

Maths Questions By Topic:

Sequences \& Series Mark Scheme

A-Level Edexcel

円 www.expert-tuition.co.ukonline.expert-tuition.co.uk
enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 Page 1Paper 2

Page 32
Old Spec
Core 1 ... Page 49
Core 2
Page 88
Core 4 Page 127

Question	Scheme	Marks	AOs
1 (i)	States that $S=a+(a+d)+\ldots \ldots \ldots \ldots \ldots+(a+(n-1) d)$	B1	1.1a
	$\begin{aligned} & S=a+\quad \cdot \quad(a+d)+\quad(a+(n-1) d) \\ & S=(a+(n-1) d)+(a+(n-2) d)+\ldots \ldots \ldots \ldots \ldots \ldots+a \end{aligned}$	M1	3.1a
	Reaches $2 S=n \times(2 a+(n-1) d)$ And so proves that $S=\frac{n}{2}[2 a+(n-1) d]$ *	A1*	2.1
		(3)	
(ii)	(a) $S=10+9.20+8.40+\ldots$		
	$64=\frac{n}{2}(20-0.8(n-1)) \quad$ o.e	M1	3.1 b
	$\begin{gathered} 128=20 n-0.8 n^{2}+0.8 n \\ 0.8 n^{2}-20.8 n+128=0 \\ n^{2}-26 n+160=0 * \end{gathered}$	A1*	2.1
		(2)	
	(b) $n=10,16$	B1	1.1 b
		(1)	
	(c) 10 weeks with a minimal correct reason. E.g. - He has saved up the amount by 10 weeks so he would not save for another 6 weeks - You would choose the smaller number - He starts saving negative amounts (in week 14) so 16 does not make sense	B1	2.3
		(1)	
(7 marks)			
Notes:			

(i)

B1: Correctly writes down an expression for the key terms S or S_{n} including $S=$ or $S_{n}=$
Allow a minimum of 3 correct terms including the first and last terms, and no incorrect terms.
Score for S or $S_{n}=a+(a+d)+$ \qquad $+(a+(n-1) d)$ with + signs, not commas
If the series contains extra terms that should not be there E.g
$S=a+(a+d)+$ \qquad $(\boldsymbol{a}+\boldsymbol{n d})+(a+(n-1) d)$ score B0
M1: For the key step in reversing the terms and adding the two series.
Look for a minimum of two terms, including a and $a+(n-1) d$, the series reversed with evidence of adding, for example $2 S=$ Condone the extra incorrect terms (see above) appearing.
Can be scored when terms are separated by commas
A1*: Shows correct work (no errors) with all steps shown leading to given answer.
There should be no incorrect terms. A minimum of 3 terms should be shown in each sum

The solution below is a variation of this.

$$
\begin{aligned}
& 2 S=n(a+l) \\
& S=\frac{n}{2}(a+l)=\frac{n}{2}(a+a+(n-1) d)=\frac{n}{2}(2 a+(n-1) d)
\end{aligned}
$$

B1 and A1 are not scored until the last line, M scored on line 3

The following scores B 1 M 0 A 0 as the terms in the second sum are not reversed

$\begin{aligned} (i) & s_{n} \\ + & a+(a+d)+(a+2 d) \ldots a+(n-1) d \\ s_{n} & =a+(a+(n-1) d+(a+(n-2) d)+a+c n-n) d \end{aligned}$								
$25 n=2 a+(n-1) d+2 a+(n-1) d+2 a(n-1))^{2}$								
$2 s_{n}=n[2 a+(n-1) d]$								

SC in (a) Scores B1 M0 A0.
They use $0+1+2+\ldots .+(n-1)=\frac{n(n-1)}{2}$ which relies on the quoted proof.

(ii) (a)

M1: Uses the information given to set up a correct equation in n.
The values of S, a and d need to be correct and used within a correct formula
Possible ways to score this include unsimplified versions $64=\frac{n}{2}(2 \times 10+(n-1) \times-0.8)$,
$64=\frac{n}{2}(10+10+(n-1) \times-0.8)$ or versions using pence rather than $£^{\prime}$ s $6400=\frac{n}{2}(2000+(n-1) \times-80)$
Allow recovery for both marks following $64=\frac{n}{2}(2 \times 10+(n-1)-0.8)$ with an invisible \times
A1*: Proceeds without error to the given answer. (Do not penalise a missing final trailing bracket)
Look for at least a line with the brackets correctly removed as well as a line with the terms in n correctly combined
E.g. $64=\frac{n}{2}(20+(n-1) \times-0.8) \Rightarrow 64=10 n-0.4 n^{2}+0.4 n \Rightarrow 0.4 n^{2}-10.4 n+64=0 \Rightarrow n^{2}-26 n+160=0$
(ii)(b)

B1: $n=10,16$
(ii)(c)

B1: Chooses 10 (weeks) and gives a minimal acceptable reason. The reason must focus on why the answer is 10 (weeks) rather than 16 (weeks) or alternatively why it would not be 16 weeks.

Question	Scheme	Marks	AOs
2(a)	3^{8} or 6561 as the constant term	B1	1.1b
	$\begin{gathered} \left(3-\frac{2 x}{9}\right)^{8}=\ldots+{ }^{8} \mathrm{C}_{1}(3)^{7}\left(-\frac{2 x}{9}\right)+{ }^{8} \mathrm{C}_{2}(3)^{6}\left(-\frac{2 x}{9}\right)^{2}+{ }^{8} \mathrm{C}_{3}(3)^{5}\left(-\frac{2 x}{9}\right)^{3}+\ldots \\ \\ =\ldots+8 \times(3)^{7}\left(-\frac{2 x}{9}\right)+28 \times(3)^{6}\left(-\frac{2 x}{9}\right)^{2}+56(3)^{5}\left(-\frac{2 x}{9}\right)^{3} \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=6561-3888 x+1008 x^{2}-\frac{448}{3} x^{3}+\ldots$	A1	1.1b
		(4)	
(b)	Coefficient of x^{2} is $\frac{1}{2} \times{ }^{\prime \prime} 1008 "-\frac{1}{2} \times{ }^{\prime \prime}-\frac{448}{3}$ "	M1	3.1a
	$=\frac{1736}{3} \quad\left(\right.$ or $578 \frac{2}{3}$)	A1	1.1b
		(2)	
(6 marks)			
Notes			
(a)			
B1: Sight of 3^{8} or 6561 as the constant term.			
M1: An attempt at the binomial expansion. This can be awarded for the correct structure of the $2^{\text {nd }}, 3^{\text {rd }}$ or $4^{\text {th }}$ term. The correct binomial coefficient must be associated with the correct power of 3 and the correct power of $(\pm) \frac{2 x}{9}$. Condone invisible brackets eg ${ }^{8} \mathrm{C}_{2}(3)^{6}-\frac{2 x^{2}}{9}$ for this mark.			

A1: For a correct simplified or unsimplified second or fourth term (with binomial coefficients evaluated).

$$
+8 \times(3)^{7}\left(-\frac{2 x}{9}\right) \quad \text { or } \quad+56(3)^{5}\left(-\frac{2 x}{9}\right)^{3}
$$

A1: $\quad 6561-3888 x+1008 x^{2}-\frac{448}{3} x^{3}$ Ignore any extra terms and allow the terms to be listed.
Allow the exact equivalent to $-\frac{448}{3}$ eg $-149 . \dot{3}$ but not -149.3 .
Condone x^{1} and eg $\quad+-3888 x$. Do not isw if they multiply all the terms by eg 3

Alt(a)
B1: Sight of $3^{8}(1+\ldots$.$) or 6561$ as the constant term
M1: An attempt at the binomial expansion $\left(1-\frac{2}{27} x\right)^{8}$. This can be awarded for the correct structure of the $2^{\text {nd }}, 3^{\text {rd }}$ or $4^{\text {th }}$ term. The correct binomial coefficient must be associated with the correct power of $(\pm) \frac{2 x}{27}$. Condone invisible brackets for this mark.

Score for any of:
$8 \times-\frac{2}{27} x, \quad \frac{8 \times 7}{2} \times\left(-\frac{2}{27} x\right)^{2}, \quad \frac{8 \times 7 \times 6}{6} \times\left(-\frac{2}{27} x\right)^{3}$ which may be implied by any of $-\frac{16}{27} x,+\frac{112}{729} x^{2},-\frac{448}{19683} x^{3}$

A1: For a correct simplified or unsimplified second or fourth term including being multiplied by 3^{8}

A1: $\quad 6561-3888 x+1008 x^{2}-\frac{448}{3} x^{3}$ Ignore any extra terms and allow the terms to be listed. Allow the exact equivalent to $-\frac{448}{3}$ eg $-149 . \dot{3}$ but not -149.3 .
Condone x^{1} and eg $+-3888 x$
(b)

M1: Adopts a correct strategy for the required coefficient. This requires an attempt to calculate $\pm 1 / 2$ their coefficient of x^{2} from part (a) $\pm 1 / 2$ their coefficient of x^{3} from part (a).

There must be an attempt to bring these terms together to a single value. ie they cannot just circle the relevant terms in the expansion for this mark. The strategy may be implied by their answer.
Condone any appearance of x^{2} or x^{3} appearing in their intermediate working.
A1: $\quad \frac{1736}{3}$ or $578 \frac{2}{3}$ Do not accept $578 . \dot{6}$ or $\frac{1736}{3} x^{2}$

Question	Scheme	Marks	AOs
3(a)	$u_{2}=k-12, u_{3}=k-\frac{24}{k-12}$	M1	1.1b
	$u_{1}+2 u_{2}+u_{3}=0 \Rightarrow 2+2(k-12)+k-\frac{24}{k-12}=0$	dM1	1.1b
	$\begin{gathered} \Rightarrow 3 k-22-\frac{24}{k-12}=0 \Rightarrow(3 k-22)(k-12)-24=0 \\ \Rightarrow 3 k^{2}-36 k-22 k+264-24=0 \\ \Rightarrow 3 k^{2}-58 k+240=0^{*} \end{gathered}$	A1*	2.1
		(3)	
(b)	$k=6,\left(\frac{40}{3}\right)$	M1	1.1b
	$k=6$ as k must be an integer	A1	2.3
		(2)	
(c)	$\left(u_{3}=\right) 10$	B1	2.2a
		(1)	
(6 marks)			
Notes			

(a)

M1: Attempts to apply the sequence formula once for either u_{2} or u_{3}.
Usually for $u_{2}=k-\frac{24}{2}$ o.e. but could be awarded for $u_{3}=k-\frac{24}{\text { their } " u_{2} "}$
dM1: Award for

- attempting to apply the sequence formula to find both u_{2} and u_{3}
- using $2+2 " u_{2} "+" u_{3} "=0 \Rightarrow$ an equation in k. The u_{3} may have been incorrectly adapted

A1*: Fully correct work leading to the printed answer.
There must be

- (at least) one correct intermediate line between $2+2(k-12)+k-\frac{24}{k-12}=0$ (o.e.) and the given answer that shows how the fractions are "removed". E.g. $(3 k-22)(k-12)-24=0$
- no errors in the algebra. The $=0$ may just appear at the answer line.
(b)

M1: Attempts to solve the quadratic which is implied by sight of $k=6$.
This may be awarded for any of

- $3 k^{2}-58 k+240=(a k \pm c)(b k \pm d)=0$ where $a b=3, c d=240$ followed by $k=$
- an attempt at the correct quadratic formula (or completing the square)
- a calculator solution giving at least $k=6$

A1: Chooses $k=6$ and gives a minimal reason
Examples of a minimal reason are

- 6 because it is an integer
- 6 because it is a whole number
- 6 because $\frac{40}{3}$ or 13.3 is not an integer
(c)

B1: Deduces the correct value of u_{3}.

Question	Scheme	Marks	AOs
4(a)	$u_{3}=£ 20000 \times 1.08^{2}=(£) 23328 *$	B1*	1.1b
		(1)	
(b)	$20000 \times 1.08^{n-1}>65000$	M1	1.1b
	$\begin{aligned} & 1.08^{n-1}>\frac{13}{4} \Rightarrow n-1>\frac{\ln (3.25)}{\ln (1.08)} \\ & \text { or e.g. } \\ & 1.08^{n-1}>\frac{13}{4} \Rightarrow n-1>\log _{108}\left(\frac{13}{4}\right) \end{aligned}$	M1	3.1b
	Year 17	A1	3.2a
		(3)	
(c)	$S_{20}=\frac{20000\left(1-1.08^{20}\right)}{1-1.08}$	M1	3.4
	Awrt (£) 915000	A1	1.1b
		(2)	
(6 marks)			
Notes			

(a)

B1*: Uses a correct method to show that the Profit in Year 3 will be $£ 23328$. Condone missing units E.g. $£ 20000 \times 1.08^{2}$ or $£ 20000 \times 108 \% \times 108 \%$

This may be obtained in two steps. E.g $\frac{8}{100} \times 20000=1600$ followed by $\frac{8}{100} \times 21600=1728$ with the calculations $21600+1728=23328$ seen.
Condone calculations seen as 8% of $20000=1600$.
This is a show that question and the method must be seen.
It is not enough to state Year $1=£ 21600$, Year $2=£ 23328$
(b)

M1: Sets up an inequality or an equation that will allow the problem to be solved.
Allow for example N or n for $n-1$. So award for $20000 \times 1.08^{n-1}>65000$,
$20000 \times 1.08^{n}=65000$ or $20000 \times(108 \%)^{n} \geqslant 65000$ amongst others.
Condone slips on the 20000 and 65000 but the 1.08 o.e. must be correct
M1: Uses a correct strategy involving logs in an attempt to solve a type of equation or inequality of the form seen above. It cannot be awarded from a sum formula The equation/inequality must contain an index of $n-1, N, n$ etc.
Again condone slips on the 20000 and 65000 but additionally condone an error on the 1.08 , which may appear as 1.8 for example
E.g. $20000 \times 1.08^{n}=65000 \Rightarrow n \log 1.08=\log \frac{65000}{20000} \Rightarrow n=\ldots$
E.g. $2000 \times 1.8^{n}=65000 \Rightarrow \log 2000+n \log 1.8=\log 65000 \Rightarrow n=\ldots$

A1: Interprets their decimal value and gives the correct year number. Year 17

The demand of the question dictates that solutions relying entirely on calculator technology are not acceptable, BUT allow a solution that appreciates a correct term formula or the entire set of calculations where you may see the numbers as part of a larger list E.g. Uses, or implies the use of, an acceptable calculation and finds value(s) for M1: $(n=16) \Rightarrow P=20000 \times 1.08^{15}=$ awrt 63400 or $(n=17) \Rightarrow P=20000 \times 1.08^{16}=$ awrt 68500

M1: $(n=16) \Rightarrow P=20000 \times 1.08^{15}=$ awrt 63400 and $(n=17) \Rightarrow P=20000 \times 1.08^{16}=$ awrt 68500
A1: 17 years following correct method and both M's
(c)

M1: Attempts to use the model with a correct sum formula to find the total profit for the 20 years. You may see an attempt to find the sum of 20 terms via a list. This is acceptable provided there are 20 terms with $u_{n}=1.08 \times u_{n-1}$ seen at least 4 times and the sum attempted.
Condone a slip on the 20000 (e.g appearing as 2000) and/or a slip on the 1.08 with it being the same " r " as in (b). Do not condone 20 appearing as 19 for instance
A1: awrt $£ 915000$ but condone missing unit

The demand of the question dictates that all stages of working should be seen. An answer without working scores M0 A0

Question	Scheme	Marks	AOs
5(a)(i)	$\begin{gathered} 50 x^{2}+38 x+9 \equiv A(5 x+2)(1-2 x)+B(1-2 x)+C(5 x+2)^{2} \\ \Rightarrow B=\ldots \quad \text { or } \quad C=\ldots \end{gathered}$	M1	1.1b
	$B=1$ and $C=2$	A1	1.1b
(a)(ii)	$\begin{gathered} \text { E.g. } x=0 x=0 \Rightarrow 9=2 A+B+4 C \\ \quad \Rightarrow 9=2 A+1+8 \Rightarrow A=\ldots \end{gathered}$	M1	2.1
	$A=0$ *	A1*	1.1b
		(4)	
(b)(i)	$\frac{1}{(5 x+2)^{2}}=(5 x+2)^{-2}=2^{-2}\left(1+\frac{5}{2} x\right)^{-2}$ or $(5 x+2)^{-2}=2^{-2}+\ldots$	M1	3.1a
	$\left(1+\frac{5}{2} x\right)^{-2}=1-2\left(\frac{5}{2} x\right)+\frac{-2(-2-1)}{2!}\left(\frac{5}{2} x\right)^{2}+\ldots$	- M1	1.1b
	$2^{-2}\left(1+\frac{5}{2} x\right)^{-2}=\frac{1}{4}-\frac{5}{4} x+\frac{75}{16} x^{2}+\ldots$	A1	1.1b
	$\frac{1}{(1-2 x)}=(1-2 x)^{-1}=1+2 x+\frac{-1(-1-1)}{2!}(2 x)^{2}+$.	- M1	1.1b
	$\frac{1}{(5 x+2)^{2}}+\frac{2}{1-2 x}=\frac{1}{4}-\frac{5}{4} x+\frac{75}{16} x^{2}+\ldots+2+4 x+8 x^{2}+\ldots$	dM1	2.1
	$=\frac{9}{4}+\frac{11}{4} x+\frac{203}{16} x^{2}+\ldots$	A1	1.1b
(b)(ii)	$\|x\|<\frac{2}{5}$	B1	2.2a
		(7)	
(11 marks)			
Notes			

(a)(i)

M1: Uses a correct identity and makes progress using an appropriate strategy (e.g. sub $x=\frac{1}{2}$) to find a value for B or C. May be implied by one correct value (cover up rule).
A1: Both values correct
(a)(ii)

M1: Uses an appropriate method to establish an equation connecting A with B and/or C and uses their values of B and/or C to find a suitable equation in A.
Amongst many different methods are:
Compare terms in $x^{2} \Rightarrow 50=-10 A+25 C$ which would be implied by $50=-10 A+25 \times 22 "$
Compare constant terms or substitute $x=0 \Rightarrow 9=2 A+B+4 C$ implied by $9=2 A+1+4 \times 2$
A1*: Fully correct proof with no errors.
Note: The second part is a proof so it is important that a suitable proof/show that is seen. Candidates who write down 3 equations followed by three answers (with no working) will score M1 A1 M0 A0
(b)(i)

M1: Applies the key steps of writing $\frac{1}{(5 x+2)^{2}}$ as $(5 x+2)^{-2}$ and takes out a factor of 2^{-2} to form an expression of the form $(5 x+2)^{-2}=2^{-2}(1+* x)^{-2}$ where $*$ is not 1 or 5

Alternatively uses direct expansion to obtain $2^{-2}+\ldots$
M1: Correct attempt at the binomial expansion of $\left(1+{ }^{*} x\right)^{-2}$ up to the term in x^{2}
Look for $1+(-2) * x+\frac{(-2)(-3)}{2} * x^{2}$ where $*$ is not 5 or 1 .
Condone sign slips and lack of ${ }^{* 2}$ on term 3
Alt Look for correct structure for $2^{\text {nd }}$ and $3^{\text {rd }}$ terms by direct expansion. See below
A1: For a fully correct expansion of $(2+5 x)^{-2}$ which may be unsimplified. This may have been combined with their ' B '
A direct expansion would look like $(2+5 x)^{-2}=2^{-2}+(-2) 2^{-3} \times 5 x+\frac{(-2)(-3)}{2} 2^{-4} \times(5 x)^{2}$

M1: Correct attempt at the binomial expansion of $(1-2 x)^{-1}$
Look for $1+(-1) * x+\frac{(-1)(-2)}{2} * x^{2}$ where $*$ is not 1
dM1: Fully correct strategy that is dependent on the previous TWO method marks.
There must be some attempt to use their values of B and C
A1: Correct expression or correct values for p, q and r.
(b)(ii)

B1: Correct range. Allow also other forms, for example $-\frac{2}{5}<x<\frac{2}{5}$ or $x \in\left(-\frac{2}{5}, \frac{2}{5}\right)$ Do not allow multiple answers here. The correct answer must be chosen if two answers are offered

6(a)	$(2+a x)^{8} \quad$ Attempts the term in $x^{5}={ }^{8} C_{5} 2^{3}(a x)^{5}=448 a^{5} x^{5}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
	Sets $448 a^{5}=3402 \Rightarrow a^{5}=\frac{243}{32}$	M1	1.1b
	$\Rightarrow a=\frac{3}{2}$	A1	1.1b
		(4)	
(b)	Attempts either term. So allow for 2^{8} or ${ }^{8} C_{4} 2^{4} a^{4}$	M1	1.1b
	Attempts the sum of both terms $2^{8}+{ }^{8} C_{4} 2^{4} a^{4}$	dM1	2.1
	$=256+5670=5926$	A1	1.1b
		(3)	
(7 marks)			
(a) M1: An attempt at selecting the correct term of the binomial expansion. If all terms are given then the correct term must be used. Allow with a missing bracket ${ }^{8} C_{5} 2^{3} a x^{5}$ and left without the binomial coefficient expanded			

A1: $448 a^{5} x^{5}$ Allow unsimplified but ${ }^{8} C_{5}$ must be "numerical"

M1: Sets their $448 a^{5}=3402$ and proceeds to $\Rightarrow a^{k}=\ldots$ where $k \in \mathrm{~N} \quad k \neq 1$
A1: Correct work leading to $a=\frac{3}{2}$
(b)

M1: Finds either term required. So allow for 2^{8} or ${ }^{8} C_{4} 2^{4} a^{4}$ (even allowing with a)
dM1: Attempts the sum of both terms $\quad 2^{8}+{ }^{8} C_{4} 2^{4} a^{4}$

A1: cso 5926

Question	Scheme	Marks	AOs
7(a)	$(1+8 x)^{\frac{1}{2}}=1+\frac{1}{2} \times 8 x+\frac{\frac{1}{2} \times-\frac{1}{2}}{2!} \times(8 x)^{2}+\frac{\frac{1}{2} \times-\frac{1}{2} \times-\frac{3}{2}}{3!} \times(8 x)^{3}$	M1	1.1 b
	$=1+4 x-8 x^{2}+32 x^{3}+\ldots$.	A 1	1.1 b
	(b)	Substitutes $x=\frac{1}{32}$ into $(1+8 x)^{\frac{1}{2}}$ to give $\frac{\sqrt{5}}{2}$	(3)
	Explains that $x=\frac{1}{32}$ is substituted into $1+4 x-8 x^{2}+32 x^{3}$	A1ft	2.4
	and you multiply the result by 2	$\mathbf{(2)}$	

(a)

M1: Attempts the binomial expansion with $n=\frac{1}{2}$ and obtains the correct structure for term 3 or term 4 .
Award for the correct coefficient with the correct power of x. Do not accept ${ }^{n} \mathrm{C}_{r}$ notation for coefficients.
For example look for term 3 in the form $\frac{\frac{1}{2} \times-\frac{1}{2}}{2!} \times(* x)^{2}$ or $\frac{\frac{1}{2} \times-\frac{1}{2} \times-\frac{3}{2}}{3!} \times(* x)^{3}$
A1: Correct (unsimplified) expression. May be implied by correct simplified expression
A1: $1+4 x-8 x^{2}+32 x^{3}$
Award if there are extra terms (even if incorrect).
Award if the terms are listed $1,4 x,-8 x^{2}, 32 x^{3}$
(b)

M1: Score for substituting $x=\frac{1}{32}$ into $(1+8 x)^{\frac{1}{2}}$ to obtain $\frac{\sqrt{5}}{2}$ or equivalent such as $\sqrt{\frac{5}{4}}$
Alternatively award for substituting $x=\frac{1}{32}$ into both sides and making a connection between the two sides by use of an $=$ or \approx.
E.g. $\left(1+\frac{8}{32}\right)^{\frac{1}{2}}=1+4 \times \frac{1}{32}-8 \times\left(\frac{1}{32}\right)^{2}+32 \times\left(\frac{1}{32}\right)^{3}$ following through on their expansion

Also implied by $\frac{\sqrt{5}}{2}=\frac{1145}{1024}$ for a correct expansion
It is not enough to state substitute $x=\frac{1}{32}$ into " the expansion" or just the rhs " $1+4 x-8 x^{2}+32 x^{3}$ "
A1ft: Requires a full (and correct) explanation as to how the expansion can be used to estimate $\sqrt{5}$ E.g. Calculates $1+4 \times \frac{1}{32}-8 \times\left(\frac{1}{32}\right)^{2}+32 \times\left(\frac{1}{32}\right)^{3}$ and multiplies by 2.

This can be scored from an incorrect binomial expansion or a binomial expansion with more terms. The explanation could be mathematical. So $\frac{\sqrt{5}}{2}=\frac{1145}{1024} \rightarrow \sqrt{5}=\frac{1145}{512}$ is acceptable.
SC : For 1 mark, M1,A0 score for a statement such as "substitute $x=\frac{1}{32}$ into both sides of part (a) and make $\sqrt{5}$ the subject"

Question	Scheme	Marks	AOs	
8(a)	Uses $115=28+5 d \Rightarrow d=(17.4)$	M1	3.1b	
	Uses $28+2 \times 17.4 "=\ldots$	M1	3.4	
	$=62.8\left(\mathrm{~km} \mathrm{~h}^{-1}\right)$	A1	1.1b	
		(3)		
(b)	Uses $115=28 r^{5} \Rightarrow r=(1.3265)$	M1	3.1b	
	Uses $28 \times 11.3265^{4} \mathrm{l}=\ldots$ or $\frac{115}{\\| 1.3265 "}$	M1	3.4	
	$=86.7\left(\mathrm{~km} \mathrm{~h}^{-1}\right)$	A1	1.1b	
		(3)		
(6 marks)				
Notes:				

(a)

M1: Translates the problem into maths using $n^{\text {th }}$ term $=a+(n-1) d$ and attempts to find d
Look for either $115=28+5 d \Rightarrow d=\ldots$ or an attempt at $\frac{115-28}{5}$ condoning slips
It is implied by use of $d=17.4$ Note that $115=28+6 d \Rightarrow d=\ldots$ is M0
M1: Uses the model to find the fastest speed the car can go in $3^{\text {rd }}$ gear using $28+2^{\prime \prime} d$ " or equivalent.
This can be awarded following an incorrect method of finding " d "
A1: $62.8 \mathrm{~km} / \mathrm{h}$ Lack of units are condoned. Allow exact alternatives such as $\frac{314}{5}$
(b)

M1: Translates the problem into maths using $n^{\text {th }}$ term $=a r^{n-1}$ and attempts to find r
It must use the $1^{\text {st }}$ and $6^{\text {th }}$ gear and not the $3^{\text {rd }}$ gear found in part (a)
Look for either $115=28 r^{5} \Rightarrow r=\ldots$ o.e. or $\sqrt[5]{\frac{115}{28}}$ condoning slips.
It is implied by stating or using $r=$ awrt 1.33
M1: Uses the model to find the fastest speed the car can go in $5^{\text {th }}$ gear using $28 \times{ }^{\prime \prime} r^{4}$ " or $\frac{115}{" r "}$ o.e.
This can be awarded following an incorrect method of finding " r "
A common misread seems to be finding the fastest speed the car can go in $3^{\text {rd }}$ gear as in (a).
Providing it is clear what has been done, e.g. $u_{3}=28 \times " r^{2} "$ it can be awarded this mark.
A1: awrt $86.7 \mathrm{~km} / \mathrm{h} \quad$ Lack of units are condoned. Expressions must be evaluated.

Notes:

(a)

M1: Applies the sequence formula $a_{n+1}=\frac{k\left(a_{n}+2\right)}{a_{n}}$ seen once.
This is usually scored in attempting to find the second term. E.g. for $a_{2}=2 k$ or $a_{1+1}=\frac{k(2+2)}{2}$
M1: Attempts to find $a_{1} \rightarrow a_{4}$ and sets $a_{1}=a_{4}$. Condone slips.
Other methods are available. E.g. Set $a_{4}=2$, work backwards to find a_{3} and equate to $k+1$
There is no requirement to see either a_{1} or any of the labels. Look for the correct terms in the correct order.
There is no requirement for the terms to be simplified
FYI $a_{1}=2, a_{2}=2 k, a_{3}=k+1, a_{4}=\frac{k(k+3)}{k+1}$ and so $2=\frac{k(k+3)}{k+1}$
A1*: Proceeds to the given answer with accurate work showing all necessary lines. See MS for minimum (b)

B1: States that when $k=1$, all terms are the same and concludes that the sequence does not have a period of order 3 .
Do not accept "the terms just repeat" or "it would mean all the terms of the sequence are 2 "
There must be some reference to the fact that it does not have order 3. Accept it has order 1.
It is acceptable to state $a_{2}=a_{1}=2$ and state that the sequence does not have order 3
(c)

B1: Deduces the repeating terms are $a_{1 / 4}=2, a_{2 / 5}=-4, a_{3 / 6}=-1$,
M1: Uses a clear strategy to find the sum to 80 terms. This will usually be found using multiples of the first three terms.
For example you may see $\sum_{r=1}^{80} a_{r}=\left(\sum_{r=1}^{78} a_{r}\right)+a_{79}+a_{80}=26 \times(2+-4+-1)+2+-4$

$$
\text { or } \quad \sum_{r=1}^{80} a_{r}=\left(\sum_{r=1}^{81} a_{r}\right)-a_{81}=27 \times(2+-4+-1)-(-1)
$$

For candidates who find in terms of k award for $27 \times 2+27 \times(2 k)+26 \times(k+1)$ or $80 k+80$
If candidates proceed and substitute $k=-2$ into $80 k+80$ to get -80 then all 3 marks are scored.
A1: -80

Note: Be aware that we have seen candidates who find the first three terms correctly, but then find $26 \frac{2}{3} \times(2+-4+-1)=26 \frac{2}{3} \times-3$ which gives the correct answer but it is an incorrect method and should be scored B1 M0 A0

Question	Scheme	Marks	AOs
10(a)	$(1+k x)^{10}=1+\binom{10}{1}(k x)^{1}+\binom{10}{2}(k x)^{2}+\binom{10}{3}(k x)^{3} \ldots$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=1+10 k x+45 k^{2} x^{2}+120 k^{3} x^{3} \ldots$	A1	1.1b
		(3)	
(b)	Sets $120 k^{3}=3 \times 10 k$	B1	1.2
	$4 k^{2}=1 \Rightarrow k=\ldots$	M1	1.1b
	$k= \pm \frac{1}{2}$	A1	1.1b
		(3)	
(6 marks)			

(a)

M1: An attempt at the binomial expansion. This may be awarded for either the second or third term or fourth term. The coefficients may be of the form ${ }^{10} \mathrm{C}_{1},\binom{10}{2}$ etc or eg $\frac{10 \times 9 \times 8}{3!}$
A1: A correct unsimplified binomial expansion. The coefficients must be numerical so cannot be of the form ${ }^{10} \mathrm{C}_{1},\binom{10}{2}$. Coefficients of the form $\frac{10 \times 9 \times 8}{3!}$ are acceptable for this mark. The bracketing must be correct on $(k x)^{2}$ but allow recovery
A1: $\quad 1+10 k x+45 k^{2} x^{2}+120 k^{3} x^{3} \ldots$ or $1+10(k x)+45(k x)^{2}+120(k x)^{3} \ldots$
Allow if written as a list.
(b)

B1: Sets their $120 k^{3}=3 \times$ their $10 k$ (Seen or implied)
For candidates who haven't cubed allow $120 k=3 \times$ their $10 k$ If they write $120 k^{3} x^{3}=3 \times$ their $10 k x$ only allow recovery of this mark if x disappears afterwards.

M1: Solves a cubic of the form $A k^{3}=B k$ by factorising out/cancelling the k and proceeding correctly to at least one value for k. Usually $k=\sqrt{\frac{B}{A}}$
A1: $\quad k= \pm \frac{1}{2}$ o.e ignoring any reference to 0

11(a)	$\frac{1}{\sqrt{4-x}}=(4-x)^{-\frac{1}{2}}=4^{-\frac{1}{2}} \times(1 \pm \ldots \ldots$	M1	2.1
	Uses a "correct" binomial expansion for their $(1+a x)^{n}=1+n a x+\frac{n(n-1)}{2} a^{2} x^{2}+$	M1	1.1b
	$\left(1-\frac{x}{4}\right)^{-\frac{1}{2}}=1+\left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right)+\frac{\left(-\frac{1}{2}\right) \times\left(-\frac{3}{2}\right)}{2}\left(-\frac{x}{4}\right)^{2}$	A1	1.1b
	$\frac{1}{\sqrt{4-x}}=\frac{1}{2}+\frac{1}{16} x+\frac{3}{256} x^{2}$	A1	1.1b
		(4)	
(b) (i)	States $x=-14$ and gives a valid reason. Eg explains that the expansion is not valid for $\|x\|>4$	B1	2.4
		(1)	
(b)(ii)	States $x=-\frac{1}{2}$ and gives a valid reason. Eg. explains that it is closest to zero	B1	2.4
		(1)	
(6 marks)			

(a)

M1: For the strategy of expanding $\frac{1}{\sqrt{4-x}}$ using the binomial expansion.
You must see $4^{-\frac{1}{2}}$ oe and an expansion which may or may not be combined.
M1: Uses a correct binomial expansion for their $(1 \pm a x)^{n}=1 \pm n a x \pm \frac{n(n-1)}{2} a^{2} x^{2}+$
Condone sign slips and the " a " not being squared in term 3 . Condone $a= \pm 1$
Look for an attempt at the correct binomial coefficient for their n, being combined with the correct power of $a x$
A1: $\left(1-\frac{x}{4}\right)^{-\frac{1}{2}}=1+\left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right)+\frac{\left(-\frac{1}{2}\right) \times\left(-\frac{3}{2}\right)}{2}\left(-\frac{x}{4}\right)^{2}$ unsimplified
FYI the simplified form is $1+\frac{x}{8}+\frac{3 x^{2}}{128} \quad$ Accept the terms with commas between.
A1: $\frac{1}{\sqrt{4-x}}=\frac{1}{2}+\frac{1}{16} x+\frac{3}{256} x^{2} \quad$ Ignore subsequent terms. Allow with commas between.
Note: Alternatively $(4-x)^{-\frac{1}{2}}=4^{-\frac{1}{2}}+\left(-\frac{1}{2}\right) 4^{-\frac{3}{2}}(-x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2} 4^{-\frac{5}{2}}(-x)^{2}+.$.
M1: For $4^{-\frac{1}{2}}+\ldots$. M1: As above but allow slips on the sign of x and the value of n A1: Correct unsimplified (as above) A1: As main scheme
(b) Any evaluations of the expansions are irrelevant.

Look for a suitable value and a suitable reason for both parts.
(b)(i)

B1: Requires $x=-14$ with a suitable reason.
Eg. $x=-14$ as the expansion is only valid for $|x|<4$ or equivalent.

$$
\text { Eg ' } x=-14 \text { as }|-14|>4 \prime \quad \text { or } \quad \text { ' I cannot use } x=-14 \text { as }\left|\frac{-14}{4}\right|>1^{\prime}
$$

Eg. ' $x=-14$ as is outside the range $|x|<4$,
Do not allow ' -14 is too big' or ' $x=-14,|x|<4$ ' either way around without some reference to the validity of the expansion.
(b)(ii)

B1: Requires $x=-\frac{1}{2}$ with a suitable reason.
Eg. $x=-\frac{1}{2}$ as it is 'the smallest/smaller value' or ' $x=-\frac{1}{2}$ as the value closest to zero' (that will give the more accurate approximation). The bracketed statement is not required.

Question	Scheme	Marks	AOs
12(a)	Total time for $6 \mathrm{~km}=24$ minutes $+6 \times 1.05+6 \times 1.05^{2}$ minutes	M1	3.4
	$=36.915$ minutes $=36$ minutes 55 seconds *	A1*	1.1b
		(2)	
(b)	$5^{\text {th }} \mathrm{km}$ is $6 \times 1.05=6 \times 1.05^{1}$ $6^{\text {th }} \mathrm{km}$ is $6 \times 1.05 \times 1.05=6 \times 1.05^{2}$ $7^{\text {th }} \mathrm{km}$ is $6 \times 1.05 \times 1.05 \times 1.05=6 \times 1.05^{3}$ Hence the time for the $r^{\text {th }} \mathrm{km}$ is $6 \times 1.05^{r-4}$	B1	3.4
		(1)	
(c)	Attempts the total time for the race $=$ $\text { Eg. } 24 \text { minutes }+\sum_{r=5}^{r=20} 6 \times 1.05^{r-4} \text { minutes }$	M1	3.1a
	Uses the series formula to find an allowable sum $\text { Eg. } \quad \text { Time for } 5^{\text {th }} \text { to } 20^{\text {th }} \mathrm{km} \quad=\frac{6.3\left(1.05^{16}-1\right)}{1.05-1}=(149.04)$	M1	3.4
	Correct calculation that leads to the total time $\text { Eg. } \quad \text { Total time }=24+\frac{6.3\left(1.05^{16}-1\right)}{1.05-1}$	A1	1.1b
	Total time $=$ awrt 173 minutes and 3 seconds	A1	1.1b
		(4)	
(7 marks)			

(a)

M1: For using model to calculate the total time.
Sight of 24 minutes $+6 \times 1.05+6 \times 1.05^{2}$ or equivalent is required. Eg $24+6.3+6.615$
Alternatively in seconds 24 minutes $+378 \mathrm{sec}(6 \min 18 \mathrm{~s})+396.9(6 \min 37 \mathrm{~s})$
A1*: 36 minutes 55 seconds following $36.915,24+6.3+6.615,24+6 \times 1.05+6 \times 1.05^{2}$
or equivalent working in seconds
(b) Must be seen in (b)

B1: As seen in scheme. For making the link between the r th km and the index of 1.05
Or for EXPLAINING that "the time taken per km (6 mins) only starts to increase by 5% after the first $4 \mathrm{~km} "$
(c) The correct sum formula $\frac{a\left(r^{n}-1\right)}{r-1}$, if seen, must be correct in part (c) for all relevant marks

M1: For the overall strategy of finding the total time.
Award for adding 18, 24, 30.3 or awrt 36.9 and the sum of a geometric sequence
So award the mark for expressions such as $6 \times 4+\sum 6 \times 1.05^{n}$ or $24+\frac{6\left(1.05^{20}-1\right)}{1.05-1}$
The geometric sequence formula, must be used with $r=1.05$ oe but condone slips on a and n

M1: For an attempt at using a correct sum formula for a GP to find an allowable sum
The value of r must be 1.05 oe such as 105% but you should allow a slip on the value of n used for their value of a (See below: We are going to allow the correct value of n or one less)
If you don't see a calculation it may be implied by sight of one of the values seen below

Allow for $a=6, \quad n=17$ or 16

$$
\text { Eg. } \frac{6\left(1.05^{17}-1\right)}{1.05-1}=(155.0)
$$

or $\frac{6\left(1.05^{16}-1\right)}{1.05-1}=(141.9)$

Allow for $a=6.3, n=16$ or 15

$$
\operatorname{Eg} \frac{6.3\left(1.05^{16}-1\right)}{1.05-1}=(149.0)
$$

$$
\text { or } \frac{6.3\left(1.05^{15}-1\right)}{1.05-1}=(135.9)
$$

Allow for $a=6.615, n=15$ or $14 \quad \operatorname{Eg} \quad \frac{6.615\left(1.05^{15}-1\right)}{1.05-1}=(142.7) \quad$ or $\frac{6.615\left(1.05^{14}-1\right)}{1.05-1}=(129.6)$

A1: For a correct calculation that will find the total time. It does not need to be processed
Allow for example, amongst others, $24+\frac{6.3\left(1.05^{16}-1\right)}{1.05-1}, \quad 18+\frac{6\left(1.05^{17}-1\right)}{1.05-1}, \quad 30.3+\frac{6.615\left(1.05^{15}-1\right)}{1.05-1}$
A1: For a total time of awrt 173 minutes and 3 seconds
This answer alone can be awarded 4 marks as long as there is some evidence of where it has come from.

Candidates that list values: Handy Table for Guidance

M1: For a correct overall strategy which would involve adding four sixes followed by at least 16 other values

The values which may be written in the form 6×1.05^{2} or as numbers

Can be implied by $6+6+6+6+(6 \times 1.05)+\ldots .+\left(6 \times 1.05^{16}\right)$

M1: For an attempt to add the numbers from (6×1.05) to $\left(6 \times 1.05^{16}\right)$. This could be done on a calculator in which case expect to see awrt 149

Alternatively, if written out, look for 16 values with 8 correct or follow through correct to 1 dp

A1: Awrt 173 minutes
A1: Awrt 173 minutes and 3 seconds

Km	Time per km	Total Time
1	6.0000	
2	6.0000	12
3	6.0000	18
4	6.0000	24
5	6.3000	30.3
6	6.6150	36.915
7	6.9458	43.86075
8	7.2930	51.15379
9	7.6577	58.81148
10	8.0406	66.85205
11	8.4426	75.29465
12	8.8647	84.15939
13	9.3080	93.46736
14	9.7734	103.2407
15	10.2620	113.5028
16	10.7751	124.2779
17	11.3139	135.5918
18	11.8796	147.4714
19	12.4736	159.945
20	13.0972	173.0422

Question	Scheme	Marks	AOs
13(a)	2^{6} or 64 as the constant term	B1	1.1 b
	$\left(2+\frac{3 x}{4}\right)^{6}=\ldots+{ }^{6} \mathrm{C}_{1} 2^{5}\left(\frac{3 x}{4}\right)^{1}+{ }^{6} \mathrm{C}_{2} 2^{4}\left(\frac{3 x}{4}\right)^{2}+\ldots$		
$=\ldots+6 \times 2^{5}\left(\frac{3 x}{4}\right)^{1}+\frac{6 \times 5}{2} \times 2^{4}\left(\frac{3 x}{4}\right)^{2}+\ldots$	M1		

Notes

(a)

B1: Sight of either 2^{6} or 64 as the constant term
M1: An attempt at the binomial expansion. This may be awarded for a correct attempt at either the second OR third term. Score for the correct binomial coefficient with the correct power of 2 and the correct power of $\frac{3 x}{4}$ condoning slips. Correct bracketing is not essential for this M mark.
Condone ${ }^{6} \mathrm{C}_{2} 24 \frac{3 x^{2}}{4}$ for this mark
A1: Correct (unsimplified) second AND third terms.
The binomial coefficients must be processed to numbers /numerical expression e.g $\frac{6!}{4!2!}$ or $\frac{6 \times 5}{2}$ They cannot be left in the form ${ }^{6} \mathrm{C}_{1}$ and/or $\binom{6}{2}$
A1: $64+144 x+135 x^{2}+\ldots \quad$ Ignore any terms after this. Allow to be written $64,144 x, 135 x^{2}$
(b)

B1ft: $x=-0.1$ or $-\frac{1}{10}$ with a comment about substituting this into their $64+144 x+135 x^{2}$
If they have written (a) as $64,144 x, 135 x^{2}$ candidate would need to say substitute $x=-0.1$ into the sum of the first three terms.
As they do not have to perform the calculation allow
Set $2+\frac{3 x}{4}=1.925$, solve for x and then substitute this value into the expression from (a) If a value of x is found then it must be correct

Alternative to part (a)
$\left(2+\frac{3 x}{4}\right)^{6}=2^{6}\left(1+\frac{3 x}{8}\right)^{6}=2^{6}\left(1+{ }^{6} \mathrm{C}_{1}\left(\frac{3 x}{8}\right)^{1}+{ }^{6} \mathrm{C}_{2}\left(\frac{3 x}{8}\right)^{2}+\ldots\right)$
B1: Sight of either 2^{6} or 64

M1: An attempt at the binomial expansion. This may be awarded for either the second or third term. Score for the correct binomial coefficient with the correct power of $\frac{3 x}{8}$ Correct bracketing is not essential for this mark.
A1: A correct attempt at the binomial expansion on the second and third terms.
A1: $64+144 x+135 x^{2}+\ldots \quad$ Ignore any terms after this.

Question	Scheme	Marks	AOs
14 (a)	$\sqrt{\frac{1+4 x}{1-x}}=(1+4 x)^{0.5} \times(1-x)^{-0.5}$	B1	3.1a
	$\begin{gathered} (1+4 x)^{0.5}=1+0.5 \times(4 x)+\frac{0.5 \times-0.5}{2} \times(4 x)^{2} \\ (1-x)^{-0.5}=1+(-0.5)(-x)+\frac{(-0.5) \times(-1.5)}{2}(-x)^{2} \\ (1+4 x)^{0.5}=1+2 x-2 x^{2} \text { and }(1-x)^{-0.5}=1+0.5 x+0.375 x^{2} \text { oe } \end{gathered}$	M1 M1 A1	1.1 b 1.1 b 1.1 b
	$\begin{aligned} (1+4 x)^{0.5} \times(1-x)^{-0.5} & =\left(1+2 x-2 x^{2} \ldots \ldots\right) \times\left(1+\frac{1}{2} x+\frac{3}{8} x^{2} \ldots\right) \\ & =1+\frac{1}{2} x+\frac{3}{8} x^{2}+2 x+x^{2}-2 x^{2}+\ldots \\ & =A+B x+C x^{2} \end{aligned}$	dM1	2.1
	$=1+\frac{5}{2} x-\frac{5}{8} x^{2} \ldots \ldots .$. *	A1*	1.1b
		(6)	
(b)	Expression is valid $\|x\|<\frac{1}{4}$ Should not use $x=\frac{1}{2}$ as $\frac{1}{2}>\frac{1}{4}$	B1	2.3
		(1)	
(c)	Substitutes $x=\frac{1}{11}$ into $\sqrt{\frac{1+4 x}{1-x}} \approx 1+\frac{5}{2} x-\frac{5}{8} x^{2}$	M1	1.1b
	$\sqrt{\frac{3}{2}}=\frac{1183}{968}$	A1	1.1b
	(so $\sqrt{6}$ is) $\quad \frac{1183}{484}$ or $\frac{2904}{1183}$	A1	2.1
		(3)	
(10 marks)			

(a)

B1: Scored for key step in setting up the process so that it can be attempted using binomial expansions This could be achieved by $\sqrt{\frac{1+4 x}{1-x}}=(1+4 x)^{0.5} \times(1-x)^{-0.5}$ See end for other alternatives

It may be implied by later work.
M1: Award for an attempt at the binomial expansion $(1+4 x)^{0.5}=1+0.5 \times(4 x)+\frac{(0.5) \times(-0.5)}{2} \times(4 x)^{2}$ There must be three (or more terms). Allow a missing bracket on the $(4 x)^{2}$ and a sign slip so the correct application may be implied by $1+2 x \pm 0.5 x^{2}$
M1: Award for an attempt at the binomial expansion $(1-x)^{-0.5}=1+(-0.5)(-x)+\frac{(-0.5) \times(-1.5)}{2}(-x)^{2}$ There must be three (or more terms). Allow a missing bracket on the $(-x)^{2}$ and a sign slips so the method may be awarded on $1 \pm 0.5 x \pm 0.375 x^{2}$

A1: Both correct and simplified. This may be awarded for a correct final answer if a candidate does all their simplification at the end
dM1: In the main scheme it is for multiplying their two expansions to reach a quadratic. It is for the key step in adding 'six' terms to produce the quadratic expression. Higher power terms may be seen. Condone slips on
the multiplication on one term only. It is dependent upon having scored the first B and one of the other two M's
In the alternative it is for multiplying $\left(1+\frac{5}{2} x-\frac{5}{8} x^{2}\right)(1-x)^{0.5}$ and comparing it to $(1+4 x)^{0.5}$
It is for the key step in adding 'six' terms to produce the quadratic expression.
$\mathbf{A 1 *}$: Completes proof with no errors or omissions. In the alternative there must be some reference to the fact that both sides are equal.
(b)

B1: States that the expansion may not / is not yalld when $|x|>\frac{1}{4}$

$$
|x|<\frac{1}{4}
$$

This may be implied by a statement such as or stating that the expansion is only valid when
Condone, for this mark a candidate who substitutes $x=\frac{1}{2}$ into the $4 x$ and states it is not valid as $2>1$ oe Don't award for candidates who state that $\frac{1}{2}$ is too big without any reference to the validity of the expansion. As a rule you should see some reference to $\frac{1}{\frac{1}{\operatorname{or} 4 x}}$
(c)(i) $\quad x=\frac{1}{11}$
M1: Substitutes into BOTH sides and attempts to find at least one side.

As the left hand side is $\frac{\sqrt{6}}{2}$ they may multiply by 2 first which is acceptable
A1: Finds both sides leading to a correct equation/statement $\sqrt{\frac{15}{10}}=\frac{1183}{968}$ oe $\sqrt{6}=2 \times \frac{1183}{968}$
A1: $\sqrt{6}=\frac{1183}{484}$ or $\sqrt{6}=\frac{2904}{1183} \quad \sqrt{6}=2 \times \frac{1183}{968}=\frac{1183}{484}$ would imply all 3 marks

Watch for other equally valid alternatives for 11(a) including
B1: $(1+4 x)^{0.5} \approx\left(1+\frac{5}{2} x-\frac{5}{8} x^{2}\right)(1-x)^{0.5}$ then the M's are for $(1+4 x)^{0.5}$ and $(1-x)^{0.5}$
M1: $(1-x)^{0.5}=1+(0.5)(-x)+\frac{(0.5) \times(-0.5)}{2}(-x)^{2}$

Or
B1: $\sqrt{\frac{1+4 x}{1-x}}=\sqrt{1+\frac{5 x}{1-x}}=\left(1+5 x(1-x)^{-1}\right)^{\frac{1}{2}}$ then the first M1 for one application of binomial and the second would be for both $(1-x)^{-1}$ and $(1-x)^{-2}$
\qquad
Or
B1: $\sqrt{\frac{1+4 x}{1-x}} \times \frac{\sqrt{1-x}}{\sqrt{1-x}}=\sqrt{\left(1+3 x-4 x^{2}\right)} \times(1-x)^{-1}=\left(1+\left(3 x-4 x^{2}\right)\right)^{\frac{1}{2}} \times(1-x)^{-1}$

B1: For 512

A1: For $-144 x$
A1: For $+18 x^{2}$ Allow even following $\left(+\frac{x}{16}\right)^{2}$
Listing is acceptable for all 4 marks
(b)

M1: For setting their $512 a=128$ and proceeding to find a value for a. Alternatively they could substitute $x=0$ into both sides of the identity and proceed to find a value for a.
A1 ft: $a=\frac{1}{4}$ oe Follow through on $\frac{128}{\text { their } 512}$
(c)

M1: Condone $512 b \pm 144 \times a=36$ following through on their 512 , their -144 and using their value of " a " to find a value for " b "
A1: $b=\frac{9}{64}$ oe

Question	Scheme	Marks	AOs
16 (a)	$\left(1+\frac{3}{x}\right)^{2}=1+\frac{6}{x}+\frac{9}{x^{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(b)	$\left(1+\frac{3}{4} x\right)^{6}=1+6 \times\left(\frac{3}{4} x\right)+\ldots$	B1	1.1b
	$\left(1+\frac{3}{4} x\right)^{6}=1+6 \times\left(\frac{3}{4} x\right)+\frac{6 \times 5}{2} \times\left(\frac{3}{4} x\right)^{2}+\frac{6 \times 5 \times 4}{3 \times 2} \times\left(\frac{3}{4} x\right)^{3}+\ldots$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=1+\frac{9}{2} x+\frac{135}{16} x^{2}+\frac{135}{16} x^{3}+\ldots$	A1	1.1b
		(4)	
(c)	$\left(1+\frac{3}{x}\right)^{2}\left(1+\frac{3}{4} x\right)^{6}=\left(1+\frac{6}{x}+\frac{9}{x^{2}}\right)\left(1+\frac{9}{2} x+\frac{135}{16} x^{2}+\frac{135}{16} x^{3}+\ldots\right)$		
	Coefficient of $x=\frac{9}{2}+6 \times \frac{135}{16}+9 \times \frac{135}{16}=\frac{2097}{16}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(8 marks)			

Notes:

(a)

M1: Attempts $\left(1+\frac{3}{x}\right)^{2}=A+\frac{B}{x}+\frac{C}{x^{2}}$
A1: $\left(1+\frac{3}{x}\right)^{2}=1+\frac{6}{x}+\frac{9}{x^{2}}$
(b)

B1: First two terms correct, may be un-simplified
M1: Attempts the binomial expansion. Implied by the correct coefficient and power of x seen at least once in term 3 or 4
A1: Binomial expansion correct and un-simplified
A1: Binomial expansion correct and simplified.
(c)

M1: Combines all relevant terms for their $\left(1+\frac{A}{x}+\frac{B}{x^{2}}\right)\left(1+C x+D x^{2}+E x^{3}+\ldots\right)$ to find the coefficient of x.
A1: Fully correct

Question	Scheme	Marks	AOs
17 (a)	$(4+5 x)^{\frac{1}{2}}=(4)^{\frac{1}{2}}\left(1+\frac{5 x}{4}\right)^{\frac{1}{2}}=2\left(1+\frac{5 x}{4}\right)^{\frac{1}{2}}$	B1	1.1b
	(2) $\left[1+\left(\frac{1}{2}\right)(5 x)+\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)(5 x)^{2}\right]$	M1	1.1b
	[2 . $\left(\frac{1}{4}\right)+\cdots$	A1ft	1.1b
	$=2+\frac{5}{4} x-\frac{25}{64} x^{2}+\ldots$	A1	2.1
		(4)	
(b)(i)	$\left\{x=\frac{1}{10} \Rightarrow\right\}(4+5(0.1))^{\frac{1}{2}}$	M1	1.1b
	$=\sqrt{4.5}=\frac{3}{2} \sqrt{2}$ or $\frac{3}{\sqrt{2}}$		
	$\begin{aligned} & \frac{3}{2} \sqrt{2} \text { or } 1.5 \sqrt{2} \text { or } \frac{3}{\sqrt{2}}=2+\frac{5}{4}\left(\frac{1}{10}\right)-\frac{25}{64}\left(\frac{1}{10}\right)^{2}+\ldots \quad\{=2.121 \ldots\} \\ & \Rightarrow \frac{3}{2} \sqrt{2}=\frac{543}{256} \text { or } \frac{3}{\sqrt{2}}=\frac{543}{256} \Rightarrow \sqrt{2}=\ldots \end{aligned}$	M1	3.1a
	So, $\sqrt{2}=\frac{181}{128}$ or $\sqrt{2}=\frac{256}{181}$	A1	1.1b
(b)(ii)	$x=\frac{1}{10}$ satisfies $\|x\|<\frac{4}{5}$ (o.e.), so the approximation is valid.	B1	2.3
		(4)	
(8 marks)			

Question 17 Notes:

(a)

B1: Manipulates $(4+5 x)^{\frac{1}{2}}$ by taking out a factor of $(4)^{\frac{1}{2}}$ or 2
M1:
Expands $(\ldots+\lambda x)^{\frac{1}{2}}$ to give at least 2 terms which can be simplified or un-simplified,
E.g. $1+\left(\frac{1}{2}\right)(\lambda x)$ or $\left(\frac{1}{2}\right)(\lambda x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(\lambda x)^{2} \quad$ or $\quad 1+\ldots+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(\lambda x)^{2}$
where λ is a numerical value and where $\lambda \neq 1$.
A1ft: A correct simplified or un-simplified $1+\left(\frac{1}{2}\right)(\lambda x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(\lambda x)^{2}$ expansion with consistent ($\left.\lambda x\right)$
A1:
Fully correct solution leading to $2+\frac{5}{4} x+k x^{2}$, where $k=-\frac{25}{64}$
(b)(i)

M1:
Attempts to substitute $x=\frac{1}{10}$ or 0.1 into $(4+5 x)^{\frac{1}{2}}$
M1: A complete method of finding an approximate value for $\sqrt{2}$. E.g.

- substituting $x=\frac{1}{10}$ or 0.1 into their part (a) binomial expansion and equating the result to an expression of the form $\alpha \sqrt{2}$ or $\frac{\beta}{\sqrt{2}} ; \alpha, \beta \neq 0$
- followed by re-arranging to give $\sqrt{2}=\ldots$

A1: $\quad \frac{181}{128}$ or any equivalent fraction, e.g. $\frac{362}{256}$ or $\frac{543}{384}$
Also allow $\frac{256}{181}$ or any equivalent fraction
(b)(ii)

B1: Explains that the approximation is valid because $x=\frac{1}{10}$ satisfies $|x|<\frac{4}{5}$

Question	Scheme	Marks	AOs
20(a)	$\left(2-\frac{x}{2}\right)^{7}=2^{7}+\binom{7}{1} 2^{6} \cdot\left(-\frac{x}{2}\right)+\binom{7}{2} 2^{5} \cdot\left(-\frac{x}{2}\right)^{2}+\ldots$	M1	1.1b
	$\left(2-\frac{x}{2}\right)^{7}=128+\ldots$	B1	1.1b
	$\left(2-\frac{x}{2}\right)^{7}=\ldots-224 x+\ldots$	A1	1.1b
	$\left(2-\frac{x}{2}\right)^{7}=\ldots+\ldots+168 x^{2}(+\ldots)$	A1	1.1b
		(4)	
(b)	Solve $\left(2-\frac{x}{2}\right)=1.995$ so $x=0.01$ and state that 0.01 would be substituted for x into the expansion	B1	2.4
		(1)	
(5 marks)			
Notes:			
(a) M1: Need correct binomial coefficient with correct power of 2 and correct power of x. Coefficients may be given in any correct form; e.g. 1, 7, 21 or ${ }^{7} C_{0},{ }^{7} C_{1},{ }^{7} C_{2}$ or equivalent B1: Correct answer, simplified as given in the scheme A1: Correct answer, simplified as given in the scheme A1: Correct answer, simplified as given in the scheme			
(b) B1: Needs a full explanation i.e. to state $x=0.01$ and that this would be substituted and that it is a solution of $\left(2-\frac{x}{2}\right)=1.995$			

Question	Scheme	Marks	AOs
21(a)(i) (ii)	$a_{1}=3, a_{2}=5, a_{3}=3 \ldots$	B 1	1.1 b
	2	B 1	1.1 b
	(b)	$\sum_{n=1}^{85} a_{n}=42 \times(3+5)+3$ o.e.	$\mathbf{(2)}$

(a)(i) Mark (a)(i) and (a)(ii) together.

B1: States the values of at least $a_{2}=5$ and $a_{3}=3$. This is sufficient but if more terms are given they must be correct. There is no need to see e.g. $a_{2}=\ldots, a_{3}=\ldots$ just look for values.
Allow an algebraic approach e.g. $a_{n+1}=8-a_{n}, a_{n+2}=8-\left(8-a_{n}\right)=a_{n}$
A conclusion is not needed.
(a)(ii)

B1: States that the order of the periodic sequence is 2
Allow "second order", "it repeats every 2 numbers" or equivalent statements that convey the idea of the period being 2 .
Note that ± 2 is B0
(b)

M1: Attempts a correct method to find $\sum_{n=1}^{85} a_{n}$
For example $\sum_{n=1}^{85} a_{n}=42 \times(3+5)+3, \sum_{n=1}^{85} a_{n}=\frac{84}{2} \times 3+42 \times 5+3$ or $\sum_{n=1}^{85} a_{n}=43 \times(3+5)-5$
or $\sum_{n=1}^{85} a_{n}=43 \times 3+42 \times 5$ or $\sum_{n=1}^{85} a_{n}=\frac{85}{2} \times 8-1$
There may be other methods e.g. "Chunking": $5 \times(3+5)=40,40 \times 8=320,320+3 \times 3+2 \times 5=339$ A1: 339. Correct answer only scores both marks.

Attempts to use an AP formula score M0

Question	Scheme	Marks	AOs
22(a)	$\sqrt{4-9 x}=2(1 \pm \ldots)^{\frac{1}{2}}$	B1	1.1b
	$\begin{gathered} \left(1-" \frac{9 x}{4} n\right)^{\frac{1}{2}}=\ldots+\frac{\frac{1}{2} \times\left(-\frac{1}{2}\right)\left("-\frac{9 x}{4} n\right)^{2}}{2!} \text { or } \\ \ldots+\frac{\frac{1}{2} \times\left(-\frac{1}{2}\right) \times\left(-\frac{3}{2}\right)\left("-\frac{9 x}{4} n\right)^{3}}{3!} \end{gathered}$	M1	1.1b
	$1+\frac{1}{2} \times\left(-\frac{9 x}{4}\right)+\frac{\frac{1}{2} \times\left(-\frac{1}{2}\right)\left(-\frac{9 x}{4}\right)^{2}}{2!}+\frac{\frac{1}{2} \times\left(-\frac{1}{2}\right) \times\left(-\frac{3}{2}\right)\left(-\frac{9 x}{4}\right)^{3}}{3!}$	A1	1.1b
	$\sqrt{4-9 x}=2-\frac{9 x}{4}-\frac{81 x^{2}}{64}-\frac{729 x^{3}}{512}$	A1	1.1b
		(4)	
(b)	States that the approximation will be an overestimate since all terms (after the first one) in the expansion are negative (since $x>0$)	B1	3.2b
		(1)	
(5 marks)			
Notes:			

(a)

B1: Takes out a factor of 4 and writes $\sqrt{4-9 x}=2(1 \pm \ldots)^{\frac{1}{2}}$ or $\sqrt{4}(1 \pm \ldots)^{\frac{1}{2}}$ or $4^{\frac{1}{2}}(1 \pm \ldots)^{\frac{1}{2}}$
M1: For an attempt at the binomial expansion of $(1+a x)^{\frac{1}{2}} a \neq 1$ to form term 3 or term 4 with the correct structure. Look for the correct binomial coefficient multiplied by the corresponding power of x e.g.

$$
\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}(\ldots x)^{2} \text { or } \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}(\ldots x)^{3} \text { where } \ldots \neq 1
$$

Condone missing or incorrect brackets around the x terms but the binomial coefficients must be correct. Allow 2 ! and/or 3 ! or 2 and/or 6 . Ignore attempts to find more terms.
Do not allow notation such as $\binom{\frac{1}{2}}{1},\binom{\frac{1}{2}}{2}$ unless these are interpreted correctly.
A1: Correct expression for the expansion of $\left(1-\frac{9 x}{4}\right)^{\frac{1}{2}}$ e.g.

$$
1+\frac{1}{2} \times\left(-\frac{9 x}{4}\right)+\frac{\frac{1}{2} \times\left(\frac{1}{2}-1\right)\left(\pm \frac{9 x}{4}\right)^{2}}{2!}+\frac{\frac{1}{2} \times\left(\frac{1}{2}-1\right) \times\left(\frac{1}{2}-2\right)\left(-\frac{9 x}{4}\right)^{3}}{3!}
$$

which may be left unsimplified as shown but the bracketing must be correct unless any missing brackets are implied by subsequent work. If the 2 outside this expansion is only partially applied to this expansion then score A0 but if it is applied to all terms this A1 can be implied.
OR at least 2 correct simplified terms for the final expansion from, $-\frac{9 x}{4},-\frac{81 x^{2}}{64},-\frac{729 x^{3}}{512}$
A1: $\sqrt{4-9 x}=2-\frac{9 x}{4}-\frac{81 x^{2}}{64}-\frac{729 x^{3}}{512}$ oe and condone e.g. $2+\frac{-9 x}{4}-\frac{81 x^{2}}{64}-\frac{729 x^{3}}{512}$

Allow equivalent mixed numbers and/or decimals for the coefficients e.g.:
$\left(\frac{9}{4}, 2 \frac{1}{4}, 2.25\right),\left(\frac{81}{64}, 1 \frac{17}{64}, 1.265625\right),\left(\frac{729}{512}, 1 \frac{217}{512}, 1.423828125\right)$
Ignore any extra terms if found. Allow terms to be "listed" and apply isw once a correct expansion is seen. Allow recovery if applicable e.g. if an " x " is lost then "reappears".

Direct expansion in (a) can be marked in a similar way:

$\sqrt{4-9 x}=(4-9 x)^{\frac{1}{2}}=4^{\frac{1}{2}}+\left(\frac{1}{2}\right) 4^{-\frac{1}{2}} \times(-9 x)^{1}+\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right) 4^{-\frac{3}{2}} \times \frac{(-9 x)^{2}}{2!}+\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) 4^{-\frac{5}{2}} \times \frac{(-9 x)^{3}}{3!}$
B1: For 2 or $\sqrt{4}$ or $4^{\frac{1}{2}}$ as the constant term in the expansion.
M1: Correct form for term 3 or term 4.
E.g. $\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right) \times \frac{(\ldots x)^{2}}{2!}$ or $\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \times \frac{(\ldots x)^{3}}{3!}$ where $\ldots \neq 1$

Condone missing brackets around the x terms but the binomial coefficients must be correct.
Allow 2 ! and/or 3! or 2 and/or 6. Ignore attempts to find more terms.
Do not allow notation such as $\binom{\frac{1}{2}}{1},\binom{\frac{1}{2}}{2}$ unless these are interpreted correctly.
A1: Correct expansion (unsimplified as above)
OR at least 2 correct simplified terms from, $-\frac{9 x}{4},-\frac{81 x^{2}}{64},-\frac{729 x^{3}}{512}$
A1: $\sqrt{4-9 x}=2-\frac{9 x}{4}-\frac{81 x^{2}}{64}-\frac{729 x^{3}}{512}$ oe and condone e.g. $2+\frac{-9 x}{4}-\frac{81 x^{2}}{64}-\frac{729 x^{3}}{512}$
Allow equivalent mixed numbers and/or decimals for the coefficients e.g.:
$\left(\frac{9}{4}, 2 \frac{1}{4}, 2.25\right),\left(\frac{81}{64}, 1 \frac{17}{64}, 1.265625\right),\left(\frac{729}{512}, 1 \frac{217}{512}, 1.423828125\right)$
Ignore any extra terms if found. Allow terms to be "listed" and apply isw once a correct expansion is seen. Allow recovery if applicable e.g. if an " x " is lost then "reappears".

(b)

B1: States that the approximation will be an overestimate due to the fact that all terms (after the first one) in the expansion are negative or equivalent statements e.g.

- Overestimate because the terms are negative
- Overestimate as the terms are being taken away (from 2)

Condone "overestimate as every term is negative"

If you think a response is worthy of credit but are unsure then use Review.
This mark depends on having obtained an expansion in (a) of the form
$k-p x-q x^{2}-r x^{3} \quad k, p, q, r>0$ but note that if e.g. one of the algebraic terms is zero or was "lost" or there are extra negative terms this mark is still available.

Question	Scheme	Marks	AOs
23(a)	$16+(21-1) \times d=24 \Rightarrow d=\ldots$	M1	1.1b
	$d=0.4$	A1	1.1b
	Answer only scores both marks.		
		(2)	
(b)	$S_{n}=\frac{1}{2} n\{2 a+(n-1) d\} \Rightarrow S_{500}=\frac{1}{2} \times 500\{2 \times 16+499 \times$ "0.4" $\}$	M1	1.1b
	$=57900$	A1	1.1b
	Answer only scores both marks		
		(2)	
	(b) Alternative using $S_{n}=\frac{1}{2} n\{a+l\}$		
	$l=16+(500-1) \times " 0.4 "=215.6 \Rightarrow S_{500}=\frac{1}{2} \times 500\{16+" 215.6 "\}$	M1	1.1b
	$=57900$	A1	1.1b
(4 marks)			
Notes			
(a) M1: Correct strategy to find the common difference - must be a correct method using $a=16$, and $n=21$ and the 24 . The method may be implied by their working. If the AP term formula is quoted it must be correct, so use of e.g. $u_{n}=a+n d$ scores M0 A1: Correct value. Accept equivalents e.g. $\frac{8}{20}, \frac{4}{10}, \frac{2}{5}$ etc. (b) M1: Attempts to use a correct sum formula with $a=16, n=500$ and their numerical d from part (a) If a formula is quoted it must be correct (it is in the formula book) A1: Correct value Alternative: M1: Correct method for the $500^{\text {th }}$ term and then uses $S_{n}=\frac{1}{2} n\{a+l\}$ with their l A1: Correct value Note that some candidates are showing implied use of $u_{n}=a+n d$ by showing the following: (a) $d=\frac{24-16}{21}=\frac{8}{21}$ (b) $S_{500}=\frac{1}{2} \times 500\left\{2 \times 16+499 \times \frac{8}{21}\right\}=55523.80952 \ldots$ This scores (a) M0A0 (b) M1A0			

Question	Scheme	Marks	AOs
24	$a=\left(\frac{3}{4}\right)^{2} \quad \text { or } \quad a=\frac{9}{16}$ or $r=-\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\frac{\frac{9}{16}}{1-\left(-\frac{3}{4}\right)}=\ldots$	M1	3.1a
	$=\frac{9}{28} *$	A1*	1.1b
		(3)	
	Alternative 1:		
	$\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\frac{-\frac{3}{4}}{1-\left(-\frac{3}{4}\right)}=\ldots \text { or } r=-\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=-\frac{3}{7}-\left(-\frac{3}{4}\right)$	M1	3.1a
	$=\frac{9}{28} *$	A1*	1.1b
	Alternative 2:		
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{3}+\left(\frac{3}{4}\right)^{4}-\ldots$	B1	2.2a
	$\begin{gathered} =\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{4}+\ldots-\left(\frac{3}{4}\right)^{3}-\left(\frac{3}{4}\right)^{5}-\ldots \\ \left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{4}+\ldots=\left(\frac{3}{4}\right)^{2}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right) \text { or }-\left(\frac{3}{4}\right)^{3}-\left(\frac{3}{4}\right)^{5}-\ldots=-\left(\frac{3}{4}\right)^{3}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right) \\ \sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\left(\frac{3}{4}\right)^{2}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right)-\left(\frac{3}{4}\right)^{3}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right) \end{gathered}$	M1	3.1a
	$=\frac{9}{28} *$	A1*	1.1b
	Alternative 3:		
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=S=\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{3}+\left(\frac{3}{4}\right)^{4}-\ldots$	B1	2.2a
	$=\left(\frac{3}{4}\right)^{2}\left(1-\left(\frac{3}{4}\right)+\left(\frac{3}{4}\right)^{2}-\ldots\right)=\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}+S\right) \Rightarrow \frac{7}{16} S=\frac{9}{64} \Rightarrow S=\ldots$	M1	3.1a
	$=\frac{9}{28} *$	A1*	1.1b

B1: Deduces the correct value of the first term or the common ratio. The correct first term can be
seen as part of them writing down the sequence but must be the first term.
M1: Recognises that the series is infinite geometric and applies the sum to infinity GP formula with $a=\frac{9}{16}$ and $r= \pm \frac{3}{4}$
A1*: Correct proof

Alternative 1:

B1: Deduces the correct value for the sum to infinity (starting at $n=1$) or the common ratio
M1: Calculates the required value by subtracting the first term from their sum to infinity
A1*: Correct proof
Alternative 2:
B1: Deduces the correct value of the first term or the common ratio.
M1: Splits the series into "odds" and "evens", attempts the sum of both parts and calculates the required value by adding both sums
A1*: Correct proof

Alternative 3:

B1: Deduces the correct value of the first term
M1: A complete method by taking out the first term, expresses the rhs in terms of the original sum and rearranges for "S"
A1*: Correct proof

Question	Scheme	Marks	AOs
$\mathbf{2 5}$	${ }^{7} \mathrm{C}_{4} a^{3}(2 x)^{4}$	M 1	1.1 b
	$\frac{7!}{4!3!} a^{3} \times 2^{4}=15120 \Rightarrow a=\ldots$	dM 1	2.1
	$a=3$	A 1	1.1 b
		$\mathbf{(3)}$	

Notes:

M1: For an attempt at the correct coefficient of x^{4}.
The coefficient must have

- the correct binomial coefficient
- the correct power of a
- 2 or 2^{4} (may be implied)

May be seen within a full or partial expansion.
Accept ${ }^{7} \mathrm{C}_{4} a^{3}(2 x)^{4}, \frac{7!}{4!3!} a^{3}(2 x)^{4},\binom{7}{4} a^{3}(2 x)^{4}, 35 a^{3}(2 x)^{4}, 560 a^{3} x^{4},\binom{7}{4} a^{3} 16 x^{4}$ etc.
or $\quad{ }^{7} \mathrm{C}_{4} a^{3} 2^{4}, \frac{7!}{4!3!} a^{3} 2^{4},\binom{7}{4} a^{3} 2^{4}, 35 a^{3} 2^{4}, 560 a^{3}$ etc.
or ${ }^{7} \mathrm{C}_{3} a^{3}(2 x)^{4}, \frac{7!}{4!3!} a^{3}(2 x)^{4},\binom{7}{3} a^{3}(2 x)^{4}, 35 a^{3}(2 x)^{4}, 560 a^{3} x^{4},\binom{7}{3} a^{3} 16 x^{4}$ etc.
or ${ }^{7} \mathrm{C}_{3} a^{3} 2^{4}, \frac{7!}{4!3!} a^{3} 2^{4},\binom{7}{3} a^{3} 2^{4}, 35 a^{3} 2^{4}, 560 a^{3}$
You can condone missing brackets around the " $2 x$ " so allow e.g. $\frac{7!}{4!3!} a^{3} 2 x^{4}$
An alternative is to attempt to expand $a^{7}\left(1+\frac{2 x}{a}\right)^{7}$ to give $a^{7}\left(\ldots \frac{7 \times 6 \times 5 \times 4}{4!}\left(\frac{2 x}{a}\right)^{4} \ldots\right)$
Allow M1 for e.g. $a^{7}\left(\ldots \frac{7 \times 6 \times 5 \times 4}{4!}\left(\frac{2 x}{a}\right)^{4} \ldots\right), a^{7}\left(\ldots\binom{7}{4}\left(\frac{2 x}{a}\right)^{4} \ldots\right), a^{7}\left(\ldots 35\left(\frac{2 x}{a}\right)^{4} \ldots\right)$ etc.
but condone missing brackets around the $\frac{2 x}{a}$
Note that ${ }^{7} \mathrm{C}_{3},\binom{7}{3}$ etc. are equivalent to ${ }^{7} \mathrm{C}_{4},\binom{7}{4}$ etc. and are equally acceptable.
If the candidate attempts $(a+2 x)(a+2 x)(a+2 x) \ldots$ etc. then it must be a complete method to reach the required term. Send to review if necessary.
dM1: For " 560 " $a^{3}=15120 \Rightarrow a=\ldots$ Condone slips on copying the 15120 but their " 560 " must be an attempt at ${ }^{7} \mathrm{C}_{4} \times 2$ or ${ }^{7} \mathrm{C}_{4} \times 2^{4}$ and must be attempting the cube root of $\frac{15120}{" 560 "}$. Depends on the first mark.
A1: $a=3$ and no other values i.e. ± 3 scores A0
Note that this is fairly common:

$$
{ }^{7} \mathrm{C}_{4} a^{3} 2 x^{4}=70 a^{3} x^{4} \Rightarrow 70 a^{3}=15120 \Rightarrow a^{3}=216 \Rightarrow a=6
$$

and scores M1 dM1 A0

Question	Scheme	Marks	AOs
26(a)	$S_{n}=a+a r+a r^{2}+\ldots \ldots \ldots .+a r^{n-1}$	B1	1.2
	$r S_{n}=a r+a r^{2}+a r^{3}+\ldots \ldots \ldots .+a r^{n} \Rightarrow S_{n}-r S_{n}=\ldots$	M1	2.1
	$\begin{gathered} S_{n}-r S_{n}=a-a r^{n} \\ S_{n}(1-r)=a\left(1-r^{n}\right) \Rightarrow S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} * \end{gathered}$	A1 A1*	$1.1 \mathrm{~b}$ 2.1
		(4)	
(b)	$\frac{a\left(1-r^{10}\right)}{1-r}=4 \times \frac{a\left(1-r^{5}\right)}{1-r} \text { or } 4 \times \frac{a\left(1-r^{10}\right)}{1-r}=\frac{a\left(1-r^{5}\right)}{1-r}$ Equation in r^{10} and r^{5} (and possibly $1-r$)	M1	3.1a
	$1-r^{10}=4\left(1-r^{5}\right)$	A1	1.1b
	$r^{10}-4 r^{5}+3=0 \Rightarrow\left(r^{5}-1\right)\left(r^{5}-3\right)=0 \Rightarrow r^{5}=\ldots$ or e.g. $1-r^{10}=4\left(1-r^{5}\right) \Rightarrow\left(1-r^{5}\right)\left(1+r^{5}\right)=4\left(1-r^{5}\right) \Rightarrow r^{5}=\ldots$	dM1	2.1
	$r=\sqrt[5]{3}$ oe only	A1	1.1 b
		(4)	
(8 marks)			

Notes:

(a)

B1: Writes out the sum or lists terms. Condone the omission of S.
The sum must include the first and last terms and (at least) two other correct terms and no incorrect terms e.g. $a r^{n}$ Note that the sum may be seen embedded within their working.
M1: For the key step in attempting to multiply the first series by r and subtracting.
A1: $S_{n}-r S_{n}=a-a r^{n}$ either way around but condone one side being prematurely factorised (but not both)
following correct work but this could follow B0 if insufficient terms were shown.
A1*: Depends on all previous marks. Proceeds to given result showing all steps including seeing both sides unfactorised at some point in their working.
Note: If terms are listed rather than added then allow the first 3 marks if otherwise correct but withhold the final mark.
(b)

M1: For the correct strategy of producing an equation in just r^{10} and r^{5} (and possibly $(1-r)$) with the " 4 " on either side using the result from part (a) and makes progress to at least cancel through by a
Some candidates retain the " $1-r$ " and start multiplying out e.g. $(1-r)\left(1-r^{10}\right)$ and this mark is still available as long as there is progress in cancelling the " a ".
A1: Correct equation with the a and the $1-r$ cancelled. Allow any correct equation in just r^{5} and r^{10}
dM1: Depends on the first M. Solves as far as $r^{5}=\ldots$ by solving a 3 term quadratic in r^{5} by a valid method - see general guidance or by difference of 2 squares - see above
A1: $r=\sqrt[5]{3}$ oe only. The solution $r=1$ if found must be rejected here.
(b) Note: For candidates who use $S_{5}=4 S_{10}$ expect to see:

$$
4 \times \frac{a\left(1-r^{10}\right)}{1-r}=\frac{a\left(1-r^{5}\right)}{1-r} \Rightarrow 4\left(1-r^{10}\right)=\left(1-r^{5}\right) \mathrm{M} 1 \mathrm{~A} 0
$$

Examplerfor ${ }^{10}$ (a): $-3=0 \Rightarrow\left(4 r^{5}+3\right)\left(r^{5}-1\right)=0 \Rightarrow r^{5}=\ldots$ or $4\left(1-r^{5}\right)\left(1+r^{5}\right)=\left(1-r^{5}\right) \Rightarrow r^{5}=\ldots \mathrm{dM} 1 \mathrm{~A} 0$

This scores B1M1A1A0:
B1: Writes down the sum including first and last terms and at least 2 other correct terms and no incorrect terms

M1: Multiplies by r and subtracts

A1: Correct equation (we allow one side to be prematurely factorised)

A0: One side was prematurely factorised

Question	Scheme	Marks	AOs
27 (i) Way 1	$\sum_{r=4}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}=20\left(\frac{1}{2}\right)^{4}+20\left(\frac{1}{2}\right)^{5}+20\left(\frac{1}{2}\right)^{6}+\ldots$		
	$=\frac{20\left(\frac{1}{2}\right)^{4}}{1-2}$	M1	1.1b
	1-2 $\frac{1}{2}$	M1	3.1a
	$\{=(1.25)(2)\}=2.5$ o.e.	A1	1.1b
		(3)	
(i) Way 2	$\sum_{r=4}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}=\sum_{r=1}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}-\sum_{r=1}^{3} 20 \times\left(\frac{1}{2}\right)^{r}$		
	$10-(10+5+2.5)$ or $=\frac{10}{1-\frac{1}{2}}-\frac{10\left(1-\left(\frac{1}{2}\right)^{3}\right)}{1-\frac{1}{2}}$	M1	1.1b
	$1-\frac{1}{2}\left(1-\frac{1}{2} \quad 1-\frac{1}{2}\right.$	M1	3.1a
	$\{=20-17.5\}=2.5$ o.e.	A1	1.1b
		(3)	
(i) Way 3	$\sum_{r=4}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}=\sum_{r=0}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}-\sum_{r=0}^{3} 20 \times\left(\frac{1}{2}\right)^{r}$		
	$20-(20+10+5+25)$ or $=\frac{20}{1-\frac{1}{2}}-\frac{20\left(1-\left(\frac{1}{2}\right)^{4}\right)}{1-\frac{1}{2}}$	M1	1.1b
		M1	3.1a
	$\{=40-37.5\}=2.5 \quad$ o.e.	A1	1.1b
		(3)	
(ii) Way 1	$\left\{\sum_{n=1}^{48} \log _{5}\left(\frac{n+2}{n+1}\right)=\right\}$		
	$=\log \left(\frac{3}{2}\right)+\log \left(\frac{4}{3}\right)+\ldots+\log \left(\frac{50}{49}\right)=\log \left(\frac{3}{2} \times \frac{4}{3} \times \times \frac{50}{49}\right)$	M1	1.1b
	$=\log _{5}\left(\frac{3}{2}\right)+\log _{5}\left(\frac{\overline{3}}{}\right)+\ldots \ldots+\log _{5}(\overline{49})=\log _{5}\left(\frac{3}{2} \times \frac{-}{3} \times \ldots \times \frac{\overline{49}}{}\right)$	M1	3.1a
	$=\log _{5}\left(\frac{50}{2}\right)$ or $\log _{5}(25)=2 *$	A1*	2.1
		(3)	
(ii) Way 2	$\left\{\sum_{n=1}^{48} \log _{5}\left(\frac{n+2}{n+1}\right)=\right\} \sum_{n=1}^{48}\left(\log _{5}(n+2)-\log _{5}(n+1)\right)$	M1	1.1b
	$=\left(\log _{5} 3+\log _{5} 4+\ldots \ldots .+\log _{5} 50\right)-\left(\log _{5} 2+\log _{5} 3+\ldots \ldots .+\log _{5} 49\right)$	M1	3.1a
	$=\log _{5} 50-\log _{5} 2$ or $\log _{5}\left(\frac{50}{2}\right)$ or $\log _{5}(25)=2 *$	A1*	2.1
		(3)	
(6 marks)			

Notes for Question 27	
(i)	Way 1
M1:	Applies $\frac{a}{1-r}$ for their r (where $-1<$ their $r<1$) and their value for a
M1:	Finds the infinite sum by using a complete strategy of applying $\frac{20\left(\frac{1}{2}\right)^{4}}{1-\frac{1}{2}}$
A1:	2.5 o.e.
(i)	Way 2
M1:	Applies $\frac{a}{1-r}$ for their r (where $-1<$ their $r<1$) and their value for a
M1:	Finds the infinite sum by using a completely correct strategy of applying $\frac{10}{1-\frac{1}{2}}-(10+5+2.5)$ or $\frac{10}{1-\frac{1}{2}}-\frac{10\left(1-\left(\frac{1}{2}\right)^{3}\right)}{1-\frac{1}{2}}$
A1:	2.5 o.e.
(i)	Way 3
M1:	Applies $\frac{a}{1-r}$ for their r (where $-1<$ their $r<1$) and their value for a
M1:	Finds the infinite sum by using a completely correct strategy of applying $\frac{20}{1-\frac{1}{2}}-(20+10+5+2.5)$ or $\frac{20}{1-\frac{1}{2}}-\frac{20\left(1-\left(\frac{1}{2}\right)^{4}\right)}{1-\frac{1}{2}}$
A1:	2.5 o.e.
Note:	Give M1 M1 A1 for a correct answer of 2.5 from no working in (i)
(ii)	Way 1
M1:	Some evidence of applying the addition law of logarithms as part of a valid proof
M1:	Begins to solve the problem by just writing (or by combining) at least three terms including - either the first two terms and the last term - or the first term and the last two terms
Note:	The 2nd mark can be gained by writing any of - listing $\log _{5}\left(\frac{3}{2}\right), \log _{5}\left(\frac{4}{3}\right), \log _{5}\left(\frac{50}{49}\right)$ or $\log _{5}\left(\frac{3}{2}\right), \log _{5}\left(\frac{49}{48}\right), \log _{5}\left(\frac{50}{49}\right)$ - $\log _{5}\left(\frac{3}{2}\right)+\log _{5}\left(\frac{4}{3}\right)+\ldots \ldots+\log _{5}\left(\frac{50}{49}\right)$ - $\log _{5}\left(\frac{3}{2}\right)+\ldots \ldots .+\log _{5}\left(\frac{49}{48}\right)+\log _{5}\left(\frac{50}{49}\right)$ - $\log _{5}\left(\frac{3}{2} \times \frac{4}{3} \times \ldots \times \frac{50}{49}\right) \quad\left\{\right.$ this will also gain the $1^{\text {st }}$ M1 mark $\}$ - $\log _{5}\left(\frac{3}{2} \times \ldots \times \frac{49}{48} \times \frac{50}{49}\right) \quad\left\{\right.$ this will also gain the $\boldsymbol{1}^{\text {st }}$ M1 mark $\}$
A1*:	Correct proof leading to a correct answer of 2
Note:	Do not allow the $2^{\text {nd }} \mathrm{M} 1$ if $\log _{5}\left(\frac{3}{2}\right), \log _{5}\left(\frac{4}{3}\right)$ are listed and $\log _{5}\left(\frac{50}{49}\right)$ is used for the first time in their applying the formula $S_{48}=\frac{48}{2}\left(\log _{5}\left(\frac{3}{2}\right)+\log _{5}\left(\frac{50}{49}\right)\right)$
Note:	Listing all 48 terms Give M0 M1 A0 for $\log _{5}\left(\frac{3}{2}\right)+\log _{5}\left(\frac{4}{3}\right)+\log _{5}\left(\frac{5}{4}\right)+\ldots \ldots .+\log _{5}\left(\frac{50}{49}\right)=2 \quad\{$ lists all terms $\}$ Give M0 M0 A0 for $0.2519 \ldots+0.1787 \ldots+0.1386 \ldots+\ldots \ldots+0.0125 \ldots=2$ \{all terms in decimals\}

Notes for Question 27

(ii)	Way 2
M1:	Uses the subtraction law of ${\operatorname{logarithms~to~give~} \log _{5}\left(\frac{n+2}{n+1}\right) \rightarrow \log _{5}(n+2)-\log _{5}(n+1)}$
M1:	Begins to solve the problem by writing at least three terms for each of $\log _{5}(n+2)$ and $\log _{5}(n+1)$ including - either the first two terms and the last term for both $\log _{5}(n+2)$ and $\log _{5}(n+1)$ - or the first term and the last two terms for both $\log _{5}(n+2)$ and $\log _{5}(n+1)$
Note:	This mark can be gained by writing any of - $\left(\log _{5} 3+\log _{5} 4+\ldots \ldots+\log _{5} 50\right)-\left(\log _{5} 2+\log _{5} 3+\ldots \ldots+\log _{5} 49\right)$ - $\left(\log _{5} 3+\ldots . . .+\log _{5} 49+\log _{5} 50\right)-\left(\log _{5} 2+\ldots . .+\log _{5} 48+\log _{5} 49\right)$ - $\left(\log _{5} 3+\log _{5} 4+\ldots . .+\log _{5} 50\right)-\left(\log _{5} 2+\log _{5} 3+\ldots . .+\log _{5} 49\right)$ - $\left(\log _{5} 3-\log _{5} 2\right)+\left(\log _{5} 4-\log _{5} 3\right)+\ldots . .+\left(\log _{5} 50-\log _{5} 49\right)$ - $\log _{5} 3-\log _{5} 2, \ldots \ldots, \log _{5} 49-\log _{5} 48, \log _{5} 50-\log _{5} 49$
A1*:	Correct proof leading to a correct answer of 2
Note:	The base of 5 can be omitted for the M marks in part (ii), but the base of 5 must be included in the final line (as shown on the mark scheme) of their solution.
Note:	If a student uses a mixture of a Way 1 or Way 2 method, then award the best Way 1 mark only or the best Way 2 mark only.
Note:	Give M1 M0 A0 ($1^{\text {st }} \mathrm{M}$ for implied use of subtraction law of logarithms) for $\sum_{n=1}^{48} \log _{5}\left(\frac{n+2}{n+1}\right)=91.8237 \ldots-89.8237 \ldots=2$
Note:	Give M1 M1 A1 for $\begin{aligned} \sum_{n=1}^{48} \log _{5}\left(\frac{n+2}{n+1}\right)= & \sum_{n=1}^{48}\left(\log _{5}(n+2)-\log _{5}(n+1)\right) \\ & =\log _{5}(3 \times 4 \times \ldots \ldots \times 50)-\log _{5}(2 \times 3 \times \ldots \ldots \times 49) \\ & =\log _{5}\left(\frac{50!}{2}\right)-\log _{5}(49!) \quad \text { or }=\log _{5}(25 \times 49!)-\log _{5}(49!) \\ & =\log _{5} 25=2 \end{aligned}$

Question	Scheme	Marks	AOs
28	(i) $\sum_{r=1}^{16}\left(3+5 r+2^{r}\right)=131798$; (ii) $u_{1}, u_{2}, u_{3}, \ldots,: u_{n+1}=\frac{1}{u_{n}}, u_{1}=\frac{2}{3}$		
(i) Way 1	$\left\{\sum_{r=1}^{16}\left(3+5 r+2^{r}\right)=\right\} \sum_{r=1}^{16}(3+5 r)+\sum_{r=1}^{16}\left(2^{r}\right)$	M1	3.1a
	16 (2(8)+15(5)) $+2\left(2^{16}-1\right)$	M1	1.1b
	$=\frac{16}{2}(2(8)+15(5))+\frac{2(2)}{2-1}$	M1	1.1b
	$=728+131070=131798$ *	A1*	2.1
		(4)	
(i) Way 2	$\left\{\sum_{r=1}^{16}\left(3+5 r+2^{r}\right)=\right\} \sum_{r=1}^{16} 3+\sum_{r=1}^{16}(5 r)+\sum_{r=1}^{16}\left(2^{r}\right)$	M1	3.1a
	(3 $\times 16)+16$	M1	1.1b
	$=(3 \times 16)+\frac{16}{2}(2(5)+15(5))+\frac{2\left(2^{6}-1\right.}{2-1}$	M1	1.1b
	$=48+680+131070=131798$ *	A1*	2.1
		(4)	
(i) Way 3	$\begin{aligned} \text { Sum }= & 10+17+26+39+60+97+166+299+560+1077+2106 \\ & +4159+8260+16457+32846+65619=131798 * \end{aligned}$	M1	3.1a
		M1	1.1b
		M1	1.1b
		A1*	2.1
		(4)	
(ii)	$\left\{u_{1}=\frac{2}{3}\right\}, u_{2}=\frac{3}{2}, u_{3}=\frac{2}{3}, \ldots($ can be implied by later working)	M1	1.1b
	$\left\{\sum_{r=1}^{100} u_{r}=\right\} 50\left(\frac{2}{3}\right)+50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3}+\frac{3}{2}\right)$	M1	2.2a
	$=\frac{325}{3}\left(\right.$ or $108 \frac{1}{3}$ or 108.3 or $\frac{1300}{12}$ or $\left.\frac{650}{6}\right)$	A1	1.1b
		(3)	
(7 marks)			

Notes for Question 28

(i)

| M1: Uses a correct methodical strategy to enable the given sum, $\sum_{r=1}^{16}\left(3+5 r+2^{r}\right)$ to be found |
| :--- | :--- |
| Allow M1 for any of the following: |
| - expressing the given sum as either |
| $\quad \sum_{r=1}^{16}(3+5 r)+\sum_{r=1}^{16}\left(2^{r}\right), \quad \sum_{r=1}^{16} 3+\sum_{r=1}^{16}(5 r)+\sum_{r=1}^{16}\left(2^{r}\right)$ or $\sum_{r=1}^{16} 3+5 \sum_{r=1}^{16} r+\sum_{r=1}^{16}\left(2^{r}\right)$ |

- attempting to find both $\sum_{r=1}^{16}(3+5 r)$ and $\sum_{r=1}^{16}\left(2^{r}\right)$ separately
- (3×16) and attempting to find both $\sum_{r=1}^{16}(5 r)$ and $\sum_{r=1}^{16}\left(2^{r}\right)$ separately

M1: \quad Way 1: Correct method for finding the sum of an AP with $a=8, d=5, n=16$
Way 2: (3×16) and a correct method for finding the sum of an AP
M1: \quad Correct method for finding the sum of a GP with $a=2, r=2, n=16$
A1*: \quad For all steps fully shown (with correct formulae used) leading to 131798
Note: Way 1: Give $2^{\text {nd }}$ M1 for writing $\sum_{r=1}^{16}(3+5 r)$ as $\frac{16}{2}(8+83)$

Note:	Way 2: Give $2^{\text {nd }} \mathrm{M} 1$ for writing $\sum_{r=1}^{16} 3+\sum_{r=1}^{16}(5 r)$ as $48+\frac{16}{2}(5+80)$ or $48+680$
Note:	Give $3^{\text {rd }} \mathrm{M} 1$ for writing $\sum_{r=1}^{16}\left(2^{r}\right)$ as $\frac{2\left(1-2^{16}\right)}{1-2}$ or $2\left(2^{16}-1\right)$ or $\left(2^{17}-2\right)$

(i)

Way 3
M1: \quad At least 6 correct terms and 16 terms shown
M1: \quad At least 10 correct terms (may not be 16 terms)
M1: \quad At least 15 correct terms (may not be 16 terms)
A1*: All 16 terms correct and an indication that the sum is 131798
(ii)

M1: For some indication that the next two terms of this sequence are $\frac{3}{2}, \frac{2}{3}$

M1:	For deducing that the sum can be found by applying $50\left(\frac{2}{3}\right)+50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3}+\frac{3}{2}\right)$, o.e.
A1:	Obtains $\frac{325}{3}$ or $108 \frac{1}{3}$ or 108.3 or an exact equivalent
Note:	Allow $1^{\text {st }} \mathrm{M} 1$ for $u_{2}=\frac{3}{2}$ (or equivalent) and $u_{3}=\frac{2}{3}$ (or equivalent)
Note:	Allow $1^{\text {st }} \mathrm{M} 1$ for the first 3 terms written as $\frac{2}{3}, \frac{3}{2}, \frac{2}{3}, \ldots$
Note:	Allow $1^{\text {st }} \mathrm{M} 1$ for the $2^{\text {nd }}$ and $3^{\text {rd }}$ terms written as $\frac{3}{2}, \frac{2}{3}, \ldots$ in the correct order
Note:	Condone $\frac{2}{3}$ written as 0.66 or awrt 0.67 for the $1^{\text {st }} \mathrm{M} 1$ mark
Note:	Give A0 for 108.3 or $108.333 \ldots$ without reference to $\frac{325}{3}$ or $108 \frac{1}{3}$ or $108 . \dot{3}$

Question	Scheme	Marks	AOs
30(a)	$\sqrt{(4-x)}=2\left(1-\frac{1}{4} x\right)^{\frac{1}{2}}$	M1	2.1
	$\left(1-\frac{1}{4} x\right)^{\frac{1}{2}}=1+\frac{1}{2}\left(-\frac{1}{4} x\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{1}{4} x\right)^{2}+\ldots$	M1	1.1b
	$\sqrt{(4-x)}=2\left(1-\frac{1}{8} x-\frac{1}{128} x^{2}+..\right)$	A1	1.1b
	$\sqrt{(4-x)}=2-\frac{1}{4} x-\frac{1}{64} x^{2}+\ldots$ and $k=-\frac{1}{64}$	A1	1.1b
		(4)	
(b)	The expansion is valid for $\|x\|<4$, so $x=1$ can be used	B1	2.4
		(1)	
(5 marks)			
Notes:			
(a) M1: Tak M1: For A1: A1:	s out a factor of 4 and writes $\sqrt{(4-x)}=2(1 \pm \ldots)^{\frac{1}{2}}$ an attempt at the binomial expansion with $n=\frac{1}{2}$ $(1+a x)^{\frac{1}{2}}=1+\frac{1}{2}(a x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(a x)^{2}+\ldots$ ect expression inside the bracket $1-\frac{1}{8} x-\frac{1}{128} x^{2}+$ whic $\overline{-x)}=2-\frac{1}{4} x-\frac{1}{64} x^{2}+\ldots \text { and } k=-\frac{1}{64}$	nsimpl	
(b) B1: Th	xpansion is valid for $\|x\|<4$, so $x=1$ can be used		

Question	Scheme	Marks	AOs
31	Attempts $S_{\infty}=\frac{8}{7} \times S_{6} \Rightarrow \frac{a}{1-r}=\frac{8}{7} \times \frac{a\left(1-r^{6}\right)}{1-r}$	M1	2.1
	$\Rightarrow 1=\frac{8}{7} \times\left(1-r^{6}\right)$	M1	2.1
	$\Rightarrow r^{6}=\frac{1}{8} \Rightarrow r=.$.	M1	1.1b
	$\Rightarrow r= \pm \frac{1}{\sqrt{2}} \quad($ so $k=2)$	A1	1.1b
(4 marks)			

Notes:

M1: Substitutes the correct formulae for S_{∞} and S_{6} into the given equation $S_{\infty}=\frac{8}{7} \times S_{6}$
M1: Proceeds to an equation just in r
M1: Solves using a correct method
A1: \quad Proceeds to $r= \pm \frac{1}{\sqrt{2}}$ giving $k=2$

Question Number	Scheme		Marks
32 (a)	$a+(n-1) d=600+9 \times 120$	This mark is for: $600+9 \times 120 \text { or } 600+8 \times 120$	M1
	$=(£) 1680$	1680 with or without the " $£$ "	A1
	Answer only scores both marks		
	M1: Lists ten terms starting $£ 600$, $£ 720$, $£ 840, £ 960, \ldots$ A1: Identifies the $10^{\text {th }}$ term as $(£) 1680$		
			(2)
(b)	Allow the use of \boldsymbol{n} instead of \boldsymbol{N} throughout in (b)		
	$d=80$ for Kim	Identifies or uses $d=80$ for Kim	B1
	$\begin{aligned} & \frac{N}{2}\{2 \times 600+(N-1) \times 120\} \text { OR } \\ & \frac{N}{2}\{2 \times 130+(N-1) \times 80\} \end{aligned}$	Attempts a sum formula for Andy or Kim. A correct formula must be seen or implied with: $a=600, d=120$ for Andy or $a=130, d=80$ for Kim. If B0 was scored, allow M1 here if Kim's incorrect " d " is used.	M1
	$\frac{N}{2}\{2 \times 600+(N-1) \times 120\}=2 \times \frac{N}{2}\{2 \times 130+(N-1) \times 80\}$ A correct equation in any form		A1
	$20 N=360 \Rightarrow N=\ldots$	Proceeds to find a value for N. (Allow if it leads to $N<0$) Dependent on the first method mark and must be an equation that uses Andy's and Kim's sum.	dM1
	$(N=) 18$	Ignore $N / n=0$ and if a correct value of N is seen, isw any further reference to years etc.	A1
	See below for listing approach		
	If you see $N=18$ with no working send to Review		
			(5)
			(7 marks)

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Andy	600	1320	2160	3120	4200	5400	6720	8160	9720	11400	13200	15120	17160	19320	21600	24000	26520	29160
Kim	130	340	630	1000	1450	1980	2590	3280	4050	4900	5830	6840	7930	9100	10350	11680	13090	14580
Kimx2	260	680	1260	2000	2900	3960	5180	6560	8100	9800	11660	13680	15860	18200	20700	23360	26180	29160

B1: States or uses $d=80$ for Kim
M1: Attempts to find the total savings for Andy or Kim - must see the correct pattern for
Andy (600, 1320, 2160,...) or Kim (130, 340, 630,...) (or Kimx2)
A1: Correct totals for Andy and Kim (or Kimx2) at least as far as $n=18$
M1: Identifies when Andy's total $=2 x$ Kim's total
A1: $N=18$

Question Number	Scheme 33 (a)		Attempts to use the given recurrence relation correctly at least once e.g. $a_{2}=\frac{4}{4+1}$ or $a_{1}=4 \Rightarrow a_{2}=\frac{4}{4+1}$

Question Number	Scheme		Marks
34.(a)	$\left(a_{2}=\right) 2 k$	$2 k$ only	B1
	$\left(a_{3}=\right) \frac{k(" 2 k "+1)}{" 2 k "}$	For substituting their a_{2} into $a_{3}=\frac{k\left(a_{2}+1\right)}{a_{2}}$ to find a_{3} in terms of just k	M1
	$\left(a_{3}=\right) \frac{2 k+1}{2}$	$\left(a_{3}=\right) \frac{2 k+1}{2}$ or exact simplified equivalent such as $\left(a_{3}=\right) k+\frac{1}{2}$ or $\frac{1}{2}(2 k+1)$ but not $k+\frac{k}{2 k}$ Must be seen in (a) but isw once a correct simplified answer is seen.	A1
			(3)
	Note that there are no marks in (b) for using an AP (or GP) sum formula unless their terms do form an AP (or GP).		
(b)	$\sum_{r=1}^{3} a_{r}=10 \Rightarrow 1+" 2 k "+" \frac{2 k+1}{2} "=10$	Writes $1+$ their $a_{2}+$ their $a_{3}=10$. E.g. $1+2 k+\frac{2 k^{2}+k}{2 k}=10$. Must be a correct follow through equation in terms of k only.	M1
	$\begin{gathered} \Rightarrow 2+4 k+2 k+1=20 \Rightarrow k=\ldots \\ \text { or e.g. } \\ \Rightarrow 6 k^{2}-17 k=0 \Rightarrow k=\ldots \end{gathered}$	Solves their equation in k which has come from the sum of 3 terms $=10$, and reaches $k=\ldots$ Condone poor algebra but if a quadratic is obtained then the usual rules apply for solving - see General Principles. (Note that it does not need to be a 3term quadratic in this case)	M1
	$(k=) \frac{17}{6}$	$k=\frac{17}{6}$ or exact equivalent e.g. $2 \frac{5}{6}$ Do not allow $k=\frac{8.5}{3}$ or $k=\frac{17 / 2}{3}$ Ignore any reference to $k=0$. Allow 2.83 recurring as long as the recurring is clearly indicated e.g. a dot over the 3 .	A1
			(3)
			(6 marks)

Question Number	Scheme		Marks
35. (a)	$206=140+(12-1) \times d \Rightarrow d=\ldots$	Uses $206=140+(12-1) \times d$ and proceeds as far as $d=\ldots$	M1
	$(d=) 6$	Correct answer only can score both marks.	A1
			(2)
(b)	Attempts $S_{n}=\frac{n}{2}(a+l)$ or $S_{12}=\frac{12}{2}(140+206)$ or $S_{12}=\frac{12}{2}(2 \times 140+(12-1) \times " 6 ")$ or $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ with $n=12$, $a=140, l=206, d='^{\prime} 6^{\prime}$ WAY 1 $S_{11}=\frac{11}{2}\left(140+206-" 6^{\prime}\right)$ or $S_{11}=\frac{11}{2}(2 \times 140+(11-1) \times " 6 ")$ Or Attempts $S_{n}=\frac{n}{2}(a+l)$ or $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ with $n=11$, $a=140, l=206-^{\prime} 6^{\prime}, d=' 6 '$ WAY2 If they are using $S_{n}=\frac{n}{2}(2 a+(n-1) d)$, the n must be used consistently.		M1
	$\begin{gathered} S=2076 \text { WAY1 } \\ \text { or } \\ S=1870 \text { WAY } 2 \end{gathered}$	Correct sum (may be implied)	A1
	$\begin{gathered} (52-12) \times 206=\ldots \\ \text { or }(52-11) \times 206=\ldots \end{gathered}$	Attempts to find $(52-12) \times 206$ or $(52-11) \times 206$. Does not have to be consistent with their n used for the first Method mark.	M1
	$\begin{aligned} & \text { Total }= " 2076 "+" 8240 "=\ldots \\ & \text { (WAY 1) } \\ & \text { or } \\ & \text { Total }==1870 "+8446 "=\ldots \\ & \text { (WAY 2) } \end{aligned}$	Attempts to find the total by adding the sum to 12 terms with (52-12) lots of 206 or attempts to find the total by adding the sum to 11 terms with $(52-11)$ lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks.	ddM1
	10316	cao	A1
			(5)
			(7 marks)

Question Number	Scheme	Notes	Marks
	$a_{1}=4, a_{n+1}=5-k a_{n}, n \ldots 1$		
36. (a)	$\begin{gathered} a_{2}=5-k a_{1}=5-4 k \\ a_{3}=5-k a_{2}=5-k(5-4 k) \end{gathered}$	M1: Uses the recurrence relation correctly at least once. This may be implied by $a_{2}=5-4 k$ or by the use of $a_{3}=5-k\left(\right.$ their $\left.a_{2}\right)$	M1A1
		A1: Two correct expressions - need not be simplified but must be seen in (a). Allow $a_{2}=5-k 4$ and $a_{3}=5-5 k+k^{2} 4$ Isw if necessary for a_{3}.	
			[2]
(b)	$\sum_{r=1}^{3}(1)=1+1+1$	Finds $1+1+1$ or 3 somewhere in their solution (may be implied by e.g. $5+6-4 k$ $+6-5 k+4 k^{2}$). Note that $5+6-4 k+6-5 k+4 k^{2}$ would score B1 and the M1 below.	B1
	$\sum_{r=1}^{3} a_{r}=4+" 5-4 k "+" 5-5 k+4 k^{2} "$	Adds 4 to their a_{2} and their a_{3} where a_{2} and a_{3} are functions of k. The statement as shown is sufficient.	M1
	$\sum_{r=1}^{3}\left(1+a_{r}\right)=17-9 k+4 k^{2}$	Cao but condone ' $=0$ ' after the expression	A1
	Allow full marks in (b) for correct answer only		
			[3]
(c)	500	cao	B1
			[1]
			6 marks

Question Number	Scheme	Notes	Marks
37.(a)	John; arithmetic series, $a=60, d=15$.		
	$\begin{gathered} 60+75+90=225^{*} \text { or } \\ S_{3}=\frac{3}{2}(120+(3-1)(15))=225^{*} \end{gathered}$	Finds and adds the first 3 terms or uses sum of 3 terms of an AP and obtains the printed answer, with no errors.	B1 *
	Beware: The $\mathbf{1 2}{ }^{\text {th }}$ term of the sequence is $\mathbf{2 2 5}$ also so look out for $60+(12-1) \times 15=225$. This is B0.		
			[1]
(b)	$t_{9}=60+(n-1) 15=(\mathfrak{f}) 180$	$\begin{aligned} & \text { M1: Uses } 60+(n-1) 15 \text { with } n=8 \text { or } 9 \\ & \hline \text { A1: }(\mathfrak{£}) 180 \\ & \hline \end{aligned}$	M1 A1
	Listing:M1: Uses $a=60$ and $d=15$ to select the $8^{\text {th }}$ or $9^{\text {th }}$ term (allow arithmetic slips)(Special case (£) 165 only scores M1A0)		
			[2]
(c)	$S_{n}=\frac{n}{2}(120+(n-1)(15))$ or $S_{n}=\frac{n}{2}(60+60+(n-1)(15))$	Uses correct formula for sum of n terms with $a=60$ and $d=15$ (must be a correct formula but ignore the value they use for n or could be in terms of n)	M1
	$S_{n}=\frac{12}{2}(120+(12-1)(15))$	Correct numerical expression	A1
	$=(£) 1710$	cao	A1
	Listing: M1: Uses $a=60$ and $d=15$ and finds the sum of at least 12 terms (allow arithmetic slips) A2: (£)1710		
			[3]
(d)	$3375=\frac{n}{2}(120+(n-1)(15))$	Uses correct formula for sum of n terms with $a=60, d=15$ and puts $=3375$	M1
	$6750=15 n(8+(n-1)) \Rightarrow 15 n^{2}+105 n=6750$	Correct three term quadratic. E.g. $6750=105 n+15 n^{2}, 3375=\frac{15}{2} n^{2}+\frac{105}{2} n$ This may be implied by equations such as $6750=15 n(n+7)$ or $3375=\frac{15}{2}\left(n^{2}+7 n\right)$	A1
	$n^{2}+7 n=25 \times 18$ *	Achieves the printed answer with no errors but must see the 450 or 450 in factorised form or e.g. 6750, 3375 in factorised form i.e. an intermediate step.	A1*
			[3]
(e)	$n=18 \Rightarrow$ Aged 27	M1: Attempts to solve the given quadratic or states $n=18$	M1 A1
		A1: Age $=27$ or just 27	
	Age $=27$ only scores both marks (i.e. $n=18$ need not be seen)		
	Note that (e) is not hence so allow valid attempts to solve the given equation for M1		
			[2]
			11 marks

n	1	2	3	4	5	6	7	8	9
u_{n}	60	75	90	105	120	135	150	165	180
$\mathrm{~S}_{n}$	60	135	225	330	450	585	735	900	1080
Age	10	11	12	13	14	15	16	17	18

n	10	11	12	13	14	15	16	17	18
u_{n}	195	210	225	240	255	270	285	300	315
$\mathrm{~S}_{n}$	1275	1485	1710	1950	2205	2475	2760	3060	3375
Age	19	20	21	22	23	24	25	26	27

Question Number	Scheme		Marks
38(i).(a)	$U_{3}=4$	cao	B1
			(1)
(b)	$\sum_{n=1}^{n=20} U_{n}=4+4+4 . \ldots \ldots \ldots .+4 \text { or } 20 \times 4$	For realising that all 20 terms are 4 and that the sum is required. Possible ways are $4+4+4 \ldots . .+4$ or 20×4 or $\frac{1}{2} \times 20(2 \times 4+19 \times 0)$ or $\frac{1}{2} \times 20(4+4)$ (Use of a correct sum formula with $n=20, a=4$ and $d=0$ or $n=20$, $a=4$ and $l=4$)	M1
	$=80$	cao	A1
	Correct answer with no working scores M1A1		
			(2)
(ii)(a)	$V_{3}=3 k, \quad V_{4}=4 k$	May score in (b) if clearly identified as V_{3} and V_{4}	B1, B1
			(2)
(b)	$\sum_{n=1}^{n=5} V_{n}=k+2 k+3 k+4 k+5 k=165$ or $\frac{1}{2} \times 5(2 \times k+4 \times k)=165$ or $\frac{1}{2} \times 5(k+5 k)=165$	Attempts V_{5}, adds their $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}$ AND sets equal to 165 or Use of a correct sum formula with $a=k, d=k$ and $n=5$ or $a=k, l=5 k$ and $n=5$ AND sets equal to 165	M1
	$15 k=165 \Rightarrow k=.$.	Attempts to solve their linear equation in k having set the sum of their first 5 terms equal to 165 . Solving $V_{5}=$ 165 scores no marks.	M1
	$k=11$	cao and cso	A1
			(3)
			(8 marks)

Question Number	Scheme									Marks
39.(a)	$32000=17000+(k-1) \times 1500 \Rightarrow k=\ldots$					Use of 32000 with a correct formula in an attempt to find k. A correct formula could be implied by a correct answer.				M1
	($k=$) 11					Cso (Allow $n=11$)				A1
	Accept correct answer only.									
	$\begin{aligned} & 32000=17000+1500 k \Rightarrow k=10 \text { is M0A0 (wrong formula) } \\ & \frac{32000-17000}{1500}=10 \therefore k=11 \text { is M1A1 (correct formula implied) } \end{aligned}$									
	Listing: All terms must be listed up to 32000 and 11 correctly identified. A solution that scores 2 if fully correct and 0 otherwise.									
										(2)
(b)	$\begin{gathered} \text { M1: } \\ S=\frac{k}{2}(2 \times 17000+(k-1) \times 1500) \text { or } \\ \frac{k}{2}(17000+32000) \\ S=\frac{k-1}{2}(2 \times 17000+(k-2) \times 1500) \text { or } \\ \frac{k-1}{2}(17000+30500) \\ \text { A1: } \\ (2 \times 17000+10 \times 1500) \text { or } \frac{11}{2}(17000+32000) \\ S=\frac{10}{2}(2 \times 17000+9 \times 1500) \text { or } \\ \frac{10}{2}(17000+30500) \\ (=269500 \text { or } 237500) \\ \hline \end{gathered}$						M1: Use of correct sum formula with their integer $n=k$ or $k-1$ from part (a) where $3<k<20$ and $a=$ 17000 and $d=1500$. See below for special case for using $\boldsymbol{n}=\mathbf{2 0}$.			M1A1
							A1: Any correct unsimplified numerical expression with $n=11$ or $n=10$			
	$32000 \times \alpha$					$32000 \times \alpha$ where α is an integer and $3<\alpha<18$				M1
	$\begin{gathered} 288000+269500=557500 \\ \text { or } \\ 320000+237500=557500 \end{gathered}$					M1: Attempts to add their two values. It is dependent upon the two previous M's being scored and must be the sum of 20 terms i.e.$\alpha+k=20$				ddM1A1
	Special Case: If they just find $S_{\mathbf{2 0}}(\mathbf{(6 2 5 0 0 0)}$ in (b) score the first M1 otherwise apply the scheme.									
										(5)
										(7 marks)
Listing:										
n	1	2	3	4	5	6	7	8	9	10
u_{n}	17000	18500	20000	21500	23000	24500	26000	27500	29000	30500
n	11	12	13	14	15	16	17	18	19	20
u_{n}	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000
Look for a sum before awarding marks. Award the M's as above then A2 for 557500 If they sum the 'parts' separately then apply the scheme.										

Notes

(a) M1 Writes $7=5 a_{1}-3$ and attempts to solve leading to an answer for a_{1}. If they rearrange wrongly before any substitution this is M0
A1 Cao $a_{1}=2$
Special case: Substitutes $n=1$ into $5 n-3$ and obtains answer 2. This is fortuitous and gets M0A0 but full marks are available on (b).
(b) M1 Attempts to find either their a_{3} or their a_{4} using $a_{n+1}=5 a_{n}-3, a_{2}=7$

Needs clear attempt to use formula or is implied by correct answers or correct follow through of their a_{3}
dM1 (Depends on previous M mark) Sum of their four adjacent terms from the given sequence.
n.b May be given for $9+a_{3}+a_{4}$ as they may add $2+7$ to give 9
(dM0 for sum of an Arithmetic series)
A1 cao 198

Special case
(a) $a_{1}=32$ is M0 A0
(b) Adds for example $7+32+157+782=$ or $32+157+782+3907$ is M1 M1 A0

Total mark possible is 2 / 5
(This is not treated as a misread - as it changes the question)

Question Number	Scheme	Marks
41.	$\begin{aligned} & \text { (a) Use } n^{\text {th }} \text { term }=a+(n-1) d \text { with } d=10 ; a=150 \text { and } n=8 \text {, or } a=160 \text { and } \\ & n=7 \text {, or } a=170 \text { and } n=6:=150+7 \times 10 \text { or } 160+6 \times 10 \text { or } 170+5 \times 10 \\ & \left.=220^{*} \text { (Or gives clear list }- \text { see note }\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1* } \end{aligned}$
Or	If answer 220 is assumed and $150+(n-1) 10=220$ or variation is solved for $n=$ Then $n=8$, so 2007 is the year (must conclude the year)	$\begin{array}{ll} \text { M1 } & \tag{2}\\ \text { A1* } & \text { (2) } \\ \hline \end{array}$
	(b) $\begin{array}{rl\|l} S_{n} & =\frac{n}{2}\{2 a+(n-1) 10\} & \text { Or } S_{n}=\frac{n}{2}\{a+l\} \text { and } l=a+(n-1) 10 \\ & =7(300+13 \times 10) & \text { or } 7(150+280) \\ & =7 \times 430 & \\ & =3010 \end{array}$ (c) Cost in year $n=900+(n-1) \times-20$ Sales in year $n=150+(n-1) \times 10$ $\text { Cost }=3 \times \text { Sales } \Rightarrow \begin{aligned} & 900+(n-1) \times-20=3 \times(150+(n-1) \times 10) \\ & 900-20 n+20=450+30 n-30 \\ & 500=50 n \\ & n=10 \\ & \text { Year is } 2009 \end{aligned}$ As n is not defined they may work correctly from another base year to get the answer 2009 and their n may not equal 10. If doubtful - send to review.	M1 A1 A1 (3) M1 M1 M1 A1 (4)

Notes

(a) M1 Attempt to use $n^{\text {th }}$ term $=a+(n-1) d$ with $d=10$, and correct combination of a and n i.e. $a=150$ and $n=8$ or $a=160$ and $n=7$, or $a=170$ and $n=6$
A1 * Shows that 220 computers are sold in 2007 with no errors
Note that this is a given solution, so needed $150+7 \times 10$ or $160+6 \times 10$ or $170+5 \times 10$ or equivalent.
Accept a correct list showing all values and years for both marks Just $150,160,170,180,190,200,210,220$ is M1A0 Need some reference to years as well as the list of numbers of computers for A1.
(b) M1 Attempts to use $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$ with $d=10$, and correct combination of a and n i.e. $a=150$ and $n=14$, or $\mathrm{a}=160$ and $n=13$, or $a=170$ and $n=12$
A1 Uses $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$ with $a=150, d=10$ and $n=14$ [N.B. $S_{n}=\frac{n}{2}\{a+l\}$ needs $l=a+(n-1) d$ as well
NB A 0 for $a=160$ and $n=13$ or $a=170$ and $n=12$ unless they then add the first, or first two terms respectively.
A1 Cao 3010 . This answer (with no working) implies correct method M1A1A1.
Special case: If a complete list $150+160+170+180+190+200+210+220+230+240+250+260+270+280$ is seen, then there is an error finding the sum then score M1A1A0, but incomplete or wrong lists score M0A0A0
(c) M1 Writes down an expression for the cost $=900+(n-1) \times-20$ or writes $900+(n-1) d$ and states $d=-20$ Allow $900+n \times-20$. Allow recovery from invisible brackets.
M1 Attempts to write down an equation in n for statement 'cost $=3 \times$ sales'
$900+(n-1) \times-20=3 \times(150+(n-1) \times 10)$. Accept the 3 on the wrong side and allow use of 20 instead of -20 and allow n (consistently) instead of $n-1$ for this mark. Ignore $£$ signs in equation.
M1 Solves the correct linear equation in n to achieve $n=10$ (for those using $n-1$) or $n=9$ (for those using n). Ignore £ signs.
A1 Cso Year 2009 (A0 for the answer Year 10 if 2009 is not given)
Special case. Just answer or trial and improvement with no equation leading to answer scores SC $0,0,1,1$
Equations satisfying the method mark descriptors followed by trial and improvement could get all four marks

Question Number	Scheme	Marks
42.(a)	$\left(a_{2}=\right) \quad 4 k-3$	(1)
(b)	$a_{3}=4(4 k-3)-3$	M1
	$\sum_{r=1}^{3} a_{r}=k+4 k-3+4(4 k-3)-3=. . k \pm \ldots$	M1
	$21 k-18=66 \Rightarrow k=\ldots$	dM1
	$k=4$	A1
		(4)
		(5 marks)

(a) B1 $4 k-3$ cao
(b) M1 An attempt to find a_{3} from iterative formula $a_{3}=4 a_{2}-3$. Condone bracketing errors for the M mark
M1 Attempt to sum their a_{1}, a_{2} and a_{3} to get a linear expression in k (Sum of Arithmetic series is M0)
dM1 Sets their linear expression to 66 and solves to find a value for k. It is dependent upon the previous M mark
A1 cao $k=4$

(a) M1 Attempts to use $a+(n-1) d$ with $a=A$ and $d=d+1$ AND $n=14$

A1* cao This is a given answer and there is an expectation that the intermediate answer is seen and that all work is correct with correct brackets.
The expressions $A+13(d+1)$ and $A+13 d+13$ should be seen

N.B. If brackets are missing and formula is not stated

e.g. $A+13 d+1 \Rightarrow A+13 d+13$ or $A+(13) d+1 \Rightarrow A+13 d+13$ then this is M0A0

If formula is quoted and $\boldsymbol{a}=\boldsymbol{A}$ and $\boldsymbol{d}=\boldsymbol{d}+\mathbf{1}$ is quoted or implied, then M1 A0 may be given
So $a+(n-1) d$ followed by $A+(13) d+1=A+13 d+13$ achieves M1A0
(b) M1 States a time for Yi on Day $14=(A-13)+13(2 d-1)$

M1 Sets their time for Yi, equal to $A+13 d+13$ and uses this equation to proceed to $d=$
A1 $\operatorname{cso} d=3$ Needs both M marks and must be simplified to 3 (not 39/13)
[NB Setting each of the times separately equal to 0 leads to $d=3-$ this will gain M0A0]
(c) M1 Uses the sum formula $\frac{n}{2}\{2 A+(n-1)(D)\}$ with $n=14$ and $D=d+1$ or allow $D=d$ (usually 4 or 3)
NB May use $\frac{n}{2}\{A+(A+13 D)\}$ with $n=14$ and and $D=d+1$ or allow $D=d$ (usually 4 or 3)
dM1 Attempts to solve $\frac{14}{2}\left\{2 A+13 \times^{\prime} 4^{\prime}\right\}=" 784 " \Rightarrow A=\ldots \quad$ (Must use their $d+1$ this time) Allow miscopy of 784
A1 cao $A=30$

Question Number	Scheme		Marks		
	For this question, mark (a) and (b) together and ignore labelling.			\quad	44(a)
:---					

Question Number	Scheme		Marks
45(a)	$600=200+(N-1) 20 \Rightarrow N=\ldots$	Use of 600 with a correct formula in an attempt to find N. A correct formula could be implied by a correct answer.	M1
	$N=21$	cso	A1
	Accept correct answer only.		
	$\begin{aligned} & 600=200+20 \mathrm{~N} \Rightarrow N=20 \text { is M0A0 (wrong formula) } \\ & \frac{600-200}{20}=20 \therefore N=21 \text { is M1A1 (correct formula implied) } \end{aligned}$		
	Listing: All terms must be listed up to 600 and 21 correctly identified. A solution that scores 2 if fully correct and 0 otherwise.		
			(2)
(b)	Look for an AP first:		
	$S=\frac{21}{2}(2 \times 200+20 \times 20) \text { or } \frac{21}{2}(200+600)$ or $\begin{gathered} S=\frac{20}{2}(2 \times 200+19 \times 20) \text { or } \frac{20}{2}(200+580) \\ (=8400 \text { or } 7800) \end{gathered}$	M1: Use of correct sum formula with their integer $n=N$ or $N-1$ from part (a) where $3<N<52$ and $a=200$ and $d=20$. A1: Any correct un-simplified numerical expression with $n=20$ or $n=21$ (No follow through here)	M1A1
	Then for the constant terms:		
	$600 \times(52-" N$ " $)(=18600)$	M1: $600 \times k$ where k is an integer and $3<k<52$	
		A1: A correct un-simplified follow through expression with their k consistent with n so that $n+k=52$	M1A1ft
	So total is 27000	Cao	A1
	Note that for the constant terms, they may correctly use an AP sum with $d=0$.		
	There are no marks in (b) for just finding \mathbf{S}_{52}		
			(5)
			[7]
	If they obtain $N=20$ in (a) ($0 / 2$) and then in (b) proceed with, $S=\frac{20}{2}(2 \times 200+19 \times 20)+32 \times 600=7800+19200=27000$ allow them to 'recover' and score full marks in (b) Similarly If they obtain $N=22$ in (a) ($0 / 2$) and then in (b) proceed with, $S=\frac{21}{2}(2 \times 200+20 \times 20)+31 \times 600=8400+18600=27000$ allow them to 'recover' and score full marks in (b)		

Question Number	Scheme	Notes	Marks
46.(a)	$x_{2}=1-k$	Accept un-simplified e.g. $1^{2}-1 k$	B1
			(1)
(b)	$x_{3}=(1-k)^{2}-k(1-k)$	Attempt to substitute their x_{2} into $x_{3}=\left(x_{2}\right)^{2}-k x_{2}$ with their x_{2} in terms of k.	M1
	$=1-3 k+2 k^{2} *$	Answer given	A1*
			(2)
(c)	$1-3 k+2 k^{2}=1$	Setting $1-3 k+2 k^{2}=1$	M1
	$\left(2 k^{2}-3 k=0\right)$		
	$k(2 k-3)=0 \Rightarrow k=.$.	Solving their quadratic to obtain a value for k. Dependent on the previous M1.	dM1
	$k=\frac{3}{2}$	Cao and cso (ignore any reference to $k=0$)	A1
			(3)
(d)	$\begin{aligned} & \sum_{n=1}^{100} x_{n}=1+\left(-\frac{1}{2}\right)+1+\ldots \ldots \\ & \text { Or }=1+\left(1-{ }^{\prime} k^{\prime}\right)+1+\ldots \ldots . . \end{aligned}$		M1
	Writing out at least 3 terms with the third term equal to the first term. Allow in terms of k as well as numerical values. Evidence that the sequence is oscillating between 1 and $1-k$. This may be implied by a correct sum.		
	$50 \times \frac{1}{2}$ or $50 \times 1-50 \times \frac{1}{2}$ or $\frac{1}{2} \times 50 \times\left(1-\frac{1}{2}\right)$	An attempt to combine the terms correctly. Can be in terms of k here e.g $100-50 k$	M1
	$=25$	Allow an equivalent fraction, e.g. 50/2 or 100/4	A1
	Note that the use of $\frac{1}{2} n(a+l)$ is acceptable here but $\frac{1}{2} n(2 a+(n-1) d)$ is not.		
			(3)
	Allow correct answer only		
			[9]

Question Number	Scheme	Notes	Marks
47.(a)	$U_{10}=500+(10-1) \times 200$	Uses $a+(n-1) d$ with $a=500, d=200$ and $n=9,10$ or 11	M1
	$=(\mathfrak{f}) 2300$		A1
	If the term formula is not quoted and the numerical expression is incorrect score M0. A correct answer with no working scores full marks.		(2)
(b)	Mark parts (b) and (c) together		
	$\frac{n}{2}\{2 \times 500+(n-1) \times 200\}=67200$	M1: Attempt to use $S=\frac{n}{2}\{2 a+(n-1) d\}$ with , $S_{n}=67200, a=500 \text { and } d=200$ A1: Correct equation	M1A1
	If the sum formula is not quoted and the equation is incorrect score M0.		
	$n^{2}+4 n-672=0$	M1: An attempt to remove brackets and collect terms. Dependent on the previous M1	dM1A1
		A1: A correct three term equation in any form	
	E.g. allow $n^{2}+4 n=672, n^{2}=672-4 n$, $672-4 n-n^{2}=0,200 n^{2}+800 n=134400$ etc.		
	$n^{2}+4 n-24 \times 28=0$ *	Replaces 672 with 24×28 with the equation as printed (including $=0$) with no errors. ($=0$ may not appear on the last line but must be seen at some point)	A1
			(5)
(c)	$\begin{gathered} (n-24)(n+28)=0 \Rightarrow n=. . \text { or } \\ n(n+4)=24 \times 28 \Rightarrow n=. . \end{gathered}$	Solves the given quadratic in an attempt to find n. They may use the quadratic formula.	M1
	24	States that $n=24$, or the number of years is 24	A1
	Allow correct answer only in (c)		
			(2)
			[9]

Question Number	Scheme	Marks
48. (a)	$\begin{aligned} & u_{2}=9, u_{n+1}=2 u_{n}-1, n \geqslant 1 \\ & u_{3}=2 u_{2}-1=2(9)-1 \quad(=17) \\ & u_{4}=2 u_{3}-1=2(17)-1=33 \end{aligned}$	M1 A1 [2]
(b)	$\begin{aligned} & \sum_{r=1}^{4} u_{r}=u_{1}+u_{2}+u_{3}+u_{4} \\ & \left(u_{1}\right)=5 \\ & \sum_{r=1}^{4} u_{r}=" 5 "+9+" 17 "+" 33 "=64 \end{aligned}$ $\left(u_{1}\right)=5$ Adds their first four terms obtained legitimately (see notes below)	B1 M1 A1 [3] 5 marks
	Notes	
	M1: Substitutes 9 into RHS of iteration formula A1: Needs both 17 and 33 (but allow if either or both seen in part (b)) B1: for $u_{1}=5$ (however obtained - may appear in (a)) May be called $a=5$ M1: Uses their u_{1} found from $u_{2}=2 u_{1}-1$ stated explicitly, or uses $u_{1}=4$ or $5 \frac{1}{2}$, and adds it to u_{2}, their u_{3} and their u_{4} only. (See special cases below). There should be no fifth term included. Use of sum of AP is irrelevant and scores M0 A1: 64	

Question Number	Scheme	Marks
50. (a)	$\begin{aligned} & a_{1}=3, a_{n+1}=2 a_{n}-c, n \geq 1, c \text { is a constant } \\ & \left\{a_{2}=\right\} 2 \times 3-c \text { or } 2(3)-c \text { or } 6-c \end{aligned}$	B1
(b)	$\begin{aligned} \left\{a_{3}\right. & =\} 2 \times(" 6-c ")-c \\ & \left.=12-3 c \quad \mathbf{(*}^{*}\right) \end{aligned}$	M1 A1 cso
(c)	$a_{4}=2 \times(" 12-3 c ")-c \quad\{=24-7 c\}$	[2] M1
	$\begin{aligned} & \left\{\sum_{i=1}^{4} a_{i}=\right\} 3+(6-c)+(12-3 c)+(24-7 c) \\ & " 45-11 c " \geq 23 \text { or } " 45-11 c \text { " }=23 \\ & c \leq 2 \text { or } 2 \geq c \end{aligned}$	M1 M1 A1 cso
		$[4]$

Notes

(a) The answer to part (a) cannot be recovered from candidate's working in part (b) or part (c).

Once the candidate has achieved the correct result you can ignore subsequent working in this part.
(b) M1: For a correct substitution of their a_{2} which must include term(s) in \boldsymbol{c} into $2 a_{2}-c$ giving a result for a_{3} in terms of only c. Candidates must use correct bracketing for this mark.
A1: for correct solution only. No incorrect working/statements seen. (Note: the answer is given!)
(c)
$\mathbf{1}^{\text {st }}$ M1: For a correct substitution of a_{3} which must include term(s) in \boldsymbol{c} into $2 a_{3}-c$ giving a result for a_{4} in terms of only c. Candidates must use correct bracketing (can be implied) for this mark.
$2^{\text {nd }} \mathbf{M 1}$: for an attempt to sum their a_{1}, a_{2}, a_{3} and a_{4} only.
$3^{\text {rd }}$ M1: for their sum (of 3 or 4 or 5 consecutive terms) $=$ or \geq or >23 to form a linear inequality or equation in c.
A1: for $c \leq 2$ or $2 \geq c$ from a correct solution only.
Beware: $-11 c \geq-22 \Rightarrow c \geq 2$ is A0.
Note: $45-11 c \geq 23 \Rightarrow-11 c \leq-22 \Rightarrow c \leq 2$ would be A 0 cso.
Note: Applying either $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ or $S_{n}=\frac{n}{2}(a+l)$ is $2^{\text {nd }} \mathrm{M} 0,3^{\text {rd }} \mathrm{M} 0$.
Note: If a candidate gives a numerical answer in part (a); they will then get M0A0 in part (b); but if they use the printed result of $a_{3}=12-3 c$ they could potentially get M0M1M1A0 in part (c)
Note: If a candidate only adds numerical values (not in terms of c) in part (c) then they could potentially get only M0M0M1A0.
Note: For the $3^{\text {rd }} \mathrm{M} 1$ candidates will usually sum a_{1}, a_{2}, a_{3} and a_{4} or a_{2}, a_{3} and a_{4} or a_{2}, a_{3}, a_{4} and a_{5} or $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5}

(c) $\quad \mathbf{1}^{\text {st }} \mathbf{M 1}$: for correct use of S_{m} formula with one of a or d correct.
$\mathbf{1}^{\text {st }}$ A1: for a correct expression for S_{m}. Eg: $\frac{m}{2}(2(10)+(m-1)(10))$ or $\frac{m}{2} \times 10(m+1)$ or $5 m(m+1)$
$\mathbf{2}^{\text {nd }} \mathbf{M 1}$: for forming a suitable equation using 63 or 6300 and their S_{m}. Dependent on $1^{\text {st }} \mathbf{M 1}$.
$2^{\text {nd }}$ A1cso: for reaching the printed result with no incorrect working seen.
Long multiplication is not necessary for the final accuracy mark.
Note: $\frac{m}{2}(2(10)+(m-1)(10))=630$ and not either 6300 or 63 is dM 0 .
Beware: Some candidates will try and fudge the result given on the question paper.

Notes for awarding $2^{\text {nd }} \mathbf{~ A 1}$

Going from $m(m+1)=1260$ straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} \mathrm{A} 1$.
Going from $m(m+1)=$ some factor decomposition of 6300 straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} \mathrm{A} 1$.
Going from $10 m(m+1)=12600$ straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} \mathrm{A} 0$.
Going from $m(m+1)=\frac{6300}{5}$ straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} \mathrm{A} 0$.

Alternative: working in an different letter, say n or p.

M1A1: for $\frac{n}{2}(2(10)+(n-1)(10)) \quad$ (although mixing letters eg. $\frac{n}{2}(2(10)+(m-1)(10))$ is M0A0).
dM1: for 63 or $6300=\frac{n}{2}(2(10)+(n-1)(10))$
Leading to $6300=\frac{n}{2}(10)(n+1) \Rightarrow 1260=n(n+1) \Rightarrow 35 \times 36=n(n+1)$
The candidate then needs to write either $35 \times 36=m(m+1)$ or $m \equiv n$ or $m=n$ to gain the final A1.
(d)

B1: for 35 only.

Question Number	Scheme Marks
54. (a)	$\left(a_{2}=\right) 5 k+3$ (1)
(b)	$\begin{align*} \left(a_{3}\right. & =) 5(5 k+3)+3 \\ & =25 k+18 \tag{*} \end{align*}$
(c) (i) (ii)	$\begin{aligned} & a_{4}=5(25 k+18)+3 \quad(=125 k+93) \\ & \begin{array}{cl} \sum_{r=1}^{4} a_{r} & =k+(5 k+3)+(25 k+18)+(125 k+93) \\ & =156 k+114 \\ & =6(26 k+19) \quad \text { (or explain each term is divisible by } 6) \end{array} \end{aligned}$ M1
	Notes (a) $5 k+3$ must be seen in (a) to gain the mark (b) $1^{\text {st }} \mathrm{M}$: Substitutes their a_{2} into $5 a_{2}+3$ - note the answer is given so working must be seen. (c) $1^{\text {st }}$ M1: Substitutes their a_{3} into $5 a_{3}+3$ or uses $125 k+93$ $2^{\text {nd }}$ M1: for their sum $k+a_{2}+a_{3}+a_{4}$ - must see evidence of four terms with plus signs and must not be sum of AP $1^{\text {st }} \mathrm{A} 1$: All correct so far $2^{\text {nd }}$ A1ft: Limited ft - previous answer must be divisible by 6 (eg $156 k+42$). This is dependent on second M mark in (c) Allow $\frac{156 k+114}{6}=26 k+19$ without explanation. No conclusion is needed.

Question Number	Scheme	Marks
55. (a)	Series has 50 terms $S=\frac{1}{2}(50)(2+100)=2550 \text { or } \quad S=\frac{1}{2}(50)(4+49 \times 2)=2550$	B1 M1 A1 (3)
(b) (i) (ii)	$\begin{align*} & \frac{100}{k} \\ & \text { Sum: } \frac{1}{2}\left(\frac{100}{k}\right)(k+100) \text { or } \frac{1}{2}\left(\frac{100}{k}\right)\left(2 k+\left(\frac{100}{k}-1\right) k\right) \\ & \quad=50+\frac{5000}{k} \tag{*} \end{align*}$	B1 M1 A1 A1 cso (4)
(c)	$\begin{array}{\|l\|l\|} \hline 50^{\text {th }} \text { term } & =a+(n-1) d \\ & =(2 k+1)+49 "(2 k+3) " \\ & =100 k+148 \end{array} \quad \begin{gathered} \text { Or } 2 k+49(2 k)+1+49(3) \\ =100 k+148 \end{gathered}$	M1 A1 (2)
	Notes (a) B for seeing attempt to use $n=50$ or $n=50$ stated M for attempt to use $\frac{1}{2} n(a+l)$ or $\frac{1}{2} n(2 a+(n-1) d)$ with $a=2$ and value for other variables (Using $n=100$ may earn B0 M1A0) (b) M for use of $a=k$ and $d=k$ or $l=100$ with their value for n, could be even letter n in correct formula for sum. A1: Correct formula with $n=100 / k$ A1: NB Answer is printed - so no slips should have appeared in working (c) M for use of formula $a+49 d$ with $a=2 k+1$ and with d obtained from dif terms A1: Requires this simplified answer	umerical or ifference of

Question Number	Scheme	Marks
56 (a)	$\left(a_{2}=\right) 6-c$	B1 (1)
(b)	$\begin{gathered} a_{3}=3\left(\text { their } a_{2}\right)-c \quad(=18-4 c) \\ a_{1}+a_{2}+a_{3}=2+"(6-c) "+"(18-4 c) " \\ " 26-5 c "=0 \end{gathered}$ So $\quad c=5.2$	M1 M1 Alft Al o.a.e (4)
	Notes	
(b)	$1^{\text {st }}$ M1 for attempting a_{3}. Can follow through their answer to (a) but it must be an expression in c. $2^{\text {nd }} \mathrm{M} 1$ for an attempt to find the sum $a_{1}+a_{2}+a_{3}$ must see evidence of sum $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for their sum put equal to 0 . Follow through their values but answer must be in the form $p+q c=0$ A1 - accept any correct equivalent answer	

Question number	Scheme	Marks
60	(a) $a+9 d=150+9 \times 10=240$	M1 A1
		(2)
	(b) $\frac{1}{2} n\{2 a+(n-1) d\}=\frac{20}{2}\{2 \times 150+19 \times 10\},=4900$	M1 A1, A1
	(c) Kevin: $\frac{1}{2} n\{2 a+(n-1) d\}=\frac{20}{2}\{2 A+19 \times 30\}$ $\begin{aligned} & \text { Kevin's total }=2 \times 44900 " \quad(\text { or } " 4900 "=2 \times \text { Kevin's total }) \\ & \frac{20}{2}\{2 A+19 \times 30\}=2 \times " 4900 " \end{aligned}$ $A=205$	B1 M1 Alft A1
		(4) [9]

(a) M: Using $a+9 d$ with at least one of $a=150$ and $d=10$. Being 'one off' (e.g. equivalent to $a+10 d$), scores M0. Correct answer with no working scores both marks.
(b) M: Attempting to use the correct sum formula to obtain S_{20}, with at least one of $a=150$ and $d=10$. If the wrong value of n or a or d is used, the M mark is only scored if the correct sum formula has been quoted.
$1^{\text {st }} \mathrm{A}$: Any fully correct numerical version.
(c) B : A correct expression, in terms of A, for Kevin's total.

M: Equating Kevin's total to twice Jill's total, or Jill's total to twice Kevin's. For this M mark, the expression for Kevin's total need not be correct, but must be a linear function of A (or a).
$1^{\text {st }} \mathrm{A}$: (Kevin's total, correct, possibly unsimplified $)=2($ Jill's total $), \mathrm{ft} \mathrm{Jill's}$ total from part (b).
'Listing' and other methods
(a) M: Listing terms (found by a correct method with at least one of $a=150$ and $d=10$), and picking the $\underline{10^{\text {th }}}$ term. (There may be numerical slips).
(b) M: Listing sums, or listing and adding terms (found by a correct method with at least one of $a=150$ and $d=10$), far enough to establish the required sum. (There may be numerical slips). Note: $20^{\text {th }}$ term is 340 . A2 (scored as A1 A1) for 4900 (clearly selected as the answer).

If no working (or no legitimate working) is seen, but the answer 4900 is given, allow one mark (scored as M1 A0 A0).
(c) By trial and improvement:

Obtaining a value of A for which Kevin's total is twice Jill's total, or Jill's total is twice Kevin's (using Jill's total from (b)): M1
Obtaining a value of A for which Kevin's total is twice Jill's total (using Jill's total from (b)): A1ft
Fully correct solutions then score the B1 and final A1.
The answer 205 with no working (or no legitimate working) scores no marks.

Question Number	Scheme	Marks
(a) (b) (c)	$\begin{aligned} & \begin{aligned} & a+9 d=2400 \quad a+39 d=600 \\ & d=\frac{-1800}{30} \quad d=-60 \quad(\text { accept } \pm 60 \text { for A1 }) \\ & a-540=2400 \quad a=2940 \end{aligned} \\ & \begin{aligned} \text { Total }=\frac{1}{2} n\{2 a+(n-1) d\} & =\frac{1}{2} \times 40 \times(5880+39 \times-60) \quad(\mathrm{ft} \text { values of } a \text { and } d) \\ & =\underline{70800} \end{aligned} \end{aligned}$	M1 M1 A1 (3) M1 A1 (2) M1 A1ft Alcao (3) [8]
(a) (b) (c) (c)	Note: If the sequence is considered 'backwards', an equivalent solution may be given using $d=60$ with $a=600$ and $l=2940$ for part (b). This can still score full marks. Ignore labelling of (a) and (b) $1^{\text {st }}$ M1 for an attempt to use 2400 and 600 in $a+(n-1) d$ formula. Must use both values i.e. need $a+p d=2400$ and $a+q d=600$ where $p=8$ or 9 and $q=38$ or 39 (any combination) $2^{\text {nd }}$ M1 for an attempt to solve their 2 linear equations in a and d as far as $d=\ldots$ A1 for $d= \pm 60$. Condone correct equations leading to $d=60$ or $a+8 d=2400$ and $\quad a+38 d=600$ leading to $d=-60$. They should get penalised in (b) and (c). NB This is a "one off" ruling for A1. Usually an A mark must follow from their work. ALT $\quad 1^{\text {st }}$ M1 for $(30 d)= \pm(2400-600)$ $2^{\text {nd }}$ M1 for $(d=) \pm \frac{\overline{(2400-600)}}{30}$ A1 for $d= \pm 60$ $a+9 d=600, a+39 d=2400$ only scores M0 BUT if they solve to find $d= \pm 60$ then use ALT scheme above. M1 for use of their d in a correct linear equation to find a leading to $a=\ldots$ A1 their a must be compatible with their d so $d=60$ must have $a=600$ and $d=-60$, $a=2940$ So for example they can have $2400=a+9(60)$ leading to $a=\ldots$ for M1 but it scores A0 Any approach using a list scores M1A1 for a correct a but M0A0 otherwise M1 for use of a correct S_{n} formula with $n=40$ and at least one of a, d or l correct or correct ft. $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for use of a correct S_{40} formula and both a, d or a, l correct or correct follow through ALT \quad Total $=\frac{1}{2} n\{a+l\}=\frac{1}{2} \times 40 \times(2940+600) \quad(\mathrm{ft}$ value of $a) \mathrm{M} 1 \mathrm{~A} 1 \mathrm{ft}$ $2^{\text {nd }}$ A1 for 70800 only	

Question Number	Scheme	Marks
62 (a) (b) (c)	$\begin{align*} & \left(a_{2}=\right) 2 k-7 \\ & \left(a_{3}=\right) 2(2 k-7)-7 \text { or } 4 k-14-7,=4 k-21 \tag{*}\\ & \left(a_{4}=\right) 2(4 k-21)-7 \quad(=8 k-49) \\ & \quad \sum_{r=1}^{4} a_{r}=k+"(2 k-7) "+(4 k-21)+"(8 k-49) " \\ & k+(2 k-7)+(4 k-21)+(8 k-49)=15 k-77=43 \quad k=8 \end{align*}$	B1 (1) M1, A1cso (2) M1 M1 M1 A1 (4)
(b) (c)	M1 must see 2(their $\left.a_{2}\right)-7$ or $2(2 k-7)-7$ or $4 k-14-7$. Their a_{2} must be a function of k. A1cso must see the $2(2 k-7)-7$ or $4 k-14-7$ expression and the $4 k-21$ with no incorrect working $1^{\text {st }}$ M1 for an attempt to find a_{4} using the given rule. Can be awarded for $8 k-49$ seen. Use of formulae for the sum of an arithmetic series scores M0M0A0 for the next 3 marks. $2^{\text {nd }}$ M1 for attempting the sum of the $1^{\text {st }} 4$ terms. Must have " + " not just, or clear attempt to sum. Follow through their a_{2} and a_{4} provided they are linear functions of k. Must lead to linear expression in k. Condone use of their linear $a_{3} \neq 4 k-21$ here too. $3^{\text {rd }} \mathrm{M} 1$ for forming a linear equation in k using their sum and the 43 and attempt to solve for k as far as $p k=q$ A1 for $k=8$ only so $k=\frac{120}{15}$ is A0 Answer Only (e.g. trial improvement) Accept $k=8$ only if $8+9+11+15=43$ is seen as well Sum $a_{2}+a_{3}+a_{4}+a_{5}$ or $a_{2}+a_{3}+a_{4}$ Allow: M1 if $8 k-49$ is seen, M0 for the sum (since they are not adding the $1^{\text {st }} 4$ terms) then M1 if they use their sum along with the 43 to form a linear equation and attempt to solve but A0	

Mark parts (a) and (b) as 'one part', ignoring labelling.
(a) Alternative:
$1^{\text {st }} \mathrm{B} 1: d=2.5$ or equiv.or $d=\frac{32.5-25}{3}$. No method required, but $a=-17.5$ must not be assumed.
$2^{\text {nd }} \mathrm{B} 1$: Either $a+17 d=25$ or $a+20 d=32.5$ seen, or used with a value of $d \ldots$
(b) or for 'listing terms' or similar methods, 'counting back' 17 (or 20) terms.

M1: In main scheme: for a full method (allow numerical or sign slips) leading to solution for d or a without assuming $a=-17.5$
In alternative scheme: for using a d value to find a value for a.
A1: Finding correct values for both a and d (allowing equiv. fractions such as $d=\frac{15}{6}$), with no incorrect working seen.

In the main scheme, if the given a is used to find d from one of the equations, then allow M1A1 if both values are checked in the $2^{\text {nd }}$ equation.
$1^{\text {st }}$ M1 for attempt to form equation with correct S_{n} formula and 2750, with values of a and d.
$1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct equation following through their d.
$2^{\text {nd }}$ M1 for expanding and simplifying to a 3 term quadratic.
(d) $2^{\text {nd }} \mathrm{A} 1$ for correct working leading to printed result (no incorrect working seen).
$1^{\text {st }}$ M1 forming the correct $3 \mathrm{TQ}=0$. Can condone missing " $=0$ " but all terms must be on one side. First M1 can be implied (perhaps seen in (c), but there must be an attempt at (d) for it to be scored). $2^{\text {nd }} \mathrm{M} 1$ for attempt to solve 3TQ, by factorisation, formula or completing the square (see general marking principles at end of scheme). If this mark is earned for the 'completing the square' method or if the factors are written down directly, the $1^{\text {st }} \mathrm{M} 1$ is given by implication.
A1 for $n=55$ dependent on both Ms. Ignore -40 if seen.
No working or 'trial and improvement' methods in (d) score all 3 marks for the answer 55, otherwise no marks.

Question number	Scheme \quad Marks
64(a) (b) (c)	
(a) (b) (c)	B1 for $a \times 1-3$ or better. Give for $a-3$ in part (a) or if it appears in (b) they must state $x_{2}=a-3$ This must be seen in (a) or before the $a(a-3)-3$ step. M1 for clear show that. Usually for $a(a-3)-3$ but can follow through their x_{2} and even allow $a x_{2}-3$ A1 for correct processing leading to printed answer. Both lines needed and no incorrect working seen. $1^{\text {st }} \mathrm{M} 1$ for attempt to form a correct equation and start to collect terms. It must be a quadratic but need not lead to a $3 \mathrm{TQ}=0$ $2^{\text {nd }}$ dM1 This mark is dependent upon the first M1. for attempt to factorize their $3 \mathrm{TQ}=0$ or to solve their $3 \mathrm{TQ}=0$. The " $=0$ "can be implied. $(x \pm p)(x \pm q)=0$, where $p q=10$ or $\left(x \pm \frac{3}{2}\right)^{2} \pm \frac{9}{4}-10=0$ or correct use of quadratic formula with \pm They must have a form that leads directly to 2 values for a. Trial and Improvement that leads to only one answer gets M0 here. A1 for both correct answers. Allow $x=\ldots$ Give $3 / 3$ for correct answers with no working or trial and improvement that gives both values for a

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \({ }^{\text {a }}\) Marks \\
\hline \begin{tabular}{l}
65 (a) \\
(b) \\
(c) \\
(d) \\
(e)
\end{tabular} \& \begin{tabular}{l}
\(5,7,9,11\) or \(5+2+2+2=11\) or \(5+6=11\) use \(a=5, d=2, n=4\) and \(t_{4}=5+3 \times 2=11\) \(t_{n}=a+(n-1) d\) with one of \(a=5\) or \(d=2\) correct (can have a letter for the other) \(=5+2(n-1)\) or \(2 n+3\) or \(1+2(n+1)\) \\
\(S_{n}=\frac{n}{2}[2 \times 5+2(n-1)]\) or use of \(\frac{n}{2}(5+\) "their \(2 n+3\) " \()\) (may also be scored in (b) \()\) \(=\{n(5+n-1)\}=n(n+4)\) \\
\(43=2 n+3\) \\
\([n]=20\) \\
\(S_{20}=20 \times 24,=\underline{480}(\mathrm{~km})\) \\
M1A1
\end{tabular} \\
\hline (a)
(b)

(c)

(d)

(e) \& | B1 Any other sum must have a convincing argument |
| :--- |
| M1 for an attempt to use $a+(n-1) d$ with one of a or d correct (the other can be a letter) Allow any answer of the form $2 n+p(p \neq 5)$ to score M1. |
| A1 for a correct expression (needn't be simplified) [Beware $5+(2 n-1)$ scores A0] Expression must be in n not x. |
| Correct answers with no working scores $2 / 2$. |
| M1 for an attempt to use S_{n} formula with $a=5$ or $d=2$ or $a=5$ and their " $2 n+3$ " |
| $1^{\text {st }}$ A1 for a fully correct expression |
| $2^{\text {nd }} \mathrm{A} 1$ for correctly simplifying to given answer. No incorrect working seen. Must see S_{n} used. |
| Do not give credit for part (b) if the equivalent work is given in part (d) |
| M1 for forming a suitable equation in n (ft their (b)) and attempting to solve leading to $n=\ldots$ |
| A1 for 20 |
| Correct answer only scores $2 / 2$. Allow 20 following a restart but check working. eg $43=2 n+5$ that leads to $40=2 n$ and $n=20$ should score M1A0. |
| M1 for using their answer for n in $n(n+4)$ or S_{n} formula, their n must be a value. |
| A1 for 480 (ignore units but accept 480000 m etc) [no matter where their 20 comes from] |
| NB "attempting to solve" eg part (d) means we will allow sign slips and slips in arithmetic but not in processes. So dividing when they should subtract etc would lead to M0. |
| Listing in parts (d) and (e) can score 2 (if correct) or 0 otherwise in each part. |
| Poor labelling may occur (especially in (b) and (c)). If you see work to get $n(n+4)$ mark as (c) |

\hline
\end{tabular}

Question number	Scheme	Marks
67.	(a) $u_{25}=a+24 d=30+24 \times(-1.5)$ $=-6$ (b) $a+(n-1) d=30-1.5(r-1)=0$ $r=21$ (c) $S_{20}=\frac{20}{2}\{60+19(-1.5)\}$ or $S_{21}=\frac{21}{2}\{60+20(-1.5)\}$ or $S_{21}=\frac{21}{2}\{30+0\}$ $=315$	M1 A1 M1 A1 M1 A1ft A1 (2)
	(a) M: Substitution of $a=30$ and $d= \pm 1.5$ into $(a+24 d)$. Use of $a+25 d$ (or any other variations on 24) scores M0. (b) M: Attempting to use the term formula, equated to 0 , to form an equation in r (with no other unknowns). Allow this to be called n instead of r. Here, being 'one off' (e.g. equivalent to $a+n d$), scores M1. (c) M: Attempting to use the correct sum formula to obtain S_{20}, S_{21}, or, with their r from part (b), S_{r-1} or S_{r}. $1^{\text {st }} \mathrm{A}(\mathrm{ft})$: A correct numerical expression for S_{20}, S_{21}, or, with their r from part (b), S_{r-1} or $S_{r} \ldots$. but the ft is dependent on an integer value of r. Methods such as calculus to find a maximum only begin to score marks after establishing a value of r at which the maximum sum occurs. This value of r can be used for the M1 A1ft, but must be a positive integer to score A marks, so evaluation with, say, $n=20.5$ would score M1 A0 A0. 'Listing' and other methods (a) M: Listing terms (found by a correct method), and picking the $\underline{25^{\text {th }}}$ term. (There may be numerical slips). (b) M: Listing terms (found by a correct method), until the zero term is seen. (There may be numerical slips). 'Trial and error' approaches (or where working is unclear or non-existent) score M1 A1 for 21, M1 A0 for 20 or 22, and M0 A0 otherwise. (c) M : Listing sums, or listing and adding terms (found by a correct method), at least as far as the $20^{\text {th }}$ term. (There may be numerical slips). A2 (scored as A1 A1) for 315 (clearly selected as the answer). 'Trial and error' approaches essentially follow the main scheme, beginning to score marks when trying S_{20}, S_{21}, or, with their r from part (b), S_{r-1} or S_{r}. If no working (or no legitimate working) is seen, but the answer 315 is given, allow one mark (scored as M1 A0 A0). For reference: Sums: 30, 58.5, 85.5, 111, 135, 157.5, 178.5, 198, 216, 232.5, 247.5, 261, 273, $283.5,292.5,300,306,310.5,313.5,315, \ldots \ldots .$.	

Question Number	Scheme	Marks
68. (a)	$(2+k x)^{7}$ $2^{7}+{ }^{7} C_{1} 2^{6}(k x)+{ }^{7} C_{2} 2^{5}(k x)^{2}+{ }^{7} C_{3} 2^{4}(k x)^{3} \ldots$ First term of 128 $\left({ }^{7} C_{1} \times \ldots \times x\right)+\left({ }^{7} C_{2} \times \ldots \times x^{2}\right)+\left({ }^{7} C_{3} \times \ldots \times x^{3}\right) \ldots$ $=(128 \ldots)+448 k x+672 k^{2} x^{2}+560 k^{3} x^{3} .$.	B1
(b)	$560 k^{3}=1890$ $k^{3}=\frac{1890}{560}$ so $k=$ $k=1.5$ o.e.	A1, A1
		M1 (4)
Alternative method For (a)	dM1 $(2+k x)^{7}=2^{7}\left(1+\frac{k x}{2}\right)^{7}$ $2^{7}\left(1+{ }^{7} C_{1}\left(\frac{k}{2} x\right)+{ }^{7} C_{2}\left(\frac{k}{2} x\right)^{2}+{ }^{7} C_{3}\left(\frac{k}{2} x\right)^{3} \ldots\right)$ Scheme is applied exactly as before	(7marks)

Notes

(a)

B1: The constant term should be 128 in their expansion (should not be followed by other constant terms)
M1: Two of the three binomial coefficients must be correct and must be with the correct power of x. Accept ${ }^{7} C_{1}$ or $\binom{7}{1}$ or 7 as a coefficient, and ${ }^{7} C_{2}$ or $\binom{7}{2}$ or 21 as another and ${ }^{7} C_{3}$ or $\binom{7}{3}$ or 35 as another........
Pascal's triangle may be used to establish coefficients.
A1: Two of the final three terms correct (i.e. two of $448 k x+672 k^{2} x^{2}+560 k^{3} x^{3}$. .).
A1: All three final terms correct. (Accept answers without + signs, can be listed with commas or appear on separate lines)
e.g. The common error $=(128 .)+.448 k x+672 k x^{2}+560 k x^{3}$. . would earn B1, M1, A0, A0, so $2 / 4$ Then would gain a maximum of $1 / 3$ in part (b)
If extra terms are given then isw
If the final answer is given as $=(128 .)+.448 k x+672(k x)^{2}+560(k x)^{3} .$. with correct brackets and no errors are seen, this may be given full marks. If they continue and remove the brackets wrongly then they lose the accuracy marks.
Special case using Alternative Method: Uses $2\left(1+\frac{h x}{2}\right)^{7}$ is likely to result in a maximum mark of B0M1A0A0 then M1M1A0
If the correct expansion is seen award the marks and isw
(b)

M1: Sets their Coefficient of x^{3} equal to 1890 . They should have an equation which does not include a power of x. This mark may be recovered if they continue on to get $k=1.5$
dM 1 : This mark depends upon the previous M mark. Divides then attempts a cube root of their answer to give k - the intention must be clear. (You may need to check on a calculator) The correct answer implies this mark.
A1: Any equivalent to 1.5 If they give -1.5 as a second answer this is A0

Notes

${ }^{(a)}$ M1: Correct use of formula for sum to infinity as above, or states correct formula and makes small slip such as replacing r with 0.9 instead of -0.9
A1: Correct answer
(b) M1: Correct use of formula with $n-1=4$, allow 0.9 instead of -0.9 here. Condone invisible brackets.

A1: accept awrt 12466 (even following use of 0.9) Correct answer implies M1A1 even with no method shown. Accept correct equivalents such as mixed or improper fractions
(c) M1: Correct use of formula with power 12 (or adds 12 terms) with their a (not 10000) and $r=+0.9$ or -0.9
A1ft: Correct unsimplified with their a and with $r=+0.9$ or -0.9 or for listing method as follows $19000+-17100+15390+-13851+12465.9+-11219.31+10097.379+-9087.6411+8178.87699$ $+-7360.989291+6624.890362+-5962.401326=($ Do not follow through for listing method $)$ A1cso: 7176 only
Special case: $S=\frac{a\left(1-r^{n}\right)}{1-r}$ so $S=\frac{" 19000 "\left(1+(0.9)^{12}\right)}{1+(0.9)}$ is M1A0A0
Whereas $S=\frac{" 19000 "\left(1+(0.9)^{12}\right)}{1+(0.9)}$ on its own with no formula quoted is M0A0A0
$S=\frac{" 19000 "\left(1--0.9^{12}\right)}{1--0.9}$ should have M1 (bod) then final two A marks depend on whether answer is correct so if this is followed by 7176 the A1A1 should be awarded. If it is followed by 12824 then A0A0 is implied.

Question Number	Scheme ${ }^{\text {a }}$ Marks
70.	$\begin{aligned} & \left(3-\frac{1}{3} x\right)^{5}- \\ & 3^{5}+{ }^{5} C_{1} 3^{4}\left(-\frac{1}{3} x\right)+{ }^{5} C_{2} 3^{3}\left(-\frac{1}{3} x\right)^{2}+{ }^{5} C_{3} 3^{2}\left(-\frac{1}{3} x\right)^{3} \ldots \end{aligned}$ First term of 243 $\begin{aligned} & \left({ }^{5} C_{1} \times \ldots \times x\right)+\left({ }^{5} C_{2} \times \ldots \times x^{2}\right)+\left({ }^{5} C_{3} \times \ldots \times x^{3}\right) \ldots \\ & =(243 . .)-\frac{405}{3} x+\frac{270}{9} x^{2}-\frac{90}{27} x^{3} \ldots \\ & =(243 \ldots)-135 x+30 x^{2}-\frac{10}{3} x^{3} . . \end{aligned}$
Alternative method	$\begin{aligned} & \left(3-\frac{1}{3} x\right)^{5}=3^{5}\left(1-\frac{x}{9}\right)^{5} \\ & 3^{5}\left(1+{ }^{5} C_{1}\left(-\frac{1}{9} x\right)+{ }^{5} C_{2}\left(-\frac{1}{9} x\right)^{2}+{ }^{5} C_{3}\left(-\frac{1}{9} x\right)^{3} \ldots\right) \end{aligned}$ Scheme is applied exactly as before
	Notes B1: The constant term should be 243 in their expansion M1: Two of the three binomial coefficients must be correct and must be with the correct power of x. Accept ${ }^{5} C_{1}$ or $\binom{5}{1}$ or 5 as a coefficient, and ${ }^{5} C_{2}$ or $\binom{5}{2}$ or 10 as another and ${ }^{5} C_{3}$ or $\binom{5}{3}$ or 10 as another........ Pascal's triangle may be used to establish coefficients. NB: If they only include the first two of these terms then the M1 may be awarded. A1: Two of the final three terms correct - may be unsimplified i.e. two of $-135 x+30 x^{2}-\frac{10}{3} x^{3}$ correct, or two of $-\frac{405}{3} x+\frac{270}{9} x^{2}-\frac{90}{27} x^{3}$ (may be just two terms) A1: All three final terms correct and simplified. (Can be listed with commas or appear on separate lines. Accept in reverse order.) Accept correct alternatives to $-\frac{10}{3}$ e.g. $-3 \frac{1}{3}$ or -3.3 the recurring must be clear. 3.3 is not acceptable. Allow e.g. $+-135 x$
	e.g. The common error $3^{5}+{ }^{5} C_{1} 3^{4}\left(-\frac{1}{3}\right) x+{ }^{5} C_{2} 3^{3}\left(-\frac{1}{3}\right) x^{2}+{ }^{5} C_{3} 3^{2}\left(-\frac{1}{3}\right) x^{3}=(243)-135 x-90 x^{2}-30 x^{3}$ would earn B1, M1, A0, A0, so $2 / 4$ If extra terms are given then isw No negative signs in answer also earns B1, M1, A0, A0 If the series is divided through by 3 at the final stage after an error or omission resulting in all multiple of three coefficients then apply scheme to series before this division and ignore subsequent work (isw) Special Case: Only gives first three terms $=(243$.. $)-135 x+30 x^{2} \ldots$ or $243-\frac{405}{3} x+\frac{270}{9} x^{2}$ Follow the scheme to give B1 M1 A1 A0 special case. (Do not treat as misread.) Answers such as $243+405-\frac{1}{3} x+270-\frac{1}{9} x^{2}+90-\frac{1}{27} x^{3}$.. gain no credit as the binomial coefficients are not linked to the x terms.

Question Number	Scheme	Marks
72.	$r=\frac{3}{4}, S_{4}=175$	
(a) Way 1	$\frac{a\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \text { or } \frac{a\left(1-\frac{3^{4}}{4}\right)}{1-\frac{3}{4}} \text { or } \frac{a\left(1-0.75^{4}\right)}{1-0.75} \quad \begin{aligned} & \text { Substituting } r=\frac{3}{4} \text { or } 0.75 \text { and } n=4 \\ & \text { into the formula for } S_{n} \end{aligned}$	M1
	$175=\frac{a\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \Rightarrow a=\frac{175\left(1-\frac{3}{4}\right)}{\left(1-\left(\frac{3}{4}\right)^{4}\right)}\left\{\Rightarrow a=\frac{\left(\frac{175}{4}\right)}{\left(\frac{155}{256}\right)} \Rightarrow\right\} \underline{=64}$ * Correct proof	A1*
		[2]
(a) Way 2		M1
	$\frac{175}{64} a=175\left(\Rightarrow a=\frac{175}{\left(\frac{175}{64}\right)}\right) \Rightarrow \underline{a=64} *$ or $2.734375 a=175 \Rightarrow a=64$	A1*
		[2]
(a) Way 3	$\left\{S_{4}=\right\} \frac{64\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \text { or } \frac{64\left(1-\frac{3^{4}}{4}\right)}{1-\frac{3}{4}} \text { or } \frac{64\left(1-0.75^{4}\right)}{1-0.75} \quad \begin{gathered} \text { Applying the formula for } S_{n} \\ \text { with } r=\frac{3}{4}, n=4 \text { and } a \text { as } 64 . \end{gathered}$	M1
	$=175$ so $a=64^{*} \quad$ Obtains 175 with no errors seen and concludes	A1*
		[2]
(b)	$\left\{S_{\infty}\right\}=\frac{64}{\left(1-\frac{3}{4}\right)} ;=256 \quad S_{\infty}=\frac{(\text { their } a)}{1-\frac{3}{4}} \text { or } \frac{64}{1-\frac{3}{4}}$	M1;
		Alcao
		[2]
(c)	Writes down either " 64 " $\left(\frac{3}{4}\right)^{8}$ or awrt 6.4 or $\left\{D=T_{9}-T_{10}=\right\} 64\left(\frac{3}{4}\right)^{8}-64\left(\frac{3}{4}\right)^{9}$ " 64 " $\left(\frac{3}{4}\right)^{9}$ or awrt 4.8, using $a=64$ or their a A correct expression for the difference (i.e. $\left.\pm\left(T_{9}-T_{10}\right)\right)$ using $a=64$ or their a.	M1
		dM1
		A1 cao
		[3]
		7

Question 72 Notes

72. (a)
(c) case

M1

$$
64\left(\frac{3}{4}\right)^{8}=6.407226563 \ldots \quad \text { and } 64\left(\frac{3}{4}\right)^{9}=4.805419922 \ldots
$$

This is dependent on previous M mark and can be implied. Either $64\left(\frac{3}{4}\right)^{8}-64\left(\frac{3}{4}\right)^{9}$ or $64\left(\frac{3}{4}\right)^{9}-64\left(\frac{3}{4}\right)^{8}$ or awrt $6.4-$ awrt 4.8 , using $a=64$ (or their a from part (a))

Note $\quad 1^{\text {st }} \mathrm{M} 1$ and $2^{\text {nd }} \mathrm{M} 1$ can be implied by the value of their
difference $=$ " their a found in part (a)" $\times \frac{3^{8}}{4^{9}} \approx \frac{\text { "their } a \text { found in part (a)" }}{40}$
Either $64\left(\frac{3}{4}\right)^{9}-64\left(\frac{3}{4}\right)^{10}$ or $64\left(\frac{3}{4}\right)^{10}-64\left(\frac{3}{4}\right)^{9}$ is $1^{\text {st }} \mathrm{M} 1,2^{\text {nd }} \mathrm{M} 0$.
A1 1.602 or -1.602 cao (This answer with no working is M1M1A1) But 1.6 with no working is M0M0A0

Note
Special
Allow invisible brackets around fractions throughout all parts of this question.
There are three possible methods as described above.
Note that this is a "show that" question with a printed answer.
In Way 1 this mark usually requires $a=p / q$ where p and q may be unsimplified brackets from the formula (or could be 11200/175 for example) as an intermediate step before the conclusion $a=64$. Exceptions include $a=175 / 4 * 256 / 175$ i.e. multiplication by reciprocal rather than division or 175 $=175 a / 64$ followed by the obvious $a=64$ These also get A1
In "reverse" methods such as Way 3 we need a conclusion "so $a=64$ " or some implication that their argument is reversible. Also a conclusion can be implied from a preamble, eg: "If I assume a $=64$ then find $S=175$ as given this implies $a=64$ as required"
This is a show that question and there should be no loss of accuracy.
In all the methods if decimals are used there should not be rounding.
If 0.68359375 appears this is correct. If it is rounded it would not give the exact answer. $64(1-0.31640625)$ or 43.75 are each correct - if they are rounded then treat this as incorrect
e.g. Way 3: " $43.75 / 0.25=175$ so $a=64$ is A1" but " $43 / 0.25=175$ so $a=64$ is A0" and " $44 / 0.25=175$ so $\mathrm{a}=64$ is A0"
Yet another variant on Way 3: take $a=64$ then find the next 3 terms as $48,36,27$ then add $64+48+36+27$ to get 175 . Again need conclusion that $a=64$ or some implication that their argument is reversible. Otherwise M1 A0
$S_{\infty}=\frac{64}{1-\frac{3}{4}}$ or $\frac{\text { (their } a \text { found in part (a)) }}{1-\frac{3}{4}}$
256 cao
Using Sum of $\mathbf{1 0}$ terms minus Sum of $\mathbf{9}$ terms is NOT a misread Scores M0M0A0
Can be implied. Writes down either $64\left(\frac{3}{4}\right)^{8}$ or $64\left(\frac{3}{4}\right)^{9}$, using $a=64$ (or their a found in part (a)).
Ignore candidate's labelling of terms.

Note
$\left\{D=\frac{1}{4} T_{9} \Rightarrow\right\} D=\frac{1}{4}(64)\left(\frac{3}{4}\right)^{8}$ is $1^{\text {st }} \mathrm{M} 1,2^{\text {nd }} \mathrm{M} 1$
Obtains awrt 6.4 , then obtains awrt 4.8 but rounds to $6-5$ when subtracting - award M1M1A0

Question Number	Scheme		Marks
73.	（a）$(2-9 x)^{4}=2^{4}+{ }^{4} C_{1} 2^{3}(-9 x)+{ }^{4} C_{2} 2^{2}(-9 x)^{2}$ ，（b） $\mathrm{f}(x)=$	$(1+k x)(2-9 x)^{4}=A-232 x+B x^{2}$	
（a）	First term of 16 in their final series		B1
Way 1	At least one of $\left({ }^{4} C_{1} \times \ldots \times x\right)$ or $\left({ }^{4} C_{2} \times \ldots \times x^{2}\right)$		M1
	$=(16)-288 x+1944 x^{2}$	At least one of $-288 x$ or $+1944 x^{2}$	A1
		Both $-288 x$ and $+1944 x^{2}$	A1
			［4］
（a）	$(2-9 x)^{4}=\left(4-36 x+81 x^{2}\right)\left(4-36 x+81 x^{2}\right)$		
		First term of 16 in their final series	B1
Way 2	$=16-144 x+324 x^{2}-144 x+1296 x^{2}+324 x^{2}$	Attempts to multiply a 3 term quadratic by the same 3 term quadratic to achieve either 2 terms in x or at least 2 terms in x^{2} ．	M1
		At least one of $-288 x$ or $+1944 x^{2}$	A1
		Both $-288 x$ and $+1944 x^{2}$	A1
			［4］
（a） Way 3	$\left\{(2-9 x)^{4}=\right\} 2^{4}\left(1-\frac{9}{2} x\right)^{4}$	First term of 16 in final series	B1
	$=2^{4}\left(1+4\left(-\frac{9}{2} x\right)+\frac{4(3)}{2}\left(-\frac{9}{2} x\right)^{2}+\ldots\right)$	$\begin{array}{r} \begin{array}{r} \text { At least one of } \\ (4 \times \ldots \times x) \text { or }\left(\frac{4(3)}{2} \times \ldots \times x^{2}\right) \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 \text {. } \end{array}$	M1
	$=(16)-288 x+1944 x^{2}$	At least one of $-288 x$ or $+1944 x^{2}$	A1
		Both $-288 x$ and $+1944 x^{2}$	A1
			［4］
	Parts（b），（c）and d）may be marked together		
（b）	$A=116$	Follow through their value from（a）	B1ft
			［1］
（c）	$\begin{aligned} & \left\{(1+k x)(2-9 x)^{4}\right\}=(1+k x)\left(16-288 x+\left\{1944 x^{2}+\ldots\right\}\right) \\ & x \text { terms: }-288 x+16 k x=-232 x \\ & \text { giving, } 16 k=56 \Rightarrow k=\frac{7}{2} \end{aligned}$	May be seen in part（b）or（d） and can be implied by work in parts（c）or（d）．	M1
		$k=\frac{7}{2}$	A1
			［2］
（d）	x^{2} terms： $1944 x^{2}-288 k x^{2}$		
	So，$B=1944-288\left(\frac{7}{2}\right) ;=1944-1008=936$	See notes	M1
		$\begin{array}{r}936 \\ \hline+\end{array}$	A1
			［2］
			9

Question 73 Notes

Question Number	Scheme	Marks
74.Way 1	$\left(2-\frac{x}{4}\right)^{10}$	
	$2^{10}+\underline{\left.\underline{\binom{10}{1}} 2^{9}\left(-\frac{1}{4} \underline{\underline{x}}\right)+\underline{\underline{\binom{10}{2}} 2^{8}\left(-\frac{1}{4} \underline{x}\right.}\right)^{2}+\ldots} \begin{aligned} & \text { For either the } x \text { term or the } x^{2} \text { term } \\ & \text { including a correct binomial coefficient } \\ & \text { with a correct power of } x \end{aligned}$	M1
	First term of 1024	B1
	$\text { Either }-1280 x \text { or } 720 x^{2} \text { (Allow }+-1280 x \text { here) }$	A1
	- Both $-1280 x$ and $720 x^{2}$ (Do not allow +-1280x here)	A1 [4]
Way 2	$\begin{aligned} & \left(2-\frac{x}{4}\right)^{10}=2^{k}\left(1-\underline{\underline{10}} \times \frac{\underline{\underline{\underline{x}}}}{8}+\frac{\underline{10 \times 9}}{\underline{2}}\left(-\frac{\underline{\underline{\underline{x}}}}{8}\right)^{2}=\right) \\ & 1024(1 \pm \ldots \ldots) \\ & =1024-1280 x+720 x^{2} \end{aligned}$	M1
		B1A1 A1 [4]

Notes

M1: For either the x term or the x^{2} term having correct structure i.e. a correct binomial coefficient in any form with the correct power of x. Condone sign errors and condone missing brackets and allow alternative forms for binomial coefficients e.g. ${ }^{10} C_{1}$ or $\binom{10}{1}$ or even $\left(\frac{10}{1}\right)$ or 10 . The powers of 2 or of $1 / 4$ may be wrong or missing.
B1: Award this for 1024 when first seen as a distinct constant term (not $1024 x^{0}$) and not $1+1024$
A1: For one correct term in x with coefficient simplified. Either $-1280 x$ or $720 x^{2}$ (allow $+-1280 x$ here)
Allow $720 x^{2}$ to come from $\left(\frac{x}{4}\right)^{2}$ with no negative sign. So use of + sign throughout could give M1 B1 A1 A0
A1: For both correct simplified terms i.e. $-1280 x$ and $720 x^{2}$ (Do not allow $+-1280 x$ here)
Allow terms to be listed for full marks e.g. $1024,-1280 x,+720 x^{2}$
N.B. If they follow a correct answer by a factor such as $512-640 x+360 x^{2}$ then isw Terms may be listed. Ignore any extra terms.

Notes for Way 2

M1: Correct structure for at least one of the underlined terms. i.e. a correct binomial coefficient in any form with the correct power of x. Condone sign errors and condone missing brackets and allow alternative forms for binomial coefficients e.g. ${ }^{10} C_{1}$ or $\binom{10}{1}$ or even $\left(\frac{10}{1}\right)$ or $10 . k$ may even be 0 or 2^{k} may not be seen. Just consider the bracket for this mark.
B1: Needs 1024(1... To become 1024
A1, A1: as before

Question Number	Scheme	Marks
75.(i) (a) (Way 1) (b)	Mark (a) and (b) together $a+a r=34$ or $\frac{a\left(1-r^{2}\right)}{(1-r)}=34$ or $\frac{a\left(r^{2}-1\right)}{(r-1)}=34 ; \quad \frac{a}{1-r}=162$ Eliminate a to give $(1+r)(1-r)=\frac{17}{81} \quad$ or $\quad 1-r^{2}=\frac{34}{162}$. (not a cubic) (and so $r^{2}=\frac{64}{81}$ and) $r=\frac{8}{9}$ only Substitute their $r=\frac{8}{9}(0<r<1)$ to give $a=$ $a=18$	$\begin{aligned} & \mathrm{B} 1 ; \mathrm{B} 1 \\ & \mathrm{aM} 1 \end{aligned}$ aA1 (4) bM1 bA1 (2)
(Way 2) Part (b) first Then part (a) again	Eliminate r to give $\frac{34-a}{a}=1-\frac{a}{162}$ gives $\quad a=18$ or 306 and rejects 306 to give $a=18$ Substitute $\mathrm{a}=18$ to give $r=$ $r=\frac{8}{9}$	bM1 bA1 aM1 aA1
(ii)	$\frac{42\left(1-\frac{6^{n}}{7}\right)}{1-\frac{6}{7}}>290$ (For trial and improvement approach see notes below) to obtain So $\left(\frac{6}{7}\right)^{n}<\left(\frac{4}{294}\right)$ or equivalent e.g. $\left(\frac{7}{6}\right)^{n}>\left(\frac{294}{4}\right)$ or $\left(\frac{6}{7}\right)^{n}<\left(\frac{2}{147}\right)$ So $n>\frac{\log "\left(\frac{4}{294}\right) "}{\log \left(\frac{6}{7}\right)}$ or $\log _{\frac{6}{7}}$ " $\left(\frac{4}{294}\right)$ " or equivalent but must be \log of positive quantity (i.e. $n>27.9$) so $n=28$	M1 A1 M1 A1 (4)

Notes

(i) (a) B1: Writes a correct equation connecting a and r and 34 (allow equivalent equations - may be implied)

B1: Writes a correct equation connecting a and r and 162 (allow equivalent equation - may be implied)
Way 1: aM1: Eliminates a correctly for these two equations to give $(1+r)(1-r)=\frac{17}{81}$ or $(1+r)(1-r)=\frac{34}{162}$ or equivalent not a cubic - should have factorized $(1-r)$ to give a correct quadratic
aA1: Correct value for r. Accept 0.8 recurring or $8 / 9$ (not 0.889) Must only have positive value.
bM1: Substitutes their $r(0<r<1)$ into a correct formula to give value for a. Can be implied by $a=18$
bA1: must be 18 (not answers which round to 18)
Way 2: Finds a first - B1, B1: As before then award the (b) M and A marks before the (a) M and A marks
bM1: Eliminates r correctly to give $\frac{34-a}{a}=1-\frac{a}{162}$ or $a^{2}-324 a+5508=0$ or equivalent
bA1: Correct value for a so $a=18$ only. (Only award after 306 has been rejected)
aM1: Substitutes their 18 to give $r=$
aA1: $r=\frac{8}{9}$ only
(ii) M1: Allow n or $n-1$ and any symbols from " $>", "<"$, or " $="$ etc A1: Must be power $n(\operatorname{not} n-1)$ with any symbol M1: Uses logs correctly on $\left(\frac{6}{7}\right)^{n}$ or $\left(\frac{7}{6}\right)^{n}$ not on (36) n to get as far as n Allow any symbol
A1: $n=28$ cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the negative $\log \left(\frac{6}{7}\right)$ or any contradictory statements must be penalised here) Those with equals throughout may gain this mark if they follow 27.9 by $n=28$. Just $n=28$ without mention of 27.9 is only allowed following correct inequality work.
Special case: Trial and improvement: Gives $n=28$ as $S=$ awrt 290.1 (M1A1) and when $n=27 S=($ awrt) 289 so $n=28$ (M1A1) - $\quad n=28$ with no working is M1A0M0A0 and insufficient accuracy is M1A0M1A0

Uses nth term instead of sum of n terms - over simplified - do not treat as misread - award 0/4

Question Number	Scheme		Marks
76. (a)	$(2-3 x)^{6}=64+\ldots$.	64 seen as the only constant term in their expansion.	B1
	$\left\{(2-3 x)^{6}\right\}=(2)^{6}+{ }^{6} \mathrm{C}_{1}(2)^{5}(-3 \underline{x})+{ }^{6} \mathrm{C}_{2}(2)^{4}(-3 \underline{x})^{2}+\ldots$		M1
	M1: $\left({ }^{6} \mathrm{C}_{1} \times \ldots \times x\right)$ or $\left({ }^{6} \mathrm{C}_{2} \times \ldots \times x^{2}\right)$. For either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or -3) may be wrong or missing. The terms can be "listed" rather than added. Ignore any extra terms.		
	${ }^{6} \mathrm{C}_{1} 2^{5}-3 x+{ }^{6} \mathrm{C}_{2} 2^{4}-3 x^{2}+\ldots$ Scores M0 unless later work implies a correct method		
	$=64-576 x+2160 x^{2}+\ldots$	$\begin{aligned} & \text { A1: Either }-576 x \text { or } 2160 x^{2} \\ & \text { (Allow }+-576 x \text { here) } \end{aligned}$	A1A1
		A1: Both $-576 x$ and $2160 x^{2}$ (Do not allow $+-576 x$ here)	
			[4]
(a) Way 2	$(2-3 x)^{6}=64+\ldots$.	64 seen as the only constant term in their expansion.	B1
	$\left(1-\frac{3}{2} x\right)^{6}=1+\underline{{ }^{6} \mathrm{C}_{1}}\left(\frac{-3}{2} \underline{x}\right)+\underline{{ }^{6} \mathrm{C}_{2}}\left(\frac{-3}{2} \underline{x}\right)^{\underline{2}}+\ldots$	M1: $\left({ }^{6} \mathrm{C}_{1} \times \ldots \times x\right)$ or $\left({ }^{6} \mathrm{C}_{2} \times \ldots \times x^{2}\right)$. For either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or -3) may be wrong or missing. The terms can be "listed" rather than added. Ignore any extra terms.	M1
	$=64-576 x+2160 x^{2}+\ldots$	$\begin{aligned} & \text { A1: Either }-576 x \text { or } 2160 x^{2} \\ & \text { (Allow }+-576 x \text { here) } \end{aligned}$	A1A1
		A1: Both $-576 x$ and $2160 x^{2}$ (Do not allow $+-576 x$ here)	
(b)	Candidate writes down $\left(1+\frac{x}{2}\right) \times($ their part (a) answer, at least up to the term in $x)$. (Condone missing brackets) $\begin{gathered} \left(1+\frac{x}{2}\right)(64-576 x+\ldots) \text { or }\left(1+\frac{x}{2}\right)\left(64-576 x+2160 x^{2}+\ldots\right) \text { or } \\ \left(1+\frac{x}{2}\right) 64-\left(1+\frac{x}{2}\right) 576 x \text { or }\left(1+\frac{x}{2}\right) 64-\left(1+\frac{x}{2}\right) 576 x+\left(1+\frac{x}{2}\right) 2160 x^{2} \\ \text { or } 64+32 x,-576 x-288 x^{2}, 2160 x^{2}+1080 x^{3} \text { are fine. } \end{gathered}$		M1
	$=64-544 x+1872 x^{2}+\ldots$	A1: At least 2 terms correct as shown. (Allow $+-544 x$ here)	A1A1
		A1: $64-544 x+1872 x^{2}$ The terms can be "listed" rather than added. Ignore any extra terms.	
			[3]
			Total 7
	SC: If a candidate expands in descending powers of x, only the M marks are available		
	e.g. $\left\{(2-3 x)^{6}\right\}=(-3 x)^{6}+{ }^{6} \mathrm{C}_{1}(2)^{2}(-3 x)^{5}+{ }^{6} \mathrm{C}_{2}(2)^{2}(-3 x)^{4}+\ldots$		

Question Number	Scheme		Marks
77(a)	$S_{\infty}=\frac{20}{1-\frac{7}{8}} ;=160$	M1: Use of a correct S_{∞} formula	M1A1
		A1: 160	
	Accept correct answer only (160)		
			[2]
(b)	$S_{12}=\frac{20\left(1-\left(\frac{7}{8}\right)^{12}\right)}{1-\frac{7}{8}} ;=127.77324 \ldots$	M1: Use of a correct S_{n} formula with $n=12$ (condone missing brackets around 7/8)	M1A1
		A1: awrt 127.8	
	T \& I in (b) requires all 12 terms to be calculated correctly for M1 and A1 for awrt 127.8		
			[2]
(c)	$160-\frac{20\left(1-\left(\frac{7}{8}\right)^{N}\right)}{1-\frac{7}{8}}<0.5$ Applies S_{N} (GP only) with $a=20, r=\frac{7}{8}$ and "uses" 0.5 and their S_{∞} at any point in their working. (condone missing brackets around $7 / 8$)(Allow $=,<,>, \geq, \leq$) but see note below.		M1
	$160\left(\frac{7}{8}\right)^{N}<(0.5)$ or $\left(\frac{7}{8}\right)^{N}<\left(\frac{0.5}{160}\right)$	Attempt to isolate $+160\left(\frac{7}{8}\right)^{N}$ or $+\left(\frac{7}{8}\right)^{N}$ oe (Allow $=,<,>, \geq, \leq$) but see note below. Dependent on the previous M1	dM1
	$N \log \left(\frac{7}{8}\right)<\log \left(\frac{0.5}{160}\right)$	Uses the power law of logarithms or takes logs base 0.875 correctly to obtain an equation or an inequality of the form $N \log \left(\frac{7}{8}\right)<\log \left(\frac{0.5}{\text { their } \mathrm{S}_{\infty}}\right)$ $N>\log _{0.875}\left(\frac{0.5}{\text { or }}\left(\frac{0.5}{\text { their } \mathrm{S}_{\infty}}\right)\right.$ (Allow $=,<,>, \geq, \leq$) but see note below.	M1
	$N>\frac{\log \left(\frac{0.5}{160}\right)}{\log \left(\frac{7}{8}\right)}=43.19823 \ldots \Rightarrow N=44$	$N=44$ (Allow $N \geq 44$ but not $N>44$	A1 cso
	An incorrect inequality statement at any stage in a candidate's working loses the final mark. Some candidates do not realise that the direction of the inequality is reversed in the final line of their solution. BUT it is possible to gain full marks for using $=$, as long as no incorrect working seen.		
			[4]
			Total 8
	Trial \& Improvement Method in (c):		
	$1^{\text {st }} \mathrm{M} 1:$ Attempts $160-S_{N}$ or S_{N} with at least one value for $N>40$		
	$2^{\text {nd }} \mathrm{M} 1:$ Attempts $160-S_{N}$ or S_{N} with $N=43$ or $N=44$		
	$3^{\text {rd }} \mathrm{M} 1$: For evidence of examining $160-S_{N}$ or S_{N} for both $N=43$ and $N=44$ with both values correct to 2 DP Eg: $160-S_{43}=$ awrt 0.51 and $160-S_{44}=$ awrt 0.45 or $S_{43}=\operatorname{awrt159.49}$ and $S_{44}=\operatorname{awrt159.55}$		
	A1: $N=44$ cso		
	Answer of $\boldsymbol{N}=44$ only with no working scores no marks		

Question Number	Scheme	Marks
78.	$\left(1+\frac{3 x}{2}\right)^{8}$	
	$1+12 x$ Both terms correct as printed (allow $12 x^{1}$ but not $\left.1^{8}\right)$	B1
	$\begin{array}{l\|l} \ldots+\frac{8(7)}{2!}\left(\frac{3 x}{2}\right)^{2}+\frac{8(7)(6)}{3!}\left(\frac{3 x}{2}\right)^{3}+\ldots & \left(\begin{array}{l} \left(\frac{8(7)}{2!} \times \ldots \times x^{2}\right) \text { or }\left(\frac{8(7)(6)}{3!} \times \ldots \times x^{3}\right) \text { or } \\ \left({ }^{8} \mathrm{C}_{2} \times \ldots \times x^{2}\right) \text { or }\left({ }^{8} \mathrm{C}_{3} \times \ldots \times x^{3}\right) \\ \text { M1: For either the } x^{2} \text { term or the } x^{3} \text { term. } \\ \text { Requires } \frac{\text { correct binomial coefficient in }}{} \\ \text { any form with the correct power of } x, \text { but } \\ \text { the other part of the coefficient (perhaps } \\ \text { including powers of } 2 \text { and/or } 3 \text { or signs) } \\ \text { may be wrong or missing. } \end{array}\right. \end{array}$	M1
	Special Case: Allow this M1 only for an attempt at a descending expansion provided the equivalent conditions are met for any term other than the first $\begin{aligned} & \ldots+8\left(\frac{3 x}{2}\right)^{7}(1)+\frac{8(7)}{2!}\left(\frac{3 x}{2}\right)^{6}(1)^{2}+\ldots \\ & \text { e.g. } \\ & \ldots+{ }^{8} \mathrm{C}_{1}\left(\frac{3 x}{2}\right)^{7}+{ }^{8} \mathrm{C}_{2}\left(\frac{3 x}{2}\right)^{6}+\ldots \end{aligned}$	
	$\cdots$$\ldots+63 x^{2}+189 x^{3}+\ldots$ A1: Either $63 x^{2}$ or $189 x^{3}$ A1: Both $63 x^{2}$ and $189 x^{3}$	A1A1
	Terms may be listed but must be positive	
		[4]
		Total 4
	Note it is common not to square the 2 in the denominator of $\left(\frac{3 x}{2}\right)$ and this gives $1+12 x+126 x^{2}+756 x^{3}$. This could score B1M1A0A0.	
	Note $\ldots+{ }^{8} \mathrm{C}_{2}\left(1^{4}+\frac{3 x}{2}\right)^{2}+{ }^{8} \mathrm{C}_{3}\left(1^{3}+\frac{3 x}{2}\right)^{3}+\ldots$ would score M0 unless a correct method was implied by later work	

Question Number	Scheme		Marks
79. (a)	$\mathrm{S}_{\infty}=6 a$		
	$\frac{a}{1-r}=6 a$	Either $\frac{a}{1-r}=6 a$ or $\frac{6 a}{1-r}=a$ or $\frac{6}{1-r}=1$	M1
	$\{\Rightarrow 1=6(1-r) \Rightarrow\} r=\frac{5}{6} *$	cso	A1*
	Allow verification e.g. $\frac{a}{1-r}=6 a \Rightarrow \frac{a}{1-\frac{5}{6}}=6 a \Rightarrow \frac{a}{\frac{1}{6}}=6 a \Rightarrow 6 a=6 a$		
			[2]
(b)	$\left\{\mathrm{T}_{4}=a r^{3}=62.5 \Rightarrow\right\} a\left(\frac{5}{6}\right)^{3}=62.5$	$a\left(\frac{5}{6}\right)^{3}=62.5$ (Correct statement using the $4^{\text {th }}$ term. Do not accept $a\left(\frac{5}{6}\right)^{4}=62.5$)	M1
	$\Rightarrow a=108$	108	A1
			[2]
(c)	$\mathrm{S}_{\infty}=6$ (their a) or $\frac{\text { their } a}{1-\frac{5}{6}}\{=648\}$	Correct method to find S_{∞}	M1
	$\left\{\mathrm{S}_{30}=\right\} \frac{108\left(1-\left(\frac{5}{6}\right)^{30}\right)}{1-\frac{5}{6}}\{=645.2701573 \ldots\}$	$\mathrm{M} 1: \mathrm{S}_{30}=\frac{(\text { their } a)\left(1-\left(\frac{5}{6}\right)^{30}\right)}{1-\left(\frac{5}{6}\right)}$ (Condone invisible brackets around 5/6) A1ft: Correct follow through expression (follow through their a). Do not condone invisible brackets around 5/6 unless their evaluation or final answer implies they were intended.	M1 A1ft
	$\left\{\mathrm{S}_{\infty}-\mathrm{S}_{30}\right\}=2.72984 \ldots$	awrt 2.73	A1
			[4]
			Total 8
(c)	Alternative: $\text { Difference }=\frac{a r^{30}}{1-r}=\frac{108\left(\frac{5}{6}\right)^{30}}{1-\frac{5}{6}}=2.7298$ M1M1: For an attempt to apply $\frac{a r^{30}}{1-r}$. A1ft: $\frac{(\text { their } a) \times r^{30}}{1-r}$ with their $\mathrm{ft} a$. A1: awrt 2.73		

Question Number	Scheme	Marks
80. (a)	$\{r=\} \frac{2}{3}$	B1
		(1)
(b)	$\{p=\} 8$	B1 cao (1)
(c)	$\left\{\mathrm{S}_{15}=\right\} \frac{18\left(1-\left(\frac{2}{3}\right)^{15}\right)}{1-\frac{2}{3}}$	M1
	$\left\{\mathrm{S}_{15}=53.87668 \ldots\right\} \Rightarrow \mathrm{S}_{15}=$ awrt 53.877	A1
		$\begin{aligned} & \text { (2) } \\ & \text { [4] } \end{aligned}$
	Notes for Question 80	
(a)	B1: Accept $\frac{12}{18}, 0.6$ or 0.6 recurring, or even 0.667 (3 sf) but not 0.6 or 0.67 B1: accept 8 only M1: Applies this formula $S_{15}=\frac{18\left(1-(\text { their } r)^{15}\right)}{1-(\text { their } r)}$, can be implied by their answer. For this mark they may use any value for r except $r=1$ or $r=0$ (even $3 / 2$ or -6 may be used) A1: Answers which round to 53.877	
(b)		
(c)		
Alternative method for (c)	M1: (Adding terms is an unlikely method for this question) Need to see 15 terms listed as $18+12+\ldots \ldots .0 .06165877$ or can be implied by correct answer A1: awrt 53.877 Answer only : 53.9 is M0A0 with no working, but 53.877 with no working is M1A1	

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme \quad Marks

\hline 81. (a)

(b) \& | $\begin{aligned} & (2+3 x)^{4} \text { - Mark (a) and (b) together } \\ & 2^{4}+{ }^{4} C_{1} 2^{3}(3 x)+{ }^{4} C_{2} 2^{2}(3 x)^{2}+{ }^{4} C_{3} 2^{1}(3 x)^{3}+(3 x)^{4} \end{aligned}$ |
| :--- |
| First term of 16 $\begin{aligned} & \left(\begin{array}{l} \left.{ }^{4} C_{1} \times \ldots \times x\right)+\left({ }^{4} C_{2} \times \ldots \times x^{2}\right)+\left({ }^{4} C_{3} \times \ldots \times x^{3}\right)+\left({ }^{4} C_{4} \times \ldots \times x^{4}\right) \\ =(16+) 96 x+216 x^{2}+216 x^{3}+81 x^{4} \quad \text { Must use Binomial }- \text { otherwise A0, } \\ \text { A0 } \end{array}\right. \end{aligned}$ $(2-3 x)^{4}=16-96 x+216 x^{2}-216 x^{3}+81 x^{4}$ |

\hline Alternative method (a) \& | $\begin{aligned} & (2+3 x)^{4}=2^{4}\left(1+\frac{3 x}{2}\right)^{4} \\ & 2^{4}\left(1+{ }^{4} C_{1}\left(\frac{3 x}{2}\right)+{ }^{4} C_{2}\left(\frac{3 x}{2}\right)^{2}+{ }^{4} C_{3}\left(\frac{3 x}{2}\right)^{3}+\left(\frac{3 x}{2}\right)\right. \end{aligned}$ |
| :--- |
| Scheme is applied exactly as before |

\hline \& Notes for Question 81

\hline (a)

(b) \& | B1: The constant term should be 16 in their expansion |
| :--- |
| M1: Two binomial coefficients must be correct and must be with the correct power of x. Accept ${ }^{4} C_{1}$ or $\binom{4}{1}$ or 4 as a coefficient, and ${ }^{4} C_{2}$ or $\binom{4}{2}$ or 6 as another........ Pascal's triangle may be used to establish coefficients. |
| A1: Any two of the final four terms correct (i.e. two of $96 x+216 x^{2}+216 x^{3}+81 x^{4}$) in expansion following Binomial Method. |
| A1: All four of the final four terms correct in expansion. (Accept answers without + signs, can be listed with commas or appear on separate lines) |
| B1 ft: Award for correct answer as printed above or ft their previous answer provided it has five terms ft and must be subtracting the x and x^{3} terms |
| Allow terms in (b) to be in descending order and allow $+-96 x$ and $+-216 x^{3}$ in the series. (Accept answers without + signs, can be listed with commas or appear on separate lines) |

\hline \& | e.g. The common error $2^{4}+{ }^{4} C_{1} 2^{3} 3 x+{ }^{4} C_{2} 2^{2} 3 x^{2}+{ }^{4} C_{3} 2^{1} 3 x^{3}+3 x^{4}=(16)+96 x+72 x^{2}+24 x^{3}+3 x^{4}$ would earn B1, M1, A0, A0, and if followed by $=(16)-96 x+72 x^{2}-24 x^{3}+3 x^{4}$ gets B1ft so 3/5 |
| :--- |
| Fully correct answer with no working can score B1 in part (a) and B1 in part (b). The question stated use the Binomial theorem and if there is no evidence of its use then M mark and hence A marks cannot be earned. |
| Squaring the bracket and squaring again may also earn B1 M0 A0 A0 B1 if correct |
| Omitting the final term but otherwise correct is B1 M1 A1 A0 B0ft so $3 / 5$ |
| If the series is divided through by 2 or a power of 2 at the final stage after an error or omission resulting in all even coefficients then apply scheme to series before this division and ignore subsequent work (isw) |

\hline
\end{tabular}

Question Number	Scheme ${ }^{\text {a }}$ (Marks
$\begin{gathered} \mathbf{8 2 .} \\ \text { Way } 1 \end{gathered}$	$\left(2-\frac{1}{2} x\right)^{8}=2^{8}+\binom{8}{1} \cdot 2^{7}\left(-\frac{1}{2} x\right)+\binom{8}{2} 2^{6}\left(-\frac{1}{2} x\right)^{2}+\binom{8}{3} 2^{5}\left(-\frac{1}{2} x\right)^{3}$ First term of 256 $\begin{aligned} & \left({ }^{8} C_{1} \times \ldots \times x\right)+\left({ }^{8} C_{2} \times \ldots \times x^{2}\right)+\left({ }^{8} C_{3} \times \ldots \times x^{3}\right) \\ = & (256)-512 x+448 x^{2}-224 x^{3} \end{aligned}$
Way 2	$\left(2-\frac{1}{2} x\right)^{8}=2^{8}\left(1-\frac{1}{4} x\right)^{8}=2^{8}\left(1+\binom{8}{1} \cdot\left(-\frac{1}{4} x\right)+\binom{8}{2}\left(-\frac{1}{4} x\right)^{2}+\binom{8}{3}\left(-\frac{1}{4} x\right)^{3}\right)$ Scheme is applied exactly as before except in special case below*
Notes for Question 82	
	B1: The first term should be 256 in their expansion M1: Two binomial coefficients must be correct and must be with the correct power of x. Accept ${ }^{8} C_{1}$ or $\binom{8}{1}$ or 8 as a coefficient, and ${ }^{8} C_{2}$ or $\binom{8}{2}$ or 28 as another. \qquad Pascal's triangle may be used to establish coefficients. A1: Any two of the final three terms correct (but allow +- instead of -) A1: All three of the final three terms correct and simplified. (Deduct last mark for $+-512 x$ and +$224 x^{3}$ in the series). Also deduct last mark for the three terms correct but unsimplified. (Accept answers without + signs, can be listed with commas or appear on separate lines) The common error $\left(2-\frac{1}{2} x\right)^{8}=256+\binom{8}{1} \cdot 2^{7}\left(-\frac{1}{2} x\right)+\binom{8}{2} 2^{6}\left(-\frac{1}{2} x^{2}\right)+\binom{8}{3} 2^{5}\left(-\frac{1}{2} x^{3}\right)$ would earn B1, M1, A0, A0 Ignore extra terms involving higher powers. Condone terms in reverse order i.e. $=-224 x^{3}+448 x^{2}-512 x+(256)$ *In Way 2 the error $=2\left(1+\binom{8}{1} \cdot\left(-\frac{1}{4} x\right)+\binom{8}{2}\left(-\frac{1}{4} x\right)^{2}+\binom{8}{3}\left(-\frac{1}{4} x\right)^{3}\right)$ giving $=2-4 x+\frac{7}{2} x^{2}-\frac{7}{4} x^{3}$ is a special case $\mathrm{B} 0, \mathrm{M} 1, \mathrm{~A} 1$, A 0 i.e. $2 / 4$

Question number	Scheme \quad Marks
86	$\begin{array}{rlrl} {\left[(2-3 x)^{5}\right]} & =\ldots & +\binom{5}{1} 2^{4}(-3 x)+\binom{5}{2} 2^{3}(-3 x)^{2}+. ., & \ldots . . \\ & =32,-240 x,+720 x^{2} & \text { M1 } \\ \text { B1, A1, A1 } \\ & \text { Total 4 } \end{array}$ M1: The method mark is awarded for an attempt at Binomial to get the second and/or third term - need correct binomial coefficient combined with correct power of \boldsymbol{x}. Ignore errors (or omissions) in powers of 2 or 3 or sign or bracket errors. Accept any notation for ${ }^{5} C_{1}$ and ${ }^{5} C_{2}$, e.g. $\binom{5}{1}$ and $\binom{5}{2}$ (unsimplified) or 5 and 10 from Pascal's triangle This mark may be given if no working is shown, but either or both of the terms including x is correct. B1: must be simplified to 32 (writing just 2^{5} is $\mathbf{B 0}$). $\mathbf{3 2}$ must be the only constant term in the final answer- so $32+80-3 x+80+9 x^{2}$ is B0 but may be eligible for M1A0A0 . A1: is cao and is for $-240 x$. (not $+240 x$) The x is required for this mark A1: is c.a.o and is for $720 x^{2}$ (can follow omission of negative sign in working) A list of correct terms may be given credit i.e. series appearing on different lines Ignore extra terms in x^{3} and/or x^{4} (isw)
Special Case	Special Case: Descending powers of x would be $(-3 x)^{5}+2 \times 5 \times(-3 x)^{4}+2^{2} \times\binom{ 5}{3} \times(-3 x)^{3}+.$. i.e. $-243 x^{5}+810 x^{4}-1080 x^{3}+.$. This is a misread but award as s.c. M1B1A0A0 if completely "correct" or M1 B0A0A0 for correct binomial coefficient in any form with the correct power of x
Alternative Method	Method 1: $\left[(2-3 x)^{5}\right]=2^{5}\left(1+\binom{5}{1}\left(-\frac{3 x}{2}\right)+\binom{5}{2}\left(\frac{-3 x}{2}\right)^{2}+..\right)$ is M1B0A0A0 \{ The M1 is for the expression in the bracket and as in first method- need correct binomial coefficient combined with correct power of x. Ignore bracket errors or errors (or omissions) in powers of 2 or 3 or sign or bracket errors \} - answers must be simplified to $=32,-240 x,+720 x^{2}$ for full marks (awarded as before) $\left[(2-3 x)^{5}\right]=2\left(1+\binom{5}{1}\left(-\frac{3 x}{2}\right)+\binom{5}{2}\left(\frac{-3 x}{2}\right)^{2}+..\right)$ would also be awarded M1B0A0A0 Method 2: Multiplying out : B1 for 32 and M1A1A1 for other terms with M1 awarded if x or $x^{\wedge} 2$ term is correct. Completely correct is $4 / 4$

Question	Scheme	Marks
87 (a) (b) (c) (d) Notes (dase Special Cater	(a) M1: Lists both of these sums ($S_{n}=$) may be omitted, $r S_{n}$ (or $r S$) must be stated $1^{\text {st }}$ two terms must be correct in each series. Last term must be $a r^{n-1}$ or $a r^{n}$ in first series and the corresponding $a r^{n}$ or $a r^{n+1}$ in second series. Must be n and not a number. Reference made to other terms e.g. space or dots to indicate missing terms M1: Subtracts series for $r S$ from series for S (or other way round) to give RHS $= \pm\left(a-a r^{n}\right)$. This may have been obtained by following a pattern. If wrong power stated on line 1 M0 here. (Ignore LHS)M0M0M0A0 dM1: Factorises both sides correctly- must follow from a previous M1 (It is possible to obtain M0M1M1A0 or M1M0M1A0) A1: completes the proof with no errors seen No errors seen: First line absolutely correct, omission of second line, third and fourth lines correct: M1M0M1A1 See next sheet of common errors. Refer any attempts involving sigma notation, or any proofs by induction to team leader. Also attempts which begin with the answer and work backwards. (b) M1: Deduces r^{2} by dividing either term by other and attempts square root A1: any correct equivalent for r e.g. 3/5 Answer only is $2 / 2$ (Method 2) Those who find fourth term must use $\sqrt{a b}$ and not $\frac{1}{2}(a+b)$ then must use it in a division with given term to obtain $r=$ (c) M1: May be done in two steps or more e.g. $5.4 \div r$ then divided by r again A1ft: follow through their value of r. Just $a=15$ with no wrong working implies M1A1 (d) M1: States sum to infinity formula with values of a and r found earlier, provided $\|r\|<1$ A1 : uses 15 and 0.6 (or 3/5) (This is not a ft mark) A1: 37.5 or exact equivalent	
Common errors	(i) Fraction inverted in (b) $r^{2}=\frac{5.4}{1.944}$ and $r=1 \frac{2}{3}$, then correct ft gives M1 A0 M1 A1ft M0A (ii) Uses $r=0.36$: (b)M0A0 (c)M1A1ft (d) M1A0A0 i.e. $3 / 7$ (iii) Uses $a r^{3}=5.4, a r^{5}=1.944$ Likely to have (b)M1A1 (c)M0A0 (d) M1A0A0 i.e. $3 / 7$	i.e. 3/7

Question number	Scheme ${ }^{\text {arks }}$
89 (a). (b)	
Alternative for (b) Special case	Starts again and expands $(1+0.025)^{8}$ to $\begin{array}{l\|l} 1+8 \times 0.025+\frac{8 \times 7}{2}(0.025)^{2}+\frac{8 \times 7 \times 6}{2 \times 3}(0.025)^{3},=1.2184 & \text { B1,M1,A1 } \\ (\text { Or } 1+1 / 5+7 / 400+7 / 8000=1.2184) \end{array}$
Notes	(a) $\mathbf{B 1}$ must be simplified The method mark (M1) is awarded for an attempt at Binomial to get the third and/or fourth term - need correct binomial coefficient combined with correct power of x. Ignore bracket errors or errors in powers of 4 . Accept any notation for ${ }^{8} C_{2}$ and ${ }^{8} C_{3}$, e.g. $\binom{8}{2}$ and $\binom{8}{3}$ (unsimplified) or 28 and 56 from Pascal's triangle. (The terms may be listed without + signs) First A1 is for two completely correct unsimplified terms A1 needs the fully simplified $\frac{7}{4} x^{2}$ and $\frac{7}{8} x^{3}$. (b) B1 - states or uses $x=0.1$ or $\frac{x}{4}=\frac{1}{40}$ M1 for substituting their value of $x(0<x<1)$ into expansion (e.g. 0.1 (correct) or $0.01,0.00625$ or even 0.025 but not 1 nor 1.025 which would earn M0) A1 Should be answer printed cao (not answers which round to) and should follow correct work. Answer with no working at all is B0, M0, A0 States 0.1 then just writes down answer is B1 M0A0

Question Number	Scheme Marks
90. (a)	$\left\{(3+b x)^{5}\right\}$ $=(3)^{5}+{ }^{5} \mathrm{C}_{1}(3)^{4}(b \underline{x})+{ }^{5} \mathrm{C}_{2}(3)^{3}(b x)^{2}+\ldots$ 243 as a constant term seen. B1 $=243+405 b x+270 b^{2} x^{2}+\ldots$ $\left({ }^{5} \mathrm{C}_{1} \times \ldots \times x\right)$ or $\left({ }^{5} \mathrm{C}_{2} \times \ldots \times x^{2}\right)$ B1 M1 $270 b^{2} x^{2}$ or $270(b x)^{2}$ A1
(b)	$\left\{2(\right.$ coeff $x)=$ coeff $\left.x^{2}\right\} \Rightarrow 2(405 b)=270 b^{2}$ Establishes an equation from their coefficients. Condone 2 on the wrong side of the equation. So, $\left\{b=\frac{810}{270} \Rightarrow\right\} b=3$ $b=3$ (Ignore $b=0$, if seen.)A1[2]
(a)	The terms can be "listed" rather than added. Ignore any extra terms. $1^{\text {st }} \mathrm{B} 1$: A constant term of 243 seen. Just writing (3) ${ }^{5}$ is B0. $2^{\text {nd }} \mathrm{B} 1$: Term must be simplified to $405 b x$ for B1. The x is required for this mark. Note $405+b x$ is B 0 . M1: For either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of $3 \mathrm{and} /$ or b) may be wrong or missing. Allow binomial coefficients such as $\binom{5}{2},\binom{5}{2},\binom{5}{1},\left(\frac{5}{1}\right),{ }^{5} \mathrm{C}_{2},{ }^{5} \mathrm{C}_{1}$. A1: For either $270 b^{2} x^{2}$ or $270(b x)^{2}$. (If $270 b x^{2}$ follows $270(b x)^{2}$, isw and allow A1.) Alternative: Note that a factor of 3^{5} can be taken out first: $3^{5}\left(1+\frac{b x}{3}\right)^{5}$, but the mark scheme still applies. Ignore subsequent working (isw): Isw if necessary after correct working: e.g. $243+405 b x+270 b^{2} x^{2}+\ldots$ leading to $9+15 b x+10 b^{2} x^{2}+\ldots$ scores B1B1M1A1 isw. Also note that full marks could also be available in part (b), here. Special Case: Candidate writing down the first three terms in descending powers of x usually get $(b x)^{5}+{ }^{5} \mathrm{C}_{4}(3)^{1}(b x)^{4}+{ }^{5} \mathrm{C}_{3}(3)^{2}(b x)^{3}+\ldots=b^{5} x^{5}+15 b^{4} x^{4}+90 b^{3} x^{3}+\ldots$ So award SC: B0B0M1A0 for either $\left({ }^{5} \mathrm{C}_{4} \times \ldots \times x^{4}\right)$ or $\left({ }^{5} \mathrm{C}_{3} \times \ldots \times x^{3}\right)$ M1 for equating 2 times their coefficient of x to the coefficient of x^{2} to get an equation in b, or equating their coefficient of x to 2 times that of x^{2}, to get an equation in b. Allow this M mark even if the equation is trivial, providing their coefficients from part (a) have been used, eg: $2(405 b)=270 b$, but beware $b=3$ from this, which is A0. An equation in b alone is required: e.g. $2(405 b) x=270 b^{2} x^{2} \Rightarrow b=3$ or similar will be Special Case SC: M1A0 (as equation in coefficients only is not seen here). e.g. $2(405 b) x=270 b^{2} x^{2} \Rightarrow 2(405 b)=270 b^{2} \Rightarrow b=3$ will get M1A1 (as coefficients rather than terms have now been considered). Note: Answer of 3 from no working scores M1A0. Note: The mistake $k\left(1+\frac{b x}{3}\right)^{5}, k \neq 243$ would give a maximum of 3 marks: B0B0M1A0, M1A1 Note: For $270 b x^{2}$ in part (a), followed by $2(405 b)=270 b^{2} \Rightarrow b=3$, in part (b), allow recovery M1A1.

Question Number	Scheme \quad Marks
91. (a)	$\begin{aligned} & \left\{a r=192 \text { and } a r^{2}=144\right\} \\ & r=\frac{144}{192} \\ & r=\frac{3}{4} \text { or } 0.75 \end{aligned}$ Attempt to eliminate a. (See notes.)
(b)	$a(0.75)=192$ M1 $a\left\{=\frac{192}{0.75}\right\}=256$ $\quad 256$ A1 $^{\text {[2] }}$
(c)	$\mathrm{S}_{\infty}=\frac{256}{1-0.75}$ Applies $\frac{a}{1-r}$ correctly using both their a and their $\|r\|<1$. M1 So, $\left\{\mathrm{S}_{\infty}=\right\} 1024$ $\quad 1024$, A1 cao \quad [2]
(d)	
(a) (b)	M1: for eliminating \boldsymbol{a} by eg. $192 r=144$ or by either dividing $a r^{2}=144$ by ar $=192$ or dividing $a r=192$ by $a r^{2}=144$, to achieve an equation in r or $\frac{1}{r}$ Note that $r^{2}-r=\frac{144}{192}$ is M0. Note also that any of $r=\frac{144}{192}$ or $r=\frac{192}{144}\left\{=\frac{4}{3}\right\}$ or $\frac{1}{r}=\frac{192}{144}$ or $\frac{1}{r}=\frac{144}{192}$ are fine for the award of M1. Note: A candidate just writing $r=\frac{144}{192}$ with no reference to a can also get the method mark. Note: $a r^{2}=192$ and $a r^{3}=144$ leading to $r=\frac{3}{4}$ scores M1A1. This is because r is the ratio between any two consecutive terms. These candidates, however, will usually be penalised in part (b). M1 for inserting their r into either of the correct equations of either $a r=192$ or $\{a=\} \frac{192}{r}$ or $a r^{2}=144$ or $\{a=\} \frac{144}{r^{2}}$. No slips allowed here for M1. M1: can also be awarded for writing down $144=a\left(\frac{192}{a}\right)^{2}$ A1 for $a=256$ only. Note 256 from any working scores M1A1. Note: Some candidates incorrectly confuse notation to give $r=\frac{4}{3}$ or 1.33 in part (a) (getting M1A0). In part (b), they recover to write $a=192 \times \frac{4}{3}$ for M1 and then 256 for A1.

Question Number	Scheme \quad Marks
	Note: A similar scheme would apply for T\&I for candidates using their a and their r. So,... $1^{\text {st }} \mathrm{M} 1$: For attempting to find one of the correct S_{n} 's either side (but next to) 1000 . $2^{\text {nd }} \mathrm{M} 1$: For one of these S_{n} 's correct for their a and their r. (You may need to get your calculators out!) $3^{\text {rd }}$ M1: For attempting to find both of the correct S_{n} 's either side (but next to) 1000 . A1: Cannot be gained for wrong a and/or r. Trial \& Improvement Cumulative Approach: A similar scheme to T\&I will be applied here: $1^{\text {st }} \mathrm{M} 1$: For getting as far as the cumulative sum of 13 terms. $2^{\text {nd }} \mathrm{M} 1$: (1) $\mathrm{S}_{13}=$ awrt 999.7 or truncated 999. $3^{\text {rd }} \mathrm{M} 1$: For getting as far as the cumulative sum to 14 terms. Also at this stage $\mathrm{S}_{13}<1000$ and $\mathrm{S}_{14}>1000$. A1: BOTH (1) $\mathrm{S}_{13}=$ awrt 999.7 or truncated 999 AND (2) $\mathrm{S}_{14}=$ awrt 1005.8 or truncated 1005 AND $n=14$. Trial \& Improvement Method: for $(0.75)^{n}<\frac{6}{256}=0.0234375$ $3^{\text {rd }} \mathrm{M} 1$: For evidence of examining both $n=13$ and $n=14$. Eg: $(0.75)^{13}\{=0.023757 \ldots\}$ and $(0.75)^{14}\{=0.0178179 \ldots\}$ A1: $n=14$ Any misreads, $\mathrm{S}_{n}>10000$ etc, please escalate up to your Team Leader.

Question Number	Scheme	Marks
92.	$a r=750$ and $a r^{4}=-6$ (could be implied from later working in either (a) or (b)). $\begin{aligned} & r^{3}=\frac{-6}{750} \\ & r=-\frac{1}{5} \end{aligned}$ Correct answer from no working, except for special case below gains all three marks.	$\begin{array}{lll}\text { B1 } \\ \text { M1 } \\ \\ \text { A1 } & \\ & \\ & \text { (3) }\end{array}$
(b)	$\begin{aligned} & a(-0.2)=750 \\ & a\left\{=\frac{750}{-0.2}\right\}=-3750 \end{aligned}$	
(c)	Applies $\frac{a}{1-r}$ correctly using both their a and their $\|r\|<1$. Eg. $\frac{-3750}{1--0.2}$ So, $S_{\infty}=-3125$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ & \text { (2) } \\ & \text { [7] }\end{array}$
	Notes	
(a)	B1: for both $a r=750$ and $a r^{4}=-6$ (may be implied from later working in either (a) or (b)). M1: for eliminating \boldsymbol{a} by either dividing $a r^{4}=-6$ by $a r=750$ or dividing ar $=750$ by $a r^{4}=-6$, to achieve an equation in r^{3} or $\frac{1}{r^{3}}$ Note that $r^{4}-r=-\frac{6}{750}$ is M0. Note also that any of $r^{3}=\frac{-6}{750}$ or $r^{3}=\frac{750}{-6}\{=-125\}$ or $\frac{1}{r^{3}}=\frac{-6}{750}$ or $\frac{1}{r^{3}}=\frac{750}{-6}\{=-125\}$ are fine for the award of M1. SC: $a r^{\alpha}=750$ and $a r^{\beta}=-6$ leading to $r^{\delta}=\frac{-6}{750}$ or $r^{\delta}=\frac{750}{-6}\{=-125\}$ or $\frac{1}{r^{\delta}}=\frac{-6}{750}$ or $\frac{1}{r^{\delta}}=\frac{750}{-6}\{=-125\}$ where $\delta=\beta-\alpha$ and $\delta \geq 2$ are fine for the award of M1. SC: $a r^{2}=750$ and $a r^{5}=-6$ leading to $r=-\frac{1}{5}$ scores B0M1A1.	
(b)	M1 for inserting their r into either of their original correct equations of either $a r=750$ or $\{a=\} \frac{750}{r}$ or $a r^{4}=-6$ or $\{a=\} \frac{-6}{r^{4}}-$ in both \boldsymbol{a} and \boldsymbol{r}. No slips allowed here for M1. A1 for either $a=-3750$ or a equal to the correct follow through result expressed either as an exact integer, or a fraction in the form $\frac{c}{d}$ where both c and d are integers, or correct to awrt 1 dp .	
(c)	M1 for applying $\frac{a}{1-r}$ correctly (only a slip in substituting r is allowed) using both their a and their $\|r\|<1$. Eg. $\frac{-3750}{1--0.2}$. A1 for -3125 In parts (a) or (b) or (c), the correct answer with no working scores full marks.	

Question Number	Scheme ${ }_{\text {a }}$ Marks
93. (a)	$\binom{40}{4}=\frac{40!}{4!b!} ;(1+x)^{n}$ coefficients of x^{4} and x^{5} are p and q respectively. $b=36$ Candidates should usually "identify" two terms as their p and q respectively.
(b)	
	Notes
(a)	B1: for only $b=36$.
(b)	The candidate may expand out their binomial series. At this stage no marks should be awarded until they start to identify either one or both of the terms that they want to focus on. Once they identify their terms then if one out of two of them (ignoring which one is p and which one is q) is correct then award M1. If both of the terms are identified correctly (ignoring which one is p and which one is q) then award the first A1. Term $1=\binom{40}{4} x^{4}$ or ${ }^{40} C_{4}\left(x^{4}\right)$ or $\frac{40!}{4!36!} x^{4}$ or $\frac{40(39)(38)(37)}{4!} x^{4}$ or $91390 x^{4}$, Term $2=\binom{40}{5} x^{5}$ or ${ }^{40} C_{5}\left(x^{5}\right)$ or $\frac{40!}{5!35!} x^{5}$ or $\frac{40(39)(38)(37)(36)}{5!} x^{5}$ or $658008 x^{5}$ are fine for any (or both) of the first two marks in part (b). $2^{\text {nd }} \mathrm{A} 1$ for stating $\frac{q}{p}$ as $\frac{658008}{91390}$ or equivalent. Note that $\frac{q}{p}$ must be independent of x. Also note that $\frac{36}{5}$ or 7.2 or any equivalent fraction is fine for the $2^{\text {nd }} \mathrm{A} 1$ mark. SC: If candidate states $\frac{p}{q}=\frac{5}{36}$, then award M1A1A0. Note that either $\frac{4!36!}{5!35!}$ or $\frac{5!35!}{4!36!}$ would be awarded M1A1.

Question Number	Scheme	Marks
94	(a) $(1+a x)^{7}=1+7 a x \ldots$ or $1+7(a x) \ldots$ (Not unsimplified versions) $\begin{array}{cc} +\frac{7 \times 6}{2}(a x)^{2}+\frac{7 \times 6 \times 5}{6}(a x)^{3} & \text { Evidence from one of these terms is enough } \\ +21 a^{2} x^{2} & \text { or }+21(a x)^{2} \text { or }+21\left(a^{2} x^{2}\right) \\ +35 a^{3} x^{3} & \text { or }+35(a x)^{3} \text { or }+35\left(a^{3} x^{3}\right) \end{array}$	B1 M1 A1 A1 (4)
	(b) $21 a^{2}=525$ $a= \pm 5 \quad$ (Both values are required) (The answer $a=5$ with no working scores M1 A0)	$\begin{array}{rrr}\text { M1 } & \\ \text { A1 } & \\ & \text { (2) } \\ & 6\end{array}$
	(a) The terms can be 'listed' rather than added. M1: Requires correct structure: a correct binomial coefficient in any form (perhaps from Pascal's triangle) with the correct power of x. Allow missing a 's and wrong powers of a, e.g. $\frac{7 \times 6}{2} a x^{2}, \quad \frac{7 \times 6 \times 5}{3 \times 2} x^{3}$ However, $21+a^{2} x^{2}+35+a^{3} x^{3}$ or similar is M0. $1+7 a x+21+a^{2} x^{2}+35+a^{3} x^{3}=57+\ldots .$. scores the B1 (isw). $\binom{7}{2}$ and $\binom{7}{3}$ or equivalent such as ${ }^{7} C_{2}$ and ${ }^{7} C_{3}$ are acceptable, but not $\left(\frac{7}{2}\right)$ or $\left(\frac{7}{3}\right)$ (unless subsequently corrected). $1^{\text {st }} \mathrm{A} 1$: Correct x^{2} term. $2^{\text {nd }} \mathrm{A} 1$: Correct x^{3} term (The binomial coefficients must be simplified). Special case: If $(a x)^{2}$ and $(a x)^{3}$ are seen within the working, but then lost... $\ldots \mathrm{A} 1 \mathrm{~A} 0$ can be given if $21 a x^{2}$ and $35 a x^{3}$ are both achieved. a 's omitted throughout: Note that only the M mark is available in this case. (b) M: Equating their coefficent of x^{2} to 525 . An equation in a or a^{2} alone is required for this M mark, but allow 'recovery' that shows the required coefficient, e.g. $\begin{aligned} 21 a^{2} x^{2}=525 & \Rightarrow 21 a^{2}=525 \text { is acceptable, } \\ \text { but } 21 a^{2} x^{2}=525 & \Rightarrow a^{2}=25 \text { is not acceptable. } \end{aligned}$ After $21 a x^{2}$ in the answer for (a), allow 'recovery' of a^{2} in (b) so that full marks are available for (b) (but not retrospectively for (a)).	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
95 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \[
\begin{aligned}
\& 18000 \times(0.8)^{3} \quad=£ 9216 * \quad \text { [may see } \frac{4}{5} \text { or } 80 \% \text { or equivalent]. } \\
\& 18000 \times(0.8)^{n}<1000 \\
\& n \log (0.8)<\log \left(\frac{1}{18}\right) \\
\& n>\frac{\log \left(\frac{1}{18}\right)}{\log (0.8)}=12.952 \ldots . \quad \text { so } n=13 . \\
\& u_{5}=200 \times(1.12)^{4}, \quad=£ 314.70 \text { or } £ 314.71 \\
\& S_{15}=\frac{200\left(1.12^{15}-1\right)}{1.12-1} \text { or } \frac{200\left(1-1.12^{15}\right)}{1-1.12},=7455.94 \ldots . \quad \text { awrt } £ 7460
\end{aligned}
\] \& \begin{tabular}{l}
B1cso (1) \\
M1 \\
M1 \\
A1 cso \\
(3) \\
M1, A1 (2) \\
M1A1, A1 \\
(3) \\
[9]
\end{tabular} \\
\hline (a)
(b)

(c)

(d) \& | B1 NB Answer is printed so need working. May see as above or $\times 0.8$ in three steps giving 14400, 11520, 9216. Do not need to see $£$ sign but should see 9216 . |
| :--- |
| $1^{\text {st }} \mathrm{M} 1$ for an attempt to use nth term and 1000. Allow n or $n-1$ and allow $>$ or $=$ $2^{\text {nd }}$ M1 for use of logs to find n Allow n or $n-1$ and allow $>$ or $=$ A1 Need $n=13$ This is an accuracy mark and must follow award of both M marks but should not follow incorrect work using $n-1$ for example. Condone slips in inequality signs here. |
| M1 for use of their a and r in formula for $5^{\text {th }}$ term of GP |
| A1 cao need one of these answers - answer can imply method here NB 314.7 - A0 |
| M1 for use of sum to 15 terms of GP using their a and their r (allow if formula stated correctly and one error in substitution, but must use n not $n-1$) |
| $1^{\text {st }}$ A1 for a fully correct expression (not evaluated) | \&

\hline (b)
(c)

(d) \& | Alternative Methods |
| :--- |
| Trial and Improvement |
| See 989.56 (or 989 or 990) identified with 12,13 or 14 years for first M1 |
| See 1236.95 (or 1236 or 1237) identified with 11, 12 or 13 years for second M1 |
| Then $n=13$ is A1 (needs both Ms) |
| Special case $18000 \times(0.8)^{n}<1000$ so $n=13$ as $989.56<1000$ is M1M0A0 (not discounted $n=12$) |
| May see the terms $224,250.88,280.99,314.71$ with a small slip for M1 A0, or done accurately for M1A1 |
| Adds 15 terms $200+224+250.88+\ldots \quad+(977.42) \quad$ M1 |
| Seeing $977 \ldots$ is A1 |
| Obtains answer 7455.94 A1 or awrt $£ 7460$ NOT 7450 | \&

\hline
\end{tabular}

Question Number	Scheme Marks
96 (a) (b)	
(a)	The terms can be 'listed' rather than added. Ignore any extra terms. M1 for either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or k) may be wrong or missing. Allow binomial coefficients such as $\binom{7}{1},\binom{7}{1},\binom{7}{2},{ }^{7} C_{1},{ }^{7} C_{2}$. However, $448+k x$ or similar is M0. $\mathrm{B} 1, \mathrm{~A} 1, \mathrm{~A} 1$ for the simplified versions seen above. Alternative: Note that a factor 2^{7} can be taken out first: $2^{7}\left(1+\frac{k x}{2}\right)^{7}$, but the mark scheme still applies. Ignoring subsequent working (isw): Isw if necessary after correct working: e.g. $128+448 k x+672 k^{2} x^{2} \quad$ M1 B1 A1 A1 $=4+14 k x+21 k^{2} x^{2} \quad$ isw (Full marks are still available in part (b)). M1 for equating their coefficient of x^{2} to 6 times that of $x \ldots$ to get an equation in k, \ldots or equating their coefficient of x to 6 times that of x^{2}, to get an equation in k. Allow this M mark even if the equation is trivial, providing their coefficients from part (a) have been used, e.g. $6 \times 448 k=672 k$, but beware $k=4$ following from this, which is A0. An equation in k alone is required for this M mark, so... e.g. $6 \times 448 k x=672 k^{2} x^{2} \Rightarrow k=4$ or similar is M0 A0 (equation in coefficients only is never seen), but ... e.g. $6 \times 448 k x=672 k^{2} x^{2} \Rightarrow 6 \times 448 k=672 k^{2} \Rightarrow k=4$ will get M1 A1 (as coefficients rather than terms have now been considered). The mistake $2\left(1+\frac{k x}{2}\right)^{7}$ would give a maximum of 3 marks: M1B0A0A0, M1A1

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks \\
\hline 97 (a) \& \begin{tabular}{lll}
\(324 r^{3}=96 \quad\) or \(\quad r^{3}=\frac{96}{324} \quad\) or \(\quad r^{3}=\frac{8}{27}\) \& \& M1 \\
\(r=\frac{2}{3}\) \& \& Alcso (2) \\
\(a\left(\frac{2}{3}\right)^{2}=324\) \& or \(a\left(\frac{2}{3}\right)^{5}=96\) \& \(a=\ldots\), \\
\(S_{15}=\frac{729\left(1-\left[\frac{2}{3}\right]^{15}\right)}{1-\frac{2}{3}},=2182.00 \ldots\) \& M1, A1 (2) \\
\(S_{\infty}=\frac{729}{1-\frac{2}{3}}, \quad=2187\) \& M1A1ft, (3) \\
\end{tabular} \\
\hline (a)
(b)
(c)

(d)

(d) \& | M1 for forming an equation for r^{3} based on 96 and 324 (e.g. $96 r^{3}=324$ scores M1). The equation must involve multiplication/division rather than addition/subtraction. |
| :--- |
| A1 Do not penalise solutions with working in decimals, providing these are correctly rounded or truncated to at least 2 dp and the final answer $2 / 3$ is seen. |
| Alternative: (verification) |
| M1 Using $r^{3}=\frac{8}{27}$ and multiplying 324 by this (or multiplying by $r=\frac{2}{3}$ three times). |
| A1 Obtaining 96 (cso). (A conclusion is not required). |
| $324 \times\left(\frac{2}{3}\right)^{3}=96$ (no real evidence of calculation) is not quite enough and scores M1 A0. |
| M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by their r) twice from 324 (or 5 times from 96). |
| Exceptionally, allow M1 also for using $a r^{3}=324$ or $a r^{6}=96$ instead of $a r^{2}=324$ or $a r^{5}=96$, or for dividing by r three times from 324 (or 6 times from 96)... but no other exceptions are allowed. |
| M1 for use of sum to 15 terms formula with values of a and r. If the wrong power is used, e.g. 14, the M mark is scored only if the correct sum formula is stated. |
| $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct expression or correct ft their a with $r=\frac{2}{3}$. |
| $2^{\text {nd }}$ A1 for awrt 2180, even following 'minor inaccuracies'. |
| Condone missing brackets round the $\frac{2}{3}$ for the marks in part (c). |
| Alternative: |
| M1 for adding 15 terms and $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for adding the 15 terms that ft from their a and $r=\frac{2}{3}$. |
| M1 for use of correct sum to infinity formula with their a. For this mark, if a value of r different from the given value is being used, M1 can still be allowed providing $\|r\|<1$. |

\hline
\end{tabular}

Question Number	Scheme Marks
98	$\begin{aligned} & (3-2 x)^{5}=243, \quad \ldots \ldots+5 \times(3)^{4}(-2 x)=-810 x \quad \ldots \ldots \\ & +\frac{5 \times 4}{2}(3)^{3}(-2 x)^{2}=\quad+1080 x^{2} \end{aligned}$ B1, B1
Notes	First term must be 243 for B1, writing just 3^{5} is B0 (Mark their final answers except in second line of special cases below). Term must be simplified to $-810 x$ for $\mathbf{B 1}$ The x is required for this mark. The method mark (M1) is generous and is awarded for an attempt at Binomial to get the third term. There must be an x^{2} (or no x - i.e. not wrong power) and attempt at Binomial Coefficient and at dealing with powers of 3 and 2 . The power of 3 should not be one, but the power of 2 may be one (regarded as bracketing slip). So allow $\binom{5}{2}$ or $\binom{5}{3}$ or ${ }^{5} C_{2}$ or ${ }^{5} C_{3}$ or even $\left(\frac{5}{2}\right)$ or $\left(\frac{5}{3}\right)$ or use of ' 10 ' (maybe from Pascal's triangle) May see ${ }^{5} C_{2}(3)^{3}(-2 x)^{2}$ or ${ }^{5} C_{2}(3)^{3}\left(-2 x^{2}\right)$ or ${ }^{5} C_{2}(3)^{5}\left(-\frac{2}{3} x^{2}\right)$ or $10(3)^{3}(2 x)^{2}$ which would each score the M1 A1is c.a.o and needs $1080 x^{2}$ (if $1080 x^{2}$ is written with no working this is awarded both marks i.e. M1 A1.)
Special cases	$243+810 x+1080 x^{2}$ is B1B0M1A1 (condone no negative signs) Follows correct answer with $27-90 x+120 x^{2}$ can isw here (sp case)- full marks for correct answer Misreads ascending and gives $-32 x^{5}+240 x^{4}-720 x^{3}$ is marked as B1B0M1A0 special case and must be completely correct. (If any slips could get B0B0M1A0) Ignores 3 and expands $(1 \pm 2 x)^{5}$ is $\mathbf{0} / \mathbf{4}$ $243,-810 x, 1080 x^{2}$ is full marks but 243, $-810,1080$ is B1,B0,M1,A0 NB Alternative method $3^{5}\left(1-\frac{2}{3} x\right)^{5}=3^{5}-5 \times 3^{5} \times\left(\frac{2}{3} x\right)+\binom{5}{3} 3^{5}\left(-\frac{2}{3} x\right)^{2}+.$. is B0B0M1A0 - answers must be simplified to $243-810 x+1080 x^{2}$ for full marks (awarded as before) Special case $3\left(1-\frac{2}{3} x\right)^{5}=3-5 \times 3 \times\left(\frac{2}{3} x\right)+\binom{5}{3} 3\left(-\frac{2}{3} x\right)^{2}+.$. is B0, B0, M1, A0 Or $\quad 3(1-2 x)^{5}$ is B0B0M0A0

Question Number	Scheme Marks
(b) (c) (d)	Initial step: Two of: $a=k+4, a r=k, a r^{2}=2 k-15$ Or one of: $r=\frac{k}{k+4}, \quad r=\frac{2 k-15}{k}, \quad r^{2}=\frac{2 k-15}{k+4}$, Or $k=\sqrt{(k+4)(2 k-15)}$ or even $k^{3}=(k+4) k(2 k-15)$ $k^{2}=(k+4)(2 k-15), \text { so } k^{2}=2 k^{2}+8 k-15 k-60$ Proceed to $k^{2}-7 k-60=0$ $\begin{equation*} (k-12)(k+5)=0 \quad k=12 \tag{*} \end{equation*}$ Common ratio: $\frac{k}{k+4}$ or $\frac{2 k-15}{k}=\frac{12}{16}\left(=\frac{3}{4}\right.$ or 0.75$)$ $\frac{a}{1-r}=\frac{16}{(1 / 4)}=64$
(a) (b) (c) (d)	M1: The 'initial step', scoring the first M mark, may be implied by next line of proof M1: Eliminates a and r to give valid equation in k only. Can be awarded for equation involving fractions. A1 : need some correct expansion and working and answer equivalent to required quadratic but with uncollected terms. Equations involving fractions do not get this mark. (No fractions, no brackets - could be a cubic equation) A1: as answer is printed this mark is for cso (Needs $=0$) All four marks must be scored in part (a) M1: Attempt to solve quadratic A1: This is for correct factorisation or solution and $k=12$. Ignore the extra solution ($k=$ -5 or even $k=5$), if seen. Substitute and verify is M1 A0 Marks must be scored in part (b) M1: Complete method to find r Could have answer in terms of k A1: 0.75 or any correct equivalent Both Marks must be scored in (c) M1: Tries to use $\frac{a}{1-r}$, (even with $r>1$). Could have an answer still in terms of k. A1: This answer is 64 cao.

Question number	Scheme	Marks
100.	(a) $(1+a x)^{10}=1+10 a x \ldots . . \quad$ (Not unsimplified versions) $+\frac{10 \times 9}{2}(a x)^{2}+\frac{10 \times 9 \times 8}{6}(a x)^{3} \quad$ Evidence from one of these terms is sufficient $+45(a x)^{2},+120(a x)^{3}$ or $+45 a^{2} x^{2},+120 a^{3} x^{3}$ (b) $120 a^{3}=2 \times 45 a^{2} \quad a=\frac{3}{4}$ or equiv. (e.g. $\left.\frac{90}{120}, 0.75\right) \quad$ Ignore $a=0$, if seen	B1 M1 A1, A1 (4) M1 A1 (2) 6
	(a) The terms can be 'listed' rather than added. M1: Requires correct structure: 'binomial coefficient' (perhaps from Pascal's triangle) and the correct power of x. (The M mark can also be given for an expansion in descending powers of x). Allow 'slips' such as: $\frac{10 \times 9}{2} a x^{2}, \quad \frac{10 \times 9}{3 \times 2}(a x)^{3}, \quad \frac{10 \times 9}{2} x^{2}, \quad \frac{9 \times 8 \times 7}{3 \times 2} a^{3} x^{3}$ However, $45+a^{2} x^{2}+120+a^{3} x^{3}$ or similar is M0. $\binom{10}{2}$ and $\binom{10}{3}$ or equivalent such as ${ }^{10} C_{2}$ and ${ }^{10} C_{3}$ are acceptable, and even $\left(\frac{10}{2}\right)$ and $\left(\frac{10}{3}\right)$ are acceptable for the method mark. $1^{\text {st }} \mathrm{A} 1$: Correct x^{2} term. $2^{\text {nd }} \mathrm{A} 1$: Correct x^{3} term (These must be simplified) If simplification is not seen in (a), but correct simplified terms are seen in (b), these marks can be awarded. However, if wrong simplification is seen in (a), this takes precedence. Special case: If $(a x)^{2}$ and $(a x)^{3}$ are seen within the working, but then lost... \ldots A1 A0 can be given if $45 a x^{2}$ and $120 a x^{3}$ are both achieved. (b) M: Equating their coefficent of x^{3} to twice their coefficient of $x^{2} \ldots$ \cdots or equating their coefficent of x^{2} to twice their coefficient of x^{3}. (\ldots or coefficients can be correct coefficients rather than their coefficients) Allow this mark even if the equation is trivial, e.g. $120 a=90 a$. An equation in a alone is required for this M mark, although... $\ldots \text { condone, e.g. } 120 a^{3} x^{3}=90 a^{2} x^{2} \Rightarrow\left(120 a^{3}=90 a^{2} \Rightarrow\right) a=\frac{3}{4} .$ Beware: $a=\frac{3}{4}$ following $120 a=90 a$, which is A0.	

Complete method, using terms of form $a r^{k}$, to find r
102.(a)
[e.g. Dividing $a r^{6}=80$ by $a r^{3}=10$ to find $r ; r^{6}-r^{3}=8$ is MO]

$$
r=2
$$

Complete method for finding a
(b) [e.g. Substituting value for r into equation of form $\mathrm{ar}^{\mathrm{k}}=10$ or 80 M1 and finding a value for a.]
$(8 a=10) \quad a=\frac{5}{4}=1 \frac{1}{4} \quad$ (equivalent single fraction or 1.25)
(c)

Substituting their values of a and r into correct formula for sum.
$S=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{5}{4}\left(2^{20}-1\right) \quad(=1310718.75) \quad 1310719$ (only this)
(a) M1: Condone errors in powers, e.g. $a r^{4}=10$ and/or $a r^{7}=80$,

Notes:	1: For $r=2$, allow even if $a r^{4}=10$ and $a r^{7}=80$ used (just these)
Notes.	(M mark can be implied from numerical work, if used correctly)

(b) M1: Allow for numerical approach: e.g. $\frac{10}{r_{c}{ }^{3}} \leftarrow \frac{10}{r_{c}{ }^{2}} \leftarrow \frac{10}{r_{c}} \leftarrow 10$

In (a) and (b) correct answer, with no working, allow both marks.
(c) Attempt 20 terms of series and add is M1 (correct last term 655360) If formula not quoted, errors in applying their a and/or r is M0 Allow full marks for correct answer with no working seen.
103.(a)
$\left(1+\frac{1}{2} x\right)^{10}=1+\underline{\binom{10}{1}\left(\frac{1}{2} x\right)+\binom{10}{2}\left(\frac{1}{2} x\right)^{2}+\binom{10}{3}\left(\frac{1}{2} x\right)^{3}}$
$=1+5 x ;+\frac{45}{4}$ (or 11.25$) x^{2}+15 x^{3}$ (coeffs need to be these, i.e, simplified)
M1 A1
$A 1 ; A 1$ (4)
[Allow A1A0, if totally correct with unsimplified, single fraction coefficients)
(b)

$$
\begin{aligned}
\left(1+\frac{1}{2} \times 0.01\right)^{10} & =1+5(0.01)+\left(\frac{45}{4} \text { or } 11.25\right)(0.01)^{2}+15(0.01)^{3} \\
& =1+0.05+0.001125+0.000015 \\
& =1.05114 \quad \text { cao }
\end{aligned}
$$

Notes:
(a) For M1 first A1: Consider underlined expression only.

M1 Requires correct structure for at least two of the three terms:
(i) Must be attempt at binomial coefficients.
(ii) Must have increasing powers of x,
(iii) May be listed, need not be added; this applies for all marks.

First A1: Requires all three correct terms but need not be simplified, allow $1{ }^{10}$ etc, ${ }^{10} C_{2}$ etc, and condone omission of brackets around powers of $1 / 2 x$ Second A1: Consider as B1 for $1+5 x$
(b) For M1: Substituting their (0.01) into their (a) result

First A1 (f.t.): Substitution of (0.01) into their 4 termed expression in (a) Answer with no working scores no marks (calculator gives this answer)

Question Number		Scheme	Notes	Marks
104. (a)			($\underline{(4)}^{\frac{1}{2}}$ or $\underline{2}$	B1
	$=\{2\}\left[1+\left(\frac{1}{2} f(k x)+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}{2!}(k x)^{2}+\ldots\right]\right.$		see notes	M1 A1ft
	$=\{2\}\left[1+\left(\frac{1}{2}\right)\left(\frac{9 x}{4} f^{+}+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}{2!}\left(\frac{9 x}{4}\right)^{2}+\ldots\right]\right.$			
	$=2\left[1-\frac{9}{8} x-\frac{81}{128} x^{2}+\ldots\right]$		see notes	
	$=2 \quad \frac{9}{4} x ; \quad \frac{81}{64} x^{2}+\ldots$		isw	A1; A1
				[5]
(b)	$\sqrt{310}=10 \sqrt{3.1}=10 \sqrt{(4-9(0.1))}$, so $x=0.1$		E.g. For $10 \sqrt{3.1}$ (can be implied by later working) and $x=0.1$ (or uses $x=0.1$) Note: $\sqrt{(100)(3.1)}$ by itself is B0	B1
	When $x=0.1 \sqrt{(4-9 x)} \approx 2-\frac{9}{4}(0.1)-\frac{81}{64}(0.1)^{2}+\ldots$		Substitutes their x, where $\|x\|<\frac{4}{9}$ into all three terms of their binomial expansion	M1
	$=2-0.225-0.01265625=1.76234375$			
	So, $\sqrt{310} \approx 17.6234375=\underline{17.623}(3 \mathrm{dp})$		17.623 cao	A1 cao
	Note: the calculator value of $\sqrt{310}$ is $17.60681686 \ldots$ which is 17.607 to 3 decimal places			[3]
				8 marks
		Question	104 Notes	
104. (a)	B1	(4) ${ }^{\frac{1}{2}}$ or $\underline{2}$ outside brackets or $\underline{2}$ as candidate's constant term in their binomial expansion		
	M1	Expands $(\ldots+k x)^{\frac{1}{2}}$ to give any 2 terms out of 3 terms simplified or un-simplified, E.g. $1+\left(\frac{1}{2}\right)(k x)$ or $\left(\frac{1}{2}\right)(k x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(k x)^{2}$ or $1+\ldots+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(k x)^{2}$ where k is a numerical value and where $k \neq 1$		
	A1ft	A correct simplified or un-simplified $1+\left(\frac{1}{2}\right)(k x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(k x)^{2}$ expansion with consistent $(k x)$		
	Note	($k x$), $k \neq 1$ must be consistent (on the RHS, not necessarily on the LHS) in their expansion		
	Note	Award B1M1A0 for $2\left[1+\left(\frac{1}{2} f(9 x)+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}{2!}\left(\frac{9 x}{4}\right)^{2}+\ldots\right]\right.$ because $(k x)$ is not consistent		
	Note	Incorrect bracketing: $2\left[1+\left(\frac{1}{2} f\left(\frac{9 x}{4} f^{+}+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}{2!}\left(\frac{\left.9 x^{2}\right)}{4} f^{+}+\ldots\right.\right.\right.\right.$	$\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}{2!}\left(\frac{\left.9 x^{2}\right)}{4} f+\ldots\right\rfloor$ is B1M1A0 unless	is B1M1A0 unless recovered
	A1	$2 \frac{9}{4} x$ (simplified fractions) or allow $22.25 x$ or $2 \frac{1}{4} x$		
	A1	Accept only $\frac{81}{64} x^{2}$ or $-1 \frac{17}{64} x^{2}$ or $1.265625 x^{2}$		

	Question 104 Notes Continued					
104. (a) ctd.	SC	If a candidate would otherwise score $2^{\text {nd }} \mathrm{A} 0,3^{\text {rd }} \mathrm{A} 0$ (i.e. scores A0A0 in the final two marks to (a)) then allow Special Case $\mathbf{2}^{\text {nd }} \mathbf{A 1}$ for either SC: $2\left[1-\frac{9}{8} x ; \ldots\right]$ or SC: $2\left[1+\ldots-\frac{81}{128} x^{2}+\ldots\right]$ or $\mathbf{S C}: \lambda\left[1-\frac{9}{8} x-\frac{81}{128} x^{2}+\ldots\right]$ or $\mathbf{S C}:\left[\lambda-\frac{9 \lambda}{8} x-\frac{81 \lambda}{128} x^{2}+\ldots\right]$ (where λ can be 1 or omitted), where each term in the $[\ldots .$. is a simplified fraction or a decimal, OR SC: for $2 \frac{18}{8} x \quad \frac{162}{128} x^{2}+\ldots$ (i.e. for not simplifying their correct coefficients)				
	Note	Candidates who write $2\left[1+\left(\frac{1}{2}\right)\left(\frac{9 x}{4} f+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}{2!}\left(\frac{9 x}{4}\right)^{2}+\ldots\right]\right.$, where $k=\frac{9}{4}$ and not $\frac{9}{4}$ and achieve $2+\frac{9}{4} x ; \quad \frac{81}{64} x^{2}+\ldots$ will get B1M1A1A0A1				
	Note	Ignore extra terms beyond the term in x^{2}				
	Note	You can ignore subsequent working following a correct answer				
	Note	Allow B1M1A1 for $2\left[1+\left(\frac{1}{2}\right)\left(-\frac{9 x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{9 x}{4}\right)^{2}+\ldots\right]$				
	Note	Allow B1M1A1A1A1 for $2\left[1+\left(\frac{1}{2}\right)\left(-\frac{9 x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{9 x}{4}\right)^{2}+\ldots\right]=2-\frac{9}{4} x-\frac{81}{64} x^{2}+\ldots$				
(b)	Note	Give B1 M1 for $\sqrt{310} \approx 10\left(2-\frac{9}{4}(0.1)-\frac{81}{64}(0.1)^{2}\right)$				
	Note	Other alternative suitable values for x for $\sqrt{310} \approx \beta \sqrt{4-9(\text { their } x)}$				
		- ${ }^{\text {a }}$	Estimate		x	Estimate
		7	17.479	14	$\frac{79}{294}$	18.256
		$8 \quad \frac{3}{32}$	17.599	15	$\frac{118}{405}$	18.555
		9 $\frac{14}{729}$	17.607	16	$\frac{119}{384}$	18.899
		10 $\frac{1}{10}$	17.623	17	$\frac{94}{289}$	19.283
		11 $\frac{58}{363}$	17.690	18	$\frac{493}{1458}$	19.701
		$12 \quad \frac{133}{648}$	17.819	19	$\frac{126}{361}$	20.150
		$13 \quad \frac{122}{507}$	18.009	20	$\frac{43}{120}$	20.625
	Note	E.g. Give B1 M1 A1 for $\sqrt{310} \approx 12\left(2-\frac{9}{4}\left(\frac{133}{648}\right)-\frac{81}{64}\left(\frac{133}{648}\right)^{2}\right)=17.819(3 \mathrm{dp})$				
	Note	Allow B1 M1 A1 for $\sqrt{310} \approx 100\left(2-\frac{9}{4}(0.441)-\frac{81}{64}(0.441)^{2}\right)=76.161(3 \mathrm{dp})$				
	Note	Give B1 M1 A0 for $\sqrt{310} \approx 10\left(2-\frac{9}{4}(0.1)-\frac{81}{64}(0.1)^{2}-\frac{729}{512}(0.1)^{3}\right)=17.609(3 \mathrm{dp})$				

Question 104 Notes Continued

	Question 105 Notes	
105. (b), (c)	Note	(their A) is defined as either - their answer to part (a) - their stated $A=\ldots$ - their " $2^{3 "}$ in their stated $2^{3}\left(1+\frac{k x}{2}\right)^{3}$
	Note	Give $2^{\text {nd }} \mathrm{M} 0$ in part (b) if (their A) $=1$
	Note	Give M0 in part (c) if (their A) = 1
105. (c)	Note	Allow M1 for (their A)(3)($\left.\frac{\text { their } k \text { from (b) }}{2}\right)$
	Note	Award A0 for $B=\frac{27}{16} x$
	Note	Allow A1 for $B=\frac{27}{16} x$ followed by $B=-\frac{27}{16}$ or $-1 \frac{11}{16}$ or -1.6875
	Note	$k=-9$ leading to $B=\frac{27}{16}$ or $1 \frac{11}{16}$ or 1.6875 is A 0
	Note	Give A0 for finding both $B=\frac{27}{16}$ and $B=\frac{27}{16}$ (without rejecting $B=\frac{27}{16}$) as their final answer.
	Note	The A1 mark in part (c) is for a correct solution only.
	Note	Be careful! It is possible to award M0A0 in part (c) for a solution leading to $B=\frac{27}{16}$. E.g. $\mathrm{f}(x)=(2+k x)^{3}=2^{3}(1+k x)^{3}=\frac{1}{8}\left(1+(3)(k x)+\frac{(3)(4)}{2!}(k x)^{2}+\ldots\right)=\frac{1}{8} \quad \frac{3 k}{8} x+\frac{3 k^{2}}{4} x^{2}+\ldots$ leading to (a) $A=\frac{1}{8}$, (b) $k=\frac{9}{2}$, (c) $B=\frac{27}{16}$, gets (a) B1, (b) M1M0A0 (c) M0A0
105. (b), (c)	Note	${ }^{3} C_{0}(2){ }^{3}+{ }^{3} C_{1}(2){ }^{4}(k x)+{ }^{3} C_{2}(2){ }^{5}(k x)^{2}$ with the C terms not evaluated gets (b) $1^{\text {st }} \mathrm{M} 02^{\text {nd }} \mathrm{M} 0$ and (c) M0

107. (a) ctd	Note Note	Award B1M1A0 for $2\left[1+\left(\frac{1}{2}\right)(5 x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{5 x}{4}\right)^{2}+\ldots\right]$ because $(k x)$ is not consistent. Incorrect bracketing: $2\left[1+\left(\frac{1}{2}\right)\left(\frac{5 x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{5 x^{2}}{4}\right)+\ldots\right]$ is B1M1A0 unless recovered.
	A1 A1	$2+\frac{5}{4} x$ (simplified fractions) or allow $2+1.25 x$ or $2+1 \frac{1}{4} x$ Accept only $-\frac{25}{64} x^{2}$ or $-0.390625 x^{2}$
	SC	If a candidate would otherwise score $2^{\text {nd }} \mathrm{A} 0,3^{\text {rd }}$ A0 then allow Special Case $2^{\text {nd }}$ A1 for either SC: $2\left[1+\frac{5}{8} x ; \ldots\right]$ or SC: $2\left[1+\ldots-\frac{25}{128} x^{2}+\ldots\right]$ or SC: $\lambda\left[1+\frac{5}{8} x-\frac{25}{128} x^{2}+\ldots\right]$ or SC: $\left[\lambda+\frac{5 \lambda}{8} x-\frac{25 \lambda}{128} x^{2}+\ldots\right]$ (where λ can be 1 or omitted), where each term in the $[\ldots .$. is a simplified fraction or a decimal, OR SC: for $2+\frac{10}{8} x-\frac{50}{128} x^{2}+\ldots$ (i.e. for not simplifying their correct coefficients.)
	Note	Candidates who write $2\left[1+\left(\frac{1}{2}\right)\left(-\frac{5 x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{5 x}{4}\right)^{2}+\ldots\right]$, where $k=-\frac{5}{4}$ and not $\frac{5}{4}$ and achieve $2-\frac{5}{4} x-\frac{25}{64} x^{2}+\ldots$ will get B1M1A1A0A1
	Note	
(b)	Note B1	You can ignore subsequent working following a correct answer. $\frac{3}{2} \sqrt{2}$ or $1.5 \sqrt{2}$ or $k=\frac{3}{2}$ or 1.5 o.e. (Ignore how $k=\frac{3}{2}$ is found.)
(c)	M1 Note	Substitutes $x=\frac{1}{10}$ or 0.1 into their binomial expansion found in part (a) which must contain both an x term and an x^{2} term (or even an x^{3} term) and equates this to either $\frac{3}{\sqrt{2}}$ or their $k \sqrt{2}$ from (b), where k is a numerical value. M1 can be implied by $\frac{3}{2} \sqrt{2}$ or $1.5 \sqrt{2}$ or $\frac{3}{\underline{\underline{\sqrt{2}}}}=$ awrt 2.121
	Note Note	M1 can be implied by $\frac{1}{k}\left(\right.$ their $\left.\frac{543}{256}\right)$, with their k found in part (b). M1 cannot be implied by $(k)\left(\right.$ their $\left.\frac{543}{256}\right)$, with their k found in part (b).
	A1 Note Note Note Note	$\frac{181}{128}$ or any equivalent fraction, eg: $\frac{362}{256}$ or $\frac{543}{384}$. Also allow $\frac{256}{181}$ or any equivalent fraction. Also allow A1 for $p=181, q=128$ or $p=181 \lambda, q=128 \lambda$ or $p=256, q=181$ or $p=256 \lambda, q=181 \lambda$, where $\lambda \in \mathbb{Z}^{+}$ You can recover work for part (c) in part (b). You cannot recover part (b) work in part (c). Candidates are allowed to restart and gain all 2 marks in part (c) from an incorrect part (b). Award M1 A1 for the correct answer from no working.

107. (a) Alternative methods for part (a)

Alternative method 1: Candidates can apply an alternative form of the binomial expansion.

$\left\{(4+5 x)^{\frac{1}{2}}\right\}=(4)^{\frac{1}{2}}+\left(\frac{1}{2}\right)(4)^{-\frac{1}{2}}(5 x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(4)^{-\frac{3}{2}}(5 x)^{2}$	
B1	$(4)^{\frac{1}{2}}$ or 2
M1	Any two of three (un-simplified) terms correct.
A1	All three (un-simplified) terms correct.
A1	$2+\frac{5}{4} x$ (simplified fractions) or allow $2+1.25 x$ or $2+1 \frac{1}{4} x$
A1	Accept only $-\frac{25}{64} x^{2}$ or $-0.390625 x^{2}$
Note	The terms in C need to be evaluated. So ${ }^{\frac{1}{2}} C_{0}(4)^{\frac{1}{2}}+{ }^{\frac{1}{2}} C_{1}(4)^{-\frac{1}{2}}(5 x) ;+{ }^{\frac{1}{2}} C_{2}(4)^{-\frac{3}{2}}(5 x)^{2}$ without further working

Alternative Method 2: Maclaurin Expansion $\mathrm{f}(x)=(4+5 x)^{\frac{1}{2}}$

$\mathrm{f}^{\prime \prime}(x)=-\frac{25}{4}(4+5 x)^{-\frac{3}{2}}$	Correct $\mathrm{f}^{\prime \prime}(x)$	B1
- ${ }^{-\frac{1}{2}}$	$\pm a(4+5 x)^{-\frac{1}{2}} ; \quad a \neq \pm 1$	M1
$\mathrm{f}^{\prime}(x)=\frac{1}{2}(4+5 x)^{-\frac{1}{2}}(5)$	$\frac{1}{2}(4+5 x)^{-\frac{1}{2}}(5)$	A1 oe
$\left\{\therefore \mathrm{f}(0)=2, \mathrm{f}^{\prime}(0)=\frac{5}{4}\right.$ and $\left.\mathrm{f}^{\prime \prime}(0)=-\frac{25}{32}\right\}$		
So, $\mathrm{f}(x)=2+\frac{5}{4} x ;-\frac{25}{64} x^{2}+\ldots$		A1; A1

109. (a) Alternative Method 2: Maclaurin Expansion

$$
\begin{aligned}
& \text { Let } \mathrm{f}(x)=\frac{1}{\sqrt{(9-10 x)}} \\
& \{\mathrm{f}(x)=\}(9-10 x)^{-\frac{1}{2}} \\
& \mathrm{f}^{\prime \prime}(x)=75(9-10 x)^{-\frac{5}{2}} \\
& \mathrm{f}^{\prime}(x)=\left(-\frac{1}{2}\right)(9-10 x)^{-\frac{3}{2}}(-10) \\
& \left\{\therefore \mathrm{f}(0)=\frac{1}{3}, \mathrm{f}^{\prime}(0)=\frac{5}{27} \text { and } \mathrm{f}^{\prime \prime}(0)=\frac{75}{243}=\frac{25}{81}\right\} \\
& \mathrm{f}(x)=\frac{1}{3}+\frac{5}{27} x ;+\frac{25}{162} x^{2}+\ldots
\end{aligned}
$$

$$
\begin{array}{r|l}
\text { Correct } \mathrm{f}^{\prime \prime}(x) & \mathrm{B} 1 \mathrm{oe} \\
\pm a(9-10 x)^{-\frac{3}{2}} ; a \neq \pm 1 & \mathrm{M} 1
\end{array}
$$

Question Number	Scheme		Marks
110. (a)	$\left\{\sqrt{\left(\frac{1+x}{1-x}\right)}\right\}=(1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$	$(1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$	B1
	$\begin{aligned} & =\left(1+\left(\frac{1}{2}\right) x+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} x^{2}+\ldots\right) \times\left(1+\left(-\frac{1}{2}\right)(-x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(-x)^{2}+\ldots\right) \\ & =\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots\right) \times\left(1+\frac{1}{2} x+\frac{3}{8} x^{2}+\ldots\right) \end{aligned}$	See notes	M1 A1 A1
	$=1+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{1}{2} x+\frac{1}{4} x^{2}-\frac{1}{8} x^{2}+\ldots$	See notes	M1
	$=1+x+\frac{1}{2} x^{2}$	Answer is given in the question.	A1 *
(b)	$\sqrt{\left(\frac{1+\left(\frac{1}{26}\right)}{1-\left(\frac{1}{26}\right)}\right)}=1+\left(\frac{1}{26}\right)+\frac{1}{2}\left(\frac{1}{26}\right)^{2}$		[6] M1
	ie: $\frac{3 \sqrt{3}}{5}=\frac{1405}{1352}$		B1
	so, $\quad \sqrt{3}=\frac{7025}{4056}$	$\frac{7025}{4056}$	A1 cao
			[3] 9

Notes for Question 110

B1: $(1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$ or $\sqrt{(1+x)}(1-x)^{-\frac{1}{2}}$ seen or implied. (Also allow $\left.\left((1+x)(1-x)^{-1}\right)^{\frac{1}{2}}\right)$.
M1: Expands $(1+x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,
Eg: $\quad 1+\frac{1}{2} x$ or $+\left(\frac{1}{2}\right) x+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} x^{2}$ or $1+\ldots+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} x^{2}$
or expands $(1-x)^{-\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,
Eg: $\quad 1+\left(-\frac{1}{2}\right)(-x)$ or $+\left(-\frac{1}{2}\right)(-x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(-x)^{2} \quad$ or $\quad 1+\ldots+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(-x)^{2}$

Also allow: $1+\ldots .+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(x)^{2}$ for M1.
A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^{3} and x^{4} terms)
A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^{3} and x^{4} terms)
Note: Candidates can give decimal equivalents when expanding out their binomial expansions.
M1: Multiplies out to give 1, exactly two terms in x and exactly three terms in x^{2}.
A1: Candidate achieves the result on the exam paper. Make sure that their working is sound.
Special Case: Award SC FINAL M1A1 for a correct $\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots\right) \times\left(1+\frac{1}{2} x+\frac{3}{8} x^{2}+\ldots\right)$ multiplied out with no errors to give either $1+x+\frac{3}{8} x^{2}+\frac{1}{4} x^{2}-\frac{1}{8} x^{2}$ or $1+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{1}{2} x+\frac{1}{8} x^{2}$ or $1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{2} x+\frac{1}{4} x^{2} \quad$ or $\quad 1+\frac{1}{2} x+\frac{5}{8} x^{2}+\frac{1}{2} x-\frac{1}{8} x^{2}$ leading to the correct answer of $1+x+\frac{1}{2} x^{2}$.

Notes for Question 110 Continued	
110. (a) ctd	Note: If a candidate writes down either $(1+x)^{\frac{1}{2}}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots$ or $(1-x)^{-\frac{1}{2}}=1+\frac{1}{2} x+\frac{3}{8} x^{2}+\ldots$

Note: If a candidate writes down both correct binomial expansions with no working, then you can award $1^{\text {st }} \mathrm{M} 1,1^{\text {st }} \mathrm{A} 1,2^{\text {nd }} \mathrm{A} 1$.
(b) M1: Substitutes $x=\frac{1}{26}$ into both sides of $\sqrt{\left(\frac{1+x}{1-x}\right)}$ and $1+x+\frac{1}{2} x^{2}$

B1: For sight of $\sqrt{\frac{27}{25}}$ (or better) and $\frac{1405}{1352}$ or equivalent fraction
Eg: $\frac{3 \sqrt{3}}{5}$ and $\frac{1405}{1352}$ or $0.6 \sqrt{3}$ and $\frac{1405}{1352}$ or $\frac{3 \sqrt{3}}{5}$ and $1 \frac{53}{1352}$ or $\sqrt{3}$ and $\frac{5}{3}\left(\frac{1405}{1352}\right)$ are fine for B1.
A1: $\frac{7025}{4056}$ or any equivalent fraction, eg: $\frac{14050}{8112}$ or $\frac{182650}{105456}$ etc.
Special Case: Award SC: M1B1A0 for $\sqrt{3} \approx 1.732001972$.. or truncated 1.732001 or awrt 1.732002 .
Note that $\frac{7025}{4056}=1.732001972 \ldots$ and $\sqrt{3}=1.732050808 \ldots$

Aliter

2. (a)

Way 2
$\left\{\sqrt{\left(\frac{1+x}{1-x}\right)}=\sqrt{\frac{(1+x)(1-x)}{(1+x)(1-x)}}=\sqrt{\frac{\left(1-x^{2}\right)}{(1-x)^{2}}}=\right\}=\left(1-x^{2}\right)^{\frac{1}{2}}(1-x)^{-1} \quad\left(1-x^{2}\right)^{\frac{1}{2}}(1-x)^{-1}$
B1
$=\left(1+\left(\frac{1}{2}\right)\left(-x^{2}\right)+\ldots\right) \times\left(1+(-1)(-x)+\frac{(-1)(-2)}{2!}(-x)^{2}+\ldots\right)$
See notes
M1A1A1
$=\left(1-\frac{1}{2} x^{2}+\ldots\right) \times\left(1+x+x^{2}+\ldots\right)$
$=1+x+x^{2}-\frac{1}{2} x^{2} \quad$ See notes
$=1+x+\frac{1}{2} x^{2} \quad \begin{array}{r}\text { Answer is given in the } \\ \text { question } .\end{array}$
M1

Aliter
2. (a)

Way 2

B1: $\left(1-x^{2}\right)^{\frac{1}{2}}(1-x)^{-1}$ seen or implied.
M1: Expands $\left(1-x^{2}\right)^{\frac{1}{2}}$ to give both terms simplified or un-simplified, $1+\left(\frac{1}{2}\right)\left(-x^{2}\right)$
or expands $(1-x)^{-1}$ to give any 2 out of 3 terms simplified or un-simplified,
Eg: $\quad 1+(-1)(-x)$ or $\ldots+(-1)(-x)+\frac{(-1)(-2)}{2!}(-x)^{2} \quad$ or $\quad 1+\ldots .+\frac{(-1)(-2)}{2!}(-x)^{2}$
A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^{3} and x^{4} terms)
A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^{3} and x^{4} terms)
M1: Multiplies out to give 1 , exactly one term in x and exactly two terms in x^{2}.
A1: Candidate achieves the result on the exam paper. Make sure that their working is sound.

Notes for Question 110 Continued

$\begin{aligned} & \begin{array}{c}\text { Aliter } \\ \text { 110. } \\ \text { (a) }\end{array}\end{aligned}\left\{\sqrt{\left(\frac{1+x}{1-x}\right)}=\sqrt{\frac{(1+x)(1+x)}{(1-x)(1+x)}}=\right\}=(1+x)\left(1-x^{2}\right)^{-\frac{1}{2}}$
Way 3
$=(1+x)\left(1+\frac{1}{2} x^{2}+\ldots\right)$
Must follow on from above.
$=1+x+\frac{1}{2} x^{2}$
Note: The final M1 mark is dependent on the previous method mark for Way 3.

Aliter
 110.
 Assuming the result on the Question Paper. (You need to be convinced that a candidate is

(a)

Way 4

$$
\begin{aligned}
& \left\{\sqrt{\left(\frac{1+x}{1-x}\right)}=\frac{\sqrt{(1+x)}}{\sqrt{(1-x)}}=1+x+\frac{1}{2} x^{2}\right\} \Rightarrow(1+x)^{\frac{1}{2}}=\left(1+x+\frac{1}{2} x^{2}\right)(1-x)^{\frac{1}{2}} \\
& (1+x)^{\frac{1}{2}}=1+\left(\frac{1}{2}\right) x+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} x^{2}+\ldots\left\{=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots\right\}, \\
& (1-x)^{\frac{1}{2}}=1+\left(\frac{1}{2}\right)(-x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(-x)^{2}+\ldots\left\{=1-\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots\right\} \\
& \mathrm{RHS}=\left(1+x+\frac{1}{2} x^{2}\right)(1-x)^{\frac{1}{2}}=\left(1+x+\frac{1}{2} x^{2}\right)\left(1-\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots\right) \\
& =1-\frac{1}{2} x-\frac{1}{8} x^{2}+x-\frac{1}{2} x^{2}+\frac{1}{2} x^{2} \quad \text { See notes } \\
& =1+\frac{1}{2} x-\frac{1}{8} x^{2} \\
& \text { So, LHS }=1+\frac{1}{2} x-\frac{1}{8} x^{2}=\text { RHS }
\end{aligned}
$$

B1: $(1+x)^{\frac{1}{2}}=\left(1+x+\frac{1}{2} x^{2}\right)(1-x)^{\frac{1}{2}} \quad$ seen or implied.
M1: For Way 4, this M1 mark is dependent on the first B1 mark.
Expands $(1+x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,
Eg: $\quad 1+\frac{1}{2} x$ or $+\left(\frac{1}{2}\right) x+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} x^{2}$ or $1+\ldots+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} x^{2}$
or expands $(1-x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,
Eg: $\quad 1+\left(\frac{1}{2}\right)(-x)$ or $+\left(\frac{1}{2}\right)(-x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(-x)^{2}$ or $1+\ldots+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(-x)^{2}$
A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^{3} and x^{4} terms)
A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^{3} and x^{4} terms)
M1: For Way 4, this M1 mark is dependent on the first B1 mark.
Multiplies out RHS to give 1, exactly two terms in x and exactly three terms in x^{2}.
A1: Candidate achieves the result on the exam paper. Candidate needs to have correctly processed both the LHS and RHS of $(1+x)^{\frac{1}{2}}=\left(1+x+\frac{1}{2} x^{2}\right)(1-x)^{\frac{1}{2}}$.

Question Number	Scheme		Marks
111. (a)	$\{\sqrt[3]{(8-9 x)}\}=(8-9 x)^{\frac{1}{3}}$	Power of $\frac{1}{3}$	M1
	$=\underline{(8)^{\frac{1}{3}}}\left(1-\frac{9 x}{8}\right)^{\frac{1}{3}}=\underline{2}\left(1-\frac{9 x}{8}\right)^{\frac{1}{3}}$	$(8)^{\frac{1}{3}} \text { or } \underline{2}$	B1
	$\begin{aligned} & =\{2\}\left[1+\left(\frac{1}{3}\right)(k x)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(k x)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(k x)^{3}+\ldots\right] \\ & =\{2\}\left[1+\left(\frac{1}{3}\right)\left(\frac{-9 x}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{-9 x}{8}\right)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{-9 x}{8}\right)^{3}+\ldots\right. \end{aligned}$	see notes	M1 A1
	$\begin{aligned} & =2\left[1-\frac{3}{8} x ;-\frac{9}{64} x^{2}-\frac{45}{512} x^{3}+\ldots\right] \\ & =2-\frac{3}{4} x ;-\frac{9}{32} x^{2}-\frac{45}{256} x^{3}+\ldots \end{aligned}$	See notes below!	A1; A1
(b)	$\{\sqrt[3]{7100}=10 \sqrt[3]{71}=10 \sqrt[3]{(8-9 x)},\} \text { so } x=0.1$	Writes down or uses $x=0.1$	B1 [6]
	When $\begin{aligned} x=0.1, \sqrt[3]{(8-9 x)} & \approx 2-\frac{3}{4}(0.1)-\frac{9}{32}(0.1)^{2}-\frac{45}{256}(0.1)^{3}+\ldots \\ & =2-0.075-0.0028125-0.00017578125 \\ & =1.922011719 \end{aligned}$		M1
	So, $\sqrt[3]{7100}=19.220117919 \ldots=\underline{19.2201}(4 \mathrm{dp})$	19.2201 cso	A1 cao
			$\begin{array}{r} {[3]} \\ 9 \end{array}$

Notes for Question 111

(a) M1: Writes or uses $\frac{1}{3}$. This mark can be implied by a constant term of $8^{\frac{1}{3}}$ or 2 .

B1: $(8)^{\frac{1}{3}}$ or $\underline{2}$ outside brackets or $\underline{2}$ as candidate's constant term in their binomial expansion.
M1: Expands $(\ldots+k x)^{\frac{1}{3}}$ to give any 2 terms out of 4 terms simplified or un-simplified,
Eg: $\quad 1+\left(\frac{1}{3}\right)(k x)$ or $\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(k x)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(k x)^{3} \quad$ or $1+\ldots \ldots .+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(k x)^{2}$ or $\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(k x)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(k x)^{3}$ where $k \neq 1$ are fine for M1.
A1: A correct simplified or un-simplified $1+\left(\frac{1}{3}\right)(k x)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(k x)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(k x)^{3}$ expansion with consistent $(k x)$. Note that ($k x$) must be consistent (on the RHS, not necessarily the LHS) in a candidate's expansion. Note that $k \neq 1$.
You would award B1M1A0 for $2\left[1+\left(\frac{1}{3}\right)\left(\frac{-9 x}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(-9 x)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{-9 x}{8}\right)^{3}+\ldots\right]$ because $(k x)$ is not consistent.

Notes for Question 111 Continued	
111. (a) ctd	"Incorrect bracketing" $=\{2\}\left[\frac{1+\left(\frac{1}{3}\right)\left(\frac{-9 x}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{-9 x^{2}}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{-9 x^{3}}{8}\right)+\ldots}{}\right.$
is M1A0 unless recovered.	

A1: For $2-\frac{3}{4} x$ (simplified please) or also allow $2-0.75 x$.
Allow Special Case A1A0 for either SC: $=2\left[1-\frac{3}{8} x ; \ldots\right]$ or SC: $K\left[1-\frac{3}{8} x-\frac{9}{64} x^{2}-\frac{45}{512} x^{3}+\ldots\right]$
(where K can be 1 or omitted), with each term in the [........] either a simplified fraction or a decimal.
A1: Accept only $-\frac{9}{32} x^{2}-\frac{45}{256} x^{3}$ or $-0.28125 x^{2}-0.17578125 x^{3}$
Candidates who write $=2\left[1+\left(\frac{1}{3}\right)\left(\frac{9 x}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{9 x}{8}\right)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{9 x}{8}\right)^{3}+\ldots\right]$ where $k=\frac{9}{8}$ and not $-\frac{9}{8}$ and achieve $2+\frac{3}{4} x ;-\frac{9}{32} x^{2}+\frac{45}{256} x^{3}+\ldots$ will get B1M1A1A0A0.

Note for final two marks:

$2\left[1-\frac{3}{8} x ;-\frac{9}{64} x^{2}-\frac{45}{512} x^{3}+\ldots\right]=2+\frac{3}{4} x-\frac{9}{32} x^{2}-\frac{45}{256} x^{3}+\ldots \quad$ scores final A0A1.
$2\left[1-\frac{3}{8} x ;-\frac{9}{64} x^{2}-\frac{45}{512} x^{3}+\ldots\right]=2-\frac{3}{4}-\frac{9}{32} x^{2}-\frac{45}{256} x^{3}+\ldots \quad$ scores final A0A1
Alternative method: Candidates can apply an alternative form of the binomial expansion.
$\{\sqrt[3]{(8-9 x)}\}=(8-9 x)^{\frac{1}{3}}=(8)^{\frac{1}{3}}+\left(\frac{1}{3}\right)(8)^{-\frac{2}{3}}(-9 x)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(8)^{-\frac{5}{3}}(-9 x)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(8)^{-\frac{8}{3}}(-9 x)^{3}$
B1: $(8)^{\frac{1}{3}}$ or 2
M1: Any two of four (un-simplified or simplified) terms correct.
A1: All four (un-simplified or simplified) terms correct.
A1: $2-\frac{3}{4} x$
A1: $-\frac{9}{32} x^{2}-\frac{45}{256} x^{3}$
Note: The terms in C need to be evaluated,
so ${ }^{\frac{1}{3}} C_{0}(8)^{\frac{1}{3}}+{ }^{\frac{1}{3}} C_{1}(8)^{-\frac{2}{3}}(-9 x)+{ }^{\frac{1}{3}} C_{2}(8)^{-\frac{5}{3}}(-9 x)^{2}+{ }^{\frac{1}{3}} C_{3}(8)^{-\frac{8}{3}}(-9 x)^{3} \quad$ without further working is B0M0A0.
(b) B1: Writes down or uses $x=0.1$

M1: Substitutes their x, where $|x|<\frac{8}{9}$ into at least two terms of their binomial expansion.
A1: 19.2201 cao
Be Careful! The binomial answer is 19.22011719
and the calculated $\sqrt[3]{7100}$ is $19.21997343 \ldots$ which is 19.2200 to 4 decimal places.

Question Number	Scheme	Marks	
113.	$(2+3 x)^{-3}=\underline{(2)^{-3}\left(1+\frac{3 x}{2}\right)^{-3}=\frac{1}{8}\left(1+\frac{3 x}{2}\right)^{-3}}$		
	$=\left\{\frac{1}{8}\right\}\left[1+(-3)(k x)+\frac{(-3)(-4)}{2!}(k x)^{2}+\frac{(-3)(-4)(-5)}{3!}(k x)^{3}+\ldots\right]$	$\underline{(2)^{-3}}$ or $\frac{1}{8}$	$\underline{B} 1$
	$=\left\{\frac{1}{8}\right\}\left[1+(-3)\left(\frac{3 x}{2}\right)+\frac{(-3)(-4)}{2!}\left(\frac{3 x}{2}\right)^{2}+\frac{(-3)(-4)(-5)}{3!}\left(\frac{3 x}{2}\right)^{3}+\ldots\right]$		
	$=\frac{1}{8}\left[1-\frac{9}{2} x ;+\frac{27}{2} x^{2}-\frac{135}{4} x^{3}+\ldots\right]$	see notes	M1 A1
	$=\frac{1}{8}-\frac{9}{16} x ;+\frac{27}{16} x^{2}-\frac{135}{32} x^{3}+\ldots$	See notes below!	

B1: $(2)^{-3}$ or $\frac{1}{8}$ outside brackets or $\frac{1}{8}$ as constant term in the binomial expansion.
M1: Expands $(\ldots+k x)^{-3}$ to give any 2 terms out of 4 terms simplified or un-simplified,
Eg: $\quad 1+(-3)(k x)$ or $(-3)(k x)+\frac{(-3)(-4)}{2!}(k x)^{2}$ or $1+\ldots \ldots+\frac{(-3)(-4)}{2!}(k x)^{2}$
or $\frac{(-3)(-4)}{2!}(k x)^{2}+\frac{(-3)(-4)(-5)}{3!}(k x)^{3}$ where $k \neq 1$ are ok for M1.
A1: A correct simplified or un-simplified $1+(-3)(k x)+\frac{(-3)(-4)}{2!}(k x)^{2}+\frac{(-3)(-4)(-5)}{3!}(k x)^{3}$ expansion with consistent $(k x)$ where $k \neq 1$.
"Incorrect bracketing" $\left\{\frac{1}{8}\right\}\left[1+(-3)\left(\frac{3 x}{2}\right)+\frac{(-3)(-4)}{2!}\left(\frac{3 x^{2}}{2}\right)+\frac{(-3)(-4)(-5)}{3!}\left(\frac{3 x^{3}}{2}\right)+\ldots\right]$ is M1A0 unless recovered.
A1: For $\frac{1}{8}-\frac{9}{16} x$ (simplified fractions) or also allow $0.125-0.5625 x$.
Allow Special Case A1 for either SC: $\frac{1}{8}\left[1-\frac{9}{2} x ; \ldots\right]$ or SC: $K\left[1-\frac{9}{2} x+\frac{27}{2} x^{2}-\frac{135}{4} x^{3}+\ldots\right]$
(where K can be 1 or omitted), with each term in the [........] either a simplified fraction or a decimal.
A1: Accept only $\frac{27}{16} x^{2}-\frac{135}{32} x^{3}$ or $1 \frac{11}{16} x^{2}-4 \frac{7}{32} x^{3}$ or $1.6875 x^{2}-4.21875 x^{3}$
113. ctd

Candidates who write $=\frac{1}{8}\left[1+(-3)\left(-\frac{3 x}{2}\right)+\frac{(-3)(-4)}{2!}\left(-\frac{3 x}{2}\right)^{2}+\frac{(-3)(-4)(-5)}{3!}\left(-\frac{3 x}{2}\right)^{3}+\ldots\right]$ where $k=-\frac{3}{2}$ and not $\frac{3}{2}$ and achieve $\frac{1}{8}+\frac{9}{16} x+\frac{27}{16} x^{2}+\frac{135}{32} x^{3}+\ldots$ will get B1M1A1A0A0.
Alternative method: Candidates can apply an alternative form of the binomial expansion.
$(2+3 x)^{-3}=(2)^{-3}+(-3)(2)^{-4}(3 x)+\frac{(-3)(-4)}{2!}(2)^{-5}(3 x)^{2}+\frac{(-3)(-4)(-5)}{3!}(2)^{-6}(3 x)^{3}$
B1: $\frac{1}{8}$ or $(2)^{-3}$
M1: Any two of four (un-simplified) terms correct.
A1: All four (un-simplified) terms correct.
A1: $\frac{1}{8}-\frac{9}{16} x$
A1: $+\frac{27}{16} x^{2}-\frac{135}{32} x^{3}$
Note: The terms in C need to be evaluated, so ${ }^{-3} C_{0}(2)^{-3}+{ }^{-3} C_{1}(2)^{-4}(3 x)+{ }^{-3} C_{2}(2)^{-5}(3 x)^{2}+{ }^{-3} C_{3}(2)^{-6}(3 x)^{3}$ without further working is B0M0A0.

(a)

B1: $\underline{(2)^{-2}}$ or $\frac{1}{4}$ outside brackets or $\frac{1}{4}$ as candidate's constant term in their binomial expansion.
M1: Expands to give a simplified or an un-simplified,

$$
1+(-2)(* * x) \text { or }(-2)(* * x)+\frac{(-2)(-3)}{2!}(* * x)^{2} \quad \text { or } 1+\ldots \ldots+\frac{(-2)(-3)}{2!}(* * x)^{2}, \text { where } * * \neq 1
$$

A1: A correct simplified or an un-simplified $1+(-2)(* * x)+\frac{(-2)(-3)}{2!}(* * x)^{2}$ expansion with candidate's follow through $(* * x)$. Note that $(* * x)$ must be consistent.
You would award B1M1A0 for $=\frac{1}{4}\left[1+(-2)\left(-\frac{5 x}{2}\right)+\frac{(-2)(-3)}{2!}(-5 x)^{2}+\ldots\right]$ because $* *$ is not consistent. Invisible brackets $\left\{\frac{1}{4}\right\}\left[1+(-2)\left(-\frac{5 x}{2}\right)+\frac{(-2)(-3)}{2!}\left(-\frac{5 x^{2}}{2}\right)+\ldots\right]$ is M1A0 unless recovered.
A1: For $\frac{1}{4}+\frac{5}{4} x$ (simplified fractions) or Also allow $0.25+1.25 x$ or $\frac{1}{4}+1 \frac{1}{4} x$.
Allow Special Case A1 for either SC: $\frac{1}{4}[1+5 x ; \ldots]$ or $\mathbf{S C}: K\left[1+5 x+\frac{75}{4} x^{2}+\ldots\right]$.
A1: Accept only $\frac{75}{16} x^{2}$ or $4 \frac{11}{16} x^{2}$ or $4.6875 x^{2}$
Alternative method: Candidates can apply an alternative form of the binomial expansion. (See next page).
115. (b) M1: Candidate writes down $(2+k x)$ (their part (a) answer, at least up to the term in x.)
$(2+k x)\left(\frac{1}{4}+\frac{5}{4} x+\ldots\right)$ or $(2+k x)\left(\frac{1}{4}+\frac{5}{4} x+\frac{75}{16} x^{2}+\ldots\right)$ are fine.
This mark can also be implied by candidate multiplying out to find two terms (or coefficients) in x.
A1: $k=-3$
M1: Multiplies out their $(2+k x)\left(\frac{1}{4}+\frac{5}{4} x+\frac{75}{16} x^{2}+\ldots\right)$ to give exactly two terms (or coefficients) in x^{2} and attempts to find A using a numerical value of k.
A1: Either $\frac{45}{8}$ or $5 \frac{5}{8}$ or 5.625 Note: $\frac{45}{8} x^{2}$ is A0.

Alternative method for part (a)

$(2-5 x)^{-2}=(2)^{-2}+(-2)(2)^{-3}(-5 x) ;+\frac{(-2)(-3)}{2!}(2)^{-4}(-5 x)^{2}$
B1: $\frac{1}{4}$ or $(2)^{-2}$,
M1: Any two of three (un-simplified) terms correct.
A1: All three (un-simplified) terms correct.
A1: $\frac{1}{4}+\frac{5}{4} x$
A1: $\frac{75}{16} x^{2}$
Note: The terms in C need to be evaluated, so ${ }^{-2} C_{0}(2)^{-2}+{ }^{-2} C_{1}(2)^{-3}(-5 x) ;+{ }^{-2} C_{2}(2)^{-4}(-5 x)^{2}$ without further working is B0M0A0.

Alternative method for parts (b) and (c)

$(2+k x)=(2-5 x)^{2}\left(\frac{1}{2}+\frac{7}{4} x+A x^{2}+\ldots\right)$
$(2+k x)=\left(4-20 x+25 x^{2}\right)\left(\frac{1}{2}+\frac{7}{4} x+A x^{2}+\ldots\right)$
$(2+k x)=2+(7 x-10 x)+\left(4 A x^{2}-35 x^{2}+\frac{25}{2} x^{2}\right)$
Equate x terms: $\underline{k=-3}$
Equate x^{2} terms: $0=4 A-35+\frac{25}{2} \Rightarrow 4 A=\frac{45}{2} \Rightarrow A=\frac{45}{8}$
(b)

M1: For $(2+k x)=\left(4 \pm \lambda x+25 x^{2}\right)\left(\frac{1}{2}+\frac{7}{4} x+A x^{2}+\ldots\right)$, where $\lambda \neq 0$
A1: $k=-3$
(c) M1: Multiplies out to obtain three x^{2} terms/coefficients, equates to 0 and attempts to find A.

A1: Either $\frac{45}{8}$ or $5 \frac{5}{8}$ or 5.625 Note: $\frac{45}{8} x^{2}$ is A0.

Question Number	Scheme	Marks	
$117 .$ (a)	$\begin{aligned} (2-3 x)^{-2}= & 2^{-2}\left(1-\frac{3}{2} x\right)^{-2} \\ \left(1-\frac{3}{2} x\right)^{-2}= & 1+(-2)\left(-\frac{3}{2} x\right)+\frac{-2 .-3}{1.2}\left(-\frac{3}{2} x\right)^{2}+\frac{-2 .-3 .-4}{1.2 .3}\left(-\frac{3}{2} x\right)^{3}+\ldots \\ = & 1+3 x+\frac{27}{4} x^{2}+\frac{27}{2} x^{3}+\ldots \\ & (2-3 x)^{-2}=\frac{1}{4}+\frac{3}{4} x+\frac{27}{16} x^{2}+\frac{27}{8} x^{3}+\ldots \end{aligned}$	B1 M1 A1 M1 A1	(5)
(b)	$\mathrm{f}(x)=(a+b x)\left(\frac{1}{4}+\frac{3}{4} x+\frac{27}{16} x^{2}+\frac{27}{8} x^{3}+\ldots\right)$ Coefficient of $x ; \quad \frac{3 a}{4}+\frac{b}{4}=0 \quad(3 a+b=0)$ Coefficient of $x^{2} ; \quad \frac{27 a}{16}+\frac{3 b}{4}=\frac{9}{16} \quad(9 a+4 b=3) \quad$ A1 either correct Leading to $\quad a=-1, b=3$	M1 M1 A1 M1 A1	(5)
(c)	$\text { Coefficient of } x^{3} \text { is } \begin{aligned} \frac{27 a}{8}+\frac{27 b}{16}= & \frac{27}{8} \times(-1)+\frac{27}{16} \times 3 \\ & =\frac{27}{16} \end{aligned}$	M1 Alft A1	(3)
			[13]

Question Number	Scheme	Marks	
119	$\text { (a) } \begin{aligned} (1-8 x)^{\frac{1}{2}} & =1+\left(\frac{1}{2}\right)(-8 x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2}(-8 x)^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}(-8 x)^{3}+\ldots \\ & =1-4 x-8 x^{2} ;-32 x^{3}-\ldots \end{aligned}$	M1 A1 A1; A1	(4)
	$\text { (b) } \begin{aligned} \sqrt{(1-8 x)} & =\sqrt{\left(1-\frac{8}{100}\right)} \\ & =\sqrt{\frac{92}{100}}=\sqrt{\frac{23}{25}}=\frac{\sqrt{23}}{5} \end{aligned}$	M1 A1	(2)
	$\text { (c) } \begin{aligned} 1-4 x-8 x^{2}-32 x^{3} & =1-4(0.01)-8(0.01)^{2}-32(0.01)^{3} \\ & =1-0.04-0.0008-0.000032=0.959168 \end{aligned}$	M1	
	$\sqrt{23}=5 \times 0.959168$	M1	
	= 4.79584 cao	A1	(3) [9]

Question Number	Scheme	Marks
120	$\begin{aligned} f(x) & =\frac{1}{\sqrt{ }(4+x)}=(4+x)^{-\frac{1}{2}} \\ & =(4)^{-\frac{1}{2}}(1+\ldots) \cdots \quad \frac{1}{2}(1+\ldots) \cdots \text { or } \frac{1}{2 \sqrt{ }(1+\ldots)} \\ & =\ldots\left(1+\left(-\frac{1}{2}\right)\left(\frac{x}{4}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}\left(\frac{x}{4}\right)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(\frac{x}{4}\right)^{3}+\ldots\right) \end{aligned}$ ft their $\left(\frac{x}{4}\right)$ $=\frac{1}{2}-\frac{1}{16} x,+\frac{3}{256} x^{2}-\frac{5}{2048} x^{3}+\ldots$ Alternative $\begin{aligned} \mathrm{f}(x) & =\frac{1}{\sqrt{ }(4+x)}=(4+x)^{-\frac{1}{2}} \\ & =\underline{4^{-\frac{1}{2}}}+\left(-\frac{1}{2}\right) 4^{-\frac{3}{2}} x+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1.2} 4^{-\frac{5}{2}} x^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{1.2 .3} 4^{-\frac{1}{2}} x^{3}+\ldots \\ & =\frac{1}{2}-\frac{1}{16} x,+\frac{3}{256} x^{2}-\frac{5}{2048} x^{3}+\ldots \end{aligned}$	M1 B1 M1 A1ft A1, A1 (6) [6] M1 B1 M1 A1 A1, A1 (6)

Question Number	Scheme		Marks
121. (a)	$\begin{aligned} & 27 x^{2}+32 x+16 \equiv A(3 x+2)(1-x)+B(1-x)+C(3 x+2)^{2} \\ & x=-\frac{2}{3}, \quad 12-\frac{64}{3}+16=\left(\frac{5}{3}\right) B \Rightarrow \frac{20}{3}=\left(\frac{5}{3}\right) B \Rightarrow B=4 \\ & x=1, \quad 27+32+16=25 C \Rightarrow 75=25 C \Rightarrow C=3 \end{aligned}$ Equate x^{2} : $27=-3 A+9 C \Rightarrow 27=-3 A+27 \Rightarrow 0=-3 A$ $\Rightarrow A=0$ $\begin{aligned} x=0, \quad 16=2 A & +B+4 C \\ & \Rightarrow 16=2 A+4+12 \Rightarrow 0=2 A \Rightarrow A=0 \end{aligned}$	Forming this identity	M1
		Substitutes either $x=-\frac{2}{3}$ or $x=1$ into their identity or equates 3 terms or substitutes in values to write down three simultaneous equations. Both $B=4$ and $C=3$ (Note the A 1 is dependent on both method marks in this part.)	M1 A1
		Compares coefficients or substitutes in a third x-value or uses simultaneous equations to show $A=0$.	B1

Moving powers to top on any one of the two expressions

Either $1 \pm(-2)\left(\frac{3 x}{2}\right)$ or $1 \pm(-1)(-x)$ from either first or second expansions respectively Ignoring 1 and 3 , any one

$$
+3\left\{1+(-1)(-x) ;+\frac{(-1)(-2)}{2!}(-x)^{2}+\ldots\right\}
$$

$=\left\{1-3 x+\frac{27}{4} x^{2}+\ldots\right\}+3\left\{1+x+x^{2}+\ldots\right\}$
$=4+0 x ;+\frac{39}{4} x^{2}$
correct $\{\ldots \ldots .$.$\} expansion.$

Both $\{\ldots \ldots .$.$\} correct.$

$$
4+(0 x) ; \frac{39}{4} x^{2}
$$

Question Number	Scheme		Marks
121. (c)	$\begin{aligned} \text { Actual }=\mathrm{f}(0.2) & =\frac{1.08+6.4+16}{(6.76)(0.8)} \\ & =\frac{23.48}{5.408}=4.341715976 \ldots=\frac{2935}{676} \end{aligned}$	Attempt to find the actual value of $f(0.2)$ or seeing awrt 4.3 and believing it is candidate's actual $\mathrm{f}(0.2)$.	M1
	Or $\begin{aligned} \text { Actual }=\mathrm{f}(0.2) & =\frac{4}{(3(0.2)+2)^{2}}+\frac{3}{(1-0.2)} \\ & =\frac{4}{6.76}+3.75=4.341715976 \ldots=\frac{2935}{676} \end{aligned}$	Candidates can also attempt to find the actual value by using $\begin{array}{r} \frac{A}{(3 x+2)}+\frac{B}{(3 x+2)^{2}}+\frac{C}{(1-x)} \\ \text { with their } A, B \text { and } C \end{array}$	
	$\begin{aligned} & \begin{aligned} \text { Estimate }=\mathrm{f}(0.2) & =4+\frac{39}{4}(0.2)^{2} \\ & =4+0.39=4.39 \end{aligned} \\ & \text { \%age error }=\frac{\|4.39-4.341715976 \ldots\|}{4.341715976 \ldots} \times 100 \\ & \\ & =1.112095408 \ldots=1.1 \%(2 \mathrm{sf}) \end{aligned}$	Attempt to find an estimate for $\mathrm{f}(0.2)$ using their answer to (b)	M1 $\sqrt{ }$
		$\left\|\frac{\text { their estimate }- \text { actual }}{\text { actual }}\right\| \times 100$	M1
		1.1\%	A1 cao [4]
			14 marks

Question Number	Scheme	
	$* *$ represents a constant (which must be consistent for first accuracy mark)	Takes 8 outside the bracket to give any of

123. (a)

$$
\begin{aligned}
& (8-3 x)^{\frac{1}{3}}=\underline{(8)^{\frac{1}{3}}}\left(1-\frac{3 x}{8}\right)^{\frac{1}{3}}=2\left(1-\frac{3 x}{8}\right)^{\frac{1}{3}} \\
& \\
& =2\left\{\underline{\left.1+\left(\frac{1}{3}\right)(* * x) ;+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(* * x)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(* * x)^{3}+\ldots\right\}}\right. \\
& \text { with } * * \neq 1 \\
& \quad=2\left\{\begin{array}{l}
\left.1+\left(\frac{1}{3}\right)\left(-\frac{3 x}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(-\frac{3 x}{8}\right)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(-\frac{3 x}{8}\right)^{3}+\ldots\right\}
\end{array}\right.
\end{aligned}
$$

Either $2\left\{1-\frac{1}{8} x \ldots \ldots ..\right\}$ or
anything that
cancels to $\quad 2-\frac{1}{4} x ;$
Simplified $-\frac{1}{32} x^{2}-\frac{5}{768} x^{3}$
Either $2\left\{1-\frac{1}{8} x \ldots \ldots ..\right\}$ or
anything that
cancels to $\quad 2-\frac{1}{4} x ;$
Simplified $-\frac{1}{32} x^{2}-\frac{5}{768} x^{3}$
Either $2\left\{1-\frac{1}{8} x \ldots \ldots ..\right\}$ or
anything that
cancels to $\quad 2-\frac{1}{4} x ;$
Simplified $-\frac{1}{32} x^{2}-\frac{5}{768} x^{3}$
Either $2\left\{1-\frac{1}{8} x \ldots \ldots ..\right\}$ or
anything that
cancels to $\quad 2-\frac{1}{4} x ;$
Simplified $-\frac{1}{32} x^{2}-\frac{5}{768} x^{3}$
Expands $(1+* * x)^{\frac{1}{3}}$ to give a simplified or an

$$
\begin{aligned}
& \text { un-simplified } \\
& 1+\left(\frac{1}{3}\right)(* * x)
\end{aligned}
$$

A correct simplified or an un-simplified
 \} expansion with candidate's followed through (${ }^{* *} x$)

Award SC M1 if you see

$$
\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(* * x)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(* * x)^{3}
$$

$$
=2\left\{1-\frac{1}{8} x ;-\frac{1}{64} x^{2}-\frac{5}{1536} x^{3}-\ldots\right\}
$$

$$
=2-\frac{1}{4} x ;-\frac{1}{32} x^{2}-\frac{5}{768} x^{3}-\ldots
$$

Attempt to substitute
$x=0.1$ into a candidate's binomial expansion.
awrt 1.9746810

You would award B1M1A0 for

$$
=2\left\{1+\left(\frac{1}{3}\right)\left(-\frac{3 x}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(-\frac{3 x}{8}\right)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(-3 x)^{3}+\ldots\right\}
$$

because ** is not consistent.

If you see the constant term " 2 " in a candidate's final binomial expansion, then you can award B1.

Be wary of calculator value of $(7.7)^{\frac{1}{3}}=1.974680822 \ldots$

Attempts using Maclaurin expansion should be escalated up to your team leader.

Be wary of calculator value of $(7.7)^{\frac{1}{3}}=1.974680822 \ldots$

If you see the constant term " 2 " in a candidate's final binomial expansion, then you can award B1.

