

Maths Questions By Topic:

Statistical Hypothesis Testing Mark Scheme

A-Level Edexcel

\#www.expert-tuition.co.uk
\square online.expert-tuition.co.uk
《enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 2 (AS) .. Page 1
Paper 3 (A2) .. Page 8
Old Spec
Statistics 2
Page 23

Qu	Scheme	Mark	AO
1.	$\begin{aligned} & \mathrm{H}_{0}: p=0.08 \quad \mathrm{H}_{1}: p<0.08 \\ & {[X \sim] \mathrm{B}(70,0.08)} \\ & \quad 0.0739756 \ldots \quad \text { awrt } \underline{\mathbf{0 . 0 7 4}} \\ & {\left[0.074<0.10 \text { so significant, reject } \mathrm{H}_{0}\right. \text { so...] }} \\ & \text { there is evidence to support supplier } \underline{B} \text { 's claim (o.e.) } \end{aligned}$	B1 M1 A1 A1 (4) (4 mar	2.5 2.1 1.1b 2.2b s)
	Notes		
1.	B1 for both hypotheses correct in terms of p or π [Condone 8% for 0.08] M1 for sight or correct use of $\mathrm{B}(70,0.08)$ [Condone $\mathrm{B}(0.08,70)$] May be implied by prob of 0.074 or better $1^{\text {st }} \mathrm{A} 1$ for final answer awrt 0.074 can condone poor notation e.g. $\mathrm{P}(X=2)=$ awrt 0.074 Can allow this mark for CR of $X \quad 2$ provided $[\mathrm{P}(X, 2)]=0.074$ (or better) is seen [Can allow 0.07 if $X \sim \mathrm{~B}(70,0.08)$ and $\mathrm{P}(X, 2)$ are both seen] $2^{\text {nd }}$ A1 (dep on M1A1 but independent of hypotheses) for a correct inference in context Must mention claim or \underline{B} and idea of support for ... or proportion/probability (of damp bags) and idea of less than 8% or A $2^{\text {nd }} \mathrm{A} 0$ for contradictory statements e.g. "accept H_{0} so evidence to support B 's claim" $2^{\text {nd }}$ A0 if you see $0.0739 \ldots<0.08$ so significant/ reject H_{0} etc		
MR	0.8 for 0.08 In (a) allow M1 for $\mathrm{B}(35,0.8)$ then A0A0 In (b) allow B1 for Hypotheses and M1 for B(70, 0.8) seen, then A0A0		

Qu 2	Scheme	Marks	AO
(a)	$\mathrm{H}_{0}: p=0.14 \quad \mathrm{H}_{1}: p \neq 0.14$ [$X=$ number of red beads in the sample] $X \sim \mathrm{~B}(75,0.14)$ $\mathrm{P}\left(\begin{array}{ll}X & 4)=0.01506 \ldots \text { or if } \mathrm{B}(75,0.14) \text { seen awrt } 0.02\end{array}\right.$ $\left\{0.02<0.025\right.$ so significant or reject $\left.\mathrm{H}_{0}\right\}$ There is evidence that the proportion of red beads has changed p-value is $2 \times " 0.01506 \ldots "=0.030123 \ldots=$ awrt 0.03		$\begin{aligned} & 2.5 \\ & 3.3 \\ & 3.4 \\ & 2.2 \mathrm{~b} \\ & \\ & \\ & \hline 1.1 \mathrm{~b} \end{aligned}$
	Notes		
(a)	B1 for both hypotheses correct with use of p or π M1 for selecting a suitable model: sight or correct use of $\mathrm{B}(75,0.14)$ May be implied by sight of 0.015 or better or $[\mathrm{P}(X>4)=] 0.9849 \ldots$ i.e. 0.985 or better $1^{\text {st }} \mathrm{A} 1$ for use of the correct model awrt 0.015 (accept awrt 0.02 following a correct expression) Allow $1^{\text {st }} \mathrm{A} 1$ for awrt 0.985 only if correct comparison with 0.975 is seen. Sight of $\mathrm{B}(75,0.14)$ and $\mathrm{P}\left(\begin{array}{ll}X & 4\end{array}\right)=$ awrt 0.02 scores M1A1 No sight of $\mathrm{B}(75,0.14)$ but sight of awrt 0.015 scores $\mathrm{M} 1(\Rightarrow) \mathrm{A} 1[$ Condone $\mathrm{P}(X=4)=.$. $2^{\text {nd }}$ A1 (dep on M1A1) for a correct conclusion in context mentioning "proportion", "red" and "changed" If there is a statement about H_{0} or significance it must be compatible. May see CR i.e. $X \quad 4$ (mark when prob seen) and $X \quad 18$ (prob $=0.01406$..) Ignore upper limit NB for information $\mathrm{P}(X=4)=0.0104 \ldots$ and can only score M1A0A0 if $\mathrm{B}(75,0.14)$ seen B1 ft for awrt 0.03 Allow ft of their probability in (d) provided at least 3sf used NB an answer of 0.02 in (d) leading to 0.04 in (e) is B0 Use of CR will give significance level of $0.01506 \ldots+0.01406 \ldots=0.029 \ldots$ score B1 no ft		
NB			
(b) SC			

Question	Scheme	Marks	AOs
4(a)	The alternative hypothesis should be $\mathrm{H}_{1}: p>0.15$	B1	2.5
	The calculation of the test statistic should be $\mathrm{P}(X \geq 8)$ [= 0.0698]	B1	2.3
		(2)	
(b)	These will affect the conclusion (as the null hypothesis should not be rejected) since $\mathrm{P}(X \geq 8)[=0.0698]$ is greater than 0.05	B1	2.4
		(1)	
(c)	$\mathrm{P}(X \leq 8)=0.9722 \ldots>0.95$ or $\mathrm{P}(X \geq 9)=0.0277 \ldots<0.05$	M1	2.1
	CR: $\{X \geq 9\}$	A1	1.1b
		(2)	
(d)	awrt $\underline{0.0278}$	B1ft	1.1b
		(1)	
(6 marks)			
Notes			
(a)	B1: Identifying that \geq should be $>$ in the alternative hypothesis B1: Identifying that $\mathrm{P}(X=8)$ should be $\mathrm{P}(X \geq 8)$ Stating $\mathrm{P}(X=8)$ is incorrect on its own is insufficient Check for errors identified and corrected next to the question		
(b)	B1: Will affect conclusion and correct supporting reason		
(c)	M1: For use of tables to find probability associated with critical value $[\mathrm{P}(X \leq 8)$ or $\mathrm{P}(X \geq 9)$ with $\mathrm{B}(30,0.15)$ (may be implied by either correct probability awrt 0.97 or awrt 0.03) or by the correct CR] A1: $\quad[30 \geq] X \geq 9$ o.e. e.g. $X>8$ Allow ' 9 or more' or ' $\mathrm{CR} \geq 9$ '		
(d)	B1ft: awrt 0.0278 (allow awrt 2.78\%) or correct ft their one-tailed upper CR from $\mathrm{B}(30,0.15)$ to $3 \mathrm{~s} . f$.		

Qu	Scheme	Marks	AO
5	$\mathrm{H}_{0}: p=\frac{1}{3} \quad \mathrm{H}_{1}: p>\frac{1}{3}$ Let $X=$ the number of games Naasir wins $\quad X \sim \mathrm{~B}\left(32, \frac{1}{3}\right)$ $\mathrm{P}(X \geqslant 16)=1-\mathrm{P}(X \quad \square 15)=0.03765 \quad(<0.05)$ [Significant result so reject H_{0} (the null model) and conclude:] There is evidence to support Naasir's claim (o.e.)	B1 M1 A1 A1 (4)	$\begin{aligned} & 2.5 \\ & 3.3 \\ & 3.4 \\ & 3.5 \mathrm{a} \end{aligned}$
	Notes		
5	B1 for correctly stating both hypotheses in terms of p or π Accept $p=0 . \dot{3}$ or any exact equivalent. $\mathrm{H}_{1}: p \geqslant \frac{1}{3}$ is B 0 M1 for selecting a suitable model to use for the test. Award for sight of $B\left(32, \frac{1}{3}\right)$ (o.e. e.g. in words) or implied by 0.03765 Can also allow M1 for $\mathrm{P}(X \leq 15)=0.962$ or better or $\mathrm{P}(X \leq 14)=0.922$ or better $1^{\text {st }} \mathrm{A} 1$ for use of the model to calculate an appropriate probability using calc. Sight of $\mathrm{P}(X \geqslant 16)$ and answer awrt 0.0377 CR May use CR so award $1^{\text {st }} \mathrm{A} 1$ for CR of $X \geqslant 16$ must have seen some probabilities though: 1 of $\mathrm{P}(X \leq 15)=0.9623$ or $\mathrm{P}(X \leq 14)=0.9224$ or 0.9223 $2^{\text {nd }}$ A1 for conclusion in context that there is support for Naasir's claim Must mention "Naasir" or "his" and "claim" or "method" (o.e.) or e.g. probability of winning a game is $>\frac{1}{3}$ or has increased Dependent on M1 and $1^{\text {st }} \mathrm{A} 1$ but can ignore hypotheses but see below If you see $\mathrm{P}(X \geqslant 16)=0.0376$ followed by a correct contextualised conclusion then please award A0A1 Use of $\mathbf{0 . 3}$ for $\frac{1}{3}$ If used 0.3 instead of $\frac{1}{3}$ in (a) and score M0A0A0 can condone use of 0.3 in (b) $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ needs $\mathrm{P}(X \geqslant 16)=0.0138$ or CR of $X \geqslant 15$ and sight of 1 of $\mathrm{P}(X \geqslant 15)=0.0327$ or $\mathrm{P}(X \geqslant 14)=$ 0.0694 $2^{\text {nd }} \mathrm{A} 1$ as before with 0.3 instead (if appropriate)		
ALT			
SC			

Question		Scheme	Marks	AOs
6(a)	$\mathrm{H}_{0}: p=0.25 \quad \mathrm{H}_{1}: p>0.25$ (both correct in terms of p or p)		B1	2.5
	$Y \sim \mathrm{~B}(40,0.25)$		M1	3.3
	Method 1	Method 2		
	$\mathrm{P}(Y \geq 16)=1-\mathrm{P}(\mathrm{Y} \leq 15)$	$\mathrm{P}(Y \geq 17)=0.0116$	M1	1.1b
	$=1-0.9738$	$\mathrm{P}(Y \geq 18)=0.0047$		
	$=0.0262$	CR $Y \geq 18$	A1	1.1b
	$0.0262>0.01 \quad 16<18$ or 16 is not in the critical region or 16 is not significant, accept H_{0}. There is no significant evidence that the proportion of people who bought organic eggs has increased		A1cso	2.2b
			(5)	
(b)	There is evidence that the proportion of people who bought organic eggs has increased [since $0.05>0.0262$ or 16 is in critical region]		B1ft	2.2b
			(1)	
(6 marks)				
Notes:				
(a) B1: Both hypotheses correct using p or p and 0.25 M1: Realising that the model $\mathrm{B}(40,0.25)$ is to be used. This may be stated or used. M1: Using or writing $1-\mathrm{P}(\mathrm{Y} \leq 15)$ or 1- $\mathrm{P}(Y<16)$ a correct CR or $\mathrm{P}(Y \geq 17)=0.0116$ and $\mathrm{P}(Y \geq 18)=0.0047$ A1: awrt 0.0262 or CR $Y \geq 18$ or $Y>17$ A1cso: A fully correct solution with a correct conclusion in context to include the idea of proportion and increased plus referring to organic				
(b) B1ft: For $0.0262<0.05$ [ft their probability in part(b)] or a CR of $16^{3} 15$ (allow 16> 14) and a correct contextual conclusion.				

Question	Scheme	Marks	AOs
7(a)	$\mathrm{H}_{0}: p=0.3 \quad \mathrm{H}_{1}: p \neq 0.3 \quad$ (Both correct in terms of p or π)	B1	2.5
		(1)	
(b)	$\begin{aligned} & {[Y \sim \mathrm{~B}(20,0.3)] \text { sight of } \mathrm{P}(Y \leqslant 2)=0.0355} \\ & \text { or } \mathrm{P}(Y \leqslant 9)=0.9520 \end{aligned}$	M1	2.1
	Critical region is $\{Y \leqslant \mathbf{2}\}$ or (o.e.)	A1	1.1b
	$\{Y \geqslant \mathbf{1 0 \}}$	A1	1.1b
		(3)	
(c)	$[0.0355+(1-0.9520)]=0.0835$ or $\underline{\mathbf{8 . 3 5 \%}}$	B1ft	1.1 b
		(1)	
(d)	(Assuming that the 20 customers represent a random sample then) 12 is in the CR so the manager's suspicion is supported	B1ft	3.2a
		(1)	
(e)	e.g. (e) requires the 20 customers to be a random sample or independent and the members of the scout group may invalidate this so binomial distribution would not be valid (and conclusion in (e) is probably not valid)	B1	3.5a
		(1)	
(7 marks)			

Continued question 7

Notes:

(a)

B1: For both hypotheses in terms of p or π and H_{1} must be 2-tail
(b)

M1: For correct use of tables to find probability associated with critical value
A1: For the correct lower limit of the CR . Do not award for $\mathrm{P}(Y \leqslant 2)$
A1: For the correct upper limit
(c)

B1: ft on their 0.0355 and ($1-$ their 0.9520) provided each probability is less than 0.05
(d)

B1: ft for a comment that relates 12 to their CR and makes a consistent comment relating this to the manager's suspicion
(e)

BI: For a comment that: gives a suitable reason based on lack of independence or the sample not being random so the binomial model is not valid

Qu 10	Scheme	Marks	AO
(a)	$(r=)-0.54458266 \ldots$ awrt - 0.545		1.1b
(b)	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho<0$	$\text { B1 }{ }^{(1)}$	2.5
	$[5 \%$ 1-tail cv =] (\pm) 0.4259		1.1a
	(significant result / reject H_{0}) There is evidence of negative correlation between the number of letters in (or length of) a student's last name and their first name	A1	2.2b
		(3)	
		(4 marks)	
	Notes		
(a)	B1 for awrt -0.545		
(b)	B1 for both hypotheses correct in terms of ρ		
	M1 for a critical value compatible with their H_{1} : 1-tail: awrt ± 0.426 (condone ± 0.425) or 2 -tail (B 0 scored for H_{1}) : aw If hypotheses are in words and can deduce whether one or two-tail then If no hypotheses or their H_{1} is not clearly one or two tail assume one-ta A1 for compatible signs between cv and r and a correct conclusion in cont correlation and number of letters or length and name (ft their value fro Do NOT award this A mark if contradictory comments or working see or comparison of 0.426 with significance level of 0.05 etc	± 0.497 se their w xt mention (c)) e.g. "acce	ords. ng t H_{0} "
NB	The M1A1 can be scored independently of the hypotheses		

Qu 13	Scheme	Marks	AO
13	$\begin{aligned} & \mathrm{H}_{0}: \mu=10 \quad \mathrm{H}_{1}: \mu>10 \\ & \bar{X} \sim \mathrm{~N}\left(10,\left(\frac{4}{\sqrt{20}}\right)^{2}\right) ; \quad \mathrm{P}(\bar{X}>11.5)=0.046766 \ldots \text { [Condone 0.9532 } \ldots \text {] } \end{aligned}$ [This is significant (<5\%) so] there is evidence to support the complaint	$\begin{aligned} & \text { B1 } \\ & \text { M1;A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & \text { 3.3;3.4 } \\ & 2.2 b \end{aligned}$
		(4 marks)	
	Notes		
13	B1 for both hypotheses correct in terms of μ. M1 for selection of a correct model (sight or use of correct normal- may not have label \bar{X}) $1^{\text {st }} \mathrm{A} 1$ for use of this model to get probability allow 0.046~0.047 [Condone awrt 0.953] OR test statistic $z=1.677 \ldots$ (awrt 1.68) and cv of 1.64 (or better) or CR $\bar{X}>11.47$.. $2^{\text {nd }} \mathrm{A} 1$ (dep on $1^{\text {st }} \mathrm{A} 1$ or at least $\mathrm{P}(\bar{X}>11.5)<0.05$ (o.e.)) for a correct conclusion in context -must mention complaint/claim or time/mins is > 10 (M0 for $X \sim \mathrm{~N}(11.5, \ldots$) for correct probability and conclusion (score M0A0A1 on epen)		

Question	Scheme		Marks	AOs
14(a)	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0$		B1	2.5
	Critical value 0.3438		M1	1.1a
	($0.446>0.3438$) so there is evidence that the product moment correlation coefficient (pmcc) is greater than $0 /$ there is positive correlation		A1	2.2b
			(3)	
(b)	The value is close(r) to 1 or there is strong(er) (positive) correlation		B1	2.4
			(1)	
(c)	$\log _{10} y=-1.82+0.89\left(\log _{10} x\right)$	$\begin{aligned} & y=a x^{n} \rightarrow \\ & \log _{10} y=\log _{10}\left(a x^{n}\right) \end{aligned}$	M1	1.1b
	$y=10^{-182+0} 89\left(\log _{10} x\right)$	$\log _{10} y=\log _{10} a+\log _{10} x^{n}$	M1	2.1
	$\begin{aligned} & y=10^{-182} \times 10^{089\left(\log _{10} x\right)} \\ & {\left[=10^{-182} \times 10^{\left(\log _{10} x\right)^{0.89}}\right]} \end{aligned}$	$\begin{aligned} & \log _{10} y=\log _{10} a+n \log _{10} x \\ & {\left[\log _{10} a=-1.82, n=0.89\right]} \end{aligned}$	M1	1.1b
	$y=0.015 x^{089}$	$y=0.015 x^{089}$	A1A1	1.1 b 1.1 b
			(5)	
(9 marks)				
Notes				
(a)	B1: for both hypotheses correct in terms of ρ M1: for the critical value: sight of 0.3438 or any cv such that $0.25<\|\mathrm{cv}\|<0.45$ A1: a comment suggesting a significant result/ H_{0} is rejected on the basis of seeing +0.3438 and which mentions "pmcc/correlation/relationship" and "greater than 0/positive" (not just $\rho>0$) or an answer in context e.g. 'as "income"(o.e.) increases, " $\mathrm{CO}_{2} /$ emissions"(o.e.) increases' A contradictory statement scores A0 e.g. 'Accept H_{0}, therefore positive correlation'			
(b)	B1: for suitable reason e.g. r is close(r) to 1 or "strong(er)"/"near perfect" "correlation" Do not allow 'association'			
(c)	Method 2: (working from the model) M1: Taking the \log of both sides (may be implied by $2^{\text {nd }}$ M1 mark) M1: Correct use of addition rule (may be implied by $3^{\text {rd }}$ M1 mark) M1: Correct multiplication of power (this line implies M1M1M1 provided no previous incorrect working seen) A1: $n=0.89$ or $a=\operatorname{awrt} 0.015$ or $y=a x^{089}$ or $y=\operatorname{awrt} 0.015 x^{n}$ (dep on M3) A1: $n=0.89$ and $a=\operatorname{awrt} 0.015 / y=\operatorname{awrt} 0.015 x^{089}$ (dep on M3) do not award the final A1 if answer is given in an incorrect form e.g $y=0.015+x^{089}$			

Question	Scheme	Marks	AOs
15	$\mathrm{H}_{0}: \mu=25 \quad \mathrm{H}_{1}: \mu<25$	B1	2.5
	${ }_{[D} \sim \sim \mathrm{N}\left(25, \frac{0.16^{2}}{20}\right)$	M1	3.3
	$\mathrm{P}(\bar{D}<24.94)[=\mathrm{P}(Z<-1.677 \ldots)]=0.046766 \ldots$	A1	3.4
	$\begin{aligned} & p=0.047<0.05 \text { or } z=-1.677 \ldots<-1.6449 \\ & \underline{\text { or }} 24.94<24.94115 \ldots \\ & \underline{\text { or reject } H_{0} / \text { in the critical region/significant }} \end{aligned}$	M1	1.1b
	There is sufficient evidence to support Hannah's belief.	A1	2.2b
		(5)	
(5 marks)			
15	Notes B1: for both hypotheses in terms of μ M1: selecting suitable model must see N (ormal), mean $25, \mathrm{sd}=\frac{016}{\sqrt{20}}$ (o.e.) or var $=\frac{4}{3125}$ (o.e.) Condone $\mathrm{N}\left(25, \frac{016}{\sqrt{20}}\right)$ if $\frac{016}{\sqrt{20}}$ then used as s.d. A1: p value $=$ awrt 0.047 or test statistic awrt -1.68 or $\mathbf{C V}$ awrt 24.941 (any of these values imply the M1 provided they do not come from Normal mean $=24.94$) M1: a correct comparison (including compatible signs) or correct non-contextual conclusion (f.t. their p value, test statistic or critical value in the comparison) M1 may be implied by a correct contextual statement NB Any contradictory non contextual statements/comparisons score M0A0 e.g. 'p<0.05, not significant' A1: correct conclusion in context mentioning Hannah's belief or the mean amount/liquid in each bottle is now less than 25 ml (dep on M1A1M1)		

Qu 16	Scheme	Marks	AO
(a)	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho<0$	B1	2.5
	Critical value: -0.6215 (Allow any cv in range $0.5<\|\mathrm{cv}\|<0.75$)	M1	1.1a
	$r<-0.6215$ so significant result and there is evidence of a negative correlation between w and t	A1	2.2b
		(3)	
(b)	e.g. As temperature increases people spend more time on the beach and less time shopping (o.e.)	B1	2.4
		(1)	
(c)	Since r is close to -1 , it is consistent with the suggestion	B1	2.4
		(1)	
(d)	t will be the explanatory variable since sales are likely to depend on the temperature	B1	2.4
		(1)	
(e)	Every degree rise in temperature leads to a drop in weekly earnings of $£ 171$	B1	3.4
		(1)	
		(7 m	
	Notes		
(a)	B1 for both hypotheses in terms of ρ		
	A1 must reject H_{0} on basis of comparing -0.915 with -0.6215 (if $-0.915<0.6215$ is seen then A0 but may use $\|r\|$ o.e. which is fine) and mention "negative", "correlation/relationship" and at least " w " and " t "		
(b)	B1 for a suitable reason to explain negative correlation using the context giv e.g. "As temperature drops people are more likely to go shopping (than e.g. "As temperature increases people will be outside rather than in shop A mere description in context of negative correlation is B0 SO e.g. "As temperature increases people don't want to go shopping/buy clo e.g. "Less clothes needed as temp increases" is B0	the beac "" is B0	
(c)	B1 for a suitable reason e.g. "strong"/"significant"/"near perfect" "correlation", $\|r\|$ close to 1 and saying it is consistent with the suggestion. Allow "yes" followed by the reason.		
(d)	B1 For identifying t and giving a suitable reason. Need idea that " w depends on t " or " w responds to t " or " t affects Allow t (temperature) affects the other variable etc Just saying " t is the independent variable" or " t explains change in w " N. B. Suggesting causation is B0 e.g. " t causes w to decrease"	(o.e.)	
(e)	B1 for a description that conveys the idea of rate per degree Celsius. Must have 171 , condone missing " $£$ " sign.		

Qu 17	Scheme	Marks	AO
17	$\begin{aligned} & \mathrm{H}_{0}: \mu=18 \quad \mathrm{H}_{1}: \mu>18 \\ & \bar{L} \sim \mathrm{~N}\left(18,\left(\frac{4}{\sqrt{20}}\right)^{2}\right) \\ & \quad \mathrm{P}(\bar{L}>19.2)=\mathrm{P}(Z>1.3416 \ldots)=0.089856 \ldots \end{aligned}$ $(0.0899>5 \%)$ or $(19.2<19.5)$ or $1.34<1.6449$ so not significant Insufficient evidence to support Alice's claim (or belief)	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 3.3 \\ & \\ & 3.4 \\ & 1.1 \mathrm{~b} \\ & 3.5 \mathrm{a} \end{aligned}$
		(5 mark	
	Notes		
17 ALT	B1 for both hypotheses in terms of μ. M1 for selecting a suitable model. Sight of normal, mean 18, $\underline{\text { sd }} \frac{4}{\sqrt{20}}$ (o.e.) or variance $=0.8$ $1^{\text {st }} \mathrm{A} 1$ for using the model correctly. Allow awrt 0.0899 or 0.09 from correct prob. statement CR $(\bar{L})>19.471 \ldots$ (accept awrt 19.5) or $\mathbf{C V}$ of 1.6449 (or better: calc 1.6448536..) $2^{\text {nd }}$ A1 for correct non-contextual conclusion. Wrong comparison or contradictions A0 Error giving $2^{\text {nd }} \mathrm{A} 0$ implies $3^{\text {rd }} \mathrm{A} 0$ but just a correct contextual conclusion can score A1A1 $3^{\text {rd }} \mathrm{A} 1$ dep on M1 and $1^{\text {st }} \mathrm{A} 1$ for a correct contextual conclusion mentioning Alice's claim /belief or there is insufficient evidence that the mean lifetime is more than 18 hours		

Question	Scheme	Marks	AOs
18(a)	Width $=0.4 \times 5=2(\mathrm{~cm})$	B1	3.1a
	Area $=12 \mathrm{~cm}^{2}$ Frequency $=15$ so $1 \mathrm{~cm}^{2}=\frac{5}{4}$ packet o.e	M1	1.1b
	Frequency of 9 corresponds to area of 7.2 Height $=7.2 \div 2=3.6(\mathrm{~cm})$	A1	1.1b
		(3)	
(b)	$\left[Q_{2}=\right](248+) \frac{22}{35} \times 4 \quad$ or $($ use of $(n+1))(248+) \frac{22.5}{35} \times 4$	M1	1.1a
	$=$ awrt $250.5(\mathrm{~g}) \quad$ or 250.6	A1	1.1b
		(2)	
(c)	Mean $=$ awrt 250.4 (g)	B1	1.1b
	$\left[\sigma_{x}=\right] \sqrt{\frac{5644171.75}{90}-\left(\frac{22535.5}{90}\right)^{2}}=\sqrt{15.64 \ldots}$	M1	1.1b
	$=\mathrm{awrt} 4.0$ (g)	A1	1.1b
	Accept $\left(s_{x}=\sqrt{\frac{5644171.75-90\left(\frac{22535.5}{90}\right)^{2}}{89}}=3.977 . ..\right)$	(3)	
(d)	$\mathrm{H}_{0}: \mu=250 \quad \mathrm{H}_{1}: \mu>250$	B1	2.5
	$\bar{X} \sim \mathrm{~N}\left(250, \frac{4^{2}}{90}\right)$ and $\bar{X}>250.4$	M1	3.3
	$\mathrm{P}(\bar{X}>250.4)=0.171 \ldots$	A1	3.4
	$0.171>0.05$ or $z=0.9486 \ldots<1.6449$	A1	1.1b
	There is insufficient evidence that the mean weight of coffee is greater than 250 g , or there is no evidence to support the sellers claim.	A1	2.2b
		(5)	
(13 marks)			

Question 18 Notes:

(a) B1: for correct width

M1: for clear attempt to relate the area to frequency.
May be implied by their height \times their width $=7.2$
A1: for height $=3.6 \mathrm{~cm}$
(b) M1: for $\frac{22}{35} \times 4$ or $\frac{22.5}{35} \times 4$

A1: awrt 250.5 or 250.6
(c) B1: awrt 250.4

M1: for a correct expression for σ or \boldsymbol{s}, can ft their mean
A1: awrt 4.0 (allow $s=\operatorname{awrt} 4.0$)
(d) B1: hypotheses stated correctly

M1: for selecting a correct model, (stated or implied)
A1: for use of the correct model to find $p=$ awrt 0.171 (allow $z=$ awrt 0.948)
A1: for a correct calculation, comparison and correct statement
A1: for a correct conclusion in context mentioning mean weight and 250

Question	Scheme	Marks	AOs
19	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0$	B1	2.5
	Critical value 0.5509	M1	1.1a
	Reject H_{0}		
	There is evidence that pmoc is greater than zero	A1	2.2b
		(3)	
(3 marks)			
Notes: B1: for both hypotheses in terms of ρ M1: for selecting a suitable critical value compatible with their H_{1} A1: for a correct conclusion stated			

Question	Scheme	Marks	AOs
20(a)	e.g. Linear association between w and t	B1	1.2
		(1)	
(b)	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0$	B1	2.5
	Critical value 0.5822	M1	1.1a
	Reject H_{0}		
	There is evidence that the product moment correlation coefficient is greater than 0	A1	2.2b
		(3)	
(4 marks)			
Notes:			
(a) B1: for a correct statement			
(b) B1: for both hypotheses in terms of ρ M1: for selecting a suitable 5% critical value compatible with their H_{1} A1: for a correct conclusion stated			

Question	Scheme	Marks	AOs
21	$\mathrm{H}_{0}: \mu=50.1 \quad \mathrm{H}_{1}: \mu>50.1$	B1	2.5
	$\bar{X} \sim \mathrm{~N}\left(50.1, \frac{0.6^{2}}{15}\right) \quad$ and $\bar{X}>50.4$	M1	3.3
	$\mathrm{P}(\bar{X}>50.4)=0.0264$	A1	3.4
	$p=0.0264>0.01$ or $z=1.936 \ldots<2.3263$ and not significant	A1	1.1b
	There is insufficient evidence that the mean length of strips is greater than 50.1	A1	2.2b
		(5)	
(5 marks)			
Question 21 continued			
Notes:			
B1: hypotheses stated correctly M1: for selecting a correct model (stated or implied) $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for use of the correct model to find $p=$ awrt 0.0264 (allow $z=$ awrt 1.94) $\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for a correct calculation, comparison and correct statement $3^{\text {rd }} \mathbf{A 1}$:for a correct conclusion in context mentioning "mean length" and 50.1			

Question Number	Scheme		Marks
22(a)	$\mathrm{H}_{0}: p=0.35 \quad \mathrm{H}_{1}: p>0.35$		B1
	$V \sim \mathrm{~B}(40,0.35) \quad \mathrm{P}(V \geq 18)=1-\mathrm{P}(V \leq 17)$	or $\mathrm{P}(V \geq 19)=0.0699$	M1
	$=1-0.8761$	$\mathrm{P}(V \geq 20)=0.0363$	
	$=0.1239$	CR $V \geq 20$	A1
	Accept H_{0} or not Significant or 18 does not lie in	he critical region	M1d
	There is insufficient evidence that the proportio percentage of customers who bought organic v	amount/number/ etables has increased.	A1cso (5)
(b)	$\mathrm{E} \sim \mathrm{B}(50,0.35)$		M1
	$\mathrm{P}(E \leq 10)=0.0160 \quad \mathrm{P}(E \geq 25)=0.0207$		
	$\mathrm{P}(E \leq 11)=0.0342 \quad \mathrm{P}(E \geq 24)=0.0396$		
	$\mathrm{CR} E \leq 10 \quad E \geq 25$		A1A1 (3)
(c)	The manager's claim is supported or there is sufficient evidence that the proportion of customers buying organic eggs is different from those buying organic vegetables.		B1ft (1)
(d)(e)	$0.016+0.0207=0.0367$ or 3.67\%	awrt 0.0367 or 3.67\%	B1 (1)
	$F \sim \mathrm{~N}(40,32)$		M1 A1
	$\mathrm{P}(F<n)=\mathrm{P}\left(\mathrm{Z}<\frac{n-0.5-40}{\sqrt{32}}\right)$		M1M1d
	$\frac{n-0.5-40}{\sqrt{32}}=-1.68$		B1
	$n=31$		A1cso (6)
	Notes		Total 16
(a) (b) (c) (e)	B1 both hypotheses correct with p or π M1 writing or using $V \sim \mathrm{~B}(40,0.35)$ and $1-\mathrm{P}(V \leq 17)$ or $\mathrm{P}(V \leq 17)=0.8761$ or awrt 0.124 OR writing $\mathrm{P}(V \geq 19)=0.0699$ or $\mathrm{P}(V \geq 20)=0.0363$ leading to a $\mathbf{C R}$. Implied by correct CR A1 awrt 0.124 or $V \geq 20$ or $V>19$ allow any letter M1d dep on previous M being awarded. ft their CR or probability. A correct statement do not allow contradicting non-contextual comments A1 cso all previous marks must be awarded. A correct statement in context. Need Bold words. NB award M1A1 for a correct contextual statement on its own. If there are no hypotheses or they are the wrong way around, then M0A0 M1 writing $\mathrm{E} \sim \mathrm{B}(50,0.35)$ or a correct probability or one tail of the CR correct A1 $E \leq 10$ oe \quad A1 $E \geq 25$ oe, allow any letter. Condone missing letter NB If CR written as probabilities and both are correct or CR written as $10 \geq E \geq 25$ oe award M1A1A0. If just give CV 10 and 25 given award M1A0A0 B1 A correct statement including the words managers claim or eggs and vegetable(s) (or veg) ft their 2 tail CR. Cannot be awarded if no CR given in (b) M1 writing/using normal approximation with mean $=40$ A1 writing/using normal approximation with mean $=40$ and var $=32$ M1 $\pm\left(\frac{(n \text { or } n-0.5 \text { or } n+0.5)-\text { their mean }}{\text { their sd }}\right)$ if no mean or sd given they must be correct here. M1 dep on previous method mark being awarded. Using continuity correction $n-0.5$ B1 $\pm 1.68 \quad$ A1 31 cso all previous marks must be awarded. NB 31 with no working gains no marks		

Question Number	Scheme		Marks
	Allow any letter instead of X or c for this question		
23 (a)	$X \sim \mathrm{~B}(25,0.2)$	M1 Writing or using $\mathrm{B}(25,0.2)$ or $\mathrm{B}(25,1 / 5)$ [allow $\mathrm{Po}(5)$] May be written in full or implied by a correct CR (allow written as a probability statement)	M1
	$\begin{aligned} & {[\mathrm{P}(X \geq 9)=] 0.0468} \\ & {[\mathrm{P}(X \leq 1)=] 0.0274} \end{aligned}$	$\mathbf{1}^{\text {st }} \mathbf{A 1}$ both awrt 0.0468 and awrt 0.0274 seen.	A1
	$X=[0 \leq] \quad X \leq 1$	$2^{\text {nd }}$ A1 $X \leq 1$ or $X<2$ or $0 \leq X \leq 1$ or [0,1] or 0,1 or equivalent statements. $X \leq c$ and $c=1$	A1
	$9 \leq X \quad[\leq 25]$	$3^{\text {rd }}$ A1d dependent on seeing a probability from the $\mathrm{B}(25,0.2)$ and $X \geq 9$ or $X>8$ or $9 \leq X \leq 25$ or $9,10,11,12,13,14,15,16,17,18,19,20,21,22$, $23,24,25$ or $[9,25]$ or equivalent statements. $X \geq c$ and $c=9$	A1d
	NB These two final 2 A marks must be for statements with " X " only(or list) - not in probability statements SC If a probability from the $\mathrm{B}(25,0.2)$ is seen and they either have both CR correct but written as probability statements or the CR is written as $1 \geq X \geq 9$ they get A1 A0 for final 2 marks		
(b)	$\begin{aligned} & \mathrm{H}_{0}: p=0.2 \\ & \mathrm{H}_{1}: p<0.2 \end{aligned}$	B1 both hypotheses with p or π and clear which is H_{0} and which is H_{1}	B1
	$\mathrm{P}(X \leq 6)=0.1034$ or $\mathrm{CR} X \leq 5$	$\mathbf{1}^{\text {st }} \mathbf{M 1}$ writing or using $\mathrm{B}(50,0.2)$ and writing or using $\mathrm{P}(X \leq 6)$ or $\mathrm{P}(X \geq 7)$ on its own. May be implied by a correct CR	M1
		$\mathbf{1}^{\text {st }} \mathbf{A 1}$ awrt 0.103 . Allow CR $X \leq 5$ or $X<6$. or if not using CR allow awrt 0.897 .	A1
	Insufficient evidence to reject H_{0}, Accept H_{0}, Not significant. 6 does not lie in the Critical region.	$\mathbf{2}^{\text {nd }} \mathbf{M 1}$ dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non-contextual statements). ft their Prob/CR compared with $0.05 / 6 /(0.95$ if using 0.8979$)$. Do not follow through their hypotheses	M1d
	No evidence that increasing the batch size has reduced the percentage of broken pots (oe) or evidence that there is no change in the percentage of broken pots (oe)	$2^{\text {nd }} \mathbf{A 1 c s o}$ Conclusion must contain the words reduced/ no change/not affect oe number/percentage/proportion/ probability oe, and pots. All previous marks must be awarded for this mark to be awarded. Do not allow the potters claim /belief is wrong/true NB Correct contextual statement on its own scores M1A1	A1cso
			(Total 9)

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& \multicolumn{2}{|l|}{Scheme} \& Marks \\
\hline \multirow[t]{6}{*}{24} \& \(\mathrm{H}_{0}: p=0.05 \quad \mathrm{H}_{1}: p>0.05\) \& B1: Both hypotheses correct and labelled \(\mathrm{H}_{0}\) and \(\mathrm{H}_{1}\), must use \(p\) or \(\pi\) Do not allow \(\mathrm{p}(x)\) \& B1 \\
\hline \& \(\mathrm{P}(R \geq 4)=1-\mathrm{P}(R \leq 3)\) \& \begin{tabular}{l}
M1: Writing or using \(\mathrm{B}(50,0.05)\) AND writing or using \(1-\mathrm{P}(R \leq 3)\) or \\
\(\mathrm{P}(R \leq 3)=0.7604\) on its own or one of the following 4 statements leading to a CR. \(\mathrm{P}(R \geq 7)=0.0118\)
\[
\begin{aligned}
\& \mathrm{P}(R \leq 6)=0.9882 \\
\& \mathrm{P}(R \geq 8)=0.0032 \\
\& \mathrm{P}(R \leq 7)=0.9968
\end{aligned}
\] \\
May be implied by correct CR. Allow any letter
\end{tabular} \& M1 \\
\hline \& \(=0.2396 \quad\) CR \(R \geq 8\) \& A1: awrt 0.240 or 0.24 or \(R \geq 8\) oe Or 0.7604 \& A1 \\
\hline \& Insufficient evidence to reject \(\mathrm{H}_{0}\), Not Significant. Accept \(\mathrm{H}_{0}\). 4 does not lie in the Critical region. \& \begin{tabular}{l}
M1: dependent on the previous M being awarded. A correct statement - do not allow contradictory non contextual statements. Follow through their Probability/CR and \(H_{1}\). If no \(H_{1}\) seen then M0. \\
Ignore their comparison in all cases Then mentally compare their probability as follows: \\
For prob < 0.5 statement must be correct compared to 0.01 for 1 tail test and 0.005 for 2 tailed test. \\
For prob \(>0.5\) statement must be correct compared to 0.99 for 1 tail test and 0.995 for 2 tailed test. \\
NB:If there is no non-contextual statement given you may award the M1 for a correct contextual statement
\end{tabular} \& M1d \\
\hline \& No evidence to support Patrick's claim. Or no evidence that people in Reddman have a probability greater than \(5 \%\) of having red hair \& A1: cso fully correct solution and correct contextual statement containing the word Patrick if writing about the claim Or red hair if full context \& A1cso

(5)

\hline \& \& \& Total 5

\hline
\end{tabular}

Question Number	Scheme		Marks
25	$\mathrm{H}_{0}: p=0.25 \quad \mathrm{H}_{1}: p<0.25$	B1: Both hypotheses correct, labelled H_{0} or NH or H_{n} and H_{1} or AH or H_{a}, must use p or $p(x)$ or π	B1
	$\mathrm{B}(15,0.25)$	M1: for using $\mathrm{B}(15,0.25)$	
	$\mathrm{P}(X \leq 1)=0.0802$	A1: awrt 0.0802 or $\mathrm{CR} X \leq 1$ (allow $\mathrm{P}(X \geq 2)=0.9198$)	M1 A1
	NB: Allow M1 A1 for a correct CR with no incorrect working		
	Reject H_{0} or Significant or 1 1ies in the critical region	M1: A correct statement - do not allow contradictory non contextual statements. Follow through their Probability/CR (for 1 or 2 tail test). If no H_{1} given then M0. Ignore their comparison. For a probabillity < 0.5, statement must be correct compared to 0.1 for 1 tail test and 0.05 for 2 tailed test or if the probability >0.5, statement must be correct compared to 0.9 for 1 tail test and 0.95 for 2 tailed test.	$\begin{aligned} & \text { dM1 } \\ & \text { A1cso } \end{aligned}$
	There is evidence that the radio company's claim is true. Or The new transmitter will reduce the proportion of houses unable to receive radio	A1: cso (all previous marks awarded) and a correct statement containing the word company if writing about the claim or radio if full context.	
			Total 5

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 27(a) \& \[
\begin{aligned}
\& X \sim \mathrm{~B}(20,0.25) \\
\& \mathrm{P}(X \geq 10)=1-0.9861=0.0139 \\
\& \mathrm{P}(X \leq 1)=0.0243 \\
\& (0 \leq) X \leq 1 \cup 10 \leq X(\leq 20)
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { A1A1 }
\end{aligned}
\] \\
\hline 27(b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{H}_{0}: p=0.25 \\
\& \mathrm{H}_{1}: p<0.25 \\
\& X \sim \mathrm{~B}(20,0.25) \\
\& \mathrm{P}(X \leq 3)=0.2252 \quad \text { or CR } X \leq 1
\end{aligned}
\] \\
Insufficient evidence to reject \(\mathrm{H}_{0}\), Accept \(\mathrm{H}_{0}\), Not significant. 3 does not lie in the Critical region. \\
No evidence that the changes to the process have reduced the percentage of defective articles (oe)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1A1 \\
M1d \\
A1cso \\
Total 10 marks
\end{tabular} \\
\hline \& Notes \& \\
\hline 27(a)

27(b) \& \begin{tabular}{l}
M1 using $\mathrm{B}(20,0.25)$ may be implied by a correct CR (allow written as a probability statement)

$1^{\text {st }}$ A1 awrt 0.0139

$2^{\text {nd }} \mathrm{A} 1$ awrt 0.0243

$3^{\text {rd }}$ A1 $X \leq 1$ or $0 \leq X \leq 1$ or [0,1] or 0,1 or equivalent statements

$4^{\text {th }}$ A1 $X \geq 10$ or $10 \leq X \leq 20$ or $10,11,12,13,14,15,16,17,18,19,20$ or $[10,20]$ or equivalent statements

NB These two A marks must be for statements with X (any letter) only - not in probability statements and SC for CR written as $1 \geq X \geq 10$ gets A1 A0

 \&

itten as a

ments

,19,20 or [10,20]

$y-n o t$ in

A1 A0

be implied by a

<2

ment (do not

soe, reduced oe re must be no
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 29.(a)
(b) \& \[
\begin{array}{ll}
X \sim \mathrm{~B}(25,0.5) \& \text { may be implied by calculations in part a or } \mathrm{b} \\
\mathrm{P}(X \leq 7)=0.0216 \& \\
\mathrm{P}(X \geq 18)=0.0216 \& \\
\mathrm{CR} X \leq 7 ; \cup X \geq 18 \& \\
\mathrm{P}\left(\text { rejecting } \mathrm{H}_{0}\right)=0.0216+0.0216 \\
\quad=0.0432 \& \text { awrt } 0.0432 / 0.0433
\end{array}
\] \& \begin{tabular}{l}
M1 \\
A1,A1 \\
(3) \\
M1 \\
A1 \\
(2) \\
Total 5
\end{tabular} \\
\hline \& Notes \& \\
\hline 29(a)

(b) \& \multicolumn{2}{|l|}{| M1 - Using $\mathrm{B}(25,0.5)$ - may be implied by a correct critical region or by calculations in part a or b Note Just seeing either $\mathrm{P}(X \leq 7)$ or $\mathrm{P}(X \geq 18)$ scores M1 A0 A0. |
| :--- |
| You may need to check their probabilities in the tables for values other than 7 or 18. |
| $1^{\text {st }} \mathrm{A} 1-$ also allow $X<8$ or $[0,7]$ or $0 \leq X \leq 7$ or $0 \leq X<8$ oe e.g. $[0,8)$ or a full list DO NOT allow CRs given as $\mathrm{P}(X \leq 7)$ or $7-0$ for the A mark. |
| $2^{\text {nd }}$ A 1 - also allow $X>17$ or [18,25] or $18 \leq X \leq 25$ or $17<X \leq 25$ oe e.g. (17, 25] or a full list |
| DO NOT allow CRs given as $\mathrm{P}(X \geq 18)$ or 18-25 for the A mark. |
| SC $7 \geq X \geq 18$ gains M1 A1 A0. |
| M1 - adding their two critical regions' probabilities together or may be awarded for awrt 0.0432 |
| If they add their critical regions' probabilities and then go on and get a different probability as their answer then it is M0A0 |
| e.g. $0.0216+0.0216=0.0432$ then $0.05-0.0432=0.0068$ gets M0 A0 |
| e.g. $0.0216+0.0216=0.0432<0.05$ reject H_{0} gets M1 A1 |
| e.g. $0.0216+0.0216=0.0432$ so probability of rejecting H_{0} is $1-0.0432=0.9568$ |
| gets M0 A0 |}

\hline
\end{tabular}

Question Number	Scheme			Marks
30	$\begin{aligned} & \mathrm{H}_{0}: p=0.5 \\ & \mathrm{H}_{1}: p>0.5 \\ & X \sim \mathrm{~B}(30,0.5) \\ & \mathrm{P}(X \geq 21)=1-\mathrm{P}(X \leq 20) \\ & \quad=1-0.9786 \end{aligned}$ Using correct Bin $=0.0214 \quad \text { CR } X \geq 20$ so significant/reject H_{0} /in Critical region Evidence to suggest David's claim is incorrect or The weather forecast produced by the local radio is better than those achieved by tossing/flipping a coin			B1 B1 M1 M1 A1 M1 dep A1 (7)
	Notes $1^{\text {st }} \mathrm{B} 1$ for $\mathrm{H}_{0}: p=0.5$ $2^{\text {nd }} \mathrm{B} 1$ for $\mathrm{H}_{1}: p>0.5$ SC If both hypotheses are correct but a different letter to p is used they get B1 B0. If no letter is used they get B0 B0. $1^{\text {st }}$ M1 writing or using $\mathrm{B}(30,0.5)$ One tail $\frac{2^{\text {nd }} \mathrm{M} 1}{}$ for writing or using $1-\mathrm{P}(X \leq 20)$ or writing $\mathrm{P}(X \leq 19)=0.9506$ or $\mathrm{P}(X \geq 20)=0.0494$. May be implied by correct CR.or probability $=0.0214$ A1 for 0.0214 or $\mathrm{CR} X \geq 20 / X>19$. NB $\mathrm{P}(X \leq 20)=0.9786$ on its own scores M1A1 $3^{\text {rd }}$ M1 dependent on the $2^{\text {nd }}$ M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg "significant" and "accept H_{0} ". Ignore comparisons. $2^{\text {nd }} \mathrm{A} 1$ for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1.			
	Two tail implied by correct CR. or probability $=0.197$ A1 for 0.0214 or $\mathrm{CR} X \geq 21 / X>20$. NB $\mathrm{P}(X \leq 20)=0.9786$ on its own scores M1A1 $3^{\text {rd }}$ M1 dependent on the $2^{\text {nd }}$ M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg"significant" and "accept H_{0} ". Ignore comparisons. $2^{\text {nd }} \mathrm{A} 1$ for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1.			

\begin{tabular}{|c|c|c|c|c|}
\hline Question
Number \& \multicolumn{3}{|c|}{Scheme} \& Marks \\
\hline \& \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{H}_{0}: p=0.15 \quad \mathrm{H}_{1}: p \neq 0.15 \\
\& X \sim \mathrm{~B}(30,0.15) \quad \mathrm{P}(X \leq 1)=0.0480 \text { or } \mathrm{CR}: X=0 \\
\& (0.0480>0.025)
\end{aligned}
\] \\
not a significant result or do not reject \(\mathrm{H}_{0}\) or not in CR \\
there is no evidence of a change in the proportion of customers buying an item from the display.
\end{tabular}} \& B1 B1
M1
A1

M1
A1ft

P1

\hline (b)

Notes: \& \multicolumn{3}{|l|}{| $\mathrm{H}_{0}: p=0.2 \quad \mathrm{H}_{1}: p>0.2$ |
| :--- |
| Let $S=$ the number who buy sandwiches, $S \sim \mathrm{~B}(120,0.2)$, $\begin{array}{rlrl} S \approx W \sim \mathrm{~N}\left(24, \sqrt{19.2}^{2}\right) \\ \mathrm{P}(S \geq 31) & =\mathrm{P}(W \geq 30.5) \\ & =\mathrm{P}\left(Z>\frac{30.5-24}{\sqrt{19.2}}\right) & \text { or } & \frac{x-0.5-24}{\sqrt{19.2}}=1.2816 \\ & {[=\mathrm{P}(Z>1.48 . .)]} & & \\ & =1-0.9306 & \\ & =0.0694 & x=30.1 \end{array}$ |
| <0.10 so a significant result, there is evidence that more customers are purchasing sandwiches or the shopkeepers claim is correct. |} \& $\begin{array}{ll}\text { M1 A1 } \\ \text { M1 } & \\ \text { M1 } & \\ & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ \text { B1ft } & \\ & \text { (8) } \\ & \mathbf{1 4}\end{array}$

\hline (a) \& \multicolumn{4}{|l|}{| $1^{\text {st }} \mathrm{B} 1$ for H_{0} must use $p \quad 2^{\text {nd }} \mathrm{B} 1$ for H_{1} must use p |
| :--- |
| $1^{\text {st }}$ M1 for writing or using $B(30,0.15)$ - may be implied by correct CR |
| $1^{\text {st }} \mathrm{A} 10.0480$ or $X=0$. Allow $X \leq 0$. Ignore upper CR. NB Allow CR $X \leq 1$ if using one tail test. |
| $2^{\text {nd }}$ M1 A correct statement (see table below) Do not allow non-contextual conflicting statements |
| eg"significant" and "accept H_{0} ". Ignore comparisons |
| $2^{\text {nd }} \mathrm{A} 1$ for a correct statement in context. For context we need idea of change/decrease in number of customers buying from display - may use different words. NB A correct contextual statement on its own scores M1A1 |}

\hline (b) \& \multicolumn{4}{|l|}{| $1^{\text {st }} \mathrm{B} 1$ both hypotheses correct - must use p. |
| :--- |
| $1^{\text {st }}$ M1 for a normal approx |
| $1^{\text {st }} \mathrm{A} 1$ for correct mean and sd |
| $2^{\text {nd }} \mathrm{M} 1$ for use of continuity correction, either 30.5 or 31.5 or ($x \pm 0.5$) seen |
| $3^{\text {rd }}$ M1 standardising with their mean and their sd and 30.5 , 31 or 31.5 or x or ($x \pm 0.5$) |
| $4^{\text {th }}$ M1 for 1 - tables value or 1.2816 |
| $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.069 or $x=30.1$ |
| $2^{\text {nd }}$ B1ft For a correct conclusion in context using their probability and 0.1 For context we need idea of more customers buying sandwiches - may use different words |}

\hline
\end{tabular}

	One tail $0.1<p<0.9$ or Two tail $0.05<p<0.95$	One tail $p<0.1$ or $p>0.9$ or Two tail $p<$ 0.05 or $p>0.95$
$2^{\text {nd }}$ M1	not significant/ accept $\mathrm{H}_{0} /$ Not in CR or contextual	significant/ reject $\mathrm{H}_{0} /$ In CR or contextual
$2^{\text {nd }}$	There is no evidence of an increase in the proportion of customers buying sandwiches	There is evidence of a change/increase in the proportion of customers buying sandwiches.

SC using $\mathrm{P}(X<31.5)-\mathrm{P}(X<30.5)$ can get B1M1 A1 M1 M1M0A0B0

Question Number	Scheme ${ }^{\text {S }}$
32.	
	Notes
	B1 for both H_{0} and H_{1} correct. Must use p or π (pi) B1 for writing or using $\operatorname{Bin}(10,0.2)$ M1 for finding or writing $1-\mathrm{P}(X \leq 3)$ or $\mathrm{P}(X \leq 4)=0.9672$ $\mathrm{P}(X \geq 5)=0.0328$ oe or a correct critical region A1 awrt 0.121 or CR $X \geq 5$ M1 need $p<0.5$ and: correct statement using their Probability and 0.05 if one tail test or correct statement using their Probability and 0.025 if two tail test (condone a comparison with 0.05 instead of 0.025 for a two tail test). Do not allow non-contextual conflicting statements eg "significant" and "accept H_{0} " A1ft correct contextual statement followed through from "their prob". Either a comment on whether the teacher's claim was correct or on whether the student was guessing the answers. NB if a correct contextual statement only is given for their probability then award M1 A1 If $p>0.5$ They may compare with 0.95 (one tail method) or 0.975 (two tail method) Probability is 0.8791 .

Question Number	Scheme	Marks
33 (a)	2 outcomes/faulty or not faulty/success or fail A constant probability Independence Fixed number of trials (fixed n)	$\begin{array}{lll}\text { B1 } & \\ \text { B1 } & \\ & & \\ & & \\ & \end{array}$
(b)	$\begin{aligned} & X \sim \mathrm{~B}(50,0.25) \\ & \mathrm{P}(X \leq 6)=0.0194 \\ & \mathrm{P}(X \leq 7)=0.0453 \\ & \mathrm{P}(X \geq 18)=0.0551 \\ & \mathrm{P}(X \geq 19)=0.0287 \end{aligned}$	M1
	CR $X \leq 6$ and $X \geq 19$	A1 A1 (3)
(c)	$0.0194+0.0287=0.0481$	M1A1 (2)
(d)	8(It) is not in the Critical region or 8(It) is not significant or $0.0916>0.025$; There is evidence that the probability of a faulty bolt is 0.25 or the company's claim is correct.	M1; Alft (2)
(e)	$\mathrm{H}_{0}: p=0.25 \quad \mathrm{H}_{1}: p<0.25$	B1B1
	$\begin{aligned} & \mathrm{P}(X \leq 5)=0.0070 \text { or } \quad \mathrm{CR} X \leq 5 \\ & 0.007<0.01, \end{aligned}$	M1A1
	5 is in the critical region, reject H_{0}, significant. There is evidence that the probability of faulty bolts has decreased	M1 Alft 6)
		[15]
(a)	Notes	
	B1 B1 one mark for each of any of the four statements. Give first B1 if only one correct statement given. No context needed.	
(b)	M1 for writing or using $B(50,0.25)$ also may be implied by both $C R$ being correct. Condone use of	
	A1 $(X) \leq 6$ o.e. $[0,6] \quad$ DO NOT accept $\mathrm{P}(X \leq 6)$	
	A1 $(X) \geq 19$ o.e. [19,50] DO NOT accept $\mathrm{P}(X \geq 19)$	
(c)	M1 Adding two probabilities for two tails. Both probabilities must be less than 0.5	
(d)	M1 one of the given statements followed through from their CR.	
	A1 contextual comment followed through from their CR.	
	NB A correct contextual comment alone followed through from their CR.will get M1	
(e)	B1 for H_{0} must use p or π (pi) B1 for H_{1} must use p or π (pi)	
	M1 for finding or writing $\mathrm{P}(X \leq 5)$ or attempting to find a critical region or a correct critical region A1 awrt 0.007/CR $X \leq 5$	
	M1 correct statement using their Probability and 0.01 if one tail test or a correct statement using their Probability and 0.005 if two tail test.	
	A1 correct contextual statement follow through from their prob and H_{1}. Need faulty bolts and decreased.	

Question Number	Scheme	Marks
34 (a) (b) (c) (d)	The set of values of the test statistic for which the null hypothesis is rejected in a hypothesis test. $\begin{aligned} & X \sim \mathrm{~B}(30,0.3) \\ & \mathrm{P}(X \leq 3)=0.0093 \\ & \mathrm{P}(X \leq 2)=0.0021 \\ & \mathrm{P}(X \geq 16)=1-0.9936=0.0064 \\ & \mathrm{P}(X \geq 17)=1-0.9979=0.0021 \end{aligned}$ Critical region is $(0 \leq) x \leq 2$ or $16 \leq x(\leq 30)$ Actual significance level $0.0021+0.0064=0.0085$ or 0.85% 15 (it) is not in the critical region not significant No significant evidence of a change in $p=0.3$ accept H_{0}, (reject H_{1}) $\mathrm{P}(x \geq 15)=0.0169$	B1 B1 (2) M1 A1 A1 AlA1 (5) B1 (1) Bft 2, 1, 0 (2) Total [10]
34 (a) (b) (c) (d)	Notes $1^{\text {st }} \mathrm{B} 1$ for "values/ numbers" $2^{\text {nd }} \mathbf{B 1}$ for "reject the null hypothesis" o.e or the test is significant M1 for using $\mathrm{B}(30,0.3)$ $1^{\text {st }}$ A1 $\mathrm{P}(x \leq 2)=0.0021$ $\mathbf{2}^{\text {nd }}$ A1 0.0064 $3^{\text {rd }} \mathbf{A 1}$ for $(X) \leq 2$ or $(X)<3$ They get $\mathbf{A 0}$ if they write $\mathbf{P}(X \leq 2 / X<3)$ $\mathbf{4}^{\text {th }} \mathbf{A 1}(X) \geq 16$ or $(X)>15$ They get A0 if they write $\mathbf{P}(X \geq 16 X>15$ NB these are B1 B1 but mark as A1 A1 $16 \leq X \leq 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be X. B1 correct answer only Follow through 15 and their critical region B1 for any one of the 5 correct statements up to a maximum of B2 - B1 for any incorrect statements	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 35 (a) \& \begin{tabular}{l}
\(X \sim \mathrm{~B}(20,0.3)\)
\[
\mathrm{P}(X \leq 2)=0.0355
\]
\[
\mathrm{P}(X \leq 9)=0.9520 \quad \text { so }
\]
\[
\text { Therefore the critical region is }\{X \leq 2\} \cup\{X \geq 10\}
\]
\[
0.0355+0.0480=0.0835
\] \\
awrt (0.083 or 0.084) \\
11 is in the critical region \\
there is evidence of a change/ increase in the proportion/number of customers buying single tins
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
A1A1 \\
(5) \\
B1 \\
(1) \\
B1ft \\
B1ft \\
(2)
\end{tabular} \\
\hline (a)

(b)

(c) \& | M1 for $B(20,0.3)$ seen or used |
| :--- |
| $1^{\text {st }} \mathrm{A} 1$ for 0.0355 |
| $2^{\text {nd }}$ A1 for 0.048 |
| $3^{\text {rd }} \mathrm{A} 1$ for $(X) \leq 2$ or $(X)<3$ or [0,2] They get A0 if they write $\mathrm{P}(X \leq 2 / X<3)$ |
| $4^{\text {th }} \mathrm{A} 1(X) \geq 10$ or $(X)>9$ or [10,20] They get A0 if they write $\mathrm{P}(X \geq 10 / X>9)$ |
| $\mathbf{1 0} \leq X \leq 2$ etc is accepted |
| To describe the critical regions they can use any letter or no letter at all. It does not have to be X. |
| B1 correct answer only |
| $1^{\text {st }} \mathrm{B} 1$ for a correct statement about 11 and their critical region. |
| $2^{\text {nd }} \mathrm{B} 1$ for a correct comment in context consistent with their CR and the value 11 |
| Alternative solution |
| $1^{\text {st }} \mathrm{B} 0 P(X \geq 11)=1-0.9829=0.0171$ since no comment about the critical region |
| $2^{\text {nd }} \mathrm{B} 1$ a correct contextual statement. | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
36 (a)	$X \sim \mathrm{~B}(20,0.3)$ $\mathrm{P}(X \leq 2)=0.0355$ $\mathrm{P}(X \geq 11)=1-0.9829=0.0171$	M1
	Critical region is $(X \leq 2) \cup(X \geq 11)$	A1 A1 (3)
(b)	Significance level $=0.0355+0.0171,=0.0526$ or 5.26%	M1 A1 (2)
(c)	Insufficient evidence to reject $\mathrm{H}_{0} \mathbf{O r}$ sufficient evidence to accept $\mathrm{H}_{0} /$ not significant $x=3$ (or the value) is not in the critical region or $0.1071>0.025$ Do not allow inconsistent comments	B1 ft B1 ft (2)
		[7]

(d) B1 for correct H_{0}. must use p or π

B1 for correct H_{1} must be one tail must use p or π
M1 attempt to find $\mathrm{P}(X \geq 13)$ correctly. E.g. $1-\mathrm{P}(X \leq 12)$
A1 correct probability or CR
To get the next 2 marks the null hypothesis must state or imply that $(p)=0.5$
M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.

A1 This depends on their M1 being awarded for rejecting H_{0}. Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct . NB this is a B mark on EPEN.

They may also attempt to find $\mathrm{P}(X<13)=0.9963$ and compare with 0.99

Question Number	Scheme	Marks
38	$\mathrm{H}_{0}: p=0.3 ; \mathrm{H}_{1}: p>0.3$ Let X represent the number of tomatoes greater than $4 \mathrm{~cm}: X \sim B(40,0.3)$ $\begin{aligned} \mathrm{P}(\mathrm{X} \geq 18) & =1-\mathrm{P}(\mathrm{X} \leq 17) \\ & =0.0320 \\ 0.0320< & 0.05 \end{aligned}$ $\begin{aligned} & \mathrm{P}(\mathrm{X} \geq 18) 1-\mathrm{P}(\mathrm{X} \leq 17)=0.0320 \\ & \mathrm{P}(X \geq 17)=1-\mathrm{P}(\mathrm{X} \leq 16)=0.0633 \\ & \quad \mathrm{CR} \mathrm{X} \geq 18 \end{aligned}$ $18 \geq 18 \text { or } 18 \text { in the critical region }$ no evidence to Reject H_{0} or it is significant New fertiliser has increased the probability of a tomato being greater than 4 cm Or Dhriti's claim is true	B1 B1 B1 M1 A1 M1 B1d cao
38	B1 for correct H_{0}. must use p or pi B1 for correct H_{1} must use p and be one tail. B1 using $\mathrm{B}(40,0.3)$. This may be implied by their calculation M1 attempt to find $1-\mathrm{P}(\mathrm{X} \leq 17)$ or get a correct probability. For CR method must attempt to find $\mathrm{P}(\mathrm{X} \geq 18)$ or give the correct critical region A1 awrt 0.032 or correct CR. M1 correct statement based on their probability , H_{1} and 0.05 or a correct contextualised statement that implies that. B1 this is not a follow through .conclusion in context. Must use the words increased, tomato and some reference to size or diameter. This is dependent on them getting the previous M1 If they do a two tail test they may get B1 B0 B1 M1 A1 M1 B0 For the second M1 they must have accept Ho or it is not significant or a correct contextualised statement that implies that.	

