

Maths Questions By Topic:

Statistical Distributions Mark Scheme

A-Level Edexcel

\# www.expert-tuition.co.uk
\square online.expert-tuition.co.uk
《enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 2 (AS) Page 1
Paper 3 (A2) Page 9
Old Spec
Statistics 1 .. Page 25
Statistics 2
Page 50

Qu	Scheme	Mark	AO
1. (i) (ii)	$\begin{aligned} & {[D=\text { number of bags that are damp }] \quad D \sim \mathrm{~B}(35,0.08) \quad \text { NB } 0.08=\frac{2}{25}} \\ & \mathrm{P}(D=2)=0.2430497 \ldots \quad \text { awrt } \underline{\mathbf{0 . 2 4 3}} \\ & \mathrm{P}(D>3)=[1-\mathrm{P}(D, 3)=1-0.69397 \ldots]=0.30602 \ldots \end{aligned}$	M1 A1 A1 (3)	$\begin{aligned} & 3.3 \\ & 3.4 \\ & 1.1 \mathrm{~b} \end{aligned}$
		(3 ma	
	Notes		
(i) (ii) NB	M1 for selecting a correct model: sight of or use of $\mathrm{B}(35,0.08) \quad$ [Condone $\mathrm{B}(0.08,35)$] May be implied by one correct answer or sight of $\mathrm{P}\left(\begin{array}{ll}D & 3\end{array}\right)=$ awrt 0.694 (or allow 0.693) or seeing $\binom{35}{2} 0.08^{2} \times(1-0.08)^{35-2}$ Saying $\mathrm{B}(35,8 \%)$ without a correct calculation would score M0 $1^{\text {st }} \mathrm{A} 1$ for awrt 0.243 $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.306 (Condone poor use of notation e.g. $\mathrm{P}(D=3)=0.306 \ldots$ i.e. just mark ans) $\mathrm{P}(D \ldots 3)=0.539$ scores $2^{\text {nd }} \mathrm{A} 0$ but would of course score M1		

Question		Scheme	Marks	AOs
3(a)		Let $C=$ the number of successful calls. $C \sim \mathrm{~B}\left(9, \frac{1}{6}\right)$	M1	3.3
		$\mathrm{P}(C \geq 3)=1-\mathrm{P}(C \leq 2)=0.1782 \ldots \quad$ awrt 0.178	A1	1.1b
			(2)	
(b)		Let $X=$ the number of occasions when at least 3 calls are successful. $\mathrm{P}(X=1)=5 \times(" 0.1782 \ldots ..) \times(" 0.8217 \ldots . . .)^{4}$	M1	1.1 b
		$=0.4061 \ldots$ awrt 0.406	A1	1.1b
			(2)	
(4 marks)				
Notes				
3(a)	M1:	For selecting the right model		
	A1:	awrt 0.178		
(b)	M1:	For $5 \times($ "their $(a) ") \times(\text { " } 1-\text { their }(a) \text { " })^{4}$		
	A1:	awrt 0.406		

Question	Scheme	Marks	AOs
4(a)	(Discrete) uniform (distribution)	B1	1.2
		(1)	
(b)	$\mathrm{B}(28,0.2)$	B1	3.3
(i)	$\mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)[=1-0.6784 \ldots]$	M1	3.4
	awrt 0.322	A1	1.1b
(ii)	$\mathrm{P}(4 \leq X<8)=\mathrm{P}(X \leq 7)-\mathrm{P}(X \leq 3)[=0.818 \ldots-0.160 \ldots]$	M1	3.1 b
	awrt $\underline{0.658}$	A1	1.1b
		(5)	
(6 marks)			
Notes			
(a)	Continuous uniform is B0		
(b)	B1: for identifying correct model, $\mathrm{B}(28,0.2)$ allow B, bin or binomial may be implied by one correct answer or sight one correct probability i.e. awrt 0.678 , awrt 0.818 or awrt 0.160 $\mathrm{B}(0.2,28)$ is B 0 unless it is used correctly		
(i)	M1: Writing or using $1-\mathrm{P}(X \leq 6)$ or $1-\mathrm{P}(X<7)$ A1: awrt 0.322 (correct answer only scores M1A1)		
(ii)	M1: Writing or using $\mathrm{P}(X \leq 7)-\mathrm{P}(X \leq 3)$ or $\mathrm{P}(X<8)-\mathrm{P}(X<4)$ or $\mathrm{P}(X=4)+\mathrm{P}(X=5)+\mathrm{P}(X=6)+\mathrm{P}(X=7)$ Condone $\mathrm{P}(4)$ as $\mathrm{P}(X=4)$, etc. A1: awrt 0.658 (correct answer only scores M1A1)		

Qu	Scheme	Marks	AO
5 (i) (ii)	Let $N=$ the number of games Naasir wins $N \sim \mathrm{~B}(15, \quad$) $\mathrm{P}(N=2)=0.059946 \ldots$ awrt 0.0599 $\mathrm{P}(N>5)=1-\mathrm{P}\left(\begin{array}{ll}N & 5\end{array}\right)=0.38162 \ldots \quad$ awrt 0.382	M1 A1 A1 (3)	3.3 1.1 b 1.1 b
		(3 marks)	
	Notes		
	M1 for selecting a binomial model with correct n and p Award for sight of $\mathrm{B}(15, \quad)$ (o.e. e.g. in words) or implied by 1 correct answer $1^{\text {st }} \mathrm{A} 1$ for awrt 0.0599 (from a calculator). Allow 0.05995 $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.382 (from a calculator)		

Question	Scheme		Marks	AOs
7	$\mathrm{P}(5 \leq X<12)=\mathrm{P}(X \leq 11)-\mathrm{P}(X \leq 4)$		M1	1.1b
	$=0.8939-0.0495$	$=\operatorname{awrt} \underline{0.844}$	A1	1.1b
			(2)	
			(2 marks)	
Notes:				
M1: For dealing with $\mathrm{P}(5 \leq X<12)$ they need to use the cumulative prob. Function on the calc. A1: awrt 8.44 (from calculator).				

Question	Scheme		Marks	AOs
8	$\mathrm{P}(X \geqslant 16)=1-\mathrm{P}(X \leqslant 15)$		M1	1.1b
	$=1-0.949077 \ldots$	$=$ awrt $\underline{0.0509}$	A1	1.1b
			(2)	
(2 marks)				
Continued question 8				
Notes:				
M1: For dealing with $\mathrm{P}(X \geqslant 16)$ - they need to use cumulative prob. function on calc A1: awrt 0.0509 (from calculator)				

Question	Scheme		Marks	AOs
9(a)(i)	$X \sim \mathrm{~B}(15,0.48)$		M1	3.3
	$\mathrm{P}(X=3)=0.019668 \ldots$ awrt 0.0197		A1	3.4
(ii)	$[\mathrm{P}(X \geqslant 5)=1-\mathrm{P}(X \leqslant 4)]=0.92013 \ldots . \quad$ awrt 0.		A1	1.1b
			(3)	
(b)	Y is the number of hits	M is the number of misses		
	$Y \sim \mathrm{~N}(120,62.4)$	$M \sim \mathrm{~N}(130,62.4)$	B1	3.3
	$\begin{aligned} & \mathrm{P}(X>110) \approx \mathrm{P}(Y>110.5) \\ & {\left[=\mathrm{P}\left(Z>\frac{110.5-" 120 "}{\sqrt{" 62.4 "}}\right)\right]} \end{aligned}$	$\begin{aligned} & \mathrm{P}(X>110) \approx \mathrm{P}(M<139.5) \\ & {\left[=\mathrm{P}\left(Z<\frac{139.5-" 130^{\prime \prime}}{\sqrt{" 62.4 "}}\right)\right]} \end{aligned}$	M1	3.4
	$=0.88544 \ldots$		A1	1.1b
			(3)	

(6 marks)

Notes:

(a)	M1	Writing or using the binomial distribution in (i) or (ii) Allow for sight of $\mathrm{B}(15,0.48)$ or in words: binomial with $\underline{n=15}$ and $p=0.48$ may be implied in (i) or (ii) by one correct answer to 3sf or sight of $\mathrm{P}(X \leqslant 4)=0.07986 \ldots$ i.e. awrt 0.0799 . Allow for ${ }^{15} C_{3} \times 0.48^{3} \times 0.52^{12}$ as this is "correct use" Condone $\mathrm{B}(0.48,15)$	
(i)	A1	awrt 0.0197	
(ii)	A1	awrt 0.920 (Allow 0.92)	
(b)	B1	Setting up a correct Normal model. Allow sight of $\mathrm{N}(120,62.4)$ or $\mathrm{N}(130,62.4)$ or $\mathrm{N}\left(120, \frac{312}{5}\right)$ or $\mathrm{N}\left(130, \frac{312}{5}\right)$ or may be awarded if used correctly in standardisation or in words: Normal with mean $=120 / 130$ and $\underline{\text { variance }=62.4}$ or sd $=\sqrt{62.4}$ condone $\mathrm{N}(120, \sqrt{62.4})$ or $\mathrm{N}(130, \sqrt{62.4})$ or $\mathrm{sd}=62.4$ Look out for $\sigma=\frac{\sqrt{1560}}{5}$ or $\frac{2 \sqrt{390}}{5}$ or awrt 7.90 (condone 7.9) This may be implied by sight of 0.897 or $0.8854 \ldots$	
	M1	Sight of the continuity correction with a normal distribution	
		$\mathbf{1 1 0 . 5}$ or 111.5 or 109.5	$\mathbf{1 3 9 . 5}$ or 140.5 or 138.5
		NB we will also allow $\mathbf{1 2 9 . 5}$ or 130.5 or 128.5	NB we will also allow $\mathbf{1 2 0 . 5}$ or 119.5 or 121.5
		Continuity correction may be seen in standardisation NB No continuity correction(CC) gives awrt 0.897 which is M0 unless CC seen	
	A1	awrt 0.8854 or awrt 0.885 dependent on sight of >110.5 or <129.5 or <139.5 or >120.5Allow \leqslant or \geqslant instead of $<$ or $>$NB $0.885548 \ldots$ from $B(250,0.48)$ scores M0A0	

Question	Scheme	Marks	AOs
$\mathbf{1 1}$	eg $p=0.27$ is unlikely to be constant.	B1	2.4
Notes:	(1) mark)		
$\mathbf{1 1}$	B1	A correct reason referring to independence (needs context as to what is independent) eg consecutive 14 days unlikely to be independent. erobability [of rain] not beng constant. - Allow a comment that conveys the idea that the proportion of days with no rain will be different over the year.	

Qu 12	Scheme	Marks	AO
(a) (i) (ii) (b) (c)	[Sight or correct use of] $X \sim \mathrm{~B}(36,0.08)$ $\begin{gathered} \mathrm{P}(X=4)=0.167387 \ldots \quad \text { awrt } \underline{\mathbf{0 . 1 6 7}} \\ {[\mathrm{P}(X \geqslant 7)=1-\mathrm{P}(X \leqslant 6)=] 0.022233 \ldots \text { awrt } \underline{\mathbf{0 . 0 2 2 2}}} \end{gathered}$ $\mathrm{P}(\text { In dance club and dance tango })=0.4 \times 0.08=\underline{\mathbf{0 . 0 3 2}} \underline{\text { or } \frac{4}{\underline{125}}} \underline{\text { or }} \underline{\mathbf{3 . 2 \%}}$ [Let T = those who can dance the Tango. Sight or use of] $[\mathrm{P}(T<3)=\mathrm{P}(T \leqslant 2)=] \quad 0.7850815 \ldots . \quad T \sim \mathrm{~B}(50, " 0.032 ")$	M1 A1 A1 (3) B1 M1 A1	3.3 1.1b 1.1b 1.1b 3.3 1.1b rks)
	Notes		
(a) (i) (ii) (b) (c) MR	M1 for sight of $\mathrm{B}(36,0.08)$ Allow in words: binomial with $\underline{n=36}$ and $p=0.08$ may be implied by one correct answer to 2 sf or sight of $\mathrm{P}(X \leqslant 6)=0.97776$...i.e. awrt 0.98 Allow for $36 \mathrm{C} 4 \times 0.08^{4} \times 0.92^{32}$ as this is "correct use" $1^{\text {st }}$ A1 for awrt 0.167 NB An answer of just awrt 0.167 scores M1 $(\Rightarrow) 1^{\text {st }} \mathrm{A} 1$ $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.0222 B1 for 0.032 o.e. (Can allow for sight of 0.4×0.08) M1 for sight of $B(50, ~ " 0.032$ ") ft their answer to (c) provided it is a probability $\neq 0.08$ may be implied by correct answer or sight of $[\mathrm{P}(T \leqslant 3)]=0.924348$. ..i.e. awrt 0.924 or $\mathrm{P}(T \leqslant 2)$ as part of $1-\mathrm{P}(T \leqslant 2)$ calc. A1 for awrt 0.785 Allow MR of 50 (e.g. 30) provided clearly attempting $\mathrm{P}(T \leqslant 2)$ and score M1A0		

\begin{tabular}{|c|c|c|c|}
\hline Qu 14 \& Scheme \& Marks \& AO

\hline (a) \& $\{$ Let $X=$ time spent, $\mathrm{P}(X>15)=\} \quad 0.105649 \ldots \quad$ awrt $\underline{\mathbf{0 . 1 0 6}}$ \& \& 1.1b

\hline (b)(i) \& $[\mathrm{P}(\mathrm{T}<2)=] 0.1956 \ldots$ awrt $\underline{\mathbf{0 . 1 9 6}}$ \& \& 1.1b

\hline (ii) \& Require $\frac{\mathrm{P}(0<T<2)}{\mathrm{P}(T>0)}=\frac{0.119119 \ldots}{0.923436 \ldots}$; $=0.1289955 \ldots$ awrt $\underline{\mathbf{0 . 1 2 9}}$ \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1;A1 }
\end{aligned}
$$ \& $$
\begin{aligned}
& 3.4 \\
& 1.1 \mathrm{bx} 2
\end{aligned}
$$

\hline (iii) \& The current model suggests non-negligible probability of T values <0 which is impossible \& $B 1{ }^{(3)}$ \& 3.5b

\hline \multirow[t]{2}{*}{(c)} \& \multirow[t]{2}{*}{Require t such that $\mathrm{P}(T>t \mid T>2)=0.5$ or $\mathrm{P}(T<t \mid T>2)=0.5$ e.g. $\frac{\mathrm{P}(T>t)}{\mathrm{P}(T>2)}=0.5$; so $\mathrm{P}(T>t)=0.5 \times[1-(\mathrm{c})(\mathrm{i})]$ or $\mathrm{P}(T>t)=0.5 \times 0.8043$.. [i.e. $\mathrm{P}(T>t)=0.40 \ldots$ implies] $\frac{t-5}{3.5}=0.2533$ or $\mathrm{P}(T<t)=$ " 0.5978. ." $t=5.886 \ldots$ or from calculator $5.867 \ldots$ so awrt $\underline{\mathbf{5 . 9}}$} \& $$

$$ \& 3.1b
1.1 b
3.4

1.1 b
1.1 b

\hline \& \& (11 n \&

\hline \& \multicolumn{3}{|l|}{Notes}

\hline (a) \& \multicolumn{3}{|l|}{B1 for awrt 0.106 (from calculator) [Allow 10.6\%]}

\hline (b)(i) \& \multicolumn{3}{|l|}{B1 for awrt 0.196 (from calculator) [Allow 19.6\%]}

\hline (ii) \& \multicolumn{3}{|l|}{M1 for a correct probability ratio expression (may be implied by $1^{\text {st }}$ A1 scored) $1^{\text {st }}$ A1 for a correct ratio of probabilities (both correct or truncated to 2 dp) $2^{\text {nd }}$ A1 for awrt 0.129}

\hline (iii) \& \multicolumn{3}{|l|}{B1 for a suitable explanation of why model is not suitable based on negative T values Must say that a significant proportion of values <0 (o.e.) e.g. $\mathrm{P}(T>0)$ should be closer to 1 or Difference between $\mathrm{P}(T<2 \mid T>0)$ and $\mathrm{P}(T<2)$ is too big (o.e.)}

\hline (c) \& \multicolumn{3}{|l|}{| $1^{\text {st }}$ M1 for a correct conditional probability statement to start the problem or $0.5 \times \mathrm{P}(T>2)$ |
| :--- |
| $2^{\text {nd }}$ M1 for correct ratio of probability expressions [Must have $\mathrm{P}(T>t)$ or $\mathrm{P}(2<T<t)$] |
| $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct equation for $\mathrm{P}(T>t)$ (o.e.) ft their answer to part (c)[May be in a diagram] |
| $3^{\text {rd }}$ M1 for attempt to find t (standardising and sight of 0.2533) or prepare to use calc (ft) |
| Arriving at $\mathrm{P}(T<$ median $)=1-0.5 \times$ "their 0.8043 " will score $1^{\text {st }} 4$ marks |
| $2^{\text {nd }}$ A1 for awrt 5.9 |
| Sight of awrt 5.9 and at least one M mark scores $5 / 5$ [Answer only send to review] |}

\hline
\end{tabular}

Question		Scheme	Marks	AOs
15(a)	$z=(\pm) 1.28(16)$	[$\left.P_{90}=\right] 29.251 \ldots$ or $\left[P_{10}=\right] 15.948 \ldots$	B1	3.1 b
	$2 \times 1.2816 \times 5.19$	'29.251...' - '15.948...'	M1	1.1b
		$=$ awrt $\underline{13.3}$	A1	1.1b
			(3)	
(b)	Daily mean wind Rainfall since it is	fort conversion since it is qualitative etric/lots of days with 0 rainfall	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \hline \end{aligned}$	$\begin{array}{r} 2.4 \\ 2.4 \\ \hline \end{array}$
			(2)	
(5 marks)				
Notes				
(a)	B1: \quad Identifying z-value for 10th or 90th percentile (allow awrt (\pm) 1.28) or for identifying $\left[P_{90}=\right] 29.251 \ldots$ (awrt 29.3) or $\left[P_{10}=\right] 15.948 \ldots$ (awrt 15.9) (This may be implied by a correct answer awrt 13.3) M1: for $2 \times z \times 5.19$ where $1<z<2$ or for their $P_{90}-P_{10}$ where $25<P_{90}<35$ and $10<P_{10}<20$ A1: awrt 13.3			
(b)	B1: for one variable identified and a correct supporting reason B1: for two variables identified and a correct supporting reason for each Allow any two of the following: - Wind speed/Beaufort since the data is non-numeric (o.e.). They need not mention Beaufort provided there is a description of the data as non-numeric (Do not allow wind direction/wind gust) - Rainfall as not symmetric/is skewed/is not bell shaped/lots of $0 \mathrm{~s} / \mathrm{many}$ days with no rain/mean \neq mode or median - Date since each data value appears once/it is uniformly distributed - Daily mean pressure since it is not symmetric/is skewed/not bell shaped - Daily mean wind speed since it is not symmetric/is skewed/not bell shaped Do not allow 'not continuous' or 'discrete' as a supporting reason. Ignore extraneous non-contradicting statements			

Question	Scheme	Marks	AOs
16 (a)(i)	$\mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)$ or $\mathrm{P}([X=] 6)+\mathrm{P}([X=] 7)+\mathrm{P}([X=] 8)$	M1	3.4
	$=1-0.296722 \ldots$ awrt $\mathbf{0 . 7 0 3}$	A1	1.1b
		(2)	
(a)(ii)	$184 \times \mathrm{P}(X=7) \quad[=184 \times 0.2811 \ldots]$	M1	1.1b
	$=51.7385 \ldots$ awrt $5 \underline{\text { 51.7 }}$	A1	1.1b
		(2)	
(b)	Part (a) and part (b)(i) are similar and the expected number of $7 \mathrm{~s}(51.7$ or 0.281$)$ matches with the number of 7 s found in the data set (52 or 0.283) so Magali's model is supported.	B1ft	3.5a
		(1)	
(c)	$\frac{23}{28}=0.82142 \ldots \quad$ awrt $\underline{\mathbf{0 . 8 2 1}}$	B1	1.1b
		(1)	
(d)	Any one of... - Part (d)/‘0.821' differs from part (a)/(b)(i)/(0.7...) - there is a greater/different probability of high cloud cover/more likely to have high cloud cover if the previous day had high cloud cover - independence(0.e.) does not hold	B1	2.4
	...therefore Magali's (binomial) model may not be suitable.	dB1	3.5a
		(2)	
(8 marks)			
Notes			
	Allow fractions, decimals or percentages throughout this question.		
(a)(i)	M1: for writing or using $1-\mathrm{P}(X \leq 5)$ or $\mathrm{P}(X=6)+\mathrm{P}(X=7)$ A1: awrt 0.703 (correct answer scores 2 out of 2)	$)+\mathrm{P}(X=$	
(a)(ii)	M1: for $184 \times \mathrm{P}(X=7)$ o.e. e.g., $184 \times[\mathrm{P}(X \leq 7)-\mathrm{P}(X \leq 6)]$ A1: awrt 51.7		
(b)	B1ft: comparing ' 0.717 ' with ' 0.703 ' and ' 51.7 or ' 0.281 ' w and concluding that Magali's model is supported (must be co prob. and days with days). Allow not supported or mixed conc consistent with their f.t. answers in (a) and (b)	th 52 or mparing usions if	83 b. with
(d)	B1: Any bullet point dB1: (dep on previous B1) for Magali's model may not be suitable (o.e.) Condone not accurate for not suitable SC: part (d) is similar to part (a)/(b)(i) and a compatible conclusion (i.e. Magali's model is supported) to score B1B1.		

Question	Scheme	Marks	AOs
17(a)	$\frac{24.63-25}{\prime} \sigma^{\prime}{ }^{\text {a }}=-1.0364$	M1	3.1b
	[$\sigma=$]0.357 (must come from compatible signs)	A1	1.1b
	$\mathrm{P}(D>k)=0.4$ or $\mathrm{P}(D<k)=0.6$	B1	1.1b
	$\frac{k-25}{{ }^{\prime} 0.357{ }^{\prime}}=0.2533$	M1	3.4
	$k=$ awrt $\underline{25.09}$	A1	1.1b
		(5)	
(b)	$[Y \sim \mathrm{~B}(200,0.45) \rightarrow] W \sim \mathrm{~N}(90,49.5)$	B1	3.3
	$\mathrm{P}(Y<100) \approx \mathrm{P}(W<99.5)\left[=\mathrm{P}\left(Z<\frac{99.5-90}{\sqrt{49.5}}\right)\right]$	M1	3.4
	$=0.9115 \ldots$ awrt $\underline{\mathbf{0 . 9 1 2}}$	A1	1.1 b
		(3)	
(8 marks)			
Notes			
(a)	M1: for standardising 24.63, 25 and ' σ ' (ignore label) and setting $=$ to z where $1<\|z\|<2$ A1: $[\sigma=]$ awrt 0.36. Do not award this mark if signs are not compatible. B1: for either correct probability statement (may be implied by correct answer) this mark may be scored for a correct region shown on a diagram M1: for a correct expression with $z=$ awrt 0.253 (may be implied by correct answer) A1: awrt 25.09 (Correct answer with no incorrect working scores 5 out of 5)		
(b)	B1: setting up normal distribution approximation of binomial $\mathrm{N}(90,49.5)$ (may be implied by a correct answer) Look out for e.g. $\sigma=\frac{3 \sqrt{22}}{2}$ or $\sigma=$ awrt 7.04 M1: attempting a probability using a continuity correction i.e. $\mathrm{P}(W<100.5), \mathrm{P}(W<99.5)$ or $\mathrm{P}(W<98.5)$ condone \leq (The continuity correction may be seen in a standardisation). A1: awrt 0.912 [Note: $0.911299 \ldots$ from binomial scores 0 out of 3]		

Qu 18	Scheme					Marks	AO
(a)	The probability of a dart hitting the target is constant (from child to child and for each throw by each child) The throws of each of the darts are independent (o.e.)					B1	1.2 1.2
(b)	$[\mathrm{P}(H \geqslant 4)=1-\mathrm{P}(H \leqslant 3)=1-0.9872=0.012795 . .=] \quad$ awrt $\underline{\mathbf{0 . 0 1 2 8}}$						1.1 b
(c)	$\mathrm{P}(F=5)=0.9^{4} \times 0.1,=0.0656$					M1, ${ }^{(1)}$	3.4
							1.1b
(d)	n	1	2		10	M1	3.1b
	$\mathrm{P}(F=n)$	0.01	$0.01+\alpha$		$0.01+9 \alpha$		
(e)(f)	Sum of probs $=1 \quad \Rightarrow \frac{10}{2}[2 \times 0.01+9 \alpha]=1$					M1A1	3.1a 1.1 b
	[i.e. $5(0.02+9 \alpha)=1$ or $0.1+45 \alpha=1]$				$\alpha=\underline{0.02}$	A1	1.1b
						(4)	
	$\mathrm{P}(F=5 \mid$ Thomas' model $)=\underline{\mathbf{0 . 0 9}}$					B1ft (1)	3.4
	Peta's model assumes the probability of hitting target is constant (o.e.) and Thomas' model assumes this probability increases with each attempt(o.e.)					B1	3.5a
						(1)	
						(11 mark	
	Notes						
(a)	$1^{\text {st }} \mathrm{B} 1$ for stating that the probability (or possibility or chance) is constant (or fixed or same) $2^{\text {nd }}$ B1 for stating that throws are independent ["trials" are independent is B0]						
(b)	B1 for awrt 0.0128 (found on calculator)						
(c)	M1 for a probability expression of the form $(1-p)^{4} \times p$ where $0<p<1$ A1 for awrt 0.0656						
SC		or ans	nly of 0.06				
(d)	$1^{\text {st }} \mathrm{M} 1$ for setting up the distribution of F with at least 3 correct values of n and $\mathrm{P}(F=n)$ in terms of α. (Can be implied by $2^{\text {nd }} \mathrm{M} 1$ or $1^{\text {st }} \mathrm{A} 1$) $2^{\text {nd }} \mathrm{M} 1$ for use of sum of probs $=1$ and clear summation or use of arithmetic series formula (allow 1 error or missing term). (Can be implied by $1^{\text {st }} \mathrm{A} 1$) $1^{\text {st }} \mathrm{A} 1$ for a correct equation for α $2^{\text {nd }} \mathrm{A} 1$ for $\alpha=0.02$ (must be exact and come from correct working)						
(e)	B1ft for value resulting from $0.01+4 \times$ "their α " (provided α and the answer are probs) Beware If their answer is the same as their (c) (or a rounded version of their (c)) score B0						
(f) ALT	B1 for a suitable comment about the probability of hitting the target Allow idea that Peta's model suggests the dart may never hit the target but Thomas' says that it will hit at least once (in the first 10 throws).						

Qu 19	Scheme	Marks	AO
(a)	$\mathrm{P}(L>16)=0.69146 \ldots$ awrt 0.691	B1 (1)	1.1b
(b)	$\mathrm{P}(L>20 \mid L>16)=\frac{\mathrm{P}(L>20)}{\mathrm{P}(L>16)}$	M1	3.1b
	$=\frac{0.308537 \ldots}{(\mathrm{a})}$ or $\frac{1-(\mathrm{a})}{\text { (a) }},=0.44621 \ldots$		1.1 b 1.1 b
	For calc to work require (0.44621...) ${ }^{4}=0.03964 \ldots \quad$ awrt $\underline{0.0396}$		2.1 1.16
(c)	Require: $[\mathrm{P}(L>4)]^{2} \times[\mathrm{P}(L>20 \mid L>16)]^{2}$	$\text { M1 }{ }^{(5)}$	1.1a
		A1ft	1.1b
	$=0.19901 \ldots \quad$ awrt $\underline{0.199}$ (*)	A1cso*	1.1 b
		(9 marks)	
	Notes		
(a)			
(b)			
(c)			

Question	Scheme	Marks	AOs
20(a)	[$A=$ no. of bulbs that grow into plants with blue flowers,] $A \sim \mathrm{~B}(40,0.36)$	M1	3.3
	$p=\mathrm{P}(A \geq 21)=0.0240$	A1	1.1b
	$C=$ no. of bags with more than 20 bulbs that grow into blue flowers, $C \sim \mathrm{~B}(5, p)$	M1	3.3
	So $\mathrm{P}(C \leq 1)=0.9945 \ldots \quad$ awrt 0.995	A1	1.1b
		(4)	
(b)	[$T \sim$ number of bulbs that grow into blue flowers] $T \sim \mathrm{~B}(n, 0.36)$		
	T can be approximated by $\mathrm{N}(0.36 n, 0.2304 n)$	B1	3.4
	$\mathrm{P}\left(Z<\frac{244.5-0.36 n}{\sqrt{0.2304 n}}\right)=0.9479$	M1	1.1b
	$\frac{244.5-0.36 n}{\sqrt{0.2304 n}}=1.625 \text { or } \frac{244.5-0.36 x^{2}}{0.48 x}=1.625$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.4 \\ & 1.1 \mathrm{~b} \end{aligned}$
	$0.36 n+0.78 \sqrt{n}-244.5=0$	M1	1.1b
	$n=625$	A1cso	1.1b
		(6)	
(10 marks)			
Notes:			
(a) M1: for selecting an appropriate model for A A1: for a correct value of the parameter p for C M1: for selecting an appropriate model for C A1: for awrt 0.995			
(b) B1: for correct normal distribution M1: for correct use of continuity correction equal to a z value where $\|z\|>1$ M1: for standardisation with their μ and σ A1: for a correct equation M1: using a correct method to solve their 3-term quadratic A1: 625 on its own cso			

Question	Scheme	Marks	AOs
21(a)	$\mathrm{P}\left(L_{X}>160\right)=\mathrm{P}\left(Z>\frac{160-150}{25}\right)$		
	$=\mathrm{P}(Z>0.4)$		
	$=1-0.6554$		
	$=$ awrt $0.345 \quad 0.34457 \ldots .$.	B1	1.1b
	Expected number $=12 \times 0.345 "$	M1	1.1b
	$=4.13$ (allow 4.14)	A1	1.1 b
		(3)	
(b)	$\mathrm{P}\left(L_{Y}<180\right)=0.841621 \ldots \ldots$	B1	3.4
	$\frac{180-160}{\sigma}=0.8416$	M1	1.1b
	$\sigma=$ awrt 23.8	A1	1.1 b
		(3)	
(c)	The standard deviations for two companies are close but the mean for company Y is higher	M1	2.4
	therefore choose company Y	A1	2.2b
		(2)	
(8 marks)			
Notes:			
(a) B1: awrt 0.345 M1: for multiplying their probability by 12 A1: 4.13 (allow 4.14)			
(b) B1: for use of the correct model to find the correct value of z awrt 0.842 M1: for standardising = to a Z value $0.5<Z<1$ A1: awrt 23.8			
(c) M1: for a correct reason following their part(b) A1: for making an inference that follows their part(b)			

Question	Scheme	Marks	AOs
22(a)	[$H=$ no. of hours] $\mathrm{P}(H>10.3)$ or $\mathrm{P}(Z>1)=[0.15865 \ldots]$	M1	3.4
	Predict $31 \times 0.15865 \ldots=4.9$ or 5 days	A1	1.1b
		(2)	
(b)	(5 or) 4.9 days < (7 or) 6.9 days so model may not be suitable	B1	3.5a
		(1)	
(3 marks)			

Notes:

(a)

M1: for a correct probability attempted
A1: for a correct prediction
(b)

B1: for a suitable comparison and a compatible conclusion

Question	Scheme	Marks	AOs
Q23(a)			
	P ($L>50.98$) $=0.025$	B1cao	3.4
	$\therefore \frac{50.98-\mu}{0.5}=1.96$	M1	1.1b
	$\therefore \mu=50$	A1cao	1.1b
	$\mathrm{P}(49<L<50.75)$	M1	3.4
	$=0.9104 \ldots \quad$ awrt $\underline{\underline{0.910}}$	A1ft	1.1b
		(5)	
(b)	$S=$ number of strips that cannot be used so $S \sim \mathrm{~B}(10,0.090)$	M1	3.3
	$=\mathrm{P}(S \leqslant 3)=0.991166 \ldots$ awrt 0.991	A1	1.1b
		(2)	
(7 marks)			

Question 23 continued
 Notes:

(a)
$\mathbf{1}^{\text {st }} \mathbf{M 1}$: for standardizing with μ and 0.5 and setting equal to a z value $(|z|>1)$
$2^{\text {nd }} \mathbf{M 1}$: for attempting the correct probability for strips that can be used
$\mathbf{2}^{\text {nd }} \mathbf{A 1 f t}$: awrt 0.910 (allow ft of their μ)
(b)

M1: for identifying a suitable binomial distribution
A1: awrt 0.991 (from calculator)

Question	Scheme	Marks	AOs
24 (a)	The seeds would be destroyed in the process so they would have none to sell	B1	2.4
		(1)	
(b)	[$S=$ no. of seeds out of 24 that germinate, $S \sim \mathrm{~B}(24,0.55)$]		
	$T=$ no. of trays with at least 15 germinating. $T \sim \mathrm{~B}(10, p)$	M1	3.3
	$p=\mathrm{P}(S \geqslant 15)=0.299126 \ldots$	A1	1.1 b
	So $\mathrm{P}(T \geqslant 5)=0.1487 \ldots \quad$ awrt $\underline{\mathbf{0 . 1 4 9}}$	A1	1.1b
		(3)	
(c)	n is large and p close to 0.5	B1	1.2
		(1)	
(d)	$X \sim \mathrm{~N}(132,59.4)$	B1	3.4
	$\mathrm{P}(X \geqslant 149.5)=\mathrm{P}\left(Z \geqslant \frac{149.5-132}{\sqrt{59.4}}\right)$	M1	1.1 b
	$=0.01158 \ldots \quad$ awrt $\underline{\mathbf{0 . 0 1 1 6}}$	A1cso	1.1b
		(3)	
(e)	e.g The probability is very small therefore there is evidence that the company's claim is incorrect.	B1	2.2b
		(1)	
(9 marks)			
Notes:			
(a) B1: cao			
(b) M1: for selection of an appropriate model for T $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct value of the parameter p (accept 0.3 or better) $\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for awrt 0.149			
(c) B1: both correct conditions			
(d) B1: for correct normal distribution M1: for correct use of continuity correction A1: cso			
(e) B1: correct statement			

Question Number	Scheme ${ }^{\text {a }}$ Marks
25. (a)	
ALT	$\mathrm{P}(Y>\mu-\sigma)=\mathrm{P}(\mathrm{Z}>-1)$ $\mathrm{P}(Y>17)=0.4 \Rightarrow \mathrm{Z}=\left[\frac{17-\mu}{\sigma}\right]=0.25(33471 \ldots)$ so need $\mathrm{P}(-1<\mathrm{Z}<0.25)$ M 1 dM 1 Sight of $\mathrm{P}(-1<\mathrm{Z}<0.253 \ldots)$ $=\underline{\mathbf{0 . 4 4 1}(3)}$ $1^{\text {st }} \mathrm{A} 1$ $2^{\text {nd }} \mathrm{A} 1$ [Total 5]
	Notes
(a) (b) ALT	B1 for 0.1 as clearly their final answer or clear statement " $\mathrm{P}(\mu<Y<17)=0.1$ " Ignore poor or incorrect notation if answers are correct $1^{\text {st }} \mathrm{M} 1$ for an attempt to standardise $\mu-\sigma$ allow for $\pm \frac{(\mu-\sigma)-\mu}{\sigma}$ can be un-simplified $1^{\text {st }} \mathrm{A} 1$ for 0.841 or better (calc $0.84134473 \ldots$) or $1-0.8413 \ldots=0.1587$ (accept 0.159) Sight of 0.841 (3) or 0.1587 or 0.159 (or better) scores M1 A1 May be statement e.g. $\mathrm{P}(Y>\mu-\sigma)=0.841(3)$ or on clearly labelled diagram. $2^{\text {nd }}$ dM1 (dep on $1^{\text {st }} \mathrm{M} 1$) for a correct use of their 0.8413 and the given 0.4 or $0.341(3)+$ their (a) or 0.6 - their 0.1587 $2^{\text {nd }} A 1$ for 0.441 or better (correct answer only 4/4) Standardise $\mu-\sigma$ (and may get $z=-1$) scores $1^{\text {st }} \mathrm{M} 1$ as in scheme Use inv' normal to get $\frac{17-\mu}{\sigma}=0.25(33471 . .$.$) and write/ attempt \mathrm{P}(-1<\mathrm{Z}<0.25 ..) 2^{\text {nd }} \mathrm{M} 1$ Write or attempt $\mathrm{P}(-1<Z<0.253 \ldots)$ also scores $1^{\text {st }} \mathrm{A} 1$ (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a correct probability statement that would lead to the final answer.

Question Number	Scheme	Marks
26.	$\left[W \sim \mathrm{~N}\left(140,40^{2}\right)\right.$	
(a)	$\mathrm{P}(W<92)=\mathrm{P}\left(Z<\frac{92-140}{40}\right)=[\mathrm{P}(Z<-1.2)]$	M1
(b)	$=1-0.8849$ 构 awrt $\underline{\mathbf{1 1 . 5}}(\%)$ or $\underline{\mathbf{0 . 1 1 5}}$	$\begin{equation*} \mathrm{dM} 1, \mathrm{~A} 1 \tag{3} \end{equation*}$
	$\left[\mathrm{P}\left(W>q_{3}\right)=\mathrm{P}(W>92) \times \mathrm{P}\left(W>q_{3} \mid W>92\right)=\right] \quad(1-(\mathrm{a})) \times 0.25=0.8849 \times 0.25$	
	$=0.221225=$ awrt $\underline{\mathbf{0 . 2 2 1}}$	
(c)	$\mathrm{P}\left(W<q_{1} \mid W>92\right)=0.25 \quad \text { or } \quad \mathrm{P}\left(W>q_{1} \mid W>92\right)=0.75$	M1
	$\mathrm{P}\left(92<W<q_{1}\right)=0.25 \times 0.8849=" 0.221 . .0$ or $\mathrm{P}\left(W>q_{1}\right)=0.75 \times 0.8849=0.663675$	M1
	$\mathrm{P}\left(W<q_{1}\right)=0.221225+0.115=$ awrt $\mathbf{0 . 3 3 6}$ or $\mathrm{P}\left(W>q_{1}\right)=0.663675=\operatorname{awrt} \mathbf{0 . 6 6 4}$	A1
	$\frac{q_{1}-140}{40}=-0.42 \quad$ (calculator gives $\left.-0.422513 \sim-0.423404\right)$	M1
	so $q_{1}=123.2=$ awrt $\underline{123}$ (g)	A1
(d)	0.221 : $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{2} \times 3$!	M1M1
	$=\frac{3}{16} \quad \text { or } 0.1875$	A1
	$92 \begin{array}{ccccc} Q_{1} & 140 & Q_{3} & \\ 123 \end{array} \quad 171 \quad W$	[Tot 13]
	Notes	
(a)	Condone poor use of notation etc e.g. " $\mathbf{P}>q_{1}$ " for $\mathbf{P}\left(W>q_{1}\right)$ etc	
	```1 st M1 for standardising attempt with }92\mathrm{ or 188, 140 and 40 (o.e.) Accept }\pm\mathrm{ ignore 2 nd dM1 dependent on 1 }\mp@subsup{}{}{\mathrm{ st }}\textrm{M}1\mathrm{ , for attempting 1-p where 0.5 < p<1 A1 for awrt 11.5 (%) or 0.115```	nequality
(b)	M1 for $(1-$ their $(\mathrm{a})) \times 0.25$ or $1-[(1-(a)) \times 0.75+(a)]=1-[0.8849 \times 0.75+0.1151]$	151]
(c)	$1^{\text {st }} \mathrm{M} 1$ for a correct conditional prob. statement with $q_{1}, 92$ and 0.25 or 0.75	
	$1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}\left(W<q_{1}\right)=$ awrt 0.336 or $\mathrm{P}\left(W>q_{1}\right)=$ awrt 0.664 NB May be standardised	
	$3^{\text {rd }}$ M1 for standardising with $q_{1}, 140$ and 40 and setting equal to $z$ where $0.40<\|z\|<0.45$   $2^{\text {nd }}$ A1 for awrt 123 (condone minor slips in working if correct answer obtained)	
(d)	$\begin{array}{ll} 1^{\text {st }} \text { M1 } & \text { for } 0.25 \times 0.25 \times 0.5 \text { (o.e.) e.g. } \frac{1}{32} \text { may be seen as decimals or fractions } \\ 2^{\text {nd }} \text { M1 } & \text { for } \times 3 \text { ! or } \times 6 \text { or adding all } 6 \text { cases. Must be multiplying probabilities. } \\ \text { A1 } & \text { for } \frac{3}{16} \text { or any exact equivalent } \end{array}$	


Question   Number	Scheme	Marks
27(a)	Symmetric ( or little skew) so normal (or Rika's suggestion) may be suitable	B1ft   (1)
(b)	$\frac{c-50}{10}=0.8416 \quad[\text { N.B. use of }(1-0.8416) \text { is B0] }$	M1, B1
	$c=58.416 \quad=(\mathfrak{f}) 58.42 \quad$ awrt $\underline{\mathbf{5 8 . 4}}$	$\mathrm{A}^{\mathrm{A}}{ }^{[4]}$
	Notes	
(a) (b)	B1ft Suggest normal is or isn't suitable with suitable reason based on (e) or mean and med   M1 for stand'ing using " $c$ ", 50 and 10 and setting equal to $\pm z$ value where $0.84 \leq z \leq 0.85$   B1 for using $z= \pm 0.8416$ or better (calc gives $0.8416212 \ldots$ ) in standard' attempt e.g. $\sqrt{10}$ for 10   A1 for awrt 58.4 (accept 3sf here) (Ans only of awrt 58.4 is M1B0A1 but 58.416 or better is $3 / 3$ )	


Question   Number	Scheme	Marks
28. (a)	$\begin{aligned} & {[\mathrm{P}(T>20)=] \mathrm{P}\left(Z>\frac{20-18}{5}\right) } \\ & \mathrm{P}(Z>0.4)=1-0.6554 \\ &=\underline{\mathbf{0 . 3 4 4 6}} \underline{\text { or awrt }} \underline{\mathbf{0 . 3 4 5}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	Require $\mathrm{P}(T>20 \mid T>15) \quad$ or $\quad \frac{\mathrm{P}(T>20)}{\mathrm{P}(T>15)}$	M1
	$\begin{aligned} & \frac{"(\mathrm{a}) "}{\mathrm{P}\left(Z>\frac{15-18}{5}\right)}=\frac{"(\mathrm{a}) "}{\mathrm{P}(Z>-0.6)},=\frac{" 0.3446 "}{0.7257} \text { or } \frac{" 0.345 "}{0.726} \\ &=0.47485 \end{aligned}$	$\begin{aligned} & \text { M1, A1ft } \\ & \text { A1 } \end{aligned}$
(c)	$\begin{aligned} \mathrm{P}(T>d \mid T>15)=0.5 \quad \text { or } \mathrm{P}(T<d \mid T>15) & =0.5 \\ \mathrm{P}(T>d) \text { or } \mathrm{P}(15<T<d) & =0.5 \times " 0.7257 "=[0.36285] \\ \mathrm{P}(T<d) & =" 0.63715 " \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { A1ft } \\ \text { M1 } \end{array}$ (4)
	So $\frac{d-18}{5}=0.35 \quad$ (calculator gives $0.35085 \ldots$ )	A1
	$\begin{array}{r} \frac{d=19.754 \ldots=\text { awrt } \mathbf{1 9 . 8}}{} \\ \text { (Accept } 19 \text { mins } 45(\mathrm{secs}) \text { or 19:45 but } 19.45 \text { is A0) } \end{array}$	A1cso (5) [12]
	Notes	
(a)	$1^{\text {st }} \mathrm{M} 1$ for standardising with 20, 18 and 5. Accept $\pm$   $2^{\text {nd }}$ M1 for attempting $1-p$ [where $0.5<p<0.7$ ]. Beware $1-0.4$ (or their $z$ value) is M0 A1 for awrt 0.345 (Correct ans only $3 / 3$ )	
(b)	$2^{\text {nd }}$ M1 for using their (a) on num. and attempting to standardise $\mathrm{P}(T>15)($ no $\pm$ ) on denom. Num. $>$ Deno. is M0	
	Allow one digit transcription errors from (a) e.g. 0.3464 or 0.3466 etc for $2^{\text {nd }}$ $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for their 0.3446 on numerator and denominator of 0.7257 (or better: provided Num < Denom. Allow 0.726 on the denominator   Sight of $\frac{" 0.3446 "}{0.7257 \text { or } 0.726}$ will score M1M1A1ft   $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.475	$\begin{aligned} & 1 \text { and } 1^{\text {st }} \mathrm{A} 1 \mathrm{ft} \\ & 7257469 \ldots .) \end{aligned}$
(c)	$1^{\text {st }}$ M1 for a correct conditional probability statement that includes the 0.5	
	$1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for $\mathrm{P}(T>d)$ or $\mathrm{P}(15<T<d)=0.5 \times$ their $\mathrm{P}(T>15)$ [provided $\mathrm{P}(T>$   Follow through (3sf) their $\mathrm{P}(T>15)=0.7257$ or better from part (b).   Sight of $0.5 \times$ their $0.7257=" 0.36285$ " or better scores $1^{\text {st }}$ M1 and $1^{\text {st }}$ A1ft $2^{\text {nd }}$ M1 (dep on $1^{\text {st }} \mathrm{M} 1$ ) for $\mathrm{P}(T<d)=1-" 0.36285 "$ or " $0.36285 "+1-" 0.7$   $=[0.637$   Sight of their 0.63715 or better (calc: $0.637126 \ldots$ ) scores first 3 marks $2^{\text {nd }} \mathrm{A} 1 \quad$ for $\frac{d-18}{5}=0.35$ (or better) (Calc could give $0.350788 \ldots$ )   $3^{\text {rd }}$ Alcso for $(d=)$ awrt 19.8 (accept 19.7 not awrt 19.7) Must come from	$\begin{aligned} & \text { 5) }>0.5] \\ & \text { Allow } 0.726 \text { ) } \\ & \text { Allow } 0.363 \text { ) } \\ & 57 " \\ & 1 \sim 0.6372 \text { ] } \\ & \text { low } 0.637 \text { ) } \end{aligned}$   orrect work.
Beware!	$0.5 \times 0.7257=0.36285$ and using this (instead of 0.35 ) as $z$ value leads to 19.8 but is A0A0	


Question Number	Scheme	Marks
29(a)	$\begin{aligned} & {\left[\mathrm{P}(W<3)=\mathrm{P}\left(Z<\frac{-0.43}{0.65}\right)\right]=\mathrm{P} }(Z<-0.6615 . .) \\ &=1-0.7454 \text { (tables) } \\ &=0.2546 \text { awrt } \mathbf{0 . 2 5 4 \sim 0 . 2 5 5} \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$
(b)	(b) and (c)(i) mean $\neq$ med or skew or mean $\simeq$ median or no skew and comment (d) $=0.254$ or 0.255 compare data $=0.18$ (or 12.7 compared with 9 )   0.18 different from 0.25 so normal not good or 0.18 similar to 0.25 so normal is OK	$\begin{array}{\|l\|} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \text { dB1 } \end{array}$
(c)(i)   (ii)	No change in mean (since weight is the same)	
	s.d. will decrease (Extra value is at "centre" so data more concentrated) Both statements correct and correct reasons for each	B1   dB1   (3)   [9 marks]
	Notes	
(a)	$\begin{aligned} & 1^{\text {st }} \mathrm{M} 1 \text { for an attempt to standardise with } 3,3.43 \text { and } 0.65 \text {. Allow } \pm \text { and also use of their sd } \\ & 2^{\text {nd }} \mathrm{M} 1 \text { for } 1-p \text { where } 0.74<p<0.75 \text { NB calculator gives } 0.7458665 \ldots \\ & \text { A1 for awrt } 0.254 \text { or } 0.255 \end{aligned}$	
(b)	$1^{\text {st }} \mathrm{B} 1$ for a statement about mean/median and compatible comment about normal $2^{\text {nd }} \mathrm{B} 1$ for statement comparing their (d) with data (sight of 0.18 or 12.7 and 9 required) $3^{\text {rd }} \mathrm{dB} 1$ dep on $2^{\text {nd }} \mathrm{B} 1$ for conclusion about normal compatible with $\underline{2^{\text {nd }}}$ statement	
(c)(i)   (ii)	$1^{\text {st }} \mathrm{B} 1$ for no change in mean \{send a correct argument for decrease to review\}   $2^{\text {nd }} \mathrm{B} 1$ for s.d. decreases   $3^{\text {rd }} \mathrm{dB} 1$ dep on $1^{\text {st }}$ and $2^{\text {nd }}$ Bs for a correct reason for both mean and sd e.g. "new mean the same so within 1 s.d. of old mean"	


Question Number	Scheme Marks
30.(a)	
	Notes
(a)   (b)      (b)	$1^{\text {st }} \mathrm{M} 1$ for standardising with 300, 240 and 40 . May be implied by use of 1.5 Allow $\pm$   $2^{\text {nd }} \mathrm{M} 1$ for $1-\mathrm{P}(Z<1.5$ ") i.e. a correct method for finding $\mathrm{P}(Z>$ " 1.5 " $)$   e.g. $1-p$ where $0.5<p<0.99$   A1 for awrt 0.0668 (Answer only 3/3)   M1 for an attempt to standardise with 240, 40 and $n$ and set $= \pm z(0.8<\|z\|<0.9)$   B1 for $z= \pm 0.8416$ (or better) used as a $z$ value. Do not allow for $1 \quad 0.8416$   Calc gives $0.8416212 \ldots$ [May be implied by awrt 206.34, give B1 as well as A1 if seen]   A1 for awrt 206 (can be scored for using a $z$ value of 0.84 or even 0.85 )   Must follow from correct working but a range of possible $z$ values are OK   If answer is awrt 206 score M1B0A1 (unless of course $z=0.8416$ seen) but awrt 206.34 scores $3 / 3$   M1 for the correct ratio expression (Not $\mathrm{P}([W<30-\mu] \cap[W<\mu])$ on numerator)   Condone use of $Z$ instead of $W$ only if they later get a correct numerical ratio otherwise M0 However they may write $\mathrm{P}\left(Z<\frac{-30}{\sigma}\right)$ etc which is of course fine   $1^{\text {st }} \mathrm{A} 1$ for a correct numerical ratio   May see use of $z=0.92$ or better (calc: $0.9153650 \ldots$ ) or $\sigma=32.6 \sim 32.8$ allow:   $1^{\text {st }} \mathrm{M} 1$ for $\frac{\mathrm{P}(Z<-0.92)}{\mathrm{P}(Z<0)}$ and $1^{\text {st }} \mathrm{A} 1$ for $\frac{1-0.8212}{0.5}$ or $\frac{0.1788}{0.5}$   $2^{\text {nd }} \mathrm{A} 1$ for 0.36 or an exact equivalent e.g. $\frac{9}{25}$ (Answer only M1A1A0)   The final answer of 0.36 must come from exact values; 0.36 rounded from 0.3576 etc is A0



Question   Number	Scheme	Marks
32 (a)	The random variable $H \sim$ height of females $\begin{aligned} \mathrm{P}(H>170) & =\mathrm{P}\left(Z>\frac{170-160}{8}\right) \quad[=\mathrm{P}(Z>1.25)] \\ & =1-0.8944 \\ & =0.1056 \quad \text { (calc } 0.1056498 \ldots) \quad \text { awrt } 0.106 \text { (accept } 10.6 \% \text { ) } \end{aligned}$	M1   M1   A1   (3)
	$\begin{aligned} \mathrm{P}(H>180) & =\mathrm{P}\left(Z>\frac{180-160}{8}\right) \quad[=1-0.9938] \\ & =0.0062 \quad(\text { calc } 0.006209 \ldots) \end{aligned}$   awrt 0.0062 or $\frac{31}{5000}$	M1 A1
	$[\mathrm{P}(H>180 \mid H>170)]=\frac{0.0062}{0.1056}$	M1
	$=0.0587 \text { (calc } 0.0587760 \ldots \text { ) awrt } \mathbf{0 . 0 5 8 7} \text { or } \mathbf{0 . 0 5 8 8}$	A1   (4)
	$\mathrm{P}(H>h \mid H>170)(=0.5) \quad \text { or } \quad \frac{\mathrm{P}(H>h)}{\mathrm{P}(H>170)}(=0.5)$	M1
	$[\mathrm{P}(H>h)]=0.5 \times " 0.1056 "=0.0528$ (calc $0.0528249 \ldots$ ) or $[\mathrm{P}(H<h)]=0.9472$	A1ft
	$\frac{h-160}{8}=1.62$ (calc $\left.1.6180592 \ldots\right)$	M1 B1
	$h$ = awrt 173 cm awrt 173	A1 (5)
		Total 12
	Notes	
(a) (b) (c)	$1^{\text {st }} \mathrm{M} 1$ for attempt at standardising with 170,160 and 8 . Allow $\pm$ i.e. for $\pm \frac{170-160}{8}$ $2^{\text {nd }} \mathrm{M} 1$ for attempting $1-p$ where $0.8<p<1$. Correct answer only $3 / 3$   $1^{\text {st }}$ M1 for standardising with 180,160 and 8   $1^{\text {st }}$ A1 for 0.0062 seen, maybe seen as part of another expression/calculation.   $2^{\text {nd }}$ M1 using conditional probability with denom = their (a) and num < their denom. Values n $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.0587 or 0.0588 . Condone $5.87 \%$ or $5.88 \%$ or $\frac{31}{528}$   Correct answer only $4 / 4$   $1^{\text {st }}$ M1 for a correct conditional probability statement. Either line and don’t insist on $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for $[\mathrm{P}(H>h)]=0.5 \times$ their $(a)$   Award M1A1ft for correct evaluation of $0.5 \times$ their $($ a) or sight of 0.0528 or better $2^{\text {nd }}$ M1 for attempt to standardise $( \pm)$ with 160 and 8 and set equal to $\pm z$ value $(1.56<$ B1 for ( $z=$ ) awrt $\pm 1.62$ (seen)   $2^{\text {nd }}$ A1 for awrt 173 but dependent on both M marks.	eded.   5, ft (a) $z \mid<1.68)$


Question   Number	Scheme	Marks		
$\mathbf{3 3}$	(i) $\mathrm{P}(Y=10)=0$			
	(ii) $\mathrm{P}(Y<10)=\frac{1}{2}$		$\quad$ B1 $\quad$ B1	(2)
---:				
[ Total 2]				


Question Number	Scheme	Marks
34. (a)	24 and 28 (above the mean)   For 0.80 and 0.05 (clearly indicated)	B1 B1
$\begin{array}{r} \text { (b) } \\ \text { (c)(i) } \end{array}$	$\begin{aligned} & \frac{15 \%}{\frac{(28-\mu)}{\sigma}=1.64(49) \quad \text { or } \quad} \quad \frac{(24-\mu)}{\sigma}=0.84(16) \\ & 0.8416 \text { and } 1.6449 \text { seen } \\ & \mu=28-1.64(49) \sigma \quad, \quad \mu=24-0.84(16) \sigma \end{aligned}$	$\begin{array}{\|lr} \mathrm{B} 1 & \text { (1) } \\ \text { M1 } \\ \text { B1 } & \\ \text { A1,A1 } & \end{array}$
(ii)	$\begin{array}{ll} 24-0.8416 \sigma=28-1.6449 \sigma & \quad \text { eliminating } \mu \text { or } \sigma \\ \sigma=4.9794597 . . . & \text { awrt } 4.98 \\ \mu=19.809286 . . . & \text { awrt } 19.8 \end{array}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$
(d)	$\begin{aligned} & \mathrm{z}=\frac{(12-19.8 \ldots . .)}{' 4.97 \ldots . . .} \\ & \mathrm{P}(\mathrm{Z}<-1.57)=1-\mathrm{P}(\mathrm{Z}<1.57) \end{aligned}$	M1   dM1
	$1-0.9418=0.0582$ awrt 0.06	A1 [Total 13]
	Notes	
(a)   (b)   (c)	$1^{\text {st }}$ B1 24 and 28 labelled on the horizontal axis above the mean in the correct order. They must clearly indicate where 24 and 28 are on the horizontal axis.	
	$2^{\text {nd }} \mathrm{B} 1$ for clear, correct labelling of probabilities. Must be associated with correct area.   B1 for $15 \%$ or $0.15 \mathrm{NB} 0.15 \%$ is B0	
	$1^{\text {st }} \text { M1 for } \frac{ \pm(28-\mu)}{\sigma}=z_{1} \text { or } \frac{ \pm(24-\mu)}{\sigma}=z_{2} \text { where }\left\|z_{1}\right\|>1.5 \text { and }\left\|z_{2}\right\|$ Condone $z_{2}=0.8$	$<1$
	B1 for both values 0.8416 and 1.6449 or better seen. Calc: 0.8416212   $1^{\text {st }} \mathrm{A} 1$ for $\mu=28-1.64(49) \sigma$ or any correct arrangement (allow $1.64 \sim 1.65$   $2^{\text {nd }} \mathrm{A} 1$ for $\mu=24-0.84(16) \sigma$ or any correct arrangement (allow 0.84   $2^{\text {nd }} \mathrm{M} 1$ for an attempt to solve simultaneous equations by eliminating $\mu$ or   $3^{\text {rd }} \mathrm{A} 1$ for awrt 4.98 (Condone $\sigma=5$ or awrt 5.0 if B0 scored)	1.644853..   clusive)   better)   $\sigma$
SC	For use of 0.84 and 1.64 giving $\sigma=5$ and $\mu=$ awrt 19.8 score M1B0A1	1M1A1A1
(d)	or 0.84 and 1.65 giving $\sigma=$ awrt 4.94 and $\mu=$ awrt 19.9 score M1B0A1   $1^{\text {st }} \mathrm{M} 1 \quad$ for standardising with 12 , their $\mu$ and $\sigma$ provided $\sigma>0$ If $\sigma<0$ from their equations in (c) allow M1 if they use $\|\sigma\|$ $2^{\text {nd }} \mathrm{dM} 1$ for $1-\mathrm{P}\left(Z<{ }^{\prime} 1.57^{\prime}\right)$ dependent on the $1^{\text {st }} \mathrm{M} 1$ being scored i.e. leads A1 for awrt 0.06 from correct working	1M1A1A1 $\text { o prob }<0.5$



Question	Scheme	Marks
36. $\begin{array}{r}\text { (a) } \\ \text { (b) } \\ \\ \text { (c) }\end{array}$	$\begin{align*} {[\mathrm{P}(M<145)=] \mathrm{P}\left(Z<\frac{145-150}{10}\right) } & \\ & =\mathrm{P}(Z<-0.5) \text { or } \mathrm{P}(Z>0.5) \\ & =\text { awrt } \underline{\mathbf{0 . 3 0 9}} \tag{3} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$
	$\left[\begin{array}{ll} {[\mathrm{P}(B>115)=0.15 \Rightarrow] \frac{115-100}{d}=1.0364} & \\ & \underline{\boldsymbol{d}=\mathbf{1 4 . 5}} \quad \begin{array}{l} \text { (Calc gives 1.036433...) } \\ \text { (Calc gives 14.4727...) } \end{array} \end{array}\right.$	M1B1A1   A1   (4)
	$[\mathrm{P}(X>\mu+15 \mid X>\mu-15)=] \frac{\mathrm{P}(X>\mu+15)}{\mathrm{P}(X>\mu-15)}$	M1
	$=\frac{0.35}{1-0.35}$	A1
		A1 (3)
		[10]
	Notes	
(a)	Condone poor use of notation if a correct line appears later.   M1 for standardising with 145,150 and 10 . Allow $\pm$ and use of symmetry so 155 instead of 145 $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(Z<-0.5)$ or $\mathrm{P}(Z>0.5)$ i.e. a $z$ value of $\pm 0.5$ and a correct region indicated $2^{\text {nd }}$ A1 for awrt 0.309 Answer only is $3 / 3$	
(b)	M1 for $\pm \frac{115-100}{d}=z$ where $\|z\|>1$ Condone MR of $\mu=150$ instead of 100 for M1B1only	
	$1^{\text {st }} \mathrm{A} 1$ for $z=$ awrt 1.04 and compatible signs i.e. a correct equation with $z=$ awrt 1.04	$34$
	Answer only of awrt 14.473 scores M1B1A1A1 Answer only of awrt 14.48 scores M1B0A1A1	
(c)	M1 for a correct ratio expression need $\mathrm{P}(X>\mu+15)$ on numerator. Allow use of a value for $\mu$ May be implied by next line.   NB $\frac{0.35 \times 0.65}{0.65}=\frac{0.2275}{0.65}$ is M0   $1^{\text {st }} \mathrm{A} 1$ for a correct ratio of probabilities   $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.538 or $\frac{7}{13}$ (o.e.). Allow 0.5385 provided $2^{\text {nd }} \mathrm{A} 1$ is scored.	



Question   Number	Scheme	Marks
38. (a)	$\begin{aligned} & z= \pm \frac{80}{150} \\ & \mathrm{P}(240<X<400)=\underline{\mathbf{0 . 4 0} \sim \mathbf{0 . 4 1}} \end{aligned}$   (e) suggests a reasonable fit for this range BUT   (d) since skew it will not be a good fit overall	M1   A1   (2)   B2/1/0   (2)
	Notes	
(a)   (b)	M1 for an attempt to standardise using the 320 and 150 and either 240 or 400 (implied by 0.53 ) A1 for answer in range $[0.40,0.41]$ (tables gives 0.4038 , calculator 0.40619 ...) Ans only $2 / 2$   For B2 we need 2 comments that make reference to each of part (e) and part (d) One comment should suggest it is not good since skew. The other it is since matches range in (e) $1^{\text {st }}$ B1 for one relevant comment   $2^{\text {nd }}$ B1 for both comments   NB Do not use B0B1	



Question Number	Scheme	Marks
40 (a)	$\begin{aligned} \mathrm{P}(W<224) & =\mathrm{P}\left(z<\frac{224-232}{5}\right) \\ & =\mathrm{P}(z<-1.6) \end{aligned}$	M1
(b)	$0.5-0.2$ $=0.3$ 0.3 or 0.7 seen   $\frac{w-232}{5}$ $=0.5244$ 0.5244 seen   $w$ $=234.622$ awrt 235	M1 $\begin{aligned} & \mathrm{B} 1 ; \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$
(c)	$\begin{aligned} & 0.2 \times(1-0.2) \\ & 2 \times 0.8 \times(1-0.8)=0.32 \end{aligned}$	M1   M1 A1
		(3)   Total 10
NOTES   (a)	M1 for standardising with 232 and 5. (i.e. not $5^{2}$ or $\sqrt{5}$ ). Accept $\pm \frac{w-232}{5}$.   M1 for finding (1-a probability >0.5)   A1 awrt 0.0548	
(b)	M1 Can be implied by use of $\pm 0.5244$ or $\pm$ ( 0.52 to 0.53 )   B1 for $\pm 0.5244$ only.   Second M1 standardise with 232 and 5 and equate to $z$ value of ( 0.52 to 0.53 ) or ( 0.84 to 0.85 )   $1-\mathrm{z}$ used award second M0.   Require consistent signs i.e. $\frac{232-w}{5}=-0.5244$ or negative z value for M 1 .   A1 dependent upon second M mark for awrt 235 but see note below.   Common errors involving probabilities and not z values:   $\mathrm{P}(Z<0.2)=0.5793$ used instead of $z$ value gives awrt 235 but award M0B0M0A0   $\mathrm{P}(Z<0.8)=0.7881$ used instead of $z$ value award M0B0M0A0.   M1B0M0A0 for 0.6179 , M1B0M0A0 for 0.7580	
(c)	M1 for 0.16 seen   M1 for ' $2 \times p(1-p)$ '   A1 0.32 correct answer only	




Question Number	Scheme Marks
43.     (a)	$\begin{aligned} \mathrm{P}(X>168) & =\mathrm{P}\left(Z>\frac{168-160}{5}\right) \\ & =\mathrm{P}(Z>1.6) \\ & =0.0548 \end{aligned}$awrt 0.0548M1   $A 1$   $A 1$
(b)	$\begin{aligned} \mathrm{P}(X<w) & =\mathrm{P}\left(\mathrm{Z}<\frac{w-160}{5}\right) \\ \frac{w-160}{5} & =-2.3263 \\ w & =148.37 \end{aligned}$
(c)	$\frac{160-\mu}{\sigma}=2.3263$  M 1          $\frac{152-\mu}{\sigma}=-1.2816$  B 1    $160-\mu=2.3263 \sigma$      $152-\mu=-1.2816 \sigma$ awrt 2.22 A1    $8=3.6079 \sigma$ awrt 155 A1    $\sigma=2.21 \ldots$.   (12)   $\mu=154.84 \ldots$
	Notes
(a)	M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm\left(\frac{168-160}{5}\right)$ or implied by 1.6 $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(Z>1.6)$ or $\mathrm{P}(Z<-1.6)$ ie $z=1.6$ and a correct inequality or 1.6 on a shaded diagram   Correct answer to (a) implies all 3 marks
(b)	M1 for attempting $\pm\left(\frac{w-160}{5}\right)=$ recognizable $z$ value $(\|z\|>1)$   B1 for $z= \pm 2.3263$ or better. Should be $z=\ldots$ or implied so: $1-2.3263=\frac{w-160}{5}$ is M0B0   A1 for awrt 148. This may be scored for other $z$ values so M1B0A1 is possible   For awrt 148 only with no working seen award M1B0A1   M1 for attempting to standardize 160 or 152 with $\mu$ and $\sigma$ (allow $\pm$ ) and equate to $z$ value ( $\|z\|>1$ )   $1^{\text {st }} \mathrm{B} 1$ for awrt $\pm 2.33$ or $\pm 2.32$ seen   $2^{\text {nd }}$ B1 for awrt $\pm 1.28$ seen   $2^{\text {nd }}$ M1 for attempt to solve their two linear equations in $\mu$ and $\sigma$ leading to equation in just one variable   $1^{\text {st }} \mathrm{A} 1$ for $\sigma=$ awrt 2.22. Award when $1^{\text {st }}$ seen   $2^{\text {nd }}$ A1 for $\mu=$ awrt 155. Correct answer only for part (c) can score all 6 marks.   NB $\sigma=2.21$ commonly comes from $z=2.34$ and usually scores M1B0B1M1A0A1   The $A$ marks in (c) require both $M$ marks to have been earned




Question Number	Scheme	Marks
$46 \quad(\mathrm{a})$	Let the random variable $X$ be the lifetime in hours of bulb $\begin{aligned} \mathrm{P}(X<830) & =\mathrm{P}\left(\mathrm{Z}<\frac{ \pm(830-850)}{50}\right) \\ & =\mathrm{P}(Z<-0.4) \\ & =1-\mathrm{P}(Z<0.4) \\ & =1-0.6554 \\ & =0.3446 \text { or } 0.344578 \text { by calculator } \end{aligned}$   Standardising with 850 and 50 $=1-\mathrm{P}(\mathrm{Z}<0.4) \quad \text { Using 1-(probability }>0.5)$   awrt 0.345	M1 M1 A1
	$0.3446 \times 500$ Their (a) $\times 500$   $=172.3$ Accept 172.3 or 172 or 173	(3) $\begin{align*} & \text { M1 } \\ & \text { A1 } \tag{2} \end{align*}$
	Standardise with 860 and $\sigma$ and equate to $z$ value $\frac{ \pm(818-860)}{\sigma}=z$ value $\frac{818-860}{\sigma}=-0.84(16)$ or $\frac{860-818}{\sigma}=0.84(16)$ or $\frac{902-860}{\sigma}=0.84(16)$ or equiv.	M1   A1
	$\sigma=49.9 \quad 50 \text { or awrt } 49.9$	$\begin{aligned} & \text { B1 } \\ & \text { A1 } \end{aligned}$
	Company $Y$ as the mean is greater for $Y$.   both   They have (approximately) the same standard deviation or $\boldsymbol{s d}$	(4) $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$
		$\begin{array}{r} (2) \\ {[11]} \end{array}$
Notes		
	8(a) If 1-z used e.g. 1-0.4=0.6 then award second M0   8(c) M1 can be implied by correct line 2   A1 for completely correct statement or equivalent.   Award B1 if 0.8416(2) seen   Do not award final A1 if any errors in solution e.g. negative sign lost.   8(d) Must use statistical terms as underlined.	



Question Number	Scheme	Marks
48   (a)	$\begin{aligned} & z=\frac{53-50}{2} \\ & \mathrm{P}(X>53)=1-\mathrm{P}(Z<1.5) \\ &=1-0.9332 \\ &=0.0668 \end{aligned}$   Attempt to standardise 1-probability required can be implied	M1   B1   A1   [3]
(b)	$\begin{aligned} & \frac{x_{0}-50}{2}=-2.3263 \\ & x_{0}=45.3474 \end{aligned}$   awrt 45.3 or 45.4 $\begin{aligned} \mathrm{P}(2 \text { weigh more than } 53 \mathrm{~kg} \text { and } 1 \text { less }) & =3 \times 0.0668^{2}(1-0.0668) \\ & =0.012492487 . \end{aligned}$   awrt 0.012	$\begin{array}{ll} \text { M1 } & \\ \text { M1B1 } & \\ \text { M1A1 } \\ \text { B1M1A1ft } \\ \text { A1 } \\ \text { A1 } \\ \text { Total 12 } \end{array}$
	Notes:   (a) M1 for using 53,50 and 2, either way around on numerator   B1 1- any probability for mark   A1 0.0668 cao   (b) M1 can be implied or seen in a diagram   or equivalent with correct use of 0.01 or 0.99   M1 for attempt to standardise with 50 and 2 numerator either way around   B1 for $\pm 2.3263$   M1 Equate expression with 50 and 2 to a $z$ value to form an equation with consistent signs and attempt to solve   A1 awrt 45.3 or 45.4   (c) B1 for 3,   M1 $p^{2}(1-p)$ for any value of $p$   A1ft for $p$ is their answer to part (a) without 3   A1 awrt 0.012 or 0.0125	




51(a)	$\mathrm{P}(M<10)=\mathrm{P}\left(Z<\frac{12-14}{\sigma}\right)=0.1$		
	$\Rightarrow \frac{12-14}{\sigma}=,-1.2816$	M1 standardising ( $\pm$ ) with 12,14 and $\sigma$ and setting equal to a $z$ value where $\|z\|>1$ B1 $\pm 1.2816$ or better	M1   B1
	$\sigma=1.5605 . \ldots \ldots=$ awrt 1.56 minutes	A1 awrt 1.56 Do not allow answer written as an exact fraction.	A1 ${ }^{\text {(3) }}$
(b)	$T$ represents number less than 12 minutes. $T \sim \mathrm{~B}(15,0.1)$	B1 Writing or using $\mathrm{B}(15,0.1)$.	B1
	$\mathrm{P}(T \leq 1)$	M1 writing $\mathrm{P}(T \leq 1)$ or $\mathrm{P}(T<2)$ any letter may be used.	M1
	$=0.549$	A1 awrt 0.549	A1
		NB 0.549 gets B1 M1 A1	(3)
(c)	[ $T \sim$ number of people who take less than 12 mins to complete the test $] T \sim \mathrm{~B}(n, 0.1)$		
	$T$ can be approximated by $\mathrm{N}(0.1 n, 0.09 n)$	B1 mean $=0.1 n$ and Var $=0.09 n$ oe may be seen in an attempt at standardisation	B1
	$\mathrm{P}\left(Z<\frac{8.5-0.1 n}{\sqrt{0.09 n}}\right)=0.3085$	M1 using a continuity correction either 8.5 or 7.5 in an attempt at standardised form. Allow 0.09 for sd.	M1
		B1 a $z$ value of awrt $\pm 0.5$	B1
	$\frac{8.5-0.1 n}{\sqrt{0.09 n}}=-0.5 \text { or } \frac{8.5-0.1 x^{2}}{0.3 x}=-0.5$	M1 standardising using their mean and sd. (If these have not been given then they must be correct here) and one of $7.5,8$, $8.5,9$ or 9.5 and equal to a $z$ value where $\|z\|>0.4$. Allow any form	M1
		A1 A correct equation in any form. ISW. Do not allow if they have $0.3 n$ rather than $0.3 \sqrt{n}$	A1
	$\begin{aligned} & 0.1 n-0.15 \sqrt{n}-8.5=0 \\ & \sqrt{n}=10 \end{aligned}$	M1 using either the quadratic formula or completing the square or factorising or any correct method to solve their 3 term quadratic. If they write the quadratic formula down then allow one slip. If no formula written down then it must be correct for their equation. May be implied by seeing 10 or 8.5 . They must show working if the equation used is not correct. $\mathbf{2}^{\text {nd }} \mathbf{A 1}$ awrt $10.0-$ do not need to see $n$ or $\sqrt{n}$. Allow $n=10$ May be implied by 100	M1A1
	$n=100$	$\mathbf{3}^{\text {rd }} \mathbf{A 1}$ cso 100 If they have a second answer of 72.25 they must reject it to get this final mark.	A1cso   (8)
			(Total 14)


Question Number	Scheme		Marks
52(a)	$0.05 n=3$	M1: using $0.05 n$	M1
	$n=60$	A1: cao   NB: for 60 with no incorrect working award M1A1	A1 (2)
(b)   (i)	$R \sim \mathrm{~B}(20,0.05)$	B 1 : using or writing $\mathrm{B}(20,0.05)$ in (i) or (ii)	B1
	$\begin{aligned} \mathrm{P}(R=4) & ={ }^{20} C_{4}(0.05)^{4}(0.95)^{16} \mathrm{OR} \\ \mathrm{P}(R=4) & =\mathrm{P}(R \leq 4)-\mathrm{P}(R \leq 3) \\ & =0.9974-0.9841 \end{aligned}$	M1 writing or using $\mathrm{P}(R \leq 4)-\mathrm{P}(R \leq 3)$ or using ${ }^{20} C_{4}(p)^{4}(1-p)^{16}$	M1
	$=0.0133$	A1: awrt 0.0133	A1
(ii)	$\begin{aligned} \mathrm{P}(R \geq 4) & =1-\mathrm{P}(R \quad 3) \\ & =1-0.9841 \end{aligned}$	M1: writing or using 1-P( $R$ 3)	M1
	$=0.0159$	A1: awrt 0.0159	A1 (5)
			Total 7


Question Number	Scheme		Marks
53.	$\mathrm{N}(0.2 n, 0.16 n)$	B1: Mean $=0.2 n$ and $\operatorname{Var}=0.16 n$ oe this may be awarded if they appear in the standardisation as $0.2 n$ and either $0.16 n$ or $\sqrt{0.16 n}$	B1
	$\mathrm{P}\left(Z>\frac{55.5-0.2 n}{\sqrt{0.16 n}}\right)=0.0401$	M1: Using a continuity correction either 55.5 or 54.5	M1
	$\frac{55.5-0.2 n}{\sqrt{0.16 n}}=1.75$	B1: Using a $z=$ awrt $\pm 1.75$   M1: Standardising using either 55.5, 54.5 or 55 and equal to a $z$ value. Follow through their mean and variance. If they have not given the mean and Var earlier then they must be correct   A1: A correct equation. May be awarded for $\frac{55.5-0.2 n}{\sqrt{0.16 n}}=1.75$   Condone use of an inequality sign rather than an equals sign	B1M1A1
	$0.2 n+0.7 \sqrt{n}-55.5=0$	M1d: This is dependent on the previous method mark being awarded. Using either the quadratic formula or completing the square or factorising or any correct method to solve their 3 term equation. If they write the formula down then allow a slip. If no formula written down then it must be correct for their equation. May be implied by correct answer or $\sqrt{n}=15$ or 342.25   NB you may award this mark if they use 54.5 for awrt 14.9, -18.4, 221 or 337 55 for awrt -18.4, 14.9,223 or -117   If the answer is not one of these then the method for solving their 3 term equation must be seen.	M1d
	$\sqrt{n}=15$	A1: Allow 15 or -18.5 do not need to see $n$ or $\sqrt{n}$. Condone $n=15$ or $n=-18.5$	A1
	$n=225$	A1 : cao 225 do not need to see $n$ or $\sqrt{n}$	A1 (8)
	Alternative method for last 3 marks $\begin{aligned} & (0.2 n-55.5)^{2}=(-0.7 \sqrt{n})^{2} \\ & 0.04 n^{2}-22.69 n+3080.25=0 \\ & n=225 \text { or } 1369 / 4 \\ & n=225 \end{aligned}$	M1 solving 3 term quadratic in $n$ as above   A1 either 225 or 1369/4 or 342.25 A1must select 225	Total 8


Question   Number	Scheme		Marks
54		notes	
	$X \sim \mathrm{~B}(30,0.25)$	B 1 : using $\mathrm{B}(30,0.25)$	B1
	$\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 4)=0.8943-0.0979$	M1: using $\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 4)$ or $\mathrm{P}(X \geq 5)-\mathrm{P}(X \geq 11)$ oе	M1 A1
	$=0.7964$	A1: awrt 0.796	
	NB a correct answer gains full marks		Total 3


Question Number	Scheme Marks
55. (a)   (i)   (ii)	
(b)	$1-\mathrm{P}(0)$ $=0.8$ or $\mathrm{P}(0)=0.2$ M 1   $(1-p)^{20}$ $=0.2$    $1-p$ $=0.9227$    $p$ $=0.0773$ A 1   $\frac{3}{200}(90-x)$ $=0.0773$    $x$ $=84.84$ M1   $x$ $=85$      A1cao (4)
	Notes [9]
(a)   (i)   (ii)   (b)	B1 writing or using $p=0.75$ or $p=0.25$ anywhere in (a)(i) or (a)(ii)   M1 writing or using $(p)^{6}(1-p)^{4}{ }^{10} C_{6}$ or writing for $p=0.75, \mathrm{P}(X \leq 6)-(X \leq 5)$   or for $p=0.25, \mathrm{P}(X \leq 4)-\mathrm{P}(X \leq 3)$ or correct answer.   M1 writing $\mathrm{B}(10,0.75)$ and writing or using $\mathrm{P}(X=8)+\mathrm{P}(X=9)+\mathrm{P}(X=10)$ oe or writing $\mathrm{B}(10,0.25)$ and writing or using $\mathrm{P}(Y \leq 2)$.   Using correct Binomial must be shown by $(0.75)^{n}(0.25)^{10-n}$ or a correct answer.   M1 for writing or using $1-\mathrm{P}(0)=0.8$ or $\mathrm{P}(0)=0.2$ or $(1-p)^{20}=0.2$. Allow any inequality sign.   A1 awrt 0.0773 or awrt 0.923.   M1 subst in $\frac{3}{200}(90-x)$ for $p$ NB this may be substituted in earlier for $p$.   Allow for $\frac{3}{200}(90-x)=k$ where $0<k<1 k \neq 0.8$ or 0.2 Allow any inequality sign   A1 condone $x \geq 85$. Do not allow $\mathrm{x} \leq 85$.


Question	Scheme ${ }^{\text {a }}$ Marks
56.   (a)   (b)	
	Notes
(a)   (b)	M1 for binomial   A1 for $n=10$ and $p=0.4$   NB If they give 2 options then unless they select the correct one they gain M0A0   M1 for identifying the correct possibilities $2^{\prime} 2^{\prime} 2$ or 552 and $5>52$ and $>552$ and $>5$ $>52$ or a correct probability statement. The possibilities must be in the correct order.   Condone   $2 \times(5>52)$ or $2 \times(>552)$. Implied a correct answer.   A1 for 0.144 or exact equivalent e.g. $\frac{18}{125}$






Question Number	Scheme	Marks
61.   (a)	Occurrences of the disease are independent   The probability of catching the disease remains constant.	$\begin{align*} & \text { B1 }  \tag{2}\\ & \text { B1 } \end{align*}$
(b)	$\begin{aligned} & X \sim \operatorname{Bin}(10,0.03) \\ & \mathrm{P}(X=2)=\frac{10 \times 9}{2}(0.03)^{2}(0.97)^{8}=0.0317 \end{aligned}$	B1   M1A1   (3)   [5]
	Notes	
(a)	B1 independent   B1 probability remains constant.   One of these must have the context of disease.   No context only one correct B0B0   If only one mark awarded give the first B1   SC if they are both correct without context award B1B0	
(b)	$B 1$ for writing or using $B(10,0.03)$   M1 for writing or using $(p)^{2}(1-p)^{8} \frac{10!}{2!8!}$ allow ${ }^{10} \mathrm{C}_{2},\binom{10}{2}$ etc   Allow $\mathrm{P}(\mathrm{X} \leq 2)-\mathrm{P}(\mathrm{X} \leq 1)$   A1 awrt 0.0317	



Question Number	Scheme	Marks
63 (a)   (b)   (c)	$X \sim B(20,0.05)$   $\mathrm{P}(\mathrm{X}=0)=0.95^{20}=0.3584859 \ldots$ or 0.3585 using tables . $\begin{aligned} \mathrm{P}(X>4) & =1-\mathrm{P}(X \leq 4) \\ & =1-0.9974 \\ & =0.0026 \end{aligned}$	B1 B1    M1 A1 (2)    (2)   M1        A1    Total [6]
(a)   (b)   (c)	Notes   $1^{\text {st }} \mathbf{B 1}$ for binomial   $2^{\text {nd }} \mathbf{B 1}$ for 20 and 0.05 o.e   These must be in part (a)   M1 for finding $(p)^{20} \quad 0<p<1$ this working needs to be seen if answer incorrect to gain the M1   A1 awrt 0.358 or 0.359 .   M1 for writing $1-\mathrm{P}(X \leq 4)$   or $1-[\mathrm{P}(X=0)+\mathrm{P}(X=1)+\mathrm{P}(X=2)+\mathrm{P}(X=3)+\mathrm{P}(X=4)]$   or $1-0.9974$   or 1-0.9568   A1 awrt 0.0026 or $2.6 \times 10^{-3}$, do not accept a fraction e.g. 26/10000	


Question   Number	Scheme	Marks
64	$[X \sim \mathrm{~B}(30,0.15)]$	awrt 0.847
	$\mathrm{P}(X \leq 6),=0.8474$	$\mathrm{M} 1, \mathrm{~A} 1 \quad$ (2)
		[2]
Notes	M1 for a correct probability statement $\mathrm{P}(X \leq 6)$ or $\mathrm{P}(X<7)$ or $\mathrm{P}(X=0)+\mathrm{P}(X=1)$   $+\mathrm{P}(X=2)+\mathrm{P}(X=4)+\mathrm{P}(X=5)+\mathrm{P}(X=6) .($ may be implied by long calculation $)$   Correct answer gets M1 A1. allow $84.74 \%$	


Question Number	Scheme	Marks
65.	$\left.\begin{array}{l} X \sim \mathrm{~B}(100,0.58) \\ Y \sim \mathrm{~N}(58,24.36) \\ {[\mathrm{P}(X>50)} \end{array} \quad=\mathrm{P}(X \geq 51)\right] \quad \begin{aligned} & =\mathrm{P}\left(z \geq \pm\left(\frac{50.5-58}{\sqrt{24.36}}\right)\right) \\ & =\mathrm{P}(\mathrm{z} \geq-1.52 \ldots) \\ & =0.9357 \end{aligned}$   using 50.5 or 51.5 or 49.5 or 48.5   standardising $50.5,51,51.5,48.5,49,49.5$ and their $\mu$ and $\sigma$ for M1   alternative $\begin{aligned} & X \sim \mathrm{~B}(100,0.42) \\ & Y \sim \mathrm{~N}(42,24.36) \end{aligned}$ $\begin{aligned} {[\mathrm{P}(X<50)} & =\mathrm{P}(X \leq 49)] \\ & =\mathrm{P}\left(z \leq \pm\left(\frac{49.5-42}{\sqrt{24.36}}\right)\right) \\ & =\mathrm{P}(\mathrm{z} \leq 1.52 \ldots) \\ & =0.9357 \end{aligned}$ using 50.5 or 51.5 or 49.5 or 48.5   standardising $50.5,51,51.5,48.5,49,49.5$ and their $\mu$ and $\sigma$ for M1	B1 B1 B1   M1   M1   A1   A1   (7)   B1 B1 B1   M1   M1 A1   A1
	Notes   The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, $24.36 \text { or } \sqrt{ } 24.36 \text { or } \sqrt{ } 24.4 \text { or awrt } 4.94$   Otherwise   B1 normal   B1 58 or 42   B1 24.36   M1 using 50.5 or 51.5 or 49.5 or 48.5 . ignore the direction of the inequality.   M1 standardising $50.5,51,51.5,48.5,49,49.5$ and their $\mu$ and $\sigma$. They may use   $\sqrt{ } 24$ or $\sqrt{ } 24.36$ or $\sqrt{ } 24.4$ or awrt 4.94 for $\sigma$ or the $\sqrt{ }$ of their variance.   $\mathrm{A} 1 \pm 1.52$. may be awarded for $\pm\left(\frac{50.5-58}{\sqrt{24.36}}\right)$ or $\pm\left(\frac{49.5-42}{\sqrt{24.36}}\right)$ o.e.   A1 awrt 0.936	


Question   Number	Scheme	Marks
66	$X \sim \mathrm{~B}(11000,0.0005)$	M1 A1
	T2)   M1 foral 2 Binomial,   A1 fully correct   These cannot be awarded unless seen in part a	



68 (a)	Let $X$ be the random variable the number of faulty bolts	M1
	$\mathrm{P}(X \leq 2)-\mathrm{P}(X \leq 1)=0.0355-0.0076 \quad \text { or } \quad(0.3)^{2}(0.7)^{18} \frac{20!}{18!2!}$	A1 (2)
	$=0.0279$ = 0.0278	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	$\begin{aligned} 1-\mathrm{P}(X \leq 3) & =1-0.1071 \\ & =0.8929 \end{aligned}$	(2)
	$\text { or } 1-(0.3)^{3}(0.7)^{17} \frac{20!}{17!3!}-(0.3)^{2}(0.7)^{18} \frac{20!}{18!2!}-(0.3)(0.7 .)^{19} \frac{20!}{19!!!}-(0.7)^{20}$	M1A1 $\sqrt{ }$ A1
(c)	$\frac{10!}{4!6!}(0.8929)^{6}(0.1071)^{4}=0.0140 .$	(3)
		(Total 7)
Notes:		
68. (a)	M1 Either	
	or attempt to use binomial and find $\mathrm{p}(X=2)$. Must have $(p)^{2}(1-p)^{18} \frac{20!}{18!2!}$, with a value of $p$	
	A1 awrt 0.0278 or 0.0279.	
(b)	M1 Attempting to find $1-\mathrm{P}(X \leq 3)$	
	A1 awrt 0.893	
(c)   M1 for $k(p)^{6}(1-p)^{4}$. They may use any value for $p$ and $k$ can be any number or ${ }^{\mathrm{n}} \mathrm{C}_{6} p^{6}(1-p)^{\mathrm{n}-6}$   A1 $\sqrt{ } \frac{10!}{4!6!}(\text { their part } b)^{6}(1-\text { their part } b)^{4}$ may write ${ }^{10} \mathrm{C}_{6}$ or ${ }^{10} \mathrm{C}_{4}$   A1 awrt 0.014		

