EXPERT TUITION

Maths Questions By Topic:

Statistical Hypothesis Testing Mark Scheme

A-Level Edexcel

الر 0207 060 4494

www.expert-tuition.co.uk

💻 online.expert-tuition.co.uk

🖂 enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents	
New Spec	
Paper 2 (AS)	Page 1
Paper 3 (A2)	Page 8
<u>Old Spec</u>	
Statistics 2	Page 23

Qu	Scheme	Mark	AO
1.	H ₀ : $p = 0.08$ H ₁ : $p < 0.08$ [X ~] B(70, 0.08) 0.0739756 awrt <u>0.074</u> [0.074 < 0.10 so significant, reject H ₀ so]	B1 M1 A1	2.5 2.1 1.1b
	there is evidence to support supplier B's claim (o.e.)	A1	2.2b
		(4)	
		(4 mar	ks)
	Notes		
1.	B1 for both hypotheses correct in terms of p or π [Condone 8% for 0.08]		
	M1 for sight or correct use of $B(70, 0.08)$ [Condone $B(0.08, 70)$]		
	May be implied by prob of 0.074 or better		074
	1 st A1 for final answer awrt 0.074 can condone poor notation e.g. $P(X = 2) =$ Can allow this mark for CR of X = 2 provided $[P(X, 2)] = 0.074$	= awrt 0.0 (or better) is seen
	[Can allow 0.07 if $X \sim B(70, 0.08)$ and $P(X, 2)$ are both seen]		
	2 nd A1 (dep on M1A1 but independent of hypotheses) for a correct inference	e in conte	ext
	Must mention <u>claim</u> or <u>B</u> and idea of <u>support for</u>		
	or proportion/probability (of damp bags) and idea of less than 8% or A		
	2^{nd} A0 for contradictory statements e.g. "accept H ₀ so evidence to su	pport <i>B</i> 's	s claim"
	2^{-4} A0 if you see $0.0739 < 0.08$ so significant/ reject H ₀ etc		
MR	0.8 for 0.08		
	In (a) allow M1 for B(35, 0.8) then A0A0		
	In (b) allow B1 for Hypotheses and M1 for $B(70, 0.8)$ seen, then A0A	0	

Qu 2	Scheme	Marks	AO	
(a)	$H_0: p = 0.14$ $H_1: p \neq 0.14$	B1	2.5	
	[X = number of red beads in the sample] $X \sim B(75, 0.14)$	M1	3.3	
	P(X = 4) = 0.01506 or if B(75, 0.14) seen awrt 0.02	A1	3.4	
	$\{0.02 < 0.025 \text{ so significant } \underline{\text{or}} \text{ reject } H_0 \}$	A1	2.2h	
	There is evidence that the proportion of red beads has changed		2.20	
(b)	$p_{\rm value}$ is 2×0.01506 $-0.030123 = a = a \times 0.03$	(4) B1ft	1 1b	
(0)	<i>p</i> -value is 2× 0.01300 = 0.030125 awit 0.05	(1)	1.10	
		(5 marks)		
	Notes			
(a)	B1 for both hypotheses correct with use of p or π			
	M1 for selecting a suitable model: sight or correct use of B(75, 0.14)			
	May be implied by sight of 0.015 or better or $[P(X > 4) =]$ 0.9849 i.e. 0.985 or better			
	1 st A1 for use of the correct model awrt 0.015 (accept awrt 0.02 following a correct expression)			
	Sight of B(75, 0, 14) and $P(X = 4) = awrt 0.02$ scores M1A1	is seen.		
	No sight of B(75, 0.14) but sight of awrt 0.015 scores $M1(\Rightarrow)A1[C$	ondone $P(X)$	= 4) =]	
	2 nd A1 (dep on M1A1) for a correct conclusion in context mentioning "pu	coportion", "	red" and	
		. "ch	anged"	
ND	If there is a statement about H_0 or significance it must be compatible.			
IND	NB for information $P(X = 4) = 0.0104$ and can only score M1404	0) Ignore u	pper minit	
		ю п D (75, 0		
(b)	B1ft for awrt 0.03 Allow ft of their probability in (d) provided at least 3st	fused		
	NB an answer of 0.02 in (d) leading to 0.04 in (e) is B0			
SC	Use of CR will give significance level of $0.01506+0.01406=0.029$ score B1 no ft			

Que	estion	Scheme	Marks	AOs
	3	$H_0: p = \frac{1}{6}$ $H_1: p > \frac{1}{6}$	B1	2.5
		Let <i>R</i> = the number of successful calls $R \sim B\left(35, \frac{1}{6}\right)$	M1	3.3
		$P(R \ge 11) = 1 - P(R \le 10) = 0.02$	A1	3.4
		There is sufficient evidence to support that Rowan has more successful sales calls than Afrika.	A1	2.2b
			(4)	
			(4	marks)
		Notes		
3	B1:	for correctly stating both hypotheses in terms of p or π Accept $p = 0.1\dot{6}$		
	M1:	11: For selecting a suitable model. May be implied by a correct probability or CR		
	A1: Correct probability statement and answer of 0.02 or better (0.02318) (CR $R \ge 11$ and either P($R \le 9$) = 0.9450 or P($R \le 10$) = 0.9768 or 1 - P($R \le 10$) = 0.0232)			0232)
	A1: Dependent on M1A1 but can ignore hypotheses. For conclusion in context supporting Rowan's belief / Rowan is a better sales person			g
		Do not accept Rowan can reject H ₀		

Question	Scheme	Marks	AOs
4(a)	The alternative hypothesis should be H_1 : $p > 0.15$	B1	2.5
	The calculation of the test statistic should be $P(X \ge 8)$ [= 0.0698]	B1	2.3
		(2)	
(b)	These will affect the conclusion (as the null hypothesis should not be rejected) since $P(X \ge 8) [= 0.0698]$ is greater than 0.05	B1	2.4
		(1)	
(c)	$P(X \le 8) = 0.9722 > 0.95 \text{ or } P(X \ge 9) = 0.0277 < 0.05$	M1	2.1
	$CR: \{X \ge 9\}$	A1	1.1b
		(2)	
(d)	awrt <u>0.0278</u>	B1ft	1.1b
		(1)	
		(6 marks)
	Notes		
(a)	(a) B1: Identifying that \geq should be $>$ in the alternative hypothesis B1: Identifying that $P(X = 8)$ should be $P(X \geq 8)$ Stating $P(X = 8)$ is incorrect on its own is insufficient Check for errors identified and corrected next to the question		
(b)	B1: Will affect conclusion and correct supporting reason		
(c)	M1: For use of tables to find probability associated with criti or $P(X \ge 9)$ with B(30, 0.15) (may be implied by either correct 0.97 or awrt 0.03) or by the correct CR] A1: $[30\ge]X \ge 9$ o.e. e.g. $X > 8$ Allow '9 or more' or 'CR ≥ 9 '	cal value [et probabili	$P(X \le 8)$ ty awrt
(d)	B1ft: awrt 0.0278 (allow awrt 2.78%) or correct ft their one-tailed upper CR from B(30, 0.15) to 3s.f		

5 $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5 3.3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5 3.3		
Let $X =$ the number of games Naasir wins $X \sim B(32, \frac{1}{3})$ M13 $P(X \ge 16) = 1 - P(X \ \ddot{O}15) = 0.03765$ (< 0.05)A13[Significant result so reject H ₀ (the null model) and conclude:]A13There is evidence to support Naasir's claim (o.e.)(4)	3.3		
$ \begin{array}{ c c c c c c c c } P(X \geqslant 16) = 1 - P(X \ \Bar{O}\ 15) = 0.03765 & (< 0.05) \\ [Significant result so reject H_0 (the null model) and conclude:] \\ There is evidence to support Naasir's claim (o.e.) & A1 \\ A1 \\ (4) \end{array} $			
[Significant result so reject H_0 (the null model) and conclude:] There is evidence to support Naasir's claim (o.e.) (4)	3.4		
	3.5a		
	`		
(4 marks)	5)		
Notes			
5 D1 for correctly stating both hypotheses in terms of r or $=$			
5 B1 for correctly stating both hypotheses in terms of p or π Accord $n = 0.3$ or any exact equivalent. $H : n > 1$ is P0			
Accept $p = 0.5$ of any exact equivalent. $H_1 \cdot p \ge \frac{1}{3}$ is B0			
Award for sight of B(32 $\frac{1}{2}$) (o.e. e.g. in words) or implied by 0.03765			
Can also allow M1 for $P(X < 15) = 0.962$ or better or $P(X < 14) = 0.922$ or			
better $(1 - 10)^{-0.502}$ of octor of $1(1 - 10)^{-0.502}$ of			
1 st A1 for use of the model to calculate an appropriate probability using calculate Sight of $P(X \ge 16)$ and answer awrt 0.0377	alc.		
ALT CR May use CR so award 1 st A1 for CR of $X \ge 16$ must have seen som	ne		
probabilities though: 1 of $P(X \le 15) = 0.9623$ or $P(X \le 14) = 0.9224$ or			
0.9225			
2 nd A1 for conclusion in context that there is support for Naasir's claim			
Must mention "Naasir" or "his" and "claim" or "method" (o.e.)			
<u>or</u> e.g. <u>probability</u> of <u>winning</u> a game is $\geq \frac{1}{3}$ or has <u>increased</u>			
Dependent on M1 and 1 st A1 but can ignore hypotheses but see belo	ow		
If you see $P(X \ge 16) = 0.0376$ followed by a correct contextualised conclution than places around A0A1	usion		
SC Use of 0.3 for $\frac{1}{2}$			
If used 0.3 instead of $\frac{1}{2}$ in (a) and score MOAOAO can condene use of 0.2 is	in(b)		
$1^{st} \wedge 1$ ft needs $P(Y > 16) = 0.0128$	m (0)		
or CR of $X > 15$ and sight of 1 of $P(X > 15) = 0.0327$ or $P(X > 14) =$			
0.0694			
2^{nd} A1 as before with 0.3 instead (if appropriate)			

Question	Sche	eme	Marks	AOs
6(a)	H ₀ : $p = 0.25$ H ₁ : $p > 0.25$ (both	correct in terms of p or p)	B1	2.5
	<i>Y</i> ~B(40, 0.25)		M1	3.3
	Method 1	Method 2		
	$P(Y \ge 16) = 1 - P(Y \le 15)$	$P(Y \ge 17) = 0.0116$	M1	1.1b
	= 1- 0.9738	$P(Y \ge 18) = 0.0047$		
	= 0.0262	$\operatorname{CR} Y \ge 18$	A1	1.1b
	0.0262 > 0.01 16 < 18 or 16 is not significant, accept H ₀ . There is no s proportion of people who bought o	in the critical region or 16 is not significant evidence that the rganic eggs has increased	Alcso	2.2b
			(5)	
(b)	There is evidence that the proportion eggs has increased [since $0.05 > 0.05$]	on of people who bought organic 0262 or 16 is in critical region]	B1ft	2.2b
			(1)	
			(6 n	narks)
Notes:				
 (a) B1: Both hypotheses correct using p or p and 0.25 M1: Realising that the model B(40, 0.25) is to be used. This may be stated or used. M1: Using or writing 1 - P(Y≤15) or 1- P(Y<16) a correct CR or P(Y ≥ 17) = 0.0116 and P(Y ≥ 18) = 0.0047 A1: awrt 0.0262 or CR Y ≥ 18 or Y > 17 A1cso: A fully correct solution with a correct conclusion in context to include the idea of proportion and increased plus referring to organic (b) B1ft: For 0.0262 < 0.05 [ft their probability in part(b)] or a CR of 16³ 15(allow16>14) 				
and a correct contextual conclusion				

Question	Scheme	Marks	AOs
7(a)	$H_0: p = 0.3$ $H_1: p \neq 0.3$ (Both correct in terms of p or π)	B1	2.5
		(1)	
(b)	$[Y \sim B(20, 0.3)]$ sight of $P(Y \le 2) = 0.0355$ or $P(Y \le 9) = 0.9520$	M1	2.1
	Critical region is $\{Y \leq 2\}$ or (o.e.)	A1	1.1b
	$\{ Y \ge 10 \} \tag{o.e.}$	A1	1.1b
		(3)	
(c)	[0.0355 + (1 - 0.9520)] = 0.0835 or <u>8.35%</u>	B1ft	1.1b
		(1)	
(d)	(Assuming that the 20 customers represent a random sample then) 12 is in the CR so the manager's suspicion is supported	B1ft	3.2a
		(1)	
(e)	e.g. (e) requires the 20 customers to be a random sample or independent and the members of the scout group may invalidate this so binomial distribution would not be valid (and conclusion in (e) is probably not valid)	B1	3.5a
		(1)	
		(7 n	narks)

Conti	Continued question 7			
Notes	5:			
(a)				
B 1:	For both hypotheses in terms of p or π and H ₁ must be 2-tail			
(b)				
M1:	For correct use of tables to find probability associated with critical value			
A1:	For the correct lower limit of the CR. Do not award for $P(Y \leq 2)$			
A1:	For the correct upper limit			
(c)				
B1:	ft on their 0.0355 and (1 – their 0.9520) provided each probability is less			
	than 0.05			
(d)				
B1:	ft for a comment that relates 12 to their CR and makes a consistent comment relating this to			
	the manager's suspicion			
(e)				
BI:	For a comment that: gives a suitable reason based on lack of independence or the sample			
	not being random so the binomial model is not valid			

Quest	Question Scheme Marks			
8(a)		$H_{0:}p = 0.1$ $H_{1:}p \neq 0.1$	B1	2.5
			(1)	
(b)		Use of $X \sim B$ (50, 0.1) implied by sight of one of awrt 0.0052 or awrt 0.9755 or awrt 0.0245	M1	3.4
		Critical regions $X = 0$ or $X \ge 10$	A1	1.1b
		$X=0$ and $X \ge 10$ plus P(X=0) = awrt 0.0052 and P(X \ge 10) = awrt 0.0245	A1	1.1b
		SC : Both CR correct with no probabilities and no distribution seen scores M0A1A0		
			(3)	
(c)		0.0297	B1ft	1.1b
			(1)	
(d))	15 is <u>in the critical region</u> therefore there is evidence to support the manager 's belief	B1ft	2.2b
			(1)	
			(6 n	narks)
		Notes		
(a)	B 1	For both hypotheses in terms of p or π . Connected to H ₀ and H ₁ correct. Condone 10% but not 10	ly	
(b)	M1	Using correct distribution to find the probability associated with one ta If the correct distribution is <u>stated</u> (may be seen in part(a)) allow for on correct CR or one of (awrt 0.025 or awrt 0.005 or awrt 0.975) seen con- correct probability statement	il of the C e tail of the nected to a	R e
	A1	Lower CR $X = 0 / X < 1 / X \le 0 /$ [condone eg P(X = 0) labelled aOr Upper CR $X \ge 10$ or $X > 9$ [condone P(X \ge 10) oe labelled	s CR] l as CR]	
	Both CR's correct with the relevant probabilities Allow \cup for "and" and $X > 9$, $X < 1$, A1 $X \le 0$ [do not allow P(X = 0) or P(X \ge 10) oe] Allow CR in different form eq. (9, m) [10, m)		< 1,	
(c)	B1ft awrt 0.0297 or 2.97% or ft for the sum of the probabilities in (b) for "their 2 critical regions" if seen. If none seen it must be awrt 0.0297 SC M0 in (b) for a one tail test Allow B1ft for their one tail CR in (b) eg 0.0338 or 0.0245 or 0.0579			
(d)	B1ft	A correct statement about 15 and "their CR" or sight $P(X \ge 15) = 0.000$ comparison with "their 0.0245" and a compatible correct statement in context. eg There is evidence that a change in the proportion/probability arriving late Condone increase rather than change Do not allow contradicting statements. NB No CR given in (b) then B0	00738an	d been

Que	stior	Scheme	Marks	AOs
9		$H_0: \rho = 0 H_1: \rho < 0$	B1	2.5
		Critical value -0.3887 (Allow \pm)	M1	1.1b
		There is evidence that the product moment <u>correlation</u> is <u>less than 0</u> / <u>there is a negative correlation</u>	Al	2.2b
			(3)	
		Notes:	(3	marks)
9	B1	Both hypotheses correct in terms of ρ (allow p)		
	M1	For the cv of -0.3887 or any cv such that $0.3 < cv < 0.5$		
	A1 Independent of hypotheses. Correct conclusion that implies reject H ₀ on basis of seeing -0.3887 or if they give 0.3887 we must see the comparison $0.3887 < 0.897$ and which mentions "pmcc/correlation/relationship" and less than 0/ negative or $\rho < 0$ A contradictory statement scores A0 eg Accept H ₀ therefore negative correlation		or if	

Qu 10	Scheme	Marks	AO
(a)	(r =) -0.54458266 awrt <u>-0.545</u>	B1 (1)	1.1b
(b)	$H_0: \rho = 0$ $H_1: \rho < 0$	B1	2.5
	$[5\% 1\text{-tail cv} =] (\pm) 0.4259$	M1	1.1a
	(significant result / reject H ₀)	A 1	0.01
	(or length of) a student's last name and their first name	AI	2.20
	(or <u>rengen</u> of) a statement state <u>manne</u> and then thist <u>manne</u>	(3)	
			<u> </u>
	Natag	(4 mark	s)
	INOLES		
(a)	B1 for awrt – 0.545		
(b)	B1 for both hypotheses correct in terms of ρ		
	M1 for a critical value compatible with their H ₁ :		
	1-tail: awrt ± 0.426 (condone ± 0.425) or 2-tail (B0 scored for H ₁): awrt ± 0.497		
	If hypotheses are in words and can deduce whether one or two-tail then use their words.		
	If no hypotheses or their H_1 is not clearly one or two tail assume one-tail		
	A1 for compatible signs between cv and r and a correct conclusion in context mentioning correlation and number of letters or length and name (ft their value from (a))		
	Do NOT award this A mark if contradictory comments or working seen	e.g. "acce	pt H ₀ "
	or comparison of 0.426 with significance level of 0.05 etc	0	L -
NB	The M1A1 can be scored independently of the hypotheses		

Qu 11	Scheme	Marks	AO
11	$H_0: \mu = 166.5$ $H_1: \mu < 166.5$	B1	2.5
	[Let X = height of female from 2 nd country] $\overline{X} \sim N\left(166.5, \left(\frac{7.4}{\sqrt{50}}\right)^2\right)$	M1	3.3
	$P(\overline{X} < 164.6) = 0.03472$	A1	3.4
	[0.0347 < 0.05 so significant <u>or</u> reject H ₀] There is evidence to support Mia's belief	dA1	2.2b
		(4)	<u> </u>
	Notos	(4 mark	s)
	Notes		
11	B1 for both correct hypotheses in terms of μ 1 st M1 for selecting the correct model (needn't use $\overline{X} \Rightarrow$ by standardisation or 1 st A1) 1 st A1 for correct use of the correct model i.e. awrt 0.035 (allow 0.04 if P(" \overline{X} " < 164.6) seen) Condone P(" \overline{X} " > 164.6) = 0.9652 or awrt 0.97 <u>only if</u> comparison with 0.95 is made		
ALT	Use of z value: Need to see $Z = -1.8(15)$ and $cv \text{ of } \pm 1.6449$ (allow 1.64 or	better) for	1 st A1
ALT SC	Use of z value: Need to see $Z = -1.8(15)$ and cv of ± 1.6449 (allow 1.64 or better) for 1 st A1 Use of CR or CV for \overline{X} : Need to see " \overline{X} " < 164.7786 or CV = (awrt 164.8) for 1 st A1 Condone truncation i.e 164.7 or better 2 nd dA1 (dep on M1A1 only) for a correct inference in context. Must mention <u>Mia's belief</u> or <u>mean height of females/women</u> Do NOT award if contradictory statements about hypotheses made e.g. "not sig" M0 for \overline{X} ~N(164.6,) If they achieve $p = awrt 0.035$ (o.e. with z-value or CV of 166.3) and a correct conclusion in context is given score M0A0A1 [and SC for awrt 0.97 > 0.95 case]		

Qu 12	Scheme	Marks	AO
12	$H_0: \rho = 0 \qquad H_1: \rho \neq 0$ Critical value: $-0.361(0)$ r < -0.3610 so significant result and there is evidence of a correlation between Daily Total <u>Sunshine</u> and Daily Maximum Relative <u>Humidity</u>	B1 M1 A1 (3)	2.5 1.1b 2.2b
		(3 mark	s)
	Notes	(5 mark	3)
12	 2 B1 for both hypotheses correct in terms of ρ M1 for the correct critical value compatible with their H₁: allow ± 0.361(0) If the hypotheses are 1-tail then allow cv of ± 0.3061 e.g. Alternative hypothesis with r < ± 0.377 implies a one-tail test or Ho and H1 in words saying "H0: there is no correlation, H1: there is correlation" is two-tail If there are no hypotheses (or they are nonsensical) assume 2-tail so M1 for ± 0.361(0) A1 for a correct conclusion in context based on comparing - 0.377 with their cv. Condone incorrect inequality e.g 0.3610 < -0.377 as long as they reject H0 Do not accept contradictory statements such as "accept H0 so there is evidence of" Can say "support for Stav's <u>belief</u>"(o.e.e.g. "claim") or "evidence of a correlation between <u>sunshine</u> and <u>humidity</u>" condone "negative correlation" or comments such as "if humidity is high amount of sunshine will be low" 		

Qu 13	Scheme	Marks	AO
13	$H_0: \mu = 10$ $H_1: \mu > 10$	B1	2.5
	$\overline{X} \sim N\left(10, \left(\frac{4}{\sqrt{20}}\right)^2\right); P(\overline{X} > 11.5) = 0.046766 [Condone 0.9532]$	M1;A1	3.3;3.4
	[This is significant (< 5%) so] there is evidence to support the complaint	A1 (4)	2.2b
		(4 marl)	(S)
	Notes		
13	B1 for both hypotheses correct in terms of μ . M1 for selection of a correct model (sight or use of correct normal- may no	t have lab	el \overline{X})
ALT	1 st A1 for use of this model to get probability allow 0.046~0.047 [Condone awrt 0.953] OR test statistic $z = 1.677$ (awrt 1.68) and cv of 1.64 (or better) or CR $\overline{X} > 11.47$ 2 nd A1 (dep on 1 st A1 or at least P($\overline{X} > 11.5$) < 0.05 (o.e.))		
SC	for <u>a</u> correct conclusion in context -must mention complaint /claim or time /mins is > 10 (M0 for $X \sim N(11.5,)$ for correct probability and conclusion (score M0A0A1 on epen)		

Scher	me	Marks	AOs
$H_0: \rho = 0$ $H_1: \rho > 0$		B1	2.5
Critical value 0.3438		M1	1.1a
(0.446 > 0.3438) so there is evid moment correlation coefficient is positive correlation	lence that the product (pmcc) is greater than 0/there	A1	2.2b
		(3)	
The value is close(r) to 1 or the correlation	re is strong(er) (positive)	B1	2.4
		(1)	
$\log_{10} y = -1.82 + 0.89(\log_{10} x)$	$y = ax^{n} \rightarrow \log_{10} y = \log_{10} (ax^{n})$	M1	1.1b
$y = 10^{-1 82 + 0.89(\log_{10} x)}$	$\log_{10} y = \log_{10} a + \log_{10} x^n$	M1	2.1
$y = 10^{-1.82} \times 10^{0.89(\log_{10} x)}$	$\log_{10} y = \log_{10} a + n \log_{10} x$	M1	1 11
$[=10^{-1.82} \times 10^{(\log_{10} x)^{0.89}}]$	$[\log_{10} a = -1.82, n = 0.89]$	111	1.10
$y = 0.015 x^{0.89}$	$y = 0.015 x^{0.89}$	A1A1	1.1b 1.1b
		(5)	
		()	9 marks)
	Notes		
M1: for the critical value: sight of 0.3438 or any cv such that $0.25 < cv < 0.45$ A1: a comment suggesting a significant result/ H ₀ is rejected on the basis of <u>seeing</u> +0.3438 and which mentions "pmcc/correlation/relationship" and "greater than 0/positive" (not just $\rho > 0$) or an answer in context e.g. 'as "income"(o.e.) increases, "CO ₂ /emissions"(o.e.) increases'			
B1: for suitable reason e.g. <i>r</i> is cl Do not allow 'association'	ose(r) to 1 or "strong(er)"/"near p	perfect" "co	rrelation"
bi: for suitable reason e.g. <i>r</i> is close(r) to 1 or "strong(er)"/"near perfect "correlation" Do not allow 'association' For both methods, once an M0 is scored, no further marks can be awarded and condone missing base 10 throughout Method 1: (working to the model) M1: Correct substitution for both <i>c</i> and <i>m</i> (may be implied by 2 nd M1 mark) M1: Making <i>y</i> the subject to give an equation in the form $y = 10^{a+b(\log_{10} x)}$ (may be implied by 3 rd M1 mark) M1: Correct multiplication to give an equation in the form $y = 10^{a} \times 10^{b(\log_{10} x)}$ (this line implies M1M1M1 provided no previous incorrect working seen) Method 2: (working from the model) M1: Taking the log of both sides (may be implied by 2 nd M1 mark) M1: Correct multiplication of power (this line implies M1M1M1 provided no previous incorrect working seen) A1: $n = 0.89$ or $a = awrt 0.015$ or $y = ax^{0.89}$ or $y = awrt0.015x^n$ (dep on M3) A1: $n = 0.89$ and $a = awrt 0.015$ / $y = awrt0.015x^{0.89}$ (dep on M3)			
do not award the final A1 if answe	r is given in an incorrect form e.g	y = 0.015	$+x^{0.89}$
	Scher $H_0: \rho = 0$ $H_1: \rho > 0$ Critical value 0.3438(0.446 > 0.3438) so there is evid moment correlation coefficient (is positive correlationThe value is close(r) to 1 or the correlationImage: correlationImage: correlation $10^{-1.82+0.89(log_{10}x)}$ $y = 10^{-1.82 \times 10^{0.89(log_{10}x)}$ $y = 10^{-1.82 \times 10^{0.89(log_{10}x)}$ $y = 0.015x^{0.89}$ Image: correct in the multical value: sight of 0A1: a comment suggesting a significand which mentions "pmcc/correlation"For both hypotheses correct in the M1: for the critical value: sight of 0A1: a comment suggesting a significand which mentions "pmcc/correlation"For both hypotheses correct in the M1: for suitable reason e.g. r is clessed to be addition of reason of the model M1: Correct substitution for both and condon Method 1: (working to the model M1: Correct multiplication to give a implied by 3rd M1 mark)M1: Correct multiplication to give a implied by 3rd M1 mark)M1: Correct multiplication to give a implied by 3rd M1 mark)M1: Correct multiplication of pow incorrect working seen)A1: $n = 0.89$ or $a = awrt 0.015$ of A1: $n = 0.89$ and $a = awrt 0.015$ do not award the final A1 if answer	Scheme $H_0: \rho = 0$ $H_1: \rho > 0$ Critical value 0.3438(0.446 > 0.3438) so there is evidence that the product moment correlation coefficient (pmcc) is greater than 0/there is positive correlationThe value is close(r) to 1 or there is strong(er) (positive) correlation $\log_{10} y = -1.82 + 0.89(\log_{10} x)$ $y = ax^n \rightarrow \log_{10} (ax^n)$ $\log_{10} y = \log_{10} (ax^n)$ $y = 10^{-1.82+0.89(\log_{10} x)}$ $\log_{10} y = \log_{10} a + \log_{10} x^n$ $y = 10^{-1.82+0.89(\log_{10} x)}$ $\log_{10} y = \log_{10} a + \log_{10} x^n$ $y = 10^{-1.82} \times 10^{0.89(\log_{10} x)}$ $\log_{10} y = \log_{10} a + n \log_{10} x$ $[=10^{-1.82} \times 10^{0.89(\log_{10} x)})$ $\log_{10} y = \log_{10} a + n \log_{10} x$ $[=10^{-1.82} \times 10^{0.89(\log_{10} x)})$ $\log_{10} y = \log_{10} a + n \log_{10} x$ $y = 0.015x^{0.89}$ $B1:$ for both hypotheses correct in terms of ρ M1: a comment suggesting a significant result/ H_0 is rejected on the ba and which mentions "pmcc/correlation/relationship" and "greater than $\rho > 0$) or an answer in context e.g. 'as "income"(o.e.) increases, "CO ₂ /emis A contradictory statement scores A0 e.g. 'Accept H_0 , therefore pos B1: for subtilbe reason e.g. r is close(r) to 1 or "strong(er)","near Do not allow 'association'For both methods, once an M0 is scored, no further markes. M1: Correct substitution for both c and m (may be implied by 2^{nd} M1 mark)Mit: Correct multiplication to give an equation in the form $y = 10^{a+b}$ implied by 3' ^{ad} M1 mark)Mit: Correct multiplication to g	SchemeMarks $H_0: \rho = 0$ $H_1: \rho > 0$ B1Critical value 0.3438M1 $(0.446 > 0.3438)$ so there is evidence that the product moment correlation coefficient (pmcc) is greater than 0/there is positive correlationA1is positive correlation(3)The value is close(r) to 1 or there is strong(er) (positive) correlationB1(1) (1) $\log_{10} y = -1.82 + 0.89(\log_{10} x)$ $y = ax^n \rightarrow \log_{10} a + \log_{10} x^a$ $y = 10^{-1.82 + 0.89(\log_{10} x)}$ $\log_{10} y = \log_{10} a + \log_{10} x^a$ $y = 10^{-1.82 + 0.89(\log_{10} x)}$ $\log_{10} y = \log_{10} a + \log_{10} x$ $y = 10^{-1.82 + 0.89(\log_{10} x)}$ $\log_{10} y = \log_{10} a + \log_{10} x$ $y = 10^{-1.82 + 0.89(\log_{10} x)}$ $\log_{10} y = \log_{10} a + \log_{10} x$ $y = 0.015x^{0.89}$ $x = 0.489$ M1:for the critical value: sight of 0.3438 or any cv such that $0.25 < cv < 0.45$ A1: a comment suggesting a significant result/ H_0 is rejected on the basis of sceing and which mentions "pmce/correlation/relationship" and "greater than 0/positive" $\rho > 0$) or an answer in context e.g. 'as "income"(0.e.) increases, "CO_2/emissions"(0.e.) A contradictory statement scores A0 e.g. 'Accept H_0 , therefore positive correlation Do not allow 'association'For both methods, once an M0 is scored, no further marks can be awa and condone missing base 10 throughoutMethod 1: (working to the model)M1: Correct substitution for both c and m (may be implied by 2 nd M1 mark)M1: Correct substitution for power (this line impl

Question	Scheme	Marks	AOs	
15	$H_0: \mu = 25$ $H_1: \mu < 25$	B1	2.5	
	$[\bar{D} \sim] N\left(25, \frac{0.16^2}{20}\right)$	M1	3.3	
	$P(\bar{D} < 24.94)[= P(Z < -1.677)] = 0.046766$	A1	3.4	
	p = 0.047 < 0.05 or $z = -1.677 < -1.6449or 24.94 < 24.94115or reject H0/in the critical region/significant$	M1	1.1b	
	There is sufficient evidence to support <u>Hannah's belief</u> .	A1	2.2b	
		(5)		
		(5	marks)	
	Notes B1: for both hypotheses in terms of μ			
	M1: selecting suitable model must see N(ormal), mean 25, sd = $\frac{0.16}{\sqrt{20}}$ (o.e.) or var = $\frac{4}{3125}$			
	(o.e.) Condone N(25, $\frac{0.16}{\sqrt{20}}$) if $\frac{0.16}{\sqrt{20}}$ then used as s.d.			
15	 A1: p value = awrt 0.047 or test statistic awrt -1.68 or CV awrt 24.941 (any of these values imply the M1 provided they do not come from Normal mean = 24.94) M1: a correct comparison (including compatible signs) or correct non-contextual conclusion (f.t. their p value, test statistic or critical value in the comparison) M1 may be implied by a correct contextual statement 			
	 NB Any contradictory non contextual statements/comparisons score M0A0 e.g. A1: correct conclusion in context mentioning <u>Hannah's belief</u> or the mean <u>amount/liquid</u> in each bottle is now <u>less than 25</u>ml (d 	<i>p</i> < 0.05, not ep on M1A	significant' 1M1)	

Qu 16	Scheme	Marks	AO
(a)	$H_0: \rho = 0$ $H_1: \rho < 0$	B1	2.5
	Critical value: -0.6215 (Allow any cv in range $0.5 < cv < 0.75$)	M1	1.1a
	r < -0.6215 so significant result and there is evidence of a negative correlation between <i>w</i> and <i>t</i>	A1	2.2b
		(3)	
(b)	e.g. As temperature increases people spend more time on the beach and less time shopping (o.e.)	B1	2.4
(c)	Since r is close to -1 , it is consistent with the suggestion	(1) B1 (1)	2.4
(d)	<i>t</i> will be the explanatory variable since sales are likely to depend on the temperature	B1	2.4
(e)	Every degree rise in temperature leads to a drop in weekly earnings of £171	(1) B1	34
	Every degree rise in temperature reads to a grop in weekly carinings of 2171	(1)	5.1
		(7 marl	ks)
	Notes		
(b)	 M1 for the critical value: sight of ±0.6215 or any cv such that 0.5 < cv < 0.75 A1 must reject H₀ on basis of comparing -0.915 with -0.6215 (if -0.915 < 0.6215 is seen then A0 but may use r o.e. which is fine) and mention "negative", "correlation/relationship" and at least "w" and "t" B1 for a suitable reason to explain negative correlation using the context given. e.g. "As temperature drops people are more likely to go shopping (than to the beach)" e.g. "As temperature increases people will be outside rather than in shops" A mere description in context of negative correlation is B0 SO e.g. "As temperature increases people don't want to go shopping/buy clothes" is B0 e.g. "Less clothes needed as temp increases" is B0 		
(c)	B1 for a suitable reason e.g. "strong"/"significant"/"near perfect" "correlation" and saying it is consistent with the suggestion. Allow "yes" followed by t	', <i>r</i> close he reason	to 1
(d)	 B1 For identifying t and giving a suitable reason. Need idea that "w depends on t" or "w responds to t" or "t affects w" (o.e.) Allow t (temperature) affects the other variable etc Just saying "t is the independent variable" or "t explains change in w" is B0 N. B. Suggesting causation is B0 e.g. "t causes w to decrease" 		
(e)	B1 for a description that conveys the idea of rate per degree Celsius. Must have 171, condone missing "£" sign.		

Qu 17	Scheme	Marks	AO
17	$H_0: \mu = 18$ $H_1: \mu > 18$	B1	2.5
	$\overline{L} \sim N\left(18, \left(\frac{4}{\sqrt{20}}\right)^2\right)$	M1	3.3
	$P(\overline{L} > 19.2) = P(Z > 1.3416) = 0.089856$	A1	3.4
	(0.0899 > 5%) or $(19.2 < 19.5)$ or $1.34 < 1.6449$ so not significant	A1	1.1b
	Insufficient evidence to support Alice's claim (or belief)	A1	3.5a
		(5)	<u>`</u>
		(5 mark	s)
	Notes		
17	B1 for both hypotheses in terms of μ .		
	M1 for selecting a suitable model. Sight of <u>normal</u> , <u>mean</u> 18, <u>sd</u> $\frac{4}{\sqrt{20}}$ (o.e.) o	r <u>variance</u>	= 0.8
	1 st A1 for using the model correctly. Allow awrt 0.0899 or 0.09 from correct p	rob. staten	nent
ALT	CR $(\overline{L}) > 19.471$ (accept awrt 19.5) <u>or</u> CV of 1.6449 (or better: calc 1.6448536)		
	2 nd A1 for correct non-contextual conclusion. Wrong comparison or contradictions A6)	
	Error giving 2 nd A0 implies 3 rd A0 but just a correct contextual conclusion can	score A1A	.1
	3^{16} A1 dep on M1 and 1^{16} A1 for a correct contextual conclusion mentioning <u>Al</u>	<u>ice's clain</u>	<u>n</u> / <u>belief</u>
	or there is insufficient evidence that the mean <u>lifetime</u> is more than 18 h	iours	

Question	Scheme		AOs
18(a)	Width = $0.4 \times 5 = 2$ (cm)	B1	3.1a
	Area = 12 cm ² Frequency = 15 so 1 cm ² = $\frac{5}{4}$ packet o.e	M1	1.1b
	Frequency of 9 corresponds to area of 7.2 Height = $7.2 \div 2 = 3.6$ (cm)	Al	1.1b
		(3)	
(b)	$[Q_2 =] (248+) \frac{22}{35} \times 4$ or (use of $(n+1)$) $(248+) \frac{22.5}{35} \times 4$	M1	1.1a
	= awrt 250.5 (g) or 250.6	A1	1.1b
		(2)	
(c)	Mean = awrt 250.4 (g)	B1	1.1b
	$\left[\sigma_{x}=\right]\sqrt{\frac{5644171.75}{90}-\left(\frac{22535.5}{90}\right)^{2}}=\sqrt{15.64}$	M1	1.1b
	= awrt 4.0 (g)	A1	1.1b
	Accept $\left(s_x = \sqrt{\frac{5644171.75 - 90\left(\frac{22535.5}{90}\right)^2}{89}} = 3.977\right)$	(3)	
(d)	$H_0: \mu = 250 H_1: \mu > 250$	B1	2.5
	$\overline{X} \sim N\left(250, \frac{4^2}{90}\right) \text{ and } \overline{X} > 250.4$	M1	3.3
	$P(\overline{X} > 250.4) = 0.171$	A1	3.4
	0.171 > 0.05 or $z = 0.9486 < 1.6449$	A1	1.1b
	There is insufficient evidence that the mean weight of coffee is greater than 250 g, or there is no evidence to support the sellers claim.	A1	2.2b
		(5)	
	(13 marks)		

Question 18 Notes:
(a) B1: for correct width
M1: for clear attempt to relate the area to frequency.
May be implied by their height \times their width = 7.2
A1: for height = 3.6 cm
(b) M1: for $\frac{22}{35} \times 4$ or $\frac{22.5}{35} \times 4$
A1: awrt 250.5 or 250.6
(c) B1: awrt 250.4
M1: for a correct expression for σ or s , can ft their mean
A1: awrt 4.0 (allow $s = awrt 4.0$)
(d) B1: hypotheses stated correctly
M1: for selecting a correct model, (stated or implied)
A1: for use of the correct model to find $p = awrt 0.171$ (allow $z = awrt 0.948$)
A1: for a correct calculation, comparison and correct statement
A1: for a correct conclusion in context mentioning mean weight and 250

Question	Scheme	Marks	AOs
19	$H_0: \rho = 0 H_1: \rho > 0$	B1	2.5
	Critical value 0.5509	M1	1.1a
	Reject H ₀		
	There is evidence that pmcc is greater than zero	A1	2.2b
		(3)	
		(3 n	narks)
Notes:			

B1: for both hypotheses in terms of ρ

M1: for selecting a suitable critical value compatible with their H_1

A1: for a correct conclusion stated

Questio	Scheme	Marks	AOs
20(a)	e.g. Linear association between w and t	B1	1.2
		(1)	
(b)	H ₀ : $\rho = 0$ H ₁ : $\rho > 0$	B1	2.5
	Critical value 0.5822	M1	1.1a
	Reject H ₀		
	There is evidence that the product moment correlation coefficient is greater than 0	A1	2.2b
		(3)	
		(4	marks)
Notes:			
(a)			
B1: for	a correct statement		
(b)			
B1: for	both hypotheses in terms of ρ		
M1: for	selecting a suitable 5% critical value compatible with their H_1		
A1: for	a correct conclusion stated		

Question	Scheme	Marks	AOs		
21	$H_0: \mu = 50.1$ $H_1: \mu > 50.1$	B1	2.5		
	$\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$	M1	3.3		
	$P(\bar{X} > 50.4) = 0.0264$	A1	3.4		
	p = 0.0264 > 0.01 or $z = 1.936 < 2.3263$ and not significant	A1	1.1b		
	There is insufficient evidence that the <u>mean length</u> of strips is <u>greater than 50.1</u>	A1	2.2b		
		(5)			
		(5	marks)		
Question 21 continued					
Notes:					
B1: hypotheses stated correctly					

M1: for selecting a correct model (stated or implied)

1st A1: for use of the correct model to find p = awrt 0.0264 (allow z = awrt 1.94)

 2^{nd} A1: for a correct calculation, comparison and correct statement

3rd A1: for a correct conclusion in context mentioning "mean length" and 50.1

Question	Scheme		Marks		
Number 22(a)	$H_{0}: n = 0.35$ $H_{1}: n > 0.35$		B 1		
22(a)	$H_0: p = 0.55$ $H_1: p > 0.55$ V = P(40, 0.25) = P(V > 18) = 1 = P(V < 17)	= D(U > 10) = 0.0000	M		
	$V \sim D(40, 0.55)$ $\Gamma(V \ge 16) - 1 - \Gamma(V \le 17)$	or $P(V \ge 19) = 0.0099$	IVI I		
	= 1 - 0.8/61	$P(V \ge 20) = 0.0363$	A 1		
	= 0.1239	$\frac{CR V \ge 20}{V}$	Al		
	Accept H_0 or not Significant or 18 does not lie in the	he critical region	MId		
	nercentage of customers who hought organic yog	amount/number/	AICSO (5)		
	percentage of customers who bought organic veg	ctables has increased.	(3)		
(b)	$\mathbf{E} \sim \mathbf{B}(50, 0.35)$		M1		
	$P(E \le 10) = 0.0160$ $P(E \ge 25) = 0.0160$	0207			
	$P(E \le 11) = 0.0342$ $P(E \ge 24) = 0.0342$	0396			
	$CR \ E \le 10 \qquad \qquad E \ge 25$		A1A1 (3)		
(c)	The manager's claim is supported or				
(-)	there is sufficient evidence that the proportion of c	ustomers buying organic	B1ft (1)		
	eggs is different from those buying organic vegeta	bles.			
(d)	0.016 + 0.0207 = 0.0367 or $3.67%$	awrt 0.0367 or 3.67%	B1 (1)		
(e)	<i>F</i> ~N(40, 32)		M1 A1		
	(n-0.5-40)				
	$P(F < n) = P\left(Z < \frac{n - 0.3 - 40}{\sqrt{32}}\right)$				
	n - 0.5 - 40 - 1.68				
	$\sqrt{32}$ 1.00		DI		
	<i>n</i> = 31		A1cso (6)		
	Notes	Total 16			
(a)	B1 both hypotheses correct with <i>p</i> or π				
	MI writing or using $V \sim B(40, 0.35)$ and $1 - P(V \le 0.05)$	≤ 17) or P(V ≤ 17)=0.8761	or awrt 0.124		
	OR writing $P(V \ge 19)=0.0699$ or $P(V \ge 20)=0.0363$ leading to a CR . Implied by correct CR				
	At awr 0.124 or $V \ge 20$ or $V \ge 19$ allow any letter M1d dep on previous M being awarded ft their CP or probability. A correct statement				
	MId dep on previous M being awarded. It their CR or probability. A correct statement –				
	do not allow contradicting non-contextual comments				
	Bold words. NB award M1A1 for a correct contex	tual statement on its own.	If there are		
	no hypotheses or they are the wrong way around, t	hen M0A0			
(b)	M1 writing E \sim B(50, 0.35) or a correct probability	or one tail of the CR corre	ect		
	A1 $E \le 10$ oe A1 $E \ge 25$ oe, allow any letter.	Condone missing letter			
	NB If CR written as probabilities and both are corr	ect or CR written as $10 \ge E$	$2 \ge 25$ oe		
	award M1A1A0. If just give CV 10 and 25 given	award M1A0A0			
(c)	B1 A correct statement including the words mana	gers claim or eggs and veg	getable(s)		
	(or veg) it their 2 tail CR. Cannot be awarded if no	CR given in (b)			
(e)	MI writing/using normal approximation with mean	n = 40			
	All withing/using normal approximation with mean $M_1 = ((n \text{ or } n - 0.5 \text{ or } n + 0.5) - their mean)$ if no mean or solutions in the mean of th	1 - 40 and val $- 52$	here		
	$\pm \left((n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)$	given mey must be contect	nore.		
	M1 dep on previous method mark being awarded.	Using continuity correction	n $n - 0.5$		
	B1 \pm 1.68 A1 31 cso all previous marks must be	e awarded.			
	NB 31 with no working gains no marks				

Question Number	So	cheme	Marks	
	Allow any letter instead	d of X or c for this question		
23 (a)	3 (a)X ~ B(25,0.2)M1 Writing or using B(25,0.2) or B(25,1/5) [allow Po(5)] May be written in full or implied by a correct CR (allow written as a probability statement)		M1	
	$[P(X \ge 9) =] 0.0468$ $[P(X \le 1) =] 0.0274$	1^{st} A1 both awrt 0.0468 and awrt 0.0274 seen.	A1	
	$\overline{X} = \begin{bmatrix} 0 \le \end{bmatrix} X \le 1$	2nd A1 $X \le 1$ or $X < 2$ or $0 \le X \le 1$ or $[0,1]$ or 0,1 or equivalent statements. $X \le c$ and $c = 1$	A1	
	$9 \le X \ [\le 25]$	3rd A1d dependent on seeing a probability from the B(25, 0.2) and $X \ge 9$ or $X > 8$ or $9 \le X \le 25$ or 9,10,11,12,13,14,15,16,17,18,19,20,21,22, 23,24,25 or [9,25] or equivalent statements. $X \ge c$ and $c = 9$	A1d	
	NB These two final 2 A marks must be for statements with "X" only(or list) – not in probability SC If a probability from the B(25, 0.2) is seen and they either have both CR correct probability statements or the CR is written as $1 > X > 9$ they get A1 A0 for final 2 marks			
(b)	H ₀ : $p = 0.2$ H ₁ : $p < 0.2$	B1 both hypotheses with p or π and clear which is H ₀ and which is H ₁	B1	
	$P(X \le 6) = 0.1034 \text{ or } CR X \le 5$	1 st M1 writing or using B(50, 0.2) and writing or using P($X \le 6$) or P($X \ge 7$) on its own. May be implied by a correct CR	M1	
		1st A1 awrt 0.103. Allow CR $X \le 5$ or $X < 6$. or if not using CR allow awrt 0.897.	Al	
	Insufficient evidence to reject H_0 , Accept H_0 , Not significant. 6 does not lie in the Critical region.	2 nd M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non-contextual statements). ft their Prob/CR compared with 0.05/6/(0.95 if using 0.8979). Do not follow through their hypotheses	M1d	
	No evidence that increasing the batch size has reduced the percentage of broken pots (oe) or evidence that there is no change in the percentage of broken pots (oe)	 2nd A1cso Conclusion must contain the words reduced/ no change/not affect oe number/percentage/proportion/ probability oe, and pots. All previous marks must be awarded for this mark to be awarded. Do not allow the potters claim /belief is wrong/true NB Correct contextual statement on its own scores M1A1 	A1cso (5)	
			(Total 9)	

Question Number	Schen	ne	Marks
24	$H_0: p = 0.05$ $H_1: p > 0.05$	B1: Both hypotheses correct and labelled H ₀ and H ₁ , must use <i>p</i> or π Do not allow p(<i>x</i>)	B1
	$P(R \ge 4) = 1 - P(R \le 3)$	M1: Writing or using B(50,0.05) AND writing or using 1 – P($R \le 3$) or P($R \le 3$) = 0.7604 on its own or one of the following 4 statements leading to a CR. P($R \ge 7$) = 0.0118 P($R \le 6$) = 0.9882 P($R \ge 8$) = 0.0032 P($R \ge 7$) = 0.9968 May be implied by correct CR. Allow any letter	M1
	$= 0.2396$ CR $R \ge 8$	A1: awrt 0.240 or 0.24 or $R \ge 8$ oe Or 0.7604	A1
	Insufficient evidence to reject H ₀ , Not Significant. Accept H ₀ . 4 does not lie in the Critical region.	M1: dependent on the previous M being awarded. A correct statement – do not allow contradictory non contextual statements. Follow through their Probability/CR and H ₁ . If no H ₁ seen then M0. Ignore their comparison in all cases Then mentally compare their probability as follows: For prob < 0.5 statement must be correct compared to 0.01 for 1 tail test and 0.005 for 2 tailed test. For prob > 0.5 statement must be correct compared to 0.99 for 1 tail test and 0.995 for 2 tailed test. NB :If there is no non-contextual statement given you may award the M1for a correct contextual statement	M1d
	No evidence to support <u>Patrick's</u> claim. Or no evidence that people in <i>Reddman</i> have a probability greater than 5% of having <u>red</u> hair	A1: cso fully correct solution and correct contextual statement containing the word Patrick if writing about the claim Or red hair if full context	A1 cso (5)
			Total 5

Question Number	Scheme	9	Marks
25	$H_0: p = 0.25$ $H_1: p < 0.25$	B1: Both hypotheses correct, labelled H_0 or NH or H_n and H_1 or AH or H_a , must use <i>p</i> or <i>p</i> (<i>x</i>) or π	B1
	B(15, 0.25)	M1: for using B(15, 0.25)	
	$P(X \le 1) = 0.0802$	A1: awrt 0.0802 or CR $X \le 1$ (allow P($X \ge 2$) = 0.9198)	M1 A1
	NB: Allow M1 A1 for a correct CR with no	incorrect working	
	Reject H ₀ or Significant or 1 lies in the critical region	M1: A correct statement – do not allow contradictory non contextual statements. Follow through their Probability/CR (for 1 or 2 tail test). If no H ₁ given then M0. Ignore their comparison. For a probability < 0.5, statement must be correct compared to 0.1 for 1 tail test and 0.05 for 2 tailed test or if the probability > 0.5, statement must be correct compared to 0.9 for 1 tail test and 0.95 for 2 tailed test.	dM1 A1cso
	claim is true	A1: cso (all previous marks awarded) and a correct statement containing the	
	Or	word company if writing about the	
	The new transmitter will reduce the	claim	
	proportion of houses unable to receive radio	or radio if full context.	
			Total 5

Question	Scheme	Marks	
26.	$H_0: p = 0.2$ $H_1: p < 0.2$	B1	
	$[X \sim B(40, 0.2)]$ $P(X \le 3) = 0.0285$ or CR of $X \le 3$	M1A1	
	[0.0285 < 0.05] significant, reject H ₀	M1dep	
	There is evidence to support the supplier's <u>claim</u>	A1cso	
	or The probability of a ball failing the bounce test is less than 0.2		
		(5)	
	Notes		
	1 st B1 for both H_0 and H_1 must use p or π		
	1^{st} M1 for writing or using B(40, 0.2), may be implied by correct answer		
	1 st A1 awrt 0.0285 or CR of $X \le 3$ as their final answer		
	2 nd M1 dependent on the previous method mark being awarded. A correct state	ment (this	
	may be contextual) comparing "their probability" and 0.05 (or comparing 3 with their		
	critical region). Do not allow conflicting statements.		
	2 nd A1cso This is cso so can only be awarded for a fully correct solution. A correct		
	contextualised conclusion (to include the words underlined in bold)		

Question Number	Scheme	Marks			
27(a)	<i>X</i> ~B(20,0.25)	M1			
	$P(X \ge 10) = 1 - 0.9861 = 0.0139$	A1			
	$P(X \le 1) = 0.0243$	A1			
	$(0 \le) X \le 1 \cup 10 \le X (\le 20)$	A1A1			
		(5)			
27(b)	$H_0: p = 0.25$				
	$H_1: p < 0.25$	B1			
	<i>X</i> ~B(20,0.25)				
	$P(X \le 3) = 0.2252$ or CR $X \le 1$	M1A1			
	Insufficient evidence to reject H ₀ , Accept H ₀ , Not significant.	M1d			
	3 does not lie in the Critical region.				
	No evidence that the changes to the process have reduced the	Alcso			
	percentage of defective articles (oe)				
		(5)			
		Total 10 marks			
	Notes				
27(a)	M1 using B(20,0.25) may be implied by a correct CR (allow written as a				
	probability statement)				
	1 A1 aWrt 0.0139				
	2^{rd} A1 awrt 0.0243 2^{rd} A1 - X - 1 - r 0 - K - 1 - r 0 1 - r 0 1				
	3^{th} Al $X \le 1$ or $0 \le X \le 1$ or $[0,1]$ or 0,1 or equivalent states	ments			
	4^{-1} Al $X \ge 10$ or $10 \le X \le 20$ or $10, 11, 12, 13, 14, 15, 16, 17, 18$	3,19,20 or [10,20]			
	or equivalent statements				
	NB These two A marks must be for statements with X (any letter) on probability statements and SC for CD written as $1 > V > 10$ gots	1y - not in			
	probability statements and SC 101 CK written as $1 \ge X \ge 10$ gets I	AT AU			
27(b)	B1 both hypotheses with n	l			
27(0)	1^{st} M1 using B(20, 0.25) and finding P(X < 3) or P(X > 4) may	be implied by a			
	correct CR	oe implied of u			
	1^{st} A1 0 2252 (allow 0 7748) if not using CR or CR X < 1 or X	< 2			
	2^{nd} M1dependent on previous M being awarded. A correct state	ment (do not			
	allow if there are contradicting non contextual statements)				
	Alcso Conclusion must contain the words changes/new proces	s oe, reduced oe			
	number/percentage oe, and defective articles/defectives. The	ere must be no			
	incorrect working seen.				

Question Number	Scheme	Mark	.8
28(a)	A statement concerning a population parameter	B1	
(b)	A critical region is the <u>range</u> / <u>set of values / answers</u> or a <u>test statistic</u> or <u>region/area</u> or values (where the test is significant)	B1	
	that would lead to the rejection of H0 / acceptance of H_1	B1	
			(3)
(c)	$H_0: p = 0.45$ $H_1: p < 0.45$ (or $p \neq 0.45$)		(0)
	$X \sim B(20, 0.45)$	M1	
	$P(X \le 5) = 0.0553$ CR $X \le 4$	A1	
	Accept H ₀ . Not significant. 5 does not lie in the Critical region.	M1d	
	There is no evidence that the proportion who voted for <u>Mrs George</u> is not 45% or there is evidence to support Mrs George's claim	A1cso	
			(4)
(d)	B(8, 0.45): P(0) = 0.0084	M1	
	B(7, 0.45): P(0) = 0.0152	A1	
	Hence smallest value of n is 8	B1	
	Alternative		(3)
	$(0.55)^n < 0.01$	M1	
	$n\log 0.55 < \log 0.01$		
	<i>n</i> > 7.7	A1	
	Hence smallest value of n is 8	B1cso	
	Notes	Tota	al 10
(a)	It must be a statement including the words population parameter . 1^{st} M1 using B(20, 0.45) and finding P(X < 5) or P(X > 6) Using the normal		
(0)	approximation to the binomial is M0		
	A1 0.0553 (allow 0.9447) if not using CR or CR $X \le 4$ or $X < 5$		
	2 nd M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non contextual statements nor award if 2 probabilities are		
	given which would result in different conclusions)		
	Alcso Conclusion must contain the words Mrs George. There must be no incorrect		
	working seen. If there are no hypotheses you cannot award this mark. NB A correct contextual statement on it's own will score M1 A1		
	The Treoffeet contextual statement on it's own will scole wit Tri.		
(d)	M1 Attempt to find P(0) from B(n , 0.45) or $(0.55)^n < 0.01$ or $(0.55)^n = 0.01$ or $(0.55)^n > 0.01$		
	A1 P(0) = 0.0084 and P(0) = 0.0152 or getting 7.7 May be implied by correct answer.		
	B1 cso. $n = 8$ should not come from incorrect working.		
	IND AII allSwel OF 0 OII IIS OWIT WITH HO WORKING GAILIS WITATDT	<u> </u>	

Question Number	Scheme			arks
29.(a)	$X \sim B(25, 0.5)$	may be implied by calculations in part a or b	M1	
	$P(X \le 7) = 0.0216$ $P(X \ge 18) = 0.0216$			
	$P(X \ge 18) = 0.0216$			
	$\operatorname{CR} X \le 7; \cup X \ge 18$		A1,A1	(3)
(b)	$P(rejecting H_0) = 0.0216 + 0.0216$		M1	(0)
	= 0.0432	awrt 0.0432/0.0433	A1	(2)
			Total 5	(2)
	Notes			
29(a)	M1 - Using B(25,0.5) – may be implie Note Just seeing either P($X \le 7$) or P(X You may need to check their probabili 1 st A1 – also allow $X < 8$ or [0,7] or 0 DO NOT allow CRs given as P($X \le 7$) or 2 nd A1 – also allow $X > 17$ or [18,25] or a full list DO NOT allow CRs given as P($X \ge 18$ SC $7 \ge X \ge 18$ gains M1 A1 A0.	d by a correct critical region or by calculations in $X \ge 18$) scores M1 A0 A0. ties in the tables for values other than 7 or 18. $\le X \le 7$ or $0 \le X < 8$ oe e.g. [0, 8) or a full list or 7 - 0 for the A mark. or $18 \le X \le 25$ or $17 < X \le 25$ oe e.g. (17, 25]) or 18 - 25 for the A mark.	part a or	ъ
(b)	M1 – adding their two critical regions' awrt 0.0432 If they add their critical regions' proba probability as their answer then it is M e.g. $0.0216 + 0.0216 = 0.0432$ then 0 e.g. $0.0216 + 0.0216 = 0.0432$ < 0.05 e.g. $0.0216 + 0.0216 = 0.0432$ so prob gets M0 A0	probabilities together or may be awarded for bilities and then go on and get a different 0A0 .05 - 0.0432 = 0.0068 gets M0 A0 reject H ₀ gets M1 A1 bability of rejecting H ₀ is $1 - 0.0432 = 0.9568$		

Question Number	Scheme		
30	$H_{0}: p = 0.5$ $H_{1}: p > 0.5$ $X \sim B(30,0.5)$ $P(X \ge 21) = 1 - P(X \le 20)$ $P(X \ge 20) = 0.9786$ $= 0.0214$ $CR X \ge 20$ so significant/reject H ₀ /in Critical region Evidence to suggest David's claim is incorrect or The weather forecast produced by the local radio is better than those achieved by tossing/flipping a coin	B1 B1 M1 M1 A1 A1 A1 A1 (7) 7	
	Notes 1^{st} B1 for $H_0: p = 0.5$ 2^{nd} B1 for $H_1: p > 0.5$ SC If both hypotheses are correct but a different letter to p is used they get B1 B0. If noused they get B0 B0. 1^{st} M1 writing or using B(30,0.5)One tail 2^{nd} M1 for writing or using 1 - P(X ≤ 20) or writing P(X ≤ 19) = 0.9506 or P(X ≥ 20) = 0.049implied by correct CR.or probability = 0.0214A1 for 0.0214 or CR X ≥ 20/X > 19. NB P(X ≤ 20) = 0.9786 on its own scores M1A1 3^{rd} M1 dependent on the 2^{nd} M1 being awarded. For a correct statement based on the table belallow non-contextual conflicting statements eg "significant" and "accept H_0 ". Ignore comparis 2^{nd} A1 for a correct contextualised statement. NB A correct contextual statement on its own score $0.05 p < 0.05 or p > 0.953^{rd} M1 not significant/ accept H_0/ Not in CR2^{nd} A12^{nd} A1David's claim is correctweather forecast produced by the local radio isno better than those achieved bytossing/flipping a coincoin$	94. May be low. Do not sons. ores M1A1.	
	Two tail 1^{st} M1 for writing or using 1 - P(X ≤ 20) or writing P(X ≤ 20)= 0.9786 or P(X ≥ 21) = 0.0214.implied by correct CR. or probability = 0.197A1 for 0.0214 or CR X $\geq 21/X > 20$. NB P(X ≤ 20) = 0.9786 on its own scores M1A1 3^{rd} M1 dependent on the 2^{nd} M1 being awarded . For a correct statement based on the table beloceallow non-contextual conflicting statements eg"significant" and "accept H ₀ ". Ignore comparise 2^{nd} A1 for a correct contextualised statement. NB A correct contextual statement on its own score $0.025 p < 0.025 or p > 0.9753^{rd} M1 not significant/ accept H0/ Not in CR2^{nd} A1David's .claim is correctweather forecast produced by the local radiois no better than those achieved byto significipping a cointossing/flipping a coin$	May be ow. Do not ons. ores M1A1.	

Question Number	Scheme		Marks		
31.	$H_0: p = 0.15$ $H_1: p \neq 0.15$		B1 B1		
(a)	Y = B(30, 0, 15)				
	$P(X < 1) = 0.0480 \text{ or } CR \cdot X = 0$				
	(0.0480 > 0.025)				
	not a significant result or do not reject H_0 or not in CR				
	there is no evidence of a <u>change</u> in the <u>proportion</u>	of customers buying an item from	A 1 ft		
	the display.				
(b)	$H \cdot n = 0.2$ $H \cdot n > 0.2$		(0) P1		
(U)	$\Pi_0 \cdot p = 0.2$ $\Pi_1 \cdot p > 0.2$ Let S = the number who huy sandwiches S $\sim B(12)$) 0 2)	DI		
	Let $S =$ the number who buy sandwiches, $S \sim B(120)$), ().2),			
	$S \approx W \sim N(24, \sqrt{19.2}^{-})$		M1 A1		
	$P(S \ge 31) = P(W \ge 30.5)$		M1		
	$= P(Z > \frac{30.5 - 24}{2})$ or $\frac{x - 0.5 - 24}{2}$	$\frac{-24}{2} = 1.2816$	M1		
	$ \left(\begin{array}{c} 2 \\ 7 \\ \sqrt{19.2} \end{array} \right) \text{or} \sqrt{19.2} $	2	1411		
	[= P(Z > 1.48)]				
	= 1 - 0.9306	20.1	M1		
	= 0.0694	x = 30.1	Al		
	< 0.10 so a significant result, there is evidence that	at more customers are purchasing	BIft		
Notor	sandwiches or the shopkeepers claim is correct.		(8)		
(2)	$1^{\text{st}} \text{ B1 for H}_{\text{s}}$ must use $n = 2^{\text{nd}} \text{ B1 for H}_{\text{s}}$ must use n		14		
<i>(a)</i>	1^{st} M1 for writing or using B(30.0.15) – may be in	anlied by correct CR			
	1^{st} A1 0.0480 or $X = 0$. Allow $X < 0$. Ignore upper CR. NB Allow CR $X < 1$ if using one tail test.				
	2^{nd} M1 A correct statement (see table below) Do not allow non-contextual conflicting statements				
	eg"significant" and "accept H_0 ". Ignore compariso	ons			
	2^{nd} A1 for a correct statement in context. For conte	xt we need idea of <u>change/decrease</u>	in <u>number</u>		
	of customers buying from display - may use differe	ent words. NB A correct contextual s	statement on		
	its own scores M1A1				
	Two tail 0.025 < <i>p</i> < 0.975 or	Two tail <i>p</i> < 0.025 or <i>p</i> > 0.975 or			
	One tail 0.05 < <i>p</i> < 0.95	One tail <i>p</i> < 0.05 or <i>p</i> > 0.95			
	2^{nd} not significant/ accept H ₀ / Not in CR or	significant/ reject H ₀ / In CR or con	textual		
	M1 contextual				
	2^{nd} There is no evidence of a <u>change/decrease</u>	There is evidence of a <u>change/decr</u>	ease in		
	A1 in the proportion of customers buying an	the proportion of customers buying	g an item		
	1 st D1 both here the second arrest arrest	from the <u>display</u> .			
(D)	1 BI both hypotheses correct – must use p .				
	$1^{\text{st}} \wedge 1$ for correct mean and sd				
	2^{nd} M1 for use of continuity correction either 30.5	or 31.5 or $(r+0.5)$ seen			
	3^{rd} M1 standardising with their mean and their sd	and 30.5, 31 or 31.5 or $x \text{ or } (x \pm 0.5)$)		
	4^{th} M1 for 1 - tables value or 1 2816	and 50.5, 51 of 51.5 of x of $(x \pm 0.5)$)		
	2^{nd} A1 for awrt 0.069 or $x = 30.1$				
	2^{nd} B1ft For a correct conclusion in context using	their probability and 0.1 For context	we need		
	idea of <u>more customers buying sandwiches</u> – may use different words				

	One tail 0.1 < <i>p</i> < 0.9 or Two tail 0.05 < <i>p</i> < 0.95	One tail <i>p</i> < 0.1 or <i>p</i> > 0.9 or Two tail <i>p</i> < 0.05 or <i>p</i> > 0.95
2 nd M1	not significant/ accept H ₀ / Not in CR or contextual	significant/ reject H ₀ / In CR or contextual
2 nd A1	There is no evidence of an increase in the proportion of customers buying sandwiches	There is evidence of a change/increase in the proportion of customers buying sandwiches.
SC usi	P(X < 31.5) - P(X < 30.5) can get B1M1	A1 M1 M1M0A0B0

Question Number			Scheme			Marks	
32.	$H_0: p = 0.2$	$H_1: p > 0.2$				B1	
	Under H_0 , X	$1 \sim Bin(10, 0.2)$				B1	
	$P(X \ge 4)$	$= 1 - \mathbf{P}(X \le 3)$	OR	$P(X \le 4) =$	= 0.9672	M1	
		= 1 - 0.8791		$P(X \ge 5) =$	0.0328		
		= 0.1209		$\operatorname{CR} X \ge 5$		A1	
	0.1209>0.05.	Insufficient eviden	ce to reject	H_0 so teacher's cla	im is		
	supported.					MIAITT	F / 1
							[6]
			Ν	lotes			
	B1 for both H_0 and H_1 correct. Must use p or π (pi)						
	B1 for writing	g or using $Bin(10,0)$.2) V < 2) on D /	$(\mathbf{V} < 4) = 0.0672$			
	M1 for finding or writing $1 - P(X \le 3)$ or $P(X \le 4) = 0.96/2$ P(X > 5) = 0.0328 or or a correct critical radion						
	A 1 awrt 0.121 or CR $X > 5$						
	M1 need $p < 0.5$ and: correct statement using their Probability and 0.05 if one tail test or						
	correct statement using their Probability and 0.025 if two tail test (condone a comparison with 0.05 instead of 0.025 for a two tail test)						
	Do not allo	ow non-contextual	conflicting s	tatements eg "sign	ificant" and "	accept H ₀ "	
	Alft correct c	ontextual statemen	t followed th	rough from "their	prob".	uccept 110	
	Either a comm	nent on whether the	e teacher's c	laim was correct of	r on whether	the student	was
	guessing the a	unswers.					
	NB if a correc	et contextual statem	ent only is g	given for their prob	ability then a	ward M1 A	.1
	If <i>p</i> >0.5						
	They may cor Probability is	npare with 0.95 (or 0.8791.	ne tail metho	d) or 0.975 (two ta	ail method)		

Question Number		Scheme	Mar	ks
33	(a)	2 outcomes/faulty or not faulty/success or fail A constant probability Independence Fixed number of trials (fixed <i>n</i>)		(2)
	(b)	$X \sim B(50, 0.25)$ $P(X \le 6) = 0.0194$ $P(X \le 7) = 0.0453$ $P(X \ge 18) = 0.0551$ $P(X \ge 19) = 0.0287$	M1	
		CR $X \le 6$ and $X \ge 19$	A1 A1	(3)
	(C)	0.0194 + 0.0287 = 0.0481	M1A1	(2)
	(d)	8(It) is not in the Critical region or $8(It)$ is not significant or $0.0916 > 0.025$; There is evidence that the probability of a faulty bolt is 0.25 or the company's claim is correct.	M1; A1ft	(2)
	(e)	$ H_0: p = 0.25 H_1: p < 0.25 \\ P(X \le 5) = 0.0070 \text{ or } CR \ X \le 5 \\ 0.007 < 0.01, $	B1B1 M1A1	
		5 is in the critical region, reject H_0 , significant. There is evidence that the probability of faulty bolts has decreased	M1 A1ft	6) [15]
	(a)	Notes B1 B1 one mark for each of any of the four statements. Give first B1 if only one correct statement		
	(b)	given. No context needed. M1 for writing or using B(50,0.25) also may be implied by both CR being correct. Con P in critical region for the method mark. A1 $(X) \le 6$ o.e. $[0,6]$ DO NOT accept P($X \le 6$)		e of
	(C)	M1 Adding two probabilities for two tails. Both probabilities must be less than 0.5 A1 awrt 0.0481		
	(d)	M1 one of the given statements followed through from their CR. A1 contextual comment followed through from their CR.		
	(e)	 B1 for H₀ must use p or π (pi) B1 for H₁ must use p or π (pi) M1 for finding or writing P(X ≤ 5) or attempting to find a critical region or a correct critical region A1 awrt 0.007/CR X ≤ 5 M1 correct statement using their Probability and 0.01 if one tail test or a correct statement using their Probability and 0.005 if two tail test. The 0.01 or 0.005 needn't be explicitly seen but implied by correct statement compatible with their H₁. If no H₁ given M0 A1 correct contextual statement follow through from their prob and H₁. Need faulty bolts and decreased. 		

Ques Num	tion ber	Scheme	Marks
34	(a)	The set of values of the test statistic for which the null hypothesis is rejected in a hypothesis test.	B1 B1 (2)
	(b)	$X \sim B(30, 0.3)$ P(X ≤ 3) = 0.0093	M1
		$P(X \le 2) = 0.0021$ $P(X \ge 16) = 1 - 0.9936 = 0.0064$	A1
		$P(X \ge 17) = 1 - 0.9979 = 0.0021$ Critical region is $(0 \le)x \le 2$ or $16 \le x(\le 30)$	A1 A1A1 (5)
	(C)	Actual significance level 0.0021+0.0064=0.0085 or 0.85%	B1 (1)
	(d)	15 (it) is not in the critical region not significant	Bft 2, 1, 0
		No significant evidence of a change in $p = 0.3$ accept H ₀ , (reject H ₁) P($x \ge 15$)= 0.0169	(2)
			Total [10]
34	(a)	<u>Notes</u> 1 st B1 for "values/ numbers" 2 nd B1 for "reject the null hypothesis" o.e or the test is significant	
	(b)	M1 for using B(30,0.3) $1^{st} A1 P(x \le 2) = 0.0021$ $2^{nd} A1 0.0064$	
		3rd A1 for $(X) \le 2$ or $(X) < 3$ They get A0 if they write $P(X \le 2/X < 3)$ 4th A1 $(X) \ge 16$ or $(X) > 15$ They get A0 if they write $P(X \ge 16X > 15$ NB these are B1 B1 but mark as A1 A1	
	(C)	$16 \le X \le 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be <i>X</i> . B1 correct answer only	
	(d)	Follow through 15 and their critical region B1 for any one of the 5 correct statements up to a maximum of B2 – B1 for any incorrect statements	

Question Number		Scheme	Mar	ks
35	(a)	$X \sim B(20, 0.3)$ $P(X \le 2) = 0.0355$ $P(X \le 9) = 0.9520$ so $P(X \ge 10) = 0.0480$ Therefore the critical region is $\{X \le 2\} \cup \{X \ge 10\}$	M1 A1 A1 A1A1	(5)
	(b)	0.0355 + 0.0480 = 0.0835 awrt (0.083 or 0.084)	B1	(1)
	(C)	11 is in the critical region there is evidence of a <u>change/ increase</u> in the <u>proportion/number</u> of <u>customers buying</u> <u>single tins</u>		(2)
	(a)	M1 for B(20,0.3) seen or used 1 st A1 for 0.0355 2 nd A1 for 0.048 3 rd A1 for $(X) \le 2$ or $(X) < 3$ or $[0,2]$ They get A0 if they write $P(X \le 2/X < 3)$ 4 th A1 $(X) \ge 10$ or $(X) > 9$ or $[10,20]$ They get A0 if they write $P(X \ge 10/X > 9)$ 10 $\le X \le 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be X.		[0]
	(b) (c)	B1 correct answer only $1^{st} B1$ for a correct statement about 11 and their critical region. $2^{nd} B1$ for a correct comment in context consistent with their CR and the value 11 Alternative solution $1^{st} B0 \ P(X \ge 11) = 1 - 0.9829 = 0.0171$ since no comment about the critical region $2^{nd} B1$ a correct contextual statement.		

Question Number		Scheme	Mar	ks
3 6	(a)	$X \sim B(20, 0.3)$	M1	
		P ($X \le 2$) = 0.0355		
		$P(X \ge 11) = 1 - 0.9829 = 0.0171$		
		Critical region is $(X \le 2) \cup (X \ge 11)$	A1 A1	(3)
	(b)	Significance level = 0.0355 + 0.0171, = 0.0526 or 5.26%	M1 A1	(2)
	(C)	Insufficient evidence to reject H_0 Or sufficient evidence to accept H_0 /not significant	B1 ft	
		x = 3 (or the value) is not in the critical region or 0.1071> 0.025	B1 ft	(2)
		Do not allow inconsistent comments		
				[7]

Question Number	Scheme			Marks	
37(a)	<i>X</i> ~B(15, 0.5)			B1 B	1
(b)	P (X=8) = P (X \le 8) – P($(X \le 7)$ or $\left(\frac{15!}{8!7!}(p)^8(1-p)^7\right)$		M1	(2)
	= 0.6964 - 0.5				
	= 0.1964		awrt 0.196	A1	(2)
(c)	$P(X \ge 4) = 1 - P(X \le 3)$			M1	
	= 1 - 0.0176				
	= 0.9824			A1	(2)
(d)	$H_o: p = 0.5$ $H_1: p > 0.5$			B1 B1	
	<i>X</i> ~B(15, 0.5)				
	$P(X \ge 13) = 1 - P(X \le 12)$	$[P(X \ge 12) = 1 - 0.9824 = 0.0176]$	att P($X \ge 13$)	M1	
	= 1 - 0.9963 = 0.0037	$P(X \ge 13) = 1 - 0.9963 = 0.0037$ CR X \ge 13	awrt 0.0037/ CR X ≥ 13	A1	
	0.0037 < 0.01	$13 \ge 13$			
	Reject H ₀ or it is significan	t or a correct statement in context fr	rom their values	M1	
	There is sufficient evidence <u>favour of heads</u>	at the 1% significance level that the	e coin is <u>biased in</u>	A1	(6)
	There is evidence that Sues	belief is correct			
	Natas				[12]
	(a) B1 for Binomial B1 for 15 and 0.5 must b This need not be in the fo	e in part a orm written			
	(b) M1 attempt to find P (X A1 awrt 0.196 Answer only full marks	f = 8) any method. Any value of p			
	(c) M1 for 1 - P ($X \le 3$). A1 awrt 0.982				

(d) B1 for correct H ₀ . must use p or π	
B1 for correct H ₁ must be one tail must use p or π	
M1 attempt to find $P(X \ge 13)$ correctly. E.g. $1 - P(X \le 12)$	
A1 correct probability or CR	
To get the next 2 marks the null hypothesis must state or imply that $(p) = 0.5$	
M1 for correct statement based on their probability or critical region or a correct	
contextualised statement that implies that. not just 13 is in the critical region.	
A1 This depends on their M1 being awarded for rejecting H ₀ . Conclusion in	
context. Must use the words biased in favour of heads or biased against tails	
or sues belief is correct.	
NB this is a B mark on EPEN.	
They may also attempt to find $P(X < 13) = 0.9963$ and compare with 0.99	

Question Number	Scheme	Marks	
38	$H_0: p = 0.3; H_1: p > 0.3$	B1 B1	
	Let X represent the number of tomatoes greater than 4 cm : $X \sim B(40, 0.3)$	B1	
	$P(X \ge 18) = 1 - P(X \le 17)$ $P(X \ge 18) 1 - P(X \le 17) = 0.0320$ $P(X \ge 17) = 1 - P(X \le 16) = 0.0633$ $CR X \ge 18$	M1 A1	
	$0.0320 < 0.05$ $18 \ge 18$ or 18 in the critical region		
	no evidence to Reject H ₀ or it is significant	M1	
	New fertiliser has <u>increased</u> the probability of a <u>tomato</u> being greater than 4 cm Or Dhriti's claim is true	B1d cao (7)	
38	B1 for correct H_0 must use p or pi		
	B1 for correct H_1 must use p and be one tail.		
	B1 using $B(40, 0.3)$. This may be implied by their calculation		
	M1 attempt to find $1 - P(X \le 17)$ or get a correct probability. For CR method must attempt to find $P(X \ge 18)$ or give the correct critical region		
	A1 awrt 0.032 or correct CR.		
	M1 correct statement based on their probability , H_1 and 0.05 or a correct contextualised statement that implies that.		
	B1 this is not a follow through .conclusion in context. Must use the words increased, tomato and some reference to size or diameter. This is dependent on them getting the previous M1		
	If they do a <u>two tail test</u> they may get B1 B0 B1 M1 A1 M1 B0 For the second M1 they must have accept Ho or it is not significant or a correct contextualised statement that implies that.		

