EXPERT TUITION

Maths Questions By Topic:

Statistical Distributions Mark Scheme

A-Level Edexcel

الر 0207 060 4494

www.expert-tuition.co.uk

💻 online.expert-tuition.co.uk

≥ enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents
<u>New Spec</u>
Paper 2 (AS) Page 1
Paper 3 (A2) Page 9
<u>Old Spec</u>
Statistics 1 Page 25
Statistics 2 Page 50

Qu	Scheme	Mark	AO		
1. (i)	[D = number of bags that are damp] $D \sim B(35, 0.08)$ NB $0.08 = \frac{2}{25}$	M1	3.3		
(ii)	P(D=2) = 0.2430497 awrt <u>0.243</u>	A1	3.4		
	$P(D > 3) = [1 - P(D_{,,} 3) = 1 - 0.69397] = 0.30602 awrt 0.306$	A1	1.1b		
		(3)			
		(3 mar	·ks)		
	Notes				
	M1 for selecting a correct model: sight of or use of B(35, 0.08) [Condone B(0.08, 35)] May be implied by one correct answer or sight of P(D 3) = awrt 0.694 (or allow 0.693) $\underline{\text{or}}$ seeing $\binom{35}{2} 0.08^2 \times (1-0.08)^{35-2}$				
(i) (ii) NB) 2^{nd} A1 for awrt 0.306 (Condone poor use of notation e.g. $P(D = 3) = 0.306$ i.e. just mark ans)				

Qu	Scheme	Marks	AO		
2. (a)	[R = no. of red beads in Aliya's bracelet] $R \sim B(18, 0.14)$	B1	3.3		
		(1)			
(b)(i)	P(R = 1) = 0.19403 awrt 0.194	B1	1.1b		
(ii)	P(R = 4) = 1 - P(R = 3) = 1 - [0.76184]	M1	3.4		
	= 0.2381588 awrt <u>0.238</u>	A1	1.1b		
		(3)			
(c)	Requires $p = 0.14$ to be constant so need a large number of beads in the sack to ensure that removing 18 beads does not appreciably affect this probability, then it could be suitable.	B1	3.5b		
		(1)			
		(5 marks)			
	Notes				
(a)	B1 for B(18, 0.14) accept in words e.g. <u>binomial</u> with $n = 18$ and $p = 0.1$	4			
(b)(i) (ii)	B1 for awrt 0.194 M1 for interpreting "at least 4" Need $1 - P(R = 3)$ and $1 - p [0 OKA1 for awrt 0.238$				
(c)	B1 for mention of <u>large number of beads</u> and need for $p = 0.14$ to be consultable. Do NOT accept e.g. "events are independent"	nstant for it	to be		

Que	stion	Scheme	Marks	AOs
3	3(a) Let C = the number of successful calls. $C \sim B\left(9, \frac{1}{6}\right)$			
		$P(C \ge 3) = 1 - P(C \le 2) = 0.1782$ awrt 0.178	A1	1.1b
			(2)	
(b)		Let X = the number of occasions when at least 3 calls are successful. $P(X = 1) = 5 \times ("0.1782") \times ("0.8217")^4$	M1	1.1b
		= 0.4061 awrt 0.406	A1	1.1b
			(2)	
			(4	marks)
		Notes		
3(a)	M1:	For selecting the right model		
	A1: awrt 0.178			
(b)	(b) M1: For $5 \times (" \text{their}(a)") \times ("1 - \text{their}(a)")^4$			
	A1:	awrt 0.406		

Question	Scheme	Marks	AOs			
4(a)	(Discrete) uniform (distribution)	B1	1.2			
		(1)				
(b)	B(28, 0.2)	B1	3.3			
(i)	P(X ≥ 7) = 1 – P(X ≤ 6) [= 1 – 0.6784]	M1	3.4			
	awrt <u>0.322</u>	A1	1.1b			
(ii)	P(4 ≤ X < 8) = P(X ≤ 7) – P(X ≤ 3) [= 0.818 – 0.160]	M1	3.1b			
	awrt <u>0.658</u>	A1	1.1b			
		(5)				
		(6 marks)			
	Notes					
(a)	Continuous uniform is B0					
(b)	 (b) B1: for identifying correct model, B(28, 0.2) allow B, bin or binomial may be implied by one correct answer or sight one correct probability i.e. awrt 0.678, awrt 0.818 or awrt 0.160 B(0.2, 28) is B0 unless it is used correctly 					
(i)	M1: Writing or using $1 - P(X \le 6)$ or $1 - P(X \le 7)$					
(ii)	M1: Writing or using $P(X \le 7) - P(X \le 3)$ or $P(X \le 8) - P(X \le 4)$ or $P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)$ Condone P(4) as $P(X = 4)$, etc. A1: awrt 0.658 (correct answer only scores M1A1)					

Qu	Scheme	Marks	AO	
5	Let $N =$ the number of games Naasir wins $N \sim B(15,)$	M1	3.3	
(i)	P(N=2) = 0.059946 awrt 0.0599	A1	1.1b	
(ii)	P(N > 5) = 1 - P(N = 5) = 0.38162 awrt	A1	1.1b	
	0.382	(3)		
		(3 mark	ks)	
	Notes			
	M1 for selecting a binomial model with correct <i>n</i> and <i>p</i>			
	Award for sight of $B(15,)$ (o.e. e.g. in words) or implied b	y 1 correct	t	
	answer			
	1^{st} A1 for awrt 0.0599 (from a calculator). Allow 0.05995 2^{nd} A1 for awrt 0.382 (from a calculator)			

Qu	Scheme	Marks	AO			
6 (a)	P(X=4) = P(X=2) so $P(X=4) = 0.35$	M1	2.1			
	P(X=1) = P(X=3) and $P(X=1) + P(X=3) = 1 - 0.7$					
	So	A1	1.1b			
	x 1 2 3 4	111	1.10			
	P(X=x) 0.15 0.35 0.15 [0.35]					
(b)	Let A = number of spins that land on 4 $A \sim B(60, "0.35")$	(2) B1ft	3.3			
	$[P(A > 30) =] 1 - P(A \leq 30)$	M1	3.4			
	= 1 - 0.99411 = awrt 0.00589	Al	1.1b			
		(3)				
(c)	$Y - X \leqslant 4 \implies \frac{12}{X} - X \leqslant 4 \text{ or } 12 - X^2 \leqslant 4X \text{ (since } X > 0) \text{ o.e.}$	M1	3.1a			
	i.e. $0 \leq X^2 + 4X - 12 \implies 0 \leq (X+6)(X-2)$ so $X \geq 2$	M1	1.1b			
	$P(Y - X \le 4) = P(X \ge 2) = 0.35 + 0.15 + 0.35 = 0.85$	A1	3.2a			
		(3)				
		(8 marks	5)			
	Notes					
(a)	M1 for using the given information to obtain $P(X=4)$	() 0.25				
	Award for statement $P(X=4) = P(X=2)$ or writing $P(X=4)$: domtifica m	(a dea			
	A1 for getting fully correct distribution (any form that clearly e g can be list $P(Y=1) = 0.15$ $P(Y=3) = -etc$	identifies p	orobs)			
	e.g. can be list $P(X=1) = 0.15$, $P(X=3) =$ etc or as a probability function [Condone missing $P(X=2)$ as this is given in OP]	$\int 0.15 x$	=1,3			
	[Condone missing $P(X=2)$ as this is given in QP]	$[0.35 \ x =$	= 2,4			
(b)	B1 for selecting a suitable model, sight of B(60, their 0.35) f.t. their $P(X = 4)$ from part (a).	o.e. in wor	ds			
	Can be implied by $P(A \leq 30) = awrt 0.9941$ or final answe	r = awrt 0.0	00589			
	M1 for using their model and interpreting "more than half"					
	Need to see $1 - P(A \leq 30)$. Can be implied by awrt 0.0	0589				
	Can ignore incorrect LHS such as $P(A \ge 30)$					
	A1 for awrt 0.00589					
(c)	1 st M1 for translating the prob. problem into a <u>correct</u> mathema	tical inequ	ality			
	Just an inequality in 1 variable. May be inside a probabi	lity statem	ent.			
ALT	Table of values: X 1 2 3 4 or values of					
	$\begin{array}{ c c c c c c c } Y & 12 & 6 & 4 & 3 \\ \hline Y - X = 11, \\ \end{array}$, 4, 1, -1				
	2^{nd} M1 for solving the inequality leading to a range of values, a	allow 1 or 2	2 slips			
	May be a quadratic or cubic but must lead to a set of values of X or $Y - X$					
ALT	Table or values: They must state clearly which values are required					
	Both Ms can be implied by a correct answer (or correct ft o		tb'n)			
	A1 for interpreting the inequality and solving the problem i.e	. 0.85 cao				

Question	Scheme	Marks	AOs			
7	$P(5 \le X < 12) = P(X \le 11) - P(X \le 4)$	M1	1.1b			
	= 0.8939 - 0.0495 $= awrt 0.844$	A1	1.1b			
		(2)				
	(2 mark					
Notes:	Notes:					
M1: For dealing with $P(5 \le X < 12)$ they need to use the cumulative prob. Function on the calc.						
A1: awr	A1: awrt 8.44 (from calculator).					

Questi	on Scheme	Marks	AOs
8	$P(X \ge 16) = 1 - P(X \le 15)$	M1	1.1b
	= 1 - 0.949077 = awrt <u>0.0509</u>	A1	1.1b
		(2)	
		(2 n	narks)
Contin	ed question 8		
Notes:			
M1:	For dealing with $P(X \ge 16)$ – they need to use cumulative prob. function on	calc	
A1: a	wrt 0.0509 (from calculator)		

Question Scheme Marks					AOs	
9(a)(i)	X~B(15, 0.48)			M1	3.3
		P(X=3) = 0.019668		awrt 0.0197	A1	3.4
(i	i)	$\left[P(X \ge 5) = 1 - P(X \le 4) \right] = 0.92$	2013	awrt 0.920	A1	1.1b
					(3)	
(b)		<i>Y</i> is the number of hits	<i>M</i> is the	number of misses		
		$Y \sim N(120, 62.4)$	$M \sim N$	(130,62.4)	B1	3.3
		$P(X > 110) \approx P(Y > 110.5)$		$110) \approx P(M < 139.5)$		
		$\left[= P\left(Z > \frac{110.5 - "120"}{\sqrt{"62.4"}}\right) \right]$	$\left = P \left(Z \right) \right $	< $\frac{139.5 - "130"}{\sqrt{"62.4"}} \bigg]$	M1	3.4
		= 0.	88544		A1	1.1b
					(3)	
				(6 n	narks)	
			Notes:			
(a) (i)	M1 A1	correct answer to $3 \text{sf } \underline{\text{or sight of}}$ Allow for ${}^{15}C_3 \times 0.48^3 \times 0.52^{12}$ as awrt 0.0197	` '			
(ii)	A1	awrt 0.920 (Allow 0.92)				
(b)	B1	Setting up a correct Normal model. Allow sight of N(120,62.4) or N(130,62.4) or N $\left(120,\frac{312}{5}\right)$ or N $\left(130,\frac{312}{5}\right)$ or may be awarded if used correctly in standardisation or in words: <u>Normal</u> with <u>mean = 120/130</u> and <u>variance = 62.4</u> or sd = $\sqrt{62.4}$ condone N(120, $\sqrt{62.4}$) or N(130, $\sqrt{62.4}$) or sd = 62.4 Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{390}}{5}$ or awrt 7.90 (condone 7.9)				
	M1	This may be implied by sight of (
		Sight of the continuity correction with a normal distribution				
		110.5 or 111.5 or 109.5NB we will also allow 129.5 or 1128.5Continuity correction may be see		139.5 or 140.5 or 138.5 NB we will also allow 120 121.5 rdisation).5 or 119.	5 or
	A1	NB No continuity correction(CC) gives awrt 0.897 which is M0 unless CC seen				

Qı	u	Sche	eme		Marks	AOs		
10	(a)	$\left[P(L < 7.902) = 0.025 \Longrightarrow \right] \frac{7.902 - 8}{r} = -$	-1.96 oe		M1	3.4		
	_	λ	0.05 *					
			Alcso*	1.1b				
	5	SC B1(mark as M0A1) for $\frac{7.902 - 8}{0.05} = -$						
		0102			(2)			
(b)	$P(7.94 \le L \le 8.09) = 0.8490$		awrt 0.849	B1	1.1b		
					(1)			
(c) []	P(L < 7.94) =] 0.115069(awrt 0.115) o	or $[P(L > 8)]$.09) =] 0.03593(awrt 0.036)	B1	1.1b		
	[]	P(L < 7.94) =] 0.115069(awrt 0.115)	& [P(L > 8.	(09) =] 0.03593 (awrt 0.036)	B1	1.1b		
	Expected income per 500 rods = $\sum (\text{Income} \times \text{probability} \times 500)$			ability×500)				
	$(500 \times "0.849" \times 0.5) + (500 \times "0.1150" \times 0.05) + (500 \times "0.03593" \times 0.4)$ or				271	2.4		
	E	xpected profit per rod = $\sum (Profit \times prob$	pability)	,	M1	3.4		
	$0.30 \times "0.849" + -0.15 \times "0.1150" + 0.20 \times "0.03593" [= 0.2446]$							
	E	xpected profit per 500 rods						
		$00 \times \sum (Profit \times probability) \text{ or } \sum (Incompared on the second seco$			M1d 3.1b			
	_	$= 500 \times "0.2446" or = "222.3" - 500 \times 0.2$ $= [\pounds] 122.3 awrt [\pounds] 122$				1.1b		
		E J			A1 (5)	1.10		
(d	í –	Let $X \sim B(200, 0.015)$				3.3		
		$P(X \leqslant 5) =$	$P(X \ge 6)$		M1	1.1b		
		0.9176 Manufacturer is unlikely to achieve their	Manufactu	0.0824 rer is unlikely to achieve their	Al	1.1b		
		tim since $0.9176 < 0.95$		0.0824 > 0.05	A1ft	2.4		
		N	lotes:		(4) (12 n	narks)		
(a)	M1			llow σ for x and awrt ± 1.96	(12 11	141 K5 <i>j</i>		
	A1	* cso For a correct expression for x follo	wed by 0.05	or 0.05000 No incorrect wor	king seen			
(b)	B1	awrt 0.849						
(c)	B 1	awrt 0.115 (Implied by awrt 57.5 for m	umber of ro	ds) or awrt 0.036 (Implied by aw	vrt 18 for n	umber		
	B1	awrt 0.115 (Implied by awrt 57.5 for n	of rods) awrt 0.115 (Implied by awrt 57.5 for number of rods) and awrt 0.036 (Implied by awrt 18 for					
		,	number of rods)Correct method to find the total income of 500 rods. Attempt at all 3 with at least two correct and no					
	M1	extras		$\frac{1}{1000}$	a a mara at M			
		or Correct method to find sum of all th work in pence but need to be consisten	·		correct. M	ay		
	M1d		Dep on previous method for finding profit for 500 rods. May work in pence but need to be consistent. Allow " 0.2446 " × 500 or "their income" for 500 rods – 500×0.2 (accept 499 or 501)					
	A1	All previous marks must be awarded for awrt 122 awrt 12200p						
		NB if uses any integer values for numb)				
(d)	M1	M1 Selecting the appropriate model. May be seen or used. Allow B(200,0.985) or Po(Condone B(0.015, 200) or B(0.985, 200).)			
	N # 4	Writing or using $P(X \leq 5)$ Do not acc	ept	Writing or using $P(X \ge 6)$ Do	not accept	t		
	M1	$P(X < 6)$ unless found $P(X \le 5)$		P(X > 5) unless found $P(X)$	≥6)			
	A1	0.92 (Poisson 0.916)		0.08 or better				
	A1		as long as <i>p</i>	> 0.9 If "their 0.9176" < 0.95	must be	e		
		unlikely If "their 0.9176"> 0.95 they must say be likely To ft the alternative then $p < 0.1$						

Question		Scheme	Marks	AOs					
11		eg $p = 0.27$ is unlikely to be constant.	B1	2.4					
			(1)						
	(1 mark)								
		Notes:							
11	 A correct reason referring to independence (needs context as to what is independent) eg consecutive 14 days unlikely to be independent. probability [of rain] not being constant. Allow a comment that conveys the idea that the proportion of days with no rain will be different over the year. 								

Qu 12	Scheme	Marks	AO	
(a)	[Sight or correct use of] $X \sim B(36, 0.08)$	M1	3.3	
(i)	P(X = 4) = 0.167387 awrt <u>0.167</u>	A1	1.1b	
(ii)	$[P(X \ge 7) = 1 - P(X \le 6) =] 0.022233 \text{ awrt } 0.0222$	A1	1.1b	
(b)	P(In dance club and dance tango) = $0.4 \times 0.08 = 0.032$ or $\frac{4}{125}$ or 3.2%	(3) B1	1.1b	
		(1)		
(c)	[Let T = those who can dance the Tango. Sight or use of] $T \sim B(50, "0.032")$	M1	3.3	
	$[P(T < 3) = P(T \le 2) =]$ 0.7850815 awrt 0.785	A1	1.1b	
		(2)		
		(6 m	arks)	
	Notes			
(a)	M1 for sight of B(36, 0.08) Allow in words: <u>binomial</u> with <u>$n = 36$</u> and <u>$p = 6$</u> may be implied by one correct answer to 2sf <u>or</u> sight of P($X \le 6$) = 0.977		wrt 0.98	
	Allow for $36C4 \times 0.08^4 \times 0.92^{32}$ as this is "correct use"			
(i)	1 st A1 for awrt 0.167 NB An answer of just awrt 0.167 scores $M1(\Rightarrow)$	1 st A1		
(ii)	2 nd A1 for awrt 0.0222			
(b)	B1 for 0.032 o.e. (Can allow for sight of 0.4×0.08)			
(c)	M1 for sight of B(50, "0.032") ft their answer to (c) provided it is a probability $\neq 0.08$ may be implied by correct answer or sight of [P($T \leq 3$)] = 0.924348i.e. awrt 0.924 or P($T \leq 2$) as part of 1 – P($T \leq 2$) calc.			
MR	A1 for awrt 0.785 Allow MR of 50 (e.g. 30) provided clearly attempting $P(T \le 2)$ and sce	ore M1A0		

Qu 13	Scheme	Marks	AO		
(a)	$\begin{bmatrix} \text{Let} & F \sim N(166.5, 6.1^2) \end{bmatrix} P(F < k) = 0.01 \implies \frac{k - 166.5}{6.1} = -2.3263$	M1	3.4		
	k = 152.309 <u>152</u> or awrt <u>152.3</u>	A1	1.1b		
(b)	[P(150 < F < 175) =] 0.914840 awrt <u>0.915</u>	(2) B1 (1)	1.1b		
(c)	P($F > 160 150 < F < 175$)	M1	3.1b		
	$= \frac{P(160 < F < 175)}{P(150 < F < 175)} \underline{\text{or}} \frac{P(160 < F < 175)}{"(b)"}$	M1	1.1b		
	$=\frac{0.7749487}{"0.91484"}$	A1ft	1.1b		
	= 0.84708 awrt 0.847	A1	1.1b		
		(4)			
	N Y 4	(7 mark	S)		
(a)	Notes $M1$ for standardising (allow 1) with k 1665 and 61 and ast equal to a z value	22	2.4		
(a)	M1 for standardising (allow \pm) with k, 166.5 and 6.1 and set equal to a z value A1 for 152 or awrt 152.3 Ans only 2/2 [Condone poor use of notation e.g. P(4)]				
	Allow percentages instead of probabilities throughout.	01 /	-		
(b)	B1 for awrt 0.915				
(c)	1^{st} M1 for interpreting demand as an appropriate conditional probability (\Rightarrow	by 2 nd M1))		
	2^{nd} M1 for correct ratio of expressions (can ft their (b) on denominator) (\Rightarrow by 1^{st} A1ft)				
	1 st A1ft for a correct ratio of probs (can ft their " 0.9148 " to 3sf from (b) if > 0.775) 2 nd A1 for awrt 0.847				
'					

Qu 14	Scheme	Marks	AO			
(a)	{Let $X = \text{time spent}, P(X > 15) = $ } 0.105649 awrt <u>0.106</u>	B1	1.1b			
		(1)				
(b)(i)	[P(T < 2) =] 0.1956 awrt <u>0.196</u>	B1	1.1b			
		(1)				
(ii)	Require $\frac{P(0 < T < 2)}{P(T > 0)} = \frac{0.119119}{0.923436}; = 0.1289955 awrt 0.129$	M1	3.4			
	P(T > 0) = 0.923436	A1;A1	1.1bx2			
	The summent model suggests non negligible methodility of T values < 0 which	(3) B1	3.5b			
(iii)	The current model suggests non-negligible probability of <i>T</i> values < 0 which is impossible	DI	5.50			
		(1)				
(c)	Require <i>t</i> such that $P(T > t T > 2) = 0.5$ or $P(T < t T > 2) = 0.5$	M1	3.1b			
	e.g. $\frac{P(T > t)}{P(T > 2)} = 0.5$; so $P(T > t) = 0.5 \times [1 - (c)(i)]$ or $P(T > t) = 0.5 \times 0.8043$.	M1;	1.1b			
		A1ft	3.4			
	[i.e. $P(T > t) = 0.40$ implies] $\frac{t-5}{3.5} = 0.2533 \text{ or } P(T < t) = "0.5978"$	M1	1.1b			
	3.5 t = 5.886 or from calculator 5.867 so awrt 5.9	A1 (5)	1.1b			
	t = 5.660 or non-calculator 5.607 so awrt 5.5	(11 max)				
	Notes	X	,			
(a)	B1 for awrt 0.106 (from calculator) [Allow 10.6%]					
(b)(i)	B1 for awrt 0.196 (from calculator) [Allow 19.6%]					
(ii)	M1 for a correct probability ratio expression (may be implied by 1 st A1 sc	ored)				
	1 st A1 for a correct ratio of probabilities (both correct or truncated to 2 dp)					
	2^{nd} A1 for awrt 0.129					
(iii)	B1 for a suitable explanation of why model is not suitable based on negative	T values				
	Must say that a significant proportion of values < 0 (o.e.) e.g. $P(T > 0)$ show	ld be clos	er to 1			
	<u>or</u> Difference between $P(T < 2 T > 0)$ and $P(T < 2)$ is too big (o.e.)					
(c)	1^{st} M1 for a correct conditional probability statement to start the problem <u>or</u>		> 2)			
	2^{nd} M1 for correct ratio of probability expressions [Must have P($T > t$) or P(2					
	1 st A1ft for a correct equation for $P(T > t)$ (o.e.) ft their answer to part (c)[May 3 rd M1 for attempt to find t (standardising and sight of 0.2533) or prepare to u					
	3^{rd} M1 for attempt to find <i>t</i> (standardising and sight of 0.2533) or prepare to use calc (ft) Arriving at P(<i>T</i> < median) = 1 – 0.5×"their 0.8043" will score 1 st 4 marks					
	2^{nd} A1 for awrt 5.9					
	Sight of awrt 5.9 and at least one M mark scores 5/5 [Answer only send	to review	/]			

Question		Scheme	Marks	AOs
15(a)	$z = (\pm) 1.28(16)$	$[P_{90} =]29.251 \text{ or } [P_{10} =]15.948$	B1	3.1b
	2 × 1.2816 × 5.19	[•] 29.251' – [•] 15.948'	M1	1.1b
		= awrt <u>13.3</u>	A1	1.1b
			(3)	
(b)		ufort conversion since it is <u>qualitative</u> etric/lots of days with 0 rainfall	B1 B1	2.4 2.4
			(2)	
			(5	marks)
		Notes		
(a)	B1: Identifying z-value for 10th or 90th percentile (allow awrt (±) 1.28) or for identifying $[P_{90} =]29.251$ (awrt 29.3) or $[P_{10} =]15.948$ (awrt 15.9) (This may be implied by a correct answer awrt 13.3) M1: for $2 \times z \times 5.19$ where $1 < z < 2$ or for their $P_{90} - P_{10}$ where $25 < P_{90} < 35$ and $10 < P_{10} < 20$ A1: awrt 13.3			
(b)	 B1: for one variable identified and a correct supporting reason B1: for two variables identified and a correct supporting reason for each Allow any two of the following: Wind speed/Beaufort since the data is <u>non-numeric</u> (o.e.). They need not mention Beaufort provided there is a description of the data as non-numeric (Do not allow wind direction/wind gust) <u>Rainfall</u> as not symmetric/is skewed/is not bell shaped/lots of 0s /many days with no rain/mean≠mode or median Date since each data value appears once/it is uniformly distributed Daily mean <u>pressure</u> since it is not symmetric/is skewed/not bell shaped Daily mean <u>wind speed</u> since it is not symmetric/is skewed/not bell shaped Do not allow 'not continuous' or 'discrete' as a supporting reason. 			

Question	Scheme	Marks	AOs	
16 (a)(i)	$P(X \ge 6) = 1 - P(X \le 5)$ or $P([X =]6) + P([X =]7) + P([X =]8)$	M1	3.4	
	=1-0.296722 awrt <u>0.703</u>	A1	1.1b	
		(2)		
(a)(ii)	$184 \times P(X = 7)$ [= 184×0.2811]	M1	1.1b	
	= 51.7385 awrt <u>51.7</u>	A1	1.1b	
		(2)		
(b)	Part (a) and part (b)(i) are similar and the expected number of 7s (51.7 or 0.281) matches with the number of 7s found in the data set (52 or 0.283) so Magali's model is supported.	B1ft	3.5a	
		(1)		
(c)	$\frac{23}{28} = 0.82142$ awrt <u>0.821</u>	B1	1.1b	
		(1)		
(d)	 Any one of Part (d)/'0.821' differs from part (a)/(b)(i)/(0.7) there is a greater/different probability of high cloud cover/more likely to have high cloud cover if the previous day had high cloud cover independence(o.e.) does not hold 	B1	2.4	
	therefore Magali's (binomial) model may not be suitable.	dB1	3.5a	
		(2)		
		(8 marks)	
	Notes			
	Allow fractions, decimals or percentages throughout	-		
(a)(i)	M1: for writing or using $1 - P(X \le 5)$ or $P(X = 6) + P(X = 7)$ A1: awrt 0.703 (correct answer scores 2 out of 2)	(Y) + P(X = X)	8)	
	A1: awrt 0.703 (correct answer scores 2 out of 2) M1: for $184 \times P(X = 7)$ o.e. e.g., $184 \times [P(X \le 7) - P(X \le 6)]$			
(a)(ii)	A1: awrt 51.7			
(b)	B1ft: comparing '0.717' with '0.703' <u>and</u> '51.7 or '0.281' with 52 or 0.283 and concluding that Magali's model is supported (must be comparing prob. with prob. <u>and</u> days with days). Allow not supported or mixed conclusions if consistent with their f.t. answers in (a) and (b)			
(d)	B1: Any bullet pointdB1: (dep on previous B1) for Magali's model may not be suiCondone not accurate for not suitable	table (o.e.)		
	SC: part (d) is similar to part (a)/(b)(i) and a compatible concluded is supported) to score B1B1.	usion (i.e.	Magali's	

Question	Scheme	Marks	AOs
17(a)	$\frac{24.63 - 25}{'\sigma'} = -1.0364$	M1	3.1b
	$[\sigma =]0.357$ (must come from compatible signs)	A1	1.1b
	P(D > k) = 0.4 or $P(D < k) = 0.6$	B1	1.1b
	$\frac{k-25}{0.357'} = 0.2533$	M1	3.4
	k = awrt <u>25.09</u>	A1	1.1b
		(5)	
(b)	$[Y \sim B(200, 0.45) \rightarrow] W \sim N(90, 49.5)$	B1	3.3
	$\begin{bmatrix} Y \sim B(200, 0.45) \rightarrow \end{bmatrix} W \sim N(90, 49.5)$ $P(Y < 100) \approx P(W < 99.5) \left[= P\left(Z < \frac{99.5 - 90}{\sqrt{49.5}}\right) \right]$	M1	3.4
	= 0.9115 awrt <u>0.912</u>	A1	1.1b
		(3)	
		(8	marks)
	Notes		
(a)	 M1: for standardising 24.63, 25 and 'σ' (ignore label) and setting = to z where 1 < z < 2 A1: [σ =] awrt 0.36. Do not award this mark if signs are not compatible. B1: for either correct probability statement (may be implied by correct answer) this mark may be scored for a correct region shown on a diagram M1: for a correct expression with z = awrt 0.253 (may be implied by correct answer) A1: awrt 25.09 (Correct answer with no incorrect working scores 5 out of 5) 		
(b)	A1: awrt 25.09 (Correct answer with no incorrect working scores 5 out of 5) B1: setting up normal distribution approximation of binomial N(90, 49.5) (may be implied by a correct answer) Look out for e.g. $\sigma = \frac{3\sqrt{22}}{2}$ or $\sigma = \text{awrt } 7.04$ M1: attempting a probability using a continuity correction i.e. P(W < 100.5), P(W < 99.5) of P(W < 98.5) condone \leq (The continuity correction may be seen in a standardisation). A1: awrt 0.912 [Note: 0.911299 from binomial scores 0 out of 3]		

Qu 18	Scheme	Marks	AO		
(a)	The probability of a dart hitting the target is <u>constant</u> (from child to child and	B1	1.2		
	for each throw by each child) (o.e.)				
	The <u>throws</u> of each of the darts are <u>independent</u> (o.e.)	B1	1.2		
		(2)			
(b)	$[P(H \ge 4) = 1 - P(H \le 3) = 1 - 0.9872 = 0.012795 =] $ awrt <u>0.0128</u>	B1	1.1b		
		(1)			
(c)	$P(F=5) = 0.9^4 \times 0.1, = 0.06561$	M1,	3.4		
	= awrt <u>0.0656</u>	A1	1.1b		
		(2)			
(d)	n 1 2 10	M1	2 11		
	$P(F = n) = 0.01$ $0.01 + \alpha$ $0.01 + 9\alpha$	IVI 1	3.1b		
			3.1a		
	Sum of probs = 1 $\Rightarrow \frac{10}{2} [2 \times 0.01 + 9\alpha] = 1$	M1A1	1.1b		
	[i.e. $5(0.02+9\alpha) = 1$ or $0.1+45\alpha = 1$] so $\alpha = 0.02$	A1	1.1b		
		(4)			
(e)	P(F = 5 Thomas' model) = 0.09	B1ft	3.4		
		(1)			
(f)	<u>Peta's</u> model assumes the <u>probability</u> of hitting target is <u>constant</u> (o.e.)	B1	3.5a		
	and <u>Thomas</u> ' model assumes this <u>probability increases</u> with each attempt(o.e.)		5.0 u		
		(1)			
		(11 mark	KS)		
	Notes	·			
(a)	$1^{\text{st}} B1$ for stating that the <u>probability</u> (or possibility or chance) is <u>constant</u> (or f $2^{\text{nd}} B1$ for stating that <u>throws</u> are <u>independent</u> ["trials" are independent is B0]	ixed or sa	me)		
	2 D1 for stating that <u>unows</u> are <u>independent</u> [thats are independent is bo]				
(b)	B1 for awrt 0.0128 (found on calculator)				
(c)	M1 for a probability expression of the form $(1-p)^4 \times p$ where 0				
	A1 for awrt 0.0656				
SC	Allow M1A0 for answer only of 0.066				
(d)	1^{st} M1 for setting up the distribution of F with at least 3 correct values of n and	P(F = n)	in		
	terms of α . (Can be implied by 2 nd M1 or 1 st A1)				
	2^{nd} M1 for use of sum of probs = 1 and clear summation or use of arithmetic ser	ries formul	а		
	(allow 1 error or missing term). (Can be implied by 1 st A1)				
	1 st A1 for a correct equation for α				
	2^{nd} A1 for $\alpha = 0.02$ (must be exact and come from correct working)				
(e)	B1ft for value resulting from $0.01 + 4 \times$ "their α " (provided α and the answer	are probe)			
	Beware If their answer is the same as their (c) (or a rounded version of their (
	22	-,, seare L			
(f)	B1 for a suitable comment about the probability of hitting the target				
ALT	Allow idea that Peta's model suggests the dart may never hit the target but Tho	mas' says	that		
	it will hit at least once (in the first 10 throws).				

Qu 19	Scheme	Marks	AO	
(a)	P(L > 16) = 0.69146 awrt 0.691	B1	1.1b	
		(1)		
(b)	$P(L > 20 L > 16) = \frac{P(L > 20)}{P(L > 16)}$	M1	3.1b	
	$=\frac{0.308537}{(a)}$ or $\frac{1-(a)}{(a)}$, = 0.44621	A1ft, A1	1.1b 1.1b	
	For calc to work require $(0.44621)^4 = 0.03964$ awrt <u>0.0396</u>	dM1	2.1 1.1b	
		A1 (5)	1.10	
(c)	Require: $[P(L>4)]^2 \times [P(L>20 L>16)]^2$	M1 (C)	1.1a	
	$= (0.99976)^2 \times ("0.44621")^2$	A1ft	1.1b	
	= 0.19901 awrt <u>0.199</u> (*)	A1cso* (3)	1.1b	
		(9 mark	s)	
	Notes			
(a)	B1 for evaluating probability using their calculator (awrt 0.691) Accept 0.69	915		
(b)	1 st M1 for a first step of identifying a suitable conditional probability (either	form)		
	1^{st} A1ft for a ratio of probabilities with numerator = awrt 0.309 or $1 - (a)$ and	denom = t	their (a)	
	2 nd A1 for awrt 0.446 (o.e.) Accept 0.4465 (from $\frac{0.3085}{0.691} = 0.44645$)			
	NB $\frac{P(16 < L < 20)}{P(L > 16)} = 0.5538$ scores M1A1A1 when they do $1 - 0.5538 = 0$.	4462		
	2^{nd} M1 (dep on 1 st M1) for 2 nd correct step i.e. (their 0.446) ⁴ or X~B(4, "0.446") and P(X=4) 3 rd A1 for awrt 0.0396			
(c)	1^{st} M1for a correct approach to solving the problem (May be implied by L^{st} A1ft 1^{st} A1ftfor P($L > 4$) = awrt 0.9998 used and ft their 0.44621 in correct expr	/		
	If use $P(L > 20) = 0.3085$ as 0.446 in (b) then M1 for $(0.3085)^2 \times [P(L > 4)]$	$\left(\right) \right]^{2}$; A1ft as	s above	
*	2^{nd} A1cso for 0.199 or better with clear evidence of M1 [NB (0.4662) ² = 0.199 is M0A0A0]			
	Must see M1 scored by correct expression in symbols or values	(M1A1ft)		

Question	Scheme	Marks	AOs
20(a)	[A = no. of bulbs that grow into plants with blue flowers,] $A \sim B(40, 0.36)$	M1	3.3
	$p = P(A \ge 21) = 0.0240$	A1	1.1b
	C = no. of bags with more than 20 bulbs that grow into blue flowers, $C \sim B(5, p)$	M1	3.3
	So $P(C \le 1) = 0.9945$ awrt 0.995	Al	1.1b
		(4)	
(b)	[$T \sim$ number of bulbs that grow into blue flowers] $T \sim B(n, 0.36)$		
	T can be approximated by N($0.36n$, $0.2304n$)	B1	3.4
	$P\left(Z < \frac{244.5 - 0.36n}{\sqrt{0.2304n}}\right) = 0.9479$	M1	1.1b
	$\frac{244.5 - 0.36n}{\sqrt{0.2304n}} = 1.625 \text{ or } \frac{244.5 - 0.36x^2}{0.48x} = 1.625$	M1 A1	3.4 1.1b
	$0.36n + 0.78\sqrt{n} - 244.5 = 0$	M1	1.1b
	<i>n</i> = 625	Alcso	1.1b
		(6)	
		(10 r	narks)
Notes:			
(a) M1: for	selecting an appropriate model for A		
	a correct value of the parameter p for C		
	selecting an appropriate model for <i>C</i>		
	awrt 0.995 correct normal distribution		
	correct use of continuity correction equal to a z value where $ z > 1$		
	standardisation with their μ and σ		
	a correct equation with their μ and δ		
	ng a correct method to solve their 3-term quadratic		
	on its own cso		

Question	Scheme	Marks	AOs
21(a)	$P(L_x > 160) = P\left(Z > \frac{160 - 150}{25}\right)$		
	= P(Z > 0.4)		
	=1-0.6554		
	= awrt 0.345 0.34457	B1	1.1b
	Expected number = $12 \times "0.345"$	M1	1.1b
	= 4.13 (allow 4.14)	A1	1.1b
		(3)	
(b)	$P(L_{\gamma} < 180) = 0.841621$	B1	3.4
	$\frac{180-160}{\sigma} = 0.8416$	M1	1.1b
	$\sigma = $ awrt 23.8	A1	1.1b
		(3)	
(c)	The standard deviations for two companies are close but the mean for company <i>Y</i> is higher	M1	2.4
	therefore choose company <i>Y</i>	A1	2.2b
		(2)	
		(8 n	narks)
Notes:			
	rt 0.345 multiplying their probability by 12 3 (allow 4.14)		
M1: for	use of the correct model to find the correct value of z awrt 0.842 standardising = to a Z value $0.5 < Z < 1$		
A1: awr	a correct reason following their part(b)		
	making an inference that follows their part(b)		
1	- 、 /		

Question	Scheme	Marks	AOs
22(a)	[$H = \text{no. of hours}$] P($H > 10.3$) or P($Z > 1$) = [0.15865]	M1	3.4
	Predict $31 \times 0.15865 = 4.9 \text{ or } 5 \text{ days}$	A1	1.1b
		(2)	
(b)	(5 or) 4.9 days < (7 or) 6.9 days so model may not be suitable	B1	3.5a
		(1)	
		(3 marks)	

Notes:

(a)

- M1: for a correct probability attempted
- A1: for a correct prediction

(b)

B1: for a suitable comparison and a compatible conclusion

Question	Scheme	Marks	AOs
Q23(a)	49 50.75		
	P(L > 50.98) = 0.025	B1cao	3.4
	$\therefore \ \frac{50.98 - \mu}{0.5} = 1.96$	M1	1.1b
	$\therefore \mu = 50$	Alcao	1.1b
	P(49 < <i>L</i> < 50.75)	M1	3.4
	= 0.9104 awrt <u>0.910</u>	A1ft	1.1b
		(5)	
(b)	$S =$ number of strips that cannot be used so $S \sim B(10, 0.090)$	M1	3.3
	$= P(S \le 3) = 0.991166$ awrt 0.991	A1	1.1b
		(2)	
	·	(7	marks)

Ques	stion 23 continued	
Note	S:	
(a)		
1 st M	1: for standardizing with μ and 0.5 and setting equal to a z value ($ z > 1$)	
2 nd M	11: for attempting the correct probability for strips that can be used	
2 nd A	1ft: awrt 0.910 (allow ft of their μ)	
(b)		
M1:	for identifying a suitable binomial distribution	
A1:	awrt 0.991 (from calculator)	

Question	Scheme	Marks	AOs
24 (a)	The seeds would be destroyed in the process so they would have none to sell	B1	2.4
		(1)	
(b)	[$S = no. of seeds out of 24 that germinate, S ~ B(24, 0.55)$]		
	$T =$ no. of trays with at least 15 germinating. $T \sim B(10, p)$	M1	3.3
	$p = P(S \ge 15) = 0.299126$	A1	1.1b
	So $P(T \ge 5) = 0.1487$ awrt <u>0.149</u>	A1	1.1b
		(3)	
(c)	n is large and p close to 0.5	B1	1.2
		(1)	
(d)	<i>X</i> ~N(132, 59.4)	B1	3.4
	$P(X \ge 149.5) = P\left(Z \ge \frac{149.5 - 132}{\sqrt{59.4}}\right)$	M1	1.1b
	= 0.01158 awrt <u>0.0116</u>	Alcso	1.1b
		(3)	
(e)	e.g The probability is very small therefore there is evidence that the company's claim is incorrect.	B1	2.2b
		(1)	
		()	9 marks)
Notes:			
(a) B1: cao			
	selection of an appropriate model for T a correct value of the parameter p (accept 0.3 or better) awrt 0.149		
(c) B1: both	n correct conditions		
	correct normal distribution correct use of continuity correction		
(e) B1: corr	rect statement		

Question Number	Scheme	Marks
25. (a)	$[P(\mu < Y < 17) =] 0.5 - 0.4 = 0.1$	B1
(b)	$P(Y > \mu - \sigma) = P(Z > -1)$	(1) M1
	= 0.841(3) P($\mu - \sigma < Y < 17$) = 0.8413 - 0.4 = <u>0.441</u> (3)	A1 dM1 A1
ALT	$P(Y > \mu - \sigma) = P(Z > -1)$	(4) M1
	$P(Y > 17) = 0.4 \implies Z = \left[\frac{17 - \mu}{\sigma}\right] = 0.25(33471) \text{ so need } P(-1 < Z < 0.25)$	dM1
	Sight of $P(-1 < Z < 0.253) = 0.441(3)$	1 st A1 2 nd A1
		[Total 5]
	Notes	
(a)	B1 for 0.1 as clearly their final answer or clear statement "P($\mu < Y < 17$) = 0.1"	,
	Ignore poor or incorrect notation if answers are correct	
(b)	1 st M1 for an attempt to standardise $\mu - \sigma$ allow for $\pm \frac{(\mu - \sigma) - \mu}{\sigma}$ can be un	-simplified
	1 st A1 for 0.841 or better (calc 0.84134473) <u>or</u> $1 - 0.8413 = 0.1587$ (ad Sight of 0.841(3) or 0.1587 or 0.159 (or better) scores M1 A1	ccept 0.159)
	May be statement e.g. P($Y > \mu - \sigma$) = 0.841(3) or on clearly labelled 2 nd dM1 (dep on 1 st M1) for a correct use of their 0.8413 <u>and</u> the given 0.4 <u>or</u> 0.341(3) + their (a)	l diagram.
	$\underline{\text{or}}$ 0.6 – their 0.1587 2 nd A1 for 0.441 or better (correct answer only 4/4)	
ALT	Standardise $\mu - \sigma$ (and may get $z = -1$) scores 1 st M1 as in scheme	
	Use inv' normal to get $\frac{17 - \mu}{\sigma} = 0.25(33471)$ and write/ attempt P(-1 < Z < 0	.25) 2 nd M1
	Write or attempt P($-1 < Z < 0.253$) also scores 1 st A1 (need 0.253 or better) NB Just standardising and getting 0.2533 etc is no use unless it is part of a con-	rect
	probability statement that would lead to the final answer.	

Question Number	Scheme	Marks
26.	$[W \sim N(140, 40^2)]$	
(a)	$P(W < 92) = P\left(Z < \frac{92 - 140}{40}\right) = \left[P(Z < -1.2)\right]$	M1
	= 1 - 0.8849 = awrt <u>11.5</u> (%) or <u>0.115</u>	dM1,A1 (3)
(b)	$[P(W > q_3) = P(W > 92) \times P(W > q_3 W > 92) =] (1 - (a)) \times 0.25 = 0.8849 \times 0.25$ $= 0.221225 = awrt \ \underline{0.221}$	M1 A1 (2)
(c)	$P(W < q_1 W > 92) = 0.25$ or $P(W > q_1 W > 92) = 0.75$	M1
	$P(92 < W < q_1) = 0.25 \times 0.8849 = "0.221" \text{ or } P(W > q_1) = 0.75 \times 0.8849 = 0.663675$	M1
	$P(W < q_1) = 0.221225 + 0.115 = awrt 0.336 \text{ or } P(W > q_1) = 0.663675 = awrt 0.664$	A1
	$\frac{q_1 - 140}{40} = -0.42 \text{(calculator gives } -0.422513 \sim -0.423404 \text{)}$	M1
	so $q_1 = 123.2 = \text{awrt } \underline{123}$ (g)	A1
		(5)
(d)	0.221 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{2} \times 3!$	M1M1
	0.115 $=\frac{3}{16}$ or 0.1875	A1 (2)
		(3)
	92 9, 140 93 W 123 171 W	[Tot 13]
	Notes	
	Condone poor use of notation etc e.g. " $P > q_1$ " for $P(W > q_1)$ etc	
(a)	1^{st} M1for standardising attempt with 92 or 188, 140 and 40 (o.e.)Accept \pm ignore i 2^{nd} dM1dependent on 1^{st} M1, for attempting $1 - p$ where $0.5 A1for awrt 11.5 (%) or 0.115$	nequality
(b)	M1 for $(1 - \text{their}(a)) \times 0.25$ or $1 - [(1 - (a)) \times 0.75 + (a)] = 1 - [0.8849 \times 0.75 + 0.1]$	151]
(~)	A1 for awrt 0.221	L
(c)	1 st M1 for a correct conditional prob. statement with q_1 , 92 and 0.25 or 0.75	
	2^{nd} M1 for either correct probability statement and 0.25 or 0.75 × (1 – their (a))	
	1 st A1 for $P(W < q_1)$ = awrt 0.336 or $P(W > q_1)$ = awrt 0.664 NB May be standard	dised
	Award M1M1A1 for either probability clearly stated or marked on a correct ske	
	3 rd M1 for standardising with q_1 , 140 and 40 and setting equal to z where 0.40< $ z $	< 0.45
	2 nd A1 for awrt 123 (condone minor slips in working if correct answer obtained)	
(d)	1 st M1 for $0.25 \times 0.25 \times 0.5$ (o.e.) e.g. $\frac{1}{32}$ may be seen as decimals or fractions	
	2^{nd} M1 for $\times 3!$ or $\times 6$ or adding all 6 cases. Must be multiplying probabilities.	
	A1 for $\frac{3}{16}$ or any exact equivalent	

Question Number	Scheme	Marks	
27(a)	Symmetric (or little skew) so normal (or Rika's suggestion) may be suitable	B1ft (1)	
(b)	$\frac{c-50}{10} = 0.8416$ [N.B. use of (1 – 0.8416) is B0]	(1) M1, B1	
	c = 58.416 = (£) 58.42 awrt <u>58.4</u>	A1 (3)	
	Notes	[4]	
(a)	B1ft Suggest normal is or isn't suitable with suitable reason based on (e) or mean and med		
(b)	M1 for standing using "c", 50 and 10 and setting equal to $\pm z$ value where $0.84 \le z \le 0.85$		
	B1 for using $z = \pm 0.8416$ or better (calc gives 0.8416212) in standard' attempt e.g. $\sqrt{10}$ for 10 A1 for awrt 58.4 (accept 3sf here) (Ans only of awrt 58.4 is M1B0A1 but 58.416 or better is 3/3)		

Question Number	Scheme	Marks	
28. (a)	$[P(T > 20) =] P(Z > \frac{20 - 18}{5})$	M1	
	P(Z > 0.4) = 1 - 0.6554 = <u>0.3446</u> or awrt <u>0.345</u>	M1 A1 (3)	
(b)	Require $P(T > 20 T > 15)$ or $\frac{P(T > 20)}{P(T > 15)}$	M1	
	$\frac{"(a)"}{P(Z > \frac{15-18}{5})} = \frac{"(a)"}{P(Z > -0.6)} , = \frac{"0.3446"}{0.7257} \text{ or } \frac{"0.345"}{0.726}$ $= 0.47485 = \text{awrt } \underline{0.475}$	M1, A1ft A1	
(c)	$P(T > d T > 15) = 0.5 \underline{\text{or}} P(T < d T > 15) = 0.5$ $P(T > d) \underline{\text{or}} P(15 < T < d) = 0.5 \times "0.7257" = [0.36285]$ P(T < d) = "0.63715"	(4) M1 A1ft M1	
	So $\frac{d-18}{5} = 0.35$ (calculator gives 0.35085)	A1	
	d = 19.754 = awrt 19.8 (Accept 19 mins 45(secs) or 19:45 but 19.45 is A0)	A1cso (5) [12]	
	Notes		
(a)	1 st M1 for standardising with 20, 18 and 5. Accept \pm 2 nd M1 for attempting $1 - p$ [where $0.5]. Beware 1 - 0.4 (or their z vaA1 for awrt 0.345 (Correct ans only 3/3)$	alue) is M0	
(b)	1^{st} M1for either correct conditional probability statement (allow "in words" or any letter except Z) 1^{st} M1 can be implied by 2^{nd} M1 so a mark of M0M1 should not be given. 2^{nd} M1for using their (a) on num. and attempting to standardise $P(T > 15)$ (no \pm) on denom. Num.>Deno. is M0Allow one digit transcription errors from (a) e.g. 0.3464 or 0.3466 etc for 2^{nd} M1 and 1^{st} A1ft 1^{st} A1ft for their 0.3446 on numerator and denominator of 0.7257 (or better: 0.7257469) provided Num < Denom. Allow 0.726 on the denominator Sight of $\frac{"0.3446"}{0.7257 \text{ or } 0.726}$ will score M1M1A1ft 2^{nd} A1for awrt 0.475		
(c)	1 st M1 for a correct conditional probability statement that includes the 0.5 1 st A1ft for P($T > d$) or P(15 < $T < d$) = 0.5 × their P($T > 15$) [provided P($T > 15$) > 0.5] Follow through (3sf) their P($T > 15$) = 0.7257 or better from part (b). (Allow 0.726) Sight of 0.5 × their 0.7257 = "0.36285" or better scores 1 st M1 and 1 st A1ft (Allow 0.363) 2 nd M1 (dep on 1 st M1) for P($T < d$) = 1 - "0.36285" <u>or</u> "0.36285" + 1 - "0.7257" = [0.6371~0.6372] Sight of their 0.63715 or better (calc: 0.637126) scores first 3 marks (Allow 0.637) 2 nd A1 for $\frac{d-18}{5}$ = 0.35 (or better) (Calc could give 0.350788) 3 rd A1cso for ($d =$) awrt 19.8 (accept 19.7 not awrt 19.7) Must come from correct work.		
Beware!	$0.5 \times 0.7257 = 0.36285$ and using <u>this</u> (instead of 0.35) as z value leads to 19.8 b	out is A0A0	

Question Number	Scheme	Marks	S
29(a)	$[P(W < 3) = P\left(Z < \frac{-0.43}{0.65}\right)] = P(Z < -0.6615)$	M1	
	= 1 - 0.7454 (tables)	M1	
	= 0.2546 awrt 0.254~0.255	A1	
		D.	(3)
(b)		B1	
	(d) = 0.254 or 0.255 compare data = 0.18 (or 12.7 compared with 9)	B1 dB1	
	0.18 different from 0.25 so normal not good or 0.18 similar to 0.25 so normal is OK	uы	(3)
(c)(i)	No change in mean (since weight is the same)	B1	(\mathbf{J})
(ii)	s.d. will decrease (Extra value is at "centre" so data more concentrated)	B1	
	Both statements correct and correct reasons for each	dB1	(3)
		[9 marl	KS]
	Notes		
(a)	1^{st} M1for an attempt to standardise with 3, 3.43 and 0.65. Allow \pm and also use of their sd 2^{nd} M1for $1 - p$ where $0.74 NB calculator gives 0.7458665A1for awrt 0.254 or 0.255$		
(b)	1^{st} B1 for a statement about mean/median and compatible comment about normal 2^{nd} B1 for statement comparing their (d) with data (sight of 0.18 or 12.7 and 9 required) 3^{rd} dB1 dep on 2^{nd} B1 for conclusion about normal compatible with 2^{nd} statement		
(c)(i) (ii)	 1st B1 for no change in mean {send a correct argument for <u>decrease</u> to review} 2nd B1 for s.d. decreases 3rd dB1 dep on 1st and 2nd Bs for a correct reason for <u>both</u> mean <u>and</u> sd e.g. "new mean the same so within 1 s.d. of old mean" 		

Question Number	Scheme	Marks	
30.(a)	[$T \sim N (240, 40^2)require P(T > 300)$] P $\left(Z > \frac{300 - 240}{40}\right)$	M1	
	$=1-P(Z < 1.5) \text{ or } 1-0.9332$ $= \text{awrt } \underline{0.0668} \text{ or } 6.68\%$	M1 A1 (3)	
(b)	$\left[P(T < n) = 0.20 \Longrightarrow \right] \frac{n - 240}{40} = -0.8416$	M1 B1	
	n = awrt <u>206</u> minutes	A1 (3)	
(c)	$[P(W < \mu - 30 W < \mu) =] \frac{P(W < \mu - 30)}{P(W < \mu)}$	M1	
	$=rac{1-0.82}{0.50}$	A1	
	= <u>0.36</u>	A1cao (3)	
	Notes	[9 marks]	
(a)	1 st M1 for standardising with 300, 240 and 40. May be implied by use of 1. 2 nd M1 for $1 - P(Z < "1.5")$ i.e. a correct method for finding $P(Z > "1.5")$ e.g. $1 - p$ where $0.5A1 for awrt 0.0668 (Answer only 3/3)$	5 Allow <u>+</u>	
(b)	 M1 for an attempt to standardise with 240, 40 and n and set = ± z (0.8 < z < 0.9) B1 for z = ± 0.8416 (or better) used as a z value. Do not allow for 1 0.8416 Calc gives 0.8416212[May be implied by awrt 206.34, give B1 as well as A1 if seen] A1 for awrt 206 (can be scored for using a z value of 0.84 or even 0.85) Must follow from correct working but a range of possible z values are OK 		
Ans only	If answer is awrt 206 score M1B0A1 (unless of course $z = 0.8416$ seen) but awrt 20)6.34 scores 3/3	
(c)	M1 for the correct ratio expression (Not $P([W < 30 - \mu] \cap [W < \mu])$ on numerator) Condone use of Z instead of W only if they later get a correct numerical ratio otherwise M0 However they may write $P(Z < \frac{-30}{\sigma})$ etc which is of course fine 1 st A1 for a correct numerical ratio		
Use tables ALT	May see use of $z = 0.92$ or better (calc: 0.9153650) or $\sigma = 32.6 \sim 32.8$ 1^{st} M1 for $\frac{P(Z < -0.92)}{P(Z < 0)}$ and 1^{st} A1 for $\frac{1 - 0.8212}{0.5}$ or $\frac{0.1788}{0.5}$ 2^{nd} A1 for 0.36 or an exact equivalent e.g. $\frac{9}{25}$ (Answer only M1A1A0)	allow:	
	The final answer of 0.36 <u>must</u> come from exact values; 0.36 rounded from 0.	3576 etc is A0	

Question	Scheme	Marks
31. (a)(i)	P(A) = P(Z > 1.1) = 1 - 0.8643 = 0.1357 (accept awrt 0.136)	B1
(ii)	P(B) = P(Z > -1.9) = 0.9713 (accept awrt 0.971)	B1
(iii)	$P(C) = [P(-1.5 < Z < 1.5)] = 0.9332 - (1 - 0.9332) \text{ or } (0.9332 - 0.5) \times 2$ $= 0.8664 \text{ (accept awrt } 0.866)$	M1 A1
(iv)	$P(A \cup C) = P(Z > -1.5) \underline{\text{or}} P(Z < 1.5) \underline{\text{or}} \\ = P(A) + P(C) - P(A \cap C) = "0.1357" + "0.8664" - (0.9332 - 0.8643) \\ = \underline{0.9332} (\text{accept awrt } 0.933)$	M1 A1 (6)
(b)	$\left[P(X > w \mid X > 28) = \right] \frac{P(X > w)}{P(X > 28)} = \left[0.625 \right]$	M1
	$P(X > 28) = P\left(Z > \frac{28 - 21}{5}\right) = P(Z > 1.4) = [0.0808 \text{ calc: } 0.80756]$	M1
	$P(X > w) = 0.0808 \times 0.625 \ (= 0.0505) \ or (P(X < w) = 0.9495)$	A1
	$\frac{w-21}{5} = 1.64$	M1 B1
	w = awrt 29.2	A1 (6)
		(12 marks)
	Notes	
	Mark final answer here so in (ii) 0.9713 followed by $1 - 0.9713$ is B0 but the errors e.g. 29.245 followed by 29.3 apply ISW and award for 29.245	for rounding
(a)(iii)	M1 for correct expression with probability values . Correct ans implies M	1A1
(iv)	M1 for a correct addition formula with <u>some</u> correct substitution (or correct <u>or</u> $P(Z > -1.5)$ (o.e) <u>or</u> for a fully correct expression with correct provide A1 for 0.9332 (accept 0.933) Correct answer only is M1A1	
(b)	M1 for correct expression for conditional probability- must have $P(X > w)$ May be implied by $P(X > w) = 0.625 \times (any probability)$ M1 for standardising 28 with 21 and 5 Allow <u>+</u> (May be implied by 0.0808 [or awrt 0.081] seen in correct position) A1 for $P(X > w) = 0.0808 \times 0.625$ or $P(X > w) = 0.0505$ or $P(X < w) = 0.95$ This A1 depends on both Ms but seeing $P(X > w) = 0.0808 \times 0.625$ scores	9495) s M1M1A1
1 st 3 marks	Allow $P\left(Z > \frac{w-21}{5}\right)$ instead of $P(X > w)$ for these first 3 mark	KS
	 M1 for standardising w with 21 and 5 (allow <u>+</u>) and setting equal to a z-val Allow any letter instead of w B1 for 1.64 (or better) used correctly. [Calculator gives: 1.6402851] 	lue <i>z</i> >1
	A1 allow awrt 29.2	

Question Number	Scheme	Marks
32 (a)	The random variable $H \sim$ height of females $P(H > 170) = P\left(Z > \frac{170 - 160}{8}\right) [= P(Z > 1.25)]$	M1
	=1-0.8944	M1 A1
(b)	$= 0.1056 (\text{calc } 0.1056498) \qquad \text{awrt } 0.106 \text{ (accept } 10.6\%)$ $P(H > 180) = P\left(Z > \frac{180 - 160}{8}\right) [= 1 - 0.9938]$	(3) M1
	$= 0.0062 (calc \ 0.006209) \qquad awrt \ 0.0062 \ or \ \frac{31}{5000}$	A1
	$[P(H > 180 H > 170)] = \frac{0.0062}{0.1056}$	M1
	= 0.0587 (calc 0.0587760) awrt 0.0587 or 0.0588	A1 (4)
(c)	$\Gamma(\Pi \times \Pi \times 0)$	M1
	$[P(H > h)] = 0.5 \times "0.1056" = 0.0528 \text{ (calc } 0.0528249) \text{ or } [P(H < h)] = 0.9472$ $\frac{h - 160}{8} = 1.62 \text{ (calc } 1.6180592)$	A1ft M1 B1
	h = awrt 173 cm awrt 173	A1 (5)
		Total 12
(a)	Notes 170 160	
(a)	1 st M1 for attempt at standardising with 170, 160 and 8. Allow \pm i.e. for $\pm \frac{170-160}{8}$	
	2^{nd} M1 for attempting $1 - p$ where $0.8 . Correct answer only 3/3$	
(b)	 1st M1 for standardising with 180, 160 and 8 1st A1 for 0.0062 seen, maybe seen as part of another expression/calculation. 	
	2^{nd} M1 using conditional probability with denom = their (a) and num < their denom. <u>Values</u> n 2^{nd} A1 for awrt 0.0587 <u>or</u> 0.0588. Condone 5.87% or 5.88% or $\frac{31}{528}$ Correct answer only 4/4	eeded.
(c)	1 st M1 for a correct conditional probability statement. Either line and don't insist on 0	.5, ft (a)
	1 st A1ft for $[P(H > h)] = 0.5 \times \text{their}(a)$ Award M1A1ft for correct evaluation of $0.5 \times \text{their}(a)$ or sight of 0.0528 or better	
	2^{nd} M1 for attempt to standardise (<u>+</u>) with 160 and 8 and set equal to <u>+</u> z value (1.56 <	z < 1.68)
	B1 for $(z =)$ awrt ± 1.62 (seen)	
	2^{nd} A1 for awrt 173 but dependent on <u>both</u> M marks.	

Question Number	Scheme	Marks
33	(i) $P(Y = 10) = 0$	B1
	(ii) $P(Y < 10) = \frac{1}{2}$	B1
		(2) [Total 2]

Question Number	Scheme	Mar	ks
34. (a)	24 and 28 (above the mean)	B1	
	0.80 For 0.80 and 0.05 (clearly indicated)	B1	(2)
(b)	15%	B1	(1)
(c)(i)	$\frac{(28-\mu)}{\sigma} = 1.64(49)$ or $\frac{(24-\mu)}{\sigma} = 0.84(16)$	M 1	
	σ σ σ 0.8416 and 1.6449 seen	B1	
	$\mu = 28 - 1.64(49)\sigma$, $\mu = 24 - 0.84(16)\sigma$	A1,A1	
(ii)	$24 - 0.8416\sigma = 28 - 1.6449\sigma$ eliminating μ or σ	M1	
	$\sigma = 4.9794597$ awrt 4.98	A1	
	$\mu = 19.809286$ awrt 19.8	A1	
(d)	$z = \frac{(12 - 19.8')}{4.97'}$	M1	(7)
	P(Z < -1.57) = 1 - P(Z < 1.57)	dM1	
	1 - 0.9418 = 0.0582 awrt 0.06	A1	(3)
		[Total	13]
	Notes		
(a)	1 st B1 24 and 28 labelled on the horizontal axis above the mean in the co They must clearly indicate where 24 and 28 are on the horizontal axis		ler.
(b)	2^{nd} B1 for clear, correct labelling of probabilities. Must be associated with cor		
(c)	B1 for 15% or 0.15 NB 0.15% is B0 $\pm (28 - \mu) \pm (24 - \mu)$		
	1 st M1 for $\frac{\pm (28 - \mu)}{\sigma} = z_1$ or $\frac{\pm (24 - \mu)}{\sigma} = z_2$ where $ z_1 > 1.5$ and $ z_2 $	< 1	
	Condone $z_2 = 0.8$		
	B1 for both values 0.8416 and 1.6449 or better seen. Calc: 0.8416212, 1 st A1 for $\mu = 28 - 1.64(49)\sigma$ or any correct arrangement (allow 1.64 ~1.65 in		3
	2^{nd} A1 for $\mu = 24 - 0.84(16)\sigma$ or any correct arrangement (allow 0.84 or		
	2^{nd} M1 for an attempt to solve simultaneous equations by eliminating μ or		
	3^{rd} A1 for awrt 4.98 (Condone $\sigma = 5$ or awrt 5.0 if B0 scored)		
SC	4 th A1 for awrt 19.8		
	For use of 0.84 and 1.64 giving $\sigma = 5$ and $\mu = awrt 19.8$ score M1B0A1.		
(d)	or 0.84 and 1.65 giving σ = awrt 4.94 and μ = awrt 19.9 score M1B0A1A	AIMIAI	AI
	1 st M1 for standardising with 12, their μ and σ provided $\sigma > 0$		
	If $\sigma < 0$ from their equations in (c) allow M1 if they use $ \sigma $		
	2^{nd} dM1 for $1-P(Z < 1.57)$ dependent on the 1^{st} M1 being scored i.e. leads t	o prob <	0.5
	A1 for awrt 0.06 from correct working		

Ques	stion	Scheme	Marks		
35.	(a)	[Let X be the amount of beans in a tin. $P(X < 200) = 0.1$]			
		$\frac{200 - \mu}{7.8} = -1.2816$ [calc gives 1.28155156]	M1 B1		
		$\mu = 209.996$ awrt 210	A1		
			(3)		
	(b)	$P(X > 225) = P\left(Z > \frac{225 - "210"}{7.8}\right)$	M1		
		$= P(Z > 1.92) \underline{\text{or}} 1 - P(Z < 1.92) $ (allow 1.93)	A1		
		= 1 - 0.9726 = 0.0274 (or better) [calc gives 0.0272037] = 0.0274			
		= awrt <u>2.7%</u> allow <u>0.027</u>	A1		
			(3)		
	(c)	[Let <i>Y</i> be the new amount of beans in a tin]			
		$\frac{210-205}{\sigma} = 2.3263 \text{or} \frac{200-205}{\sigma} = -2.3263 \text{[calc gives } 2.3263478]}{\sigma = \frac{5}{2.3263}}$	M1 B1		
		$\sigma = \frac{5}{2}$	dM1		
		2.3263			
		$\sigma = 2.15$ (2.14933)	A1		
			(4) (10 marks)		
		Notes			
		Condone poor handling of notation if answers are correct but A marks must have corr	ect working.		
	(a)	M1 for an attempt to standardise (allow \pm) with 200 and 7.8 and set = \pm any z va			
		B1 for $z = \pm 1.2816$ (or better used as a <i>z</i>)[May be implied by 209.996(102) of	r better seen]		
		A1 for awrt 210 (can be scored for using 1.28 but then they get M1B0A1)			
		The 210 must follow from correct working – sign scores A0 If answer is awrt 210 and 209.996 or better seen then award M1B1A1			
		z = 1.28 gives 209.984 and $z = 1.282$ gives 209.9996 and both score M1B0A1			
		If answer is awrt 210 or awrt 209.996 then award M1B0A1 (unless of course $z = 1$.2816 is seen)		
			.2010 15 50011)		
	(b)	M1 for attempting to standardise with 225, their mean and 7.8. Allow \pm			
		1^{st} A1 for Z > awrt 1.92/3. Allow a diagram but must have 1.92/3 and correct area	indicated.		
		Must have the Z so $P(X > 225)$ with or without a diagram is not sufficient.			
		Award for $1 - 0.9726$ or $1 - 0.9732$	2/2		
		2 nd A1 for 2.7 % or better (calculator gives 2.72) Allow awrt 0.027. Correct ans	scores 3/3		
	(c)	1 st M1 for an attempt to standardise with 200 or 210, 205 and σ and set = \pm any z va	alue $(z > 2)$		
		B1 for $z = 2.3263$ (or better) and compatible signs.	<u> </u>		
		If B0 in (a) for using a value in [1.28, 1.29) but not using 1.2816: allow awrt 2.33 here			
		2^{nd} dM1 Dependent on the first M1 for correctly rearranging to make $\sigma =$ May	be implied		
		e.g. $\frac{5}{\sigma} = 2.32 \rightarrow \sigma = 2.16 \text{ (M1A0)}$ BUT must have $\sigma > 0$			
		A1 for awrt 2.15. Must follow from correct working but a range of possible z with $z = 2.221$ with $z = 2.221$	alues will do.		
		NB $2.320 < z \le 2.331$ will give an answer of awrt 2.15			

Ques	tion	Scheme	Marks	3		
36.	(a)	$\left[P(M < 145) = \right] P\left(Z < \frac{145 - 150}{10} \right)$	M1			
		= P(Z < -0.5) or P(Z > 0.5)				
		= awrt <u>0.309</u>		(3)		
	(b) $\left[P(B > 115) = 0.15 \Rightarrow \right] \frac{115 - 100}{d} = 1.0364$ (Calc gives 1.03643)					
	(~)		M1B1A1			
		$\underline{d = 14.5}$ (Calc gives 14.4727)	A1 (4))		
	(c)	$[P(X > \mu + 15 X > \mu - 15) =] \frac{P(X > \mu + 15)}{P(X > \mu - 15)}$	M1			
		$=\frac{0.35}{1-0.35}$	A1			
		$=\frac{7}{13}$ or <u>awrt 0.538</u>	A1 ((3)		
			[10]			
		Notes				
	(a)	Condone poor use of notation if a correct line appears later. M1 for standardising with 145, 150 and 10. Allow \pm and use of symmetry so 155 instead of 145 1^{st} A1 for P(Z < -0.5) or P(Z > 0.5) i.e. a <i>z</i> value of \pm 0.5 and a correct region indicated 2^{nd} A1 for awrt 0.309 Answer only is 3/3				
	(b)	M1 for $\pm \frac{115-100}{d} = z$ where $ z > 1$ Condone MR of $\mu = 150$ instead of 100 for	r M1B1onl	y		
(Calc	B1 for a standardised expression = ± 1.0364 (do not allow for use of 1 – 1.0364) 1 st A1 for z = awrt 1.04 and compatible signs i.e. a correct equation with z = awrt 1.04 2 nd A1 for awrt 14.5 (allow awrt 14.4 if z = awrt 1.04 is seen) Answer only of awrt 14.473 scores M1B1A1A1 Answer only of awrt 14.48 scores M1B0A1A1				
	(c)	M1 for a correct ratio expression need $P(X > \mu + 15)$ on numerator. Allow use of a value for μ May be implied by next line. NB $\frac{0.35 \times 0.65}{0.65} = \frac{0.2275}{0.65}$ is M0 1^{st} A1 for a correct ratio of probabilities 2^{nd} A1 for a wrt 0.538 or $\frac{7}{13}$ (o.e.). Allow 0.5385 provided 2^{nd} A1 is scored.				
		$2 \text{ AT 101 a wrt 0.550 01}_{13}$ (0.0.). Allow 0.5505 provided 2 AT is scoled.				

Question Number	Scheme	Marks	
37. (a)	$\frac{127 - 100}{15}$ So P(L > 127) = P(Z > 1.8) or 1-P(Z < 1.8) o.e. = 1 - 0.9641 = <u>0.0359</u> (awrt <u>0.0359</u>)	M1 A1 A1 (3)	
(b)	(b) $\frac{d-100}{15} = -1.2816$ (Calculator gives -1.2815515) d = 80.776 (awrt <u>80.8</u>)		
(c)	Require $P(L > 133 L > 127)$ $= \left[\frac{P(L > 133)}{P(L > 127)} \right] = \frac{P(Z > 2.2)}{P(L > 127)}$ $= \left[\frac{1 - 0.9861}{1 - 0.9641} \right] = \frac{0.0139}{[0.0359]}$ $= 0.3871 = awrt 0.39$	(3) M1 dM1 A1 A1	
S.C.	An attempt at P($L < 133 L > 127$) that leads to awrt 0.61 (M0M1A0A0)	(4) 10	
(a)	NotesM1for attempting to standardise with 127, 100 and 15 . Allow \pm 1 st A1for $Z > 1.8$. Allow a diagram but must have 1.8 and correct area indicated.Must have the Z so P(L > 127) with or without a diagram is insufficient. May be implied by 0.03592 nd A1for awrt 0.0359 (calc. gives 0.035930266). Correct ans only 3/3. M1A0A1 not poss.		
(b) Calc	B1for $z = \pm 1.2816$ (or better) seen anywhere [May be implied by $80.776(72)$ or better seen]A1for awrt 80.8 (can be scored for using 1.28 but then they get M1B0A1)The 80.8 must follow from correct working.If answer is awrt 80.8 and awrt 80.777 or 80.776 or better seen then award M1B1A1		
(c)	If answer is awrt 80.8 or 80.77 then award M1B0A1 (unless of course $z = 1.2816$ is seen) 1 st M1 for clear indication of correct conditional probability or attempt at correct ratio So clear attempt at $\frac{P(L > 133)}{P(L > 127)}$ is sufficient for the 1 st M1 2 nd dM1 dependent on 1 st M1 for P(L > 133) leading to P(Z > 2.2). 1 st A1 for 0.0139 or better seen coming from P(Z > 2.20). Dependent on both Ms 2 nd A1 for awrt 0.39. Both Ms required		
ALT	If they assume Alice did not check that the phone was working you may see: [P(L < 127).0] + P(L > 127).P(L > 133 L > 127) Provided the <u>conditional probability</u> as part of this calculation the 1 st M1 can be scored and their final answer will be 0.0 An answer of 0.0139 without sight of the conditional probability is 0/4.		

Question Number	Scheme	Marks		
38. (a)	$z = \pm \frac{80}{150}$	M1		
	$P(240 < X < 400) = 0.40 \sim 0.41$	A1		
(b)	(e) suggests a reasonable fit for this range BUT(d) since skew it will not be a good fit overall	(2) B2/1/0 (2) 4		
	Notes			
(a)	 A) M1 for an attempt to standardise using the 320 and 150 and either 240 or 400 (implied by 0.53) A1 for answer in range [0.40, 0.41] (tables gives 0.4038, calculator 0.40619) Ans only 2/2 			
(b)	For B2 we need 2 comments that make reference to each of part (e) and part	urt (d)		
	One comment should suggest it is not good since skew. The other it is since matches range in (e)			
	1 st B1 for one relevant comment			
	2 nd B1 for both comments NB Do not use B0B1			

Questio	n Scheme	Marks		
39. (a	$\begin{bmatrix} z = \end{bmatrix} \pm \begin{bmatrix} -7.5 \end{bmatrix}$	M1		
	[z=]-1.6	A1		
	[P(F > 150) = P(Z > -1.6) =] = 0.9452(0071) awrt <u>0.945</u>	A1 (3)		
($z = \pm 0.2533$ (or better seen)	B1		
	$(\pm)\frac{s-162}{7.5} = 0.2533(47)$ s = 163.9 awrt <u>164</u>	M1		
	s = 163.9 awrt <u>164</u>	A1 (3)		
(z = ± 1.2816 (or better seen) $\frac{162 - \mu}{9} = -1.2815515$	B1 M1 A1		
	$\mu = 173.533$ awrt <u>174</u>	A1 (4)		
		[10]		
	Notes 0 M1 for attempting to standardise with 150, 162 and 7.5. Accept <u>+</u>			
	Allow use of symmetry and therefore 174 instead of 150 1 st A1 for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.945(2) is A1. 2 nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 – 0.9452 then award A0 Correct answer only 3/3			
()	 B1 for (z =) ± 0.2533 (or better) seen. Giving z = ± 0.25 or ± 0.253 scores B0 here but may get M1A1 M1 for standardising with s (o.e.), 162 and 7.5, allow ±, and setting equal to a z value Only allow 0.24 ≤ z ≤ 0.26 Condone e.g. 160 for 162 etc A1 for awrt 164 (Correct answer only scores B0M1A1) 			
(c) B1 for $(z =) \pm 1.2816$ (or better) seen. Allow awrt ± 1.28 if B0 scored in (b) for $z = awrt \pm 0.25$ M1 for attempting to standardise with 162, 9 and μ , and setting equal to a z value where $1.26 < z < 1.31$. Allow \pm here so signs don't have to be compatible. 1^{st} A1 for a correct equation with compatible signs and $1.26 < z < 1.31$ 2^{nd} A1 for awrt 174 (Correct answer only scores B0M1A1A1). Dependent on 1st A1			
	An equation $\frac{162 - \mu}{9} = 1.2816$ leading to an answer of $\mu = 174$ is A0A0 <u>unless</u> there is clear			
	correct working such as: $\frac{162 - x}{9} = 1.2816 \Rightarrow x = \dots \therefore \mu = 162 + (162 - x) = 174$ then	award A1A1		
N	NB A common error is: $\frac{162 - \mu}{9} = 1.2816$ followed by $\mu = 162 + 9 \times 1.2816 = a \text{ wrt } 174$ It g			
	A0A0			

Question Number	Scheme	Marks
40 (a)	P(W < 224) = P $\left(z < \frac{224 - 232}{5}\right)$ = P (z < -1.6)	M1
	= 1 - 0.9452	M1
	= 0.0548 awrt 0.0548	A1
(b)	0.5 - 0.2 = 0.3 0.3 or 0.7 seen	(3) M1
	$\frac{w-232}{5} = 0.5244$ 0.5244 seen	B1; M1
	w = 234.622 awrt 235	A1
(c)	$0.2 \times (1 - 0.2)$ 2 \times 0.8 \times (1 - 0.8) = 0.32	(4) M1 M1 A1
		(3) Total 10
NOTES		10(4) 10
(a)	M1 for standardising with 232 and 5. (i.e. not 5^2 or $\sqrt{5}$). Accept $\pm \frac{w-232}{5}$.	
	M1 for finding (1- a probability > 0.5) A1 awrt 0.0548	
(b)	M1 Can be implied by use of ± 0.5244 or $\pm (0.52 \text{ to } 0.53)$ B1 for ± 0.5244 only. Second M1 standardise with 232 and 5 and equate to z value of (0.52 to 0.53) or (0.84 to 0.85) 1 - z used award second M0. Require consistent signs i.e. $\frac{232 - w}{5} = -0.5244$ or negative z value for M1.	
	A1 dependent upon second M mark for awrt 235 but see note below. Common errors involving probabilities and not z values: P(Z<0.2) = 0.5793 used instead of z value gives awrt 235 but award M0B0M0A0 P(Z<0.8) = 0.7881 used instead of z value award M0B0M0A0. M1B0M0A0 for 0.6179, M1B0M0A0 for 0.7580	
(c)	M1 for 0.16 seen M1 for $2 \times p(1-p)$ ' A1 0.32 correct answer only	

Question Number	Scheme	Marks	
41. (a)	$\frac{23 - \mu}{5} = "1.40" \text{(o.e)}$ $\frac{\mu = 16}{16.0} \text{(or awrt)}$	B1 M1A1ft A1	
(b)	0.4192	(4) B1 (1)	
	Notes		
(a)	SourceNotesB1for awrt ± 1.40 or better seen anywhere. Condone 1.4 instead of 1.40M1for awrt ± 1.40 or better seen anywhere. Condone 1.4 instead of 1.40M1for awrt ± 1.40 or better seen anywhere. Condone 1.4 instead of 1.40M1for awrt ± 1.40 or better seen anywhere. Condone 1.4 instead of 1.40M1for awrt ± 1.40 or better seen anywhere. Condone 1.4 instead of 1.40M1for awrt ± 1.40 or better seen anywhere. Condone 1.4 instead of 1.40M1for awrt $\pm 23 - \mu$ $e.g.$ $\frac{23 - \mu}{5} = 1.40$ can score B1M0 (since using 25 not 5 for standardising)Caracter between associate between associated by the second standardised		
(b)	B1 for 0.4192 (but accept 3sf accuracy if 0.9192 – 0.5 is seen)		

Question	Scheme	Marks		
Number				
42. (a)	$(z = \pm) \frac{15 - 16.12}{1.6} (= -0.70)$ P(Z < -0.70) = 1 - 0.7580	M1		
	P(7 < -0.70) = 1 - 0.7580	M1		
	$= 0.2420 \qquad (awrt 0.242)$	A1		
		(3)		
(b)	[P($T < t$)=0.30 implies] $z = \frac{t - 16.12}{1.6} = -0.5244$	M1 A1		
	$\frac{t-16.12}{1.6} = -0.5244 \implies t = 16.12 - 1.6 \times "0.5244"$	M1		
	$t = awrt \ 15.28$ (allow awrt 15.28/9)	A1		
		(4)		
		7		
	Notes			
	Allow slips e.g. 16.2 for 16.12 for 1 st M1 in (a) and (b)			
(a)	$1^{\text{st}}_{\text{rd}}$ M1 for standardising expression with 15, 16.12 and 1.6 - allow <u>+</u>			
	2^{nd} M1 for 1 - a probability (> 0.5) from tables or calculator based on the	eir standardised		
	value			
	Correct answer only scores 3/3			
	In part (b) they can use any letter or symbol instead of	t		
(b)	1 st M1 for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value	g equal to a z		
	1 st A1 for an equation with $z = \pm 0.5244$ or better			
	e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0)			
	2 nd M1 for solving <u>their</u> linear equation as far as $t = a \pm b \times 1.6$. Not dep M1	endent on 1 st		
	e.g. solving $\frac{t-16.12}{1.6} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ scores this	s M1		
	Allow $\frac{t-16.12}{1.6^2} = 0.3$ to give $t = 16.12 + 1.6^2 \times 0.3$ to score M1 to	0		
	2 nd A1 dependent on both M marks. Allow awrt 15.28 or awrt 15.29			
	Condone awrt 15.3 if a correct expression for $t =$ is seen.			
	Answers with no working:			
	15.28 is M1A1M1A1, 15.29 is M1A0M1A1, 15.3 is M1A0M	IA0		
l				

Question	Scheme	Marks
Number 43.		
(a)	$P(X > 168) = P\left(Z > \frac{168 - 160}{5}\right)$	M1
	= P(Z > 1.6)	A1
	= 0.0548 awrt 0.0548	A1 (3)
(b)	$P(X < w) = P\left(Z < \frac{w - 160}{5}\right)$	
	$\frac{w - 160}{5} = -2.3263$	M1 B1
	$5 \\ w = 148.37$ awrt 148	A1 (3)
(c)	$\frac{160-\mu}{\sigma} = 2.3263$	M1 B1
	$\frac{152-\mu}{\sigma} = -1.2816$	B1
	$160 - \mu = 2.3263\sigma$	
	$152 - \mu = -1.2816\sigma$ $8 = 3.6079\sigma$	M1
	$\sigma = 2.21$ awrt 2.22	A1
	$\mu = 154.84$ awrt 155	A1 (6)
		[12]
	Notes	
(a)	M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm \left(\frac{168-160}{5}\right)$	or implied by 1.6
	1 st A1 for $P(Z > 1.6)$ or $P(Z < -1.6)$ ie $z = 1.6$ and a correct inequality or 1.6 diagram	on a shaded
(b)	Correct answer to (a) implies all 3 marks	
(6)	M1 for attempting $\pm \left(\frac{w-160}{5}\right) = \text{recognizable } z \text{ value } (z > 1)$	1.00
	B1 for $z = \pm 2.3263$ or better. Should be $z = \dots$ or implied so: $1 - 2.3263 = \frac{v}{2}$	
(c)	A1 for awrt 148. This may be scored for other z values so M1B0A1 is poss For awrt 148 only with no working seen award M1B0A1 M1 for attempting to standardize 160 or 152 with μ and σ (allow <u>+</u>) and e	l
(-)	(z >1)	
	$1^{\text{st}} B1$ for awrt + 2.33 or + 2.32 seen	
	2^{nd} B1 for awrt ± 1.28 seen	
	2^{nd} M1 for attempt to solve their two linear equations in μ and σ leading to	equation in just
	one variable	
	1 st A1 for σ = awrt 2.22. Award when 1 st seen 2 nd A1 for μ = awrt 155. Correct answer only for part (c) can score all 6 m	arka
	2^{nd} A1 for μ = awrt 155. Correct answer only for part (c) can score all 6 m NB σ = 2.21 commonly comes from z = 2.34 and usually scores M1	
	The A marks in (c) require both M marks to have been ear	
	The remains in (c) require som in murits to nuve been cur	

Question Number	Scheme	Marks
44 (a)	$P(D > 20) = P\left(Z > \frac{20 - 30}{8}\right)$	M1
	= P(Z > -1.25)	A1
	= <u>0.8944</u> <u>awrt 0.894</u>	A1 (3)
(b)	$P(D < Q_3) = 0.75$ so $\frac{Q_3 - 30}{8} = 0.67$	M1 B1
	$Q_3 = $ awrt <u>35.4</u>	A1 (3)
(c)	$35.4 - 30 = 5.4$ so $Q_1 = 30 - 5.4 = $ awrt <u>24.6</u>	B1ft (1)
(d)	$Q_3 - Q_1 = 10.8$ so $1.5(Q_3 - Q_1) = 16.2$ so $Q_1 - 16.2 = h$ or $Q_3 + 16.2 = k$	M1
	$h=\underline{8.4 \text{ to } 8.6}$ and $k=\underline{51.4 \text{ to } 51.6}$ both	A1 (2)
(e)	2P(D > 51.6) = 2P(Z > 2.7)	M1
	= 2[1 - 0.9965] = awrt 0.007	M1 A1 (3)
		Total 12
(a)	M1 for an attempt to standardise 20 or 40 using 30 and 8. 1^{st}A1 for $z = \pm 1.25$ 2^{nd}A1 for awrt 0.894	
(b)	M1 for $\frac{Q_3 - 30}{8}$ = to a <i>z</i> value	
	M0 for 0.7734 on RHS. B1 for (z value) between 0.67~0.675 seen. M1B0A1 for use of $z = 0.68$ in correct expression with awrt 35.4	
(C)	Follow through using their of quartile values.	
(d)	M1 for an attempt to calculate 1.5(IQR) and attempt to add or subtract using one of t in the question - follow through their quartiles	he formulae given
(e)	$ \begin{array}{ll} 1^{\mathrm{st}} \mathrm{M1} & \text{for attempting } 2\mathrm{P}(D > \mathrm{their} \ k) \mathrm{or} (\mathrm{P}(D > \mathrm{their} \ k) + \mathrm{P}(D < \mathrm{their} \ h)) \\ 2^{\mathrm{nd}} \mathrm{M1} & \text{for standardising their} \ h \mathrm{or} \ k (\mathrm{may \ have \ missed \ the \ 2}) \mathrm{so \ allow \ for \ standardising} \\ \mathrm{P}(D > 51.6) \mathrm{or} \mathrm{P}(D < 8.4) \\ \mathrm{Require \ boths \ Ms \ to \ award \ A \ mark.} \end{array} $	

Que: Num	stion Iber	Scheme	Marks
45	(a)	bell shaped, must have inflexions	B1
		5% 30% 154,172 on axis	B1
		154 μ 172 5% and 30%	B1 (3)
	(b)	P(X < 154) = 0.05	
		$\frac{154 - \mu}{\sigma} = -1.6449 \text{or} \frac{\mu - 154}{\sigma} = 1.6449$ $\mu = 154 + 1.6449\sigma \text{**given**}$	M1 B1
	(C)	$\mu = 134 \pm 1.04490$ ergiven v $172 - \mu = 0.5244\sigma$ or $\frac{172 - \mu}{\sigma} = 0.5244$ (allow $z = 0.52$ or better here bu	A1 cso (3) t B1
		Solving gives $\sigma = 8.2976075$ (awrt 8.30) and $\mu = 167.64873$ (awrt 168)) M1 A1 A1
	(d)	P(Taller than 160cm) = P $\left(Z > \frac{160 - \mu}{\sigma}\right)$	(4) M1
		= P(Z < 0.9217994)	B1
		= 0.8212 awrt 0.82	A1 (a)
			(3) Total [13]
(a)		2 nd B1 for 154 and 172 marked but 154 must be $< \mu$ and $172 > \mu$. But μ need not Allow for $\frac{154-\mu}{\sigma}$ and $\frac{172-\mu}{\sigma}$ marked on appropriate sides of the peak.	be marked.
		3 rd B1 the 5% and 30% should be clearly indicated in the correct regions i.e. LH tai	
(b)		M1 for $\pm \frac{(154 - \mu)}{\sigma} = z$ value (z must be recognizable e.g. 1.64, 1.65, 1.96 but No	OT 0.5199 etc)
		B1 for ± 1.6449 seen in a line before the final answer.	
		A1cso for no incorrect statements (in μ , σ) equating a z value and a probability or i e.g. $\frac{154-\mu}{\sigma} = 0.05$ or $\frac{154-\mu}{\sigma} = 1.6449$ or $P(Z < \frac{\mu-154}{\sigma}) = 1.6449$	ncorrect signs
(C)		B1 for a correct 2^{nd} equation (NB $172 - \mu = 0.525\sigma$ is B0, since z is incorrect)	
		M1 for solving their two linear equations leading to $\mu = \dots$ or $\sigma = \dots$	
		1 st A1 for σ = awrt 8.30, 2 nd A1 for μ = awrt 168 [NB the 168 can come from false These A marks require use of correct equation from (b), and a <i>z</i> value for "0. NB use of <i>z</i> = 0.52 will typically get σ =8.31 and μ = 167.67 and score B1 <u>No working</u> and both correct scores 4/4, only one correct scores 0/4 Provided the M1 is scored the A1s can be scored even with B0 (e.g. for <i>z</i> =0.	5244" in (c)] M1A0A1
(d)		M1 for attempt to standardise with 160, their μ and their σ (> 0). Even allow with symbols B1 for $z = awrt \pm 0.92$	
		<u>No working</u> and a correct answer can score $3/3$ provided σ and μ are correct	to 2sf.

Que: Num	stion Iber	Scheme		Ma	arks
46	(a)	Let the random variable <i>X</i> be the lifetime in hours of	of bulb		
		$P(X < 830) = P(Z < \frac{\pm (830 - 850)}{50})$	Standardising with 850 and 50	M1	
		= P(Z < -0.4) = 1 - P(Z < 0.4)	Using 1-(probability>0.5)	M1	
		= 1 - 0.6554 = 0.3446 or 0.344578 by calculator	awrt 0.345	A1	(2)
	(b)	0.3446 × 500 = 172.3	Their (a) x 500 Accept 172.3 or 172 or 173	M1 A1	(3)
	(C)	Standardise with 860 and σ and equate to z value $\frac{1}{2}$	$\frac{1}{2}(818-860)}{z} = z$ value	M1	(2)
		$\frac{818-860}{\sigma} = -0.84(16)$ or $\frac{860-818}{\sigma} = 0.84(16)$	or $\frac{902 - 860}{\sigma} = 0.84(16)$ or equiv.	A1	
		$\sigma = 49.9$	±0.8416(2) 50 or awrt 49.9	B1 A1	
	(d)	Company <i>Y</i> as the <u>mean</u> is greater for <i>Y</i> . They have (approximately) the same <u>standard devia</u>	both a <i>tion</i> or <u>sd</u>	B1 B1	(4)
					(2) [11]
Note	ès	 8(a) If 1-z used e.g. 1-0.4=0.6 then award second M 8(c) M1 can be implied by correct line 2 A1 for completely correct statement or equivalent. Award B1 if 0.8416(2) seen Do not award final A1 if any errors in solution e.g. 8(d) Must use statistical terms as underlined. 			

Question Number	Scheme	Mark	<s< th=""></s<>
47 (a)	$P(X < 39) = P\left(Z < \frac{39 - 30}{5}\right)$ = P(Z < 1.8) = <u>0.9641</u> (allow awrt 0.964)	M1 A1	(2)
(b)	$P(X < d) = P\left(Z < \frac{d - 30}{5}\right) = 0.1151$ 1 - 0.1151 = 0.8849 $\Rightarrow z = -1.2$ $\therefore \frac{d - 30}{5} = -1.2$ $\frac{d = 24}{2}$ (allow ± 1.2)	M1 B1 M1A1	(4)
(c)	$P(X > e) = 0.1151$ so $e = \mu + (\mu - \text{their } d)$ or $\frac{e - 30}{5} = 1.2 \text{ or } - \text{their } z$ e = 36	M1	(2)
(d)	$P(d < X < e) = 1 - 2 \times 0.1151$ = 0.7698 AWRT <u>0.770</u>	A1 M1 A1	(2) (2) [10]
	Answer only scores all marks in each section BUT check (b) and (c) are in correct o	rder	
(a)	M1 for standardising with σ , $z = \pm \frac{39-30}{5}$ is OK A1 for 0.9641 or awrt 0.964 but if they go on to calculate 1 – 0.9641 they get M1A0)	
(b)	1 st M1 for attempting 1- 0.1151. Must be seen in (b) in connection with finding <i>d</i> B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a <i>z</i> value by its use. This mark is only available in part (b). 2 nd M1 for $\left(\frac{d-30}{5}\right)$ = their negative <i>z</i> value (or equivalent)		
(c)	M1 for a full method to find <i>e</i> . If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$ If they use symmetry about the mean $\mu + (\mu - \text{their } d)$ then ft their <i>d</i> for M1 Must explicitly see the method used unless the answer is correct.	here	
(d)	M1 for a complete method or use of a correct expression e.g. "their 0.8849" - 0.1151 <u>or</u> If their $d < $ their e using their values with $P(X < e) - P(X < d)$ If their $d \ge$ their e then they can only score from an argument like $1 - 2x0.1151$ A negative probability or probability > 1 for part (d) scores M0A0		

Question Number	Scheme	Marks
48 (a)	$z = \frac{53 - 50}{2}$ Attempt to standardise P(X>53)=1-P(Z<1.5) =1-0.9332 =0.0668	M1 B1 A1 [3]
(b)	$P(X \le x_0) = 0.01$ $\frac{x_0 - 50}{2} = -2.3263$ $x_0 = 45.3474$ awrt 45.3 or 45.4	M1 M1B1 M1A1 [5]
(c)	P(2 weigh more than 53kg and 1 less) = $3 \times 0.0668^2(1-0.0668)$ = 0.012492487 awrt 0.012	B1M1A1ft A1 [4] Total 12
	Notes: (a) M1 for using 53,50 and 2, either way around on numerator B1 1- any probability for mark A1 0.0668 cao (b) M1 can be implied or seen in a diagram or equivalent with correct use of 0.01 or 0.99 M1 for attempt to standardise with 50 and 2 numerator either way around B1 for ± 2.3263 M1 Equate expression with 50 and 2 to a <i>z</i> value to form an equation with consistent signs and attempt to solve A1 awrt 45.3 or 45.4 (c) B1 for 3, M1 $p^2(1-p)$ for any value of <i>p</i> A1ft for <i>p</i> is their answer to part (a) without 3 A1 awrt 0.012 or 0.0125	

49. (a)	200 or 200g	B1 (1)
(b)	P(190 < X < 210) = 0.6 or $P(X < 210) = 0.8$ or $P(X > 210) = 0.2$ or diagram (o.e. Correct use of 0.8 or 0.2)	
	$Z = (\pm) \frac{210 - 200}{\sigma}$	M1
	$\frac{10}{\sigma} = 0.8416$ 0.841	6 B1
	$\sigma = 11.882129$ AWRT 11.9	A1
		(5)
(c)	$P(X < 180) = P\left(Z < \frac{180 - 200}{\sigma}\right)$ = P(Z < -1.6832)	M1
	=1-0.9535	M1
	= 0.0465 or AWRT 0.046	A1 (3)
		(3) Total 9 marks
(a)	"mean = 200g" is B0 but "median = 200" or just "200" alone is B1	
	Standardization in (b) and (c). They must use σ not σ^2 or $\sqrt{\sigma}$.	
(b)	1^{st} M1 for a correct probability statement (as given or eg P(200 <x<210)=0.3 -="" <i="" diagram="" have="" must="" o.e="" on="" or="" shaded="" values="">z-axis and probability areas show</x<210)=0.3>	
	1 st A1 for correct use of 0.8 or $p = 0.2$. Need a correct probability statement. May be implied by a suitable value for z seen (e.g. $z = 0.84$)	
	2^{nd} M1 for attempting to standardise. Values for x and μ used in formula. Don't need z = for this M1 nor a z-value, just mark standardization.	
	B1 for $z = 0.8416$ (or better) [$z = 0.84$ usually just loses this mark in (a)] 2 nd A1 for AWRT 11.9	
(c)	1 st M1 for attempting to Standardise with 200 and their sd(>0) e.g. $(\pm)\frac{180-200}{\text{their }\sigma}$)
	2 nd M1 NB on epen this is an A mark ignore and treat it as 2nd M1 for 1 – a probability from tables provided compatible with their probability statement.	
	A1 for 0.0465 or AWRT 0.046 (Dependent on both Ms in part (c))	

Question Number		Scher	me	Marks	
50(a)	Only 2	outcomes Heads and Tails oe			
	Consta	nt probability of spinning a Head	/Tail oe		
		spun a fixed number of times oe			
	Each s	pin of the coin is independent oe		B1 B1	
(-)					(2)
(b)	$T \sim B(6)$ $P(T \le 5)$	5, 0.5) $5) - P(T \le 4) = 0.9844 - 0.8906$	or $6\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)$ oe	M1	
		$= 0.09375 \text{ or } \frac{3}{32} \text{ or } \frac{3}{32}$	e awrt 0.0938	A1	
					(2)
(c)	P(T=4)	$(4,5,6) = 1 - P(T \le 3)$		M1	
		= 1 - 0.6563			
		$= 0.3437 \text{ or } \frac{11}{32}$	awrt 0.344	A1	
		32			
					(2)
(d)	P(H = 3)	$3,4,5,6) = 1 - P(H \le 2)$		B1M1d	
		= 1 - 0.8306			
		$= 0.1694 \text{ or } \frac{347}{2048}$	awrt 0.169	A1	
					(3)
		Note		Total 9	
(a) (b)	B1 A so or spins	s/flip oe.	b be in context include coin or heads or tails(do not a ng or using P($T \le 5$) – P($T \le 4$)] or $[6(\frac{2}{3})]$	> 6)
				2)	
(c)	MI for	realising they need find $P(T = 4, 4)$	5 or 6) eg $1 - P(T \le 3)$ or $P(T \ge 4)$		
(d)	B1	writing/using B(6, 0.25) and $P(H \ge 3)$ oe	writing/using B(6, 0.75) and P($T \le$	3)	
			dep on B1		
	M1d	dep on B1 for $1 - P(H \le 2)$	$(0.25)^6 + 6(0.75)(0.25)^5$		
			$+15(0.75)^{2}(0.25)^{4}+20($	$(0.75)^3 (0.25)^3$	3
	A1	awrt 0.169	awrt 0.169		
	NB	Only accept correct use of H and correctly defined	T in the probability statement unless	their variable	is
	NB	awrt 0.169 with no incorrect wo	rking gains B1M1A1		

51(a)	$P(M < 10) = P\left(Z < \frac{12 - 14}{\sigma}\right) = 0.1$		
	$\Rightarrow \frac{12-14}{\sigma} =, -1.2816$	M1 standardising (<u>+</u>) with 12, 14 and σ and setting equal to a <i>z</i> value where $ z > 1$ B1 +1.2816 or better	M1
	$\sigma = 1.5605$ = awrt 1.56 minutes	B1±1.2816 or betterA1awrt 1.56 Do not allow answerwritten as an exact fraction.	B1 A1 (3)
(b)	<i>T</i> represents number less than 12 minutes. $T \sim B(15, 0.1)$	B1 Writing or using B(15, 0.1).	B1
	$P(T \le 1)$	M1 writing $P(T \le 1)$ or $P(T < 2)$ any letter may be used.	M1
	= 0.549	A1 awrt 0.549	A1
		NB 0.549 gets B1 M1 A1	(3)
(c)	[$T \sim$ number of people who take less than 12 mins to complete the test] $T \sim B(n, 0.1)$		
	T can be approximated by N($0.1n, 0.09n$)	B1 mean = $0.1n$ and Var = $0.09n$ oe may be seen in an attempt at standardisation	B1
	$P\left(Z < \frac{8.5 - 0.1n}{\sqrt{0.09n}}\right) = 0.3085$	M1 using a continuity correction either 8.5 or 7.5 in an attempt at standardised form. Allow 0.09 for sd.	M1
		B1 a z value of awrt ± 0.5	B1
	$\frac{8.5 - 0.1n}{\sqrt{0.09n}} = -0.5 \text{ or } \frac{8.5 - 0.1x^2}{0.3x} = -0.5$	M1 standardising using their mean and sd. (If these have not been given then they must be correct here) and one of 7.5, 8, 8.5, 9 or 9.5 and equal to a z value where z > 0.4. Allow any form	M1
		A1 A correct equation in any form. ISW. Do not allow if they have $0.3n$ rather than $0.3\sqrt{n}$	A1
	$ \begin{array}{c} 0.1n - 0.15\sqrt{n} - 8.5 = 0 \\ \sqrt{n} = 10 \end{array} $	M1 using either the quadratic formula or completing the square or factorising or any correct method to solve their 3 term quadratic . If they write the quadratic formula down then allow one slip. If no formula written down then it must be correct for their equation. May be implied by seeing 10 or 8.5. They must show working if the equation used is not correct. $2^{nd} A1$ awrt 10.0 – do not need to see <i>n</i> or \sqrt{n} . Allow $n = 10$ May be implied by 100	M1A1
	<i>n</i> = 100	3rd A1 cso 100 If they have a second answer of 72.25 they must reject it to get this final mark.	A1cso (8)
			(Total 14)

Question Number	Sc	Scheme		rks
52(a)	0.05n = 3	M1: using 0.05 <i>n</i>	M1	
	<i>n</i> = 60	A1: cao NB: for 60 with no incorrect working award M1A1	A1	(2)
(b)	$R \sim B(20, 0.05)$	B1: using or writing B(20, 0.05) in (i) or (ii)	B1	
(i)	$P(R = 4) = {}^{20}C_4 (0.05)^4 (0.95)^{16} OR$ $P(R = 4) = P(R \le 4) - P(R \le 3)$ = 0.9974 - 0.9841	M1 writing or using P($R \le 4$) – P($R \le 3$) or using ${}^{20}C_4(p)^4(1-p)^{16}$	M1	
	= 0.0133	A1: awrt 0.0133	A1	
(ii)	$P(R \ge 4) = 1 - P(R - 3) = 1 - 0.9841$	M1: writing or using $1 - P(R = 3)$	M1	
	= 0.0159	A1: awrt 0.0159	A1	(5)
			Tot	tal 7

Question Number	Scheme		Marks
53.	N(0.2 <i>n</i> , 0.16 <i>n</i>)	B1: Mean = $0.2n$ and Var = $0.16n$ oe this may be awarded if they appear in the standardisation as $0.2n$ and either $0.16n$ or $\sqrt{0.16n}$	B1
	$P\left(Z > \frac{55.5 - 0.2n}{\sqrt{0.16n}}\right) = 0.0401$	M1: Using a continuity correction either 55.5 or 54.5	M1
	$\frac{55.5 - 0.2n}{\sqrt{0.16n}} = 1.75$	B1: Using a $z = awrt \pm 1.75$ M1: Standardising using either 55.5, 54.5 or 55 and equal to a z value. Follow through their mean and variance. If they have not given the mean and Var earlier then they must be correct A1: A correct equation. May be awarded for $\frac{55.5-0.2n}{\sqrt{0.16n}} = 1.75$ Condone use of an inequality sign rather than an equals sign	B1M1A1
	$0.2n + 0.7\sqrt{n} - 55.5 = 0$	M1d: This is dependent on the previous method mark being awarded. Using either the quadratic formula or completing the square or factorising or any correct method to solve their 3 term equation. If they write the formula down then allow a slip. If no formula written down then it must be correct for their equation. May be implied by correct answer or $\sqrt{n} = 15$ or 342.25 NB you may award this mark if they use 54.5 for awrt 14.9, -18.4, 221 or 337 55 for awrt -18.4, 14.9,223 or -117 If the answer is not one of these then the method for solving their 3 term equation must be seen.	M1 d
	$\sqrt{n} = 15$	A1: Allow 15 or -18.5 do not need to see <i>n</i> or \sqrt{n} . Condone $n = 15$ or n = -18.5	A1
	n = 225	A1 : cao 225 do not need to see <i>n</i> or \sqrt{n}	A1 (8)
	Alternative method for last 3 marks $(0.2n-55.5)^2 = (-0.7\sqrt{n})^2$ $0.04n^2 - 22.69n + 3080.25 = 0$ n = 225 or 1369/4 n = 225	M1 solving 3 term quadratic in <i>n</i> as above A1 either 225 or 1369/4 or 342.25 A1must select 225	Total 8

Question Number	Schen	ne	Marks
54		notes	
	$X \sim B(30, 0.25)$	B1: using B(30, 0.25)	B1
	$P(X \le 10) - P(X \le 4) = 0.8943 - 0.0979$	M1: using $P(X \le 10) - P(X \le 4)$ or $P(X \ge 5) - P(X \ge 11)$ oe	M1 A1
	= 0.7964	A1: awrt 0.796	
	NB a correct answer gains full marks		Total 3

Question Number	Scheme	Marks
55. (a)	X is the random variable the Number of successes, $X \sim B(10, 0.75)$	B1
(i)	$P(X=6) = (0.75)^6 (0.25)^{4} C_6 \text{ or } P(X \le 6) - P(X \le 5)$	M1
	= 0.145998 awrt 0.146	A1
(ii)	Using $X \sim B(10, 0.75)$	
	$P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10)$	M1
	$= (0.75)^8 (0.25)^{2} {}^{10}C_8 + (0.75)^9 (0.25)^{1} {}^{10}C_9 + (0.75)^{10}$	
	= 0.52559 awrt 0.526	A1
	Or Using $Y \sim B(10, 0.25)$ and $P(Y \le 2) = 0.5256$	(5)
(b)	1 - P(0) = 0.8 or $P(0) = 0.2$	M1
	$(1-p)^{20} = 0.2$	
	1 - p = 0.9227	
	p = 0.0773	A1
	$\frac{3}{200}(90-x) = 0.0773$	M1
	x = 84.84	
	x = 85	A1cao (4)
	Notes	[9]
(a)	B1 writing or using $p = 0.75$ or $p = 0.25$ anywhere in (a)(i) or (a)(ii)	
(i)	M1 writing or using $(p)^6 (1-p)^{4} C_6$ or writing for $p = 0.75$, $P(X \le 6) - (X \le 5)$	
(ii)	or for $p = 0.25$, $P(X \le 4) - P(X \le 3)$ or correct answer. M1 writing B(10, 0.75) and writing or using $P(X = 8) + P(X = 9) + P(X = 10)$ oe or writing B(10, 0.25) and writing or using $P(Y \le 2)$.	
	Using correct Binomial must be shown by $(0.75)^n (0.25)^{10-n}$ or a correct ans	wer
(b)	M1 for writing or using $1 - P(0) = 0.8$ or $P(0) = 0.2$ or $(1-p)^{20} = 0.2$. Allow any	
	sign. A1 awrt 0.0773 or awrt 0.923.	, 1 ,
	M1 subst in $\frac{3}{200}(90-x)$ for <i>p</i> NB this may be substituted in earlier for <i>p</i> .	
	Allow for $\frac{3}{200}(90-x) = k$ where $0 < k < 1$ $k \neq 0.8$ or 0.2 Allow any inequality sign	
	A1 condone $x \ge 85$. Do not allow $x \le 85$.	

Question	Scheme	Marks
56.		
(a)	$T \sim B(10, 0.4)$	M1A1 (2)
(b)	$P(2' 2' 2) = 0.6^{2} \times 0.4 = P(5 5 2, 5 > 5 2, >5 > 5 2)$ $(0.25)^{2} (0.4) + 2 \times (0.25) (0.35) (0.4) + (0.35)^{2} (0.4)$	M1
	= 0.144	A1 (2) (4)
	Notes	
(a)	M1 for binomial A1 for $n = 10$ and $p = 0.4$ NB If they give 2 options then unless they select the correct one they gain M0A	0
(b)	M1 for identifying the correct possibilities 2' 2' 2 or 552 and $5>52$ and >52 or a correct probability statement. The possibilities must be in the correct of Condone 2× (5>5 2) or 2× (>5 5 2). Implied a correct answer. A1 for 0.144 or exact equivalent e.g. $\frac{18}{125}$	

Question	Sahama	Marks
Number	Scheme	NIALKS
57(a)	Distribution $X \sim B(n, 0.1)$	B1
		(1)
57(b)	<i>Y</i> ~B(10,0.1)	B1
	$P(Y \ge 4) = 1 - P(Y \le 3)$	M1
	= 1 - 0.9872	
	= 0.0128	Al
		(3)
57(c)		
	$0.9^n < 0.05$ or $1 - (0.9)^n > 0.95$	M1
	n > 28.4	A1
	n = 29 alternative	A1
	B(28,0.1): P(0) = 0.0523	M1
	B(29,0.1): P(0) = 0.0471	Al
	n = 29	Alcao
	n = 2	(3)
		Total marks 7
	Notes	
57(a) 57(b)	B1 for "binomial" or B(
57(b)	B1 writing or using B(10,0.1) M1 writing or using $1 - P(Y \le 3)$	
	A1 awrt 0.0128	
57(c)	M1 $(0.9)^n < 0.05$, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or s	seeing 0.0523 or
57(0)	seeing 0.0471	60111g 0.0525 01
	$1^{\text{st}} \text{A1} [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by	correct answer.
	2^{nd} A1 cao $n = 29$ should not come from incorrect working.	
	NB An answer of 29 on its own with no working gains MIA1A	.1

Question Number	Scheme	Marks
58(a) (i)	P(X < 5) = 0.8424 awrt 0.842	B1
(ii)	$P(X \ge 7) = 1 - P(X \le 6)$	M1
	= 1 - 0.9857	
	= 0.0143 awrt 0.0143	A1
		(3)
(b)	$P(X=0) = (1-p)^{12}$	
	$(1-p)^{12} = 0.05$	M1
	$(1-p) = \sqrt[12]{0.05}$	M1
	p = 0.221 awrt 0.221	A1
		(3)
	Notes	Total 6
(a) (ii)	M1writing or using $1 - P(X \le 6)$ Do not accept $1 - P(X < 7)$ unless $1 - P(X \le 6)$ has been used	
(b)	$1^{\text{st}} \text{M1} (1-p)^n = 0.05$ 2^{nd}M1 taking <i>n</i> th root. If they have used logs they need to get to a correct expression for $1-p$ for their equation.	

Question Number	Sche	eme			Mar	ks
59(a)	Let X be the random variable the number of X be the number of X be the random variable the number of X be number of X be t	umber	of customers asking for wat	er.		
(i)	X~B(10,0.6)	<i>Y</i> ~B	(10,0.4)		B1]
	$P(X = 6) = (0.6)^6 (0.4)^4 \frac{10!}{6!4!}$	P(<i>Y</i> =	$= 4) = (0.4)^4 (0.6)^6 \frac{10!}{6!4!}$		M1	
	= 0.2508	= 0.2	508	awrt 0.251	A1	
(ii)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$Y \sim B(10, 0.4)$ $P(X < 9) = 1 - P(Y \le 1)$ $= 1 - 0.0464$		M1	
	= 0.9536		= 0.9536	awrt 0.954	A1	
(b)	$X \sim B(50,0.6)$ $Y \sim B(50,0.4)$ $P(X < n) \ge 0.9$				M1	(5)
	$P(Y > 50 - n) \ge 0.9$ $P(Y \le 50 - n) \le 0.1$ $50 - n \le 15$ $n \ge 35$		(X < 34) = 0.8439 awrt 0.8 (X < 35) = 0.9045 awrt 0.9		M1	
	n = 35				A1 T	(3) 'otal 8
(a) (i)	Notes B1 writing or using B(10,0.6) / B(M1 $(0.6)^{6}(1-0.6)^{4} \frac{10!}{6!4!}$ Allow ${}^{10}C_{6}$ oe) in either part(i) or (ii)			
	or writing or using $P(X \le 6) - P(X $ or $P(X \le 4) - P(X \le 3)$ if using B(1 NB use of Poisson will gain M0A0	≤5) if 10,0.4)				
(ii)	M1 writing or using $1 - (P(X = 10))$ or $1 - P(Y \le 1)$ if using B(10,0.4)		x = 9)) if using B(10,0.6)			
(b)	NB use of Poisson will gain MOA(1^{st} M1 for writing or using either B 2^{nd} M1 P(Y > 50 - n) ≥ 0.9 or P(0.904/0.905 or 50 - n = 15 or 50 - A1 cao 35. Do not accept $n \ge 35$ fo	B(50,0) $Y \le 50$ n = 16	$(-n) \le 0.1$ or $P(X < 34) = a$ 5 or $50 - n \le 15$ or $50 - n \le 15$			
	SC use of normal. M1 M0 A0 for use of N(30,12) lead	ding to	an answer of 35			

Number			
60 (a)	$P(X = 0) = 0.85^{10}$ or from tables	M1	
	= 0.1969 awrt 0.197	A1	
(b)	$P(X > 3) = 1 - P(X \le 3)$	M1	(2)
	=1-0.6477 = 0.3523 awrt 0.352	A1	
			(2)
(c)	$n \times 0.15 = 5$	M1	
	n = 33 or 34	A1	(2)
(d)	1 - $P(X = 0) > 0.95$	M1	(2)
	$1 - (0.85)^n > 0.95.$ $0.85^n < 0.05$	A1	
	<i>n</i> >18.4		
	<i>n</i> = 19	A1	
			(3) 9
	Notes		
(a)	M1 $(p)^{10}$ with 0		
(b)	M1writing or using 1 - P($X \le 3$)		
(C)	M1 $np = 5$ 0		
(d)	M1 writing or using 1 - P(X = 0) > 0.95 or P(X = 0) < 0.05 (also accepted are = or $\ge i$ and = or \le instead of or <) P(X \le 0) is equivalent to P(X = 0) A1 writing or using 1 - (0.85) ⁿ > 0.95 or (0.85) ⁿ < 0.05 (also accepted are \ge instead instead of or <). Any value of <i>n</i> may be used A1 cao		
	NB an answer of 18.4 gets M1 A1 A0		
	An answer of 19 gets M1 A1 A1 unless it follows from clearly incorrect working.		

Quest Numb	-	Scheme	Marks
61.	(a)	Occurrences of the disease are independent The probability of catching the disease remains constant.	B1 B1 (2)
	(b)	$X \sim \text{Bin}(10,0.03)$ $P(X = 2) = \frac{10 \times 9}{2} (0.03)^2 (0.97)^8 = 0.0317$	B1 M1A1
			(3) [5]
		Notes	
	(a)	B1 independent B1 <u>probability</u> remains <u>constant</u> . One of these must have the context of disease. No context only one correct B0B0 If only one mark awarded give the first B1 SC if they are both correct without context award B1B0	
	(b)	B1 for writing or using B(10,0.03) M1 for writing or using $(p)^2 (1-p)^8 \frac{10!}{2!8!}$ allow ${}^{10}C_2, {\binom{10}{2}}$ etc Allow P(X ≤ 2) – P(X ≤ 1) A1 awrt 0.0317	

	stion nber	Scheme	Mar	ks
62	(a)	Let <i>X</i> be the random variable the number of games Bhim loses. $X \sim B(9, 0.2)$	B1	
		$P(X \le 3) - P(X \le 2) = 0.9144 - 0.7382$ or $(0.2)^3 (0.8)^6 \frac{9!}{3!6!}$	M1	
		= 0.1762 $= 0.1762$ awrt 0.176	A1	(3)
	(b)	$P(X \le 4) = 0.9804$ awrt 0.98	M1A1	(2)
				[5]
		Notes		
	(a)	B1 – writing or use of $B(9, 0.2)$		
		M1 for writing/using P(X ≤ 3) - P(X ≤ 2) or $(p)^3 (1-p)^6 = \frac{9!}{3!6!}$		
		A1 awrt 0.176		
	(b)	M1 for writing or using $P(X \le 4)$ A1 awrt 0.98		

	Question Scheme Jumber		Marks	
63	(a) (b)	$X \sim B(20,0.05)$ P(X = 0) = 0.95 ²⁰ = 0.3584859 or 0.3585 using tables .	B1 B1 M1 A1	(2) (2)
	(C)	$P(X > 4) = 1 - P(X \le 4)$ = 1-0.9974	M1	
		= 0.0026	A1 Total	(2) [6]
		Notes		
63	(a) (b)	1 st B1 for binomial 2 nd B1 for 20 and 0.05 o.e These must be in part (a) M1 for finding $(p)^{20}$ $0 this working needs to be seen if answer incorrect togain the M1A1 awrt 0.358 or 0.359.$		
	(c)	M1 for writing 1 - P($X \le 4$) or 1 - [P($X = 0$) + P($X = 1$) + P($X = 2$) + P($X = 3$) + P($X = 4$)] or 1 - 0.9974 or 1 - 0.9568 A1 awrt 0.0026 or 2.6 × 10 ⁻³ , do not accept a fraction e.g. 26/10000		

Question Number	Scheme	Marks
64	$[X \sim B(30, 0.15)]$ P(X \le 6), = 0.8474 awrt 0.847	M1, A1 (2) [2]
Notes	M1 for a correct probability statement $P(X \le 6)$ or $P(X < 7)$ or $P(X=0) + P(X=1)$ + $P(X=2)+P(X=4) + P(X=5) + P(X=6)$. (may be implied by long calculation) Correct answer gets M1 A1. allow 84.74%	

Question Number	Scheme	Marks
65.	$X \sim B(100, 0.58)$ $Y \sim N (58, 24.36)$	B1 B1 B1
	$[P(X > 50) = P(X \ge 51)]$ $= P\left(z \ge \pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)\right)$ $= P(z \ge -1.52)$ $= 0.9357$ using 50.5 or 51.5 or 49.5 or 48.5	M1 M1 A1 A1
	$\frac{\text{alternative}}{X \sim B(100, 0.42)}$ $Y \sim N (42, 24.36)$ $[P(X < 50) = P(X \le 49)]$ using 50.5 or 51.5 or 49.5 or 48.5 $= P\left(z \le \pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)\right)$ standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ for M1 $= P(z \le 1.52)$ = 0.9357	(7) B1 B1 B1 M1 M1 A1 A1 (Total 7)
	Notes The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, 24.36 or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94. Otherwise B1 normal B1 58 or 42 B1 24.36 M1 using 50.5 or 51.5 or 49.5 or 48.5. ignore the direction of the inequality. M1 standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ . They may use $\sqrt{24}$ or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94 for σ or the $\sqrt{0}$ their variance. A1 \pm 1.52. may be awarded for $\pm \left(\frac{50.5-58}{\sqrt{24.36}}\right)$ or $\pm \left(\frac{49.5-42}{\sqrt{24.36}}\right)$ o.e. A1 awrt 0.936	

Question Number	Scheme	Marks
66	X~B(11000, 0.0005)	M1 A1 (2)
		Total 2
	Notes M1 for Binomial, A1 fully correct These cannot be awarded unless seen in part a	

Question Number	Scheme	Marks
67(a)	<i>X</i> ~B(15, 0.5)	B1 B1
(b)	P (X=8) = P (X ≤ 8) – P(X ≤ 7) or $\left(\frac{15!}{8!7!}(p)^8(1-p)^7\right)$ = 0.6964 – 0.5	(2) M1
	= 0.1964 awrt 0.196	A1 (2)
(c)	$P(X \ge 4) = 1 - P(X \le 3)$	M1
	= 1 - 0.0176	
	= 0.9824	A1 (2)
	~~	(Total 6)
	Notes	
	(a) B1 for BinomialB1 for 15 and 0.5 must be in part aThis need not be in the form written	
	 (b) M1 attempt to find P (X = 8) any method. Any value of p A1 awrt 0.196 Answer only full marks 	
	(c) M1 for 1 - P ($X \le 3$). A1 awrt 0.982	

68 (a)	Let X be the random variable the number of faulty bolts	M1
	$P(X \le 2) - P(X \le 1) = 0.0355 - 0.0076$ or $(0.3)^2 (0.7)^{18} \frac{20!}{18!2!}$	A1 (2)
	= 0.0279 = 0.0278	M1 A1
(b)	$1 - P(X \le 3) = 1 - 0.1071$ = 0.8929	(2)
	or $1 - (0.3)^3 (0.7)^{17} \frac{20!}{17!3!} - (0.3)^2 (0.7)^{18} \frac{20!}{18!2!} - (0.3)(0.7.)^{19} \frac{20!}{19!1!} - (0.7)^{20}$	M1A1√A1
(c)	$\frac{10!}{4!6!}(0.8929)^6(0.1071)^4 = 0.0140.$	(3)
		(Total 7)
Notes:		
68. (a)	M1 Either attempting to use P ($X \le 2$) – P ($X \le 1$)	
	or attempt to use binomial and find $p(X = 2)$. Must have $(p)^2 (1-p)^{18} \frac{20!}{18!2!}$,	
	with a value of p	
	A1 awrt 0.0278 or 0.0279.	
(b)		
	M1 Attempting to find $1 - P(X \le 3)$	
	A1 awrt 0.893	
(c)		
	M1 for $k(p)^6(1-p)^4$. They may use any value for p and k can be any number or ${}^{n}C_6p^6(1-p)^{n-6}$	
	A1 $\sqrt{\frac{10!}{4!6!}}$ (their part b) ⁶ (1 - their part b) ⁴ may write ¹⁰ C ₆ or ¹⁰ C ₄ A1 awrt 0.014	
		<u> </u>

