EXPERT TUITION

Maths Questions By Topic:

Sequences & Series Mark Scheme

A-Level Edexcel

८ 0207 060 4494

www.expert-tuition.co.uk

💻 online.expert-tuition.co.uk

🖂 enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents	
<u>New Spec</u>	
Paper 1	Page 1
Paper 2	Page 32
<u>Old Spec</u>	
Core 1	Page 49
Core 2	Page 88
Core 4	Page 127

Question	Scheme	Marks	AOs
1 (i)	States that $S = a + (a + d) + \dots + (a + (n-1)d)$	B1	1.1a
	S = a +(a+d) + (a+(n-1)d) S = (a+(n-1)d) + (a+(n-2)d) ++a	M1	3.1a
	Reaches $2S = n \times (2a + (n-1)d)$ And so proves that $S = \frac{n}{2} [2a + (n-1)d]$ *	A1*	2.1
		(3)	
(ii)	(a) $S = 10 + 9.20 + 8.40 + \dots$		
	$64 = \frac{n}{2} (20 - 0.8 (n - 1)) \text{o.e}$	M1	3.1b
	$128 = 20n - 0.8n^{2} + 0.8n$ $0.8n^{2} - 20.8n + 128 = 0$ $n^{2} - 26n + 160 = 0 $ *	A1*	2.1
		(2)	
	(b) <i>n</i> = 10,16	B1	1.1b
		(1)	
	 (c) 10 weeks with a minimal correct reason. E.g. He has saved up the amount by 10 weeks so he would not save for another 6 weeks You would choose the smaller number He starts saving negative amounts (in week 14) so 16 does not make sense 	B1	2.3
		(1)	
			(7 marks)
Notes:			

(i)

B1: Correctly writes down an expression for the key terms S or S_n including $S = \text{ or } S_n =$

Allow a minimum of 3 correct terms including the first and last terms, and no incorrect terms.

Score for S or $S_n = a + (a+d) + \dots + (a+(n-1)d)$ with + signs, not commas

If the series contains extra terms that should not be there E.g

 $S = a + (a + d) + \dots (a + nd) + (a + (n-1)d)$ score B0

M1: For the key step in reversing the terms and adding the two series. Look for a minimum of two terms, including *a* and a+(n-1)d, the series reversed with evidence of adding, for example 2S = Condone the extra incorrect terms (see above) appearing. Can be scored when terms are separated by commas

A1*: Shows correct work (no errors) with all steps shown leading to given answer. There should be no incorrect terms. A minimum of 3 terms should be shown in each sum

The solution below is a variation of this. $S = a + (a + d) + \dots + l$ $S = l + (l - d) + \dots + a$ 2S = n(a + l) $S = \frac{n}{2}(a + l) = \frac{n}{2}(a + a + (n - 1)d) = \frac{n}{2}(2a + (n - 1)d)$ B1 and A1 are not scored until the last line, M scored on line 3

The following scores B1 M0 A0 as the terms in the second sum are not reversed

SC in (a) Scores B1 M0 A0.

They use $0+1+2+...+(n-1)=\frac{n(n-1)}{2}$ which relies on the quoted proof.

(ii) (a)

M1: Uses the information given to set up a correct equation in *n*.

The values of S, a and d need to be correct and used within a correct formula

Possible ways to score this include unsimplified versions $64 = \frac{n}{2} (2 \times 10 + (n-1) \times -0.8)$,

$$64 = \frac{n}{2} (10 + 10 + (n - 1) \times -0.8) \text{ or versions using pence rather than } \pounds's \quad 6400 = \frac{n}{2} (2000 + (n - 1) \times -80)$$

Allow recovery for both marks following $64 = \frac{n}{2}(2 \times 10 + (n-1) - 0.8)$ with an invisible ×

A1*: Proceeds without error to the given answer. (Do not penalise a missing final trailing bracket)Look for at least a line with the brackets correctly removed as well as a line with the terms in *n* correctly combined

E.g.
$$64 = \frac{n}{2} (20 + (n-1) \times -0.8) \Longrightarrow 64 = 10n - 0.4n^2 + 0.4n \Longrightarrow 0.4n^2 - 10.4n + 64 = 0 \Longrightarrow n^2 - 26n + 160 = 0$$

(ii)(b)
B1: $n = 10,16$
(ii)(c)
D1. Chan = 10 (and b) = 10 (and b) = 10 (b) = 10 (and b) = 10 (b) =

B1: Chooses 10 (weeks) and gives a minimal acceptable reason. The reason must focus on why the answer is 10 (weeks) rather than 16(weeks) or alternatively why it would not be 16 weeks.

E **EXPERT** Tuition

2

Question	Scheme	Marks	AOs	
2(a)	3^8 or 6561 as the constant term	B1	1.1b	
	$\left(3 - \frac{2x}{9}\right)^8 = \dots + {}^8C_1 \left(3\right)^7 \left(-\frac{2x}{9}\right) + {}^8C_2 \left(3\right)^6 \left(-\frac{2x}{9}\right)^2 + {}^8C_3 \left(3\right)^5 \left(-\frac{2x}{9}\right)^3 + \dots$ $= \dots + 8 \times \left(3\right)^7 \left(-\frac{2x}{9}\right) + 28 \times \left(3\right)^6 \left(-\frac{2x}{9}\right)^2 + 56\left(3\right)^5 \left(-\frac{2x}{9}\right)^3$	M1 A1	1.1b 1.1b	
	$= 6561 - 3888x + 1008x^2 - \frac{448}{3}x^3 + \dots$	A1	1.1b	
		(4)		
(b)	Coefficient of x^2 is $\frac{1}{2} \times "1008" - \frac{1}{2} \times " - \frac{448}{3}"$	M1	3.1a	
	$=\frac{1736}{3}$ (or 578 $\frac{2}{3}$)	A1	1.1b	
		(2)		
(6 marks)				
	Notes			

B1: Sight of 3^8 or 6561 as the constant term.

M1: An attempt at the binomial expansion. This can be awarded for the correct structure of the 2nd, 3rd or 4th term. The correct binomial coefficient must be associated with the correct power of 3 and the correct power of $(\pm)\frac{2x}{9}$. Condone invisible brackets

eg
$${}^{8}C_{2}(3)^{6} - \frac{2x^{2}}{9}$$
 for this mark.

A1: For a correct simplified or unsimplified **second** or **fourth term** (with binomial coefficients evaluated).

$$+8 \times (3)^7 \left(-\frac{2x}{9}\right)$$
 or $+56 (3)^5 \left(-\frac{2x}{9}\right)^3$

A1: $6561-3888x+1008x^2 - \frac{448}{3}x^3$ Ignore any extra terms and allow the terms to be listed. Allow the exact equivalent to $-\frac{448}{3}$ eg -149.3 but not -149.3. Condone x^1 and eg +-3888x. Do not isw if they multiply all the terms by eg 3

Alt(a)

- B1: Sight of $3^8(1+....)$ or 6561 as the constant term
- M1: An attempt at the binomial expansion $\left(1-\frac{2}{27}x\right)^8$. This can be awarded for the correct structure of the 2nd, 3rd or 4th term. The correct binomial coefficient must be associated with the correct power of $(\pm)\frac{2x}{27}$. Condone invisible brackets for this mark.

Score for any of:

$$8 \times -\frac{2}{27}x, \quad \frac{8 \times 7}{2} \times \left(-\frac{2}{27}x\right)^2, \quad \frac{8 \times 7 \times 6}{6} \times \left(-\frac{2}{27}x\right)^3 \text{ which may be implied by any of} \\ -\frac{16}{27}x, \quad +\frac{112}{729}x^2, \quad -\frac{448}{19683}x^3$$

- A1: For a correct simplified or unsimplified **second** or **fourth** term including being multiplied by 3⁸
- A1: $6561-3888x+1008x^2 \frac{448}{3}x^3$ Ignore any extra terms and allow the terms to be listed. Allow the exact equivalent to $-\frac{448}{3}$ eg -149.3 but not -149.3. Condone x^1 and eg +-3888x

(b)

M1: Adopts a correct strategy for the required coefficient. This requires an attempt to calculate $\pm \frac{1}{2}$ their coefficient of x^2 from part (a) $\pm \frac{1}{2}$ their coefficient of x^3 from part (a).

There must be an attempt to bring these terms together to a single value. ie they cannot just circle the relevant terms in the expansion for this mark. The strategy may be implied by their answer.

Condone any appearance of x^2 or x^3 appearing in their intermediate working.

A1:
$$\frac{1736}{3}$$
 or $578\frac{2}{3}$ Do not accept 578.6 or $\frac{1736}{3}x^2$

Question	Scheme	Marks	AOs	
3 (a)	$u_2 = k - 12, \ u_3 = k - \frac{24}{k - 12}$	M1	1.1b	
	$u_1 + 2u_2 + u_3 = 0 \Longrightarrow 2 + 2(k - 12) + k - \frac{24}{k - 12} = 0$	dM1	1.1b	
	$\Rightarrow 3k - 22 - \frac{24}{k - 12} = 0 \Rightarrow (3k - 22)(k - 12) - 24 = 0$ $\Rightarrow 3k^2 - 36k - 22k + 264 - 24 = 0$ $\Rightarrow 3k^2 - 58k + 240 = 0*$	A1*	2.1	
		(3)		
(b)	$k = 6, \left(\frac{40}{3}\right)$	M1	1.1b	
	k = 6 as k must be an integer	A1	2.3	
		(2)		
(c)	$(u_3 =)10$	B1	2.2a	
		(1)		
	(6 marks)			
	Notes			

M1: Attempts to apply the sequence formula once for either u_2 or u_3 .

Usually for $u_2 = k - \frac{24}{2}$ o.e. but could be awarded for $u_3 = k - \frac{24}{their "u_2"}$

dM1: Award for

- attempting to apply the sequence formula to find both u_2 and u_3
- using $2+2"u_2"+"u_3"=0 \Rightarrow$ an equation in k. The u_3 may have been incorrectly adapted

A1*: Fully correct work leading to the printed answer. There must be

• (at least) one correct intermediate line between $2+2(k-12)+k-\frac{24}{k-12}=0$ (o.e.) and the

given answer that shows how the fractions are "removed". E.g. (3k-22)(k-12)-24=0

• no errors in the algebra. The = 0 may just appear at the answer line.

(b)

M1: Attempts to solve the quadratic which is implied by sight of k = 6.

- This may be awarded for any of
 - $3k^2 58k + 240 = (ak \pm c)(bk \pm d) = 0$ where ab = 3, cd = 240 followed by k = 3
 - an attempt at the correct quadratic formula (or completing the square)
 - a calculator solution giving at least k = 6
- A1: Chooses k = 6 and gives a minimal reason

Examples of a minimal reason are

- 6 because it is an integer
- 6 because it is a whole number
- 6 because $\frac{40}{3}$ or 13.3 is not an integer

(c)

B1: Deduces the correct value of u_3 .

Question	Scheme	Marks	AOs
4(a)	$u_3 = \pounds 20000 \times 1.08^2 = (\pounds)23328*$	B1*	1.1b
		(1)	
(b)	$20000 \times 1.08^{n-1} > 65000$	M1	1.1b
	$1.08^{n-1} > \frac{13}{4} \Longrightarrow n-1 > \frac{\ln(3.25)}{\ln(1.08)}$ or e.g. $1.08^{n-1} > \frac{13}{4} \Longrightarrow n-1 > \log_{1.08}\left(\frac{13}{4}\right)$	M1	3.1b
	Year 17	A1	3.2a
		(3)	
(c)	$S_{20} = \frac{20000\left(1 - 1.08^{20}\right)}{1 - 1.08}$	M1	3.4
	Awrt (£) 915 000	A1	1.1b
		(2)	
(6 marks)			
Notes			

B1*: Uses a correct method to show that the Profit in Year 3 will be £23 328. Condone missing units E.g. £20000×1.08² or £20000×108%×108%

This may be obtained in two steps. E.g $\frac{8}{100} \times 20000 = 1600$ followed by $\frac{8}{100} \times 21600 = 1728$ with the calculations 21600 + 1728 = 23328 seen. Condone calculations seen as 8% of 20000 = 1600. This is a show that question and the method must be seen.

It is not enough to state Year $1 = \pounds 21600$, Year $2 = \pounds 23328$

(b)

M1: Sets up an inequality or an equation that will allow the problem to be solved.

Allow for example *N* or *n* for n - 1. So award for $20000 \times 1.08^{n-1} > 65000$,

 $20000 \times 1.08^{n} = 65000 \text{ or } 20000 \times (108\%)^{n} \ge 65000 \text{ amongst others.}$

Condone **slips** on the 20 000 and 65 000 but the 1.08 o.e. must be correct

M1: Uses a correct strategy involving logs in an attempt to solve a type of equation or inequality of the form seen above. It cannot be awarded from a sum formula

The equation/inequality must contain an index of n - 1, N, n etc.

Again condone **slips** on the 20 000 and 65 000 but additionally condone an error on the 1.08, which may appear as 1.8 for example

E.g. $20\,000 \times 1.08^n = 65\,000 \Rightarrow n \log 1.08 = \log \frac{65000}{20000} \Rightarrow n = \dots$

E.g. $2000 \times 1.8^n = 65000 \Longrightarrow \log 2000 + n \log 1.8 = \log 65000 \Longrightarrow n = \dots$

A1: Interprets their decimal value and gives the correct year number. Year 17

The demand of the question dictates that solutions relying entirely on calculator technology are not acceptable, BUT allow a solution that appreciates a correct term formula or the entire set of calculations where you may see the numbers as part of a larger list

E.g. Uses, or implies the use of, an acceptable calculation and finds value(s)

for M1: $(n=16) \Rightarrow P = 20000 \times 1.08^{15} = \text{awrt } 63400 \text{ or } (n=17) \Rightarrow P = 20000 \times 1.08^{16} = \text{awrt } 68500$

M1: $(n=16) \Rightarrow P = 20000 \times 1.08^{15} = \text{awrt } 63400 \text{ and } (n=17) \Rightarrow P = 20000 \times 1.08^{16} = \text{awrt } 68500$

A1: 17 years following correct method and both M's

(c)

M1: Attempts to use the model with a **correct** sum formula to find the total profit for the 20 years. You may see an attempt to find the sum of 20 terms via a list. This is acceptable provided there are 20 terms with $u_n = 1.08 \times u_{n-1}$ seen at least 4 times and the sum attempted.

Condone a slip on the 20 000 (e.g appearing as 2 000) and/or a slip on the 1.08 with it being the same "r" as in (b). Do not condone 20 appearing as 19 for instance

A1: awrt £915 000 but condone missing unit

The demand of the question dictates that all stages of working should be seen. An answer without working scores M0 A0

Question	Scheme	Marks	AOs	
5(a)(i)	$50x^{2} + 38x + 9 \equiv A(5x+2)(1-2x) + B(1-2x) + C(5x+2)^{2}$	M1	1 1h	
	$\Rightarrow B = \dots$ or $C = \dots$		1.10	
	B = 1 and $C = 2$	A1	1.1b	
(a)(ii)	E.g. $x = 0$ $x = 0 \Longrightarrow 9 = 2A + B + 4C$	M1	2.1	
	$\Rightarrow 9 = 2A + 1 + 8 \Rightarrow A = \dots$	A 1 *	1 11	
	$A = 0^{*}$	$A1^{*}$	1.10	
(b)(i)		(4)		
(0)(1)	$\frac{1}{(5x+2)^2} = (5x+2)^{-2} = 2^{-2} \left(1 + \frac{5}{2}x\right)^{-2}$			
	or	M1	3.1a	
	$(5x+2)^{-2} = 2^{-2} + \dots$			
	$\left(1+\frac{5}{2}x\right)^{-2} = 1-2\left(\frac{5}{2}x\right) + \frac{-2\left(-2-1\right)}{2!}\left(\frac{5}{2}x\right)^{2} + \dots$	— M1	1.1b	
	$2^{-2}\left(1+\frac{5}{2}x\right)^{-2} = \frac{1}{4} - \frac{5}{4}x + \frac{75}{16}x^2 + \dots$	A1	1.1b	
	$\frac{1}{(1-2x)} = (1-2x)^{-1} = 1 + 2x + \frac{-1(-1-1)}{2!}(2x)^{2} + .$		1.1b	
	$\frac{1}{\left(5x+2\right)^2} + \frac{2}{1-2x} = \frac{1}{4} - \frac{5}{4}x + \frac{75}{16}x^2 + \dots + 2 + 4x + 8x^2 + \dots$	- dM1	2.1	
	$=\frac{9}{4}+\frac{11}{4}x+\frac{203}{16}x^2+\dots$	A1	1.1b	
(b)(ii)	$ x < \frac{2}{5}$	B1	2.2a	
		(7)		
	(11 marks			
	Notes			

(a)(i)

M1: Uses a correct identity and makes progress using an appropriate strategy (e.g. sub $x = \frac{1}{2}$) to find a value for *B* or *C*. May be implied by one correct value (cover up rule).

A1: Both values correct

(a)(ii)

M1: Uses an appropriate method to establish an equation connecting A with B and/or C and uses their values of B and/or C to find a suitable equation in A.

Amongst many different methods are:

Compare terms in $x^2 \Rightarrow 50 = -10A + 25C$ which would be implied by $50 = -10A + 25 \times "2"$ Compare constant terms or substitute $x = 0 \Rightarrow 9 = 2A + B + 4C$ implied by $9 = 2A + 1 + 4 \times 2$ A1*: Fully correct proof with no errors.

Note: The second part is a proof so it is important that a suitable proof/show that is seen. Candidates who write down 3 equations followed by three answers (with no working) will score M1 A1 M0 A0

(b)(i)

- M1: Applies the key steps of writing $\frac{1}{(5x+2)^2}$ as $(5x+2)^{-2}$ and takes out a factor of 2^{-2} to form an expression of the form $(5x+2)^{-2} = 2^{-2} (1+*x)^{-2}$ where * is not 1 or 5 Alternatively uses direct expansion to obtain $2^{-2} + \dots$
- M1: Correct attempt at the binomial expansion of $(1 + x)^{-2}$ up to the term in x^{2}

Look for
$$1 + (-2) * x + \frac{(-2)(-3)}{2} * x^2$$
 where * is not 5 or 1.

Condone sign slips and lack of *² on term 3.

Alt Look for correct structure for 2nd and 3rd terms by direct expansion. See below

A1: For a fully correct expansion of $(2+5x)^{-2}$ which may be unsimplified. This may have been combined with their '*B*'

A direct expansion would look like $(2+5x)^{-2} = 2^{-2} + (-2)2^{-3} \times 5x + \frac{(-2)(-3)}{2}2^{-4} \times (5x)^{2}$

- M1: Correct attempt at the binomial expansion of $(1-2x)^{-1}$
 - Look for $1 + (-1)^* x + \frac{(-1)(-2)}{2} * x^2$ where * is not 1
- dM1: Fully correct strategy that is dependent on the previous TWO method marks.
 - There must be some attempt to use their values of *B* and *C*
- A1: Correct expression or correct values for p, q and r.

(b)(ii)

B1: Correct range. Allow also other forms, for example $-\frac{2}{5} < x < \frac{2}{5}$ or $x \in \left(-\frac{2}{5}, \frac{2}{5}\right)$

Do not allow multiple answers here. The correct answer must be chosen if two answers are offered

6(a)	$(2+ax)^8$ Attempts the term in $x^5 = {}^8C_5 2^3 (ax)^5 = 448a^5 x^5$	M1 A1	1.1a 1.1b
	Sets $448a^5 = 3402 \Longrightarrow a^5 = \frac{243}{32}$	M1	1.1b
	$\Rightarrow a = \frac{3}{2}$	A1	1.1b
		(4)	
(b)	Attempts either term. So allow for 2^8 or ${}^8C_4 2^4 a^4$	M1	1.1b
	Attempts the sum of both terms $2^8 + {}^8C_4 2^4 a^4$	dM1	2.1
	= 256 + 5670 = 5926	A1	1.1b
		(3)	
		(*	7 marks)

Notes

(a)

M1: An attempt at selecting the correct term of the binomial expansion. If all terms are given then the correct term must be used. Allow with a missing bracket ${}^{8}C_{5}2^{3}ax^{5}$ and left without the binomial coefficient expanded

A1: $448a^5x^5$ Allow unsimplified but ${}^{8}C_5$ must be "numerical"

M1: Sets their $448a^5 = 3402$ and proceeds to $\Rightarrow a^k = \dots$ where $k \in \mathbb{N}$ $k \neq 1$

A1: Correct work leading to $a = \frac{3}{2}$

(b)

M1: Finds either term required. So allow for 2^8 or ${}^8C_4 2^4 a^4$ (even allowing with *a*)

dM1: Attempts the sum of both terms $2^8 + {}^8C_4 2^4 a^4$

A1: cso 5926

Question	Scheme	Marks	AOs
7(a)	$\left(1+8x\right)^{\frac{1}{2}} = 1 + \frac{1}{2} \times 8x + \frac{\frac{1}{2} \times -\frac{1}{2}}{2!} \times \left(8x\right)^{2} + \frac{\frac{1}{2} \times -\frac{1}{2} \times -\frac{3}{2}}{3!} \times \left(8x\right)^{3}$	M1 A1	1.1b 1.1b
	$= 1 + 4x - 8x^2 + 32x^3 + \dots$	A1	1.1b
		(3)	
(b)	Substitutes $x = \frac{1}{32}$ into $(1+8x)^{\frac{1}{2}}$ to give $\frac{\sqrt{5}}{2}$	M1	1.1b
	Explains that $x = \frac{1}{32}$ is substituted into $1 + 4x - 8x^2 + 32x^3$ and you multiply the result by 2	Alft	2.4
		(2)	
			(5 marks)
Notes:			

⁽a)

M1: Attempts the binomial expansion with $n = \frac{1}{2}$ and obtains the correct structure for term 3 or term 4.

Award for the correct coefficient with the correct power of x. Do not accept ${}^{n}C_{r}$ notation for coefficients.

For example look for term 3 in the form
$$\frac{\frac{1}{2} \times -\frac{1}{2}}{2!} \times (*x)^2$$
 or $\frac{\frac{1}{2} \times -\frac{1}{2} \times -\frac{3}{2}}{3!} \times (*x)^3$

A1: Correct (unsimplified) expression. May be implied by correct simplified expression A1: 1 + 4 = 8 + 22 + 32

A1: $1 + 4x - 8x^2 + 32x^3$

Award if there are extra terms (even if incorrect).

Award if the terms are listed 1, 4x, $-8x^2$, $32x^3$

(b)

M1: Score for substituting $x = \frac{1}{32}$ into $(1+8x)^{\frac{1}{2}}$ to obtain $\frac{\sqrt{5}}{2}$ or equivalent such as $\sqrt{\frac{5}{4}}$

Alternatively award for substituting $x = \frac{1}{32}$ into **both sides** and making a connection between the two sides by use of an = or \approx .

E.g.
$$\left(1+\frac{8}{32}\right)^{\frac{1}{2}} = 1+4\times\frac{1}{32}-8\times\left(\frac{1}{32}\right)^2+32\times\left(\frac{1}{32}\right)^3$$
 following through on their expansion $\sqrt{5} = 1145$

Also implied by $\frac{\sqrt{5}}{2} = \frac{1145}{1024}$ for a correct expansion

It is not enough to state substitute $x = \frac{1}{32}$ into " the expansion" or just the rhs " $1 + 4x - 8x^2 + 32x^3$ " A1ft: Requires a full (and correct) explanation as to how the expansion can be used to estimate $\sqrt{5}$

E.g. Calculates
$$1+4 \times \frac{1}{32} - 8 \times \left(\frac{1}{32}\right)^2 + 32 \times \left(\frac{1}{32}\right)^3$$
 and multiplies by 2.

This can be scored from an incorrect binomial expansion or a binomial expansion with more terms.

The explanation could be mathematical. So $\frac{\sqrt{5}}{2} = \frac{1145}{1024} \rightarrow \sqrt{5} = \frac{1145}{512}$ is acceptable.

SC: For 1 mark, M1,A0 score for a statement such as "substitute $x = \frac{1}{32}$ into both sides of part (a) and make $\sqrt{5}$ the subject"

EXPERT TUITION

Question	Scheme	Marks	AOs
8 (a)	Uses $115 = 28 + 5d \Longrightarrow d = (17.4)$	M1	3.1b
	Uses $28 + 2 \times "17.4" =$	M1	3.4
	$= 62.8 (\text{km h}^{-1})$	A1	1.1b
		(3)	
(b)	Uses $115 = 28r^5 \Rightarrow r = (1.3265)$	M1	3.1b
	Uses $28 \times "1.3265^4$ " = or $\frac{115}{"1.3265"}$	M1	3.4
	$= 86.7 (\text{km h}^{-1})$	A1	1.1b
		(3)	
		(6	o marks)
Notes:			

- M1: Translates the problem into maths using n^{th} term = a + (n-1)d and attempts to find dLook for either $115 = 28 + 5d \Rightarrow d = ...$ or an attempt at $\frac{115 - 28}{5}$ condoning slips It is implied by use of d = 17.4 Note that $115 = 28 + 6d \Rightarrow d = ...$ is M0
- M1: Uses the model to find the fastest speed the car can go in 3^{rd} gear using 28 + 2"d" or equivalent. This can be awarded following an incorrect method of finding "d"
- A1: 62.8 km/h Lack of units are condoned. Allow exact alternatives such as $\frac{314}{5}$

(b)

M1: Translates the problem into maths using n^{th} term $= ar^{n-1}$ and attempts to find r. It must use the 1st and 6th gear and not the 3rd gear found in part (a)

Look for either $115 = 28r^5 \Rightarrow r = ...$ o.e. or $\sqrt[5]{\frac{115}{28}}$ condoning slips. It is implied by stating or using r = awrt 1.33

M1: Uses the model to find the fastest speed the car can go in 5th gear using $28 \times "r^4$ " or $\frac{115}{"r"}$ o.e.

This can be awarded following an incorrect method of finding "r" A common misread seems to be finding the fastest speed the car can go in 3^{rd} gear as in (a). Providing it is clear what has been done, e.g. $u_3 = 28 \times "r^2$ " it can be awarded this mark.

A1: awrt 86.7 km/h Lack of units are condoned. Expressions must be evaluated.

Question	Scheme	Marks	AOs
9(a)	Uses the sequence formula $a_{n+1} = \frac{k(a_n + 2)}{a_n}$ once with $a_1 = 2$	M1	1.1b
	$(a_1 = 2), a_2 = 2k, a_3 = k+1, a_4 = \frac{k(k+3)}{k+1}$ Finds four consecutive terms and sets a_4 equal to a_1 (oe)	M1	3.1a
	$\frac{k(k+3)}{k+1} = 2 \Longrightarrow k^2 + 3k = 2k+2 \Longrightarrow k^2 + k - 2 = 0 *$	A1*	2.1
		(3)	
(b)	States that when $k = 1$, all terms are the same and concludes that the sequence does not have a period of order 3	B1	2.3
		(1)	
(c)	Deduces the repeating terms are $a_{1/4} = 2$, $a_{2/5} = -4$, $a_{3/6} = -1$,	B1	2.2a
	$\sum_{n=1}^{80} a_k = 26 \times (2 + -4 + -1) + 2 + -4$	M1	3.1a
	= -80	A1	1.1b
		(3)	
		(*	7 marks)
Notes:			

M1: Applies the sequence formula $a_{n+1} = \frac{k(a_n + 2)}{a_n}$ seen once.

This is usually scored in attempting to find the second term. E.g. for $a_2 = 2k$ or $a_{1+1} = \frac{k(2+2)}{2}$

M1: Attempts to find $a_1 \rightarrow a_4$ and sets $a_1 = a_4$. Condone slips.

Other methods are available. E.g. Set $a_4 = 2$, work backwards to find a_3 and equate to k+1

There is no requirement to see either a_1 or any of the labels. Look for the correct terms in the correct order.

There is no requirement for the terms to be simplified

FYI
$$a_1 = 2, a_2 = 2k, a_3 = k+1, a_4 = \frac{k(k+3)}{k+1}$$
 and so $2 = \frac{k(k+3)}{k+1}$

A1*: Proceeds to the given answer with accurate work showing all necessary lines. See MS for minimum (b)

B1: States that when k = 1, all terms are the same and concludes that the sequence does not have a period of order 3.

Do not accept "the terms just repeat" or "it would mean all the terms of the sequence are 2" There must be some reference to the fact that it does not have order 3. Accept it has order 1. It is acceptable to state $a_2 = a_1 = 2$ and state that the sequence does not have order 3

(c)

B1: Deduces the repeating terms are $a_{1/4} = 2, a_{2/5} = -4, a_{3/6} = -1$,

M1: Uses a clear strategy to find the sum to 80 terms. This will usually be found using multiples of the first three terms.

For example you may see
$$\sum_{r=1}^{80} a_r = \left(\sum_{r=1}^{78} a_r\right) + a_{79} + a_{80} = 26 \times (2 + -4 + -1) + 2 + -4$$

or
$$\sum_{r=1}^{80} a_r = \left(\sum_{r=1}^{81} a_r\right) - a_{81} = 27 \times (2 + -4 + -1) - (-1)$$

For candidates who find in terms of k award for $27 \times 2 + 27 \times (2k) + 26 \times (k+1)$ or 80k + 80

If candidates proceed and substitute k = -2 into 80k + 80 to get -80 then all 3 marks are scored.

A1: -80

Note: Be aware that we have seen candidates who find the first three terms correctly, but then find

 $26\frac{2}{3} \times (2 + -4 + -1) = 26\frac{2}{3} \times -3$ which gives the correct answer

but it is an incorrect method and should be scored B1 M0 A0

Question	Scheme	Marks	AOs
10(a)	$(1+kx)^{10} = 1 + {\binom{10}{1}}(kx)^1 + {\binom{10}{2}}(kx)^2 + {\binom{10}{3}}(kx)^3 \dots$	M1 A1	1.1b 1.1b
	$= 1 + 10kx + 45k^2x^2 + 120k^3x^3$	A1	1.1b
		(3)	
(b)	Sets $120k^3 = 3 \times 10k$	B1	1.2
	$4k^2 = 1 \Longrightarrow k = \dots$	M1	1.1b
	$k = \pm \frac{1}{2}$	A1	1.1b
		(3)	
		(6 marks)

M1: An attempt at the binomial expansion. This may be awarded for either the second or third term or fourth term. The coefficients may be of the form ${}^{10}C_1$, $\begin{pmatrix} 10\\2 \end{pmatrix}$ etc or eg $\frac{10 \times 9 \times 8}{3!}$

- A1: A correct unsimplified binomial expansion. The coefficients must be numerical so cannot be of the form ${}^{10}C_1$, $\binom{10}{2}$. Coefficients of the form $\frac{10 \times 9 \times 8}{3!}$ are acceptable for this mark. The bracketing must be correct on $(kx)^2$ but allow recovery
- A1: $1+10kx+45k^2x^2+120k^3x^3...$ or $1+10(kx)+45(kx)^2+120(kx)^3...$ Allow if written as a list.

(b)

- **B1:** Sets their $120k^3 = 3 \times \text{their } 10k$ (Seen or implied) For candidates who haven't cubed allow $120k = 3 \times \text{their } 10k$ If they write $120k^3x^3 = 3 \times \text{their } 10kx$ only allow recovery of this mark if x disappears afterwards.
- M1: Solves a cubic of the form $Ak^3 = Bk$ by factorising out/cancelling the k and proceeding correctly to at least one value for k. Usually $k = \sqrt{\frac{B}{A}}$
- A1: $k = \pm \frac{1}{2}$ o.e ignoring any reference to 0

		I	
11(a)	$\frac{1}{\sqrt{4-x}} = (4-x)^{-\frac{1}{2}} = 4^{-\frac{1}{2}} \times (1 \pm \dots)$	M1	2.1
	Uses a "correct" binomial expansion for their		
	$(1+ax)^n = 1 + nax + \frac{n(n-1)}{2}a^2x^2 +$	M1	1.1b
	$\left(1 - \frac{x}{4}\right)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right) + \frac{\left(-\frac{1}{2}\right)\times\left(-\frac{3}{2}\right)}{2}\left(-\frac{x}{4}\right)^{2}$	A1	1.1b
	$\frac{1}{\sqrt{4-x}} = \frac{1}{2} + \frac{1}{16}x + \frac{3}{256}x^2$	A1	1.1b
		(4)	
	States $x = -14$ and gives a valid reason.		
(b) (1)	Eg explains that the expansion is not valid for $ x > 4$	B1	2.4
		(1)	
(b)(ii)	States $x = -\frac{1}{2}$ and gives a valid reason. Eg. explains that it is closest to zero	B1	2.4
	-	(1)	
		(6 1	narks)

M1: For the strategy of expanding $\frac{1}{\sqrt{4-x}}$ using the binomial expansion.

You must see $4^{-\frac{1}{2}}$ oe and an expansion which may or may not be combined.

M1: Uses a correct binomial expansion for their $(1 \pm ax)^n = 1 \pm nax \pm \frac{n(n-1)}{2}a^2x^2 + \frac{n(n-1)}{2}a^2x^2$

Condone sign slips and the "a" not being squared in term 3. Condone $a = \pm 1$ Look for an attempt at the correct binomial coefficient for their *n*, being combined with the correct power of *ax*

A1:
$$\left(1-\frac{x}{4}\right)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right) + \frac{\left(-\frac{1}{2}\right)\times\left(-\frac{3}{2}\right)}{2}\left(-\frac{x}{4}\right)^2$$
 unsimplified

FYI the simplified form is $1 + \frac{x}{8} + \frac{3x^2}{128}$ Accept the terms with commas between.

A1: $\frac{1}{\sqrt{4-x}} = \frac{1}{2} + \frac{1}{16}x + \frac{3}{256}x^2$ Ignore subsequent terms. Allow with commas between.

Note: Alternatively
$$(4-x)^{-\frac{1}{2}} = 4^{-\frac{1}{2}} + \left(-\frac{1}{2}\right)4^{-\frac{3}{2}}(-x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}4^{-\frac{5}{2}}(-x)^2 + .$$

M1: For $4^{-\frac{1}{2}}$ +.... **M1:** As above but allow slips on the sign of x and the value of n **A1:** Correct unsimplified (as above) **A1:** As main scheme

(b) Any evaluations of the expansions are irrelevant.

Look for a suitable value and a suitable reason for both parts. (b)(i)

B1: Requires x = -14 with a suitable reason.

Eg. x = -14 as the expansion is only valid for |x| < 4 or equivalent.

Eg '
$$x = -14$$
 as $|-14| > 4$ " or ' I cannot use $x = -14$ as $\left|\frac{-14}{4}\right| > 1$

Eg. 'x = -14 as is outside the range |x| < 4'

Do not allow '-14 is too big' or 'x = -14, |x| < 4' either way around without some reference to the validity of the expansion.

(b)(ii)

B1: Requires $x = -\frac{1}{2}$ with a suitable reason.

Eg. $x = -\frac{1}{2}$ as it is 'the smallest/smaller value' or ' $x = -\frac{1}{2}$ as the value closest to zero' (that will give the more accurate approximation). The bracketed statement is not required.

Question	Scheme	Marks	AOs
12(a)	Total time for 6 km = 24 minutes + $6 \times 1.05 + 6 \times 1.05^2$ minutes	M1	3.4
	= 36.915 minutes = 36 minutes 55 seconds *	A1*	1.1b
		(2)	
(b)	5 th km is $6 \times 1.05 = 6 \times 1.05^{1}$		
	6^{th} km is $6 \times 1.05 \times 1.05 = 6 \times 1.05^2$	D1	2.4
	7^{th} km is $6 \times 1.05 \times 1.05 \times 1.05 = 6 \times 1.05^3$	BI	3.4
	Hence the time for the r^{th} km is $6 \times 1.05^{r-4}$		
		(1)	
(c)	Attempts the total time for the race =		
	Eg. 24 minutes + $\sum_{r=5}^{r=20} 6 \times 1.05^{r-4}$ minutes	M1	3.1a
	Uses the series formula to find an allowable sum		
	Eg. Time for 5 th to 20 th km $= \frac{6.3(1.05^{16}-1)}{1.05-1} = (149.04)$	M1	3.4
	Correct calculation that leads to the total time		
	Eg. Total time = $24 + \frac{6.3(1.05^{16} - 1)}{1.05 - 1}$	A1	1.1b
	Total time = awrt 173 minutes and 3 seconds	A1	1.1b
		(4)	
			(7 marks)

M1: For using model to calculate the total time.

Sight of 24 minutes $+ 6 \times 1.05 + 6 \times 1.05^2$ or equivalent is required. Eg 24 + 6.3 + 6.615 Alternatively in seconds 24 minutes + 378 sec (6min 18 s) +396.9 (6 min 37 s)

A1*: 36 minutes 55 seconds following 36.915, 24+6.3+6.615, $24+6\times1.05+6\times1.05^{2}$

or equivalent working in seconds

(b) Must be seen in (b)

- **B1:** As seen in scheme. For making the link between the *r* th km and the index of 1.05 Or for EXPLAINING that "the time taken per km (6 mins) only starts to increase by 5% after the first 4 km"
- (c) The correct sum formula $\frac{a(r^n-1)}{r-1}$, if seen, must be correct in part (c) for all relevant marks
- M1: For the overall strategy of finding the total time.

Award for adding 18, 24, 30.3 or awrt 36.9 and the sum of a geometric sequence

So award the mark for expressions such as $6 \times 4 + \sum 6 \times 1.05^n$ or $24 + \frac{6(1.05^{20} - 1)}{1.05 - 1}$

The geometric sequence formula, must be used with r = 1.05 oe but condone slips on a and n

M1: For an attempt at using a correct sum formula for a GP to find an allowable sum

The value of r must be 1.05 oe such as 105% but you should allow a slip on the value of n used for their value of a (See below: We are going to allow the correct value of n or one less)

If you don't see a calculation it may be implied by sight of one of the values seen below

Allow for
$$a = 6$$
, $n = 17$ or 16 Eg. $\frac{6(1.05^{17} - 1)}{1.05 - 1} = (155.0)$ or $\frac{6(1.05^{16} - 1)}{1.05 - 1} = (141.9)$

Allow for
$$a = 6.3, n = 16 \text{ or } 15$$
 Eg $\frac{6.3(1.05^{16}-1)}{1.05-1} = (149.0)$ or $\frac{6.3(1.05^{15}-1)}{1.05-1} = (135.9)$
Allow for $a = 6.615, n = 15 \text{ or } 14$ Eg $\frac{6.615(1.05^{15}-1)}{1.05-1} = (142.7)$ or $\frac{6.615(1.05^{14}-1)}{1.05-1} = (129.6)$

A1: For a correct calculation that will find the **total time**. It does not need to be processed Allow for example, amongst others, $24 + \frac{6.3(1.05^{16}-1)}{1.05-1}$, $18 + \frac{6(1.05^{17}-1)}{1.05-1}$, $30.3 + \frac{6.615(1.05^{15}-1)}{1.05-1}$ A1: For a total time of awrt 173 minutes and 3 seconds

This answer alone can be awarded 4 marks as long as there is some evidence of where it has come from.

.....

Candidates that list values: Handy Table for Guidance

M1: For a correct overall strategy which would involve adding four sixes followed by at least 16 other values

The values which may be written in the form 6×1.05^2 or as numbers

Can be implied by $6+6+6+6+(6\times 1.05)+....+(6\times 1.05^{16})$

M1: For an attempt to add the numbers from (6×1.05) to

 (6×1.05^{16}) . This could be done on a calculator in which case

expect to see awrt 149

Alternatively, if written out, look for 16 values with 8 correct or follow through correct to 1 dp

A1: Awrt 173 minutes

A1: Awrt 173 minutes and 3 seconds

		Total
Km	Time per km	Time
1	6.0000	
2	6.0000	12
3	6.0000	18
4	6.0000	24
5	6.3000	30.3
6	6.6150	36.915
7	6.9458	43.86075
8	7.2930	51.15379
9	7.6577	58.81148
10	8.0406	66.85205
11	8.4426	75.29465
12	8.8647	84.15939
13	9.3080	93.46736
14	9.7734	103.2407
15	10.2620	113.5028
16	10.7751	124.2779
17	11.3139	135.5918
18	11.8796	147.4714
19	12.4736	159.945
20	13.0972	173.0422

Question	Scheme	Marks	AOs	
13(a)	2^6 or 64 as the constant term	B1	1.1b	
	$\left(2+\frac{3x}{4}\right)^{6} = \dots + {}^{6}C_{1}2^{5}\left(\frac{3x}{4}\right)^{1} + {}^{6}C_{2}2^{4}\left(\frac{3x}{4}\right)^{2} + \dots$	M1	1.1b	
	$= \dots + 6 \times 2^{5} \left(\frac{3x}{4}\right)^{1} + \frac{6 \times 5}{2} \times 2^{4} \left(\frac{3x}{4}\right)^{2} + \dots$	A1	1.1b	
	$= 64 + 144x + 135x^2 + \dots$	A1	1.1b	
		(4)		
(b)	$\frac{3x}{4} = -0.075 \Longrightarrow x = -0.1$	B1ft	2.4	
	So find the value of $64+144x+135x^2$ with $x = -0.1$			
		(1)		
		(.	5 marks)	
	Notes			
B1: Sight of either 2^6 or 64 as the constant term M1: An attempt at the binomial expansion. This may be awarded for a correct attempt at either the second OR third term. Score for the correct binomial coefficient with the correct power of 2 and the correct power of $\frac{3x}{4}$ condoning slips. Correct bracketing is not essential for this M mark. Condone ${}^{6}C_{2}2^{4}\frac{3x^{2}}{4}$ for this mark A1: Correct (unsimplified) second AND third terms. The binomial coefficients must be processed to numbers /numerical expression e.g $\frac{6!}{4!2!}$ or $\frac{6 \times 5}{2}$ They cannot be left in the form ${}^{6}C_{1}$ and/or $\binom{6}{2}$ A1: $64+144x+135x^{2}+$ Ignore any terms after this. Allow to be written $64, 144x, 135x^{2}$ (b) B1ft: $x = -0.1$ or $-\frac{1}{10}$ with a comment about substituting this into their $64+144x+135x^{2}$				
If they have written (a) as 64, 144x, 135x ² candidate would need to say substitute $x = -0.1$ into the sum of the first three terms. As they do not have to perform the calculation allow Set $2 + \frac{3x}{4} = 1.925$, solve for x and then substitute this value into the expression from (a) If a value of x is found then it must be correct				
Alternative to part (a) $\left(2 + \frac{3x}{4}\right)^{6} = 2^{6} \left(1 + \frac{3x}{8}\right)^{6} = 2^{6} \left(1 + {}^{6}C_{1} \left(\frac{3x}{8}\right)^{1} + {}^{6}C_{2} \left(\frac{3x}{8}\right)^{2} +\right)$ B1: Sight of either 2 ⁶ or 64				

M1: An attempt at the binomial expansion. This may be awarded for either the second or third term. Score for the correct binomial coefficient with the correct power of $\frac{3x}{8}$ Correct bracketing is not essential for this mark. A1: A correct attempt at the binomial expansion on the second and third terms.

A1: $64+144x+135x^2+...$ Ignore any terms after this.

Question	Scheme	Marks	AOs
14 (a)	$\sqrt{\frac{1+4x}{1-x}} = (1+4x)^{0.5} \times (1-x)^{-0.5}$	B1	3.1a
	$(1+4x)^{0.5} = 1+0.5 \times (4x) + \frac{0.5 \times -0.5}{2} \times (4x)^2$	M1	1.1b
	$(1-x)^{-0.5} = 1 + (-0.5)(-x) + \frac{(-0.5) \times (-1.5)}{2}(-x)^2$	M1	1.1b
	$(1+4x)^{0.5} = 1+2x-2x^2$ and $(1-x)^{-0.5} = 1+0.5x+0.375x^2$ oe	A1	1.1b
	$(1+4x)^{0.5} \times (1-x)^{-0.5} = (1+2x-2x^2) \times (1+\frac{1}{2}x+\frac{3}{8}x^2)$		
	$=1+\frac{1}{2}x+\frac{3}{8}x^{2}+2x+x^{2}-2x^{2}+$	dM1	2.1
	$= A + Bx + Cx^2$		
	$=1+\frac{5}{2}x-\frac{5}{8}x^{2}*$	A1*	1.1b
		(6)	
(b)	Expression is valid $ x < \frac{1}{4}$ Should not use $x = \frac{1}{2}$ as $\frac{1}{2} > \frac{1}{4}$	B1	2.3
		(1)	
(c)	Substitutes $x = \frac{1}{11}$ into $\sqrt{\frac{1+4x}{1-x}} \approx 1 + \frac{5}{2}x - \frac{5}{8}x^2$	M1	1.1b
	$\sqrt{\frac{3}{2}} = \frac{1183}{968}$	A1	1.1b
	$(so\sqrt{6} is)$ $\frac{1183}{484}$ or $\frac{2904}{1183}$	A1	2.1
		(3)	
			(10 marks)

B1: Scored for key step in setting up the process so that it can be attempted using binomial expansions

This could be achieved by $\sqrt{\frac{1+4x}{1-x}} = (1+4x)^{0.5} \times (1-x)^{-0.5}$ See end for other alternatives

It may be implied by later work.

M1: Award for an attempt at the binomial expansion $(1+4x)^{0.5} = 1 + 0.5 \times (4x) + \frac{(0.5) \times (-0.5)}{2} \times (4x)^2$

There must be three (or more terms). Allow a missing bracket on the $(4x)^2$ and a sign slip so the correct application may be implied by $1+2x\pm0.5x^2$

M1: Award for an attempt at the binomial expansion $(1-x)^{-0.5} = 1 + (-0.5)(-x) + \frac{(-0.5)\times(-1.5)}{2}(-x)^2$

There must be three (or more terms). Allow a missing bracket on the $(-x)^2$ and a sign slips so the method may be awarded on $1\pm 0.5x\pm 0.375x^2$

A1: Both correct and simplified. This may be awarded for a correct final answer if a candidate does all their simplification at the end

dM1: In the main scheme it is for multiplying their two expansions to reach a quadratic. It is for the key step in adding 'six' terms to produce the quadratic expression. Higher power terms may be seen. Condone slips on

the multiplication on one term only. It is dependent upon having scored the first B and one of the other two M's

In the alternative it is for multiplying $\left(1+\frac{5}{2}x-\frac{5}{8}x^2\right)\left(1-x\right)^{0.5}$ and comparing it to $\left(1+4x\right)^{0.5}$ It is for the key step in adding 'six' terms to produce the quadratic expression. A1*: Completes proof with no errors or omissions. In the alternative there must be some reference to the fact that both sides are equal. **(b) B1:** States that the expansion may not / is not $\frac{1}{2}$ yall when $|x| > \frac{1}{4}$ $|x| < \frac{1}{4}$ This may be implied by a statement such as or stating that the expansion is only valid when Condone, for this mark a candidate who substitutes $x = \frac{1}{2}$ into the 4x and states it is not valid as 2 > 1 oe Don't award for candidates who state that $\frac{1}{2}$ is too big without any reference to the validity of the expansion. As a rule you should see some reference to $\frac{1}{\sqrt{1-x}} = \frac{1}{1}$ and attempts to find at least one side. M1: Substitutes into BOTH sides As the left hand side is $\frac{\sqrt{6}}{2}$ they may multiply by 2 first which is acceptable A1: Finds both sides leading to a correct equation/statement $\sqrt{\frac{15}{10}} = \frac{1183}{968}$ or $\sqrt{6} = 2 \times \frac{1183}{968}$ A1: $\sqrt{6} = \frac{1183}{484}$ or $\sqrt{6} = \frac{2904}{1183}$ $\sqrt{6} = 2 \times \frac{1183}{968} = \frac{1183}{484}$ would imply all 3 marks Watch for other equally valid alternatives for 11(a) including **B1:** $(1+4x)^{0.5} \approx \left(1+\frac{5}{2}x-\frac{5}{8}x^2\right)(1-x)^{0.5}$ then the M's are for $(1+4x)^{0.5}$ and $(1-x)^{0.5}$ **M1:** $(1-x)^{0.5} = 1 + (0.5)(-x) + \frac{(0.5) \times (-0.5)}{2}(-x)^2$ Or **B1:** $\sqrt{\frac{1+4x}{1-x}} = \sqrt{1+\frac{5x}{1-x}} = \left(1+5x(1-x)^{-1}\right)^{\frac{1}{2}}$ then the first M1 for one application of binomial and the second would be for both $(1-x)^{-1}$ and $(1-x)^{-2}$ Or **B1:** $\sqrt{\frac{1+4x}{1-x}} \times \frac{\sqrt{1-x}}{\sqrt{1-x}} = \sqrt{(1+3x-4x^2)} \times (1-x)^{-1} = (1+(3x-4x^2))^{\frac{1}{2}} \times (1-x)^{-1}$

Question	Scheme	Marks	AOs		
15(a)	$\left(2 - \frac{x}{16}\right)^9 = 2^9 + \binom{9}{1}2^8 \cdot \left(-\frac{x}{16}\right) + \binom{9}{2}2^7 \cdot \left(-\frac{x}{16}\right)^2 + \dots$	M1	1.1b		
	$\left(2-\frac{x}{16}\right)^9 = 512+$	B1	1.1b		
	$\left(2-\frac{x}{16}\right)^9 = \dots -144x + \dots$	A1	1.1b		
	$\left(2 - \frac{x}{16}\right)^9 = \dots + \dots + 18x^2 (+\dots)$	Al	1.1b		
		(4)			
(b)	Sets $512'a = 128 \Longrightarrow a = \dots$	M1	1.1b		
	$(a=)\frac{1}{4}$ oe	A1 ft	1.1b		
		(2)			
(c)	Sets $512'b + -144'a = 36 \Rightarrow b =$	M1	2.2a		
	$(b=)\frac{9}{64}$ oe	A1	1.1b		
		(2)			
		(8 marks)		
11(a) alt	$\left(2 - \frac{x}{16}\right)^9 = 2^9 \left(1 - \frac{x}{32}\right)^9 = 2^9 \left(1 + \binom{9}{1} \left(-\frac{x}{32}\right) + \binom{9}{2} \left(-\frac{x}{32}\right)^2 + \dots\right)$	M1	1.1b		
	= 512+	B1	1.1b		
	$= \dots -144x + \dots$	A1	1.1b		
	$= \dots + \dots + 18x^2 (+ \dots)$	A1	1.1b		
	Notes				
(a) M1: Attempts the binomial expansion. May be awarded on either term two and/or term three Scored for a correct binomial coefficient combined with a correct power of 2 and a correct power $a(x^2) = a(x^2) a^2$					
$\left(\frac{1}{16}\right)^{-1} \left(\frac{1}{16}\right)^{-1} \left(\frac{1}{16}$					
Allow any form of the binomial coefficient. Eg $\binom{9}{2} = {}^9C_2 = \frac{9!}{7!2!} = 36$					
In the alternative it is for attempting to take out a factor of 2 (may allow 2^n outside bracket) and					
having a co	having a correct binomial coefficient combined with a correct power of $\left(\pm \frac{x}{32}\right)$				
24	EXPERT TUITION				

B1: For 512 **A1:** For -144x **A1:** For $+ 18x^2$ Allow even following $\left(+\frac{x}{16}\right)^2$ Listing is acceptable for all 4 marks (b) **M1:** For setting their 512a = 128 and proceeding to find a value for *a*. Alternatively they could substitute x = 0 into both sides of the identity and proceed to find a value for *a*. **A1 ft:** $a = \frac{1}{4}$ oe Follow through on $\frac{128}{\text{their } 512}$ (c) **M1:** Condone $512b \pm 144 \times a = 36$ following through on their 512, their -144 and using their value of "*a*" to find a value for "*b*" **A1:** $b = \frac{9}{64}$ oe

Question	Scheme	Marks	AOs
16 (a)	$\left(1+\frac{3}{x}\right)^2 = 1+\frac{6}{x}+\frac{9}{x^2}$	M1 A1	1.1b 1.1b
		(2)	
(b)	$\left(1+\frac{3}{4}x\right)^{6} = 1+6\times\left(\frac{3}{4}x\right)+$	B1	1.1b
	$\left(1 + \frac{3}{4}x\right)^{6} = 1 + 6 \times \left(\frac{3}{4}x\right) + \frac{6 \times 5}{2} \times \left(\frac{3}{4}x\right)^{2} + \frac{6 \times 5 \times 4}{3 \times 2} \times \left(\frac{3}{4}x\right)^{3} + \dots$	M1 A1	1.1b 1.1b
	$=1+\frac{9}{2}x+\frac{135}{16}x^2+\frac{135}{16}x^3+\dots$	A1	1.1b
		(4)	
(c)	$\left(1+\frac{3}{x}\right)^2 \left(1+\frac{3}{4}x\right)^6 = \left(1+\frac{6}{x}+\frac{9}{x^2}\right) \left(1+\frac{9}{2}x+\frac{135}{16}x^2+\frac{135}{16}x^3+\dots\right)$		
	Coefficient of $x = \frac{9}{2} + 6 \times \frac{135}{16} + 9 \times \frac{135}{16} = \frac{2097}{16}$	M1 A1	2.1 1.1b
		(2)	
		(8 n	1arks)
Notes:			
(a) M1: Attemp A1: $(1+$	$\operatorname{pts}\left(1+\frac{3}{x}\right)^2 = A + \frac{B}{x} + \frac{C}{x^2}$ $\frac{3}{x}\right)^2 = 1 + \frac{6}{x} + \frac{9}{x^2}$		
 (b) B1: First two terms correct, may be un-simplified M1: Attempts the binomial expansion. Implied by the correct coefficient and power of <i>x</i> seen at least once in term 3 or 4 A1: Binomial expansion correct and un-simplified A1: Binomial expansion correct and simplified. 			
(c) M1: Combines all relevant terms for their $\left(1 + \frac{A}{2} + \frac{B}{2}\right)\left(1 + Cx + Dx^2 + Ex^3 +\right)$ to find the			
coefficient of x. A1: Fully correct			

	Scheme	Marks	AOs
17 (a)	$(4+5x)^{\frac{1}{2}} = (4)^{\frac{1}{2}} \left(1+\frac{5x}{4}\right)^{\frac{1}{2}} = 2\left(1+\frac{5x}{4}\right)^{\frac{1}{2}}$	B1	1.1b
	$= \{2\} \left[1 + \left(\frac{1}{2}\right)\left(\frac{5x}{2}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2}\left(\frac{5x}{2}\right)^{2} + \dots \right]$	M1	1.1b
		Alft	1.1b
	$= 2 + \frac{5}{4}x - \frac{25}{64}x^2 + \dots$	A1	2.1
		(4)	
(b)(i)	$\left\{x = \frac{1}{10} \Longrightarrow\right\} \left(4 + 5(0.1)\right)^{\frac{1}{2}}$	M1	1.1b
	$=\sqrt{4.5} = \frac{3}{2}\sqrt{2}$ or $\frac{3}{\sqrt{2}}$		
	$\frac{3}{2}\sqrt{2} \text{ or } 1.5\sqrt{2} \text{ or } \frac{3}{\sqrt{2}} = 2 + \frac{5}{4}\left(\frac{1}{10}\right) - \frac{25}{64}\left(\frac{1}{10}\right)^2 + \dots \{=2.121\}$ $\Rightarrow \frac{3}{2}\sqrt{2} = \frac{543}{256} \text{ or } \frac{3}{\sqrt{2}} = \frac{543}{256} \Rightarrow \sqrt{2} = \dots$	M1	3.1a
	So, $\sqrt{2} = \frac{181}{128}$ or $\sqrt{2} = \frac{256}{181}$	Al	1.1b
(b)(ii)	$x = \frac{1}{10}$ satisfies $ x < \frac{4}{5}$ (o.e.), so the approximation is valid.	B1	2.3
		(4)	
	(8 marks)		

Questi	on 17 Notes:
(a)	
B1:	Manipulates $(4 + 5x)^{\frac{1}{2}}$ by taking out a factor of $(4)^{\frac{1}{2}}$ or 2
M1:	Expands $(+ \lambda x)^{\frac{1}{2}}$ to give at least 2 terms which can be simplified or un-simplified,
	E.g. $1 + \left(\frac{1}{2}\right)(\lambda x)$ or $\left(\frac{1}{2}\right)(\lambda x) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(\lambda x)^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(\lambda x)^2$
	where λ is a numerical value and where $\lambda \neq 1$.
A1ft:	A correct simplified or un-simplified $1 + \left(\frac{1}{2}\right)(\lambda x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(\lambda x)^2$ expansion with consistent (λx)
A1:	Fully correct solution leading to $2 + \frac{5}{4}x + kx^2$, where $k = -\frac{25}{64}$
(b)(i)	
M1:	Attempts to substitute $x = \frac{1}{10}$ or 0.1 into $(4 + 5x)^{\frac{1}{2}}$
M1:	A complete method of finding an approximate value for $\sqrt{2}$. E.g.
	• substituting $x = \frac{1}{10}$ or 0.1 into their part (a) binomial expansion and equating the result to
	an expression of the form $\alpha \sqrt{2}$ or $\frac{\beta}{\sqrt{2}}$; $\alpha, \beta \neq 0$
	• followed by re-arranging to give $\sqrt{2} = \dots$
A1:	$\frac{181}{128}$ or any equivalent fraction, e.g. $\frac{362}{256}$ or $\frac{543}{384}$
	Also allow $\frac{256}{181}$ or any equivalent fraction
(b)(ii)	
B1:	Explains that the approximation is valid because $x = \frac{1}{10}$ satisfies $ x < \frac{4}{5}$

Questi	on Scheme	Marks	AOs
18 (a) $a_1 = 3, a_2 = 0, a_3 = 1.5, a_4 = 3$	M1	1.1b
	$\sum_{r=1}^{100} a_r = 33(4.5) + 3$	M1	2.2a
	= 151.5	A1	1.1b
		(3)	
(b)	$\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = (2)(151.5) - 3 = 300$	B1ft	2.2a
		(1)	
	(4 marks)		
Questi	on 18 Notes:		
(a)			
M1:	Uses the formula $a_{n+1} = \frac{a_n - 3}{a_n - 2}$, with $a_1 = 3$ to generate values for a_2 , a_3 and a_4		
M1:	Finds $a_4 = 3$ and deduces $\sum_{r=1}^{100} a_r = 33("3" + "0" + "1.5") + "3"$		
A1:	which leads to a correct answer of 151.5		
(b)			
B1ft:	Follow through on their periodic function. Deduces that either		
	• $\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = (2)("151.5") - 3 = 300$		
	• $\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = "151.5" + (33)("3" + "0" + "1.5") = 151.5 + 148.5 = 30$)0	

Questi	on Scheme	Marks	AOs
19 (a	Total amount = $\frac{2100(1 - (1.012)^{14})}{1 - 1.012}$ or $\frac{2100((1.012)^{14} - 1)}{1.012 - 1}$	M1	3.1b
	$= 31806.9948 \dots = 31800 \text{ (tonnes)} (3 \text{ sf})$	A1	1.1b
		(2)	
	Total Cost = 5.15(2000(14)) + 6.45(31806.9948) - (2000)(14))	M1	3.1b
		M1	1.1b
	=5.15(28000) + 6.45(3806.9948) = 144200 + 24555.116		
	$= 168755.116 = \pounds 169000$ (nearest £1000)	Al	3.2a
		(3)	
		(5 n	narks)
Questi	on 19 Notes:		
(a)			
M1:	Attempts to apply the correct geometric summation formula with either $n = 13$ or	n = 14,	
	a = 2100 and $r = 1.012$ (Condone $r = 1.12$)		
A1:	Correct answer of 31800 (tonnes)		
(b)			
M1:	Fully correct method to find the total cost		
M1:	For either		
	• $5.15(2000(14)) = 144200 \}$		
	• $6.45("31806.9948" - (2000)(14)) = 24555.116 \}$		
	• $5.15(2000(13)) = 133900$		
	• $6.45("29354.73794" - (2000)(13)) = 21638.059 $		
A1:	Correct answer of £169000		
	Note: Using rounded answer in part (a) gives 168710 which becomes £169000 (not	earest £100	0)

Quest	tion Scheme	Marks	AOs
20((a) $\left(2-\frac{x}{2}\right)^7 = 2^7 + \binom{7}{1}2^6 \cdot \left(-\frac{x}{2}\right) + \binom{7}{2}2^5 \cdot \left(-\frac{x}{2}\right)^2 + \dots$	M1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = 128 + \dots$	B1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = \dots -224x + \dots$	A1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = \dots + \dots + 168x^2 (+\dots)$	A1	1.1b
		(4)	
(b)	Solve $\left(2 - \frac{x}{2}\right) = 1.995$ so $x = 0.01$ and state that 0.01 would be substituted for x into the expansion	B1	2.4
	1	(1)	
		(5 n	narks)
Notes	:		
 (a) M1: Need correct binomial coefficient with correct power of 2 and correct power of x. Coefficients may be given in any correct form; e.g. 1, 7, 21 or ⁷C₀, ⁷C₁, ⁷C₂ or equivalent B1: Correct answer, simplified as given in the scheme A1: Correct answer, simplified as given in the scheme A1: Correct answer, simplified as given in the scheme 			
(b) B1:	Needs a full explanation i.e. to state $x = 0.01$ and that this would be substitute is a solution of $\left(2 - \frac{x}{2}\right) = 1.995$	uted and th	nat it

Question	Scheme	Marks	AOs
21(a)(i)	$a_1 = 3, a_2 = 5, a_3 = 3 \dots$	B1	1.1b
(ii)	2	B1	1.1b
		(2)	
(b)	$\sum_{n=1}^{85} a_n = 42 \times (3+5) + 3 \text{ o.e.}$	M1	3.1a
	= 339	A1	1.1b
		(2)	
			(4 marks)
Notes:			

(a)(i) Mark (a)(i) and (a)(ii) together.

B1: States the values of at least $a_2 = 5$ and $a_3 = 3$. This is sufficient but if more terms are given they must be correct. There is no need to see e.g. $a_2 = ..., a_3 = ...$ just look for values.

Allow an algebraic approach e.g. $a_{n+1} = 8 - a_n$, $a_{n+2} = 8 - (8 - a_n) = a_n$

A conclusion is **not** needed.

(a)(ii)

B1: States that the order of the periodic sequence is 2

Allow "second order", "it repeats every 2 numbers" or equivalent statements that convey the idea of the period being 2.

Note that ± 2 is B0

(b)

M1: Attempts a <u>correct</u> method to find $\sum_{n=1}^{\infty} a_n$

For example
$$\sum_{n=1}^{85} a_n = 42 \times (3+5) + 3$$
, $\sum_{n=1}^{85} a_n = \frac{84}{2} \times 3 + 42 \times 5 + 3$ or $\sum_{n=1}^{85} a_n = 43 \times (3+5) - 5$
or $\sum_{n=1}^{85} a_n = 43 \times 3 + 42 \times 5$ or $\sum_{n=1}^{85} a_n = \frac{85}{2} \times 8 - 1$

There may be other methods e.g. "Chunking": $5 \times (3 + 5) = 40$, $40 \times 8 = 320$, $320 + 3 \times 3 + 2 \times 5 = 339$ A1: 339. Correct answer only scores both marks.

Attempts to use an AP formula score M0

Question	Scheme	Marks	AOs
22(a)	$\sqrt{4-9x} = 2(1\pm)^{\frac{1}{2}}$	B1	1.1b
	$\left(1 - \left\ \frac{9x}{4}\right\ \right)^{\frac{1}{2}} = \dots + \frac{\frac{1}{2} \times \left(-\frac{1}{2}\right) \left(\left\ -\frac{9x}{4}\right\ \right)^{2}}{2!} \text{ or }$	M1	1.1b
	$\dots + \frac{\frac{1}{2} \times \left(-\frac{1}{2}\right) \times \left(-\frac{3}{2}\right) \left(-\frac{3}{4}\right)}{3!}$		
	$1 + \frac{1}{2} \times \left(-\frac{9x}{4}\right) + \frac{\frac{1}{2} \times \left(-\frac{1}{2}\right) \left(-\frac{9x}{4}\right)^2}{2!} + \frac{\frac{1}{2} \times \left(-\frac{1}{2}\right) \times \left(-\frac{3}{2}\right) \left(-\frac{9x}{4}\right)^3}{3!}$	A1	1.1b
	$\sqrt{4-9x} = 2 - \frac{9x}{4} - \frac{81x^2}{64} - \frac{729x^3}{512}$	A1	1.1b
		(4)	
(b)	States that the approximation will be an <u>overestimate</u> since all terms (after the first one) in the expansion are negative (since $x > 0$)	B1	3.2b
		(1)	
(5 marks)			

33

B1: Takes out a factor of 4 and writes $\sqrt{4-9x} = 2(1 \pm ...)^{\frac{1}{2}}$ or $\sqrt{4}(1 \pm ...)^{\frac{1}{2}}$ or $4^{\frac{1}{2}}(1 \pm ...)^{\frac{1}{2}}$

M1: For an attempt at the binomial expansion of $(1+ax)^2$ $a \neq 1$ to form term 3 or term 4 with the correct structure. Look for the correct binomial coefficient multiplied by the corresponding power of x e.g.

$$\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}\left(...x\right)^{2} \text{ or } \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}\left(...x\right)^{3} \text{ where } ...\neq 1$$

Condone missing or incorrect brackets around the x terms but the binomial coefficients must be correct. Allow 2! and/or 3! or 2 and/or 6. Ignore attempts to find more terms.

Do not allow notation such as $\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$, $\begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix}$ unless these are interpreted correctly.

A1: Correct expression for the expansion of $\left(1 - \frac{9x}{4}\right)^{\frac{1}{2}}$ e.g.

$$1 + \frac{1}{2} \times \left(-\frac{9x}{4}\right) + \frac{\frac{1}{2} \times \left(\frac{1}{2} - 1\right) \left(\pm \frac{9x}{4}\right)^2}{2!} + \frac{\frac{1}{2} \times \left(\frac{1}{2} - 1\right) \times \left(\frac{1}{2} - 2\right) \left(-\frac{9x}{4}\right)^3}{3!}$$

which may be left unsimplified as shown but the bracketing must be correct unless any missing brackets are implied by subsequent work. If the 2 outside this expansion is only partially applied to this expansion then score A0 but if it is applied to all terms this A1 can be implied.

OR at least 2 correct simplified terms for the final expansion from, $-\frac{9x}{4}$, $-\frac{81x^2}{64}$, $-\frac{729x^3}{512}$ A1: $\sqrt{4-9x} = 2 - \frac{9x}{4} - \frac{81x^2}{64} - \frac{729x^3}{512}$ oe and condone e.g. $2 + \frac{-9x}{4} - \frac{81x^2}{64} - \frac{729x^3}{512}$ Allow equivalent mixed numbers and/or decimals for the coefficients e.g.:

$$\left(\frac{9}{4}, 2\frac{1}{4}, 2.25\right), \left(\frac{81}{64}, 1\frac{17}{64}, 1.265625\right), \left(\frac{729}{512}, 1\frac{217}{512}, 1.423828125\right)$$

Ignore any extra terms if found. Allow terms to be "listed" and apply is once a correct expansion is seen. Allow recovery if applicable e.g. if an "x" is lost then "reappears".

Direct expansion in (a) can be marked in a similar way:

$$\sqrt{4-9x} = \left(4-9x\right)^{\frac{1}{2}} = 4^{\frac{1}{2}} + \left(\frac{1}{2}\right)4^{-\frac{1}{2}} \times \left(-9x\right)^{1} + \left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)4^{-\frac{3}{2}} \times \frac{\left(-9x\right)^{2}}{2!} + \left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)4^{-\frac{5}{2}} \times \frac{\left(-9x\right)^{3}}{3!}$$

B1: For 2 or $\sqrt{4}$ or $4^{\frac{1}{2}}$ as the constant term in the expansion. **M1**: Correct form for term 3 or term 4.

E.g.
$$\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\times\frac{\left(\dots x\right)^2}{2!}$$
 or $\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\times\frac{\left(\dots x\right)^3}{3!}$ where $\dots \neq 1$

Condone missing brackets around the *x* terms but the binomial coefficients must be correct. Allow 2! and/or 3! or 2 and/or 6. Ignore attempts to find more terms.

Do not allow notation such as
$$\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix}$ unless these are interpreted correctly.

A1: Correct expansion (unsimplified as above)

OR at least 2 correct simplified terms from, $-\frac{9x}{4}$, $-\frac{81x^2}{64}$, $-\frac{729x^3}{512}$ A1: $\sqrt{4-9x} = 2 - \frac{9x}{4} - \frac{81x^2}{64} - \frac{729x^3}{512}$ oe and condone e.g. $2 + \frac{-9x}{4} - \frac{81x^2}{64} - \frac{729x^3}{512}$

Allow equivalent mixed numbers and/or decimals for the coefficients e.g.:

$$\left(\frac{9}{4}, 2\frac{1}{4}, 2.25\right), \left(\frac{81}{64}, 1\frac{17}{64}, 1.265625\right), \left(\frac{729}{512}, 1\frac{217}{512}, 1.423828125\right)$$

Ignore any extra terms if found. Allow terms to be "listed" and apply is once a correct expansion is seen. Allow recovery if applicable e.g. if an "x" is lost then "reappears".

(b)

- **B1**: States that the approximation will be an <u>overestimate</u> due to the fact that all terms (after the first one) in the expansion are negative or equivalent statements e.g.
 - Overestimate because the terms are negative
 - Overestimate as the terms are being taken away (from 2)

Condone "overestimate as every term is negative"

If you think a response is worthy of credit but are unsure then use Review.

This mark depends on having obtained an expansion in (a) of the form

 $k - px - qx^2 - rx^3$ k, p,q,r > 0 but note that if e.g. one of the algebraic terms is zero or was "lost" or there are extra negative terms this mark is still available.

.....

Question	Scheme	Marks	AOs
23(a)	$16 + (21 - 1) \times d = 24 \Longrightarrow d = \dots$	M1	1.1b
	d = 0.4	A1	1.1b
	Answer only scores both marks.		
		(2)	
(b)	$S_n = \frac{1}{2}n\{2a + (n-1)d\} \Longrightarrow S_{500} = \frac{1}{2} \times 500\{2 \times 16 + 499 \times "0.4"\}$	M1	1.1b
	= 57900	A1	1.1b
	Answer only scores both marks		
		(2)	
	(b) Alternative using $S_n = \frac{1}{2}n\{a+l\}$		
	$l = 16 + (500 - 1) \times "0.4" = 215.6 \Longrightarrow S_{500} = \frac{1}{2} \times 500 \{16 + "215.6"\}$	M1	1.1b
	= 57900	A1	1.1b
		(4	marks)

(a)

M1: Correct strategy to find the common difference – must be a correct method using a = 16, and n = 21 and the 24. The method may be implied by their working.

If the AP term formula is quoted it must be correct, so use of e.g. $u_n = a + nd$ scores M0

A1: Correct value. Accept equivalents e.g. $\frac{8}{20}$, $\frac{4}{10}$, $\frac{2}{5}$ etc.

(b)

M1: Attempts to use a correct sum formula with a = 16, n = 500 and their numerical d from part (a)

If a formula is quoted it must be correct (it is in the formula book)

A1: Correct value

Alternative:

M1: Correct method for the 500th term and then uses $S_n = \frac{1}{2}n\{a+l\}$ with their l

A1: Correct value

Note that some candidates are showing implied use of $u_n = a + nd$ by showing the following:

(a)
$$d = \frac{24-16}{21} = \frac{8}{21}$$
 (b) $S_{500} = \frac{1}{2} \times 500 \left\{ 2 \times 16 + 499 \times \frac{8}{21} \right\} = 55523.80952...$
This scores (a) M0A0 (b) M1A0

Question	Scheme	Marks	AOs			
24	$a = \left(\frac{3}{4}\right)^2 \text{ or } a = \frac{9}{16}$ or $r = -\frac{3}{4}$	B1	2.2a			
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \frac{\frac{9}{16}}{1 - \left(-\frac{3}{4}\right)} = \dots$	M1	3.1a			
	$=\frac{9}{28}*$	A1*	1.1b			
		(3)				
	Alternative 1:					
	$\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \frac{-\frac{3}{4}}{1 - \left(-\frac{3}{4}\right)} = \dots \text{ or } r = -\frac{3}{4}$	B1	2.2a			
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = -\frac{3}{7} - \left(-\frac{3}{4}\right)$	M1	3.1a			
	$=\frac{9}{28}*$	A1*	1.1b			
	Alternative 2:					
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^3 + \left(\frac{3}{4}\right)^4 - \dots$	B1	2.2a			
	$= \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^4 + \dots - \left(\frac{3}{4}\right)^3 - \left(\frac{3}{4}\right)^5 - \dots$ $\left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^4 + \dots = \left(\frac{3}{4}\right)^2 \left(\frac{1}{1 - \left(\frac{3}{4}\right)^2}\right) \text{ or } - \left(\frac{3}{4}\right)^3 - \left(\frac{3}{4}\right)^5 - \dots = -\left(\frac{3}{4}\right)^3 \left(\frac{1}{1 - \left(\frac{3}{4}\right)^2}\right)$	M1	3.1a			
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \left(\frac{3}{4}\right)^2 \left(\frac{1}{1-\left(\frac{3}{4}\right)^2}\right) - \left(\frac{3}{4}\right)^3 \left(\frac{1}{1-\left(\frac{3}{4}\right)^2}\right)$					
	$=\frac{9}{28}*$	A1*	1.1b			
	Alternative 3:					
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = S = \left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^3 + \left(\frac{3}{4}\right)^4 - \dots$	B1	2.2a			
	$= \left(\frac{3}{4}\right)^2 \left(1 - \left(\frac{3}{4}\right) + \left(\frac{3}{4}\right)^2 - \dots\right) = \left(\frac{3}{4}\right)^2 \left(\frac{1}{4} + S\right) \Longrightarrow \frac{7}{16}S = \frac{9}{64} \Longrightarrow S = \dots$	M1	3.1a			
	$=\frac{9}{28}*$	A1*	1.1b			
		(3	marks)			
Notes						
B1: Deduces the correct value of the first term or the common ratio. The correct first term can be						
	T TUITION					

seen as part of them writing down the sequence but must be the **first** term. M1: Recognises that the series is infinite geometric and applies the sum to infinity GP formula

with $a = \frac{9}{16}$ and $r = \pm \frac{3}{4}$

A1*: Correct proof

Alternative 1:

B1: Deduces the correct value for the sum to infinity (starting at n = 1) or the common ratio

M1: Calculates the required value by subtracting the first term from their sum to infinity

A1*: Correct proof

Alternative 2:

B1: Deduces the correct value of the **first** term or the common ratio.

M1: Splits the series into "odds" and "evens", attempts the sum of both parts and calculates the required value by adding both sums

A1*: Correct proof

Alternative 3:

B1: Deduces the correct value of the **first** term

M1: A complete method by taking out the first term, expresses the rhs in terms of the original sum and rearranges for "S"

A1*: Correct proof

Question	Scheme	Marks	AOs
25	${}^{7}\mathrm{C}_{4}a^{3}(2x)^{4}$	M1	1.1b
	$\frac{7!}{4!3!}a^3 \times 2^4 = 15120 \Longrightarrow a = \dots$	dM1	2.1
	<i>a</i> = 3	A1	1.1b
		(3)	
			(3 marks)

Notes:

M1: For an attempt at the correct coefficient of x^4 .

The coefficient must have

- the correct binomial coefficient
- the correct power of *a*
- 2 or 2^4 (may be implied)

May be seen within a full or partial expansion.

Accept
$${}^{7}C_{4}a^{3}(2x)^{4}$$
, $\frac{7!}{4!3!}a^{3}(2x)^{4}$, $\binom{7}{4}a^{3}(2x)^{4}$, $35a^{3}(2x)^{4}$, $560a^{3}x^{4}$, $\binom{7}{4}a^{3}16x^{4}$ etc.
or ${}^{7}C_{4}a^{3}2^{4}$, $\frac{7!}{4!3!}a^{3}2^{4}$, $\binom{7}{4}a^{3}2^{4}$, $35a^{3}2^{4}$, $560a^{3}$ etc.
or ${}^{7}C_{3}a^{3}(2x)^{4}$, $\frac{7!}{4!3!}a^{3}(2x)^{4}$, $\binom{7}{3}a^{3}(2x)^{4}$, $35a^{3}(2x)^{4}$, $560a^{3}x^{4}$, $\binom{7}{3}a^{3}16x^{4}$ etc.
or ${}^{7}C_{3}a^{3}2^{4}$, $\frac{7!}{4!3!}a^{3}2^{4}$, $\binom{7}{3}a^{3}2^{4}$, $35a^{3}2^{4}$, $560a^{3}x^{4}$, $\binom{7}{3}a^{3}16x^{4}$ etc.

You can condone missing brackets around the "2x" so allow e.g. $\frac{7!}{4!3!}a^32x^4$

An alternative is to attempt to expand
$$a^7 \left(1 + \frac{2x}{a}\right)^7$$
 to give $a^7 \left(\dots \frac{7 \times 6 \times 5 \times 4}{4!} \left(\frac{2x}{a}\right)^4 \dots\right)$
Allow M1 for e.g. $a^7 \left(\dots \frac{7 \times 6 \times 5 \times 4}{4!} \left(\frac{2x}{a}\right)^4 \dots\right), a^7 \left(\dots \binom{7}{4} \left(\frac{2x}{a}\right)^4 \dots\right), a^7 \left(\dots 35 \left(\frac{2x}{a}\right)^4 \dots\right)$ etc.

but condone missing brackets around the $\frac{2x}{a}$

Note that ${}^{7}C_{3}$, $\begin{pmatrix} 7\\ 3 \end{pmatrix}$ etc. are equivalent to ${}^{7}C_{4}$, $\begin{pmatrix} 7\\ 4 \end{pmatrix}$ etc. and are equally acceptable.

If the candidate attempts (a + 2x)(a + 2x)(a + 2x)... etc. then it must be a complete method to reach the required term. Send to review if necessary.

dM1: For "560" $a^3 = 15120 \Rightarrow a = ...$ Condone slips on copying the 15120 but their "560" must be an attempt at ${}^7C_4 \times 2$ or ${}^7C_4 \times 2^4$ and must be attempting the <u>cube root</u> of $\frac{15120}{"560"}$. **Depends on the first mark**. **A1:** a = 3 and no other values i.e. ± 3 scores A0.

A1: a = 3 and no other values i.e. ± 3 scores A0

Note that this is fairly common:

$$^{7}\mathrm{C}_{4}a^{3}2x^{4} = 70a^{3}x^{4} \Longrightarrow 70a^{3} = 15120 \Longrightarrow a^{3} = 216 \Longrightarrow a = 6$$

and scores M1 dM1 A0

Question	Scheme	Marks	AOs
26(a)	$S_n = a + ar + ar^2 + \dots + ar^{n-1}$	B1	1.2
	$rS_n = ar + ar^2 + ar^3 + \dots + ar^n \Longrightarrow S_n - rS_n = \dots$	M1	2.1
	$S_n - rS_n = a - ar^n$	A1	1.1b
	$S_n(1-r) = a(1-r^n) \Longrightarrow S_n = \frac{a(1-r^n)}{(1-r)}*$	A1*	2.1
		(4)	
(b)	$\frac{a(1-r^{10})}{1-r} = 4 \times \frac{a(1-r^5)}{1-r} \text{ or } 4 \times \frac{a(1-r^{10})}{1-r} = \frac{a(1-r^5)}{1-r}$ Equation in r^{10} and r^5 (and possibly $1-r$)	M1	3.1a
	$1 - r^{10} = 4(1 - r^5)$	A1	1.1b
	$r^{10} - 4r^5 + 3 = 0 \Longrightarrow (r^5 - 1)(r^5 - 3) = 0 \Longrightarrow r^5 = \dots$		
	or e.g. $1 - r^{10} = 4(1 - r^5) \Longrightarrow (1 - r^5)(1 + r^5) = 4(1 - r^5) \Longrightarrow r^5 = \dots$	dM1	2.1
	$r = \sqrt[5]{3}$ oe only	A1	1.1b
		(4)	
			(8 marks)

Notes:

(a)

B1: Writes out the sum or lists terms. Condone the omission of *S*.

The sum must include the first and last terms and (at least) two other correct terms and no incorrect terms e.g. ar^n Note that the sum may be seen embedded within their working.

M1: For the key step in attempting to multiply the first series by r and subtracting.

A1: $S_n - rS_n = a - ar^n$ either way around but condone one side being prematurely factorised (but not both)

following correct work but this could follow B0 if insufficient terms were shown.

A1*: Depends on all previous marks. Proceeds to given result showing all steps including seeing both sides unfactorised at some point in their working.

Note: If terms are <u>listed</u> rather than <u>added</u> then allow the first 3 marks if otherwise correct but withhold the final mark.

(b)

M1: For the correct strategy of producing an equation in just r^{10} and r^5 (and possibly (1 - r)) with the "4" on either side using the result from part (a) and makes progress to at least cancel through by *a*

Some candidates retain the "1 - r" and start multiplying out e.g. $(1 - r)(1 - r^{10})$ and this mark is still available as long as there is progress in cancelling the "a".

A1: Correct equation with the *a* and the 1 - r cancelled. Allow any correct equation in just r^5 and r^{10}

dM1: Depends on the first M. Solves as far as $r^5 = \dots$ by solving a 3 term quadratic in r^5 by a valid method – see general guidance or by difference of 2 squares – see above

A1: $r = \sqrt[5]{3}$ oe only. The solution r = 1 if found must be rejected here.

(b) Note: For candidates who use
$$S_5 = 4S_{10}$$
 expect to see:
 $4 \times \frac{a(1-r^{10})}{1-r} = \frac{a(1-r^5)}{1-r} \Rightarrow 4(1-r^{10}) = (1-r^5)$ M1A0
Example for $e_{a}^{5} = 3 = 0 \Rightarrow (4r^5+3)(r^5-1) = 0 \Rightarrow r^5 = ... \text{ or } 4(1-r^5)(1+r^5) = (1-r^5) \Rightarrow r^5 = ... dM1A0$

This scores B1M1A1A0:

B1: Writes down the sum including first and last terms and at least 2 other correct terms and no incorrect terms

M1: Multiplies by *r* and subtracts

- A1: Correct equation (we allow one side to be prematurely factorised)
- A0: One side was prematurely factorised

Question	Scheme	Marks	AOs
27 (i) Way 1	$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^r = 20 \left(\frac{1}{2}\right)^4 + 20 \left(\frac{1}{2}\right)^5 + 20 \left(\frac{1}{2}\right)^6 + \dots$		
	$=\frac{20(\frac{1}{2})^4}{}$	M1	1.1b
	$1-\frac{1}{2}$	M1	3.1a
	$\{=(1.25)(2)\}=2.5$ o.e.	A1	1.1b
		(3)	
(i) Way 2	$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^r = \sum_{r=1}^{\infty} 20 \times \left(\frac{1}{2}\right)^r - \sum_{r=1}^{3} 20 \times \left(\frac{1}{2}\right)^r$		
	$-\frac{10}{10} - (10 + 5 + 25)$ or $-\frac{10}{10} - \frac{10(1 - (\frac{1}{2})^3)}{10(1 - (\frac{1}{2})^3)}$	M1	1.1b
	$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $	M1	3.1a
	$\{=20-17.5\}=2.5$ o.e.	A1	1.1b
		(3)	
(i) Way 3	$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^r = \sum_{r=0}^{\infty} 20 \times \left(\frac{1}{2}\right)^r - \sum_{r=0}^{3} 20 \times \left(\frac{1}{2}\right)^r$		
	$20 \qquad (20 + 10 + 5 + 2.5) \qquad 20 \qquad 20(1 - (\frac{1}{2})^4)$	M1	1.1b
	$= \frac{1}{1 - \frac{1}{2}} - (20 + 10 + 5 + 2.5) \text{of} = \frac{1}{1 - \frac{1}{2}} - \frac{1}{1 - \frac{1}{2}}$	M1	3.1a
	$\{=40-37.5\}=2.5$ o.e.	A1	1.1b
		(3)	
(ii) Way 1	$\left\{\sum_{n=1}^{48} \log_5\left(\frac{n+2}{n+1}\right) = \right\}$		
	$= \log\left(\frac{3}{2}\right) + \log\left(\frac{4}{2}\right) + \cdots + \log\left(\frac{50}{2}\right) = \log\left(\frac{3}{2} \times \frac{4}{2} \times \frac{50}{2}\right)$	M1	1.1b
	$\frac{1055(2)+1055(3)+10005(49)}{1055(2^{3}3)^{1000}(49)}$	M1	3.1a
	$= \log_5\left(\frac{50}{2}\right)$ or $\log_5(25) = 2 *$	A1*	2.1
		(3)	
(ii) Way 2	$\left\{\sum_{n=1}^{48} \log_5\left(\frac{n+2}{n+1}\right) = \right\} \sum_{n=1}^{48} (\log_5(n+2) - \log_5(n+1))$	M1	1.1b
	$= (\log_5 3 + \log_5 4 + \dots + \log_5 50) - (\log_5 2 + \log_5 3 + \dots + \log_5 49)$	M1	3.1a
	$= \log_5 50 - \log_5 2$ or $\log_5 \left(\frac{50}{2}\right)$ or $\log_5(25) = 2*$	A1*	2.1
		(3)	
		(6 marks)

	Notes for Question 27
(i)	Way 1
M1:	Applies $\frac{a}{1-r}$ for their r (where $-1 <$ their $r < 1$) and their value for a
M1:	Finds the infinite sum by using a complete strategy of applying $\frac{20(\frac{1}{2})^4}{1-\frac{1}{2}}$
A1:	2.5 o.e.
(i)	Way 2
M1:	Applies $\frac{a}{1-r}$ for their r (where $-1 <$ their $r < 1$) and their value for a
M1:	Finds the infinite sum by using a completely correct strategy of applying $\frac{10}{1-\frac{1}{2}} - (10+5+2.5)$
	or $\frac{10}{1-\frac{1}{2}} - \frac{10(1-(\frac{1}{2})^3)}{1-\frac{1}{2}}$
۸1.	2508
AI.	2.5 0.e.
(1)	way 3
M1:	Applies $\frac{a}{1-r}$ for their r (where $-1 <$ their $r < 1$) and their value for a
M1:	Finds the infinite sum by using a completely correct strategy of applying
	$\frac{20}{20} = (20 \pm 10 \pm 5 \pm 2.5)$ or $\frac{20}{20} = \frac{20(1 - (\frac{1}{2})^4)}{20(1 - (\frac{1}{2})^4)}$
	$\frac{1}{1-\frac{1}{2}} = (20+10+5+2.5)$ or $\frac{1}{1-\frac{1}{2}} = \frac{1-\frac{1}{2}}{1-\frac{1}{2}}$
A1:	2.5 o.e.
Note:	Give M1 M1 A1 for a correct answer of 2.5 from no working in (i)
(ii)	Wey 1
(II) M1•	Some evidence of applying the addition law of logarithms as part of a valid proof
M1.	Begins to solve the problem by just writing (or by combining) at least three terms including
1711.	• either the first two terms and the last term
	• or the first term and the last two terms
Note:	The 2nd mark can be gained by writing any of
	• listing $\log_5\left(\frac{3}{2}\right)$, $\log_5\left(\frac{4}{3}\right)$, $\log_5\left(\frac{50}{49}\right)$ or $\log_5\left(\frac{3}{2}\right)$, $\log_5\left(\frac{49}{48}\right)$, $\log_5\left(\frac{50}{49}\right)$
	• $\log_5\left(\frac{3}{2}\right) + \log_5\left(\frac{4}{3}\right) + \dots + \log_5\left(\frac{50}{49}\right)$
	• $\log_5\left(\frac{3}{2}\right) + \dots + \log_5\left(\frac{49}{48}\right) + \log_5\left(\frac{50}{49}\right)$
	• $\log_5\left(\frac{3}{2} \times \frac{4}{3} \times \times \frac{50}{49}\right)$ {this will also gain the 1 st M1 mark}
	• $\log_5\left(\frac{3}{2} \times \times \frac{49}{48} \times \frac{50}{49}\right)$ {this will also gain the 1 st M1 mark}
A1*:	Correct proof leading to a correct answer of 2
Note:	Do not allow the 2 nd M1 if $\log_5\left(\frac{3}{2}\right)$, $\log_5\left(\frac{4}{3}\right)$ are listed and $\log_5\left(\frac{50}{49}\right)$ is used for the first time
	in their applying the formula $S_{48} = \frac{48}{2} \left(\log_5 \left(\frac{3}{2} \right) + \log_5 \left(\frac{50}{49} \right) \right)$
Note:	Listing all 48 terms
	Give M0 M1 A0 for $\log_5\left(\frac{3}{2}\right) + \log_5\left(\frac{4}{3}\right) + \log_5\left(\frac{5}{4}\right) + \dots + \log_5\left(\frac{50}{49}\right) = 2$ {lists all terms}
	Give M0 M0 A0 for $0.2519+0.1787+0.1386++0.0125=2$ {all terms in decimals}

	Notes for Question 27
(ii)	Way 2
M1:	Uses the subtraction law of logarithms to give $\log_5\left(\frac{n+2}{n+1}\right) \rightarrow \log_5(n+2) - \log_5(n+1)$
M1:	Begins to solve the problem by writing at least three terms for each of $\log_5(n+2)$ and
	$\log_5(n+1)$ including
	• either the first two terms and the last term for both $\log_5(n+2)$ and $\log_5(n+1)$
	• or the first term and the last two terms for both $\log_5(n+2)$ and $\log_5(n+1)$
Note:	This mark can be gained by writing any of
	• $(\log_5 3 + \log_5 4 + \dots + \log_5 50) - (\log_5 2 + \log_5 3 + \dots + \log_5 49)$
	• $(\log_5 3 + \dots + \log_5 49 + \log_5 50) - (\log_5 2 + \dots + \log_5 48 + \log_5 49)$
	• $(\log_5 3 + \log_5 4 + \dots + \log_5 50) - (\log_5 2 + \log_5 3 + \dots + \log_5 49)$
	• $(\log_5 3 - \log_5 2) + (\log_5 4 - \log_5 3) + \dots + (\log_5 50 - \log_5 49)$
	• $\log_5 3 - \log_5 2$,, $\log_5 49 - \log_5 48$, $\log_5 50 - \log_5 49$
A1*:	Correct proof leading to a correct answer of 2
Note:	The base of 5 can be omitted for the M marks in part (ii), but the base of 5 must be included in the final line (as shown on the mark scheme) of their solution.
Note:	If a student uses a mixture of a Way 1 or Way 2 method, then award the best Way 1 mark only or the best Way 2 mark only.
Note:	Give M1 M0 A0 (1st M for implied use of subtraction law of logarithms) for
	$\sum_{n=1}^{48} \log_5\left(\frac{n+2}{n+1}\right) = 91.8237 89.8237 = 2$
Note:	Give M1 M1 A1 for
	$\sum_{n=1}^{48} \log_5\left(\frac{n+2}{n+1}\right) = \sum_{n=1}^{48} (\log_5(n+2) - \log_5(n+1))$
	$= \log_5(3 \times 4 \times \dots \times 50) - \log_5(2 \times 3 \times \dots \times 49)$
	$= \log_{5}\left(\frac{50!}{2}\right) - \log_{5}(49!) \text{or} = \log_{5}(25 \times 49!) - \log_{5}(49!)$
	$= \log_5 25 = 2$

Question	Scheme	Marks	AOs
28	(i) $\sum_{r=1}^{16} (3+5r+2^r) = 131798$; (ii) $u_1, u_2, u_3, \dots, : u_{n+1} = \frac{1}{u_n}, u_1 = \frac{2}{3}$		
(i) Way 1	$\left\{\sum_{r=1}^{16} \left(3+5r+2^r\right) = \right\} \sum_{r=1}^{16} \left(3+5r\right) + \sum_{r=1}^{16} \left(2^r\right)$	M1	3.1a
	$16_{(2(8)+15(5))} + 2(2^{16}-1)$	M1	1.1b
	$=\frac{1}{2}(2(8)+15(5))+\frac{1}{2-1}$	M1	1.1b
	= 728 + 131070 = 131798 *	A1*	2.1
		(4)	
(i) Way 2	$\left\{\sum_{r=1}^{16} \left(3+5r+2^r\right) = \right\} \sum_{r=1}^{16} 3 + \sum_{r=1}^{16} \left(5r\right) + \sum_{r=1}^{16} \left(2^r\right)$	M1	3.1a
	$(2 \times 16) + 16(2(5) + 15(5)) + 2(2^{16} - 1)$	M1	1.1b
	$= (3 \times 16) + \frac{1}{2}(2(3) + 15(3)) + \frac{1}{2-1}$	M1	1.1b
	=48+680+131070=131798*	A1*	2.1
		(4)	
		M1	3.1a
(i)	Sum = 10 + 1/+ 26 + 39 + 60 + 9/+ 166 + 299 + 560 + 10//+ 2106	M1 M1	1.1b
way 5	+4159+8260+16457+32846+65619=131798*	M1 A 1*	1.10
		(4)	2.1
(ii)	$\left\{u_1=\frac{2}{3}\right\}, u_2=\frac{3}{2}, u_3=\frac{2}{3}, \dots$ (can be implied by later working)	M1	1.1b
	$\left\{\sum_{r=1}^{100} u_r = \right\} 50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right) \text{or} 50\left(\frac{2}{3} + \frac{3}{2}\right)$	M1	2.2a
	$=\frac{325}{3} \left(\text{or } 108\frac{1}{3} \text{ or } 108.3 \text{ or } \frac{1300}{12} \text{ or } \frac{650}{6} \right)$	A1	1.1b
		(3)	
		(7	marks)

	Notes for Question 28
(i)	
M1:	Uses a correct methodical strategy to enable the given sum, $\sum_{r=1}^{16} (3+5r+2^r)$ to be found
	Allow M1 for any of the following:
	• expressing the given sum as either
	$\sum_{r=1}^{16} (3+5r) + \sum_{r=1}^{16} (2^r), \sum_{r=1}^{16} 3 + \sum_{r=1}^{16} (5r) + \sum_{r=1}^{16} (2^r) \text{or} \sum_{r=1}^{16} 3 + 5\sum_{r=1}^{16} r + \sum_{r=1}^{16} (2^r)$
	• attempting to find both $\sum_{r=1}^{r} (3+5r)$ and $\sum_{r=1}^{r} (2^r)$ separately
	• (3×16) and attempting to find both $\sum_{r=1}^{16} (5r)$ and $\sum_{r=1}^{16} (2^r)$ separately
M1:	Way 1: Correct method for finding the sum of an AP with $a = 8$, $d = 5$, $n = 16$
	Way 2: (3×16) and a correct method for finding the sum of an AP
M1:	Correct method for finding the sum of a GP with $a = 2, r = 2, n = 16$
A1*:	For all steps fully shown (with correct formulae used) leading to 131798
Note:	Way 1: Give 2^{nd} M1 for writing $\sum_{r=1}^{16} (3+5r)$ as $\frac{16}{2}(8+83)$
Note:	Way 2: Give 2 nd M1 for writing $\sum_{r=1}^{16} 3 + \sum_{r=1}^{16} (5r)$ as $48 + \frac{16}{2}(5+80)$ or $48 + 680$
Note:	Give 3 rd M1 for writing $\sum_{r=1}^{16} (2^r)$ as $\frac{2(1-2^{16})}{1-2}$ or $2(2^{16}-1)$ or $(2^{17}-2)$
(i)	
Way 3	
M1:	At least 6 correct terms and 16 terms shown
M1:	At least 10 correct terms (may not be 16 terms)
M1:	At least 15 correct terms (may not be 16 terms)
A1*:	All 16 terms correct and an indication that the sum is 131798
(ii)	
M1:	For some indication that the next two terms of this sequence are $\frac{3}{2}, \frac{2}{3}$
M1:	For deducing that the sum can be found by applying $50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3} + \frac{3}{2}\right)$, o.e.
A1:	Obtains $\frac{325}{3}$ or $108\frac{1}{3}$ or 108.3 or an exact equivalent
Note:	Allow 1 st M1 for $u_2 = \frac{3}{2}$ (or equivalent) and $u_3 = \frac{2}{3}$ (or equivalent)
Note:	Allow 1 st M1 for the first 3 terms written as $\frac{2}{3}, \frac{3}{2}, \frac{2}{3}, \dots$
Note:	Allow 1 st M1 for the 2 nd and 3 rd terms written as $\frac{3}{2}, \frac{2}{3}, \dots$ in the correct order
Note:	Condone $\frac{2}{3}$ written as 0.66 or awrt 0.67 for the 1 st M1 mark

Quest	ion Scheme	Marks	AOs
29	Arithmetic sequence, $T_2 = 2k$, $T_3 = 5k - 10$, $T_4 = 7k - 14$		
	$(5k-10) - (2k) = (7k-14) - (5k-10) \implies k = \dots$	M1	2.1
	$\{3k-10 = 2k-4 \Longrightarrow\} k=6$	A1	1.1b
	$\{k = 6 \Rightarrow\}$ $T_2 = 12$, $T_3 = 20$, $T_4 = 28$. So $d = 8$, $a = 4$	M1	2.2a
	$S_n = \frac{n}{2} \left(2(4) + (n-1)(8) \right)$	M1	1.1b
	$=\frac{n}{2}(8+8n-8) = 4n^2 = (2n)^2$ which is a square number	A1	2.1
		(5)	
		(5 n	narks)
Questi	ion 29 Notes:		
M1:	Complete method to find the value of k		
A1:	Uses a correct method to find $k = 6$		
M1:	Uses their value of k to deduce the common difference and the first term $(\neq T_2)$	of the arithm	etic
	series.		
M1:	Applies $S_n = \frac{n}{2} (2a + (n-1)d)$ with their $a \neq T_2$ and their d.		
A1:	Correctly shows that the sum of the series is $(2n)^2$ and makes an appropriate con	clusion.	

Quest	ion	Scheme	Marks	AOs	
30(a)	$\sqrt{(4-x)} = 2\left(1-\frac{1}{4}x\right)^{\frac{1}{2}}$	M1	2.1	
		$\left(1 - \frac{1}{4}x\right)^{\frac{1}{2}} = 1 + \frac{1}{2}\left(-\frac{1}{4}x\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{1}{4}x\right)^{2} + \dots$	M1	1.1b	
		$\sqrt{(4-x)} = 2\left(1 - \frac{1}{8}x - \frac{1}{128}x^2 +\right)$	A1	1.1b	
		$\sqrt{(4-x)} = 2 - \frac{1}{4}x - \frac{1}{64}x^2 + \dots$ and $k = -\frac{1}{64}$	A1	1.1b	
			(4)		
(b)		The expansion is valid for $ x < 4$, so $x = 1$ can be used	B1	2.4	
			(1)		
			(5 n	narks)	
Notes	:				
(a)					
M1:	Takes	s out a factor of 4 and writes $\sqrt{(4-x)} = 2(1\pm)^{\frac{1}{2}}$			
M1:	For ar	n attempt at the binomial expansion with $n = \frac{1}{2}$			
	Eg. $(1+ax)^{\frac{1}{2}} = 1 + \frac{1}{2}(ax) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(ax)^{2} + \dots$				
A1:	Correct expression inside the bracket $1 - \frac{1}{8}x - \frac{1}{128}x^2$ + which may be left unsimplified				
A1:	$\sqrt{(4-x)} = 2 - \frac{1}{4}x - \frac{1}{64}x^2 + \dots$ and $k = -\frac{1}{64}$				
(b)					
B1:	The e	xpansion is valid for $ x < 4$, so $x = 1$ can be used			

Ques	tion	Scheme	Marks	AOs
31	1	Attempts $S_{\infty} = \frac{8}{7} \times S_6 \Longrightarrow \frac{a}{1-r} = \frac{8}{7} \times \frac{a(1-r^6)}{1-r}$	M1	2.1
		$\Rightarrow 1 = \frac{8}{7} \times (1 - r^6)$	M1	2.1
		$\Rightarrow r^6 = \frac{1}{8} \Rightarrow r =$	M1	1.1b
		$\Rightarrow r = \pm \frac{1}{\sqrt{2}} (\text{so } k = 2)$	A1	1.1b
			(4 n	narks)
Notes	s:			
M1:	Subs	stitutes the correct formulae for S_{∞} and S_6 into the given equation S_{∞} =	$=\frac{8}{7}\times S_6$	
M1:	Proc	eeds to an equation just in <i>r</i>		
M1:	Solv	es using a correct method		
A1:	Proc	eeds to $r = \pm \frac{1}{\sqrt{2}}$ giving $k = 2$		

Question Number	Sch	eme	Marks			
32 (a)	$a + (n-1)d = 600 + 9 \times 120$	This mark is for: 600+9×120 or 600+8×120	M1			
	$=(\pounds)1680$	1680 with or without the "£"	A1			
	Answer only sc					
	Lis M1: Lists ten terms starting A1: Identifies the 1	<u>ting</u> £600, £720, £840, £960, 0 th term as (£)1680				
			(2)			
(b)	Allow the use of <i>n</i> instea	nd of N throughout in (b)				
	d = 80 for Kim	Identifies or uses $d = 80$ for Kim	B1			
	$\frac{N}{2} \{2 \times 600 + (N-1) \times 120\} \text{ OR}$ $\frac{N}{2} \{2 \times 130 + (N-1) \times 80\}$	Attempts a sum formula for Andy or Kim. A correct formula must be seen or implied with: a = 600, d = 120 for Andy or a = 130, d = 80 for Kim. If B0 was scored, allow M1 here if Kim's incorrect "d" is used.	M1			
	$\frac{N}{2} \left\{ 2 \times 600 + (N-1) \times 12 \right\}$	$0\} = 2 \times \frac{N}{2} \{2 \times 130 + (N-1) \times 80\}$	A1			
	A <u>correct</u> equa	tion in any form				
	$20N = 360 \Longrightarrow N = \dots$	(Allow if it leads to $N < 0$) Dependent on the first method mark and must be an equation that uses Andy's and Kim's sum.	dM1			
	(<i>N</i> =)18	Ignore $N/n = 0$ and if a correct value of N is seen, isw any further reference to years etc.	A1			
	See below for listing approach If you see N = 18 with no working send to Review					
			(5)			
			(/ marks)			

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Andy	600	1320	2160	3120	4200	5400	6720	8160	9720	11400	13200	15120	17160	19320	21600	24000	26520	29160
Kim	130	340	630	1000	1450	1980	2590	3280	4050	4900	5830	6840	7930	9100	10350	11680	13090	14580
Kimx2	260	680	1260	2000	2900	3960	5180	6560	8100	9800	11660	13680	15860	18200	20700	23360	26180	29160

B1: States or uses d = 80 for Kim M1: Attempts to find the total savings for Andy or Kim – must see the correct pattern for Andy (600, 1320, 2160,...) or Kim (130, 340, 630,...) (or Kimx2) A1: Correct totals for Andy and Kim (or Kimx2) at least as far as n = 18M1: Identifies when Andy's total = 2xKim's total A1: N = 18

Question Number	Sch	eme	Marks				
33 (a)	$a_1 = 4 \Longrightarrow a_2 = \frac{4}{4+1}$	Attempts to use the given recurrence relation correctly at least once e.g. $a_2 = \frac{4}{4+1}$ or $a_3 = \frac{\text{their } a_2}{(\text{their } a_2)+1}$ or $a_4 = \frac{\text{their } a_3}{(\text{their } a_3)+1}$. May be implied by their term(s).	M1				
	$\frac{4}{5}, \frac{4}{9}, \frac{4}{13}$	A1: Two of $\frac{4}{5}, \frac{4}{9}, \frac{4}{13}$ which may be un-simplified. Accept for example $0.8, \frac{0.8}{1.8}, \dots$ or $\frac{4}{5}, \frac{\frac{4}{5}}{1+\frac{4}{5}}, \dots$ A1: $\frac{4}{5}, \frac{4}{9}, \frac{4}{13}$ (Allow 0.8 for $\frac{4}{5}$)	A1A1				
(b)	p = 4 or e.g. $4 = \frac{4}{p+q}, "\frac{4}{5}" = \frac{4}{2p+q}$ $\Rightarrow p = \dots \text{ or } q = \dots$ $a_n = \frac{4}{4n-2} \Rightarrow p = 4 \text{ and } q = -3$	$a_n = \frac{4}{4n \pm} \text{ or } p = 4 \text{ OR}$ Uses 2 terms to set up and solve two <u>correct equations</u> for their fractions in p and q to obtain a value for p or a value for q. Either $a_n = \frac{4}{4n-3}$ OR	M1 A1				
	4// - 5	p = 4 and $q = -3$					
	Correct answer onl	y scores both marks.					
(c)	$\frac{4}{4N-3} = \frac{4}{321} \Longrightarrow N = \dots$	Solves their $\frac{4}{pN+q} = \frac{4}{321}$ to obtain a value for <i>N</i> or <i>n</i> .	M1				
	(N=)81	Cao (ignore what they use for <i>N</i>)	A1				
	Allow trial and improvement if 81 is clearly identified and then award both marks following a correct answer in (b) but just trying random values is M0						
			(7 marks)				

Question Number	Sch	eme	Marks					
34.(a)	$(a_2 =)2k$	2k only	B1					
	$(a_3 =) \frac{k("2k"+1)}{"2k"}$	For substituting their a_2 into $a_3 = \frac{k(a_2 + 1)}{a_2}$ to find a_3 in terms of just k	M1					
	$(a_3 =)\frac{2k+1}{2}$	$(a_3 =) \frac{2k+1}{2}$ or exact simplified equivalent such as $(a_3 =)k + \frac{1}{2}$ or $\frac{1}{2}(2k+1)$ but not $k + \frac{k}{2k}$ Must be seen in (a) but isw once a correct simplified answer is seen.	A1					
	Note that there are no marks in (b) for using an AD (or CD)							
	Note that there are <u>no</u> marks in formula unless their term							
(b)	$\sum_{r=1}^{3} a_{r} = 10 \Longrightarrow 1 + "2k" + "\frac{2k+1}{2}" = 10$	Writes 1 + their a_2 + their $a_3 = 10$. E.g. $1+2k + \frac{2k^2 + k}{2k} = 10$. Must be a correct follow through equation in terms of k only.	M1					
	$\Rightarrow 2+4k+2k+1=20 \Rightarrow k=$ or e.g. $\Rightarrow 6k^2 - 17k = 0 \Rightarrow k =$	Solves their equation in k which has come from the sum of 3 terms = 10, and reaches $k =$ Condone poor algebra but if a quadratic is obtained then the usual rules apply for solving – see General Principles. (Note that it does not need to be a 3- term quadratic in this case)	M1					
	$(k=)\frac{17}{6}$	$k = \frac{17}{6}$ or exact equivalent e.g. $2\frac{5}{6}$ Do not allow $k = \frac{8.5}{3}$ or $k = \frac{17/2}{3}$ Ignore any reference to $k = 0$. Allow 2.83 recurring as long as the recurring is clearly indicated e.g. a dot over the 3.	A1					
			(3)					
			(6 marks)					

35. (a) $206=140+(12-1)\times d \Rightarrow d =$ Uses $206=140+(12-1)\times d$ and proceeds as far as $d =$ M1 (d =)6 Correct answer only can score both marks. A1 (b) Attempts $S_{a} = \frac{n}{2}(a+l)$ or $S_{a} = \frac{12}{2}(140+206)$ or $S_{a} = \frac{12}{2}(2\times140+(12-1)\times"6")$ or $S_{a} = \frac{n}{2}(2a+(n-1)d)$ with $n=12$, $a=140, l=206, d='6'$ WAY 1 Or $S_{a} = \frac{12}{2}(2\times140+(12-1)\times"6")$ or $S_{a} = \frac{n}{2}(2a+(n-1)d)$ with $n=11$, $a=140, l=206-6, d='6'$ WAY2 If they are using $S_{a} = \frac{n}{2}(2a+(n-1)d)$, the n must be used consistently. M1 $S = 2076$ WAY1 or $S = 1870$ WAY2 Correct sum (may be implied) or $S_{a} = 1870$ WAY2 Or $S_{a} = 12(2a+(n-1)d)$, the n must be used consistently. M1 Total = "2076"+"8240" = (WAY 1) or $S = 1870'+"8240" = (WAY 2)$ Attempts to find the total by adding the sum to 11 terms with $(52-12) \times 206$ or $(52-11) \times 206 = (WAY 2)$ M1 Total = "1870"+"8446" = (WAY 2) Attempts to find the total by adding the sum to 11 terms with $(52-12) \log 30^{-1}$ or $(52-11) \log 30^{-1}$ or $(32-12) \log$	Question Number	Sch	eme	Marks			
$(b) \qquad (d =) 6 \qquad Correct answer only can score both marks. \qquad A1$ $(b) \qquad (d =) 6 \qquad Correct answer only can score both marks. \qquad A1$ $(b) \qquad (d =) 6 \qquad Correct answer only can score both marks. \qquad A1$ $(c) \qquad (d =) 6 \qquad Correct answer only can score both marks. \qquad A1$ $(c) \qquad (d =) 6 \qquad Correct answer only can score both marks. \qquad A1$ $(c) \qquad (d =) 6 \qquad Correct answer only can score both marks. \qquad A1$ $(c) \qquad (c) $	35. (a)	$206 = 140 + (12 - 1) \times d \Longrightarrow d = \dots$	Uses $206 = 140 + (12-1) \times d$ and proceeds as far as $d = \dots$	M1			
(b) Attempts $S_n = \frac{n}{2}(a+l)$ or $S_{12} = \frac{12}{2}(140+206)$ or $S_{12} = \frac{12}{2}(2\times140+(12-1)\times"6")$ or $S_{11} = \frac{11}{2}(140+206-"6")$ or $S_{11} = \frac{11}{2}(2\times140+(11-1)\times"6")$ $S_{11} = \frac{11}{2}(2\times140+(11-1)\times"6")$ $S_n = \frac{n}{2}(2a+(n-1)d)$ with $n = 11$, a = 140, l = 206 - 6', d = '6' WAY2 If they are using $S_n = \frac{n}{2}(2a+(n-1)d)$, the n must be used consistently. S = 2076 WAY1 or S = 1870 WAY 2 S = 1870 WAY 2 $S = 101 \times 206$ Does not have to be consistent with their n used for the first Method mark. S = 10316 S = 10316 S = 10316 S = 100 M1 S =		(d=)6	Correct answer only can score both marks.	A1			
(b) Attempts $S_n = \frac{n}{2}(a+1)$ or $S_{12} = \frac{12}{2}(140+206)$ or $S_{12} = \frac{12}{2}(2\times140+(12-1)\times"6")$ or $S_{11} = \frac{11}{2}(140+206-"6")$ or $S_{11} = \frac{11}{2}(140+206-"6")$ or $S_{11} = \frac{11}{2}(2\times140+(11-1)\times"6")$ $S_{11} = \frac{11}{2}(2\times140+(11-1)\times"6")$ S = 2076 WAY1 or S = 2076 WAY1 or S = 2076 WAY2 S = 2076 WAY2 S = 2076 WAY2 S = 1870 WAY2 S = 10316 S = 1870 WAY2 S = 10316 S = 1870 WAY2 S = 10316 S = 10316 S = 100 MI S			L	(2)			
$S_{12} = \frac{12}{2}(140+206) \text{ or } S_{12} = \frac{12}{2}(2\times140+(12-1)\times"6") \text{ or } S_{11} = \frac{11}{2}(140+206-"6") \text{ or } S_{11} = \frac{11}{2}(140+206-"6") \text{ or } S_{11} = \frac{11}{2}(2\times140+(11-1)\times"6") = \frac{11}{2}(2\times140+(11-1)\times$	(b)		Attempts $S_n = \frac{n}{2}(a+l)$ or				
$ S_{12} = \frac{12}{2} (140 + 206) \text{ or } \\ S_{12} = \frac{12}{2} (2 \times 140 + (12 - 1) \times "6") \text{ or } \\ S_{11} = \frac{11}{2} (140 + 206 - "6") \text{ or } \\ S_{11} = \frac{11}{2} (140 + 206 - "6") \text{ or } \\ S_{11} = \frac{11}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{11}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{n}{2} (2a + (n - 1)d) \text{ with } n = 11, \\ a = 140, l = 206 - '6', d = '6' \text{WAY2} \\ \text{If they are using} \\ S_{n} = \frac{n}{2} (2a + (n - 1)d), \text{ the } n \text{ must} \\ \text{be used consistently.} \\ \hline \\ S = 2076 \text{ WAY1} \\ \text{or } \\ S = 1870 \text{ WAY 2} \\ \hline \\ (52 - 12) \times 206 = \dots \\ \text{or } (52 - 11) \times 206 = \dots \\ \text{or } (52 - 11) \times 206 = \dots \\ \text{or } (52 - 11) \times 206 = \dots \\ \text{or } (52 - 11) \times 206 = \dots \\ \text{(WAY 1)} \\ \text{or } \\ \text{Total} = "2076" + "8240" = \dots \\ (WAY 1) \\ \text{or } \\ \text{Total} = "1870" + "8446" = \dots \\ (WAY 2) \\ \hline \\ \hline \\ 10316 \\ \hline \\ $		12	$S_n = \frac{n}{2} (2a + (n-1)d)$ with $n = 12$,				
$\frac{1}{S_{12}} = \frac{12}{2} (2 \times 140 + (12 - 1) \times "6") \text{ or } \\ S_{11} = \frac{12}{2} (2 \times 140 + (12 - 1) \times "6") \text{ or } \\ S_{11} = \frac{11}{2} (140 + 206 - "6") \text{ or } \\ S_{11} = \frac{11}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{11}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{11}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{11} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{12} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{12} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{12} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{12} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{12} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{12} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{12} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{12} = \frac{1}{2} (2 \times 140 + (11 - 1) \times "6") \\ S_{12} = \frac{1}{2} (2 \times 140 + (11 - 1) \times (2 \times 140 + 140) \times (2 \times 140$		$S_{12} = \frac{12}{2} (140 + 206)$ or	a = 140, l = 206, d = '6' WAY 1				
$S_{12} = \frac{12}{2} (2 \times 140 + (12 - 1) \times "6") \text{ or } S_{11} = \frac{11}{2} (140 + 206 - "6") \text{ or } S_{11} = \frac{11}{2} (2 \times 140 + (11 - 1) \times "6") \qquad \text{Attempts } S_n = \frac{n}{2} (2a + (n - 1)d) \text{ with } n = 11, \\ a = 140, l = 206 - '6', d = '6' \text{WAY2} \text{ If they are using } S_n = \frac{n}{2} (2a + (n - 1)d), \text{ the } n \text{ must } \text{ be used consistently.} \qquad \text{A1}$ $S = 2076 \text{ WAY1} \text{ or } S = 1870 \text{ WAY2} \qquad \text{Correct sum (may be implied)} \text{ A1}$ $S = 1870 \text{ WAY 2} \qquad \text{Attempts to find } (52 - 12) \times 206 \text{ or } (52 - 11) \times 206 \text{ =} \text{ or } (52 - 11) \times 206 \text{ =} \text{ or } (52 - 11) \times 206 \text{ =} \text{ or } (52 - 11) \times 206 \text{ =} \text{ or } (52 - 11) \times 206 \text{ =} \text{ or } 12076" + "8240" = \text{ (WAY 1)} \text{ or } 120 \text{ or } 1200 \text{ or } 110000 \text{ or } 110000 \text{ or } 110000000000000000000000000000000000$		12	Or				
$S_{n} = \frac{11}{2} (140 + 206 - "6") \text{ or}$ $S_{n} = \frac{11}{2} (2 \times 140 + (11 - 1) \times "6")$ $S_{n} = \frac{1}{2} (2a + (n - 1)d) \text{ with } n = 11,$ $a = 140, l = 206 - '6', d = '6' \text{ WAY2}$ If they are using $S_{n} = \frac{n}{2} (2a + (n - 1)d), \text{ the } n \text{ must}$ be used consistently. $S = 2076 \text{ WAY1}$ or $S = 2076 \text{ WAY1}$ or $S = 1870 \text{ WAY 2}$ Attempts to find $(52 - 12) \times 206 \text{ or}$ $(52 - 11) \times 206 = \dots$ or $(52 - 11) \times 206 = \dots$ or $(52 - 11) \times 206 = \dots$ Total = "2076"+"8240" = $(WAY 1)$ or $Total = "1870"+"8446" = \dots$ $(WAY 2)$ Attempts to find the total by adding the sum to 11 terms with $(52 - 12)$ lots of 206 or attempts to find the total by adding the sum to 11 terms with $(52 - 11)$ lots of 206. I.e. $consistency is now required for this mark. Dependent on both previous method marks.$ $(WAY 2)$ (7 mark)		$S_{12} = \frac{12}{2} (2 \times 140 + (12 - 1) \times "6")$ or	Attempts $S_n = \frac{n}{2}(a+l)$ or	M1			
$S_{11} = \frac{11}{2} (2 \times 140 + (11-1) \times "6")$ $a = 140, l = 206 - '6', d = '6' WAY2$ If they are using $S_n = \frac{n}{2} (2a + (n-1)d), \text{ the } n \text{ must}$ be used consistently. $S = 2076 WAY1$ or $S = 2076 WAY2$ Correct sum (may be implied) $S = 1870 WAY 2$ $(52-12) \times 206 = \dots$ or $(52-11) \times 206 = \dots$ (52-11) $\times 206 = \dots$ $(52-11) \times 206 = \dots$ (WAY 1) $Total = "2076" + "8240" = \dots$ (WAY 1) $Total = "1870" + "8446" = \dots$ (WAY 2) $(WAY 2)$ $($		$S_{11} = \frac{11}{2} (140 + 206 - "6")$ or	$S_n = \frac{n}{2} (2a + (n-1)d)$ with $n = 11$,				
Z If they are using $S_n = \frac{n}{2}(2a + (n-1)d)$, the <i>n</i> must be used consistently. $S = 2076$ WAY1 or $S = 1870$ WAY 2Correct sum (may be implied)A1 $S = 1870$ WAY 2Attempts to find $(52-12) \times 206$ or $(52-11) \times 206 =$ Attempts to find $(52-12) \times 206$ or $(52-11) \times 206 =$ M1 $Total = "2076"+"8240" =(WAY 1)orTotal = "1870"+"8446" =(WAY 2)Attempts to find the total by addingthe sum to 12 terms with (52 - 12)lots of 206 or attempts to find thetotal by adding the sum to 11 termswith (52 - 11) lots of 206. I.e.consistency is now required for thismark. Dependent on both previousmethod marks.ddM110316caoA1(7 mar$		$S_{11} = \frac{11}{2} (2 \times 140 + (11 - 1) \times "6")$	<i>a</i> = 140, <i>l</i> = 206 - '6', <i>d</i> = '6' WAY2				
$S_{n} = \frac{n}{2} (2a + (n-1)d), \text{ the } n \text{ must}$ be used consistently. S = 2076 WAY1 or $S = 1870 \text{ WAY 2}$ Correct sum (may be implied) A1 $S = 1870 \text{ WAY 2}$ Attempts to find $(52-12) \times 206 \text{ or}$ $(52-12) \times 206 = \dots$ or $(52-11) \times 206 = \dots$ $(52-11) \times 206 = 0 \text{ or } (52-11) \times 206 \text{ Des not have to be}$ consistent with their n used for the first Method mark. Total = "2076"+"8240" = (WAY 1) or Total = "1870"+"8446" = (WAY 2) $ddM1$ $ddM1$ $ddM1$		Z	If they are using				
S = 2076 WAY1 or S = 1870 WAY 2Correct sum (may be implied)A1 $S = 1870 WAY 2$ Attempts to find $(52-12) \times 206$ or $(52-12) \times 206 =$ Attempts to find $(52-12) \times 206$ or $(52-11) \times 206$. Does not have to be consistent with their <i>n</i> used for the first Method mark.M1Total = "2076"+"8240" = (WAY 1) or Total = "1870"+"8446" = (WAY 2)Attempts to find the total by adding the sum to 12 terms with $(52 - 12)$ lots of 206 or attempts to find the total by adding the sum to 11 terms with $(52 - 11)$ lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks.ddM110316caoA1			$S_n = \frac{n}{2} (2a + (n-1)d), \text{ the } n \text{ must}$				
$S = 2076 \text{ WAY1}$ or $S = 1870 \text{ WAY 2}$ Correct sum (may be implied) A1 Attempts to find $(52-12) \times 206$ or $(52-12) \times 206 = \dots$ Or $(52-11) \times 206 = \dots$ Attempts to find $(52-12) \times 206$ or $(52-11) \times 206$. Does not have to be consistent with their <i>n</i> used for the first Method mark. Attempts to find the total by adding the sum to 12 terms with $(52 - 12)$ lots of 206 or attempts to find the total by adding the sum to 11 terms with $(52 - 11)$ lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks. Attempts to find marks. (WAY 2) Attempts to find the total by adding the sum to 11 terms (WAY 2) Attempts to find marks. (Total = "1870"+"8446"= (WAY 2) Attempts to find marks. (Total = "10316 (Total = 10316 (Total			be used consistently.				
or $S = 1870$ WAY 2Correct sum (may be implied)A1 $S = 1870$ WAY 2Attempts to find $(52-12) \times 206$ or $(52-11) \times 206 =$ Attempts to find $(52-12) \times 206$ or $(52-11) \times 206$. Does not have to be consistent with their <i>n</i> used for the first Method mark.M1Total = "2076"+"8240" = (WAY 1) or Total = "1870"+"8446" = (WAY 2)Attempts to find the total by adding the sum to 12 terms with $(52 - 12)$ lots of 206 or attempts to find the total by adding the sum to 11 terms with $(52 - 11)$ lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks.ddM110316caoA1		$S = 2076 \operatorname{WAY1}$					
$S = 1870$ WAY 2 $S = 1870$ WAY 2Attempts to find $(52-12) \times 206$ or $(52-11) \times 206 =$ M1 $(52-11) \times 206 =$ $(52-11) \times 206$. Does not have to be consistent with their <i>n</i> used for the first Method mark.M1 $Total = "2076"+"8240" =(WAY 1)orTotal = "1870"+"8446" =(WAY 2)Attempts to find the total by addingthe sum to 12 terms with (52 - 12)lots of 206 or attempts to find thetotal by adding the sum to 11 termswith (52 - 11) lots of 206. I.e.consistency is now required for thismark. Dependent on both previousmethod marks.ddM110316caoA1(7 mar)$		or	Correct sum (may be implied)	Al			
Attempts to find $(52-12) \times 206$ or $(52-11) \times 206 =$ M1or $(52-11) \times 206 =$ $(52-11) \times 206$. Does not have to be consistent with their <i>n</i> used for the first Method mark.M1Total = "2076"+"8240" = (WAY 1) or Total = "1870"+"8446" = (WAY 2)Attempts to find the total by adding the sum to 12 terms with $(52 - 12)$ lots of 206 or attempts to find the total by adding the sum to 11 terms with $(52 - 11)$ lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks.ddM110316caoA1(7 mar		S = 1870 WAY 2					
Total = "2076" + "8240" = (WAY 1) or Total = "1870" + "8446" = (WAY 2) $Iotal = "1870" + "8446" = (WAY 2)$ $Iotal = "10316$ $Iotal = "10316$ $Iotal = "10316$		(52 12)~206	Attempts to find $(52-12) \times 206$ or				
or $(52-11) \times 206 =$ Total = "2076"+"8240" = (WAY 1) or Total = "1870"+"8446" = (WAY 2) 10316 consistent with their <i>n</i> used for the first Method mark. Attempts to find the total by adding the sum to 12 terms with (52 - 12) lots of 206 or attempts to find the total by adding the sum to 11 terms with (52 - 11) lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks. (7 mar		$(52-12) \times 200 = \dots$	$(52-11) \times 206$. Does not have to be	M1			
Total = "2076"+"8240" = (WAY 1) or Total = "1870"+"8446" = (WAY 2) $Total = "1870"+"8446" = (WAY 2)$ $Attempts to find the total by adding the sum to 12 terms with (52 - 12) lots of 206 or attempts to find the total by adding the sum to 11 terms with (52 - 11) lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks. 10316 Cao A1 (7 mar)$		or $(52-11) \times 206 =$	consistent with their <i>n</i> used for the first Method mark.				
Total = "2076"+"8240" = (WAY 1) or Total = "1870"+"8446" = (WAY 2) Total = "1870"+"8446" = (WAY 2) Total = "10316 Total = "10000			Attempts to find the total by adding				
Iteration in the form of the latter in the form of th		Total = "2076"+ "8240" =	the sum to 12 terms with $(52 - 12)$				
or total by adding the sum to 11 terms with (52 - 11) lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks. ddM1 10316 cao A1 (7 mar		(WAY 1)	lots of 206 or attempts to find the				
Total ="1870"+"8446"= (WAY 2) With (52 - 11) lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks. 10316 cao (7 mar		or	total by adding the sum to 11 terms $\frac{1}{2}$	dd M1			
(WAY 2) Consistency is now required for this mark. Dependent on both previous method marks.		Total = "1870"+ "8446" =	with (52 - 11) for of 200. i.e.				
India Dependent on both previous method marks. 10316 cao (7 mar		(WAY 2)	mark Dependent on both previous				
10316 cao A1 (7 mar			method marks.				
(7 mar		10316	cao	A1			
(7 mar			I	(5)			
				(7 marks)			

					Listing	in (b)	:			
Week	< .	1	2	3	4	5	6	7]	
Bicycle	es	140	146	152	158	164	170	176		
Total		140	286	438	596	760	930	1106		
8	9	10	11	12	13		52			
182	188	194	200	206	206		206			
1288	1476	1670	187	2076	2282		10316			
140 and their d up to $140 + 11d$ or $140 + 10d$. A1: S = 2076 or 1870 Then follow the scheme										
	S	pecial	case	in (b) -	- Treat	s as si	ngle Al	P with <i>i</i>	n = 52	
$S_n = \frac{52}{2} (2 \times 140 + (52 - 1) \times "6") = 15236$ Scores 11000										
M	$\mathbf{1:} S_n$	$=\frac{n}{2}(2$	2a+(n)	(n-1)d	with <i>n</i>	= 52,	a = 140), <i>d</i> = "6	5" A1: 15236	

Question Number	Scheme	Notes	Marks					
	$a_1 = 4, a_{n+1} = 5 - k$	$a_n, n1$						
36. (a)	$a_{-}=5-ka_{-}=5-4k_{-}$	M1: Uses the recurrence relation correctly at least once. This may be implied by $a_2 = 5-4k$ or by the use of						
	$a_2 = 5 ha_1 = 5 h(5 h)$	$a_3 = 5 - k (\text{their } a_2)$	M1A1					
	$a_3 = 3 - \kappa a_2 = 3 - \kappa (3 - 4\kappa)$	A1: Two correct expressions – need not be simplified but must be seen in (a).						
		Allow $a_2 = 5 - k4$ and $a_3 = 5 - 5k + k^2 4$						
		Isw if necessary for a_3 .						
			[2]					
(b)	$\sum_{r=1}^{3} (1) = 1 + 1 + 1$	Finds 1+1+1 or 3 somewhere in their solution (may be implied by e.g. $5 + 6 - 4k$ $+ 6 - 5k + 4k^2$). Note that $5 + 6 - 4k + 6 - 5k + 4k^2$ would score B1 and the M1 below.	B1					
	$\sum_{r=1}^{3} a_r = 4 + "5 - 4k" + "5 - 5k + 4k^2"$	Adds 4 to their a_2 and their a_3 where a_2 and a_3 are functions of k . The statement as shown is sufficient.	M1					
	$\sum_{r=1}^{3} (1+a_r) = 17 - 9k + 4k^2$	Cao but condone '= 0' after the expression	A1					
	Allow full marks in (b) for correct answer only							
		Ť	[3]					
(c)	500	cao	B1					
			[1]					
			6 marks					

Question Number	Scheme	Notes	Marks					
37.(a)	John; arithmetic series,	a = 60, d = 15.						
	$60 + 75 + 90 = 225^*$ or $S_{-} = \frac{3}{2}(120 + (3 - 1)(15)) = 225^*$	Finds and adds the first 3 terms or uses sum of 3 terms of an AP and obtains the	B1 *					
	$S_3 = \frac{1}{2}(120 + (3 - 1)(13)) = 223$	printed answer, with no errors.						
	<u>Beware:</u> The 12 th term of the sequence is 225 also so look	out for $60 + (12 - 1) \times 15 = 225$. This is B0.						
			[1]					
(b)	$t_9 = 60 + (n-1)15 = (\pounds)180$	M1: Uses $60 + (n - 1)15$ with $n = 8$ or 9 A1: (f)180	M1 A1					
	M1: Uses $a = 60$ and $d = 15$ to select the 8 th A1: (£)18	^h or 9 th term (allow arithmetic slips) 0						
	(Special case (£)165 onl	y scores M1A0)						
			[2]					
(c)	$S_{n} = \frac{n}{2} (120 + (n-1)(15))$ or $S_{n} = \frac{n}{2} (60 + 60 + (n-1)(15))$	Uses correct formula for sum of <i>n</i> terms with $a = 60$ and $d = 15$ (must be a correct formula but ignore the value they use for <i>n</i> or could be in terms of <i>n</i>)	M1					
	$S_n = \frac{12}{2} (120 + (12 - 1)(15))$	Correct numerical expression	A1					
	$=(\pm)1710$	cao	A1					
	M1: Uses $a = 60$ and $d = 15$ and finds the sum of at least 12 terms (allow arithmetic slips) A2: (£)1710							
			[3]					
(d)	$3375 = \frac{n}{2} (120 + (n-1)(15))$	Uses correct formula for sum of <i>n</i> terms with $a = 60$, $d = 15$ and puts = 3375	M1					
	$6750 = 15n(8 + (n - 1)) \Longrightarrow 15n^2 + 105n = 6750$	Correct three term quadratic. E.g. $6750 = 105n + 15n^2$, $3375 = \frac{15}{2}n^2 + \frac{105}{2}n$ This may be implied by equations such as $6750 = 15n(n+7)$ or $3275 = \frac{15}{2}(n^2 + 7n)$	A1					
		$0/30 = 13n(n+7) \text{ or } 35/3 = \frac{1}{2}(n+7n)$						
	$n^2 + 7n = 25 \times 18$ *	Achieves the printed answer with no errors but must see the 450 or 450 in factorised form or e.g. 6750, 3375 in factorised form i.e. an intermediate step.	A1*					
			[3]					
(e)	$n = 18 \Longrightarrow \text{Aged} 27$	M1: Attempts to solve the given quadratic or states $n = 18$	M1 A1					
	Age = 27 only scores both marks (i	n = 18 need not be seen						
	Note that (e) is not hence so allow valid attem	pts to solve the given equation for M1						
			[2]					
			11 marks					

п	1	2	3	4	5	6	7	8	9
u_n	60	75	90	105	120	135	150	165	180
\mathbf{S}_n	60	135	225	330	450	585	735	900	1080
Age	10	11	12	13	14	15	16	17	18
п	10	11	12	13	14	15	16	17	18
u_n	195	210	225	240	255	270	285	300	315
\mathbf{S}_n	1275	1485	1710	1950	2205	2475	2760	3060	3375
Age	19	20	21	22	23	24	25	26	27

Question Number	Sch	eme	Marks
38(i).(a)	$U_{3} = 4$	cao	B1
			(1)
(b)	$\sum_{n=1}^{n=20} U_n = 4 + 4 + 4 \dots + 4 \text{ or } 20 \times 4$	For realising that all 20 terms are 4 and that the sum is required. Possible ways are $4+4+4+4$ or 20×4 or $\frac{1}{2}\times20(2\times4+19\times0)$ or $\frac{1}{2}\times20(4+4)$ (Use of a correct sum formula with n = 20, a = 4 and $d = 0$ or $n = 20$, a = 4 and $l = 4$)	M1
	= 80	cao	A1
	Correct answer with ne		
			(2)
(ii)(a)	$V_3 = 3k, V_4 = 4k$	May score in (b) if clearly identified as V_3 and V_4	B1, B1
			(2)
(b)	$\sum_{n=1}^{n=5} V_n = k + 2k + 3k + 4k + 5k = 165$ or $\frac{1}{2} \times 5(2 \times k + 4 \times k) = 165$ or $\frac{1}{2} \times 5(k + 5k) = 165$	Attempts V_5 , adds their V_1, V_2, V_3, V_4, V_5 AND sets equal to 165 or Use of a correct sum formula with a = k, d = k and $n = 5$ or $a = k, l = 5kand n = 5 AND sets equal to 165$	M1
	$15k = 165 \Longrightarrow k =$	Attempts to solve their linear equation in k having set the sum of their first 5 terms equal to 165. Solving $V_5 =$ 165 scores no marks.	M1
	$\kappa = 11$		(3)
			(8 marks)

Questic Numbe	on er				Sche	me				Marks
39.(a) 3200	00 = 1700	0 + (k - 1))×1500=	$\Rightarrow k = \dots$	Use of 3 in an atte formula answer.	2000 with a empt to find could be im	t <u>correct</u> l k. A corr aplied by a	formula rect a correct	M1
			(k =) 1	1		Cso (Al	low $n = 11$)		Al
				Accept	t correct	answer of	nly.			
		3200	0 = 1700	0 + 1500	$k \Longrightarrow k =$	10 is M0A	A0 (wrong t	formula)		
		$\frac{32000}{1}$	$\frac{10-17000}{500}$	$=10 \therefore k$	=11is M	1A1 (com	ect formula	a implied)	
	Li	sting: Al	l terms n	nust be li	sted up to	o 32000 at	nd 11 corre	ctly iden	tified.	
	A solution that scores 2 if fully correct and 0 otherwise.									
								<u> </u>		(2)
(b)		c k(217000	MI:	1500)		MI: Use (of correct	sum	
		$S = \frac{\kappa}{2}$	2×1/000	(k-1)	×1500)o	r	n = k or k	-1 from	nart (a)	
		$\frac{k}{2}$	(17000 + 1)	32000)			where $3 <$	k < 20 at	nd $a =$	
		$S = \frac{k-1}{2}(2 \times 17000 + (k-2) \times 1500)$ or 17000 and $d = 1500$. See								
		$\frac{k-1}{k-1}(17000+30500)$ below for special case for								
		a_{2} (17000 150500) A1:								
	$S = \frac{1}{2}$	$S = \frac{11}{2} (2 \times 17000 + 10 \times 1500) \text{ or } \frac{11}{2} (17000 + 32000) \text{ A1: Any correct un-}$								
		S = -	$\frac{10}{10}(2 \times 170)$	$0.00 + 9 \times 10^{-10}$	500) or		simplified	l numeric	al	
		5 –	$\frac{10}{1700}$	00 + 2050			expression	n with <i>n</i> =	= 11 or	
		(-	$\frac{1}{2}(1/00)$	0 + 3030 0 ~ 227	500)		<i>n</i> = 10			
		(-	- 209 30	0 01 257	500)					
			32000×	α		32000×	α where α	α is an int	eger	M1
						and $3 <$	$\alpha < 18$	$\chi < 18$		
						M1: Att	empts to ac	ld their tv	WO	
		288 000	+ 269 50	0 = 557.5	500	values.	It is depend	lent upon	the two	
		220.000	or	0 557 6		previous	s M's being up of 20 to	g scored a	ind must	ddM1A1
		320 000	+ 237 50	0 = 5575	500	$\alpha + k =$	uni oi 20 te 20	1111S 1.C.		
						A1: 557	500			
	Sı	becial Ca	se: If the	ev just fi	nd S ₂₀ (£	625 000)	in (b) scor	e the firs	st M1	
				otherw	ise apply	y the sche	eme.			
										(5)
T • /•										(7 marks)
										10
	<u>17000 18500 20000 21500 23000 24500 26000 27500 29000</u>							30500		
n	11	12	13	14	15	16	17	18	19	20
u_n	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000
	Look for	a sum b	efore aw	arding n	narks. A	ward the	M's as ab	ove then	A2 for 55	57 500
	If they sum the 'parts' separately then apply the scheme.									

Question Number	Scheme	Marks
40.	(a) $7 = 5a_1 - 3 \implies a_1 =$ $a_1 = 2$	M1 A1
	(b) $a_3 = "32"$ and $a_4 = "157"$	(2) M1
	$\sum_{r=1}^{r=4} a_r = a_1 + a_2 + a_3 + a_4$	
	= "2"+ "7"+ "32"+ "157"	dM1
	= 198	A1
		(3)
		(5 marks)

Notes

(a) M1 Writes $7 = 5a_1 - 3$ and attempts to solve leading to an answer for a_1 . If they rearrange wrongly before any substitution this is M0

A1 Cao $a_1 = 2$

Special case: Substitutes n = 1 into 5n - 3 and obtains answer 2. This is fortuitous and gets M0A0 but full marks are available on (b).

- (b) M1 Attempts to find either their a_3 or their a_4 using $a_{n+1} = 5a_n 3$, $a_2 = 7$ Needs clear attempt to use formula or is implied by correct answers or correct follow through of their a_3
 - dM1 (Depends on previous M mark) Sum of their four adjacent terms from the given sequence. n.b May be given for $9 + a_3 + a_4$ as they may add 2 + 7 to give 9 (dM0 for sum of an Arithmetic series)
 - A1 cao 198

Special case

(a) $a_1 = 32$ is M0 A0 (b) Adds for example 7+32+157+782 = or 32+157+782+3907 is M1 M1 A0 Total mark possible is 2/5(This is not treated as a misread – as it changes the question)

Question Number	Scheme	Marks	
41.	(a) Use n^{th} term = $a + (n-1)d$ with $d = 10$; $a = 150$ and $n = 8$, or $a = 160$ and $n = 7$, or $a = 170$ and $n = 6$: = $150+7\times10$ or $160+6\times10$ or $170+5\times10$ = $220*$ (Or gives clear list – see note)	M1 A1*	(2)
Or	If answer 220 is assumed and $150 + (n - 1) 10 = 220$ or variation is solved for $n =$ Then $n = 8$, so 2007 is the year (must conclude the year)	M1 A1*	(2)
	(b) Use $S_n = \frac{n}{2} \{2a + (n-1)10\}$ Or $S_n = \frac{n}{2} \{a+l\}$ and $l = a + (n-1)10$ = 7(300+13×10) or 7(150 + 280) = 7×430 = 3010	M1 A1 A1	(3)
	(c) Cost in year $n = 900+(n-1)\times 20$ Sales in year $n = 150+(n-1)\times 10$ Cost =3×Sales \Rightarrow 900+(n-1)×-20 = 3×(150+(n-1)\times 10) 900-20n+20 = 450+30n-30 500 = 50n	MI M1	
	n=10 Year is 2009 As <i>n</i> is not defined they may work correctly from another base year to get the answer 2009 and their <i>n</i> may not equal 10. If doubtful – send to review.	MI A1 (9 marks)	(4)

Notes

(a) M1 Attempt to use n^{th} term = a + (n-1)d with d = 10, and correct combination of a and n i.e. a = 150 and n = 8 or a = 160 and n = 7, or a = 170 and n = 6

A1 * Shows that 220 computers are sold in 2007 with no errors

Note that this is a given solution, so needed $150+7\times10$ or $160+6\times10$ or $170+5\times10$ or equivalent.

Accept a correct list showing all values and years for both marks Just 150,160,170,180,190,200,210,220 is M1A0 Need some reference to years as well as the list of numbers of computers for A1.

(b) M1 Attempts to use $S_n = \frac{n}{2} \{2a + (n-1)d\}$ with d = 10, and correct combination of a and n i.e. a = 150and n = 14, or a = 160 and n = 13, or a = 170 and n = 12

A1 Uses
$$S_n = \frac{n}{2} \{2a + (n-1)d\}$$
 with $a = 150, d = 10$ and $n = 14$ [N.B. $S_n = \frac{n}{2} \{a+l\}$ needs $l = a + (n-1)d$ as well

NB A0 for a = 160 and n = 13 or a = 170 and n = 12 unless they then add the first, or first two terms respectively. A1 Cao 3010. This answer (with no working) implies correct method M1A1A1.

Special case: If a complete list 150+160+170+180+190+200+210+220+230+240+250+260+270+280 is seen, then there is an error finding the sum then score M1A1A0, but incomplete or wrong lists score M0A0A0

- (c) M1 Writes down an expression for the cost = $900+(n-1)\times-20$ or writes 900+(n-1)d and states d = -20Allow $900 + n \times -20$. Allow recovery from invisible brackets.
 - M1 Attempts to write down an equation in *n* for statement 'cost =3×sales' 900+(*n*-1)×-20 = 3×(150+(*n*-1)×10). Accept the 3 on the wrong side and allow use of 20 instead of -20 and allow *n* (consistently) instead of n - 1 for this mark. Ignore £ signs in equation.
 - M1 Solves the correct linear equation in *n* to achieve n = 10 (for those using n 1) or n = 9 (for those using *n*). Ignore £ signs.
 - A1 Cso Year 2009 (A0 for the answer Year 10 if 2009 is not given)

Special case. **Just answer or trial and improvement** with no equation leading to answer scores SC 0,0,1,1 Equations satisfying the method mark descriptors followed by trial and improvement could get all four marks

Question Number	Scheme	Marks
42.(a)	$(a_2 =) 4k - 3$	B1 (1)
(b)	$a_3 = 4(4k-3)-3$	M1
	$\sum_{r=1}^{3} a_r = k + 4k - 3 + 4(4k - 3) - 3 =k \pm$	M1
	$21k - 18 = 66 \Longrightarrow k = \dots$	dM1
	k = 4	A1 (4) (5 marks)

(a) B1 4k-3 cao

- (b) M1 An attempt to find a_3 from iterative formula $a_3 = 4a_2 3$. Condone bracketing errors for the M mark
 - M1 Attempt to sum their a_1, a_2 and a_3 to get a linear expression in k (Sum of Arithmetic series is M0)
 - dM1 Sets their linear expression to 66 and solves to find a value for *k*. It is dependent upon the previous M mark

A1 cao k = 4

Question Number	Scheme	Marks
43(a).	Attempts to use $a + (n-1)$ " d" with $a=A$ and "d"=d+1 and $n = 14$ A+13(d+1) = A+13d+13*	M1 A1* (2)
(b)	Calculates time for Yi on Day $14=(A-13)+13(2d-1)$ Sets times equal $A+13d+13=(A-13)+13(2d-1) \Rightarrow d =$ d=3	M1 M1 A1 cso (3)
(c)	Uses $\frac{n}{2}$ { $2A + (n-1)(D)$ } with $n = 14$, and with $D = d$ or $d + 1$ Attempts to solve $\frac{14}{2}$ { $2A + 13 \times '(d+1)'$ } = 784 $\Rightarrow A =$	M1 dM1
	A = 30	A1 (3)
		(8 marks)

(a) M1 Attempts to use
$$a + (n-1)d$$
 with $a=A$ and $d=d+1$ AND $n=14$

A1* cao This is a given answer and there is an expectation that the intermediate answer is seen and that **all work is correct** with correct brackets. The expressions A+13(d+1) and A+13d+13 should be seen

N.B. If brackets are missing and formula is not stated

e.g. $A+13d+1 \Rightarrow A+13d+13$ or $A+(13)d+1 \Rightarrow A+13d+13$ then this is **M0A0**

If formula is quoted and a = A and d = d + 1 is quoted or implied, then M1 A0 may be given So a + (n-1)d followed by A + (13)d + 1 = A + 13d + 13 achieves M1A0

(b) M1 States a time for Yi on Day 14 = (A-13)+13(2d-1)

- M1 Sets their time for Yi, equal to A+13d+13 and uses this equation to proceed to d =
- A1 cso d = 3 Needs both M marks and must be simplified to 3 (not 39/13)
- [NB Setting each of the times separately equal to 0 leads to d = 3 this will gain M0A0]
- (c) M1 Uses the sum formula $\frac{n}{2} \{2A + (n-1)(D)\}$ with n = 14 and D = d+1 or allow D = d(usually 4 or 3) NB May use $\frac{n}{2} \{A + (A+13D)\}$ with n = 14 and and D = d+1 or allow D = d(usually 4 or 3) dM1 Attempts to solve $\frac{14}{2} \{2A + 13 \times 4^{-1}\} = "784" \Longrightarrow A = (Must use their d + 1 this times the solution of th$

dM1 Attempts to solve $\frac{14}{2} \{2A+13\times 4'\} = "784" \Rightarrow A = ...$ (Must use their d+1 this time) Allow miscopy of 784

A1 cao A = 30

Question Number	Scheme		Marks
	For this question, mark (a) and (b) together and ignore labelling.		
44(a)	$(a_2 =) k(4+2) (= 6k)$	Any correct (possibly un-simplified) expression	B1
			(1)
(b)	$a_3 = k$ (their $a_2 + 2$) (= $6k^2 + 2k$)	An attempt at a_3 . Can follow through their answer to (a) but a_2 must be an expression in k.	M1
	$a_1 + a_2 + a_3 = 4 + (6k) + (6k^2 + 2k)$	An attempt to find their $a_1 + a_2 + a_3$	M1
	$4 + (6k) + (6k^2 + 2k) = 2$	A correct equation in any form.	A1
	Solves $6k^2 + 8k + 2 = 0$ to obtain $k = (6k^2 + 8k + 2 = 2(3k + 1)(k + 1))$	Solves their 3TQ as far as $k =$ according to the general principles. (An independent mark for solving their three term quadratic)	M1
	k = -1/3	Any equivalent fraction	A1
	<i>k</i> = -1	Must be from a correct equation. (Do not accept un-simplified)	B1
	Note that it is quite common to think the a_3 , this is likely only to score the M1	he sequence is an AP. Unless they find for solving their quadratic.	
			(6)
			[7]

Question Number	Scheme		Marks	
45(a)	$600 = 200 + (N-1)20 \Longrightarrow N = \dots$	Use of 600 with a correct formula in an attempt to find <i>N</i> . A correct formula could be implied by a correct answer.	M1	
	N = 21	cso	A1	
	Accept correct an	swer only.		
	$600 = 200 + 20N \implies N = 20 \text{ is}$ $\frac{600 - 200}{20} = 20 \therefore N = 21 \text{ is } M1A$	M0A0 (wrong formula) 1 (correct formula implied)		
	Listing: All terms must be listed up to	600 and 21 correctly identified.		
	A solution that scores 2 if fully	correct and 0 otherwise.		
			(2)
(b)	Look for an A	AP first:		
	$S = \frac{21}{2}(2 \times 200 + 20 \times 20) \text{ or } \frac{21}{2}(200 + 600)$	M1: Use of correct sum formula with their integer $n = N$ or $N - 1$ from part (a) where $3 < N < 52$		
	$S = \frac{20}{2} (2 \times 200 + 19 \times 20) \text{ or } \frac{20}{2} (200 + 580)$	and $a = 200$ and $d = 20$. A1: Any correct un-simplified	M1A1	
	(= 8400 or 7800)	numerical expression with $n = 20$ or $n = 21$ (No follow through here)		
	Then for the cons	tant terms:		
	600×(52−"N")(= 18600)	M1: $600 \times k$ where k is an integer and $3 < k < 52$ A1: A correct un-simplified follow through expression with their k consistent with n so that n + k = 52	M1A1ft	
	So total is 27000	Cao	Al	
	Note that for the constant terms, they may	correctly use an AP sum with $d = 0$.		
	There are no marks in (b)	for just finding S ₅₂		
			(5)
			[7]]
	If they obtain $N = 20$ in (a) (0/2) at $S = \frac{20}{2}(2 \times 200 + 19 \times 20) + 32 \times 600$	nd then in (b) proceed with, $0 = 7800 + 19\ 200 = 27\ 000$		
	allow them to 'recover' and score full marks in (b) Similarly If they obtain $N = 22$ in (a) (0/2) and then in (b) proceed with,			
	$S = \frac{21}{2}(2 \times 200 + 20 \times 20) + 31 \times 600$	$0 = 8400 + 18\ 600 = 27\ 000$		
	allow them to 'recover' and s	score full marks in (b)		

Question Number	Scheme	Notes	Marks
46.(a)	$x_2 = 1 - k$	Accept un-simplified e.g. $1^2 - 1k$	B1
			(1)
(b)	$x_3 = (1-k)^2 - k(1-k)$	Attempt to substitute their x_2 into $x_3 = (x_2)^2 - kx_2$ with their x_2 in terms of k.	M1
	$=1-3k+2k^{2}*$	Answer given	A1*
			(2)
(c)	$1 - 3k + 2k^2 = 1$	Setting $1 - 3k + 2k^2 = 1$	M1
	$\left(2k^2 - 3k = 0\right)$		
	$k(2k-3) = 0 \Longrightarrow k = \dots$	Solving their quadratic to obtain a value for <i>k</i> . Dependent on the previous M1.	dM1
	$k = \frac{3}{2}$	Cao and cso (ignore any reference to $k = 0$)	A1
			(3)
(d)	$\sum_{n=1}^{100} x_n = 1 + \left(-\frac{1}{2}\right)$ Or = 1 + (1 - 'k')	$) + 1 + \dots$	M1
	Writing out at least 3 terms with the third term	m equal to the first term. Allow in terms	
	of k as well as num Evidence that the sequence is osc This may be implied	herical values. Cillating between 1 and $1 - k$. by a correct sum.	
	$50 \times \frac{1}{2} \text{ or } 50 \times 1 - 50 \times \frac{1}{2} \text{ or } \frac{1}{2} \times 50 \times (1 - \frac{1}{2})$	An attempt to combine the terms correctly. Can be in terms of k here e.g $100 - 50k$	M1
	= 25	Allow an equivalent fraction, e.g. 50/2 or 100/4	A1
	Note that the use of $\frac{1}{2}n(a+l)$ is acceptab	le here but $\frac{1}{2}n(2a+(n-1)d)$ is not.	
			(3)
	Allow correct a	nswer only	
			[9]

Question Number	Scheme	Notes	Marks
47.(a)	$U_{10} = 500 + (10 - 1) \times 200$	Uses $a + (n-1)d$ with $a=500, d=200$ and $n = 9,10$ or 11	M1
	=(£)2300		A1
	If the term formula is not quoted and the r	numerical expression is incorrect score M0.	(2)
	A correct answer with no	working scores full marks.	
(b)	Mark parts (b)	and (c) together	
		M1: Attempt to use	
	n	$S = \frac{n}{2} \left\{ 2a + (n-1)d \right\}$	
	$\frac{n}{2} \{ 2 \times 500 + (n-1) \times 200 \} = 67200$	with,	M1A1
		$S_n = 67200$, $a = 500$ and $d = 200$	
		A1: Correct equation	
	If the sum formula is not quoted and	d the equation is incorrect score M0.	
	$n^2 + 4n - 672 = 0$	M1: An attempt to remove brackets and collect terms. Dependent on the previous M1	dM1A1
		A1: A correct three term equation in any form	
	E.g. allow $n^2 + 4n =$	$672, n^2 = 672 - 4n,$	
	$672 - 4n - n^2 = 0,200$	$n^2 + 800n = 134400$ etc.	
	$n^2 + 4n - 24 \times 28 = 0$	Replaces 672 with 24×28 with the equation as printed (including = 0) with no errors. (= 0 may not appear on the last line but must be seen at some point)	A1
			(5)
(c)	$(n-24)(n+28) = 0 \Rightarrow n =$ or $n(n+4) = 24 \times 28 \Rightarrow n =$	Solves the given quadratic in an attempt to find <i>n</i> . They may use the quadratic formula.	M1
	24	States that $n = 24$, or the number of years is 24	A1
	Allow correct answer only in (c)		
			(2)
			[9]

Question Number	Scheme	Marks
48.	$u_2 = 9, \ u_{n+1} = 2u_n - 1, \ n \ge 1$	
(a)	$u_3 = 2u_2 - 1 = 2(9) - 1$ (=17) $u_3 = 2(9) - 1$.	M1
	$u_4 = 2u_3 - 1 = 2(17) - 1 = 33$ Can be implied by $u_3 = 17$	
	Both $u_3 = 17$ and $u_4 = 33$	A1
		[2]
(b)	$\sum_{r=1}^{4} u_r = u_1 + u_2 + u_3 + u_4$	
	$(u_1) = 5 \tag{(u_1)} = 5$	B1
	Adds their first four terms obtained	M1
	$\sum_{r=1}^{n} u_r = "5" + 9 + "17" + "33" = 64$ legitimately (see notes below) 64	A1
		[3]
		5 marks
	Notes	
(a) (b)	M1: Substitutes 9 into RHS of iteration formula A1: Needs both 17 and 33 (but allow if either or both seen in part (b)) B1: for $u = 5$ (however obtained may appear in (a)) May be called $a = 5$	
(0)	M1 : Uses their u_1 found from $u_1 = 2u_2 = 1$ stated explicitly or uses $u_2 = 4$ or $5^{\frac{1}{2}}$ and adds it to	u thair
	with observe then u_1 found from $u_2 - 2u_1 - 1$ stated explicitly, of uses $u_1 - 4$ or $5\frac{1}{2}$, and adds it to u_1 and their u_2 only (See special cases below)	u_2 , then
	u_3 and then u_4 only. (See special cases below). There should be no fifth term included	
	Use of sum of AP is irrelevant and scores M0 A1: 64	

Question Number	Scheme		Marks
49.	Lewis; arithmetic series, $a = 140$, $d = 20$.	Or	
(a)	$I_{20} = 140 + (20 - 1)(20), = 520$ OR $120 + (20)(20)$	lists 20 terms to get to 520	MI; AI
	Method 1	Method 2	[-]
(b)	Either: Uses $\frac{1}{2}n(2a + (n-1)d)$	Or: Uses $\frac{1}{2}n(a+l)$	M1
	$\frac{20}{2} (2 \times 140 + (20 - 1)(20))$	$\frac{20}{2}(140 + "520")$ ft 520	A1
	6	600	A1 (2)
(c)	Sian; arithmetic series,		[3]
	$a = 300, l = 700, S_n = 8500$		
	Either: Attempt to use $8500 = \frac{n}{2}(a+l)$	Or: May use both $8500 = \frac{1}{2}n(2a + (n-1)d)$ and l = a + (n-1)d and eliminate d	M1
	$8500 = \frac{n}{2} (300 + 700)$	$8500 = \frac{n}{2} (600 + 400)$	A1
	$\rightarrow n = 17$		Δ 1
	<i>→ 1</i> , 1,		[3]
			8 marks
(a)	Notes M1: Attempt to use formula for 20 th term of Arithm	etic series with first term 140 and $d = 20$.	Jormal
(4)	formula rules apply – see General principles at the s	start of the mark scheme re "Method Marks"	···
	Or: uses $120 + 20n$ with $n = 20$ Or: Listing method : Lists 140 160 180 200 220	240 260 280 520 M1A1 if correct M	[0A0 if
	wrong. (So 2 marks or zero)	,	
(b)	A1: For 520 M1: An attempt to apply $\frac{1}{2}n(2a + (n-1)d)$ or $\frac{1}{2}n(2a + (n-1)d)$	(a + l) with their values for $a + n + d$ and l	
	A1: Uses $a = 140$, $d = 20$, $n = 20$ in their formula (two	vo alternatives given above) but ft on their	value of <i>l</i>
	from (a) if they use Method 2.		
	Or: Listing method : Lists 140, 160, 180, 200, 220,	240, 260, 280, 520 and adds	
	6600 gets M1A1A1- any other answer gets M1 A0A the last is 520	A0 provided there are 20 numbers, the first i	s 140 and
(c) First	M1: Attempt to use $S_n = \frac{n}{2}(a+l)$ with their values	s for a , and l and $S = 8500$	
method	A1 : Uses formula with correct values		
	A1: Finds exact value 17		
Alternative method	M1: If both formulae $8500 = \frac{1}{2}n(2a + (n-1)d)$ and	l = a + (n-1)d are used, then d must be	eliminated
menou	before this mark is awarded by valid work. Should not be using $d = 400$. This would be M0 . A1: Correct equation in <i>n</i> only		
	then A1 for 17 exactly	and list from 200 to 700	2/2
	Finds $a = 25$ and $n = 1/a$	ind list from 300 to 700 with total checked -	- 3/3

Question Number	Scheme	Marks
	$a_1 = 3, a_{n+1} = 2a_n - c, n \ge 1, c$ is a constant	
50. (a)	${a_2 =} 2 \times 3 - c \text{ or } 2(3) - c \text{ or } 6 - c$	B1
(b)	$\{a_3 =\} 2 \times ("6 - c") - c$	[1] M1
	= 12 - 3c (*)	A1 cso [2]
(c)	$a_4 = 2 \times ("12 - 3c") - c \qquad \{= 24 - 7c\}$	M1
	$\left\{\sum_{i=1}^{4} a_i = \right\} 3 + (6 - c) + (12 - 3c) + (24 - 7c)$	M1
	$"45 - 11c" \ge 23$ or $"45 - 11c" = 23$	M1
	$c \le 2$ or $2 \ge c$	A1 cso
		[4] 7
	Notes	
(a)	The answer to part (a) cannot be recovered from candidate's working in part (b) or part (c). Once the candidate has achieved the correct result you can ignore subsequent working in this part	art.
(b)	M1: For a correct substitution of <i>their</i> a_2 <i>which must include term(s) in c</i> into $2a_2 - c$ giving a_3 in terms of only c. Candidates must use correct bracketing for this mark. A1: for correct solution only. No incorrect working/statements seen. (Note: the answer is given by the second	a result for ren!)
(c)	1 st M1: For a correct substitution of a_3 which must include term(s) in c into $2a_3 - c$ giving a r in terms of only c. Candidates must use correct bracketing (can be implied) for this mark. 2 nd M1: for an attempt to sum their a_1 , a_2 , a_3 and a_4 only. 3 rd M1: for their sum (of 3 or 4 or 5 consecutive terms) = or \geq or \geq 23 to form a linear ineque equation in c. A1: for $c \leq 2$ or $2 \geq c$ from a correct solution only.	result for a_4 uality or
	Beware: $-11c \ge -22 \implies c \ge 2$ is A0. Note: $45 - 11c \ge 23 \implies -11c \le -22 \implies c \le 2$ would be A0 cso.	
	Note: Applying either $S_n = \frac{n}{2} (2a + (n-1)d)$ or $S_n = \frac{n}{2} (a+l)$ is 2^{nd} M0, 3^{rd} M0.	
	Note: If a candidate gives a numerical answer in part (a); they will then get M0A0 in part (b); the printed result of $a_3 = 12 - 3c$ they could potentially get M0M1M1A0 in part (c)	but if they use
	Note: It a candidate only adds numerical values (not in terms of c) in part (c) then they could p only M0M0M1A0. Note: For the 3^{rd} M1 candidates will usually sum $a_1 a_2$ and a_2 or a_1 and a_2 or a_3 and a_4 or a_5 .	ootentially get
	or a_1, a_2, a_3 and a_5	u_3, u_4 and u_5

Question Number	Scheme	Mark	s
	Boy's Sequence: 10, 15, 20, 25,		
51 (a)	$\{a = 10, d = 5 \Rightarrow T_{15} =\} a + 14d = 10 + 14(5); = 80 \text{ or } 0.1 + 14(0.05); = \text{\pounds}0.80$	M1; A1	
	60		[2]
(b)	$\left\{S_{60} = \right\} \frac{60}{2} \left[2(10) + 59(5)\right]$	M1 A1	
	= 30(315) = 9450 or £94.50	A1	
	Boy's Sister's Sequence: 10, 20, 30, 40,		[3]
(c)	$\{a = 10, d = 10 \Rightarrow S_m =\} \frac{m}{2} (2(10) + (m-1)(10)) \left(\text{or } \frac{m}{2} \times 10(m+1) \text{ or } 5m(m+1)\right)$	M1 A1	
	63 or 6300 = $\frac{m}{2} (2(10) + (m-1)(10))$	dM1	
	$6300 = \frac{m}{2}(10)(m+1) \text{ or } 12600 = 10m(m+1)$		
	1260 = m(m+1)		
	$35 \times 36 = m(m+1)$ (*)	A1 cso	Г <i>А</i> Л
(d)	${m =} 35$	B1	[4]
			[1] 10
	Notes		
(a)	M1: for using the formula $a + 14d$ with either a or d correct.	16. 10	
	A1: for 80 or 80p or ± 0.80 or ± 0.80 and apply ISW. Otherwise, ± 80 or 0.80 or 0.80p would be A0. Award M0 if candidate applies $a + 59d$		
	Listing the first 15 terms and highlighting that the 15 th term is 80 or listing 15 terms with the fir aligned with 80 will then be awarded all two marks of M1A1. Writing down 80 with no working is M1A1.	nal 15 th terr	n
(b)	M1 : for use of correct $\frac{60}{2} [2(10) + 59(5)]$ or $\frac{15}{2} (2(10) + 14(5))$		
	with $a = 10$, $d = 5$ and $n = 60$ or $a = 10$, $d = 5$ and $n = 15$.		
	If a candidate uses $\frac{n}{2}(a+l)$ with $n = 60$ or 15, there must be a full method of finding or stating	g <i>l</i> as eithe	er
	a + 59d (= 305) or $a + 14d (= 80)$, respectively.		
	1 st A1: for a correct expression for S_{60} . ie. $\frac{60}{2} [2(10) + 59(5)]$ or $\frac{60}{2} [2(0.1) + 59(0.05)]$		
	or $\frac{60}{2}[10+305]$ or $\frac{60}{2}[0.10+3.05]$. This mark can be implied by later working.		
	2nd A1: for 9450 or 9450p or £94.50 and apply ISW. Otherwise, £9450 or 94.50 without	£ sign is A	A 0.
	Note : the bracketing error of $\frac{60}{2}$ 2(10) + 59(5) is A0 unless recovered from later working.		
	Adding together the first 60 terms to obtain 9450 will then be awarded all three marks of M1A1	IA1.	

1st M1: for correct use of S_m formula with one of a or d correct. (c) **1**st **A1:** for a correct expression for S_m . Eg: $\frac{m}{2}(2(10) + (m-1)(10))$ or $\frac{m}{2} \times 10(m+1)$ or 5m(m+1) 2^{nd} M1: for forming a suitable equation using 63 or 6300 and their S_m . Dependent on 1^{st} M1. 2nd A1cso: for *reaching the printed result* with no incorrect working seen. Long multiplication is not necessary for the final accuracy mark. Note: $\frac{m}{2}(2(10) + (m-1)(10)) = 630$ and not either 6300 or 63 is dM0. Beware: Some candidates will try and fudge the result given on the question paper. Notes for awarding $2^{nd} A1$ Going from m(m+1) = 1260 straight to $m(m+1) = 35 \times 36$ is $2^{nd} A1$. Going from m(m+1) = some factor decomposition of 6300 straight to $m(m+1) = 35 \times 36$ is 2^{nd} A1. Going from 10m(m+1) = 12600 straight to $m(m+1) = 35 \times 36$ is 2^{nd} A0. Going from $m(m+1) = \frac{6300}{5}$ straight to $m(m+1) = 35 \times 36$ is 2nd A0. Alternative: working in an different letter, say n or p. **M1A1:** for $\frac{n}{2}(2(10) + (n-1)(10))$ (although mixing letters eg. $\frac{n}{2}(2(10) + (m-1)(10))$ is M0A0). **dM1:** for 63 or 6300 = $\frac{n}{2}(2(10) + (n-1)(10))$ Leading to $6300 = \frac{n}{2}(10)(n+1) \implies 1260 = n(n+1) \implies 35 \times 36 = n(n+1)$ The candidate then needs to write either $35 \times 36 = m(m+1)$ or m = n or m = n to gain the final A1. (d) **B1:** for 35 only.

Question	Scheme	Marks
52. (a)	$(x_2 =) a + 5$	B1 (1)
(b)	$(x_3) = a''(a+5)''+5$	M1
	$= a^2 + 5a + 5$ (*)	A1cso (2)
(c)	$41 = a^2 + 5a + 5 \implies a^2 + 5a - 36(=0)$ or $36 = a^2 + 5a$	M1
	(a+9)(a-4) = 0	M1
	a = 4 or -9	A1 (3)
		6 marks
	Notes	
(a)	B1 accept $a1 + 5$ or $1 \times a + 5$ (etc)	
(b)	M1 must see $a(\text{ their } x_2) + 5$	
	A1cso must have seen $a(a[1] + 5) + 5$ (etc or better) Must have both brackets incorrect working seen	() and no
(c)	1 st M1 for forming a suitable equation using x_3 and 41 and an attempt to collec	t like terms and
	reduce to 3TQ (o.e). Allow one error in sign. Accept for example a^2 +	-5a + 46(=0)
	If completing the square should get to $(a \pm \frac{5}{2})^2 = 36 + \frac{25}{4}$	
	2 nd M1 Attempting to solve their relevant 3TQ (see General Principles)	
	A1 for both 4 and -9 seen. If $a = 4$ and -9 is followed by $-9 < a < 4$ apply	y ISW.
	No working or trial and improvement leading to <u>both</u> answers scores $3/3$	but no marks
	101 Unity one allow use of other letters instead of a	
	Allow use of other fetters instead of u	

Question	Scheme	Marks	
53. (a)	$S_{10} = \frac{10}{2} [2P + 9 \times 2T] \underline{\text{or}} \frac{10}{2} (P + [P + 18T])$	M1	
	e.g. $5[2P+18T] = (\pounds) (10P+90T) \underline{\text{or}} (\pounds) \ 10P+90T (*)$	A1cso (2)	
(b)	Scheme 2: $S_{10} = \frac{10}{2} [2(P+1800)+9T] = \{10P+18000+45T\}$	M1A1	
	10P + 90T = 10P + 18000 + 45T 90T = 18000 + 45T	M1	
	T = 400 (only)	A1 (4)	
(c)	Scheme 2, Year 10 salary: $[a + (n-1)d =](P+1800) + 9T$	B1ft	
	P + 1800 + "3600" = 29850	M1	
	$P = (\pounds) \ \underline{24450}$	A1 (3)	
		9 marks	
	Notes		
(a)	M1 for identifying $a = P$ or $d = 2T$ and attempt at S_{10} . Using $n = 10$ and one	e of a or d	
List	 A1cso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T M1A1 for a full list seen (with + signs or written in columns) and no incorrect working seen. Any missing terms is M0A0 		
(b)	1 st M1 for attempting S_{10} for scheme 2 (allow missing () brackets e.g. 2P	+ 1800 + 9 <i>T</i>)	
	Using $n = 10$ and at least one of a or d correct.		
	1 st A1 for a correct expression for S_{10} using scheme 2 (needn't be multiplie	d out)	
List	Allow M1A1 if they reach $10P + 18000 + 45T$ with no incorrect wor 10P + 18000 + 45T with no morphing is M1A1	king seen	
	2^{nd} M1 for forming an equation using the two sums that would enable P to be	e eliminated.	
	Follow through their expressions provided P would disappear.		
	$2^{nd} A1$ for $T = 400$ Answer only (4/4)		
(c)	B1 for using u_{10} for scheme 2. Can be 9T or follow through their <u>value</u> of	T	
	M1 for forming an equation based on u_{10} for scheme 2 and using 29850 and	d their <u>value</u> of	
	T		
	A1 for 24450 seen Answer only (3/3)		
MR	If they misread scheme 2 as scheme 1 in part (c) apply MR rule and award B0M1A0 max for an equation based on u_{10} for scheme 1 and using 29850 and their <u>value</u> of T		

Question Number	Scheme	Ma	arks
54. (a)	$(a_2 =) 5k + 3$	B1	(1)
(b)	$(a_3 =) 5(5k+3)+3$ = 25k+18 (*)	M1 A1 cso	(2)
(c) (i)	$a_{4} = 5(25k + 18) + 3 (= 125k + 93)$ $\sum_{r}^{4} a_{r} = k + (5k + 3) + (25k + 18) + (125k + 93)$	M1 M1	
(ii)	= 156k + 114 = 6(26k + 19) (or explain each term is divisible by 6)	A1 cao A1 ft	(4) 7
	(a) $5k + 3$ must be seen in (a) to gain the mark (b) 1 st M: Substitutes their a_2 into $5a_2+3$ - note the answer is given so w be seen. (c) 1 st M1: Substitutes their a_3 into $5a_3+3$ or uses $125k+93$ 2^{nd} M1: for their sum $k + a_2 + a_3 + a_4$ - must see evidence of four ter signs and must not be sum of AP 1 st A1: All correct so far 2^{nd} A1ft: Limited ft – previous answer must be divisible by 6 (eg $156k + 42$). This is dependent on second M mark in (c) Allow $\frac{156k+114}{6} = 26k+19$ without explanation. No conclusion is needed.	orking mu	st olus

Question Number	Scheme	Marks
55. (a)	Series has 50 terms $S = \frac{1}{2}(50)(2+100) = 2550 \text{ or } S = \frac{1}{2}(50)(4+49\times2) = 2550$	B1 M1 A1 (3)
(b) (i) (ii)	$\frac{100}{k}$ Sum: $\frac{1}{2} \left(\frac{100}{k} \right) (k+100)$ or $\frac{1}{2} \left(\frac{100}{k} \right) \left(2k + \left(\frac{100}{k} - 1 \right) k \right)$ $= 50 + \frac{5000}{k} $ (*)	B1 M1 A1 A1 cso
(c)	k $50^{\text{th}} \text{ term} = a + (n-1)d$ = (2k+1) + 49"(2k+3)" = 100k + 148 Or $2k + 49(2k) + 1 + 49(3)$ = 100k + 148	(4) M1 A1 (2) 9
	Notes (a) B for seeing attempt to use $n = 50$ or $n = 50$ stated M for attempt to use $\frac{1}{2}n(a+1)$ or $\frac{1}{2}n(2a+(n-1)d)$ with $a = 2$ and values for other variables (Using $n = 100$ may earn B0 M1A0) (b) M for use of $a = k$ and $d = k$ or $l = 100$ with their value for n , could be n even letter n in correct formula for sum. A1: Correct formula with $n = 100/k$ A1: NB Answer is printed – so no slips should have appeared in working (c) M for use of formula $a + 49d$ with $a = 2k + 1$ and with d obtained from d terms A1: Requires this simplified answer	umerical or

Question Number	Scheme	Marks	
56 (a)	$(a_2 =) 6 - c$	B1	(1)
(b)	$a_3 = 3$ (their a_2) - c (= 18 - 4c) $a_1 + a_2 + a_3 = 2 + "(6 - c)" + "(18 - 4c)"$ "26 - 5c" = 0 So $c = 5.2$	M1 M1 A1ft A1 o.a.e	(4) 5
	Notes		
(b)	1 st M1 for attempting a_3 . Can follow through their answer to (a) but it must be an expression in c. 2 nd M1 for an attempt to find the sum $a_1 + a_2 + a_3$ must see evidence of sum 1 st A1ft for their sum put equal to 0. Follow through their values but answer must be in the form $p + qc = 0$ A1 – accept any correct equivalent answer		

Question Number	Scheme	Marks	
57. (a)	$S_{10} = \frac{10}{2} [2a + 9d]$ or	M1	
	$S_{10} = a + a + d + a + 2d + a + 3d + a + 4d + a + 5da + 6d + a + 7d + a + 8d + a + 9d$ 162 = 10a + 45d *	A1cso	2)
(b)	$(u_n = a + (n-1)d \implies)17 = a + 5d$	B1 (1	1)
	10×(b) gives $10a + 50d = 170$ (a) is $10a + 45d = 162$	M1	
	Subtract $5d = 8$ so $d = \underline{1.6}$ o.e.	A1	
	Solving for a $a = 17 - 5d$	M1	
	so $a = \underline{9}$	A1	
		(4	4) 7
	Notes		
(a)	M1 for use of S_n with $n = 10$		
(b)	1^{st} M1 for an attempt to eliminate <i>a</i> or <i>d</i> from their two linear equations 2^{nd} M1 for using their value of <i>a</i> or <i>d</i> to find the other value.		

Question Number	Scheme	Marks	
5 8 .			
(a)	$a_2 = \left(\sqrt{4+3}\right) = \sqrt{7}$	B1	
	$a_3 = \sqrt{\text{"their 7"+3}} = \sqrt{10}$	B1ft	(2)
(b)	$a_4 = \sqrt{10+3} \left(=\sqrt{13}\right)$	M1	
	$a_5 = \sqrt{13 + 3} = 4 *$	A1 cso	(2)
			4
	Notes		
(a)	1 st B1 for $\sqrt{7}$ only 2 nd B1ft follow through their "7" in correct formula provided they have \sqrt{n} , where <i>n</i> is a integer.	n	
(b)	M1 for an attempt to find a_4 . Should see $\sqrt{\text{"their"}(a_3)^2 + 3}$. Must see evidence for M1. $a_4 = \sqrt{13}$ provided this follows from their a_3 working or answer is sufficient		
	A1cso for a correct solution (M1 explicit) must include the $= 4$.		
	Ending at $\sqrt{16}$ only is A0 and ending with ± 4 is A0.		
	Ignore any incorrect statements that are not used e.g. common difference = $\sqrt{3}$		
	<u>Listing</u> : A <u>full</u> list: 2 $(=\sqrt{4})$, $\sqrt{7}$, $\sqrt{10}$, $\sqrt{13}$, $\sqrt{16} = 4$ is fine for M1A1		
ALT	<u>Formula</u> : Some may state (or use) $a_n = \sqrt{3n+1}$ leading to $a_5 = \sqrt{3 \times 5 + 1} = 4$. This will get marks in (a) [if correct values are seen] and can score the M1 in (b) if $a_n = \sqrt{3n+1}$ or $a_4 = \sqrt{13}$ are seen.	b)	
±√	If $\pm $ appear any where ignore in part (a) and withhold the final A mark only	ý	

Question Number	Scheme	Marks	
59. (a)	a + 29d = 40.75 or $a = 40.75 - 29d$ or $29d = 40.75 - a$	M1 A1	(2)
(b)	$(S_{30}) = \frac{30}{2}(a+l) \text{ or } \frac{30}{2}(a+40.75) \text{ or } \frac{30}{2}(2a+(30-1)d) \text{ or } 15(2a+29d)$ So $1005 = 15[a+40.75] *$	M1 A1 cso	(2)
(c)	67 = $a + 40.75$ so $\underline{a} = (\pounds) 26.25 \text{ or } 2625 \mu \text{ or } 26\frac{1}{4}$ NOT $\frac{105}{4}$	M1 A1	
	29d = 40.75 - 26.25 = 14.5 so <u>d = (£)0.50 or 0.5 or 50p</u> or $\frac{1}{2}$	M1 A1	(4) 8
	Notes		
(a)	 M1 for attempt to use a + (n - 1)d with n =30 to form an equation. So a + (30 - 1)d = any number is OK A1 as written. Must see 29d not just (30 - 1)d. Ignore any floating £ signs e.g. a + 29d = £40.75 is OK for M1A1 These two marks must be scored in (a). Some may omit (a) but get correct equati in (c) [or (b)] but we do not give the marks retrospectively. 	on	
	Parts (b) and (c) may run together		
(b)	M1 for an attempt to use an S_n formula with $n = 30$.		
	Must see one of the printed forms. (S_{30} = is not required)		
	A1cso for forming an equation with 1005 and S_n and simplifying to printed answer. Condone £ signs e.g. $15[a+ \pounds 40.75]=1005$ is OK for A1		
(c)	1 st M1 for an attempt to simplify the given linear equation for <i>a</i> . Correct processes. Must get to $ka =$ or $k = a + m$ i.e. one step (division or subtraction) from $a = .$ Commonly: $15a = 1005 - 611.25$ (= 393.75) 1 st A1 For $a = 26.25$ or 2625 nor $26\frac{1}{2}$ NOT $\frac{105}{2}$ or any other fraction		
	2^{nd} M1 for correct attempt at a linear equation for <i>d</i> , follow through their <i>a</i> or equation in Equation just has to be linear in <i>d</i> , they don't have to simplify to $d =$ 2^{nd} A1 depends upon 2^{nd} M1 and use of correct <i>a</i> . Do not penalise a second time if there were minor arithmetic errors in finding <i>a</i> provided <i>a</i> = 26.25 (o.e.) is used.	n (a)	
	Do not accept other fractions other than $\frac{1}{2}$		
	If answer is in pence a "p" must be seen.		
Sim Equ	Use this scheme: 1st M1A1 for <i>a</i> and 2^{nd} M1A1 for <i>d</i> . Typically solving: $1005=30a + 435d$ and $40.75 = a + 29d$. If they find <i>d</i> first then follow through use of their <i>d</i> when finding <i>a</i> .		

Question number	Scheme	Marks	
60	(a) $a + 9d = 150 + 9 \times 10 = 240$	M1 A1	(2)
	(b) $\frac{1}{2}n\{2a+(n-1)d\} = \frac{20}{2}\{2\times150+19\times10\}, = 4900$	M1 A1, A1	(3)
	(c) Kevin: $\frac{1}{2}n\{2a+(n-1)d\} = \frac{20}{2}\{2A+19\times 30\}$	B1	
	Kevin's total = $2 \times "4900"$ (or "4900" = $2 \times$ Kevin's total)	M1	
	$\frac{20}{2} \{2A + 19 \times 30\} = 2 \times "4900"$	A1ft	
	A = 205	A1	(
			(4) [9]
	(a) M: Using $a + 9d$ with at least one of $a = 150$ and $d = 10$. Being 'one off' (e.g. equivalent to $a + 10d$), scores M0. Correct answer with no working scores both marks.		
	(b) M: Attempting to use the correct sum formula to obtain S_{20} , with at least one of $a = 150$ and $d = 10$. If the wrong value of n or a or d is used, the M mark is only scored if the correct sum formula has been quoted. 1^{st} A: Any fully correct numerical version.		
	 (c) B: A correct expression, in terms of <i>A</i>, for Kevin's total. M: Equating Kevin's total to twice Jill's total, or Jill's total to twice Kevin's. For this M mark, the expression for Kevin's total need not be correct, but must be a linear function of <i>A</i> (or <i>a</i>). 1st A: (Kevin's total, <u>correct</u>, possibly unsimplified) = 2(Jill's total), ft Jill's total from part (b). 		
	<u>'Listing' and other methods</u> (a) M: Listing terms (found by a correct method with at least one of $a = 150$ and $d = 10$), and picking the <u>10th</u> term. (There may be numerical slips).		
	(b) M: Listing sums, or listing and adding terms (found by a correct method with at least one of $a = 150$ and $d = 10$), far enough to establish the required sum. (There may be numerical slips). Note: <u>20th term is 340</u> . A2 (scored as A1 A1) for 4900 (clearly selected as the answer).		
	If no working (or no legitimate working) is seen, but the answer 4900 is given, allow one mark (scored as M1 A0 A0).		
	 (c) By trial and improvement: Obtaining a value of A for which Kevin's total is twice Jill's total, or Jill's total is twice Kevin's (using Jill's total from (b)): M1 Obtaining a value of A for which Kevin's total is twice Jill's total (using Jill's total from (b)): A1ft Fully correct solutions then score the B1 and final A1. 		
	The answer 205 with no working (or no legitimate working) scores no marks.		

61 (a) $a + 9d = 2400 a + 39d = 600$ $d = \frac{-1800}{30} d = -60 (\operatorname{accept} \pm 60 \text{ for A1})$ $M1 \text{ A1} (3)$ $M1 \text{ A1} (2)$ $Total = \frac{1}{2}n\{2a + (n-1)d\} = \frac{1}{2} \times 40 \times (5880 + 39 \times -60) (\text{ft values of } a \text{ and } d)$ $= \frac{70 \ 800} \qquad M1 \text{ A1} (2)$ $M1 \text{ A1} (3)$ $M1 \text{ A1} (2)$ $M1 \text{ A1} (3)$ $M1 \text{ A1} (3)$ $M1 \text{ A1} (3)$ $M1 \text{ A1} (4)$ $M1 \text{ A1} $	Question	Scheme	Mark	S
Note: If the sequence is considered 'backwards', an equivalent solution may be given using $d = 60$ with $a = 600$ and $l = 2940$ for part (b). This can still score full marks. Ignore labelling of (a) and (b)(a)1 st M1 for an attempt to use 2400 and 600 in $a + (n-1)d$ formula. Must use both 	61 (a) (b) (c)	$a + 9d = 2400 \qquad a + 39d = 600$ $d = \frac{-1800}{30} \qquad d = -60 \qquad (\operatorname{accept} \pm 60 \text{ for A1})$ $a - 540 = 2400 \qquad a = 2940$ $\operatorname{Total} = \frac{1}{2}n\{2a + (n-1)d\} = \frac{1}{2} \times 40 \times (5880 + 39 \times -60) (\text{ft values of } a \text{ and } d)$ $= \underline{70\ 800}$	M1 M1 A1 M1 A1 M1 A1ft A1cao	 (3) (2) (3) [8]
 (a) 1st M1 for an attempt to use 2400 and 600 in a + (n − 1)d formula. Must use both values i.e. need a + pd = 2400 and a + qd = 600 where p = 8 or 9 and q = 38 or 39 (any combination) 2nd M1 for an attempt to solve their 2 linear equations in a and d as far as d = A1 for d = ± 60. Condone correct equations leading to d = 60 or a + 8d = 2400 and a + 38d = 600 leading to d = - 60. They should get penalised in (b) and (c). NB This is a "one off" ruling for A1. Usually an A mark must follow from their work. ALT 1st M1 for (30d) = ± (2400 - 600) 2nd M1 for (d =) ± (2400 - 600) 30 A1 for d = ± 60 a + 9d = 600, a + 39d = 2400 only scores M0 BUT if they solve to find d = ± 60 then use ALT scheme above. (b) M1 for use of their d in a correct linear equation to find a leading to a = A1 their a must be compatible with their d so d = 60 must have a = 600 and d = -60, a = 2940 So for example they can have 2400 = a + 9(60) leading to a = for M1 but it scores A0 Any approach using a list scores M1A1 for a correct a but M0A0 otherwise (c) M1 for use of a correct S_n formula with n = 40 and at least one of a, d or l correct or correct ft. 1st A1ft for use of a correct S₄₀ formula and both a, d or a, l correct or correct follow through 		<u>Note</u> : If the sequence is considered 'backwards', an equivalent solution may be given using $d = 60$ with $a = 600$ and $l = 2940$ for part (b). This can still score full marks. Ignore labelling of (a) and (b)		
	(a) (b) (c)	1 st M1 for an attempt to use 2400 and 600 in $a + (n-1)d$ formula. Must use both values i.e. need $a + pd = 2400 \text{ and } a + qd = 600$ where $p = 8$ or 9 and $q = 38$ or 39 (any combination) 2 nd M1 for an attempt to solve their 2 linear equations in <i>a</i> and <i>d</i> as far as $d =$ A1 for $d = \pm 60$. Condone correct equations leading to $d = 60$ or $a + 8d = 2400$ and $a + 38d = 600$ leading to $d = -60$. They should get penalised in (b) and (c). NB This is a "one off" ruling for A1. Usually an A mark must follow from their work. ALT 1 st M1 for $(30d) = \pm (2400 - 600)$ 2^{nd} M1 for $(d =) \pm \frac{(2400 - 600)}{30}$ A1 for $d = \pm 60$ $a + 9d = 600$, $a + 39d = 2400$ only scores M0 BUT if they solve to find $d = \pm 60$ then use ALT scheme above. M1 for use of their <i>d</i> in a correct linear equation to find <i>a</i> leading to $a =$ A1 their <i>a</i> must be compatible with their <i>d</i> so $d = 60$ must have $a = 600$ and $d = -60$, a = 2940 So for example they can have $2400 = a + 9(60)$ leading to $a =$ for M1 but it scores A0 Any approach using a list scores M1A1 for a correct <i>a</i> but M0A0 otherwise M1 for use of a correct S _n formula with $n = 40$ and at least one of <i>a</i> , <i>d</i> or <i>l</i> correct or correct ft. 1 st A1ft for use of a correct S ₄₀ formula and both <i>a</i> , <i>d</i> or <i>a</i> , <i>l</i> correct or correct follow through ALT Total $= \frac{1}{2}n\{a+l\} = \frac{1}{2} \times 40 \times (2940 + 600)$ (ft value of <i>a</i>) M1 A1ft		

Question Number	Scheme	Marks	`
62 (a	$(a_{2} =)2k - 7$ $(a_{3} =)2(2k - 7) - 7 \text{ or } 4k - 14 - 7, = 4k - 21 \qquad (*)$ $(a_{4} =)2(4k - 21) - 7 (= 8k - 49)$	B1	(1)
(b		M1, A1cs	o
(c		M1	(2)
	$\sum_{r=1}^{4} a_r = k + "(2k-7)" + (4k-21) + "(8k-49)"$	M1	(4)
	$k + (2k-7) + (4k-21) + (8k-49) = 15k - 77 = 43 \qquad k = 8$	M1 A1	[7]
(b (c	M1 must see 2(their a_2) - 7 or 2(2k-7)-7 or 4k-14-7. Their a_2 must be a function of k. A1 cso must see the 2(2k-7)-7 or 4k - 14 - 7 expression and the 4k - 21 with no incorrect working 1 st M1 for an attempt to find a_4 using the given rule. Can be awarded for 8k - 49 seen. Use of formulae for the sum of an arithmetic series scores M0M0A0 for the next 3 marks. 2 nd M1 for attempting the sum of the 1 st 4 terms. Must have "+" not just , or clear attempt to sum. Follow through their a_2 and a_4 provided they are linear functions of k. Must lead to linear expression in k. Condone use of their linear $a_3 \neq 4k-21$ here too. 3 rd M1 for forming a linear equation in k using their sum and the 43 and attempt to solve for k as far as $pk = q$ A1 for $k = 8$ only so $k = \frac{120}{15}$ is A0 <u>Answer Only (e.g. trial improvement)</u> Accept $k = 8$ only if $8 + 9 + 11 + 15 = 43$ is seen as well <u>Sum $a_2 + a_3 + a_4 + a_5$ or $a_2 + a_3 + a_4$</u> Allow: M1 if 8k - 49 is seen, M0 for the sum (since they are not adding the 1 st 4 terms) then M1 if they use their sum along with the 43 to form a linear equation and attempt to solve but A0		

Question Number	Scheme	Mar	ks
63 (a) (b)	$a + 17d = 25 \text{ or equiv. (for 1st B1),} \qquad a + 20d = 32.5 \text{ or equiv. (for 2nd B1),}$ <u>Solving</u> (Subtract) $3d = 7.5 \text{ so } d = \underline{2.5}$ $a = 32.5 - 20 \times 2.5 \text{ so } a = \underline{-17.5}$ (*)	B1, B1 M1 A1cso	(2) (2)
(c)	$2750 = \frac{n}{2} \Big[-35 + \frac{5}{2} (n-1) \Big]$ $\{ 4 \times 2750 = n(5n-75) \}$ $4 \times 550 = n(n-15)$ $\underline{n^2 - 15n = 55 \times 40} (*)$	M1A1ft M1 A1cso	(4)
(d)	$n^{2} - 15n - 55 \times 40 = 0 \text{or} n^{2} - 15n - 2200 = 0$ $(n - 55)(n + 40) = 0 \qquad n = \dots$ $\underline{n = 55} (\text{ignore - 40})$	M1 M1 A1	(3) [11]
(a) (b)	Mark parts (a) and (b) as 'one part', ignoring labelling. <u>Alternative</u> : $1^{st} B1: d = 2.5$ or equiv. or $d = \frac{32.5 - 25}{3}$. No method required, but $a = -17.5$ must not $2^{nd} B1:$ Either $a + 17d = 25$ or $a + 20d = 32.5$ seen, or used with a value of d or for 'listing terms' or similar methods, 'counting back' 17 (or 20) terms. M1: In main scheme: for a full method (allow numerical or sign slips) leading to solution without assuming $a = -17.5$ In alternative scheme: for using a d value to find a value for a .	t be assu	med. or a
(c)	 A1: Finding correct values for both <i>a</i> and <i>d</i> (allowing equiv. fractions such as d = ¹⁵/₆), incorrect working seen. In the main scheme, if the given <i>a</i> is used to find <i>d</i> from one of the equations, then allow both values are <u>checked</u> in the 2nd equation. 	with no w M1A1	if
(d)	1 st M1 for attempt to form equation with correct S_n formula and 2750, with values of 1 st A1ft for a correct equation following through their <i>d</i> . 2 nd M1 for expanding and simplifying to a 3 term quadratic. 2 nd A1 for correct working leading to printed result (no incorrect working seen). 1 st M1 forming the correct 3TQ = 0. Can condone missing "= 0" but all terms must be First M1 can be implied (perhaps seen in (c), but there must be an attempt at (d) for it to 2 nd M1 for attempt to solve 3TQ, by factorisation, formula or completing the square (see marking principles at end of scheme). If this mark is earned for the 'completing method or if the factors are written down directly, the 1 st M1 is given by implic A1 for $n = 55$ dependent on both Ms. Ignore – 40 if seen. No working or 'trial and improvement' methods in (d) score all 3 marks for the answer otherwise no marks	<i>a</i> and <i>d</i> . e on one b be scor ee genera g the squa ation. 55,	side. ed). al are'

Question number	Scheme		
64(a)	$[x_2 =]a - 3$	B1	(1)
(b)	$[x_3 =] ax_2 - 3$ or $a(a-3) - 3$	M1	
	= a(a-3)-3 both lines needed for A1		
	$=a^2-3a-3$ (*)	Alcso	(2)
(c)	$a^2 - 3a - 3 = 7$		
	$a^2 - 3a - 10 = 0$ or $a^2 - 3a = 10$	M1	
	(a-5)(a+2) = 0	dM1	
	a = 5 or -2	A1	(3)
			6
(a) (b)	 B1 for a×1-3 or better. Give for a-3 in part (a) or if it appears in (b) they must state x₂ = a-3 This must be seen in (a) or before the a(a-3)-3 step. M1 for clear show that. Usually for a(a-3)-3 but can follow through their x₂ and even allow ax₂-3 for correct processing leading to printed answer. Both lines needed and no incorrect working seen. 		3 $_{2}-3$ en.
(c)	1 st M1 for attempt to form a correct equation and start to collect terms. It must be need not lead to a 3TQ=0	a quadratic bu	ıt
	2^{nd} dM1 This mark is dependent upon the first M1.		
	for attempt to factorize their 3TQ=0 or to solve their 3TQ=0. The "=0" can	be implied.	
	$(x \pm p)(x \pm q) = 0$, where $pq = 10$ or $(x \pm \frac{3}{2})^2 \pm \frac{9}{4} - 10 = 0$ or correct use of quadratic	c formula with	1 <u>+</u>
	They must have a form that leads directly to 2 values for <i>a</i> .		
	Trial and Improvement that leads to only one answer gets M0 here.		
	A1 for both correct answers. Allow $x = \dots$		
	Give 3/3 for correct answers with no working or trial and improvement that gives	both values for	r <i>a</i>

Question number	Scheme	Marks	
65 (a)	5, 7, 9, 11 or 5+2+2+2=11 or 5+6=11 use $a = 5$, $d = 2$, $n = 4$ and $t_4 = 5 + 3 \times 2 = 11$	B1 (1)	
(b)	$t_n = a + (n-1)d$ with one of $a = 5$ or $d = 2$ correct (can have a letter for the other)	M1	
	= 5 + 2(n - 1) or $2n + 3$ or $1 + 2(n + 1)$	A1 (2)	
(c)	$S_n = \frac{n}{2} [2 \times 5 + 2(n-1)] \text{ or use of } \frac{n}{2} (5 + \text{"their } 2n+3") \text{ (may also be scored in (b))} $	M1A1	
	$= \{n(5+n-1)\} = n(n+4) (*)$	Alcso (3)	
(d)	43 = 2n + 3	M1	
	[n] = 20	A1 (2)	
(e)	$S_{20} = 20 \times 24$, $= \underline{480}$ (km)	M1A1 (2)	
		10	
(a)	B1 Any other sum must have a convincing argument		
(b)	 M1 for an attempt to use a + (n - 1)d with one of a or d correct (the other can be Allow any answer of the form 2n + p (p ≠ 5) to score M1. A1 for a correct expression (needn't be simplified) [Beware 5+(2n-1) scores Expression must be in n not x. Correct answers with no working scores 2/2. 	s A0]	
(c)	M1 for an attempt to use S_n formula with $a = 5$ or $d = 2$ or $a = 5$ and their " $2n + 3$ " 1 st A1 for a fully correct expression 2 nd A1 for correctly simplifying to given answer. No incorrect working seen. Must see S_n used.		
(d)	Do not give credit for part (b) if the equivalent work is given in part (d) M1 for forming a suitable equation in n (ft their (b)) and attempting to solve leading to $n =$ A1 for 20 Correct answer only scores 2/2. Allow 20 following a restart but check working. eg 43 = $2n + 5$ that leads to 40 = $2n$ and $n = 20$ should score M1A0.		
(e)	M1 for using their answer for n in $n(n + 4)$ or S_n formula, their n must be a valu A1 for 480 (ignore units but accept 480 000 m etc)[no matter where their 20 co	ne. omes from]	
	NB "attempting to solve" eg part (d) means we will allow sign slips and slips in arit	thmetic	
	but not in processes. So dividing when they should subtract etc would lead to	M0.	
	Listing in parts (d) and (e) can score 2 (if correct) or 0 otherwise in each par	rt.	
	Poor labelling may occur (especially in (b) and (c)). If you see work to get $n(n + 4)$	4) mark as (c)	

Question number	Scheme		
66.	(a) $1(p+1)$ or $p+1$	B1	(1)
	(b) $((a))(p+(a))$ [(a) must be a function of <i>p</i>]. $[(p+1)(p+p+1)]$	M1	
	$=1+3p+2p^{2}$ (*)	Alcso	(2)
	(c) $1 + 3p + 2p^2 = 1$	M1	
	$p(2p+3) = 0 \qquad \qquad p = \dots$	M1	
	$p = -\frac{3}{2}$ (ignore $p = 0$, if seen, even if 'chosen' as the answer)	A1	(3)
	(d) Noting that even terms are the same.	M1	
	This M mark can be implied by listing at least 4 terms, e.g. 1, $-\frac{1}{2}$, 1, $-\frac{1}{2}$,		
	$x_{2008} = -\frac{1}{2}$	A1	(2)
			8
	(b) M: Valid attempt to use the given recurrence relation to find x_3 . <u>Missing brackets</u> , e.g. $p+1(p+p+1)$ Condone for the M1, then if all terms in the expansion are correct, with working fully shown, M1 A1 is still allowed.		
	Beware 'working back from the answer', e.g. $1+3p+2p^2 = (1+p)(1+2p)$ scores no marks unless the recurrence relation is justified.		
	(c) 2^{nd} M: Attempt to solve a quadratic equation in <i>p</i> (e.g. quadratic formula or completing the square). The equation must be based on $x_3 = 1$.		
	The attempt must lead to a non-zero solution, so just stating the zero solution <i>p</i> = 0 is M0.A: The A mark is dependent on <u>both</u> M marks.		
	(d) M: Can be implied by a correct answer for their p (answer is $p + 1$), and can also be implied if the working is 'obscure').		
	Trivialising, e.g. $p = 0$, so every term = 1, is M0.		
	If the <u>additional</u> answer $x_{2008} = 1$ (from $p = 0$) is seen, ignore this (isw).		

Question number	Scheme]	Marks	
67.	(a) $u_{25} = a + 24d = 30 + 24 \times (-1.5)$	M1		
	= -6	A1		(2)
	(b) $a + (n-1)d = 30 - 1.5(r-1) = 0$	M1		
	<i>r</i> = 21	A1		(2)
	(c) $S_{20} = \frac{20}{2} \{ 60 + 19(-1.5) \}$ or $S_{21} = \frac{21}{2} \{ 60 + 20(-1.5) \}$ or $S_{21} = \frac{21}{2} \{ 30 + 0 \}$	M1 4	A1ft	
	= 315		A1	(3) 7
	(a) M: Substitution of $a = 30$ and $d = \pm 1.5$ into $(a + 24d)$. Use of $a + 25d$ (or any other variations on 24) scores M0.			
	(b) M: Attempting to use the term formula, equated to 0, to form an equation in r (with no other unknowns). Allow this to be called n instead of r . Here, being 'one off' (e.g. equivalent to $a + nd$), scores M1.			
	(c) M: Attempting to use the correct sum formula to obtain S_{20} , S_{21} , or, with			
	their r from part (b), S_{r-1} or S_r .			
	1 st A(ft): A correct numerical expression for S_{20} , S_{21} , or, with their r from			
	part (b), S_{r-1} or S_r but the ft is dependent on an <u>integer</u> value of r.			
	Methods such as calculus to find a maximum only begin to score marks <u>after</u> establishing a value of r at which the maximum sum occurs. This value of r can be used for the M1 A1ft, but must be a positive integer to score A marks, so evaluation with, say, $n = 20.5$ would score M1 A0 A0.			
	 <u>'Listing' and other methods</u> (a) M: Listing terms (found by a correct method), and picking the <u>25th</u> term. (There may be numerical slips). 			
	(b) M: Listing terms (found by a correct method), until the zero term is seen. (There may be numerical slips).'Trial and error' approaches (or where working is unclear or non-existent) score M1 A1 for 21, M1 A0 for 20 or 22, and M0 A0 otherwise.			
	 (c) M: Listing sums, or listing and adding terms (found by a correct method), at least as far as the 20th term. (There may be numerical slips). A2 (scored as A1 A1) for 315 (clearly selected as the answer). 'Trial and error' approaches essentially follow the main scheme, beginning to score marks when trying S₂₀, S₂₁, or, with their <i>r</i> from part (b), S_{r-1} or S_r. If no working (or no legitimate working) is seen, but the answer 315 is given, allow one mark (scored as M1 A0 A0). 			
	<u>For reference</u> : Sums: 30, 58.5, 85.5, 111, 135, 157.5, 178.5, 198, 216, 232.5, 247.5, 261, 273, 283.5, 292.5, 300, 306, 310.5, 313.5, 315,			

Question Number	Scheme	Marks	
1,0110,01	$(2+kx)^7$		
68. (a)	$2^7 + {}^7C_12^6(kx) + {}^7C_22^5(kx)^2 + {}^7C_22^4(kx)^3$		
001 (u)	First term of 128	B1	
	$({}^{7}C_{1} \times \times x) + ({}^{7}C_{2} \times \times x^{2}) + ({}^{7}C_{3} \times \times x^{3})$	M1	
	$(128) + 448 + (72)^2 + 560^{13} + 3$		
	=(128)+448kx+6/2k x + 300k x	A1, A1	
(b)	5/0/3 1000	(4) M1	
(0)	$560k^2 = 1890$	dM1	
	$k^3 = \frac{1000}{560}$ so $k =$	uivii	
	k = 1.5 o.e.	A1	
		(3) (7	
		(/marks)	
Alternative			
method	$(2+kx)'=2^7(1+\frac{kx}{2})^7$		
For (a)	$2^{7}(1+{}^{7}C(k r)+{}^{7}C(k r)^{2}+{}^{7}C(k r)^{3})$		
	$\sum_{i=1}^{n} C_1(\frac{1}{2}x) + C_2(\frac{1}{2}x) + C_3(\frac{1}{2}x) \dots$		
	Notes		
(a)			
B1: The con	stant term should be 128 in their expansion (should not be followed by other constan	t terms)	
(7)	(7) (7)	I A. Accept	
$\begin{bmatrix} {}^7C_1 \text{ or } \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ or } \end{bmatrix} \text{ or } \end{bmatrix} \text{ or } \end{bmatrix} \text{ or } \begin{bmatrix} $	r 7 as a coefficient, and ${}^{7}C_{2}$ or $\begin{pmatrix} 1\\ 2 \end{pmatrix}$ or 21 as another and ${}^{7}C_{3}$ or $\begin{pmatrix} 1\\ 3 \end{pmatrix}$ or 35 as anoth	er	
Pascal's tria	ngle may be used to establish coefficients.		
Al: Iwo of	the final three terms correct (i.e. two of $448kx + 672k^2x^2 + 560k^3x^3$.).		
separate line	e mai terms correct. (Accept answers without + signs, can be listed with commas or es)	appear on	
e.g. The con	nmon error = $(128) + 448kx + 672kx^2 + 560kx^3$ would earn B1, M1, A0, A0, so 2/4	Then	
would gain a	a maximum of 1/3 in part (b)		
If extra term	If extra terms are given then isw		
If the final a	If the final answer is given as $=(128) + 448kx + 672(kx)^2 + 560(kx)^3$ with correct brackets and no errors		
accuracy ma	are seen, this may be given full marks. If they continue and remove the brackets wrongly then they lose the accuracy marks		
Special case using Alternative Method: Uses 2 $(1 + \frac{k\pi}{2})^7$ is likely to result in a maximum mark of			
B0M1A0A0 then M1M1A0			
If the correct expansion is seen award the marks and isw			
(b)			
M1: Sets the	eir Coefficient of x^3 equal to 1890. They should have an equation which does not incl	ude a	

power of x. This mark may be recovered if they continue on to get k = 1.5

dM1: This mark depends upon the previous M mark. Divides then attempts a cube root of their answer to give k – the intention must be clear. (You may need to check on a calculator) The correct answer implies this mark.

A1: Any equivalent to 1.5 If they give -1.5 as a second answer this is A0

Question Number	Scheme	Marks	
69 .(a)	$10000 = \frac{a}{1 - (-0.9)}$	M1	
	<i>a</i> = 19 000	A1 (2)	
(b)	Use ar^4	M1	
	$19000 \times (-0.9)^4 = 12465.9$ (accept awrt 12466)	A1 (2)	
(c)	$S = \frac{a(1 - r^{12})}{1 - r}$ or lists and adds their first twelve terms with their <i>a</i>	M1	
	$S = \frac{"19000"(1 - (-0.9)^{12})}{1 - (-0.9)} \text{or } S = 10000(1 - (-0.9)^{12})$	A1ft	
	= 7176 only	A1cso (3)	
		[7]	
(a) M1: Co slip A1: Co	Notes (a) M1: Correct use of formula for sum to infinity as above, or states correct formula and makes small slip such as replacing <i>r</i> with 0.9 instead of – 0.9 A1: Correct answer 		
(b) M1: Co A1: acc me	prrect use of formula with $n - 1 = 4$, allow 0.9 instead of -0.9 here. Condone invision to the sept awrt 12466 (even following use of 0.9) Correct answer implies M1A1 even thod shown. Accept correct equivalents such as mixed or improper fractions	sible brackets. en with no	
(c) M1: C or - A1ft: C 19000 + + -	 (c) M1: Correct use of formula with power 12 (or adds 12 terms) with their <i>a</i> (not 10000) and <i>r</i> = +0.9 or -0.9 A1ft: Correct unsimplified with their <i>a</i> and with <i>r</i> = +0.9 or -0.9 or for listing method as follows 19000 + -17100 + 15390 + -13851 + 12465.9 + -11219.31 + 10097.379 + -9087.6411 + 8178.87699 + -7360.989291 + 6624.890362 + -5962.401326 = (Do not follow through for listing method) 		
Special of	Arcso. 7170 only Special case: $S = \frac{a(1-r^n)}{1-r}$ so $S = \frac{"19000"(1+(0.9)^{12})}{1+(0.9)}$ is M1A0A0		
Whereas	$S = \frac{19000 (1 + (0.9))}{1 + (0.9)}$ on its own with no formula quoted is M0A0A0 9000"(10.9 ¹²)		
$S = -\frac{1}{\cos i}$	$S = \frac{15000 (1 - 0.9)}{1 - 0.9}$ should have M1 (bod) then final two A marks depend on whether answer is correct so if this is followed by 7176 the A1A1 should be awarded. If it is followed by 12824 then A0A0 is implied.		

Question	Scheme	Marks
Inullider	$(2 + 1)^{5}$	
70	$(3-\frac{1}{3}x)$ - $2^{5} + {}^{5}C 2^{4}(-1x) + {}^{5}C 2^{3}(-1x)^{2} + {}^{5}C 2^{2}(-1x)^{3}$	
/0.	$5 + C_1 5 \left(-\frac{1}{3}x\right) + C_2 5 \left(-\frac{1}{3}x\right) + C_3 5 \left(-\frac{1}{3}x\right) \dots$ First term of 243	R1
	$ ({}^{5}C_{1} \times \times x) + ({}^{5}C_{2} \times \times x^{2}) + ({}^{5}C_{3} \times \times x^{3}) $	M1
	(242) 405 270 290 3	
	$=(243) - \frac{3}{3}x + \frac{9}{9}x - \frac{27}{27}x$	A1
	$=(243)-135x+30x^2-\frac{10}{2}x^3$	A1 (4)
	3	[4]
Alternative method	$\left(3 - \frac{1}{3}x\right)^5 = 3^5 \left(1 - \frac{x}{9}\right)^5$	
	$3^{5}(1 + {}^{5}C_{1}(-\frac{1}{9}x) + {}^{5}C_{2}(-\frac{1}{9}x)^{2} + {}^{5}C_{3}(-\frac{1}{9}x)^{3} \dots)$	
	Scheme is applied exactly as before	
	B1: The constant term should be 243 in their expansion	
	M1: Two of the three binomial coefficients must be correct and must be with the correct power	r of <i>x</i> .
	Accept ${}^{5}C_{1}$ or $\begin{pmatrix} 5\\1 \end{pmatrix}$ or 5 as a coefficient, and ${}^{5}C_{2}$ or $\begin{pmatrix} 5\\2 \end{pmatrix}$ or 10 as another and ${}^{5}C_{3}$ or $\begin{pmatrix} 5\\3 \end{pmatrix}$ or	10 as
	another Pascal's triangle may be used to establish coefficients. NB: If they only include the first two of these terms then the M1 may be awarded.	
	A1: Two of the final three terms correct – may be unsimplified i.e. two of $-135x + 30x^2 - \frac{10}{3}x^3$	
	correct, or two of $-\frac{405}{3}x + \frac{270}{9}x^2 - \frac{90}{27}x^3$ (may be just two terms)	
	A1: All three final terms correct and simplified. (Can be listed with commas or appear on sepa	rate lines.
	Accept in reverse order.) Accept correct alternatives to $-\frac{10}{3}$ e.g. $-3\frac{1}{3}$ or -3.3 the recurring n	nust be
	clear. 3.3 is not acceptable. Allow e.g. $+-135x$	
	e.g. The common error $3^5 + {}^{5}C_1 3^4 (-\frac{1}{3})x + {}^{5}C_2 3^3 (-\frac{1}{3})x^2 + {}^{5}C_3 3^2 (-\frac{1}{3})x^3 = (243) - 135x - 90x^2$	$-30x^{3}$
	would earn B1, M1, A0, A0, so 2/4	
	If extra terms are given then isw No negative signs in answer also earns B1 M1 A0 A0	
	If the series is divided through by 3 at the final stage after an error or omission resulting in all	multiple
	of three coefficients then apply scheme to series before this division and ignore subsequent wo 405 270	ork (isw)
	Special Case: Only gives first three terms = $(243) - 135x + 30x^2$ or $243 - \frac{405}{3}x + \frac{270}{9}x$	²
	Follow the scheme to give B1 M1 A1 A0 special case. (Do not treat as misread.)	
	Answers such as $243 + 405 - \frac{1}{3}x + 270 - \frac{1}{9}x^2 + 90 - \frac{1}{27}x^3$ gain no credit as the binomial coefficient of the binomial co	fficients
	are not linked to the x terms.	

Question Number	Scheme	Marks	
71(a)	$a = 7k - 5$, $ar = 5k - 7$ and $ar^2 = 2k + 10$	B1	
	(So $r = 1$) $\frac{5k-7}{7k-5} = \frac{2k+10}{5k-7}$ or $(7k-5)(2k+10) = (5k-7)^2$ or equivalent	M1	
	See $(5k-7)^2 = 25k^2 - 70k + 49$	M1	
	$14k^{2} + 60k - 50 = 25k^{2} - 70k + 49 \rightarrow 11k^{2} - 130k + 99 = 0 *$	A1cso * (4)	
(b)	(k-11)(11k-9) so $k=$	M1	
	k = 9/11 only* (after rejecting 11) N.B. Special case $k = 9/11$ can be verified in (b) (1 mark only)	A1*	
	$11 \times \left(\frac{9}{11}\right)^2 - 130 \times \left(\frac{9}{11}\right) + 99 = \frac{81}{11} - \frac{1170}{11} + \frac{1089}{11} = 0 \text{M1A0}$	(2)	
(c)	$a = \frac{8}{11}$	B1	
	$\frac{5 \times \frac{9}{11} - 7}{7 \times \frac{9}{11} - 5} or \frac{2 \times \frac{9}{11} + 10}{5 \times \frac{9}{11} - 7} \text{so} r = -4$	B1	
	(i) Fourth term = $ar^3 = -\frac{512}{11}$	M1A1	
	(ii) $S_{10} = \frac{a(1-r^{10})}{(1-r)} = \frac{\frac{8}{11}(1-(-4)^{10})}{(1-(-4))} = -152520$	M1A1	
		(6) [12]	
	Notes		
(a) Mark p B1: Corre can (Th M1: Vali	 (a) Mark parts (a) and (b) together B1: Correct statement (needs all three terms)– this may be omitted and implied by correct statement in <i>k</i> only, as candidates may use geometric mean, or may use ratio of terms being equal and give a correct line 2 without line 1. (This would earn the B1M1 immediately) M1: Valid Attempt to eliminate <i>a</i> and <i>r</i> and to obtain equation in <i>k</i> only 		
M1: Corr	rect expansion of $(5k-7)^2 = 25k^2 - 70k + 49$ - may have four terms $(5k-7)^2 = 25k^2 - 35k^2$	k - 35k + 49	
 A1cso: No incorrect work seen. The printed answer is obtained including "=0". (b) M1: Attempt to solve quadratic by usual methods (factorisation, completion of square or formula – see notes at start of mark scheme) or see 9/11 substituted and given as "=0" for M1A0 A1*: 9/11 only and 11 should be seen and rejected. Accept 9/11 underlined or k= 9/11 written on following line. Alternatively (k - 11) may be seen in the factorisation and a statement 'k not integer' given with k=9/11 stated. (c) Mark parts (i) and (ii) together 			
B1: $a = \frac{8}{11}$	or any equivalent (If not stated explicitly or used in formula may be implied by correct answe	er to (ii))	
II B1:Substitut (i) M1: Us A1: Co (ii) M1: U	11 B1:Substitutes $k = 9/11$ completely and obtain $r = -4$ (If not stated explicitly, may be implied by correct answer to (i) or (ii)) (i) M1: Use of correct formula with $n = 4$ a and/or r may still be in terms of k or uses $(2k+10) \times r$. May assume $r = k$. A1: Correct exact answer		
NB Correct	NB Correct formula with negative sign in numerator followed by the incorrect $(8/11)(1+4^{10})/(1-(-4))$ usually found equal		
to 152520.2909 with no negative sign can be allowed M1A0 but if the incorrect numerical expression appears on its own with no formula then M0A0			
Listing tern	is can get: B1 (first term) B1 M1A1 (implied by correct 4^{m} term) M1A1 (implied by -15252	0)	

Question Number	Scheme	
72.	$r = \frac{3}{4}, S_4 = 175$	
(a) Way 1	$\frac{a\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-\frac{3}{4}^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-0.75^{4}\right)}{1-0.75} $ Substituting $r = \frac{3}{4}$ or 0.75 and $n = 4$ into the formula for S_n	M1
	$175 = \frac{a\left(1 - \left(\frac{3}{4}\right)^4\right)}{1 - \frac{3}{4}} \implies a = \frac{175\left(1 - \frac{3}{4}\right)}{\left(1 - \left(\frac{3}{4}\right)^4\right)} \left\{ \Rightarrow a = \frac{\left(\frac{175}{4}\right)}{\left(\frac{175}{256}\right)} \Rightarrow \right\} \stackrel{a = 64}{=} * \text{Correct proof}$	A1*
(a) Way 2	$a + a\left(\frac{3}{4}\right) + a\left(\frac{3}{4}\right)^2 + a\left(\frac{3}{4}\right)^3 \qquad \qquad a + a\left(\frac{3}{4}\right) + a\left(\frac{3}{4}\right)^2 + a\left(\frac{3}{4}\right)^3$	M1
	$\frac{175}{64}a = 175 \left(\Rightarrow a = \frac{175}{\left(\frac{175}{64}\right)} \right) \Rightarrow \underline{a = 64}^{*}$ or 2.734375 <i>a</i> =175 $\Rightarrow \underline{a = 64}$	A1*
		[2]
(a) Way 3	$\{S_4 = \} \frac{64\left(1 - \left(\frac{3}{4}\right)^4\right)}{1 - \frac{3}{4}} \text{ or } \frac{64\left(1 - \frac{3}{4}^4\right)}{1 - \frac{3}{4}} \text{ or } \frac{64\left(1 - 0.75^4\right)}{1 - 0.75} $ Applying the formula for S_n with $r = \frac{3}{4}$, $n = 4$ and a as 64.	M1
	= 175 so $a = 64^*$ Obtains 175 with no errors seen and concludes $a = 64^*$.	A1*
(b)	$\{S_{\infty}\} = \frac{64}{\left(1 - \frac{3}{4}\right)}; = 256 \qquad S_{\infty} = \frac{(\text{their } a)}{1 - \frac{3}{4}} \text{ or } \frac{64}{1 - \frac{3}{4}}$	M1;
	(4) 256	Alcao
(c)	Writes down either " $64''\left(\frac{3}{4}\right)^8$ or awrt 6.4 or $\{D = T_9 - T_{10} = \} 64\left(\frac{3}{4}\right)^8 - 64\left(\frac{3}{4}\right)^9$ " $64''\left(\frac{3}{4}\right)^9$ or awrt 4.8, using $a = 64$ or their a	M1
	A correct expression for the difference (i.e. $\pm (T_9 - T_{10})$) using $a = 64$ or their a .	dM1
	$\left\{ = 64 \left(\frac{3}{4}\right)^8 \left(\frac{1}{4}\right) = 1.6018066 \right\} = \underline{1.602} (3 \text{dp}) $ 1.602 or -1.602	A1 cao
		[3]
		1

	Question 72 Notes		
72. (a)		Allow invisible brackets around fractions throughout all parts of this question.	
	M1	There are three possible methods as described above.	
	A1	Note that this is a "show that" question with a printed answer.	
		In Way 1 this mark usually requires $a = p/q$ where p and q may be unsimplified brackets from the	
		formula (or could be 11200/175 for example) as an intermediate step before the conclusion $a = 64$.	
		Exceptions include $a = 175/4 * 256/175$ i.e. multiplication by reciprocal rather than division or 175	
		= $175a/64$ followed by the obvious $a = 64$ These also get A1	
		In "reverse" methods such as Way 3 we need a conclusion "so $a = 64$ " or some implication that	
		their argument is reversible. Also a conclusion can be implied from a preamble, eg: "If I assume a	
		= 64 then find S = 175 as given this implies $a = 64$ as required"	
		This is a show that question and there should be no loss of accuracy.	
		In all the methods if decimals are used there should not be rounding.	
		If 0.68359375 appears this is correct. If it is rounded it would not give the exact answer.	
		64(1-0.31640625) or 43.75 are each correct – if they are rounded then treat this as incorrect	
		e.g. Way 3: "43.75/0.25 = 175 so $a = 64$ is A1" but "43/0.25 = 175 so $a = 64$ is A0" and	
		44/0.25 = 175 so a = 64 is A0"	
		Yet another variant on Way 3: take a=64 then find the next 3 terms as 48, 36, 27 then	
		add 64+48+36+27 to get 175. Again need conclusion that $a = 64$ or some implication that their	
		argument is reversible. Otherwise M1 A0	
(1)	N/1	s = 64 (their <i>a</i> found in part (<i>a</i>))	
(b)	NI I	$S_{\infty} = \frac{1-\frac{3}{4}}{1-\frac{3}{4}}$ or $\frac{1-\frac{3}{4}}{1-\frac{3}{4}}$	
	A1	256 cao	
	111		
(c)	NB	Using Sum of 10 terms minus Sum of 9 terms is NOT a misread Scores M0M0A0	
		$(3)^8$ $(3)^9$	
	M1	Can be implied. Writes down either $64 \left \frac{3}{4} \right $ or $64 \left \frac{3}{4} \right $,	
		$(4) \qquad (4)$	
		using $a = 64$ (or then a found in part (a)).	
	Note	Ignore candidate's labelling of terms.	
	Noto	$\binom{3}{8} = 6407226563$ and $64\binom{3}{9} = 4805410022$	
	THOLE	$\left(\frac{-4}{4}\right) = 0.407220303$ and $\left(\frac{-4}{4}\right) = 4.003413322$	
	dM1	This is dependent on previous M mark and can be implied. Either	
		$(3)^8 + (3)^9 + (3)^9 + (3)^8 + (4)^9 + (4)^8 + (4)^9 + (4)^$	
		$64\left(\frac{-}{4}\right) - 64\left(\frac{-}{4}\right)$ or $64\left(\frac{-}{4}\right) - 64\left(\frac{-}{4}\right)$ or awrt 6.4 – awrt 4.8, using $a = 64$ (or their <i>a</i> from part (a))	
	Note	1^{st} M1 and 2^{nd} M1 can be implied by the value of their	
		3^8 "their <i>a</i> found in part (a)"	
		difference="their <i>a</i> found in part (a)" $\times \frac{b}{A^9} \approx \frac{1}{40}$	
		$(2)^9$ $(2)^{10}$ $(2)^{10}$ $(2)^9$	
	Note	Either $64\left(\frac{3}{1}\right) - 64\left(\frac{3}{1}\right)$ or $64\left(\frac{3}{1}\right) - 64\left(\frac{3}{1}\right)$ is 1 st M1, 2 nd M0.	
		(4) (4) (4) (4)	
	A1	1.602 or -1.602 cao (This answer with no working is M1M1A1) But 1.6 with no working is	
		MOMOAO	
	No4-	$\left(D - \frac{1}{T} \right) = \left(\frac{1}{(64)} \left(\frac{3}{2} \right)^8 \text{ is } 1^{\text{st}} M1 \right)^{\text{nd}} M1$	
	note	$ \left\{ \begin{array}{c} D = -\frac{1}{4}I_9 \implies D = -\frac{1}{4}(04)\left(-\frac{1}{4}\right) \text{ IS I}^{-1} \text{ MII}, 2^{-1} \text{ MII} \right\} $	
	Special	Obtains awrt 6.4, then obtains awrt 4.8 but rounds to $6-5$ when subtracting – award M1M1A0	
	case		

Question Number	Scheme		Marks
73.	(a) $(2-9x)^4 = 2^4 + {}^4C_1 2^3 (-9x) + {}^4C_2 2^2 (-9x)^2$, (b) $f(x) = (1+kx)(2-9x)^4 = A - 232x + Bx^2$		
(a)	First term of 16 in their final series		B1
Way 1	At least one of $\begin{pmatrix} {}^{4}C_{1} \times \times x \end{pmatrix}$ or $\begin{pmatrix} {}^{4}C_{2} \times \times x^{2} \end{pmatrix}$		M1
		At least one of $-288x$ or $+1944x^2$	Al
	$=(16) - 288x + 1944x^{2}$	Both $-288x$ and $+1944x^2$	A1
			[4]
(a)	$(2-9x)^4 = (4-36x+81x^2)(4-36x+81x^2)$		
		First term of 16 in their final series	B1
Way 2	$= 16 - 144x + 324x^2 - 144x + 1296x^2 + 324x^2$	Attempts to multiply a 3 term quadratic by the same 3 term quadratic to achieve either 2 terms in	M1
		x or at least 2 terms in x^2 .	
	$= (16) - 288x + 1944x^{2}$	At least one of $-288x$ or $+1944x^2$	Al
		Both $-288x$ and $+1944x^2$	Al
			[4]
(a) Way 3	$\left\{ (2-9x)^4 = \right\} 2^4 \left(1 - \frac{9}{2}x \right)^4$	First term of 16 in final series	B1
	$= 2^{4} \left(1 + 4 \left(-\frac{9}{2}x \right) + \frac{4(3)}{2} \left(-\frac{9}{2}x \right)^{2} + \dots \right)$	At least one of $\frac{(4 \times \times x) \operatorname{or} \left(\frac{4(3)}{2} \times \times x^{2}\right)}{4 \times \times x^{2}}$	M1
		At least one of $-288x$ or $+1944x^2$	Al
	$= (16) - 288x + 1944x^{2}$	Both $-288x$ and $+1944x^2$	Al
			[4]
	Parts (b), (c) and (d) may be marked together		
(b)	<i>A</i> = "16"	Follow through their value from (a)	Blft
(c)	$\left\{ (1+kx)(2-9x)^{4} \right\} = (1+kx)(16-288x+\{1944x^{2}+\})$	May be seen in part (b) or (d) and can be implied by work in parts (c) or (d)	M1
	<i>x</i> terms: $-288x + 16kx = -232x$		
	giving $16k - 56 \rightarrow k - 7$	<i>ــــــ</i> 7	A 1
	giving, $10k - 50 \implies k - \frac{-2}{2}$	$\frac{\kappa - \frac{1}{2}}{\frac{1}{2}}$	AI
			[2]
(d)	x^2 terms: $1944x^2 - 288kx^2$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	So, $B = 1944 - 288 \left(\frac{7}{2}\right)$; = 1944 - 1008 = 936	See notes	MI
	$(2)^r$	936	Al
			[2]
			9

	Question 73 Notes			
(a) Ways 1	B1 cao	16		
and 3	M1	Correct binomial coefficient associated with correct power of x <i>i.e</i> $({}^{4}C_{1} \times \times x)$ or $({}^{4}C_{2} \times \times x^{2})$		
		They may have 4 and 6 or 4 and $\frac{4(3)}{2}$ or even $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ as their coefficients. Allow missing		
		signs and brackets for the M marks.		
	1 st A1	At least one of $-288x$ or $+1944x^2$ (allow +- 288x)		
	2 nd A1	Both $-288x$ and $+1944x^2$ (May list terms separated by commas) Also full marks for correct answer with no working here. Again allow +- $288x$		
	Note	If the candidate then divides their final correct answer through by 8 or any other common factor then isw and mark correct series when first seen. So (a) B1M1A1A1 .It is likely that this approach will be followed by (b) B0, (c) M1A0, (d) M1A0 if they continue with their new series e.g. $2-36x + 283x^2 +$ (Do not ft the value 2 as a mark was awarded for 16)		
Way 2b	Special Case	Slight Variation on the solution given in the scheme		
		$(2-9x)^4 = (2-9x)(2-9x)(4-36x+81x^2)$		
		$= (2 - 9x)(8 - 108x + 486x^2 +)$		
		$= 16 - 216x + 972x^{2} - 72x + 972x^{2}$ $Multiplies out to give either 2 terms in x or 2 terms in x^{2}.$ $M1$		
		At least one of $-288x$ or $+1944x^2$ A1		
		$= (10)^{-} 288x + 1944x^{+} \dots$ Both $-288x$ and $+1944x^{2}$ A1		
(b)	B1ft	Parts (b), (c) and (d) may be marked together. Must identify $A = 16$ or $A = their$ constant term found in part (a). Or may write just 16 if this is		
		clearly their answer to part (b). If they expand their series and have 16 as first term of a series it is not sufficient for this mark.		
(c)	M1	Candidate shows intention to multiply $(1+kx)$ by part of their series from (a)		
		e.g. Just $(1 + kx)(16 - 288x +)$ or $(1 + kx)(16 - 288x + 1944x^2 +)$ are fine for M1.		
	Note	This mark can also be implied by candidate multiplying out to find two terms (or coefficients) in <i>x</i> . i.e. f.t. their $-288x + 16kx$ N.B. $-288kx = -232x$ with no evidence of brackets is M0 – allow copying slips, or use of factored series, as this is a method mark		
	A1	$k = \frac{7}{2}$ o.e. so 3.5 is acceptable		
(d)	M1	Multiplies out their $(1 + kx)(16 - 288x + 1944x^2 +)$ to give exactly two terms (or coefficients)		
	A1	in x^2 and attempts to find <i>B</i> using these two terms and a numerical value of <i>k</i> . 936		
	Note	Award A0 for $B = 936x^2$		
		But allow A1 for $B = 936x^2$ followed by $B = 936$ and treat this as a correction		
		Correct answers in parts (c) and (d) with no method shown may be awarded full credit.		

Question Number	Scheme	Marks		
74.	$\left(2-\frac{x}{4}\right)^{10}$			
Way 1	$2^{10} + \left(\frac{10}{1}\right)2^9 \left(-\frac{1}{4}\frac{x}{=}\right) + \left(\frac{10}{2}\right)2^8 \left(-\frac{1}{4}\frac{x}{=}\right)^2 + \dots$ For <u>either</u> the <i>x</i> term <u>or</u> the <i>x</i> ² term including a correct <u>binomial coefficient</u> with a correct power of <i>x</i>	M1		
	<u>First term of 1024</u>	B1		
	Either $-1280x$ or $720x^2$ (Allow +-1280x here)	A1		
	$= \frac{1024}{-1280x} - 1280x + 720x$ Both $- 1280x$ and $720x^2$ (Do not allow +-1280x here)	A1 [4]		
Way 2	$\left(2-\frac{x}{4}\right)^{10} = 2^k \left(1-\underline{10} \times \frac{x}{\underline{8}} + \frac{10 \times 9}{\underline{2}} \left(-\frac{x}{\underline{8}}\right)^2_{\underline{8}}\right)$	M1		
	1024(1±)			
	$= \underline{1024} - 1280x + 720x^2$	<u>B1</u> A1 A1 [4]		
	Notes			
M1: For eith	<u>er</u> the x term <u>or</u> the x^2 term having correct structure i.e. a <u>correct</u> binomial coefficient in any for	orm with the		
<u>correct p</u>	<u>ower of x</u> . Condone sign errors and condone missing brackets and allow alternative forms for binon $\begin{pmatrix} 10 \end{pmatrix}$	nal		
coefficier	coefficients e.g. ${}^{10}C_1$ or $\begin{pmatrix} 10\\1 \end{pmatrix}$ or even $\begin{pmatrix} 10\\1 \end{pmatrix}$ or 10. The powers of 2 or of $\frac{1}{4}$ may be wrong or missing.			
B1: Award th	his for 1024 when first seen as a distinct constant term (not $1024x^{0}$) and not $1 + 1024$			
A1: For one	correct term in x with coefficient simplified. Either $-1280x$ or $720x^2$ (allow $+-1280x$ here)			
Allow 72	Allow 720x ² to come from $\left(\frac{x}{4}\right)^2$ with no negative sign. So use of + sign throughout could give M1 B1 A1 A0			
A1: For both	correct simplified terms i.e. $-1280x$ and $720x^2$ (Do not allow $+-1280x$ here)			
Allow ter	ms to be listed for full marks e.g. $1024, -1280x, +720x^2$			
N.B. If t	hey follow a correct answer by a factor such as $512-640x + 360x^2$ then isw			
Terms n	hay be listed. Ignore any extra terms.			
Notes for Way 2				
M1: Correct structure for at least one of the underlined terms. i.e. a <u>correct</u> binomial coefficient in any form with the <u>correct</u>				
<u>power of x</u> . Condone sign errors and condone missing brackets and allow alternative forms for binomial coefficients (10)				
e.g. ${}^{10}C_1$	e.g. ${}^{10}C_1$ or $\binom{10}{1}$ or even $\binom{10}{1}$ or 10. k may even be 0 or 2^k may not be seen. Just consider the bracket for			
this mar	k.			
BI: Needs 10 A1, A1 : as bef	24(1 10 become 1024 ore			

Question	Scheme	Marks			
75.(i)	Mark (a) and (b) together				
(a)	$a + ar = 34$ or $\frac{a(1-r^2)}{(1-r)} = 34$ or $\frac{a(r^2-1)}{(r-1)} = 34$; $\frac{a}{1-r} = 162$	B1; B1			
(Way 1)	Eliminate <i>a</i> to give $(1+r)(1-r) = \frac{17}{81}$ or $1-r^2 = \frac{34}{162}$ (not a cubic)	aM1			
	(and so $r^2 = \frac{64}{81}$ and) $r = \frac{8}{9}$ only	aA1 (4)			
(b)	Substitute their $r = \frac{8}{9}$ ($0 < r < 1$) to give $a = a = 18$	bM1 bA1 (2)			
(Way 2) Part (b) first	Eliminate <i>r</i> to give $\frac{34-a}{a} = 1 - \frac{a}{162}$	bM1			
	gives $a = 18$ or 306 and rejects 306 to give $a = 18$	bA1			
Then part (a) again	Substitute $a = 18$ to give $r =$	aM1			
	$r=\frac{8}{9}$	aA1			
(ii)	$\frac{42(1-\frac{6}{7}^n)}{1-\frac{6}{7}} > 290$ (For trial and improvement approach see notes below)	M1			
	to obtain So $\left(\frac{6}{7}\right)^n < \left(\frac{4}{294}\right)$ or equivalent e.g. $\left(\frac{7}{6}\right)^n > \left(\frac{294}{4}\right)$ or $\left(\frac{6}{7}\right)^n < \left(\frac{2}{147}\right)$	A1			
	So $n > \frac{\log''(\frac{4}{294})''}{\log(\frac{6}{7})}$ or $\log_{\frac{6}{7}}''(\frac{4}{294})''$ or equivalent but must be log of positive quantity	M1			
	(i.e. $n > 27.9$) so $n = 28$	A1 (4)			
(i) (a) BI BI Way 1: aM aA	Notes (i) (a) B1 : Writes a correct equation connecting <i>a</i> and <i>r</i> and 34 (allow equivalent equations – may be implied) B1 : Writes a correct equation connecting <i>a</i> and <i>r</i> and 162 (allow equivalent equation – may be implied) Way 1 : a M1 : Eliminates <i>a</i> correctly for these two equations to give $(1+r)(1-r) = \frac{17}{81}$ or $(1+r)(1-r) = \frac{34}{162}$ or equivalent – not a cubic – should have factorized $(1 - r)$ to give a correct quadratic a A1 : Correct value for <i>n</i> . Accort 0.8 recurring or $8/0$ (not 0.820). Must only have positive value				
bN bA Way 2: Fin	 bM1: Substitutes their r (0 < r < 1) into a correct formula to give value for a. Can be implied by a = 18 bA1: must be 18 (not answers which round to 18) Way 2: Finds a first - B1, B1: As before then award the (b) M and A marks before the (a) M and A marks 				
bM	1: Eliminates r correctly to give $\frac{34-a}{a} = 1 - \frac{a}{162}$ or $a^2 - 324a + 5508 = 0$ or equivalent				
bA1 aM	: Correct value for a so $a = 18$ only. (Only award after 306 has been rejected) 1 : Substitutes their 18 to give $r =$				
aAl	aA1: $r = \frac{8}{9}$ only				
(ii) M1:	Allow <i>n</i> or $n - 1$ and any symbols from ">", "<", or "=" etc. A1 : Must be power <i>n</i> (not $n - 1$) with any symbols	nbol			
M1 : U	ses logs correctly on $\left(\frac{6}{7}\right)^n$ or $\left(\frac{7}{6}\right)^n$ not on $(36)^n$ to get as far as <i>n</i> Allow any symbol				
A1 : <i>n</i>	= 28 cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the negative	ve			
lc	$\log(\frac{6}{7})$ or any contradictory statements must be penalised here) Those with equals throughout may gain this mark if they				
for Special case - n = 28 Uses nth te	follow 27.9 by $n=28$. Just $n = 28$ without mention of 27.9 is only allowed following correct inequality work. Special case: Trial and improvement : Gives $n = 28$ as $S = awrt 290.1$ (M1A1)and when $n = 27$ $S = (awrt) 289$ so $n = 28$ (M1A1) – $n = 28$ with no working is M1A0M0A0 and insufficient accuracy is M1A0M1A0 Uses nth term instead of sum of n terms – over simplified – do not treat as misread – award 0/4				

Question Number	Schem	e	Marks
76. (a)	$(2-3x)^6 = 64 + \dots$	64 seen as the only constant term in their expansion.	B1
	$\left\{ (2-3x)^{6} \right\} = (2)^{6} + \frac{^{6}C_{1}}{(2)^{5}} (-$	$3\underline{x}$) + ${}^{6}C_{2}(2)^{4}(-3\underline{x})^{2}$ +	<u>M1</u>
	M1: $\binom{6}{1} \times \dots \times x$ or $\binom{6}{2} \times \dots \times x^2$. For <u>either</u>	the x term <u>or</u> the x^2 term. Requires <u>correct</u>	
	binomial coefficient in any form with the correct power of x , but the other part of the coefficient (perhaps including powers of 2 and/or -3) may be wrong or missing. The terms		
	${}^{6}C_{12}2^{5}-3x+{}^{6}C_{22}2^{4}-3x^{2}+$ Scores M01	inless later work implies a correct method	
	$= 64 - 576x + 2160x^2 + \dots$	A1: Either $-576x$ or $2160x^{2}$ (Allow + $-576x$ here) A1: Both $-576x$ and $2160x^{2}$	A1A1
		(Do not allow $+ -576x$ here)	
			[4]
(a) Way 2	$(2-3x)^6 = 64 + \dots$	64 seen as the only constant term in their expansion.	B1
		M1: $({}^{6}C_{1} \times \times x) \operatorname{or} ({}^{6}C_{2} \times \times x^{2})$. For	
	$\left(1-\frac{3}{2}x\right)^6 = 1 + \frac{{}^6C_1}{2}\left(\frac{-3}{2}x\right) + \frac{{}^6C_2}{2}\left(\frac{-3}{2}x\right)^2 + \dots$	<u>either</u> the x term <u>or</u> the x^2 term. Requires <u>correct</u> binomial coefficient in any form <u>with the correct power of x</u> , but the other part of the coefficient (perhaps including powers of 2 and/or -3) may be wrong or missing. The terms can be "listed" rather than added Janore any extra terms	<u>M1</u>
	$= 64 - 576x + 2160x^2 + \dots$	A1: Either $-576x$ or $2160x^{2}$ (Allow + $-576x$ here) A1: Both $-576x$ and $2160x^{2}$ (Do not allow + $-576x$ here)	A1A1
(b)	Candidate writes down $\left(1+\frac{x}{2}\right) \times \left(\text{their part}\right)$	(a) answer, at least up to the term in x).	
	(Condone missir	ng brackets)	
	$\left(1 + \frac{x}{2}\right)(64 - 576x +) \text{ or } \left(1 + \frac{x}{2}\right)$ $\left(1 + \frac{x}{2}\right)64 - \left(1 + \frac{x}{2}\right)576x \text{ or } \left(1 + \frac{x}{2}\right)64$	$\int (64 - 576x + 2160x^{2} +) \text{ or}$ $4 - \left(1 + \frac{x}{2}\right) 576x + \left(1 + \frac{x}{2}\right) 2160x^{2}$	M1
	$\left(1+\frac{1}{2}\right)^{04} - \left(1+\frac{1}{2}\right)^{0700} 01 \left(1+\frac{1}{2}\right)^{0700}$	$4 - \left(1 + \frac{1}{2}\right)^{5/6x} + \left(1 + \frac{1}{2}\right)^{2100x}$	
	or $64 + 32x - 5/6x - 288x^2$, 2	$2160x^2 + 1080x^2$ are fine.	
		(Allow $+ -544x$ here)	
	$= 64 - 544x + 1872x^2 + \dots$	A1: $64 - 544x + 1872x^2$	A1A1
		The terms can be "listed" rather than added. Ignore any extra terms.	
			[3]
	SC: If a candidate expands in descending pov	vers of r. only the M marks are available	Total 7
	e.g. $\{(2-3x)^6\} = (-3x)^6 + {}^6C, (2-3x)^6\}$	$(-3x)^{5} + {}^{6}C_{2}(2)^{2}(-3x)^{4} + \dots$	

Question Number	Scheme		Marks
77(a)	$S = \frac{20}{10000000000000000000000000000000000$	M1: Use of a correct S_{∞} formula	N / 1 A 1
	$S_{\infty} = \frac{1 - \frac{7}{8}}{1 - \frac{7}{8}}$, = 160	A1: 160	MIAI
	Accept correct	answer only (160)	
			[2]
(b)	$20(1-(7)^{12})$	M1: Use of a correct S_n formula with $n = 12$	
	$S_{12} = \frac{20(1-(\frac{1}{8})^{-1})}{1-7}; = 127.77324$	(condone missing brackets around 7/8)	M1A1
	$1 - \frac{1}{8}$	A1: awrt 127.8	
	T & I in (b) requires all 12 terms to be calc	ulated correctly for M1 and A1 for awrt 127.8	
			[2]
(c)		Applies S_N (GP only) with $a = 20$, $r = \frac{7}{8}$ and	
	$160 - \frac{20(1 - (\frac{1}{8})^N)}{1 - (\frac{1}{8})^2} < 0.5$	"uses" 0.5 and their S_{∞} at any point in their	M1
	$1 - \frac{7}{8}$	working. (condone missing brackets around $7/8$) (Allow = (2) but see note below	
		$7/8$ (Allow =, <, >, 2, \leq) but see note below.	
	$1 < 0 (7)^{N} (0.5) (7)^{N} (0.5)$	Attempt to isolate $+160\left(\frac{7}{8}\right)$ or $+\left(\frac{7}{8}\right)$ oe	D. (1
	$160\left(\frac{1}{8}\right) < (0.5) \text{ or } \left(\frac{1}{8}\right) < \left(\frac{1}{160}\right)$	(Allow =, $<$, $>$, \ge , \le) but see note below.	
		Dependent on the previous M1	
		base 0.875 correctly to obtain an equation or an	
		inequality of the form	
		$N\log\left(\frac{7}{2}\right) < \log\left(\frac{0.5}{2}\right)$	
	$N\log\left(\frac{7}{2}\right) < \log\left(\frac{0.5}{1.5}\right)$	(8) $(10 s)$ $(10 s)$ $(10 s)$	M1
	(8) (160)	or	
		$N > \log_{0.875} \left(\frac{0.5}{} \right)$	
		$(\text{their } \mathbf{S}_{\infty})$	
		(Allow =, $<$, $>$, \ge , \le) but see note below.	
	$N > \frac{\log(\frac{0.5}{160})}{\log(\frac{7}{8})} = 43.19823 \Rightarrow N = 44$	$N = 44$ (Allow $N \ge 44$ but not $N > 44$	A1 cso
	An incorrect inequality statement at any stage	e in a candidate's working loses the final mark.	
	Some candidates do not realise that the direc	tion of the inequality is reversed in the final line	
	working seen	iun marks for using –, as long as no incorrect	
			[4]
			Total 8
	<u> </u>	provement Method in (c):	
	1 st M1: Attempts $160 - S_N$, or S_N with at least one value for $N > 40$	
	2 nd M1: Attempts 160	$D - S_N$ or S_N with $N = 43$ or $N = 44$	
	3^{rd} M1: For evidence of examining $160 - S_N$ or S_N for both $N = 43$ and $N = 44$ with both we correct to 2 DP Eg: $160 - S_{43} = awrt \ 0.51$ and $160 - S_{44} = awrt \ 0.45$ or $S_{43} = awrt \ 159.49$ and $S_{44} = awrt \ 159.55$		
		$A1: V = 44 \operatorname{cso}$	
	Answer of $N = 44$ onl	y with no working scores no marks	

Question Number	Scheme		Marks
	$\left(1+\frac{3x}{2}\right)^8$		
	1 + 12x	Both terms correct as printed (allow $12x^1$ but not 1^8)	B1
	+ $\frac{8(7)}{2!} \left(\frac{3x}{2}\right)^2 + \frac{8(7)(6)}{3!} \left(\frac{3x}{2}\right)^3 +$ + ${}^{8}C \left(\frac{3x}{2}\right)^2 + {}^{8}C \left(\frac{3x}{2}\right)^3 +$	$\left(\frac{8(7)}{2!} \times \times x^{2}\right) \text{ or } \left(\frac{8(7)(6)}{3!} \times \times x^{3}\right) \text{ or }$ $\left(^{8}\text{C}_{2} \times \times x^{2}\right) \text{ or } \left(^{8}\text{C}_{3} \times \times x^{3}\right)$ M1: For <u>either</u> the x^{2} term <u>or</u> the x^{3} term. Requires <u>correct</u> binomial coefficient in	M1
78.	$\dots + {}^{3}C_{2}\left(\frac{1}{2}\right) + {}^{3}C_{3}\left(\frac{1}{2}\right) + \dots$	any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or 3 or signs) may be wrong or missing.	
	<u>Special Case:</u> Allow this M1 <u>only</u> for an attempt at a descending expansion		
	$ \begin{array}{c} \dots + 8\left(\frac{3x}{2}\right)^{7}(1) + \frac{8(7)}{2!}\left(\frac{3x}{2}\right)^{6}(1)^{2} + \dots \\ \text{e.g.} \\ \dots + {}^{8}C_{1}\left(\frac{3x}{2}\right)^{7} + {}^{8}C_{2}\left(\frac{3x}{2}\right)^{6} + \dots \end{array} $		
	$\dots + 63x^2 + 189x^3 + \dots$	A1: Either $63x^2$ or $189x^3$ A1: Both $63x^2$ and $189x^3$	A1A1
	Terms may be listed but must be positive		
			[4]
			Total 4
	Note it is common not to square the 2 in t	he denominator of $\left(\frac{3x}{2}\right)$ and this gives	
	$1 + 12x + 126x^2 + 756x^3$. This could score B1M1A0A0.		
	Note $ + {}^{8}C_{2}\left(1^{4} + \frac{3x}{2}\right)^{2} + {}^{8}C_{3}\left(1^{3} + \frac{3x}{2}\right)^{3} +$	would score M0 unless a correct method	
	was implied by later work		

Question Number	Scheme		Marks
	$S_{\infty} = 6a$		
79. (a)	$\frac{a}{1-r} = 6a$	Either $\frac{a}{1-r} = 6a$ or $\frac{6a}{1-r} = a$ or $\frac{6}{1-r} = 1$	M1
	$\{\Rightarrow 1 = 6(1-r) \Rightarrow\} r = \frac{5}{6}*$	cso	A1*
	Allow verification e.g. $\frac{a}{1-r} = 6a$	$a \Rightarrow \frac{a}{1-\frac{5}{6}} = 6a \Rightarrow \frac{a}{\frac{1}{6}} = 6a \Rightarrow 6a = 6a$	
		1	[2]
	$\left\{ T_4 = ar^3 = 62.5 \Rightarrow \right\} a \left(\frac{5}{6}\right)^3 = 62.5$	$a\left(\frac{5}{6}\right)^3 = 62.5$ (Correct statement using	M1
(b)		the 4 term. Do not accept $a\left(\frac{-6}{6}\right) = 62.5$	
	$\Rightarrow a = 108$	108	A1
			[2]
	$S_{\infty} = 6$ (their <i>a</i>) or $\frac{\text{their } a}{1 - \frac{5}{6}} \{ = 648 \}$	Correct method to find S_{∞}	M1
(c)	$\left\{S_{30}=\right\}\frac{108\left(1-\left(\frac{5}{6}\right)^{30}\right)}{1-\frac{5}{6}} \left\{= 645.2701573\right\}$	M1: $S_{30} = \frac{(\text{their } a)\left(1 - \left(\frac{5}{6}\right)^{30}\right)}{1 - \left(\frac{5}{6}\right)}$ (Condone invisible brackets around 5/6) A1ft: Correct follow through expression (follow through their <i>a</i>). Do not condone invisible brackets around 5/6 unless their evaluation or final answer	M1 A1ft
		implies they were intended.	
	$\{\mathbf{S}_{\infty} - \mathbf{S}_{30}\} = 2.72984$	awrt 2.73	A1
			[4]
	A 14		Total 8
(c)	Alternative: Difference = $\frac{ar^{30}}{1-r} = \frac{108\left(\frac{5}{6}\right)^{30}}{1-\frac{5}{6}} = 2.72984$ M1M1: For an attempt to apply $\frac{ar^{30}}{1-r}$. A1ft: $\frac{(their a) \times r^{30}}{1-r}$ with their ft a.		
	A1: awrt 2.73		

Question Number	Scheme	Marks
80. (a)	$\left\{r=\right\}\frac{2}{3}$	B1 (1)
(b)	${p=}8$	B1 cao
(c)	$\left\{\mathbf{S}_{15}=\right\}\frac{18\left(1-\left(\frac{2}{3}\right)^{15}\right)}{1-\frac{2}{3}}$	(1) M1
	$\{S_{15} = 53.87668\} \Rightarrow S_{15} = awrt \ 53.877$	A1
		(2) [4]
	Notes for Question 80	
(a)	B1: Accept $\frac{12}{18}$, 0.6 or 0.6 recurring, or even 0.667 (3sf) but not 0.6 or 0.67	
(b)	B1: accept 8 only	
(c)	M1: Applies this formula $S_{15} = \frac{18(1 - (\text{their } r)^{15})}{1 - (\text{their } r)}$, can be implied by their answer. For this mark	
	they may use any value for r except $r = 1$ or $r = 0$ (even 3/2 or -6 may be used) A1: Answers which round to 53.877	
Alternative method for (c)	M1: (Adding terms is an unlikely method for this question) Need to see 15 terms listed as 18+12+0.06165877 or can be implied by correct answer	
	A1: awrt 53.877 Answer only : 53.9 is M0A0 with no working, but 53.877 with no working is M1A1	

Question Number	Scheme	Marks	
	$(2+3x)^4$ - Mark (a) and (b) together		
81. (a)	$2^4 + {}^4C_12^3(3x) + {}^4C_22^2(3x)^2 + {}^4C_22^1(3x)^3 + (3x)^4$		
	First term of 16	B1	
	$({}^{4}C_{1} \times \times x) + ({}^{4}C_{2} \times \times x^{2}) + ({}^{4}C_{3} \times \times x^{3}) + ({}^{4}C_{4} \times \times x^{4})$	M1	
	$=(16 +)96x + 216x^{2} + 216x^{3} + 81x^{4}$ Must use Binomial – otherwise A0,	A1 A1	
	A0		
		(4)	
(b)	$(2-3x)^4 = 16 - 96x + 216x^2 - 216x^3 + 81x^4$	B1ft	
		(1)	
		5	
Alternative	$(2 + 3x)^4 = 2^4 (1 + \frac{3x}{2})^4$		
method (a)	$\frac{(2+3)}{2} \left(1+\frac{2}{2}\right)$		
	$2^{4} \left(1 + {}^{4}C_{1}\left(\frac{3x}{2}\right) + {}^{4}C_{2}\left(\frac{3x}{2}\right)^{2} + {}^{4}C_{3}\left(\frac{3x}{2}\right)^{3} + \left(\frac{3x}{2}\right)^{4}\right)$		
	Scheme is applied exactly as before		
(a)	Notes for Question 81		
(a)	M1: Two binomial coefficients must be correct and must be with the correct power of r. Accept		
	(4)		
	${}^{*}C_{1} \text{ or } \begin{pmatrix} 1 \end{pmatrix}$ or 4 as a coefficient, and ${}^{*}C_{2} \text{ or } \begin{pmatrix} 2 \end{pmatrix}$ or 6 as another Pascal's triangle may be		
	used to establish coefficients.		
	A1: Any two of the final four terms correct (i.e. two of $96x + 216x^2 + 216x^3 + 81x^4$) in exp	oansion	
	following Binomial Method. A1: All four of the final four terms correct in expansion (Accept answers without \pm signs, can be		
	A1: All four of the final four terms correct in expansion. (Accept answers without + signs, can be listed with commas or appear on separate lines)		
(b)	B1ft: Award for correct answer as printed above or ft their previous answer provided it has five		
	terms ft and must be subtracting the x and x^3 terms		
	Allow terms in (b) to be in descending order and allow $+-96x$ and $+-216x^3$ in the series. (Accept		
	answers without + signs, can be listed with commas or appear on separate lines)	3 - 1	
	e.g. The common error $2^4 + {}^4C_1 2^3 x + {}^4C_2 2^2 3x^2 + {}^4C_3 2^3 x^3 + 3x^4 = (16) + 96x + 72x^2 + 24$	$x^{3} + 3x^{4}$	
	would earn B1, M1, A0, A0, and if followed by $=(16) - 96x + 72x^2 - 24x^3 + 3x^4$ gets B	lft so	
	3/5 Evily connect answer with no working can goors P1 in part (a) and P1 in part (b) The question sta	tad usa	
	the Binomial theorem and if there is no evidence of its use then M mark and hence A marks cannot be a	earned.	
	Squaring the bracket and squaring again may also earn B1 M0 A0 A0 B1 if correct		
	Omitting the final term but otherwise correct is B1 M1 A1 A0 B0ft so 3/5		
	It the series is divided through by 2 or a power of 2 at the final stage after an error or omission resulting in all even coefficients then apply scheme to series before this division and ignore as	1 Ibsequent	
	work (isw)		

Question Number	Scheme	Marks	
82. Way 1	$\left(2 - \frac{1}{2}x\right)^8 = 2^8 + \binom{8}{1} \cdot 2^7 \left(-\frac{1}{2}x\right) + \binom{8}{2} 2^6 \left(-\frac{1}{2}x\right)^2 + \binom{8}{3} 2^5 \left(-\frac{1}{2}x\right)^3$		
	First term of 256	B1	
	$({}^{8}C_{1} \times \times x) + ({}^{8}C_{2} \times \times x^{2}) + ({}^{8}C_{3} \times \times x^{3})$	M1	
	$= (256) - 512x + 448x^2 - 224x^3$	A1, A1 (4)	
		Total 4	
Way 2	$\left(2 - \frac{1}{2}x\right)^8 = 2^8 \left(1 - \frac{1}{4}x\right)^8 = 2^8 \left(1 + \binom{8}{1} \cdot \left(-\frac{1}{4}x\right) + \binom{8}{2} \left(-\frac{1}{4}x\right)^2 + \binom{8}{3} \left(-\frac{1}{4}x\right)^3\right)$		
	Scheme is applied exactly as before except in special case below*		
	Notes for Question 82		
	B1: The first term should be 256 in their expansion		
	M1: Two binomial coefficients must be correct and must be with the correct power of x.		
	Accept ${}^{8}C_{1}$ or $\binom{8}{1}$ or 8 as a coefficient, and ${}^{8}C_{2}$ or $\binom{8}{2}$ or 28 as another Pascal's		
	triangle may be used to establish coefficients.		
	A1: Any two of the final three terms correct (but allow +- instead of -)		
	A1: All three of the final three terms correct and simplified. (Deduct last mark for $+$ -224 r^3 in the series). Also deduct last mark for the three terms correct but unsit	512x and +-	
	(Accept answers without $+$ signs, can be listed with commas or appear on sepa	rate lines)	
	The common error $\left(2 - \frac{1}{2}x\right)^8 = 256 + \binom{8}{1} \cdot 2^7 \left(-\frac{1}{2}x\right) + \binom{8}{2} 2^6 \left(-\frac{1}{2}x^2\right) + \binom{8}{3} 2^5 \left(-\frac{1}{2}x^3\right)$		
	would earn B1, M1, A0, A0	`´´	
	Ignore extra terms involving higher powers.		
	Condone terms in reverse order i.e. $= -224x^3 + 448x^2 - 512x + (256)$		
	*In Way 2 the error = $2\left(1 + \binom{8}{1} \cdot \left(-\frac{1}{4}x\right) + \binom{8}{2} \left(-\frac{1}{4}x\right)^2 + \binom{8}{3} \left(-\frac{1}{4}x\right)^3\right)$ giving		
	$=2-4x+\frac{7}{2}x^2-\frac{7}{4}x^3$ is a special case B0, M1, A1, A0 i.e. 2/4		

Question Number	Scheme	Marks
Tumber		
83.(a)	$a = 4p$, $ar = (3p+15)$ and $ar^2 = 5p+20$	B1
	(So $r = 1$) $\frac{5p+20}{3p+15} = \frac{3p+15}{4p}$ or $4p(5p+20) = (3p+15)^2$ or equivalent	M1
	See $(3p+15)^2 = 9p^2 + 90p + 225$	M1
	$20p^{2} + 80p = 9p^{2} + 90p + 225 \rightarrow 11p^{2} - 10p - 225 = 0 *$	A1 *
		(4)
(b)	(p-5)(11p+45) so $p =$	M1
	p = 5 only (after rejecting - $45/11$) N.B. Special case $p = 5$ can be verified in (b) (1 mark only)	A1
	$11 \times 5^2 - 10 \times 5 - 225 = 275 - 50 - 225 = 0$ M1A0	
(c)	$3 \times 5 + 15$ $5 \times 5 + 20$	(2)
	$\frac{4\times5}{4\times5}$ or $\frac{3\times5+15}{3\times5+15}$	M1
	$r = \frac{3}{2}$	A1
	2	
		(2)
(d)	$S_{10} = \frac{20\left(1 - \left("\frac{3}{2}"\right)^{10}\right)}{\left(1 - "\frac{3}{2}"\right)}$	M1A1ft
		A1
	(=2266.601568) = 2267	(3)
		Total 11
(a)	Notes for Question 83 B1: Correct statement (needs all three terms)– this may be omitted and implied by	/ correct
(u)	statement in p only as candidates may use geometric mean, or may use ratio of term give a correct line 2 without line 1. (This would earn the B1M1 immediately) M1: Valid Attempt to eliminate a and r and to obtain equation in p only	s being equal and
	M1: Correct expansion of $(3p+15)^2 = 9p^2 + 90p + 225$	
	A1cso: No incorrect work seen. The printed answer is obtained. NB Those who show $n = 5$ in part (a) obtain no availit for this	
(b)	INB I nose who show $p = 5$ in part (a) obtain no credit for this M1: Attempt to solve quadratic by usual methods (factorisation, completion of square or formula) Must appear in part (b) – not part (a)	
	A1: 5 only and -45/11 should be seen and rejected or $(11p + 45)$ seen and statemer	that $p > 0$
(c)	M1: Substitutes $p = 5$ completely and attempt ratio (correct way up) A1: 1.5 or any equivalent	
(d)	M1: Use of correct formula with $n = 10 a$ and/or r may still be in terms of p A1ft: Correct expression ft on their r only – must have $a = 20$ and power = 10 here	
	A1 2267 (accept awrt 2267) -10 here -20 and power -10 here	

Question Number	Scheme		Marks
84.	$(2-5x)^6$		
	$(2^6 =) 64$	Award this when first seen (not $64x^0$)	B1
	$+6 \times (2)^{5} (-5x) + \frac{6 \times 5}{2} (2)^{4} (-5x)^{2}$	Attempt binomial expansion with correct structure for at least one of these terms. E.g. a term of the form: $\binom{6}{p} \times (2)^{6-p} (-5x)^p$ with $p = 1$ or $p = 2$ consistently. Condone sign errors. Condone missing brackets if later work implies correct structure and allow alternative forms for binomial coefficients e.g. ${}^{6}C_{1}$ or $\binom{6}{1}$ or even $\left(\frac{6}{1}\right)$	M1
	-960 <i>x</i>	Not $+-960x$	A1 (first)
	$(+)6000x^2$		A1 (Second)
			(4)
Way 2	64(1±)	64 and $(1 \pm \dots - Award when first seen.$	B1
	$\left(1 - \frac{5x}{2}\right)^{6} = 1 - 6 \times \frac{5x}{2} + \frac{6 \times 5}{2} \left(-\frac{5x}{2}\right)^{2}$	Correct structure for at least one of the underlined terms. E.g. a term of the form: $\binom{6}{p} \times (kx)^{p} \text{ with } p = 1 \text{ or } p = 2$ consistently and $k \neq \pm 5$ Condone sign errors. Condoned missing brackets if later work implies correct structure but it must be an expansion of $(1-kx)^{6}$ where $k \neq \pm 5$	M1
	-960x	Not $+-960x$	A1
	$(+)6000x^{2}$		A1
			(4)

85.				
(a)	$120000 \times (1.05)^3 = 138915 *$	Or $120000 \times 1.05 \times 1.05 \times 1.05 = 138915$ Or $120000, 126000, 132300, 138915$ Or $a = 120000$ and $a \times (1.05)^3 = 138915$	B1	
				(1)
	$120000 \times (1.05)^{n-1} > 200000$	Allow $y_{1} = y_{2} = 1$ and $(x_{2})^{2} = (x_{2}^{2})^{2} = x_{2}^{2} = x_{2}^{2}$	M1	(1)
(U)	12000 × (1.03) > 200000	Anow n of $n-1$ and $>$, $<$, of $-$ etc.	IVII	
	$\log 1.05^{n-1} > \log\left(\frac{5}{3}\right)$	Takes logs correctly Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	M1	
	$(n-1>)\frac{\log\left(\frac{5}{3}\right)}{\log 1.05} \text{ or equivalent}$ e.g $(n>)\frac{\log\left(\frac{7}{4}\right)}{\log 1.05}$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc. Allow 1.6 or awrt 1.67 for 5/3.	A1	
	2024	M1: Identifies a calendar year using their value of <i>n</i> or <i>n</i> - 1 A1: 2024	M1A1	
				(5)
	$a(1-r^n)$ 120000 $(1-1.05^{11})$	M1: Correct sum formula with $n = 10, 11$ or 12		
(c)	$\frac{n(1-r)}{1-r} = \frac{(1-r)}{1-1.05}$	A1: Correct numerical expression with $n = 11$	M1 A1	
	1704814	Cao (Allow 1704814.00)	A1	
				(3)
				[9]
	Listing o	or trial/improvement in (b)		
	$U_{10} = 186\ 159.39,$	$U_{11} = 195\ 467.36, U_{12} = 205\ 240.72$		
	Attempt to find at least the 10 th or 1 (all the	1 th or 12 th terms correctly using a common ratio of 1.05 terms need not be listed)	M1	
	Forms the geometric pro	gression correctly to reach a term > 200 000	M1	
	Obtains an "11 th " term of awrt 195 500 and a "12 th " term of awrt 205 200		A1	
	Uses their numbe	r of terms to identify a calendar year	M1	
		2024	A1	
				(5)

Question number	Scheme	Marks
86	$\left[(2-3x)^5 \right] = \dots + {\binom{5}{1}} 2^4 (-3x) + {\binom{5}{2}} 2^3 (-3x)^2 + \dots, \dots$	M1
	$=32, -240x, +720x^{2}$	B1, A1, A1
Notes	M1: The method mark is awarded for an attempt at Binomial to get the second term – need correct binomial coefficient combined with correct power of x. Ig omissions) in powers of 2 or 3 or sign or bracket errors. Accept any notation for e.g. $\binom{5}{1}$ and $\binom{5}{2}$ (unsimplified) or 5 and 10 from Pascal's triangle This mark if no working is shown, but either or both of the terms including x is corr B1: must be simplified to 32 (writing just 2^5 is B0). 32 must be the only of in the final answer- so $32 + 80 - 3x + 80 + 9x^2$ is B0 but may be eligible for A1: is cao and is for $-240 x$. (not $+-240x$) The x is required for this mark A1: is c.a. o and is for $720x^2$ (can follow omission of negative sign in wo A list of correct terms may be given credit i.e. series appearing on different line Ignore extra terms in x^3 and/or x^4 (isw)	Total 4 and/or third gnore errors (or ${}^{5}C_{1}$ and ${}^{5}C_{2}$, may be given ect. constant term r M1A0A0.
Special Case	Special Case: <i>Descending powers</i> of x would be $(-3x)^5 + 2 \times 5 \times (-3x)^4 + 2^2 \times {5 \choose 3} \times (-3x)^3 +$ i.e. $-243x^5 + 810x^4 - 1080x^4$ misread but award as s.c. M1B1A0A0 if completely "correct" or M1 B0A correct binomial coefficient in any form with the correct power of x	³ + This is a A0A0 for
Alternative Method	Method 1: $\left[(2-3x)^5 \right] = 2^5 (1 + \binom{5}{1}) (-\frac{3x}{2}) + \binom{5}{2} (\frac{-3x}{2})^2 + \dots$) is M1B0A0A	0 { The M1 is
	for the expression in the bracket and as in first method– need correct bin coefficient combined with correct power of <i>x</i> . Ignore bracket errors or errors (or powers of 2 or 3 or sign or bracket errors) – answers must be simplified to = $32, -240x, +720x^2$ for full marks (awar $\left[(2-3x)^5\right] = 2(1+\binom{5}{1}(-\frac{3x}{2}) + \binom{5}{2}(\frac{-3x}{2})^2 +)$ would also be awarded Method 2: Multiplying out : B1 for 32 and M1A1A1 for other terms with M1 x^2 term is correct. Completely correct is $4/4$	omial r omissions) in ded as before) M1B0A0A0 awarded if <i>x</i> or

Question	Scheme		Marks
87 (a)	$(S_n =) a + ar + (ar^2) + + ar^{n-1}$ and $rS_n = ar + ar^2 + (ar^3) + ar^n$		M1
	$S_n - rS_n = a - ar^n$		M1
	$S_n(1-r) = a(1-r^n)$		dM1
	And so result $S_n = \frac{a(1-r^n)}{(1-r)} *$		A1 (4)
(b)	Divides one term by other (either way) to give $r^2 =$ then square roots to give $r =$	Or: (<i>Method 2</i>) Finds geometric mean i.e 3.24 and divides one term by 3.24 or 3.24 by one term	M1
	$r^2 = \frac{1.944}{5.4}$, $r = 0.6$ (ignore – 0.6)	r = 0.6 (ignore – 0.6)	A1 (2)
(c)	Uses $5.4 \div r^2$ or $1.944 \div r^4$, to give $a \Rightarrow a = 15$		M1, A1ft (2)
(d)	Uses $S = \frac{15}{1 - 0.6}$, to obtain 37.5		M1A1 ,A1 (3)
			11 marks
Notes	(a) M1: Lists both of these sums ($S_n =$) may be	e omitted, rS_n (or rS) must be stated	
Special Case	 1st two terms must be correct in each series. Last term must be arⁿ⁻¹ or arⁿ in first series and the corresponding arⁿ or arⁿ⁺¹ in second series. Must be n and not a number. Reference made to other terms e.g. space or dots to indicate missing terms M1: Subtracts series for rS from series for S (or other way round) to give RHS = ±(a - arⁿ). This may have been obtained by following a pattern. If wrong power stated on line 1 M0 here. (Ignore LHS)M0M0M0A0 dM1: Factorises both sides correctly– must follow from a previous M1 (It is possible to obtain M0M1M1A0 or M1M0M1A0) A1: completes the proof with no errors seen No errors seen: First line absolutely correct, omission of second line, third and fourth lines correct: M1M0M1A1 See next sheet of common errors. Refer any attempts involving sigma notation, or any proofs by induction to team leader. Also attempts which begin with the answer and work backwards. (b) M1: Deduces r² by dividing either term by other and attempts square root 		
	(<i>Method 2</i>) Those who find fourth term must use \sqrt{ab} and not $\frac{1}{2}(a+b)$ then must use it in a division with given term to obtain $r =$ (c) M1: May be done in two steps or more e.g. $5.4 \div r$ then divided by r again A1ft: follow through their value of r . Just $a = 15$ with no wrong working implies M1A1		
	(d) M1: States sum to infinity formula with val	ues of <i>a</i> and <i>r</i> found earlier, provided $ r < 1$	
	A1 : uses 15 and 0.6 (or 3/5) (This is not a ft m	A1: 37.5 or exact equivalent	
Common	(i) Fraction inverted in (b) $r^2 = \frac{3.4}{1.944}$ and $r =$	$1\frac{2}{3}$, then correct ft gives M1A0 M1 A1ft M0A0)A0 i.e. 3/7
errors	(ii) Uses $r = 0.36$: (b)M0A0 (c)M1A1ft (d) M1A0A0 i.e. 3/7		
	(iii) Uses $ar^3 = 5.4$, $ar^3 = 1.944$ Likely to have (b)M1A1 (c)M0A0 (d) M1A0A0 i.e.3/7		

Question number	Scheme	Marks
88 (a)	Uses $360 \times \left(\frac{7}{8}\right)^{19}$, to obtain 28.5	M1, A1 (2)
(b)	Uses $S = \frac{360(1 - (\frac{7}{8})^{20})}{1 - \frac{7}{8}}$, or $S = \frac{360((\frac{7}{8})^{20} - 1)}{\frac{7}{8} - 1}$ to obtain 2680	M1, A1 (2)
(c)	Uses $S = \frac{360}{1 - \frac{7}{8}}$, to obtain 2880	M1, A1cao (2)
		6
Notes	 (a) M1: Correct use of formula with power = 19 A1: Accept 28.47, or 28.474 of 28.47446075 (b) M1: Correct use of formula with n = 20 A1: Accept 2681, 2680.7, 2680.68 indeed 2680.678775 (N.B. 2680.67 or 2680.0 is A0) (c) M1: Correct use of formula A1: Accept 2880 only 	or indeed 8 or 2680.679 or
Alternative method	Alternative to (a) Gives all 20 terms 315, 275.6(25), 241.17(1875), (1 st 3 accurate)	M1
	All correct and last term as above A1: Accept 28.5, 28.47, or 28.474 or indeed 28.47446075	A1
	Alternative to (b) Gives all 20 terms 315, 275.6(25), 241.17(1875), (1 st 3 accurate) and adds	M1
	Sum correct A1: Accept 2680, 2681, 2680.7, 2680.68 or 2680.679 or indeed 2680.678775	A1

Question number	Scheme	Marks
89 (a).	$(1+\frac{x}{4})^8 = 1+2x+,$	B1
	$+\frac{8\times7}{2}\left(\frac{x}{4}\right)^2+\frac{8\times7\times6}{2\times3}\left(\frac{x}{4}\right)^3,$	M1 A1
	$= +\frac{7}{4}x^{2} + \frac{7}{8}x^{3} \text{ or } = +1.75x^{2} + 0.875x^{3}$	A1 (4)
(b)	States or implies that $x = 0.1$	B1
	Substitutes their value of x (provided it is <1) into series obtained in (a)	M1
	i.e. $1 + 0.2 + 0.0175 + 0.000875$, = 1.2184	A1 cao (3) 7
Alternative	Starts again and expands $(1+0.025)^8$ to	
for (b) Special case	1+ 8×0.025 + $\frac{8\times7}{2}(0.025)^2 + \frac{8\times7\times6}{2\times3}(0.025)^3$, = 1.2184	B1,M1,A1
	$(\text{Or } 1 + \frac{1}{5} + \frac{7}{400} + \frac{7}{8000} = 1.2184)$	
Notes	(Or $1 + 1/5 + 7/400 + 7/8000 = 1.2184$) (a) B1 must be simplified The method mark (M1) is awarded for an attempt at Binomial to get the third and/or fourth term – need correct binomial coefficient combined with correct power of <i>x</i> . Ignore bracket errors or errors in powers of 4. Accept any notation for ${}^{8}C_{2}$ and ${}^{8}C_{3}$, e.g. $\begin{pmatrix} 8\\2 \end{pmatrix}$ and $\begin{pmatrix} 8\\3 \end{pmatrix}$ (unsimplified) or 28 and 56 from Pascal's triangle. (The terms may be listed without + signs) First A1 is for two completely correct unsimplified terms A1 needs the fully simplified $\frac{7}{4}x^{2}$ and $\frac{7}{8}x^{3}$. (b) B1 – states or uses $x = 0.1$ or $\frac{x}{4} = \frac{1}{40}$ M1 for substituting their value of <i>x</i> ($0 < x < 1$) into expansion (e.g. 0.1 (correct) or 0.01, 0.00625 or even 0.025 but not 1 nor 1.025 which would earn M0) A1 Should be answer printed cao (not answers which round to) and should follow correct work.	

Question Number	Scheme		
90. (a)	$\begin{cases} (3+bx)^5 \\ = (3)^5 + \frac{{}^5C_1(3)^4(b\underline{x}) + \frac{{}^5C_2(3)^3(b\underline{x})^2}{2} + \dots \\ = 243 + 405bx + 270b^2x^2 + \dots \end{cases}$ $243 \text{ as a constant term seen.}$ $({}^5C_1 \times \dots \times x) \text{ or } ({}^5C_2 \times \dots \times x^2)$ $270b^2x^2 \text{ or } 270(bx)^2$	B1 B1 <u>M1</u> A1 [4]	
(b)	$\{2(\operatorname{coeff} x) = \operatorname{coeff} x^2\} \Rightarrow 2(405b) = 270b^2$ Establishes an equation from their coefficients. Condone 2 on the wrong side of the equation.	M1	
	So, $\left\{b = \frac{810}{270} \Rightarrow\right\} b = 3$ $b = 3$ (Ignore $b = 0$, if seen.)	A1 [2]	
(a) (b)	The terms can be "listed" rather than added. Ignore any extra terms. 1 st B1: A constant term of 243 seen. Just writing (3) ⁵ is B0. 2 nd B1: Term must be simplified to 405 <i>bx</i> for B1. The <i>x</i> is required for this mark. Note 405 + <i>bx</i> is B0. M1: For <u>either</u> the <i>x</i> term <u>or</u> the x^2 term. Requires <u>correct</u> binomial coefficient in any form <u>w</u> <u>correct power of <i>x</i></u> , but the other part of the coefficient (perhaps including powers of 3 and/or <i>b</i> wrong or missing. <u>Allow</u> binomial coefficients such as $\binom{5}{2}, (\frac{5}{2}), (\frac{5}{1}), (\frac{5}{1}), {}^5C_2, {}^5C_1$. A1: For either $270b^2x^2$ or $270(bx)^2$. (If $270bx^2$ follows $270(bx)^2$, isw and allow A1.) <u>Alternative:</u> Note that a factor of 3 ⁵ can be taken out first: $3^5\left(1+\frac{bx}{3}\right)^5$, but the mark scheme still applies. <u>Ignore subsequent working (isw</u>): Isw if necessary after correct working: e.g. $243 + 405bx + 270b^2x^2 +$ leading to $9 + 15bx + 10b^2x^2 +$ scores B1B1M1A1 isw. Also note that full marks could also be available in part (b), here. <u>Special Case</u> : Candidate writing down the first three terms in <i>descending</i> powers of <i>x</i> usually $(bx)^5 + {}^5C_4(3)^1(bx)^4 + {}^5C_3(3)^2(bx)^3 + = b^5x^5 + 15b^4x^4 + 90b^3x^3 +$ So award SC: B0B0M1A0 for either (${}^5C_4 \times \times x^4$) or (${}^5C_3 \times \times x^3$) M1 for equating 2 times their coefficient of <i>x</i> to the coefficient of x^2 to get an equation in <i>b</i> . Allow this M mark even if the equation is trivial, providing their coefficients from part (a) hav used, eg: $2(405b) = 270b$, but beware $b = 3$ from this, which is A0. An equation in <i>b</i> along is required: a $a = 27(0^2b)^{2}x^{2} = b = 3$ or cimilar will be Special Case SC: M1A0 (case section in		
	e.g. $2(405b)x = 270b^2x^2 \Rightarrow 2(405b) = 270b^2 \Rightarrow b = 3$ will get M1A1 (as coefficients rather than terms have now been considered). Note: Answer of 3 from no working scores M1A0. Note: The mistake $k\left(1 \pm \frac{bx}{b}\right)^5$ $k \neq 243$ would give a maximum of 3 marks: B0B0M1A0 M1A1		
	Note: For $270bx^2$ in part (a), followed by $2(405b) = 270b^2 \Rightarrow b = 3$, in part (b), allow recov	ery M1A1.	

Question Number	Scheme	Marks	
91. (a)	$\{ar = 192 \text{ and } ar^2 = 144\}$		
	$r = \frac{144}{102}$ Attempt to eliminate <i>a</i> . (See notes.)	M1	
	$r = \frac{3}{4} \text{ or } 0.75$ $\frac{3}{4} \text{ or } 0.75$	A1	
	-(0.75) 102	[2]	
(b)	a(0.75) = 192	MI	
	$a\left\{=\frac{1}{0.75}\right\}=256$ 256	A1	
	256 <i>a b b b b b b b b b b</i>	[2]	
(c)	$S_{\infty} = \frac{1}{1 - 0.75}$ Applies $\frac{1}{1 - r}$ correctly using both their <i>a</i> and their $ r < 1$.	M1	
	So, $\{S_{\infty} =\} 1024$ 1024	A1 cao [2]	
(d)	$256(1-(0.75)^n)$ Applies S_n with their <i>a</i> and <i>r</i> and "uses" 1000		
	1-0.75 > 1000 at any point in their working. (Allow with = or <).	MI	
	$(0.75)^n < 1 - \frac{1000(0.25)}{256} \left\{ = \frac{6}{256} \right\}$ Attempt to isolate $+(r)^n$ from S _n formula.	M1	
	$256 \qquad (Allow with = or >).$ $Uses the power law of logarithms correctly$		
	$n\log(0.75) < \log\left(\frac{1}{256}\right)$ (Allow with = or >). (See notes.)	M1	
	$n > \frac{\log(\frac{6}{256})}{\log(0.75)} = 13.0471042 \Rightarrow n = 14$ See notes and $n = 14$	A1 cso	
		[4] 10	
(a)	M1: for eliminating <i>a</i> by eg. $192r = 144$ or by either dividing $ar^2 = 144$ by $ar = 192$ or dividing	viding	
	$ar = 192$ by $ar^2 = 144$, to achieve an equation in r or $\frac{1}{r}$ Note that $r^2 - r = \frac{144}{192}$ is M0.		
	Note also that any of $r = \frac{144}{192}$ or $r = \frac{192}{144} \left\{ = \frac{4}{3} \right\}$ or $\frac{1}{r} = \frac{192}{144}$ or $\frac{1}{r} = \frac{144}{192}$ are fine for the aw	vard of	
	M1. Note: A candidate just writing $r = \frac{144}{192}$ with no reference to <i>a</i> can also get the method mark.		
	Note: $ar^2 = 192$ and $ar^3 = 144$ leading to $r = \frac{3}{4}$ scores M1A1. This is because r is the ratio		
(b)	between any two consecutive terms. These candidates, however, will usually be penalised in part (b).		
	M1 for inserting their r into either of the correct equations of either $ar = 192$ or $\{a =\} - \frac{r}{r}$ or		
	$ar^2 = 144$ or $\{a =\} \frac{144}{r^2}$. No slips allowed here for M1.		
	M1: can also be awarded for writing down $144 = a \left(\frac{192}{a}\right)^2$		
	A1 for $a = 256$ only. Note 256 from any working scores M1A1.		
	Note: Some candidates incorrectly confuse notation to give $r = \frac{4}{2}$ or 1.33 in part (a) (g	retting	
	M1A0). In part (b), they recover to write $a = 192 \times \frac{4}{3}$ for M1 and then 256 for A1.	,•••••••	

EXPERT TUITION

Question Number	Sche	eme	Marks
(c)	M1: for applying $\frac{a}{1-r}$ correctly (no slips allowed!) using both their <i>a</i> and their <i>r</i> , where $ r < 1$.		
(d)	A1: for 1024, cao. In parts (a) or (b) or (c), the correct answer with no working scores full marks. 1^{st} M1: For applying S_n with their <i>a</i> and either "the letter <i>r</i> " or their <i>r</i> and "uses" 1000.		
	2 nd M1: For isolating $+(r)^n$ and not $(ar)^n$, (eg. $(192)^n$) as the subject of an equation or inequality.		
	$+(r)^n$ must be derived from the S _n formula.		
	3^{rd} M1: For applying the power law to $\lambda^k = \lambda^k$	μ to give $k \log \lambda = \log \mu$ oe. where $\lambda, \mu > 0$).
	or 3^{rd} M1: For solving $\lambda^k = \mu$ to give $k = 1$	$og_{\lambda} \mu$, where λ , $\mu > 0$.	
	A1: cso If a candidate uses inequalities, a full So, an <u>incorrect</u> inequality statement at any sta	ly correct method with inequalities is required age in a candidate's working for this part lose	l here. es this
	Note: Some candidates do not realise that the	e direction of the inequality is reversed in the	final line
	of their solution.	marks hare if they do not use inequalities	
	Or A1: cso Note a candidate can achieve full marks here if they do not use inequalities. So, if a candidate uses equations rather than inequalities in their working then they need to state in the final line of their working that $n = 13.04$ (truncated) or $n = awrt 13.05 \Rightarrow n = 14$ for A1.		
	n = 14 from no working gets SC: M0M0M1A1.		
	A method of $T_n > 1000 \Rightarrow 256(0.75)^{n-1} > 1000$ can score M0M0M1A0 for a correct application of		
	the power law of logarithms.		
	For $a = 256$ and $r = 0.75$, apply the following	z scheme:	
	$256(1-(0.75)^{13})$ 200 c725(1)	Attempt to find either S_{13} or S_{14} .	M 1
	$S_{13} = \frac{1}{1 - 0.75} = 999.6725616$ E	ITHER (1) S_{13} = awrt 999.7 or truncated	
		999 OR (2) S_{14} = awrt 1005.8 or	M1
	$256(1-(0.75)^{4})$	truncated 1005.	
	$S_{14} = \frac{250(1 - (0.75)^{-1})}{1 - 0.75} = 1005.754421$	Attempt to find both S_{13} and S_{14} .	M1
	1 - 0.75	BOTH (1) S_{13} = awrt 999.7 or truncated	
		999 AND (2) S_{14} = awrt 1005.8 or	A 1
	So, $n = 14$.	truncated 1005 AND $n = 14$.	

Question Number	Scheme	Marks	
	Note: A similar scheme would apply for T&I for candidates using their <i>a</i> and their <i>r</i> . So, 1^{st} M1: For attempting to find one of the correct S _n 's either side (but next to) 1000.		
	2^{nd} M1: For one of these S _n 's correct for their a and their r. (You may need to get your calculators		
	out!) 3^{rd} M1: For attempting to find both of the correct S_n 's either side (but next to) 1000.		
	A1: Cannot be gained for wrong a and/or r .		
	A similar scheme to T&I will be applied here:		
	1 st M1: For getting as far as the cumulative sum of 13 terms. 2^{14} M1: (1)S ₁₃ = awrt 999.7 or		
	truncated 999. 3 rd M1: For getting as far as the cumulative sum to 14 terms. Also at this stage		
	$S_{13} < 1000 \text{ and } S_{14} > 1000$. A1: BOTH (1) $S_{13} = a \text{ wrt } 999.7 \text{ or truncated } 999 \text{ AND } (2)$		
	$S_{14} = awrt 1005.8$ or truncated 1005 AND $n = 14$.		
	<u>Trial & Improvement Method:</u> for $(0.75)^n < \frac{6}{256} = 0.0234375$		
	3^{rd} M1: For evidence of examining both $n = 13$ and $n = 14$.		
	Eg: $(0.75)^{13} \{= 0.023757\}$ and $(0.75)^{14} \{= 0.0178179\}$		
	A1: $n = 14$		
	<u>Any misreads</u> , $S_n > 10000$ etc, please escalate up to your Team Leader.		

Question	Scheme	Marks	
92. (a)	$ar = 750$ and $ar^4 = -6$ (could be implied from later working in either (a) or (b)).	B1	
	$r^3 = \frac{-6}{750}$ Correct answer from no working, except	M1	
	$r = -\frac{1}{5}$ for special case below gains all three marks.	A1 (3)	
(b)	a(-0.2) = 750	M1	
	$a\left\{=\frac{750}{-0.2}\right\}=-3750$	A1 ft	
	2750	(2)	
(c)	Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-5750}{10.2}$	M1	
	So, $S_{\infty} = -3125$	A1	
		(2) [7]	
	Notes		
(a)	B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing	(a) or	
	$ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is M0.		
	Note also that any of $r^{2} = \frac{125}{750}$ of $r^{2} = \frac{125}{-6} \{= -125\}$ of $\frac{1}{r^{3}} = \frac{125}{750}$ of $\frac{1}{r^{3}} = \frac{125}{-6} \{= -125\}$ are		
	The for the award of M1. SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{-6}$ or $r^{\delta} = \frac{750}{(-125)}$		
	Sc. $ar = 750$ and $ar^{-1} = -6$ reading to $r^{-1} = \frac{-6}{-6} \{=-125\}$		
	or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award of M1.		
	SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1.		
(b)	M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$	50 or	
	$\{a =\} \frac{750}{r}$ or $ar^4 = -6$ or $\{a =\} \frac{-6}{r^4}$ - in <i>both a</i> and <i>r</i> . No slips allowed here for M1		
	A1 for either $a = -3750$ or a equal to the correct follow through result expressed either	ther as	
	an exact integer, or a fraction in the form $\frac{c}{d}$ where both c and d are integers, or corre	ect to	
	awrt 1 dp.		
(0)	M1 for applying $\frac{a}{1-r}$ correctly (only a slip in substituting r is allowed) using both the	neir a	
	and their $ r < 1$. Eg. $\frac{-3750}{1 - 0.2}$. A1 for -3125		
	In parts (a) or (b) or (c), the correct answer with no working scores full marks.		

Question Number	Scheme	Marks
93. (a)	$\binom{40}{4} = \frac{40!}{4!b!}$; $(1+x)^n$ coefficients of x^4 and x^5 are p and q respectively.	D1
	b = 50 Candidates should usually "identify" two terms as their p and q respectively.	(1)
(b)	Term 1: $\begin{pmatrix} 40 \\ 4 \end{pmatrix}$ or $\stackrel{40}{}C_4$ or $\frac{40!}{4!36!}$ or $\frac{40(39)(38)(37)}{4!}$ or 91390 Any one of Term 1 or Term 2 correct. (Ignore the	M1
	Term $2: \begin{pmatrix} 40\\ 5 \end{pmatrix} \text{ or } {}^{40}C_5 \text{ or } \frac{40!}{5!35!} \text{ or } \frac{40(39)(38)(37)(36)}{5!} \text{ or } 658008 \qquad \qquad \begin{array}{c} \text{label of } p \\ \text{and/or } q. \end{pmatrix}$ Both of them correct. (Ignore the label of p	A1
	Hence, $\frac{q}{p} = \frac{658008}{91390} \left\{ = \frac{36}{5} = 7.2 \right\}$ for $\frac{658008}{91390}$ oe	A1 oe cso
		[4]
(a)	$\frac{\text{Notes}}{\text{B1: for only } b = 36}$	
(b)	The candidate may expand out their binomial series. At this stage no marks should until they start to identify either one or both of the terms that they want to focus on. identify their terms then if one out of two of them (ignoring which one is <i>p</i> and which is correct then award M1. If both of the terms are identified correctly (ignoring which and which one is <i>q</i>) then award the first A1. Term $1 = \begin{pmatrix} 40 \\ 4 \end{pmatrix} x^4$ or ${}^{40}C_4(x^4)$ or $\frac{40!}{4!36!}x^4$ or $\frac{40(39)(38)(37)}{4!}x^4$ or $91390x^4$, Term $2 = \begin{pmatrix} 40 \\ 5 \end{pmatrix} x^5$ or ${}^{40}C_5(x^5)$ or $\frac{40!}{5!35!}x^5$ or $\frac{40(39)(38)(37)(36)}{5!}x^5$ or $658008x^5$ are fine for any (or both) of the first two marks in part (b).	be awarded Once they ch one is q) ch one is p
	2 nd A1 for stating $\frac{q}{p}$ as $\frac{124242}{91390}$ or equivalent. Note that $\frac{q}{p}$ must be independent of Also note that $\frac{36}{5}$ or 7.2 or any equivalent fraction is fine for the 2 nd A1 mark. SC: If candidate states $\frac{p}{q} = \frac{5}{36}$, then award M1A1A0. Note that either $\frac{4!36!}{5!35!}$ or $\frac{5!35!}{4!36!}$ would be awarded M1A1.	of <i>x</i> .

Question Number	Scheme	Ν	1arks	
94	(a) $(1 + ax)^7 = 1 + 7ax$ or $1 + 7(ax)$ (<u>Not</u> unsimplified versions)	B1		
	$+\frac{7\times 6}{2}(ax)^2 + \frac{7\times 6\times 5}{6}(ax)^3$ Evidence from <u>one</u> of these terms is enough	M1		
	$+21a^2x^2$ or $+21(ax)^2$ or $+21(a^2x^2)$	A1		
	$+35a^3x^3$ or $+35(ax)^3$ or $+35(a^3x^3)$	A1		(4)
	(b) $21a^2 = 525$	M1		
	$a = \pm 5$ (Both values are required) (The answer $a = 5$ with no working scores M1 A0)	A1		(2) 6
	(a) The terms can be 'listed' rather than added.			_
	M1: Requires correct structure: a correct binomial coefficient in any form (perhaps from Pascal's triangle) with the correct power of <i>x</i> . Allow missing <i>a</i> 's and wrong powers of <i>a</i> , e.g. $\frac{7 \times 6}{2} ax^2, \qquad \frac{7 \times 6 \times 5}{3 \times 2} x^3$			
	However, $21 + a^2x^2 + 35 + a^3x^3$ or similar is M0.			
	$ \begin{pmatrix} 7\\2 \end{pmatrix} \text{ and } \begin{pmatrix} 7\\3 \end{pmatrix} \text{ or equivalent such as } {}^7C_2 \text{ and } {}^7C_3 \text{ are acceptable,} $			
	but $\underline{\text{not}}\left(\frac{7}{2}\right)$ or $\left(\frac{7}{3}\right)$ (unless subsequently corrected).			
	1 st A1: Correct x^2 term. 2 nd A1: Correct x^3 term (The binomial coefficients <u>must</u> be simplified).			
	Special case: If $(ax)^2$ and $(ax)^3$ are seen within the working, but then lost			
	A1 A0 can be given if $21ax^2$ and $35ax^3$ are <u>both</u> achieved.			
	<u><i>a</i>'s omitted throughout</u> : Note that only the M mark is available in this case.			
	(b) M: Equating their coefficient of x^2 to 525. An equation in <i>a</i> or a^2 alone is required for this M mark, but allow 'recovery' that shows <u>the required coefficient</u> , e.g. $21a^2x^2 = 525 \implies 21a^2 = 525$ is acceptable, but $21a^2x^2 = 525 \implies a^2 = 25$ is not acceptable.			
	After $21ax^2$ in the answer for (a), allow 'recovery' of a^2 in (b) so that full marks are available for (b) (but not retrospectively for (a)).			

Question Number	Scheme	Marks
95 (a)	$18000 \times (0.8)^3$ = £9216 * [may see $\frac{4}{5}$ or 80% or equivalent].	B1cso (1)
(b)	$18000 \times (0.8)^n < 1000$	M1
	$n\log(0.8) < \log\left(\frac{1}{18}\right)$	M1
	$n > \frac{\log(\frac{1}{18})}{\log(0.8)} = 12.952$ so $n = 13$.	A1 cso (3)
(C)	$u_5 = 200 \times (1.12)^4$, = £314.70 or £314.71	M1, A1 (2)
(d)	$S_{15} = \frac{200(1.12^{15} - 1)}{1.12 - 1}$ or $\frac{200(1 - 1.12^{15})}{1 - 1.12}$, = 7455.94 awrt £7460	M1A1, A1 (3) [9]
(a)	B1 NB Answer is printed so need working . May see as above or $\times 0.8$ in three steps giving 14400, 11520, 9216. Do not need to see £ sign but should see 9216.	
(b)	1 st M1 for an attempt to use <i>n</i> th term and 1000. Allow <i>n</i> or $n - 1$ and allow > or = 2^{nd} M1 for use of logs to find <i>n</i> Allow <i>n</i> or $n - 1$ and allow > or = A1 Need $n = 13$ This is an accuracy mark and must follow award of both M marks but should not follow incorrect work using $n - 1$ for example. Condone slips in inequality signs here.	
(c) (d)	M1 for use of their <i>a</i> and <i>r</i> in formula for 5^{th} term of GP A1 cao need one of these answers – answer can imply method here NB 314.7 – A0	
	M1 for use of sum to 15 terms of GP using their <i>a</i> and their <i>r</i> (allow if formula stated correctly and one error in substitution, but must use <i>n</i> not <i>n</i> - 1) $1^{\text{st}} A1$ for a fully correct expression (not evaluated)	
(b)	Alternative Methods Trial and Improvement See 989.56 (or 989 or 990) identified with 12, 13 or 14 years for first M1 See 1236.95 (or 1236 or 1237) identified with 11, 12 or 13 years for second M1 Then $n = 13$ is A1 (needs both Ms)	
	Special case $18000 \times (0.8)^n < 1000$ so $n = 13$ as $989.56 < 1000$ is M1M0A0 (not	
	discounted $n = 12$)	
(C)	May see the terms 224, 250.88, 280.99, 314.71 with a small slip for M1 A0, or done accurately for M1A1	
(d)	Adds 15 terms 200 + 224 + 250.88+ + (977.42) M1 Seeing 977 is A1 Obtains answer 7455.94 A1 or awrt £7460 NOT 7450	

Ques Num	stion nber	Scheme	Marks
96	(a)	$(7 \times \times x)$ or $(21 \times \times x^2)$ The 7 or 21 can be in 'unsimplified' form.	M1
		$(2+kx)^7 = 2^7 + 2^6 \times 7 \times kx + 2^5 \times \binom{7}{2}k^2x^2$	
		= 128; +448 kx , +672 k^2x^2 [or 672(kx) ²] (If 672 kx^2 follows 672(kx) ² , isw and allow A1)	B1; A1, A1 (4)
	(b)	$6 \times 448k = 672k^2$	M1
		k = 4 (Ignore $k = 0$, if seen)	A1 (2) [6]
	(a)	The terms can be 'listed' rather than added. Ignore any extra terms.	1
	. ,	M1 for <u>either</u> the <i>x</i> term <u>or</u> the x^2 term. Requires <u>correct</u> binomial coefficient in any f <u>with the correct power of <i>x</i></u> , but the other part of the coefficient (perhaps including powers of 2 and/or <i>k</i>) may be wrong or missing.	òrm 3
		<u>Allow</u> binomial coefficients such as $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \begin{pmatrix} C_1, \\ C_2 \end{pmatrix}$. However $448 + kx$ or similar is M0	
		B1, A1, A1 for the <u>simplified</u> versions seen above. <u>Alternative</u> :	
		Note that a factor 2^7 can be taken out first: $2^7 \left(1 + \frac{kx}{2}\right)^7$, but the mark scheme still apple	ies.
		Ignoring subsequent working (isw): Isw if necessary after correct working: e.g. $128 + 448kx + 672k^2x^2$ M1 B1 A1 A1	
		$= 4 + 14kx + 21k^2x^2$ isw	
		(Full marks are still available in part (b)).	
	(b)	M1 for equating their coefficient of x^2 to 6 times that of x to get an equation in k, <u>or</u> equating their coefficient of x to 6 times that of x^2 , to get an equation in k. Allow this M mark even if the equation is trivial, providing their coefficients from pa have been used, e.g. $6 \times 448k = 672k$, but beware $k = 4$ following from this, which is <u>An equation in k alone</u> is required for this M mark, so e.g. $6 \times 448kx = 672k^2x^2 \implies k = 4$ or similar is M0 A0 (equation in coefficients only never seen), but	rt (a) s A0. is
		e.g. $6 \times 448kx = 672k^2x^2 \implies 6 \times 448k = 672k^2 \implies k = 4$ will get M1 A1	
		(as coefficients rather than terms have now been considered))_
		The mistake $2\left(1+\frac{kx}{2}\right)^7$ would give a maximum of 3 marks: M1B0A0A0, M1A1	

Ques Num	tion ber	Scheme						
97	(a)	$324r^3 = 96$ or $r^3 = \frac{96}{324}$ or $r^3 = \frac{8}{27}$	M1					
	(b)	$r = \frac{2}{3} $ (*) $r \left(\frac{2}{3} \right)^2 = 224 \text{or} r \left(\frac{2}{3} \right)^5 = 96 \qquad r = 720$	A1cso (2)					
		$a(\frac{1}{3}) = 324$ or $a(\frac{1}{3}) = 96$ $a, 729$	M1, A1 (2)					
	(C)	$S_{15} = \frac{729 \left(1 - \left[\frac{2}{3}\right]^{15}\right)}{1 - \frac{2}{3}}, = 2182.00 $ (AWRT 2180)	M1A1ft, (3)					
	(d)	$S_{\infty} = \frac{729}{1 - \frac{2}{3}}, = 2187$	M1, A1 (2) [9]					
	(a)	M1 for forming an equation for r^3 based on 96 and 324 (e.g. $96r^3 = 324$ scores M1	l).					
		A1 Do not penalise solutions with working in decimals, providing these are correct	on. Iy					
		rounded or truncated to at least 2dp <u>and</u> the final answer 2/3 is seen. <u>Alternative</u> : (verification)						
		M1 Using $r^3 = \frac{8}{27}$ and multiplying 324 by this (or multiplying by $r = \frac{2}{2}$ three times).						
		A1 Obtaining 96 (cso). (A conclusion is not required).						
		$324 \times \left(\frac{2}{3}\right)^3 = 96$ (no real evidence of calculation) is not quite enough and scores M1 A0.						
	(b)	M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{2}$ (or by th	by their r) twice					
		from 324 (or 5 times from 96). Exceptionally, allow M1 also for using $ar^3 = 324$ or $ar^6 = 96$ instead of $ar^2 = 324$ or for dividing by <i>r</i> three times from 324 (or 6 times from 96) but no other exceptions a	$ar^5 = 96$, or are allowed.					
	(C)	M1 for use of sum to 15 terms formula with values of <i>a</i> and <i>r</i> . If the wrong power is used, e.g. 14, the M mark is scored only if the correct sum formula is stated.						
		1 st A1ft for a correct expression or correct ft their <i>a</i> with $r = \frac{2}{3}$.						
		2^{nd} A1 for awrt 2180, even following 'minor inaccuracies'.						
		Condone missing brackets round the $\frac{2}{3}$ for the marks in part (c).						
		Alternative:	2					
	(.1)	M1 for adding 15 terms and 1^{st} A1ft for adding the 15 terms that ft from their <i>a</i> and	$r=\frac{2}{3}$.					
	(d)	M1 for use of correct sum to infinity formula with their <i>a</i> . For this mark, if a value of different from the given value is being used, M1 can still be allowed providing	of r r < 1.					

Question Number	Scheme	Marks						
98	$(3-2x)^5 = 243$, $+5 \times (3)^4 (-2x) = -810x$	B1, B1						
	$+\frac{5\times4}{2}(3)^3(-2x)^2 = +1080x^2$	M1 A1	(4) [4]					
			[4]					
Notes	First term must be 243 for B1 , writing just 3^5 is B0 (Mark their final answe second line of special cases below). Term must be simplified to $-810x$ for B1 The r is required for this mark	rs except in	L					
	The method mark (M1) is generous and is awarded for an attempt at Binor third term.	nial to get th	he					
	There must be an x^2 (or no x- i.e. not wrong power) and attempt at Binomia and at dealing with powers of 3 and 2. The power of 3 should not be one, bu 2 may be one (regarded as bracketing slip).	al Coefficien at the power	nt r of					
	So allow $\binom{5}{2}$ or $\binom{5}{3}$ or ${}^{5}C_{2}$ or ${}^{5}C_{3}$ or even $\left(\frac{5}{2}\right)$ or $\left(\frac{5}{3}\right)$ or use of '10' (maybe from							
	Pascal's triangle)							
	May see ${}^{5}C_{2}(3)^{3}(-2x)^{2}$ or ${}^{5}C_{2}(3)^{3}(-2x^{2})$ or ${}^{5}C_{2}(3)^{5}(-\frac{2}{3}x^{2})$ or $10(3)^{3}(2x)^{2}$ which would							
	each score the M1	1 11						
	Alis c.a.o and needs $1080x^2$ (if $1080x^2$ is written with no working this is a marks i.e. M1 A1.)	warded bot	h					
Special	$243+810x+1080x^2$ is B1B0M1A1 (condone no negative signs)							
Cases	Follows correct answer with $27-90x+120x^2$ can isw here (sp case)– full to correct answer	marks for						
	Misreads <i>ascending</i> and gives $-32x^5 + 240x^4 - 720x^3$ is marked as B1B0M case and must be completely correct. (If any slips could get B0B0M1A0) Ignores 3 and expands $(1+2x)^5$ is 0 /4	1A0 specia	1					
	243 -810r $1080r^2$ is full marks but 243 -810 1080 is B1 B0 M1 A0							
	NB Alternative method $3^{5}(1-\frac{2}{3}x)^{5} = 3^{5}-5\times3^{5}\times(\frac{2}{3}x)+\binom{5}{3}3^{5}(-\frac{2}{3}x)^{2}+$ is	B0B0M1A	.0					
	- answers must be simplified to $243 - 810x + 1080x^2$ for full marks (awarded	d as before)						
	Special case $3(1-\frac{2}{3}x)^5 = 3-5 \times 3 \times (\frac{2}{3}x) + {\binom{5}{3}} 3(-\frac{2}{3}x)^2 +$ is B0, B0, M1, A	.0						
	Or $3(1-2x)^5$ is B0B0M0A0							

Questior Number	Scheme	Mark	S
99 (a)	Initial step: Two of: $a = k + 4$, $ar = k$, $ar^2 = 2k - 15$ Or one of: $r = \frac{k}{k+4}$, $r = \frac{2k-15}{k}$, $r^2 = \frac{2k-15}{k+4}$, Or $k = \sqrt{(k+4)(2k-15)}$ or even $k^3 = (k+4)k(2k-15)$ $k^2 = (k+4)(2k-15)$, so $k^2 = 2k^2 + 8k - 15k - 60$ Proceed to $k^2 - 7k - 60 = 0$ (*)	M1 M1, A1 A1	(4)
(b)	(k-12)(k+5) = 0 $k = 12$ (*)	M1 A1	(2)
(c)	Common ratio: $\frac{k}{k+4}$ or $\frac{2k-15}{k} = \frac{12}{16} \left(= \frac{3}{4} \text{ or } 0.75 \right)$	M1 A1	(2)
(d	$\frac{a}{1-r} = \frac{16}{\binom{1}{4}} = 64$	M1 A1	(2) [10]
(a) (b) (c) (d)	M1: The 'initial step', scoring the first M mark, may be implied by next lin M1: Eliminates <i>a</i> and <i>r</i> to give valid equation in <i>k</i> only. Can be awarded for involving fractions. A1 : need some correct expansion and working and answer equivalent to re quadratic but with uncollected terms. Equations involving fractions do not g (No fractions, no brackets – could be a cubic equation) A1: as answer is printed this mark is for cso (Needs = 0) All four marks must be scored in part (a) M1: Attempt to solve quadratic A1: This is for correct factorisation or solution and $k = 12$. Ignore the extra –5 or even $k = 5$), if seen. Substitute and verify is M1 A0 Marks must be scored in part (b) M1: Complete method to find <i>r</i> Could have answer in terms of <i>k</i> A1: 0.75 or any correct equivalent Both Marks must be scored in (c) M1: Tries to use $\frac{a}{1-r}$, (even with $r>1$). Could have an answer still in terms A1: This answer is 64 cao.	e of proof r equation quired get this ma solution (<i>k</i>	rk.

Question number	Scheme	Marks			
100.	(a) $(1 + ax)^{10} = 1 + 10ax$ (Not unsimplified versions) + $\frac{10 \times 9}{2}(ax)^2 + \frac{10 \times 9 \times 8}{6}(ax)^3$ Evidence from <u>one</u> of these terms is sufficient	B1 M1			
	$+45(ax)^2$, $+120(ax)^3$ or $+45a^2x^2$, $+120a^3x^3$				
	(b) $120a^3 = 2 \times 45a^2$ $a = \frac{3}{4}$ or equiv. $\left(e.g.\frac{90}{120}, 0.75\right)$ Ignore $a = 0$, if seen	M1 A1	(2)		
	(a) The terms can be 'listed' rather than added		6		
	M1: Requires correct structure: 'binomial coefficient' (perhaps from Pascal's triangle) and the correct power of x. (The M mark can also be given for an expansion in descending powers of x). Allow 'slips' such as: $\frac{10 \times 9}{2} ax^2, \frac{10 \times 9}{3 \times 2} (ax)^3, \frac{10 \times 9}{2} x^2, \frac{9 \times 8 \times 7}{3 \times 2} a^3 x^3$ However, $45 + a^2 x^2 + 120 + a^3 x^3$ or similar is M0. $\begin{pmatrix} 10\\2 \end{pmatrix}$ and $\begin{pmatrix} 10\\3 \end{pmatrix}$ or equivalent such as ${}^{10}C_2$ and ${}^{10}C_3$ are acceptable, and $even\left(\frac{10}{2}\right) and\left(\frac{10}{3}\right)$ are acceptable for the method mark. 1 st A1: Correct x^2 term. 2^{nd} A1: Correct x^3 term (These must be simplified). If simplification is not seen in (a), but correct simplified terms are seen in (b), these marks can be awarded. However, if wrong simplification is seen in (a), this takes precedence. <u>Special case</u> : If $(ax)^2$ and $(ax)^3$ are seen within the working, but then lost A1 A0 can be given if $45ax^2$ and $120ax^3$ are <u>both</u> achieved. (b) M: Equating their coefficient of x^3 to twice their coefficient of x^3 . (or coefficients can be <u>correct</u> coefficients rather than their coefficients). Allow this mark even if the equation is trivial, e.g. $120a = 90a$. An equation in <i>a</i> alone is required for this M mark, although condone, e.g. $120a^3x^3 = 90a^2x^2 \Rightarrow (120a^3 = 90a^2 \Rightarrow)a = \frac{3}{4}$. <u>Beware</u> : $a = \frac{3}{4}$ following $120a = 90a$, which is A0.				

Question number	Scheme	Marks	
101.	(a) $T_{20} = 5 \times \left(\frac{4}{5}\right)^{19} = 0.072$ (Accept awrt) Allow $5 \times \frac{4}{5}^{19}$ for M1	M1 A1	(2)
	(b) $S_{\infty} = \frac{5}{1 - 0.8} = 25$	M1 A1	(2)
	(c) $\frac{5(1-0.8^k)}{1-0.8} > 24.95$ (Allow with = or <)	M1	
	$1 - 0.8^k > 0.998$ (or equiv., see below) (Allow with = or <)	A1	
	$k \log 0.8 < \log 0.002$ or $k > \log_{0.8} 0.002$ (Allow with = or <)	M1	
	$k > \frac{\log 0.002}{\log 0.8}$ (*)	Alcso	(4)
	(d) $k = 28$ (Must be this integer value) <u>Not</u> $k > 27$, or $k < 28$, or $k > 28$	B1	(1)
			9
	(a) and (b): Correct answer without working scores both marks.		
	(a) M: Requires use of the correct formula ar^{n-1} .		
	(b) M: Requires use of the correct formula $\frac{a}{1-r}$		
	(c) 1 st M: The sum may have already been 'manipulated' (perhaps wrongly), but this mark can still be allowed.		
	1^{st} A: A 'numerically correct' version that has dealt with $(1-0.8)$ denominator,		
	e.g. $1 - \left(\frac{4}{5}\right)^k > 0.998$, $5(1 - 0.8^k) > 4.99$, $25(1 - 0.8^k) > 24.95$,		
	$5-5(0.8^k) > 4.99$. In any of these, $\frac{4}{5}$ instead of 0.8 is fine,		
	and condone $\frac{4^k}{5}$ if correctly treated later.		
	2 nd M: Introducing logs and using laws of logs correctly (this must include dealing with the power k so that $p^k = k \log p$). 2 nd A: An <u>incorrect</u> statement (including equalities) at any stage in the working loses this mark (this is often identifiable at the stage $k \log 0.8 > \log 0.002$). (So a fully correct method with inequalities is required.)		

Question Number	Scheme	Marks
102.(a)	Complete method, using terms of form ar^k , to find r [e.g. Dividing $ar^6 = 80$ by $ar^3 = 10$ to find r; $r^6 - r^3 = 8$ is M0] r = 2	M1
(b)	Complete method for finding a [e.g. Substituting value for r into equation of form $ar^{k} = 10$ or 80	A1 (2) M1
	(8 <i>a</i> = 10) $a = \frac{5}{4} = 1\frac{1}{4}$ (equivalent single fraction or 1.25)	A1 (2)
(c)	Substituting their values of <i>a</i> and <i>r</i> into correct formula for sum. $S = \frac{a(r^n - 1)}{r - 1} = \frac{5}{4}(2^{20} - 1) (= 1310718.75) \qquad 1 \ 310 \ 719 (\text{only this})$	M1 A1 (2) [6]
Notes:	(a) M1: Condone errors in powers, e.g. $ar^4 = 10$ and/or $ar^7 = 80$, A1: For $r = 2$, allow even if $ar^4 = 10$ and $ar^7 = 80$ used (just these) (M mark can be implied from numerical work, if used correctly) (b) M1: Allow for numerical approach: e.g. $\frac{10}{r_c^3} \leftarrow \frac{10}{r_c^2} \leftarrow \frac{10}{r_c} \leftarrow 10$)
	 In (a) and (b) correct answer, with no working, allow both marks. (c) Attempt 20 terms of series and add is M1 (correct last term 655360) If formula not quoted, errors in applying their <i>a</i> and/or <i>r</i> is M0 Allow full marks for correct answer with no working seen. 	
103.(a)	$\left(1 + \frac{1}{2}x\right)^{10} = 1 + \frac{\binom{10}{1}\binom{1}{2}x}{\binom{1}{2}} + \binom{10}{2}\binom{1}{2}x^{2} + \binom{10}{3}\binom{1}{2}x^{3}$	M1 A1
	= 1 + 5x; + $\frac{45}{4}$ (or 11.25) x^2 + $15x^3$ (coeffs need to be these, i.e, simplified) [Allow A1A0, if totally correct with unsimplified, single fraction coefficients)	A1; A1 (4)
(b)	$(1 + \frac{1}{2} \times 0.01)^{10} = 1 + 5(0.01) + (\frac{45}{4} \text{ or} 11.25)(0.01)^2 + 15(0.01)^3$	M1 A1√
	= 1 + 0.05 + 0.001125 + 0.000015 = 1.05114 cao	A1 (3) [7]
Notes:	 (a) For M1 first A1: Consider underlined expression only. M1 Requires correct structure for at least two of the three terms: (i) Must be attempt at binomial coefficients. (ii) Must have increasing powers of <i>x</i> , (iii) May be listed, need not be added; <i>this applies for all marks</i>. 	
	First A1: Requires all three correct terms but need not be simplified, allow 1^{10} etc, ${}^{10}C_2$ etc, and condone omission of brackets around powers of $\frac{1}{2}x$ Second A1: Consider as B1 for 1 + 5x	
	(b) For M1: Substituting their (0.01) into their (a) result First A1 (f.t.): Substitution of (0.01) into their 4 termed expression in (a) Answer with no working scores no marks (calculator gives this answer)	
126	EXPERT TUITION	

Question Number		Scheme	Notes	Marks	
104. (a)	√(4 -	$\overline{9x} = (4 - 9x)^{\frac{1}{2}} = \underline{(4)^{\frac{1}{2}}} \left(1 - \frac{9x}{4}\right)^{\frac{1}{2}} = \underline{2} \left(1 - \frac{9x}{4}\right)^{\frac{1}{2}}$	$\underbrace{\frac{1}{2}}{(4)^{\frac{1}{2}}} \text{ or } \underline{2}$	<u>B1</u>	
	={2}	$\left[1 + \left(\frac{1}{2^{+}}(kx) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(kx)^{2} + \dots\right]\right]$	see notes	M1 A1ft	
	= {2}	$\left[1 + \left(\frac{1}{2^{\frac{1}{2}}}\left(-\frac{9x}{4^{\frac{1}{2}}}+\frac{(\frac{1}{2})(-\frac{1}{2})}{2!}\left(-\frac{9x}{4^{\frac{1}{2}}}+\dots\right)\right]\right]$			
	$=2\left[1-\frac{1}{2}\right]$	$-\frac{9}{8}x - \frac{81}{128}x^2 + \dots$	see notes		
	= 2 -	$\frac{9}{4}x; -\frac{81}{64}x^2 + \dots$	isw	A1; A1	
				[5]	
			E.g. For $10\sqrt{3.1}$ (can be implied by later		
(h)	$\sqrt{310}$	$= 10\sqrt{3.1} = 10\sqrt{(4-9(0.1))}$ so $r = 0.1$	working) and $x = 0.1$ (or uses $x = 0.1$)	B1	
(0)	¥310	$= 10 \sqrt{3.1} = 10 \sqrt{(1 - 3(0.1))}, 30 x = 0.1$	Note: $\sqrt{(100)(2.1)}$ by itself is D0	DI	
			Note: $\sqrt{(100)(3.1)}$ by itself is Bo		
		0 01	Substitutes their x, where $ x < \frac{4}{2}$		
	When	$x = 0.1 \sqrt{(4-9x)} \approx 2 - \frac{9}{(0.1)} - \frac{81}{(0.1)^2} +$	\cdot	M1	
		4 64	into all three terms of their		
		0.005 0.010(5(05 1.5(00)055	binomial expansion		
		= 2 - 0.225 - 0.01265625 = 1.76234375			
	So, √	$310 \approx 17.6234375 = \underline{17.623} \ (3 \text{ dp})$	17.623 cao	A1 cao	
	Note	: the calculator value of $\sqrt{310}$ is 17.60681686	5 which is 17.607 to 3 decimal places	[3]	
				8 marks	
		Question	n 104 Notes		
104. (a)	B1	$(4)^{\frac{1}{2}}$ or <u>2</u> outside brackets or <u>2</u> as candidate'	s constant term in their binomial expansion	n	
	M1	Expands $\left(+ kx \right)^{\frac{1}{2}}$ to give any 2 terms out of	3 terms simplified or un-simplified.		
		E.g. $1 + \left(\frac{1}{2}\right)(kx)$ or $\left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$	or $1 + + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} (kx)^2$		
		where k is a numerical value and where $k \neq 1$			
	A1ft	A correct simplified or un-simplified $1 + \left(\frac{1}{2}\right)$	$(kx) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(kx)^2$ expansion with consist	tent (kx)	
	Note	$(kx), k \neq 1$ must be consistent (on the RHS, no	ot necessarily on the LHS) in their expansi	ion	
			$\left \left(-\Omega_{x} \right)^{2} \right ^{2}$		
	Note	Award B1M1A0 for $2 \left[1 + \left(\frac{1}{2} \right)^{+} \left(-9x \right) + \frac{\left(\frac{1}{2} \right)^{-} \left(-9x \right)}{2!} \right]$	$\frac{-\frac{1}{2}}{2}\left(-\frac{9x}{4}\right) + \dots \right] \text{ because } (kx) \text{ is not con}$	sistent	
	Note	Incorrect bracketing: $2\left[1+\left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right)+\frac{9x}{4}\right]$	$\frac{\binom{1}{2}(-\frac{1}{2})}{2!} \left(-\frac{9x^2}{4}\right) + \dots \right] \text{ is B1M1A0 unless finding}$	recovered	
	A1	2 - $\frac{9}{4}x$ (simplified fractions) or allow 2 - 2	2.25x or $2 - 2\frac{1}{4}x$		
	A1	Accept only $-\frac{81}{64}x^2$ or $-1\frac{17}{64}x^2$ or -1.265	625 <i>x</i> ²		

		-		Qu	estion 104 N	otes Continued			
104. (a)	SC	If a candi	date would	otherwise sc	ore 2 nd A0, 3 ^r	rd A0 (i.e. scores	A0A0 in th	ne final two n	narks to (a))
ctd.		then allow	then allow Special Case 2 nd A1 for either						
		SC: $2 \begin{bmatrix} 1 \end{bmatrix}$	$-\frac{9}{8}x;\dots$ or	• SC: $2[1+.$	$\dots -\frac{81}{128}x^2 + \dots$.] or SC : $\lambda \left[1 - \lambda \right]$	$-\frac{9}{8}x - \frac{81}{128}$	$x^2 + \dots$	
		or SC:	or $\mathbf{SC}: \left[\lambda - \frac{9\lambda}{8} x - \frac{81\lambda}{128} x^2 + \right]$ (where λ can be 1 or omitted), where each term in the $[]$						
		is a simpl	lified fraction	n or a decima	al,				
		OR SC:	for $2 - \frac{18}{8}x$	$x - \frac{162}{128}x^2 + .$	(i.e. for not	t simplifying the	ir correct c	oefficients)	
	Note	Candidat	Candidates who write $2\left[1 + \left(\frac{1}{2}\right)\left(\frac{9x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{9x}{4}\right)^2 + \dots\right]$, where $k = \frac{9}{4}$ and not $-\frac{9}{4}$						
		and achie	and achieve $2 + \frac{9}{4}x$; $-\frac{81}{64}x^2 +$ will get B1M1A1A0A1						
	Note	Ignore ex	gnore extra terms beyond the term in x^2						
	Note	You can ignore subsequent working following a correct answer							
	Note	Allow B	M1A1 for	$2\left\lfloor 1+\left(\frac{1}{2}\right)\right\rfloor$	$\left(-\frac{9x}{4}\right) + \frac{(\frac{1}{2})(-x)}{2!}$	$\frac{\frac{1}{2}}{2}\left(\frac{9x}{4}\right)^2 + \dots \right]$			
	Note	Allow B1M1A1A1A1 for $2\left[1 + \left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{9x}{4}\right)^2 + \dots\right] = 2 - \frac{9}{4}x - \frac{81}{64}x^2 + \dots$							
(b)	Note	Give B1 M1 for $\sqrt{310} \approx 10 \left(2 - \frac{9}{4} (0.1) - \frac{81}{64} (0.1)^2 \right)$							
	Note	Other all	<u>ternative su</u>	itable value	s for x for <u>v</u>	$\sqrt{310} \approx \beta \sqrt{4-9}$	(their x)		
		Г	h	r	Fetimata] [h	r	Fetimata
		-	<i>v</i>	л 38	Estimate		D	70 70	LStimate
			7	$-\frac{38}{147}$	17.479		14	294	18.256
			8	$-\frac{3}{32}$	17.599		15	$\frac{118}{405}$	18.555
			9	$\frac{14}{729}$	17.607		16	$\frac{119}{384}$	18.899
			10	$\frac{1}{10}$	17.623		17	$\frac{94}{289}$	19.283
			11	$\frac{58}{363}$	17.690		18	<u>493</u> 1458	19.701
			12	$\frac{133}{648}$	17.819		19	$\frac{126}{361}$	20.150
$13 \frac{122}{507} 18.009 \qquad 20$							20	$\frac{43}{120}$	20.625
	Note	Apply the	e scheme in	the same way	y for their β	and their <i>x</i>	,		
		E.g. Give B1 M1 A1 for $\sqrt{310} \approx 12 \left(2 - \frac{9}{4} \left(\frac{133}{648} \right) - \frac{81}{64} \left(\frac{133}{648} \right)^2 \right) = 17.819 \text{ (3 dp)}$							
	Note	Allow B	1 M1 A1 for	$\sqrt{310} \approx 10$	$00\left(2-\frac{9}{4}\left(0.4\right)\right)$	$(41) - \frac{81}{64}(0.441)$	$)^2 = \overline{76.1}$	61 (3 dp)	
	Note	Give B1	M1 A0 for v	$\sqrt{310} \approx 10$	$2 - \frac{9}{4}(0.1) -$	$\frac{81}{64}(0.1)^2 - \frac{729}{512}$	$(0.1)^3 =$	17.609 (3 dp))
128				E	EXPER Tuition	Γ Ν			

		Question 104 Notes Continued							
104. (b)	Note	Send to review using $\beta = \sqrt{155}$ and $x = \frac{2}{9}$ (which gives 17.897 (3 dp))							
	Note	Send to review using $\beta = \sqrt{1000}$ and $x = 0.41$ (which g	ives 27.346 (3 dp))						
104. (a)	Alterna	tive method 1: Candidates can apply an alternative form of	of the binomial expansion						
Alt 1	${(4-9)}$	$x^{\frac{1}{2}} = (4)^{\frac{1}{2}} + (\frac{1}{2})(4)^{-\frac{1}{2}}(-9x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(4)^{-\frac{3}{2}}(-9x)^{2}$							
	B 1	$(4)^{\frac{1}{2}}$ or 2							
	M1	Any two of three (un-simplified) terms correct							
	A1	All three (un-simplified) terms correct							
	A1	2 - $\frac{9}{4}x$ (simplified fractions) or allow 2 - 2.25x or 2 - $2\frac{1}{4}x$							
	A1	Accept only $-\frac{81}{64}x^2$ or $-1\frac{17}{64}x^2$ or $-1.265625x^2$							
	Note	The terms in C need to be evaluated.							
		So ${}^{\frac{1}{2}}C_0(4)^{\frac{1}{2}} + {}^{\frac{1}{2}}C_1(4)^{-\frac{1}{2}}(-9x); + {}^{\frac{1}{2}}C_2(4)^{-\frac{3}{2}}(-9x)^2$ without	further working is B0M0A0						
104. (a)	Alterna	tive Method 2: Maclaurin Expansion $f(x) = (4 - 9x)^{\frac{1}{2}}$							
	f"(x)=-	$-\frac{81}{4}(4-9x)^{-\frac{3}{2}}$	Correct $f^{\alpha}(x)$	B1					
	$f'(x) = \frac{1}{2}(4-9x)^{-\frac{1}{2}}(-9) \qquad \qquad$								
	$\left\{ \therefore f(0) \right.$	$= 2$, $f'(0) = -\frac{9}{4}$ and $f''(0) = -\frac{81}{32}$							
	So, $f(x)$	$x = 2 - \frac{9}{4}x; - \frac{81}{64}x^2 + \dots$		A1; A1					

Question Number			Scheme			Notes	Marks
105.	$\left\{ (2+k)\right\}$	$(x)^{-3} = 2^{-3} \left(1 + \frac{1}{2}\right)^{-3}$	$\left(\frac{kx}{2}\right)^{-3} = \frac{1}{8} \left(1 + (-3)\left(\frac{kx}{2}\right)\right)$	$+\frac{(-3)(-3-1)}{2!}\left(\frac{kx}{2}\right)^2+$	$\ldots \bigg) \bigg\}, k$	> 0	
(a)	$\left\{A=\right\}$	$\frac{1}{8}$	$\frac{1}{8}$ $\frac{1}{8}$ or 2 ⁻³ or 0.125, clearly identified as <i>A</i> or as their answer to part (a)				
		0					[1]
		Uses the x^2 term of the binomial expansion to give					
		_	either $\frac{(-3)}{2}$	$\frac{(-4)}{2!} \text{ or } \left(\frac{k}{2}\right)^2 \text{ or } \left(\frac{kx}{2}\right)$	\int^{2} or $\frac{(-1)^{2}}{(-1)^{2}}$	$\frac{-3)(-4)}{2}$ or 6	M1
(b)	$\left(\frac{1}{8}\right)\frac{(-3)}{2}$	$\frac{h(-4)}{2!} \left(\frac{k}{2}\right)^2$	either (their A	$\frac{(-3)(-4)}{2!}\left(\frac{k}{2}\right)^2$ or (their	(-3) (-3)	$\frac{h(-4)}{2!}\left(\frac{kx}{2}\right)^2,$	N(1
	where (their A) + 1, where $(1 + 1)^{-1}$, $(1 + 1)^{-1}$						MI o.e.
			or $\frac{3}{16}k^2$ or $\frac{3}{16}k^2x^2$ or	or $(2^{-5})\frac{(-3)(-4)}{2!}(kx)^2$ o	$r (2^{-5})$	$\frac{(-3)(-4)}{2!}(k)^2$	
	$\left\{ \text{So,} \left(\frac{1}{8}\right) \frac{(-3)(-4)}{2!} \left(\frac{k}{2}\right)^2 = \frac{243}{16} \Rightarrow \frac{3}{16}k^2 = \frac{243}{16} \Rightarrow k^2 = 81 \right\}$						
	So, k	k = 9				k = 9 cao	A1 cso
		No	ote: $k = \pm 9$ with no refe	erence to $k = 9$ only is A	0		[3]
(c)			Uses the x	term of the binomial exp	pansion	to give either	
	$\left(\frac{1}{2}\right)^{"}$ (-	$-3)\left(\frac{k}{2}\right)$	(their A)(-3) $\left(\frac{k}{2}\right)$	or (their A)(-3) $\left(\frac{kx}{2}\right)$; where	(their A) ¹ 1,	M1
	(0)		or $(2)^{-4}(-3)(k)$ or $(2)^{-4}(-3)(kx)$ or $-\frac{34}{10}$			(kx) or $-\frac{3k}{16}$	
	$\left\{ \text{So, } B \right\}$	$= \left(\frac{1}{8}\right)(-3)\left(\frac{9}{2}\right)$	$ \Rightarrow \left\} \underline{B = -\frac{27}{16}} \right.$	$-\frac{27}{16}$ or	$-1\frac{11}{16}$	or -1.6875	Al cso
							[2]
			0	4 105 N 4			6
	NOTE	IN THIS OU	Que ESTION IGNORE LAF	Stion 105 Notes RELLING AND MARK	ALL P	ARTS TOGET	THER.
	Note	$(2+kx)^{-3} = \frac{1}{8}$	$\frac{1}{3}\left(1 - \frac{3}{2}kx + \frac{3}{2}k^2x^2 +\right)$	$= \frac{1}{8} - \frac{3}{16}kx + \frac{3}{16}k^2x^2 + \frac{3}{16}k^2x^$			
	Note	Writing down	$\left\{ \left(1 + \frac{kx}{2}\right)^{-3} \right\} = 1 + (-3)$	$D\left(\frac{kx}{2}\right) + \frac{(-3)(-3-1)}{2!}\left(\frac{kx}{2}\right)$	$\left(\frac{x}{2}\right)^2 + \dots$		
		gets (b) 1 st M	1				
	Note	Writing down $\left\{ (2+kx)^{-3} \right\} = \frac{1}{8} \left(1 + (-3) \left(\frac{kx}{2} \right) + \frac{(-3)(-3-1)}{2!} \left(\frac{kx}{2} \right)^2 + \dots \right)$					
		gets (b) 1 st M1 2 nd M1 and (c) M1					
	Note	Writing down $\{(2+kx)^{-3}\} = 2^{-3} + (-3)(2^{-4})(kx) + \frac{(-3)(-4)}{2}(2^{-5})(kx)^2$					
		gets (b) 1 st M	1 2 nd M1 and (c) M1	2			
	Note	Writing down	$\left\{ (2+kx)^{-3} \right\} = (\text{their } A)^{1/2}$	$\left(1+(-3)\left(\frac{kx}{2}\right)+\frac{(-3)(-3)}{2!}\right)$	$(\frac{3-1}{2})\left(\frac{k}{2}\right)$	$\left(\frac{x}{2}\right)^2 + \dots$	
		where (their	A) 1 1, gets (b) 1^{st} M1 2	nd M1 and (c) M1			

		Question 105 Notes				
105. (b), (c)	Note	(their A) is defined as either				
		• their answer to part (a)				
		• their stated $A = \dots$				
		• their "2 ⁻³ " in their stated $2^{-3}\left(1+\frac{kx}{2}\right)^{-3}$				
	Note	ive 2^{nd} M0 in part (b) if (their A) = 1				
	Note	Give M0 in part (c) if (their A) = 1				
105. (c)	Note	Allow M1 for (their A)(-3) $\left(\frac{\text{their } k \text{ from (b)}}{2}\right)$				
	Note	Award A0 for $B = -\frac{27}{16}x$				
	Note	Allow A1 for $B = -\frac{27}{16}x$ followed by $B = -\frac{27}{16}$ or $-1\frac{11}{16}$ or -1.6875				
	Note	$k = -9$ leading to $B = \frac{27}{16}$ or $1\frac{11}{16}$ or 1.6875 is A0				
	Note	Give A0 for finding both $B = -\frac{27}{16}$ and $B = \frac{27}{16}$ (without rejecting $B = \frac{27}{16}$) as their final answer.				
	Note	The A1 mark in part (c) is for a correct solution only.				
	Note	Be careful! It is possible to award M0A0 in part (c) for a solution leading to $B = -\frac{27}{16}$. E.g.				
		$f(x) = (2+kx)^{-3} = 2^{-3}(1+kx)^{-3} = \frac{1}{8}\left(1+(-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \dots\right) = \frac{1}{8} - \frac{3k}{8}x + \frac{3k^2}{4}x^2 + \dots$				
		leading to (a) $A = \frac{1}{8}$, (b) $k = \frac{9}{2}$, (c) $B = -\frac{27}{16}$, gets (a) B1, (b) M1M0A0 (c) M0A0				
105. (b), (c)	Note	${}^{-3}C_0(2)^{-3} + {}^{-3}C_1(2)^{-4}(kx) + {}^{-3}C_2(2)^{-5}(kx)^2$ with the C terms not evaluated				
		gets (b) 1 st M0 2 nd M0 and (c) M0				

Question			Notes	Marks
107			Writes down	
Way 1	$\left\{\frac{1}{(2+5x)^3}=\right\}(2+5x)^{-3}$		$(2+5x)^{-3}$ or uses	M1
	$\left(\left(-1, \frac{1}{2}\right)^{-3}\right) + \left(\left(-1, \frac{1}{2}\right)^{-3}\right)$		power of -3	
	$= \underline{(2)^{-3}} \left(1 + \frac{5x}{2} \right)^{-3} = \frac{1}{\underline{8}} \left(1 + \frac{5x}{2} \right)^{-3}$		$\underline{2^{-3}}$ or $\frac{1}{\underline{8}}$	<u>B1</u>
	$= \left\{ \frac{1}{8} \right\} \left[1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3 + \dots \right]$ see notes			M1 A1
	$= \left\{\frac{1}{8}\right\} \left[1 + (-3)\left(\frac{5x}{2}\right) + \frac{(-3)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-5)}{3!}\left(\frac{5x}{2}\right)^2\right] + \frac{(-3)(-4)(-5)}{3!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-5)(-5)}{3!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-5)(-5)(-5)}{3!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-5)(-5)(-5)}{3!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-5)(-5)}{3!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-5)(-5)}{3!}$	$\left(\frac{5x}{2}\right)^3 + \dots$		
	$= \frac{1}{8} \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$			
	$= \frac{1}{8} \left[1 - 7.5x + 37.5x^2 - 156.25x^3 + \dots \right]$			
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ or $\frac{1}{2} - \frac{15}{16}x; + 4\frac{11}{16}x^2 - 19\frac{17}{22}x^3 + \dots$			A1; A1
	8 16 16 32			[6]
				6
Way 2	$f(x) = (2 + 5x)^{-3}$ Writes do	1 + 5x	$^{-3}$ or uses power of -3	M1
	$f''(x) = 300(2+5x)^{-5}, f'''(x) = -7500(2+5x)^{-6}$	Co	prrect $f''(x)$ and $f'''(x)$	B1
	+a(2+5x)		$(2 + 5)^{-4} = (-1)^{-4}$	
	$(1/2) = 15/2 + 5^{-4}$		$\pm a(2+5x)$, $a \neq \pm 1$	M1
	$f'(x) = -15(2+5x)^{-4}$		$\frac{\pm a(2+5x)}{-15(2+5x)^{-4}}, \ a \neq \pm 1$	M1 A1 oe
	$f'(x) = -15(2+5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{18}{16} \right\}$	$\left[\frac{75}{6}\right]$	$\frac{\pm a(2+5x)}{-15(2+5x)^{-4}}, \ a \neq \pm 1$	M1 A1 oe
	$f'(x) = -15(2+5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{18}{16}$ So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$	75 6	$\frac{\pm a(2+5x)}{-15(2+5x)^{-4}}, a \neq \pm 1$ Same as in Way 1	M1 A1 oe A1; A1
	$f'(x) = -15(2+5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{18}{16} \right\}$ So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$	75 6	$\frac{\pm a(2+5x)}{-15(2+5x)^{-4}}$ Same as in Way 1	M1 A1 oe A1; A1 [6]
Way 3	$f'(x) = -15(2+5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{18}{16} \right\}$ So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ $(2+5x)^{-3}$	75 6	$\pm a(2+5x) , a \neq \pm 1$ $-15(2+5x)^{-4}$ Same as in Way 1 Same as in Way 1	M1 A1 oe A1; A1 [6] M1
Way 3	$f'(x) = -15(2 + 5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{18}{16} \right\}$ So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ $(2 + 5x)^{-3}$ $= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{(2)^{-5}(5x)^2} + \frac{(-3)(-4)(-5)}{(2)^{-5}(5x)^2} + \dots$	$75 \\ 6$	$\pm a(2+5x) , a \neq \pm 1$ $-15(2+5x)^{-4}$ Same as in Way 1 Same as in Way 1 Any two forms correct	M1 A1 oe A1; A1 [6] M1 <u>B1</u> M1
Way 3	$f'(x) = -15(2+5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{18}{16} \right\}$ So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ $(2+5x)^{-3}$ $= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-5}(5x)^2 + (-3)(-4)(-5$	$(5x)^{3}$	$\pm a(2 + 5x) , a \neq \pm 1$ $-15(2 + 5x)^{-4}$ Same as in Way 1 Same as in Way 1 Same as in Way 1 Any two terms correct All four terms correct	M1 A1 oe A1; A1 [6] M1 B1 M1 A1
Way 3	$f'(x) = -15(2 + 5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{18}{16} \right\}$ So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ $(2 + 5x)^{-3}$ $= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-5}(5x)^2 + (-3)(-4$	$\left(\frac{75}{6} \right)^{-6} (5x)^{3}$	$\pm a(2 + 5x) , a \neq \pm 1$ $-15(2 + 5x)^{-4}$ Same as in Way 1 Same as in Way 1 Same as in Way 1 Any two terms correct All four terms correct Same as in Way 1	M1 A1 oe A1; A1 [6] M1 <u>B1</u> M1 A1 A1; A1
Way 3	$f'(x) = -15(2 + 5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{18}{16} \right\}$ So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ $(2 + 5x)^{-3}$ $= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-5}(5x)^2 + (-3)(-4$	$(5x)^{3}$	$\pm a(2 + 5x) , a \neq \pm 1$ $-15(2 + 5x)^{-4}$ Same as in Way 1 Same as in Way 1 Same as in Way 1 Any two terms correct All four terms correct Same as in Way 1 M1 1 st A1	M1 A1 oe A1; A1 A1; A1 <u>[6]</u> M1 A1 A1; A1 [6]
Way 3	$f'(x) = -15(2 + 5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{18}{16} \right\}$ So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ $(2 + 5x)^{-3}$ $= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-5}(5x)^2 + (-3)(-4$	$\frac{75}{6}$	$\pm a(2 + 5x) , a \neq \pm 1$ $-15(2 + 5x)^{-4}$ Same as in Way 1 Same as in Way 1 Same as in Way 1 Any two terms correct All four terms correct Same as in Way 1 M1 1 st A1 (a)	M1 A1 oe A1; A1 [6] M1 <u>B1</u> M1 A1 A1; A1 [6]
Way 3	$f'(x) = -15(2 + 5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{18}{16} \right\}$ So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ $(2 + 5x)^{-3}$ $= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(5)^{-5}(5x)^2 + (-3)(-4$	$\frac{75}{6}$	$\pm a(2 + 5x) , a \neq \pm 1$ $-15(2 + 5x)^{-4}$ Same as in Way 1 Same as in Way 1 Same as in Way 1 Any two terms correct All four terms correct Same as in Way 1 $M1 1^{st} A1$ $-^{6} (5x)^{3}$	M1 A1 oe A1; A1 [6] M1 <u>B1</u> M1 A1 A1; A1 [6]

106.	1 st M1	mark can be implied by a constant term of $(2)^{-3}$ or $\frac{1}{8}$.				
	<u>B1</u>	$\underline{2^{-3}}$ or $\frac{1}{\underline{8}}$ outside brackets or $\frac{1}{\underline{8}}$ as candidate's constant term in their binomial expansion.				
	2 nd M1	Expands $(+kx)^{-3}$, $k = a$ value $\neq 1$, to give any 2 terms out of 4 terms simplified or unsimplified,				
		Eg: $1 + (-3)(kx)$ or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ or $1 + \dots + \frac{(-3)(-4)}{2!}(kx)^2$				
		or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ are fine for M1.				
	1 st A1	A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$				
		expansion with consistent (kx) . Note that (kx) must be consistent and $k = a$ value $\neq 1$.				
		(on the RHS, not necessarily the LHS) in a candidate's expansion.				
	Note	You would award B1M1A0 for $\frac{1}{8} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} (5x)^2 + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x}{2} \right)^3 + \dots \right]$				
		because (kx) is not consistent.				
	Note	Incorrect bracketing: = $\left\{\frac{1}{8}\right\} \left[1 + (-3)\left(\frac{5x}{2}\right) + \frac{(-3)(-4)}{2!}\left(\frac{5x^2}{2}\right) + \frac{(-3)(-4)(-5)}{3!}\left(\frac{5x^3}{2}\right) + \dots\right]$				
		is M1A0 unless recovered.				
	2 nd A1	For $\frac{1}{8} - \frac{15}{16}x$ (simplified) or also allow $0.125 - 0.9375x$.				
	3 rd A1	Accept only $\frac{75}{16}x^2 - \frac{625}{32}x^3$ or $4\frac{11}{16}x^2 - 19\frac{17}{32}x^3$ or $4.6875x^2 - 19.53125x^3$				
	SC	If a candidate <i>would otherwise score</i> 2 nd A0, 3 rd A0 then allow Special Case 2 nd A1 for either				
		SC: $\frac{1}{8} \left[1 - \frac{15}{2}x; \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots + \frac{75}{2}x^2 + \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots - \frac{625}{4}x^3 + \dots \right]$				
		SC: $\lambda \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$ or SC: $\left[\lambda - \frac{15\lambda}{2}x + \frac{75\lambda}{2}x^2 - \frac{625\lambda}{4}x^3 + \dots \right]$				
		(where λ can be 1 or omitted), where each term in the [] is a simplified fraction or a decimal				
	SC	Special case for the 2 nd M1 mark				
		Award Special Case $2^{n\alpha}$ M1 for a correct simplified or un-simplified				
		$1 + n(kx) + \frac{n(n-1)}{2!}(kx)^2 + \frac{n(n-1)(n-2)}{3!}(kx)^3$ expansion with their $n \neq -3$, $n \neq positive$ integer				
		and a consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessarily the LHS)				
		in a candidate's expansion. Note that $k \neq 1$.				
	Note	Ignore extra terms beyond the term in x^3				
	Note	You can ignore subsequent working following a correct answer.				

Question Number		Scheme	Marks	
107. (a)	(4 + 5	$x)^{\frac{1}{2}} = \underline{(4)^{\frac{1}{2}}} \left(1 + \frac{5x}{4}\right)^{\frac{1}{2}} = \underline{2} \left(1 + \frac{5x}{4}\right)^{\frac{1}{2}} \qquad \underline{(4)^{\frac{1}{2}} \text{ or } \underline{2}}$	<u>B1</u>	
	= {2}	$\left[1 + \left(\frac{1}{2}\right)(kx) + \frac{\binom{1}{2}(-\frac{1}{2})}{2!}(kx)^2 + \dots\right]$ see notes	M1 A1ft	
	= {2}	$\left[1 + \left(\frac{1}{2}\right)\left(\frac{5x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{5x}{4}\right)^2 + \dots\right]$		
	= 2	$1 + \frac{5}{8}x - \frac{25}{128}x^2 + \dots$ See notes below!		
	= 2 +	$\frac{5}{4}x; -\frac{25}{64}x^2 + \dots$ isw	A1; A1	
(b)	$\begin{cases} x = \frac{1}{2} \end{cases}$	$\frac{1}{10} \Rightarrow (4+5(0.1))^{\frac{1}{2}} = \sqrt{4.5} = \sqrt{\frac{9}{2}} = \frac{3}{\frac{\sqrt{2}}{\sqrt{2}}} = \frac{3}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$	[5]	
		$=\frac{3}{2}\sqrt{2}$ $\frac{3}{2}\sqrt{2}$ or $k=\frac{3}{2}$ or 1.5 o.e.	B1	
			[1]	
(c)	$\frac{3}{2}\sqrt{2}$	or $1.5\sqrt{2}$ or $\frac{3}{\sqrt{2}} = 2 + \frac{5}{4} \left(\frac{1}{10}\right) - \frac{25}{64} \left(\frac{1}{10}\right)^2 + \dots = 2.121\dots$ See notes	M1	
	So, $\frac{3}{2}$	$\sqrt{2} = \frac{543}{256}$ or $\frac{3}{\sqrt{2}} = \frac{543}{256}$		
	yields,	$\sqrt{2} = \frac{181}{128}$ or $\sqrt{2} = \frac{256}{181}$ $\frac{181}{128}$ or $\frac{362}{256}$ or $\frac{543}{384}$ or $\frac{256}{181}$ etc.	A1 oe	
			[2] 8	
		Question 107 Notes		
107. (a)	B1	B1 $(4)^{\frac{1}{2}}$ or $\underline{2}$ outside brackets or $\underline{2}$ as candidate's constant term in their binomial expansion		
	M1	Expands $(+kx)^{\frac{1}{2}}$ to give any 2 terms out of 3 terms simplified or un-simplified,		
		Eg: $1 + \left(\frac{1}{2}\right)(kx)$ or $\left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$		
		where k is a numerical value and where $k \neq 1$.		
	A1	A correct simplified or un-simplified $1 + \left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$ expansion with consis	stent (kx).	
	Note	$(kx), k \neq 1$, must be consistent (on the RHS, not necessarily on the LHS) in a candidate	's expansion.	

107. (a) ctd.	Note	Award B1M1A0 for $2\left[1+\left(\frac{1}{2}\right)(5x)+\frac{(\frac{1}{2})(-\frac{1}{2})}{2!}\left(\frac{5x}{4}\right)^2+\right]$ because (kx) is not consistent.				
	Note	Incorrect bracketing: $2\left[1+\left(\frac{1}{2}\right)\left(\frac{5x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{5x^2}{4}\right)+\dots\right]$ is B1M1A0 unless recovered.				
	A1	$2 + \frac{5}{4}x$ (simplified fractions) or allow $2 + 1.25x$ or $2 + 1\frac{1}{4}x$				
	A1	Accept only $-\frac{25}{64}x^2$ or $-0.390625x^2$				
	SC	f a candidate <i>would otherwise score</i> 2 nd A0, 3 rd A0 then allow Special Case 2 nd A1 for either				
		SC: $2\left[1+\frac{5}{8}x;\right]$ or SC: $2\left[1+\frac{25}{128}x^2+\right]$ or SC: $\lambda\left[1+\frac{5}{8}x-\frac{25}{128}x^2+\right]$				
		or SC : $\left[\lambda + \frac{5\lambda}{8}x - \frac{25\lambda}{128}x^2 +\right]$ (where λ can be 1 or omitted), where each term in the []				
		is a simplified fraction or a decimal,				
		OR SC: for $2 + \frac{10}{8}x - \frac{50}{128}x^2 +$ (i.e. for not simplifying their correct coefficients.)				
	Note	Candidates who write $2\left[1 + \left(\frac{1}{2}\right)\left(-\frac{5x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{5x}{4}\right)^2 + \dots\right]$, where $k = -\frac{5}{4}$ and not $\frac{5}{4}$				
		and achieve $2 - \frac{5}{4}x - \frac{25}{64}x^2 +$ will get B1M1A1A0A1				
	Note Note	Ignore extra terms beyond the term in x^2 . You can ignore subsequent working following a correct answer.				
(b)	B1	$\frac{3}{2}\sqrt{2}$ or $1.5\sqrt{2}$ or $k = \frac{3}{2}$ or 1.5 o.e. (Ignore how $k = \frac{3}{2}$ is found.)				
(c)	M1	Substitutes $x = \frac{1}{10}$ or 0.1 into their binomial expansion found in part (a) which must contain both				
		an x term and an x^2 term (or even an x^3 term) and equates this to either $\frac{3}{\sqrt{2}}$ or their $k\sqrt{2}$ from (b),				
		where k is a numerical value.				
	Note	M1 can be implied by $\frac{3}{2}\sqrt{2}$ or $1.5\sqrt{2}$ or $\frac{3}{\sqrt{2}}$ = awrt 2.121				
	Note	M1 <i>can be implied</i> by $\frac{1}{k}$ (their $\frac{543}{256}$), with their <i>k</i> found in part (b).				
	Note	M1 <i>cannot be implied</i> by (k) (their $\frac{543}{256}$), with their k found in part (b).				
	A1	$\frac{181}{128}$ or any equivalent fraction, eg: $\frac{362}{256}$ or $\frac{543}{384}$. Also allow $\frac{256}{181}$ or any equivalent fraction.				
	Note	Also allow A1 for $p = 181$, $q = 128$ or $p = 181\lambda$, $q = 128\lambda$				
		or $p = 256$, $q = 181$ or $p = 256\lambda$, $q = 181\lambda$, where $\lambda \in \mathbb{Z}^+$				
	Note Note Note	You can recover work for part (c) in part (b). You cannot recover part (b) work in part (c). Candidates are allowed to restart and gain all 2 marks in part (c) from an incorrect part (b). Award M1 A1 for the correct answer from no working.				

a) <u>Alter</u>	Alternative methods for part (a)		
Alter	Alternative method 1: Candidates can apply an alternative form of the binomial expansion.		
{(4 +	$\left\{ \left(4+5x\right)^{\frac{1}{2}} \right\} = \left(4\right)^{\frac{1}{2}} + \left(\frac{1}{2}\right)\left(4\right)^{-\frac{1}{2}}\left(5x\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(4\right)^{-\frac{3}{2}}\left(5x\right)^{2}$		
B1	B1 $(4)^{\frac{1}{2}}$ or 2		
M1 A1	Any two of three (un-simplified) terms correct. All three (un-simplified) terms correct.		
A1	$2 + \frac{5}{4}x$ (simplified fractions) or allow $2 + 1.25x$ or $2 + 1.25x$	$+1\frac{1}{4}x$	
A1	Accept only $-\frac{25}{64}x^2$ or $-0.390625x^2$	7	
Note	The terms in C need to be evaluated.		
	So $\frac{1}{2}C_0(4)^{\frac{1}{2}} + \frac{1}{2}C_1(4)^{-\frac{1}{2}}(5x); + \frac{1}{2}C_2(4)^{-\frac{3}{2}}(5x)^2$ without further w	vorking is B0M0A0.	
Alter	native Method 2: Maclaurin Expansion $f(x) = (4+5x)^{\frac{1}{2}}$		
f"(x)	$=-\frac{25}{4}(4+5x)^{-\frac{3}{2}}$	Correct $f''(x)$	B1
	1_{1}	$\pm a(4+5x)^{-\frac{1}{2}}; a \neq \pm 1$	M1
f'(x)	$\frac{f'(x) = \frac{1}{2}(4+5x)^{-2}(5)}{\left\{ \therefore f(0) = 2 , f'(0) = \frac{5}{4} \text{ and } f''(0) = -\frac{25}{32} \right\}}$		A1 oe
$\left\{ \therefore f \right\}$			
So, f	$(x) = 2 + \frac{5}{4}x; -\frac{25}{64}x^2 + \dots$		A1; A1

Question Number		Scheme	Ма	rks
108.	{(1+	$kx)^{-4} = 1 + (-4)(kx) + \frac{(-4)(-4-1)}{2!}(kx)^{2} + \dots \bigg\}$		
(a)	Eithe	r $(-4)k = -6$ or $(1 + kx)^{-4} = 1 + (-4)(kx)$ see notes	M1	
		leading to $k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$	A1	
		2 2 4		[2]
		(-4)(-5) 2 Either $\frac{(-4)(-5)}{2!}$ or $(k)^2$ or $(kx)^2$	M1	
(b)		$\frac{(-4)(-5)}{2}(k)^2$ Either $\frac{(-4)(-5)}{(k)^2}$ or $\frac{(-4)(-5)}{(kx)^2}$	M1	
		2! (1) 2! (1)		
	$\begin{cases} A = \end{cases}$	$\frac{(-4)(-5)}{2} \left(\frac{3}{2}\right)^2 \Rightarrow A = \frac{45}{2}$	A1	
	l	$2! (2) 2 \qquad \qquad 2$		[3]
		On a than 100 No. 6 a		5
Note	In thi	Question 108 Notes s question ignore part labelling and mark part (a) and part (b) together.		
	Note	Writing down $\{(1 + kx)^{-4}\} = 1 + (-4)(kx) + \frac{(-4)(-4-1)}{2!}(kx)^2 + \dots$		
		gets all the method marks in Q2. i.e. (a) M1 and (b) M1M1		
(a)	M1	Award M1 for		
		• either writing down $(-4)k = -6$ or $4k = 6$		
		• or expanding $(1 + kx)^{-1}$ to give $1 + (-4)(kx)$ • or writing down $(-4)kx = -6$ or $(-4k) = -6x$ or $-4kx = -6x$		
	A1	$k = \frac{3}{2}$ or 1.5 or $\frac{6}{1}$ from no incorrect sign errors.		
	Note	The M1 mark can be implied by a candidate writing down the correct value of k .		
	Note Note	Award M1 for writing down $4k = 6$ and then A1 for $k = 1.5$ (or equivalent). Award M0 for $4k = -6$ (if there is no evidence that $(1 + kr)^{-4}$ expands to give $1 + (-4kr)^{-4}$	(kr)	-)
	Note	1 + (-4)(kr) leading to (-4)k = 6 leading to $k = \frac{3}{2}$ is M1A0	(<i>m</i>) 1)
		$\frac{1}{2} + (-4)(-4 - 1) + (-4)(-5) + (-4)(-$		
(b)	M1	For either $\frac{(x^2)^2}{2!}$ or $\frac{(x^2)^2}{2!}$ or 10 or $(k)^2$ or $(kx)^2$		
	M1	Either $\frac{(-4)(-4-1)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(kx)^2$ or $\frac{(-4)(-5)}{2!}(their k)^2$	or	$10k^{2}$
	Note	Candidates are allowed to use 2 instead of 2!		
	A1	Uses $k = 1.5$ to give $A = \frac{45}{2}$ or 22.5		
	Note	$A = \frac{90}{4}$ which has not been simplified is A0.		
	Note	Award A0 for $A = \frac{45}{2}x^2$.		
	Note	Allow A1 for $A = \frac{45}{2}x^2$ followed by $A = \frac{45}{2}$		
	Note	$k = -1.5$ leading to $A = \frac{45}{2}$ or 22.5 is A0.		

Question Number		Scheme		Marks
109. (a)	$\left\{\frac{1}{\sqrt{9}}\right\}$	$\frac{1}{1-10x} = \begin{cases} (9-10x)^{-\frac{1}{2}} \end{cases}$	$(9-10x)^{-\frac{1}{2}}$ or uses power of $-\frac{1}{2}$	B1
	= (9)	$\frac{\frac{1}{2}}{2}\left(1-\frac{10x}{9}\right)^{-\frac{1}{2}} = \frac{1}{3}\left(1-\frac{10x}{9}\right)^{-\frac{1}{2}}$	$(9)^{-\frac{1}{2}}$ or $\frac{1}{3}$	<u>B1</u>
	$=\left\{\frac{1}{3}\right\}$	$\left[1 + \left(-\frac{1}{2}\right)(kx) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(kx)^{2} + \dots\right]$	At least two correct terms. See notes	M1
	$=\left\{\frac{1}{3}\right\}$	$\left[1 + \left(-\frac{1}{2}\right)\left(\frac{-10x}{9}\right) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}\left(\frac{-10x}{9}\right)^2 + \dots\right]$		
	$=\frac{1}{3}$	$1 + \frac{5}{9}x + \frac{25}{54}x^2 + \dots$		
	$=\frac{1}{3}+$	$+\frac{3}{27}x;+\frac{23}{162}x^2+$		A1; A1
(b)	$\frac{3+}{\sqrt{9-}}$	$\frac{x}{10x} = (3+x)(9-10x)^{-\frac{1}{2}}$		[0]
		$= (3+x)\left(\frac{1}{3} + \frac{5}{27}x + \left\{\frac{25}{162}x^2 + \right\}\right)$	<i>Can be implied by later work</i> See notes	M1
		$= 1 + \frac{5}{9}x + \frac{25}{54}x^2 + \frac{1}{3}x + \frac{5}{27}x^2 + \dots$	Multiplies out to give exactly one constant term, exactly 2 terms in x and exactly 2 terms in x^2 . Ignore terms in x^3 . Can be implied.	M1
		$= 1 + \frac{8}{9}x + \frac{35}{54}x^2 + \dots$		A1
		Question	109 Notes	8
(a)	B1	Writes down $(9-10x)^{\frac{1}{2}}$ or uses power of $-\frac{1}{2}$	<u> </u>	
		This mark can be implied by a constant term of	f $(9)^{-\frac{1}{2}}$ or $\frac{1}{3}$.	
	<u>B1</u>	$(9)^{-\frac{1}{2}}$ or $\frac{1}{3}$ outside brackets or $\frac{1}{3}$ as candidate	's constant term in their binomial expansi	on.
	M1	Expands $(+kx)^{-\frac{1}{2}}$ to give any 2 terms out o	f 3 terms simplified or an un-simplified,	
		$1 + (-\frac{1}{2})(kx)$ or $(-\frac{1}{2})(kx) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(kx)^2$	or $1 + \dots + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(kx)^2$, where	$k \neq 1$.
	A1	$\frac{1}{3} + \frac{5}{27}x$ (simplified fractions)		
	A1	Accept only $\frac{25}{162}x^2$		

	o (a) appears		
as part of their solution in part (b), it cannot be credited in part (a).			
SC If a candidate <i>would otherwise score</i> A0A0 then allow Special Case 1^{-1} A1 for either	٦		
SC: $\frac{1}{3} \begin{bmatrix} 1 + \frac{5}{9}x; \dots \end{bmatrix}$ or SC: $\lambda \begin{bmatrix} 1 + \frac{5}{9}x + \frac{25}{54}x^2 + \dots \end{bmatrix}$ or SC: $\begin{bmatrix} \lambda + \frac{5\lambda}{9}x + \frac{25\lambda}{54}x^2 \end{bmatrix}$	+		
(where λ can be 1 or omitted), with each term in the [] is a simplified fraction			
SC Special case for the M1 mark			
Award Special Case M1 for a correct simplified or un-simplified $1 + n(kx) + \frac{n(n-1)}{2!}(k$	$(x)^2$		
expansion with a value of $n \neq -\frac{1}{2}$, $n \neq positive integer$ and a consistent (kx) . Note t	hat (kx)		
must be consistent (on the RHS, not necessarily the LHS) in a candidate's expansion. Note that $k \neq 1$.			
Note Candidates who write $\left\{\frac{1}{3}\right\} \left[1 + \left(-\frac{1}{2}\right)\left(\frac{10x}{9}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(\frac{10x}{9}\right)^2 + \dots\right]$			
where $k = \frac{10}{9}$ and not $-\frac{10}{9}$ and achieve $\frac{1}{3} - \frac{5}{27}x$; $+\frac{25}{162}x^2 +$ will get B1B1M1A	.0A1.		
(b)			
M1 Writes down $(3 + x)$ (their part (a) answer, at least 2 of the 3 terms.)			
Note $(3+x)\left(\frac{1}{4}+\frac{5}{4}x+\right)$ or $(3+x)\left(\frac{1}{3}+\frac{5}{27}x+\frac{25}{162}x^2+\right)$ are fine for M1.	$(3+x)\left(\frac{1}{4}+\frac{5}{4}x+\right)$ or $(3+x)\left(\frac{1}{3}+\frac{5}{27}x+\frac{25}{152}x^2+\right)$ are fine for M1.		
Note This mark can also be implied by candidate multiplying out to find two terms (or coeffi	cients) in x.		
M1 Multiplies out to give exactly one constant term, exactly 2 terms in x and exactly 2 term	is in x^2 .		
Note This M1 mark can be implied. You can also ignore x^3 terms.			
$1 + \frac{8}{r} + \frac{35}{r^2}$			
A1 $1 + \frac{9}{9}x + \frac{1}{54}x + \dots$			
Alternative Methods for part (a) Alternative method 1: Candidates can apply an alternative form of the binomial expansion			
$\frac{1}{1}$			
$\left\{\frac{1}{\sqrt{(9-10x)}}\right\} = \left\{ (9-10x)^{-\frac{1}{2}} = (9)^{-\frac{1}{2}} + \left(-\frac{1}{2}\right)(9)^{-\frac{1}{2}}(-10x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(9)^{-\frac{1}{2}}(-10x)^2 \right\}$	$\frac{1}{10x} = \begin{cases} (9-10x)^{-\frac{1}{2}} = (9)^{-\frac{1}{2}} + \left(-\frac{1}{2}\right)(9)^{-\frac{3}{2}}(-10x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(9)^{-\frac{3}{2}}(-10x)^2 \end{cases}$		
B1 Writes down $(9-10x)^{-\frac{1}{2}}$ or uses power of $-\frac{1}{2}$.			
B1 $9^{-\frac{1}{2}}$ or $\frac{1}{3}$			
M1 Any two of three (un-simplified or simplified) terms correct.			
A1 $\frac{1}{3} + \frac{5}{27}x$			
A1 $\frac{25}{162}x^2$			
Note The terms in C need to be evaluated so $-\frac{1}{2}C(9)^{-\frac{1}{2}} + -\frac{1}{2}C(9)^{-\frac{3}{2}}(-10r) + -\frac{1}{2}C(9)^{-\frac{5}{2}}(-10r)$	$(0x)^2$		
without further working is B1B0M0A0A0.	<i></i> ,		

109. (a)	Alternative Method 2: Maclaurin Expansion	
	Let $f(x) = \frac{1}{\sqrt{9-10x}}$	
	${f(x) =} (9 - 10x)^{-\frac{1}{2}}$ (9 - 10x) ^{-$\frac{1}{2}$}	B1
	$f''(x) = 75(9-10x)^{-\frac{5}{2}}$ Correct $f''(x)$	B1 oe
	$f'(x) = \left(-\frac{1}{2}\right)(9 - 10x)^{-\frac{3}{2}}(-10) \qquad \pm a(9 - 10x)^{-\frac{3}{2}}; \ a \neq \pm 1$	M1
	$\left\{ \therefore f(0) = \frac{1}{3}, f'(0) = \frac{5}{27} \text{ and } f''(0) = \frac{75}{243} = \frac{25}{81} \right\}$	
	$f(x) = \frac{1}{3} + \frac{5}{27}x; + \frac{25}{162}x^2 + \dots$	A1; A1

Question Number	Scheme	Marks	
110. (a)	$\left\{\sqrt{\left(\frac{1+x}{1-x}\right)}\right\} = (1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}} \qquad (1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$	B1	
	$= \left(1 + \left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^{2} + \dots\right) \times \left(1 + \left(-\frac{1}{2}\right)\left(-x\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(-x\right)^{2} + \dots\right)$ See notes	M1 A1 A1	
	$= \left(1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \dots\right) \times \left(1 + \frac{1}{2}x + \frac{3}{8}x^{2} + \dots\right)$		
	$= 1 + \frac{1}{2}x + \frac{3}{8}x^{2} + \frac{1}{2}x + \frac{1}{4}x^{2} - \frac{1}{8}x^{2} + \dots$ See notes	M1	
	$= 1 + x + \frac{1}{2}x^{2}$ Answer is given in the question.	A1 *	
	$\left(1+\left(\frac{1}{2}\right)\right) \qquad (1) 1(1)^2$	[0]	
(b)	$\sqrt{\left(\frac{1}{1-\left(\frac{1}{26}\right)}\right)} = 1 + \left(\frac{1}{26}\right) + \frac{1}{2}\left(\frac{1}{26}\right)$	M1	
	ie: $\frac{3\sqrt{3}}{5} = \frac{1405}{1352}$	B1	
	so, $\sqrt{3} = \frac{7025}{4056}$ $\frac{7025}{4056}$	A1 cao	
	4030 4030	[3] 9	
	Notes for Question 110		
(a)	B1 : $(1+x)^{\overline{2}}(1-x)^{\overline{2}}$ or $\sqrt{(1+x)}(1-x)^{\overline{2}}$ seen or implied. (Also allow $((1+x)(1-x)^{-1})^{\overline{2}})$).	
	M1: Expands $(1 + x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,		
	Eg: $1 + \frac{1}{2}x$ or $+\left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2$		
	or expands $(1 - x)^{-\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,		
	Eg: $1 + \left(-\frac{1}{2}\right)(-x)$ or $+ \left(-\frac{1}{2}\right)(-x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-x)^2$ or $1 + \dots + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-x)^2$		
	Also allow: $1 + \dots + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(x)^2$ for M1.		
	A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^3 and A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^3 and x^4 Note: Candidates can give decimal equivalents when expanding out their binomial expansions. M1: Multiplies out to give 1, exactly two terms in x and exactly three terms in x^2 . A1: Candidate achieves the result on the exam paper. Make sure that their working is sound.	$1 x^4$ terms) terms)	
	Special Case : Award SC FINAL M1A1 for <i>a correct</i> $\left(1 + \frac{1}{2}x - \frac{1}{6}x^2 +\right) \times \left(1 + \frac{1}{2}x + \frac{3}{6}x^2 +\right)$)	
	multiplied out with no errors to give either $1 + x + \frac{3}{8}x^2 + \frac{1}{4}x^2 - \frac{1}{8}x^2$ or $1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{1}{2}x$	$+\frac{1}{8}x^2$ or	
	$1 + \frac{1}{2}x + \frac{1}{4}x^{2} + \frac{1}{2}x + \frac{1}{4}x^{2} \text{or} 1 + \frac{1}{2}x + \frac{5}{8}x^{2} + \frac{1}{2}x - \frac{1}{8}x^{2} \text{ leading to the correct answer of } 1$	$1 + x + \frac{1}{2}x^2.$	

Notes for Question 110 Continued				
110. (a) ctd	Note: If a candidate writes down either $(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots$ or $(1-x)^{-\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{1}{2}x + \frac{1}{2}x^2 + \dots$	$-\frac{3}{8}x^2 +$		
	with no working then you can award 1 st M1, 1 st A1. Note: If a candidate writes down both correct binomial expansions with no working, then you can 1 st M1, 1 st A1, 2 nd A1.	an award		
(b)	M1: Substitutes $x = \frac{1}{26}$ into both sides of $\sqrt{\left(\frac{1+x}{1-x}\right)}$ and $1+x+\frac{1}{2}x^2$			
	B1: For sight of $\sqrt{\frac{27}{25}}$ (or better) and $\frac{1405}{1352}$ or equivalent fraction			
	Eg: $\frac{3\sqrt{3}}{5}$ and $\frac{1405}{1352}$ or $0.6\sqrt{3}$ and $\frac{1405}{1352}$ or $\frac{3\sqrt{3}}{5}$ and $1\frac{53}{1352}$ or $\sqrt{3}$ and $\frac{5}{3}\left(\frac{1405}{1352}\right)$			
	are fine for B1.			
	A1: $\frac{7025}{4056}$ or any equivalent fraction, eg: $\frac{14050}{8112}$ or $\frac{182650}{105456}$ etc.			
	Special Case: Award SC: M1B1A0 for $\sqrt{3} \approx 1.732001972$ or truncated 1.732001 or awrt 1.73	32002.		
	Note that $\frac{7025}{4056} = 1.732001972$ and $\sqrt{3} = 1.732050808$			
Aliter 2. (a) Way 2	$\left\{\sqrt{\left(\frac{1+x}{1-x}\right)} = \sqrt{\frac{(1+x)(1-x)}{(1+x)(1-x)}} = \sqrt{\frac{(1-x^2)}{(1-x)^2}} = \right\} = (1-x^2)^{\frac{1}{2}}(1-x)^{-1} \qquad (1-x^2)^{\frac{1}{2}}(1-x)^{-1}$	B1		
	$= \left(1 + \left(\frac{1}{2}\right)\left(-x^{2}\right) + \dots\right) \times \left(1 + \left(-1\right)\left(-x\right) + \frac{(-1)(-2)}{2!}\left(-x\right)^{2} + \dots\right)$ See notes	M1A1A1		
	$= \left(1 - \frac{1}{2}x^{2} + \dots\right) \times \left(1 + x + x^{2} + \dots\right)$			
	$= 1 + x + x^2 - \frac{1}{2}x^2$ See notes	M1		
	$= 1 + x + \frac{1}{2}x^{2}$ Answer is given in the question.	A1 *		
		[6]		
Aliter 2 . (a)	B1 : $(1-x^2)^{\frac{1}{2}}(1-x)^{-1}$ seen or implied.			
Way 2	M1: Expands $(1 - x^2)^{\frac{1}{2}}$ to give both terms simplified or un-simplified, $1 + (\frac{1}{2})(-x^2)$			
	or expands $(1 - x)^{-1}$ to give any 2 out of 3 terms simplified or un-simplified,			
	Eg: $1 + (-1)(-x)$ or $\dots + (-1)(-x) + \frac{(-1)(-2)}{2}(-x)^2$ or $1 + \dots + \frac{(-1)(-2)}{2}(-x)^2$			
	A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^3 and	x^4 terms)		
	A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^3 and x^4	terms)		
	M1: Multiplies out to give 1, exactly one term in x and exactly two terms in x^2 . A1: Candidate achieves the result on the exam paper. Make sure that their working is sound.			

Notes for Question 110 Continued			
Aliter 110. (a)	$\left\{\sqrt{\left(\frac{1+x}{1-x}\right)} = \sqrt{\frac{(1+x)(1+x)}{(1-x)(1+x)}} = \right\} = (1+x)(1-x^2)^{-\frac{1}{2}} $ (1+x)(1-x^2)^{-\frac{1}{2}}	B1	
Way 3	$= (1+x)\left(1+\frac{1}{2}x^2+\right)$ Must follow on from above.	M1A1A1	
	$= 1 + x + \frac{1}{2}x^{2}$	dM1A1	
	Note: The final M1 mark is dependent on the previous method mark for Way 3.		
Aliter 110. (a)	Assuming the result on the Question Paper. (You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for Way 4).		
Way 4	$\left\{\sqrt{\left(\frac{1+x}{1-x}\right)} = \frac{\sqrt{(1+x)}}{\sqrt{(1-x)}} = 1 + x + \frac{1}{2}x^2\right\} \Longrightarrow (1+x)^{\frac{1}{2}} = \left(1 + x + \frac{1}{2}x^2\right)(1-x)^{\frac{1}{2}}$	B1	
	$(1+x)^{\frac{1}{2}} = 1 + \left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^{2} + \dots \left\{ = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \dots \right\},$	M1A1A1	
	$(1-x)^{\frac{1}{2}} = 1 + \left(\frac{1}{2}\right)(-x) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(-x)^{2} + \dots \left\{ = 1 - \frac{1}{2}x - \frac{1}{8}x^{2} + \dots \right\}$		
	RHS = $\left(1 + x + \frac{1}{2}x^2\right)\left(1 - x\right)^{\overline{2}} = \left(1 + x + \frac{1}{2}x^2\right)\left(1 - \frac{1}{2}x - \frac{1}{8}x^2 + \dots\right)$		
	$= 1 - \frac{1}{2}x - \frac{1}{8}x^{2} + x - \frac{1}{2}x^{2} + \frac{1}{2}x^{2}$ See notes	M1	
	$= 1 + \frac{1}{2}x - \frac{1}{8}x^2$		
	So, LHS = $1 + \frac{1}{2}x - \frac{1}{8}x^2 = \text{RHS}$	A1 *	
	B1 : $(1+x)^{\frac{1}{2}} = \left(1+x+\frac{1}{2}x^2\right)(1-x)^{\frac{1}{2}}$ seen or implied.	[0]	
	M1: For Way 4, this M1 mark is dependent on the first B1 mark.		
	Expands $(1+x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,		
	Eg: $1 + \frac{1}{2}x$ or $+\left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2$		
	or expands $(1-x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,		
	Eg: $1 + \left(\frac{1}{2}\right)(-x)$ or $+ \left(\frac{1}{2}\right)(-x) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(-x)^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(-x)^2$		
	A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^3 and A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^3 and x^4 M1: For Way 4, this M1 mark is dependent on the first B1 mark.	x^4 terms) terms)	
	Multiplies out RHS to give 1, exactly two terms in x and exactly three terms in x^2 . A1: Candidate achieves the result on the exam paper. Candidate needs to have correctly process	sed both	
	the LHS and RHS of $(1 + x)^{\frac{1}{2}} = \left(1 + x + \frac{1}{2}x^2\right)(1 - x)^{\frac{1}{2}}$.		

Question Number	Scheme	Marks
111. (a)	$\left\{\sqrt[3]{(8-9x)}\right\} = (8-9x)^{\frac{1}{3}}$ Power of $\frac{1}{3}$	M1
	$= \underline{(8)^{\frac{1}{3}}} \left(1 - \frac{9x}{8}\right)^{\frac{1}{3}} = \underline{2} \left(1 - \frac{9x}{8}\right)^{\frac{1}{3}} $ $\underline{(8)^{\frac{1}{3}}} \text{ or } \underline{2}$	<u>B1</u>
	$= \left\{2\right\} \left[1 + \left(\frac{1}{3}\right)(kx) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(kx)^{2} + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(kx)^{3} + \dots\right]$ see notes	M1 A1
	$= \left\{2\right\} \left[\frac{1 + \left(\frac{1}{3}\right)\left(\frac{-9x}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{-9x}{8}\right)^2 + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{-9x}{8}\right)^3 + \dots} \right]$	
	$= 2\left[1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right]$ See notes below!	
	$= 2 - \frac{3}{4}x; -\frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots$	A1; A1
(b)	$\left\{\sqrt[3]{7100} = 10\sqrt[3]{71} = 10\sqrt[3]{(8-9x)}, \right\} \text{ so } x = 0.1$ Writes down or uses $x = 0.1$	[6] B1
	When $x = 0.1$, $\sqrt[3]{(8-9x)} \approx 2 - \frac{3}{4}(0.1) - \frac{9}{32}(0.1)^2 - \frac{45}{256}(0.1)^3 + \dots$	M1
	= 2 - 0.075 - 0.0028125 - 0.00017578125 $= 1.922011719$	
	So, $\sqrt[3]{7100} = 19.220117919 = 19.2201 (4 dp)$ 19.2201 cso	A1 cao
	Notes for Question 111	9
(a)	M1: Writes or uses $\frac{1}{3}$. This mark can be implied by a constant term of $8^{\frac{1}{3}}$ or 2.	
	<u>B1</u> : $(8)^{\frac{1}{3}}$ or <u>2</u> outside brackets or <u>2</u> as candidate's constant term in their binomial expansion.	
	M1: Expands $(+kx)^{\frac{1}{3}}$ to give any 2 terms out of 4 terms simplified or un-simplified,	
	Eg: $1 + \left(\frac{1}{3}\right)(kx)$ or $\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(kx)^2 + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(kx)^3$ or $1 + \dots + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(kx)^2$	
	or $\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$ where $k \neq 1$ are fine for M1.	
	A1: A correct simplified or un-simplified $1 + \left(\frac{1}{3}\right)(kx) + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$	
	expansion with consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessar in a candidate's expansion. Note that $k \neq 1$.	ily the LHS)
	You would award B1M1A0 for $2\left[\frac{1+\left(\frac{1}{3}\right)\left(\frac{-9x}{8}\right)+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}\left(-9x\right)^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}\left(\frac{-9x}{8}\right)^3+\dots\right]$	
	because (kx) is not consistent.	

Notes for Question 111 Continued			
111. (a) ctd	"Incorrect bracketing" = $\{2\}\left[\frac{1+\left(\frac{1}{3}\right)\left(\frac{-9x}{8}\right)+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}\left(\frac{-9x^2}{8}\right)+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}\left(\frac{-9x^3}{8}\right)+\dots}{3!}\right]$		
	is M1A0 unless recovered.		
	A1: For $2 - \frac{3}{4}x$ (simplified please) or also allow $2 - 0.75x$.		
	Allow Special Case A1A0 for either SC: $= 2\left[1 - \frac{3}{8}x; \dots\right]$ or SC: $K\left[1 - \frac{3}{8}x - \frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right]$		
	(where K can be 1 or omitted), with each term in the [] either a simplified fraction or a decimal.		
	A1: Accept only $-\frac{9}{32}x^2 - \frac{45}{256}x^3$ or $-0.28125x^2 - 0.17578125x^3$		
	Candidates who write = $2\left[\frac{1+\left(\frac{1}{3}\right)\left(\frac{9x}{8}\right)+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}\left(\frac{9x}{8}\right)^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}\left(\frac{9x}{8}\right)^3+\dots}\right]$ where $k = \frac{9}{8}$		
	and not $-\frac{9}{8}$ and achieve $2 + \frac{3}{4}x$; $-\frac{9}{32}x^2 + \frac{45}{256}x^3 + \dots$ will get B1M1A1A0A0.		
	Note for final two marks:		
	$2\left[1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right] = 2 + \frac{3}{4}x - \frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots \text{ scores final A0A1.}$		
	$2\left[1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right] = 2 - \frac{3}{4} - \frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots \text{ scores final A0A1}$		
	Alternative method: Candidates can apply an alternative form of the binomial expansion.		
	$\left\{\sqrt[3]{(8-9x)}\right\} = \left(8-9x\right)^{\frac{1}{3}} = \left(8\right)^{\frac{1}{3}} + \left(\frac{1}{3}\right)\left(8\right)^{-\frac{2}{3}}\left(-9x\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(8\right)^{-\frac{5}{3}}\left(-9x\right)^{2} + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(8\right)^{-\frac{8}{3}}\left(-9x\right)^{3}$		
	B1: $(8)^{\frac{1}{3}}$ or 2		
	M1: Any two of four (un-simplified or simplified) terms correct.		
	A1: All four (un-simplified or simplified) terms correct.		
	A1: $2 - \frac{3}{4}x$		
	A1: $-\frac{9}{32}x^2 - \frac{45}{256}x^3$		
	Note: The terms in C need to be evaluated,		
	so $\frac{1}{3}C_0(8)^{\frac{1}{3}} + \frac{1}{3}C_1(8)^{-\frac{2}{3}}(-9x) + \frac{1}{3}C_2(8)^{-\frac{5}{3}}(-9x)^2 + \frac{1}{3}C_3(8)^{-\frac{8}{3}}(-9x)^3$ without further working is B0M0A0.		
(b)	B1: Writes down or uses $x = 0.1$		
	M1: Substitutes their x, where $ x < \frac{8}{9}$ into at least two terms of their binomial expansion.		
	A1: 19.2201 cao		
	Be Careful! The binomial answer is 19.22011719		
	and the calculated $\sqrt[3]{7100}$ is 19.21997343 which is 19.2200 to 4 decimal places.		

Question Number	Scheme		Marks	
	** represents a constant (which must be consistent	t for first accuracy mark)		
112. (a)	$\sqrt{(9+8x)} = (9+8x)^{\frac{1}{2}} = \underline{(9)}^{\frac{1}{2}} \left(1+\frac{8x}{9}\right)^{\frac{1}{2}} = \underline{3} \left(1+\frac{8x}{9}\right)^{\frac{1}{2}}$	$(9)^{\frac{1}{2}}$ or <u>3</u> outside brackets	<u>B1</u>	
		Expands $(1 + **x)^{\frac{1}{2}}$ to give a simplified or an un-simplified $1 + (\frac{1}{2})(**x);$	M1;	
	$= 3 \left[\underbrace{1 + (\frac{1}{2})(**x); + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(**x)^{2} + \dots}_{2!} \right]$ with $** \neq 1$	A correct simplified or an un- simplified [] expansion with candidate's followed through $(**x)$	A1 $$	
	$= 3 \left[\frac{1 + \left(\frac{1}{2}\right) \left(\frac{8x}{9}\right); + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right)}{2!} \left(\frac{8x}{9}\right)^{2} + \dots}{2!} \right]$	Award SC M1 if you see $\frac{1}{2}(**x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(**x)^2 \text{ or}$ $1 + \dots + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(**x)^2$		
	$= 3 \left[1 + \frac{4}{9}x; -\frac{8}{81}x^2 + \dots \right]$	$3\left[1 + \frac{4}{9}x; \dots \right]$ or SC $K\left[1 + \frac{4}{9}x - \frac{8}{81}x^2 + \dots \right]$	A1 oe	
	$= 3 + \frac{4}{3}x; -\frac{8}{27}x^2 + \dots$	$-\frac{8}{27}x^2$	A1	51
(b)	$\sqrt{11} = \sqrt{(9+8x)} \implies x = \frac{1}{4}$	$\underline{x = \frac{1}{4}}$	B1 oe	2]
	$\sqrt{11} \approx 3 + \frac{4}{3} \left(\frac{1}{4} \right) - \frac{8}{27} \left(\frac{1}{4} \right)^2 \left\{ = 3 + \frac{1}{3} - \frac{1}{54} \right\}$	Substitutes their <i>x</i> into their binomial expansion	M1	
	$= 3\frac{17}{54} = \frac{179}{54}$	$3\frac{17}{54}$ or $\frac{179}{54}$.	A1	31
			Ľ	8
	Notes on Question 112			
(b)	B1: Writes down or uses $x = \frac{1}{4}$ oe.			
	M1: Substitutes their <i>x</i> , where $ x < \frac{9}{9}$ into at least of	one of the x or x^2 term of their binom	ial	
	expansion.			
	A1: Either $3\frac{17}{54}$ or $\frac{179}{54}$.			

Question Number	Scheme	Marks	
113.	$(2+3x)^{-3} = \underline{(2)}^{-3} \left(1+\frac{3x}{2}\right)^{-3} = \frac{1}{\underline{8}} \left(1+\frac{3x}{2}\right)^{-3} \qquad \underline{(2)}^{-3} \text{ or } \frac{1}{\underline{8}}$	<u>B1</u>	
	$= \left\{ \frac{1}{8} \right\} \left[1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3 + \dots \right]$ see notes	M1 A1	
	$= \left\{\frac{1}{8}\right\} \left[\frac{1 + (-3)\left(\frac{3x}{2}\right) + \frac{(-3)(-4)}{2!}\left(\frac{3x}{2}\right)^2 + \frac{(-3)(-4)(-5)}{3!}\left(\frac{3x}{2}\right)^3 + \dots}{3!} \right]$		
	$= \frac{1}{8} \left[1 - \frac{9}{2}x; + \frac{27}{2}x^2 - \frac{135}{4}x^3 + \dots \right]$ See notes below!		
	$= \frac{1}{8} - \frac{9}{16}x; + \frac{27}{16}x^2 - \frac{135}{32}x^3 + \dots$	A1; A1	
		[5] 5	
	<u>B1</u> : $(2)^{-3}$ or $\frac{1}{8}$ outside brackets or $\frac{1}{8}$ as constant term in the binomial expansion.		
	M1: Expands $(+kx)^{-3}$ to give any 2 terms out of 4 terms simplified or un-simplified,		
	Eg: $1 + (-3)(kx)$ or $(-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2$ or $1 + \dots + \frac{(-3)(-4)}{2!}(kx)^2$		
	or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ where $k \neq 1$ are ok for M1.		
	A1: A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$		
	expansion with consistent (kx) where $k \neq 1$.		
	"Incorrect bracketing" $\left\{\frac{1}{8}\right\} \left[\frac{1+(-3)\left(\frac{3x}{2}\right)+\frac{(-3)(-4)}{2!}\left(\frac{3x^2}{2}\right)+\frac{(-3)(-4)(-5)}{3!}\left(\frac{3x^3}{2}\right)+\dots}{3!} \right]$ is	s M1A0	
	unless recovered.		
	A1: For $\frac{1}{8} - \frac{9}{16}x$ (simplified fractions) or also allow $0.125 - 0.5625x$.		
	Allow Special Case A1 for either SC: $\frac{1}{8} \left[1 - \frac{9}{2}x; \dots \right]$ or SC: $K \left[1 - \frac{9}{2}x + \frac{27}{2}x^2 - \frac{135}{4}x^3 + \dots \right]$		
	(where <i>K</i> can be 1 or omitted), with each term in the [] either a simplified fraction or a decimal.		
	A1: Accept only $\frac{27}{16}x^2 - \frac{135}{32}x^3$ or $1\frac{11}{16}x^2 - 4\frac{7}{32}x^3$ or $1.6875x^2 - 4.21875x^3$		

113. ctd Candidates who write
$$=\frac{1}{8}\left[1+(-3)\left(-\frac{3x}{2}\right)+\frac{(-3)(-4)}{2!}\left(-\frac{3x}{2}\right)^2+\frac{(-3)(-4)(-5)}{3!}\left(-\frac{3x}{2}\right)^3+...\right]$$
 where $k = -\frac{3}{2}$ and not $\frac{3}{2}$ and achieve $\frac{1}{8}+\frac{9}{16}x+\frac{27}{16}x^2+\frac{135}{32}x^3+...$ will get B1M1A1A0A0.
Alternative method: Candidates can apply an alternative form of the binomial expansion.
 $(2+3x)^{-3} = (2)^{-3}+(-3)(2)^{-4}(3x)+\frac{(-3)(-4)}{2!}(2)^{-5}(3x)^2+\frac{(-3)(-4)(-5)}{3!}(2)^{-6}(3x)^3$
B1: $\frac{1}{8}$ or $(2)^{-3}$
M1: Any two of four (un-simplified) terms correct.
A1: All four (un-simplified) terms correct.
A1: $\frac{1}{8}-\frac{9}{16}x$
A1: $+\frac{27}{16}x^2-\frac{135}{32}x^3$
Note: The terms in C need to be evaluated, so ${}^{-3}C_0(2)^{-3}+{}^{-3}C_1(2)^{-4}(3x)+{}^{-3}C_2(2)^{-5}(3x)^2+{}^{-3}C_3(2)^{-6}(3x)^3$

Question Number	Scheme	Marks
114.	(a) $f(x) = (x)^{-\frac{1}{2}}$ = $6 \times 9^{-\frac{1}{2}} ()$ $\frac{6}{9^{\frac{1}{2}}}, \frac{6}{3}, 2 \text{ or equivalent}$	M1 B1
	$= \dots \left(1 + \left(-\frac{1}{2}\right)(kx); + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(kx)^{2} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}(kx)^{3} + \dots\right)$	M1; A1ft
	$=2\left(1+\frac{2}{9}x+\right)$ or $2+\frac{4}{9}x$	A1
	$=2+\frac{4}{9}x+\frac{4}{27}x^2+\frac{40}{729}x^3+\ldots$	A1 (6)
	(b) $g(x) = 2 - \frac{4}{9}x + \frac{4}{27}x^2 - \frac{40}{729}x^3 + \dots$	B1ft (1)
	(c) $h(x) = 2 + \frac{4}{9}(2x) + \frac{4}{27}(2x)^2 + \frac{40}{729}(2x)^3 + \dots$	M1 A1 (2)
	$\left(=2+\frac{8}{9}x+\frac{16}{27}x^2+\frac{320}{729}x^3+\ldots\right)$	[9]

Question Number	Scheme	Marks
115. (a)	$\frac{1}{(2-5x)^2} = (2-5x)^{-2} = (2)^{-2} \left(1 - \frac{5x}{2}\right)^{-2} = \frac{1}{4} \left(1 - \frac{5x}{2}\right)^{-2} \qquad \qquad (2)^{-2} \text{ or } \frac{1}{4}$	<u>B1</u>
	$= \left\{\frac{1}{4}\right\} \left[1 + (-2)(**x) + \frac{(-2)(-3)}{2!}(**x)^2 + \dots\right]$ see notes	M1 A1ft
	$= \left\{\frac{1}{4}\right\} \left[\underbrace{1 + (-2)\left(-\frac{5x}{2}\right) + \frac{(-2)(-3)}{2!}\left(-\frac{5x}{2}\right)^2 + \dots}_{2!} \right]$	
	$= \frac{1}{4} \left[1 + 5x; + \frac{75}{4}x^2 + \right]$ See notes below!	
	$= \frac{1}{4} + \frac{5}{4}x; + \frac{75}{16}x^2 + \dots$	A1; A1
(b)	$\left\{\frac{2+kx}{(2-5x)^2}\right\} = (2+kx)\left(\frac{1}{4} + \frac{5}{4}x + \left\{\frac{75}{16}x^2 + \ldots\right\}\right)$ Can be implied by later work even in part (c).	M1
	x terms: $\frac{2(5x)}{4} + \frac{kx}{4} = \frac{7x}{4}$ giving, $10 + k = 7 \implies k = -3$ $k = -3$	A1
(c)	x^2 terms: $\frac{150x^2}{16} + \frac{5kx^2}{4}$	[2] M1
	So, $A = \frac{75}{8} + \frac{5(-3)}{4} = \frac{75}{8} - \frac{15}{4} = \frac{45}{\underline{8}}$ $\frac{45}{\underline{8}}$ or $5\frac{5}{\underline{8}}$ or 5.625	A1
		[2] 9
(a)	<u>B1</u> : $(2)^{-2}$ or $\frac{1}{4}$ outside brackets or $\frac{1}{4}$ as candidate's constant term in their binomial expansion.	
	M1: Expands to give a simplified or an un-simplified, (-2)(-3)	
	$1+(-2)(**x)$ or $(-2)(**x)+\frac{(-2)(-3)}{2!}(**x)^2$ or $1++\frac{(-2)(-3)}{2!}(**x)^2$, where	•e **≠1.
	A1: A correct simplified or an un-simplified $1 + (-2)(**x) + \frac{(-2)(-3)}{2!}(**x)^2$ expansion with ca	andidate's
	follow through $(**x)$. Note that $(**x)$ must be consistent.	
	You would award B1M1A0 for $=\frac{1}{4} \left[\frac{1 + (-2)\left(-\frac{5x}{2}\right) + \frac{(-2)(-3)}{2!}(-5x)^2 + \dots}{2!} \right]$ because ** is not	consistent.
	<i>Invisible brackets</i> $\left\{\frac{1}{4}\right\}\left[\underbrace{1+(-2)\left(-\frac{5x}{2}\right)+\frac{(-2)(-3)}{2!}\left(-\frac{5x^2}{2}\right)+\dots}{2!}\right]$ is M1A0 unless recovered.	
	A1: For $\frac{1}{4} + \frac{5}{4}x$ (simplified fractions) or Also allow $0.25 + 1.25x$ or $\frac{1}{4} + 1\frac{1}{4}x$.	-
	Allow Special Case A1 for either SC: $\frac{1}{4} [1+5x;]$ or SC: $K \begin{bmatrix} 1+5x+\frac{75}{4}x^2+ \end{bmatrix}$].
	A1: Accept only $\frac{75}{16}x^2$ or $4\frac{11}{16}x^2$ or $4.6875x^2$	
	Alternative method: Candidates can apply an alternative form of the binomial expansion. (See	e next page).

115. (b)	M1: Candidate writes down $(2 + kx)$ (their part (a) answer, at least up to the term in x.)
	$(2+kx)\left(\frac{1}{4}+\frac{5}{4}x+\right)$ or $(2+kx)\left(\frac{1}{4}+\frac{5}{4}x+\frac{75}{16}x^2+\right)$ are fine.
	This mark can also be implied by candidate multiplying out to find two terms (or coefficients) in <i>x</i> . A1: $k = -3$
(c)	M1: Multiplies out their $(2 + kx)\left(\frac{1}{4} + \frac{5}{4}x + \frac{75}{16}x^2 +\right)$ to give exactly two terms (or coefficients) in x^2
	and attempts to find A using a numerical value of k .
	A1: Either $\frac{45}{8}$ or $5\frac{5}{8}$ or 5.625 Note: $\frac{45}{8}x^2$ is A0.
	Alternative method for part (a)
	$(2-5x)^{-2} = (2)^{-2} + (-2)(2)^{-3}(-5x); + \frac{(-2)(-3)}{2!}(2)^{-4}(-5x)^{2}$
	B1: $\frac{1}{4}$ or $(2)^{-2}$,
	M1: Any two of three (un-simplified) terms correct.
	A1: $\frac{1}{4} + \frac{5}{4}x$
	A1: $\frac{75}{16}x^2$
	Note: The terms in C need to be evaluated, so ${}^{-2}C_0(2)^{-2} + {}^{-2}C_1(2)^{-3}(-5x); + {}^{-2}C_2(2)^{-4}(-5x)^2$ without further working is B0M0A0.
	Alternative method for parts (b) and (c)
	$(2+kx) = (2-5x)^2 \left(\frac{1}{2} + \frac{7}{4}x + Ax^2 + \dots\right)$
	$(2+kx) = (4-20x+25x^2) \left(\frac{1}{2} + \frac{7}{4}x + Ax^2 + \dots\right)$
	$(2+kx) = 2 + (7x - 10x) + \left(4Ax^2 - 35x^2 + \frac{25}{2}x^2\right)$
	Equate x terms: $k = -3$
	Equate x^2 terms: $0 = 4A - 35 + \frac{25}{2} \Rightarrow 4A = \frac{45}{2} \Rightarrow \underline{A = \frac{45}{8}}$
(b)	M1: For $(2 + kx) = (4 \pm \lambda x + 25x^2) \left(\frac{1}{2} + \frac{7}{4}x + Ax^2 + \dots \right)$, where $\lambda \neq 0$
	A1: $k = -3$
(c)	M1: Multiplies out to obtain three x^2 terms/coefficients, equates to 0 and attempts to find A.
	A1: Either $\frac{45}{8}$ or $5\frac{5}{8}$ or 5.625 Note: $\frac{45}{8}x^2$ is A0.

Question Number	Scheme	Marks
116.	$f(x) = (\dots + \dots)^{-\frac{1}{2}}$ = 9 ^{-\frac{1}{2}} (\dots + \dots)^{n} = 1 + nkx^{2} + \dots (1 + kx^{2})^{n} = 1 + nkx^{2} + \dots (1 + kx^{2})^{-\frac{1}{2}} = \dots + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2}(kx^{2})^{2} f their $k \neq 1$ $\left(1 + \frac{4}{9}x^{2}\right)^{-\frac{1}{2}} = 1 - \frac{2}{9}x^{2} + \frac{2}{27}x^{4}$ $f(x) = \frac{1}{3} - \frac{2}{27}x^{2} + \frac{2}{81}x^{4}$	M1 B1 M1 A1 ft A1 A1 (6) [6]

Question Number	Scheme	Marks	6
117. (a)	$(2-3x)^{-2} = 2^{-2} \left(1 - \frac{3}{2}x\right)^{-2}$	B1	
	$\left(1-\frac{3}{2}x\right)^{-2} = 1+\left(-2\right)\left(-\frac{3}{2}x\right)+\frac{-23}{1.2}\left(-\frac{3}{2}x\right)^{2}+\frac{-234}{1.2.3}\left(-\frac{3}{2}x\right)^{3}+\dots$ $= 1+3x+\frac{27}{1.2}x^{2}+\frac{27}{1.2}x^{3}+\dots$	M1 A1	
	$4 2 (2-3x)^{-2} = \frac{1}{4} + \frac{3}{4}x + \frac{27}{16}x^2 + \frac{27}{8}x^3 + \dots$	M1 A1	(5)
(b)	$f(x) = (a+bx)\left(\frac{1}{4} + \frac{3}{4}x + \frac{27}{16}x^2 + \frac{27}{8}x^3 + \dots\right)$		
	Coefficient of x; $\frac{3a}{4} + \frac{b}{4} = 0$ $(3a+b=0)$	• M1	
	Coefficient of x^2 ; $\frac{27a}{16} + \frac{3b}{4} = \frac{9}{16}$ (9a+4b=3) A1 either correct	M1 A1	
	Leading to $a = -1, b = 3$	• M1 A1	(5)
(c)	Coefficient of x^3 is $\frac{27a}{8} + \frac{27b}{16} = \frac{27}{8} \times (-1) + \frac{27}{16} \times 3$	M1 A1ft	
	$=\frac{27}{16}$ cao	A1	(3)
			[13]

Question Number	Scheme	Marks	
118.	(a) $A=2$ $2x^2+5x-10 = A(x-1)(x+2)+B(x+2)+C(x-1)$	B1	
	$\begin{array}{ll} x \to 1 & -3 = 3B \implies B = -1 \\ x \to -2 & -12 = -3C \implies C = 4 \end{array}$	M1 A1 A1	(4)
	(b) $\frac{2x^2 + 5x - 10}{(x-1)(x+2)} = 2 + (1-x)^{-1} + 2\left(1 + \frac{x}{2}\right)^{-1}$	M1	
	$(1-x)^{-1} = 1 + x + x^2 + \dots$	B1	
	$\left(1+\frac{x}{2}\right)^{-1} = 1-\frac{x}{2}+\frac{x^2}{4}+\ldots$	B1	
	$\frac{2x^2 + 5x - 10}{(x-1)(x+2)} = (2+1+2) + (1-1)x + \left(1 + \frac{1}{2}\right)x^2 + \dots$	M1	
	$= 5 + \dots$ ft their $A - B + \frac{1}{2}C$	A1 ft	
	$= \dots + \frac{3}{2}x^2 + \dots$ 0x stated or implied	A1 A1	(7)
	2		[11]

Question Number	Scheme	Marks	
119	(a) $(1-8x)^{\frac{1}{2}} = 1 + (\frac{1}{2})(-8x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2}(-8x)^{2} + \frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})}{3!}(-8x)^{3} + \dots$ = $1 - 4x - 8x^{2}; -32x^{3} - \dots$	M1 A1 A1; A1	(4)
	(b) $\sqrt{(1-8x)} = \sqrt{\left(1-\frac{8}{100}\right)}$ = $\sqrt{\frac{92}{100}} = \sqrt{\frac{23}{25}} = \frac{\sqrt{23}}{5}$ * cso	M1 A1	(2)
	(c) $1 - 4x - 8x^2 - 32x^3 = 1 - 4(0.01) - 8(0.01)^2 - 32(0.01)^3$ = $1 - 0.04 - 0.0008 - 0.000\ 032 = 0.959\ 168$ $\sqrt{23} = 5 \times 0.959\ 168$ = $4.795\ 84$ cao	M1 M1 A1	(3) [9]

Question Number	Scheme	Marks
120	$f(x) = \frac{1}{\sqrt{(4+x)}} = (4+x)^{-\frac{1}{2}}$	M1
	$= (4)^{-\frac{1}{2}} (1 + \dots)^{-\infty} \qquad \qquad \frac{1}{2} (1 + \dots)^{-\infty} \text{ or } \frac{1}{2\sqrt{(1 + \dots)}}$	B1
	$= \dots \left(1 + \left(-\frac{1}{2} \right) \left(\frac{x}{4} \right) + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{2} \left(\frac{x}{4} \right)^2 + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(-\frac{5}{2} \right)}{3!} \left(\frac{x}{4} \right)^3 + \dots \right)$	M1 A1ft
	ft their $\left(\frac{x}{4}\right)$	
	$=\frac{1}{2}-\frac{1}{16}x_{2}+\frac{3}{256}x^{2}-\frac{5}{2048}x^{3}+\ldots$	A1, A1 (6)
		[6]
	Alternative	
	$f(x) = \frac{1}{\sqrt{(4+x)}} = (4+x)^{-\frac{1}{2}}$	M1
	$= \underline{4^{-\frac{1}{2}}} + \left(-\frac{1}{2}\right)4^{-\frac{3}{2}}x + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1.2}4^{-\frac{5}{2}}x^{2} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{1.2.3}4^{-\frac{7}{2}}x^{3} + \dots$	<u>B1</u> M1 A1
	$=\frac{1}{2}-\frac{1}{16}x_{2}+\frac{3}{256}x^{2}-\frac{5}{2048}x^{3}+\ldots$	A1, A1 (6)

Question	Scheme		Marks
Number			
121. (a)	$27x^{2} + 32x + 16 \equiv A(3x+2)(1-x) + B(1-x) + C(3x+2)^{2}$	Forming this identity	M1
	$x = -\frac{2}{3}, 12 - \frac{64}{3} + 16 = \left(\frac{5}{3}\right)B \implies \frac{20}{3} = \left(\frac{5}{3}\right)B \implies B = 4$ x = 1, $27 + 32 + 16 = 25C \implies 75 = 25C \implies C = 3$	Substitutes either $x = -\frac{2}{3}$ or $x = 1$ into their identity or equates 3 terms or substitutes in values to write down three simultaneous equations. Both $B = 4$ and $C = 3$ (Note the A1 is dependent on both method marks in this part)	M1 A1
	Equate x^2 : $27 = -3A + 9C \implies 27 = -3A + 27 \implies 0 = -3A$ $\Rightarrow A = 0$ $x = 0, 16 = 2A + B + 4C$ $\Rightarrow 16 = 2A + 4 + 12 \implies 0 = 2A \implies A = 0$	Compares coefficients or substitutes in a third x-value or uses simultaneous equations to show $A = 0$.	B1 [4]
(b)	$f(x) = \frac{4}{(3x+2)^2} + \frac{3}{(1-x)}$ $= 4(3x+2)^{-2} + 3(1-x)^{-1}$ $= 4\left[2\left(1+\frac{3}{2}x\right)^{-2}\right] + 3(1-x)^{-1}$	Moving powers to top on any one of the two expressions	M1
	$= 1\left\{\frac{1+(-2)(\frac{3x}{2}); +\frac{(-2)(-3)}{2!}(\frac{3x}{2})^{2} + \dots}{2!}\right\}$ $+ 3\left\{\frac{1+(-1)(-x); +\frac{(-1)(-2)}{2!}(-x)^{2} + \dots}{2!}\right\}$	Either $1 \pm (-2)(\frac{3x}{2})$ or $1 \pm (-1)(-x)$ from either first or second expansions respectively Ignoring 1 and 3, any one correct {} expansion. Both {} correct.	dM1; A1 A1
	$= \left\{ 1 - 3x + \frac{27}{4}x^2 + \dots \right\} + 3\left\{ 1 + x + x^2 + \dots \right\}$ $= 4 + 0x ; +\frac{39}{4}x^2$	$4 + (0x); \frac{39}{4}x^2$	A1; A1 [6]

Question Number	Scheme		Marks
121. (c)	Actual = f(0.2) = $\frac{1.08 + 6.4 + 16}{(6.76)(0.8)}$ = $\frac{23.48}{5.408}$ = 4.341715976 = $\frac{2935}{676}$ Or Actual = f(0.2) = $\frac{4}{(3(0.2) + 2)^2} + \frac{3}{(1 - 0.2)}$ = $\frac{4}{6.76} + 3.75$ = 4.341715976 = $\frac{2935}{676}$	Attempt to find the actual value of f(0.2) or seeing awrt 4.3 and believing it is candidate's actual f(0.2). Candidates can also attempt to find the actual value by using $\frac{A}{(3x+2)} + \frac{B}{(3x+2)^2} + \frac{C}{(1-x)}$ with their <i>A</i> , <i>B</i> and <i>C</i> .	M1
	Estimate = $f(0.2) = 4 + \frac{39}{4}(0.2)^2$ = $4 + 0.39 = 4.39$	Attempt to find an estimate for $f(0.2)$ using their answer to (b)	М1√
	%age error = $\frac{ 4.39 - 4.341715976 }{4.341715976} \times 100$	$\left \frac{\text{their estimate - actual}}{\text{actual}} \right \times 100$	M1
	=1.112095408 = 1.1%(2sf)	1.1%	A1 cao [4]
			14 marks

Question Number	Scheme		Marks
	** represents a constant (which must be consistent for	or first accuracy mark)	
122 . (a)	$\frac{1}{\sqrt{(4-3x)}} = (4-3x)^{-\frac{1}{2}} = \underline{(4)}^{-\frac{1}{2}} \left(1-\frac{3x}{4}\right)^{-\frac{1}{2}} = \frac{1}{\underline{2}} \left(1-\frac{3x}{4}\right)^{-\frac{1}{2}}$	$(\underline{4})^{-\frac{1}{2}}$ or $\frac{1}{2}$ outside brackets	<u>B1</u>
		Expands $(1 + **x)^{-\frac{1}{2}}$ to give a simplified or an un-simplified $1 + (-\frac{1}{2})(**x)$;	M1;
	$= \frac{1}{2} \left[\frac{1 + (-\frac{1}{2})(**x); + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^2 + \dots}{2!} \right]$ with ** \ne 1	A correct simplified or an un- simplified [] expansion with candidate's followed through $(**x)$	A1√
	$= \frac{1}{2} \left[\frac{1 + (-\frac{1}{2})(-\frac{3x}{4}) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-\frac{3x}{4})^2 + \dots}{2!} \right]$	Award SC M1 if you see $(-\frac{1}{2})(**x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^{2}$	
	$= \frac{1}{2} \left[1 + \frac{3}{8}x; + \frac{27}{128}x^2 + \dots \right]$	$\frac{1}{2} \left[1 + \frac{3}{8}x; \dots \right]$ SC: $K \left[1 + \frac{3}{8}x + \frac{27}{128}x^2 + \dots \right]$ $\frac{1}{2} \left[\dots; \frac{27}{128}x^2 \right]$	A1 isw A1 isw
	$\left\{=\frac{1}{2}+\frac{3}{16}x;+\frac{27}{256}x^2+\ldots\right\}$	Ignore subsequent working	
	(1 2 27)	Writing $(r+8)$ multiplied by	[5]
(b)	$(x+8)\left(\frac{1}{2}+\frac{5}{16}x+\frac{27}{256}x^2+\right)$	candidate's part (a) expansion.	M1
	$= \frac{\frac{1}{2}x + \frac{3}{16}x^{2} + \dots}{4 + \frac{3}{2}x + \frac{27}{32}x^{2} + \dots}$	Multiply out brackets to find a constant term, two x terms and two x^2 terms.	M1
	$= 4 + 2x; + \frac{33}{32}x^2 + \dots$	Anything that cancels to $4 + 2x; \frac{33}{32}x^2$	★ ↓ A1; A1
			[4]
			9 marks
	•		•

Question Number	Scheme		Marks
123. (a)	** represents a constant (which must be consistent for first accuracy mark) $(8-3x)^{\frac{1}{3}} = \underline{(8)}^{\frac{1}{3}} \left(1 - \frac{3x}{8}\right)^{\frac{1}{3}} = \underline{2} \left(1 - \frac{3x}{8}\right)^{\frac{1}{3}}$	Takes 8 outside the bracket to give any of $(8)^{\frac{1}{3}}$ or 2.	<u>B1</u>
	$=2\left\{\underbrace{1+(\frac{1}{3})(**x);+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(**x)^{2}+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(**x)^{3}+\ldots}_{\text{with }**\neq 1}\right\}$ with ** \ne 1	Expands $(1+**x)^{\frac{1}{3}}$ to give a simplified or an un-simplified $1+(\frac{1}{3})(**x)$; A correct simplified or an un-simplified $\{\underline{\dots}\}$ expansion with candidate's followed through $(**x)$	M1; A1√
	$=2\left\{\underbrace{1+\left(\frac{1}{3}\right)\left(-\frac{3x}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(-\frac{3x}{8}\right)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(-\frac{3x}{8}\right)^{3}+\ldots}\right\}$	Award SC M1 if you see $\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(**x)^{2} + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(**x)^{3}$	
	$= 2\left\{1 - \frac{1}{8}x; -\frac{1}{64}x^2 - \frac{5}{1536}x^3 - \ldots\right\}$ $= 2 - \frac{1}{4}x; -\frac{1}{32}x^2 - \frac{5}{768}x^3 - \ldots$	Either $2\{1-\frac{1}{8}x \dots\}$ or anything that cancels to $2-\frac{1}{4}x$; Simplified $-\frac{1}{32}x^2 - \frac{5}{768}x^3$	A1; A1 [5]
(b)	$(7.7)^{\frac{1}{3}} \approx 2 - \frac{1}{4}(0.1) - \frac{1}{32}(0.1)^2 - \frac{5}{768}(0.1)^3 - \dots$ $= 2 - 0.025 - 0.0003125 - 0.0000065104166\dots$	Attempt to substitute $x = 0.1$ into a candidate's binomial expansion.	M1
	= 1.97468099	awrt 1.9746810	A1 [2] 7 marks
٠			

You would award B1M1A0 for
=2
$$\left\{ \frac{1 + (\frac{1}{3})(-\frac{3x}{8}) + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(-\frac{3x}{8})^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(-3x)^3 + ... \right\}$$

because ** is not consistent.

If you see the constant term "2" in a candidate's final binomial expansion, then you can award B1.

Be wary of calculator value of
$$(7.7)^{\frac{1}{3}} = 1.974680822...$$

Question Number	Scheme		Marks
<i>Aliter</i> 2. (a) Way 2	$(8-3x)^{\frac{1}{3}}$		
	$=\begin{cases} (8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(**x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(8)^{-\frac{5}{3}}(**x)^{2} \\ + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{-\frac{8}{3}}(**x)^{3} + \dots \end{cases}$ with ** \ne 1	2 or $(8)^{\frac{1}{3}}$ (See note \downarrow) Expands $(8-3x)^{\frac{1}{3}}$ to give an un-simplified or simplified $(8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(**x);$ A correct un-simplified or simplified $\{\underline{\dots,\dots}\}$ expansion with candidate's followed through $(**x)$	B1 M1; A1√
	$= \begin{cases} (8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(-3x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(8)^{-\frac{5}{3}}(-3x)^{2} \\ + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{-\frac{8}{3}}(-3x)^{3} + \dots \end{cases}$ $= \left\{ 2 + (\frac{1}{3})(\frac{1}{4})(-3x) + (-\frac{1}{9})(\frac{1}{32})(9x^{2}) + (\frac{5}{81})(\frac{1}{256})(-27x^{3}) + \dots \right\}$	Award SC M1 if you see $\frac{\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(8)^{-\frac{1}{3}}(**x)^{2}}{+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{-\frac{1}{3}}(**x)^{3}}$	
	$= 2 - \frac{1}{4}x; -\frac{1}{32}x^2 - \frac{5}{768}x^3 - \dots$	Anything that cancels to $2 - \frac{1}{4}x$; or $2\left\{1 - \frac{1}{8}x \dots\right\}$ Simplified $-\frac{1}{32}x^2 - \frac{5}{768}x^3$	A1; A1 [5]

Attempts using Maclaurin expansion should be escalated up to your team leader.

Be wary of calculator value of $(7.7)^{\frac{1}{3}} = 1.974680822...$

If you see the constant term "2" in a candidate's final binomial expansion, then you can award B1.

