P(<i>D</i>) = $\frac{23}{75}$ sco							

Question Number	Scheme	Marks
45 (a)	0.95 Positive Test	
	0.02 Disease (0.05) Negative Test	
	(0.98) No Disease 0.03 Positive Test	
	(0.97) Negative Test	
	Tree without probabilities or labels 0.02(Disease), 0.95(Positive) on correct branches	M1 A1
	0.03(Positive) on correct branch.	A1
(b)	P(Positive Test) = $0.02 \times 0.95 + 0.98 \times 0.03$	[3] M1A1ft
	= 0.0484	A1 [3]
(c)	P(Do not have disease Postive test) = $\frac{0.98 \times 0.03}{0.0484}$ = 0.607438 awrt 0.607	[3] M1 A1
(d)	Test not very useful OR High probability of not having the disease for a person with a positive test	[2] B1
		[1] Total 9
	Notes: (a) M1:All 6 branches. Bracketed probabilities not required. (b) M1 for sum of two products, at least one correct from their diagram A1ft follows from the probabilities on their tree A1 for correct answer only or $\frac{121}{2500}$ (c) M1 for conditional probability with numerator following from their tree and denominator their answer to part (b). A1 also for $\frac{147}{242}$.	

								I
48.(a)	$P(R=3 \cap B=$	$0) = \frac{1}{4} \times \frac{1}{4}$	$\frac{1}{4}, =\frac{1}{16}$					M1, A1
(h)								(2)
		3	0	3	6	9		
		2	0	2	4	6		
		1	0	1	2	3	All 0s All 1,2,3s All 4,6,9s	B1 B1 B1
		0	0	0	0	0		(3)
		B R	0	1	2	3		
(c)	$a = \frac{7}{16}, b = c =$	$d = \frac{1}{16}$						B1, B1 B1
								(3)
								Total 8 marks
(a)	M1 for $\frac{1}{4} \times$	$\frac{1}{4}$						
(c)	$1^{\text{st}} B1$ for $\frac{7}{16}$,	-						
	2 nd B1 for only one error in <i>b</i> , <i>c</i> , <i>d</i> (<i>b</i> = <i>c</i> = <i>d</i> $\neq \frac{1}{16}$ or <i>b</i> = <i>c</i> = $\frac{1}{16} \neq d$ etc), 3 rd B1 all of <i>b</i> , <i>c</i> , <i>d</i> = $\frac{1}{16}$							

Question Number	Scheme		Marks
49.(a)	44, 46, 48, 66, 68, 88 NB 64 is the same as 46, 84 is the same as 48, 86 is the same as 68	B1: At least 4 different pairs (ignore incorrect extras)B1: 6 different pairs with no incorrect extras	B1B1 (2)
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1 M1 M1A1
	B1: 4,5,6,7,8 only no extras or omissions B1: Writing or using $P(X = 4) = \frac{1}{2}$, $P(X = 4) = \frac{1}{2}$	$(-6) = \frac{3}{-1}$ and $P(X = 8) = \frac{1}{-1}$ May be seen in(a)	1)
	2 M1: A correct method for one of P(5), P(6) M1: A correct method for two of P(5), P(6)	105or P(7)may be implied by correct answor P(7)may be implied by correct answod their associated probabilities	ver wer
			(5)
(c)	$1 - \left(\frac{24}{25}\right)^n > 0.9$ or $\left(\frac{24}{25}\right)^n < 0.1$ oe	M1: $1 - \left(\frac{24}{25}\right)^n > 0.9 \text{ or } \left(\frac{24}{25}\right)^n < 0.1 \text{ oe}$ seen or used may use = or \leq instead of $<$ = or \geq instead of $>$ Do Not award $\left(\frac{24}{25}\right)^n > 0.1 \text{ oe}$	M1
	n > 56.4	A1: Ignore any $n >$, $n <$, $n = etc$. Award if you see awrt 56.4 may be implied by $n = 57$	A1
	n = 57	A1: cao $n = 57$ or 57 on its own. Do not allow $n > 57$ or $n < 57$. Do not award if alternative values are given. You must check there is no incorrect working	A1
	Alternative – trial and error 50 0.87 0.13 Allow 51 0.865 0.125 awrt 52 0.88 0.12 awrt 53 0.885 0.115 54 0.89 0.11 55 0.894 0.106 56 0.898 0.102 57 0.902 0.098 58 0.906 0.094 59 0.91 0.09 60 0.94 0.086 $n = 57$	M1 at least 2 trials for $50 \le n \le 60$ shown with correct probabilities A1 trial for $n = 56$ and 57 shown with correct probabilities A1: cao $n = 57$ or 57 on its own. Do not allow $n > 57$ or $n < 57$. Do not award if alternative values are given	M1 A 1 A1 (3)
			Total 1

Question Number				Schem	e	Marks
	Notes					
50	NB: If there is a fully correct table award full marks.					
	P(10) = 0.2	P(20) = 0	4 and P(50) = 0.4	B1: using $P(10) = 0.2 (p) P(20) = 0.4(q)$ and $P(50) = 0.4(r)$ may be seen in calculations or implied by a correct probability.	B1
	Median 10	, 20, 50			B1: three correct medians and no extras.	B1
	P(Median 1	(0) =			M1: allow if $(p+q+r)-1$ and use	
	$0.2^3 + 3 \times 0$	$0.2^2 \times 0.4 + 3$	$3 \times 0.2^2 \times 0$.4	$p^3 + 3 \times p^2 \times q + 3 \times p^2 \times r$	
	or $0^3 2 0$	\mathbf{a}^2 \mathbf{a}			or	
	$0.2^{\circ} + 3 \times 0$	$0.2^{-} \times 0.8$			$p^3 + 3 \times p^2 \times (q+r)$	
					look for $\frac{1}{125} + \frac{6}{125} + \frac{6}{125}$	
	P(Median 5	50) =			M1: allow if $(p+q+r)=1$ and use	
	$0.4^3 + 3 \times ($	$0.4^2 \times 0.2 +$	$3 \times 0.4^2 \times 0$).4	$r^3 + 3 \times r^2 \times p + 3 \times r^2 \times q$	See
	or	.2			or	below
	$0.4^{3}+3\times0$	$0.4^2 \times 0.6$			$r^3 + 3 \times r^2 \times (p+q)$	for how
					8 12 24	to award
					Look for $\frac{125}{125} + \frac{125}{125} + \frac{125}{125}$	
	P(Median 2	20) =		2	M1: allow if $(p+q+r)=1$ and use	
	3×0.2×0.	$4^2 + 6 \times 0.2$	$\times 0.4 \times 0.4$	$+0.4^{3}+$	$3 \times p \times q^2 + 6 \times p \times q \times r + q^3 +$	
	$3 \times 0.4^2 \times 0$).4			$3 \times q^2 \times r$	
					12 24 8 24	
					$\frac{12}{125} + \frac{21}{125} + \frac{3}{125} + \frac{3}{125} + \frac{3}{125}$	
	How to award the M marks – Allow the use of 1. 2 and 5 for the medians for the					
	method marks					
	M1 any correct calculation (implied by correct answer) for $P(m = 10)$ or					
	P(m = 20) or P(m = 50)					
	MI any 2 correct calculations (implied by 2 correct answers) $P(m = 10)$ or $P(m = 20)$ or $P(m = 50)$					
	M1 any 3 correct calculations (implied by 3 correct answers) for $P(m = 10)$ and $P(m =$					
	20) and $P(m = 50)$ or					
	3 probabilities that add up to 1 providing it is $1 - \text{their } 2$ other calculated					
	probab	ilities. Do r	not allow $\frac{1}{5}$	$\frac{2}{5}\frac{2}{5}$		
	NB if they	do not have	J a correct a	nswer their y	working must be clear including the	
	additio	n signs.	u concer e		working must be creat meruaning the	
	median	10	20	50	A1: awrt any 1 correct	A2
		0.104	0.544	0.352	A2. awn an 5 correct These do not need to be in a table as	
		Or $\frac{13}{}$	Or $\frac{68}{}$	Or <u>44</u>	long as the correct probablity is with	
		125	125	125	the correct median(10, 20 & 50)	
					NB: Do Not allow the use of 1,2 and	
					5 for the medians for the A marks	

Question Number		Scheme		Marks		
51(a)	(5,5,5) or (1,5,5) or (2,5,5)					
	(5,5,5) (5,5,1) (5,1,5) (1,5,5) (5,5,2) (5,2,5) (2,5,5) or (5,5,5) and (5,5,1) (× 3) and (5,5,2) (× 3)					
51(b)	$(5,5,5) \qquad \left(\frac{3}{10}\right)^3 =$	$=\frac{27}{1000}=0.027$		B1		
	$(5,5,1) \qquad 3 \times \frac{1}{2} \times \Big($	$\left(\frac{3}{10}\right)^2 = \frac{135}{1000} or \frac{27}{200} = 0.$	135	M1		
	(5,5,2) $3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2 = \frac{54}{1000} = \frac{27}{500} = 0.054$					
	$P(M=5) = \left(\frac{3}{10}\right)^3 + 3\times$	$\left(\frac{1}{2} \times \left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)\right)$	$^{2} = \frac{27}{125} = 0.216$ oe	A1A1 (4)		
51(c)	$P(M = 1) = (0.5)^3 + 3(0.5)^2(0.2) + 3(0.5)^2(0.3)$					
	= 0.5			A1		
	$P(M=2) = \left(\frac{1}{5}\right)^3 + 3 \times$	$\left(\frac{1}{5}\right)^2 \times \frac{1}{2} + 3 \times \left(\frac{1}{5}\right)^2 \times \frac{3}{10}$	$\frac{1}{2} + 6 \times \frac{1}{2} \times \frac{1}{5} \times \frac{3}{10}$	M1		
	$= 0.284 \text{ or } \frac{7}{2}$	$\frac{1}{50}$ oe		A1		
	2	1 2	5	A1		
	$\mathbf{P}(M=m) \qquad 0$	0.5 0.284	0.216	(5)		
				Total 11 marks		
	set — contract	Notes				
51(a)	1^{st} B1 for two of the 2^{nd} B1 for all 7 cases	given triples, any order				
51(b)	$\frac{2}{3}$ B1 for all 7 cases. B1 $\left(\frac{3}{3}\right)^3$ or 0.027	oe. This can be a single	term in a summation			
	$(\frac{1}{10})$ of 0.027 be. This can be a single term in a summation					
	M1 either "3" $\times \frac{1}{2} \times \left(\frac{3}{10}\right)$ or "3" $\times \frac{1}{5} \times \left(\frac{3}{10}\right)$ oe. May omit the 3 \times or have					
	another positive integer in place of the 3. These may be seen as a single term in a summation					
	A1 $\left(\frac{3}{10}\right)^3 + 3 \times \frac{1}{2} >$	$\left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2$ oe				
	A1 0.216 oe					
51(c)	1 st M1 correct calculation	on for $P(M = 1)$ or $P(M = 1)$	= 2), working must be sh	own		
	and not implied by a C 1 st \wedge 1 either P(M = 1)	correct answer. or $P(M = 2)$ correct				
	2^{nd} M1 correct calculati	ion for both $P(M = 1)$ and	d $P(M = 2)$ or their prob	abilities		
	adding up to 1, but do r	not allow probabilities of	0.5, 0.2 and 0.3			
	$2^{nd} A1$ both $P(M = 1)$	and $P(M=2)$ correct				
	3 th Aldep on both M m	arks awarded. All three y	values written down with	their		
	correct probabilities. They must be in part (c) but they do not need to be in a table					
	NB A fully correct table v	with no working will get M	0 A0 M1 A1 A0.			

Question Number	Scheme	Marks
52. (a)	(1, 1, 1), (5, 5, 5), (1, 5, 5), (1, 5, 1) (1,1,1); (5,5,5); (1, 5, 5); (5, 1, 5); (5, 5, 1) (5, 1, 1); (1, 5, 1); (1, 1, 5)	B1 B1 (2)
(b)	r: 0 and 4 P(R = 0) = $\frac{9}{27}$ or $\frac{1}{3}$ P(R = 4) = $\frac{18}{27}$ or $\frac{2}{3}$	B1 M1d A1
		(3) [5]
	Notes	
(a)	1^{st} B1 for any two of the triples 2^{nd} B1 for all 8 cases. No incorrect extras – condone repeats. Allow (1, 5, 5) 5) (x 3) instead of writing all three cases down	(x 3) and (1, 1,
(b)	B1 for both values of r M1 d dependent on previous B1. For an attempt to evaluate one of the prob correctly e.g. for $r = 0$; $\left(\frac{2}{3}\right)^3 + \left(\frac{1}{3}\right)^3$ and for $r = 4$; $3 \times \left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right) + 3 \times \left(\frac{1}{3}\right) \times \left(\frac{1}{$	Pabilities for r $\left(\frac{2}{3}\right)^2$ Working w awrt 0.333

Question Number	Scheme		Marks
31	Attempt to write down combinations	at least one seen	M1
	(1,1,1), (1,1,2) any order (1,2,2) any order, (2,2,2)	no extra combinations	A1
	Range 0 and 1	0 and 1 only	B1
	$[P(range = 0) =] (0.65)^{3} + (0.35)^{3}$ $= 0.3175 \text{ or } \frac{127}{400}$	either range	M1 A1cao
	$[P(range = 1) =] (0.35)^{2}(0.65) \times 3 + (0.65)^{2}(0.35) \times 3$ $= 0.6825 \text{ or } \frac{273}{400}$		A1cao
	Notes		Total 6
	First M1 may be implied by either $(0.65)^3$ or $(0.35)^3$ or $(0.65)^3$ First A1 may be implied by $(0.65)^3$ and $(0.35)^3$ and $(0.65)^3$ No need for x3 2^{nd} M1 $(p)^3 + (1-p)^3$ or $(1-p)^2(p) \times 3 + (p)^2(1-p) \times 3$ A1 for 0.3175 cao or exact equivalent e.g $\frac{254}{800}$	$(0.35)^2(0.35)$ or $(0.35)^2(0.65)^2(0.35)$ and $(0.35)^2(0.65)^2(0.$	
	A1 for 0.6825 cao or exact equivalent e.g $\frac{546}{800}$ NB These probabilities do not need to be associated with the	ne correct range	

