EXPERT TUITION

Maths Questions By Topic:

Trigonometry Mark Scheme

A-Level Edexcel

८ 0207 060 4494

www.expert-tuition.co.uk

💻 online.expert-tuition.co.uk

🖂 enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents	
New Spec	
Paper 1	Page 1
Paper 2	Page 35
<u>Old Spec</u>	
Core 2	Page 62
Core 3	Page 102

Question	Scheme	Marks	AOs
1(a)	Attempts to use both $ \frac{\sin(x-60^\circ) = \pm \sin x \cos 60^\circ \pm \cos x \sin 60^\circ}{\cos(x-30^\circ) = \pm \cos x \cos 30^\circ \pm \sin x \sin 30^\circ} $	M1	2.1
	Correct equation $2\sin x \cos 60^\circ - 2\cos x \sin 60^\circ = \cos x \cos 30^\circ + \sin x \sin 30^\circ$	A1	1.1b
	Either uses $\frac{\sin x}{\cos x} = \tan x$ and attempts to make $\tan x$ the subject E.g. $(2\cos 60^\circ - \sin 30^\circ) \tan x = \cos 30^\circ + 2\sin 60^\circ$ Or attempts $\sin 30^\circ$ etc with at least two correct and collects terms in $\sin x$ and $\cos x$ E.g. $\left(2 \times \frac{1}{2} - \frac{1}{2}\right) \sin x = \left(2 \times \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\right) \cos x$	M1	2.1
	Proceeds to given answer showing all key steps E.g. $\frac{1}{2} \tan x = \frac{3\sqrt{3}}{2} \Longrightarrow \tan x = 3\sqrt{3}$ *	A1*	1.1b
		(4)	
(b)	Deduces that $x = 2\theta + 60^{\circ}$	B1	2.2a
	$\tan\left(2\theta+60^\circ\right)=3\sqrt{3}\Longrightarrow 2\theta+60^\circ=79.1^\circ,259.1^\circ,\ldots$	M1	1.1b
	Correct method to find one value of θ E.g $\theta = \frac{79.1^\circ - 60^\circ}{2}$	dM1	1.1b
	θ = awrt 9.6°, 99.6° (See note)	A1	2.1
		(4)	
		(8	8 marks)
Notes:			

- M1: Attempts to use both compound angle expansions to set up an equation in $\sin x$ and $\cos x$. The terms must be correct but condone sign errors and a slip on the multiplication of 2
- A1: Correct equation $2\sin x \cos 60^\circ 2\cos x \sin 60^\circ = \cos x \cos 30^\circ + \sin x \sin 30^\circ$ o.e. Note that $\cos 60^\circ = \sin 30^\circ$ and $\cos 30^\circ = \sin 60^\circ$

Also allow this mark for candidates who substitute in their trigonometric values "early"

$$2\sin x \times \frac{1}{2} - 2\cos x \times \frac{\sqrt{3}}{2} = \cos x \times \frac{\sqrt{3}}{2} + \sin x \times \frac{1}{2}$$
 o.e.

M1: Shows the necessary progress towards showing the given result.

There are three key moves, two of which must be shown for this mark.

- uses $\frac{\sin x}{\cos x} = \tan x$ to form an equation in just $\tan x$.
- uses exact numerical values for sin 30°, sin 60°, cos 30°, cos 60° with at least two correct
- collects terms in $\sin x$ and $\cos x$ or alternatively in $\tan x$

A1*: Proceeds to the given answer with accurate work showing all necessary lines.

Examples of two proofs showing all necessary lines

E.g. I
$$2\sin x \cos 60^\circ - 2\cos x \sin 60^\circ = \cos x \cos 30^\circ + \sin x \sin 30^\circ$$

 $\sin x (2\cos 60^\circ - \sin 30^\circ) = \cos x (\cos 30^\circ + 2\sin 60^\circ)$ 1
 $(2\cos 60^\circ - \sin 30^\circ) \tan x = \cos 30^\circ + 2\sin 60^\circ$ 2
 $\tan x = \frac{\cos 30^\circ + 2\sin 60^\circ}{2\cos 60^\circ - \sin 30^\circ} = \frac{\frac{\sqrt{3}}{2} + \sqrt{3}}{1 - \frac{1}{2}} = 3\sqrt{3}$ 3..uses
E.g II
E.g II

. collect terms

2. $\frac{\sin x}{\cos x} = \tan x$ so M1

values and completes proof A1*

E

$$2\sin x \times \frac{1}{2} - 2\cos x \times \frac{\sqrt{3}}{2} = \cos x \times \frac{\sqrt{3}}{2} + \sin x \times \frac{1}{2}$$

$$\Rightarrow \frac{1}{2}\sin x = \frac{3\sqrt{3}}{2}\cos x$$

$$\Rightarrow \tan x = 3\sqrt{3}$$

1.uses values
2.collects terms so M1
3. $\frac{\sin x}{\cos x} = \tan x$ completes proof A1*

(b) Hence

B1: Deduces that $x = 2\theta + 60^\circ$ o.e such as $\theta = \frac{x - 60^\circ}{2}$

This is implied for sight of the equation $\tan(2\theta + 60^\circ) = 3\sqrt{3}$ **M1:** Proceeds from $\tan(2\theta \pm \alpha^{\circ}) = 3\sqrt{3} \Rightarrow 2\theta \pm \alpha^{\circ} = \text{one of } 79.1^{\circ}, 259.1^{\circ}, \dots$ where $\alpha \neq 0$ One angle for $\arctan(3\sqrt{3})$ must be correct in degrees or radians(3sf). FYI radian answers 1.38, 4.52

dM1: Correct method to find one value of θ from their $2\theta \pm \alpha^\circ = 79.1^\circ$ to $\theta = \frac{79.1^\circ \mp \alpha^\circ}{2}$

This is dependent upon one angle being correct, which must be in degrees, for $\arctan(3\sqrt{3})$

 $\tan(2\theta + 60^\circ) = 3\sqrt{3} \Rightarrow \theta = 9.6^\circ$ would imply B1 M1 dM1

A1: $\theta = \text{awrt } 9.6^\circ, 99.6^\circ$ with no other values given in the range

Otherwise: Via the use of $\cos(2\theta + 30^\circ) = \cos 2\theta \cos 30^\circ - \sin 2\theta \sin 30^\circ$.

$$2\sin 2\theta = \cos(2\theta + 30^\circ) \Rightarrow \tan 2\theta = \frac{\sqrt{3}}{5} \Rightarrow \theta = 9.6^\circ, 99.6^\circ$$

The order of the marks needs to match up to the main scheme so 0110 is possible.

B1: For achieving $\tan 2\theta = \frac{\sqrt{3}}{5}$ o.e so allow $\tan 2\theta = \text{awrt } 0.346 \text{ or } \tan 2\theta = \frac{\cos 30^{\circ}}{2 + \sin 30^{\circ}}$ Or via double angle identities $\sqrt{3} \tan^2 \theta + 10 \tan \theta - \sqrt{3} = 0$ o.e.

M1: Attempts to use the compound angle identities to reach a form $\tan 2\theta = k$ where k is a constant not

 $3\sqrt{3}$ (or expression in trig terms such as $\cos 30$ etc as seen above)

Or via double angle identities reaches a 3TQ in $\tan \theta$

dM1: Correct order of operations from $\tan 2\theta = k$ leading to $\theta = ...$

Correctly solves their $\sqrt{3} \tan^2 \theta + 10 \tan \theta - \sqrt{3} = 0$ leading to $\theta = \dots$

A1: θ = awrt 9.6°, 99.6° with no other values given in the range.

Note that $\tan(2\theta + 60^\circ) = 3\sqrt{3} \Rightarrow \theta = 9.6^\circ, 99.6^\circ$ is acceptable for full marks

Questi	on Scheme	Marks	AOs
2(a)(i	$(3x+10)^{2} = (x+2)^{2} + (7x)^{2} - 2(x+2)(7x)\cos 60^{\circ} \text{ oe}$	M1	3.1a
	Uses $\cos 60^\circ = \frac{1}{2}$, expands the brackets and proceeds to a 3 term quadratic equation	dM1	1.1b
	$17x^2 - 35x - 48 = 0 *$	A1*	2.1
G	i)	(3)	
	x = 3	B1	3.2a
(b)	$\frac{5}{\sin ACB} = \frac{19}{\sin 60^{\circ}} \Rightarrow \sin ACB = \dots \left(\frac{5\sqrt{3}}{38}\right)$ or e.g. $5^{2} = 21^{2} + 19^{2} - 2 \times 19 \times 21\cos ACB \Rightarrow \cos ACB = \dots \left(\frac{37}{38}\right)$	(1) M1	1.1b
	$\theta = a wrt \ 13.2$	A1	1.1b
		(2)	
		(6	marks)
	Notes Mark (a) and (b) together		
	Alternatively, uses trigonometry to find AX and then equates two express length BX. You may see variations of this if they use Pythagoras or trigor BX and then apply Pythagoras to the triangle BXC. See the diagram below The angles and lengths must be in the correct positions. Cos 60 may be $\frac{1}{2}$ Uses cos 60° = ½, expands the brackets and proceeds to a 3TQ. You may cos 60° = ½ in earlier work, but they must proceed to a 3TQ as well to sc is dependent on the first method mark.	ometry to w to help from the see the us ore this m) find you. start se of ark. It
A1*:	Obtains the correct quadratic equation with the = 0 with no errors seen in of their solution. Condone the recovery of invisible brackets as long as th clear. You do not need to explicitly see $\cos 60$ to score full marks.		•
	$B = (x+2) \text{ cm} (3x+10) \text{ cm} = \frac{\sqrt{3}}{2} (x+2) \text{ cm} = \frac{\sqrt{3}}{2} (x+2) \text{ cm} = C = (x+2) \cos 60^{\circ} \text{ cm} = C$		
(a)(ii) B1:	Selects the appropriate value i.e. $x = 3$ only. The other root must either be	e reiected	if
21.	found or $x = 3$ must be the only root used in part (b). Can be implied by a	•	

(b)

- M1: Using their value for *x* this mark is for either:
 - applying the sine rule correctly (or considers 2 right angled triangles) and proceeding to obtain a value for sin *ACB* or
 - applying the cosine rule correctly and proceeding to obtain a value for cos *ACB*.

Condone slips calculating the lengths AB, BC and AC. At least one of them should be found correctly for their value for x

(Also allow if the sine rule or cosine rule is applied correctly to find a value for $\sin ABC$

$$\left(=\frac{21\sqrt{3}}{38}\right) \text{ or } \cos ACB \left(=-\frac{11}{38}\right))$$

A1: awrt 13.2 (answers with little working eg just lengths on the diagram can score M1A1)

Question	Scheme		Marks	AOs
3 (a)	$\frac{1}{\cos\theta} + \tan\theta = \frac{1 + \sin\theta}{\cos\theta} \ 0$	or $\frac{(1+\sin\theta)\cos\theta}{\cos^2\theta}$	M1	1.1b
	$=\frac{1+\sin\theta}{\cos\theta}\times\frac{1-\sin\theta}{1-\sin\theta}=\frac{1-\sin\theta}{\cos\theta(1-\theta)}$ $\frac{(1+\sin\theta)\cos\theta}{\cos^{2}\theta}=\frac{(1+\sin\theta)\cos\theta}{1-\sin^{2}\theta}$	$\frac{\partial^2 \theta}{\sin \theta} = \frac{\cos^2 \theta}{\cos \theta (1 - \sin \theta)}$	dM1	2.1
	$=\frac{\cos\theta}{1-\sin\theta}$		A1*	1.1b
			(3)	
(b)	$\frac{1}{\cos 2x} + \tan 2x = 3\cos 2x$ $\Rightarrow 1 + \sin 2x = 3\cos^2 2x = 3(1 - \sin^2 2x)$	$\frac{\cos 2x}{1-\sin 2x} = 3\cos 2x$ $\Rightarrow \cos 2x = 3\cos 2x(1-\sin 2x)$	M1	2.1
	$\Rightarrow 3\sin^2 2x + \sin 2x - 2 = 0$	$\Rightarrow \cos 2x(2 - 3\sin 2x) = 0$	A1	1.1b
	$\sin 2x = \frac{2}{3}, \ (-1) \Longrightarrow 2x$	$x = \dots \Longrightarrow x = \dots$	M1	1.1b
	$x = 20.9^{\circ}, 6^{\circ}$	9.1°	A1	1.1b
			A1	1.1b
			(5)	marks
	Note	28	(0)	mai Ko
M1: C	$1 \pm \sin \theta$	tor. The numerator must be corrected denominator by $1 - \sin \theta$, uses t $1 - \sin^2 \theta$	ect for tl he diffe	neir
It	is dependent on the previous method mar	·k.		

Alt(a) If starting with the RHS: Condone if another variable is used for θ except for the final mark Multiplies by $\frac{1+\sin\theta}{1+\sin\theta}$ leading to $\frac{\cos\theta(1+\sin\theta)}{1-\sin^2\theta}$ or M1: Multiplies by $\frac{\cos\theta}{\cos\theta}$ leading to $\frac{\cos^2\theta}{\cos\theta(1-\sin\theta)}$ dM1: Applies $\cos^2 \theta = 1 - \sin^2 \theta$ and cancels the $\cos \theta$ factor from the numerator and denominator leading to $\frac{1+\sin\theta}{\cos\theta}$ or Applies $\cos^2 \theta = 1 - \sin^2 \theta$ and uses the difference of two squares leading to $(1+\sin\theta)(1-\sin\theta)$ $\cos\theta(1-\sin\theta)$ It is dependent on the previous method mark. A1*: Fully correct proof with correct notation and no errors in the main body of their work. If they work from both the LHS and the RHS and meet in the middle with both sides the same then they need to conclude at the end by stating the original equation. (b) *Be aware that this can be done entirely on their calculator which is not acceptable* M1: Either multiplies through by $\cos 2x$ and applies $\cos^2 2x = 1 - \sin^2 2x$ to obtain an equation in sin 2x only or alternatively sets $\frac{\cos 2x}{1-\sin 2x} = 3\cos 2x$ and multiplies by $1-\sin 2x$ Correct equation or equivalent. The = 0 may be implied by their later work A1: (Condone notational slips in their working) M1: Solves for sin 2x, uses arcsin to obtain at least one value for 2x and divides by 2 to obtain at least one value for x. The roots of the quadratic can be found using a calculator. They cannot just write down values for x from their quadratic in $\sin 2x$ A1: For 1 of the required angles. Accept awrt 21 or awrt 69. Also accept awrt 0.36 rad or awrt 1.21 rad A1: For both angles (awrt 20.9 and awrt 69.1) and no others inside the range. If they find x = 45 it must be rejected. (Condone notational slips in their working)

Question	Scheme	Marks	AOs
4(a)	$\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} = \frac{1 - (1 - 2\sin^2 \theta) + 2\sin \theta \cos \theta}{1 + \cos 2\theta + \sin 2\theta}$ or $\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} = \frac{1 - \cos 2\theta + \sin 2\theta}{1 + (2\cos^2 \theta - 1) + 2\sin \theta \cos \theta}$	M1	2.1
	$\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} = \frac{1 - (1 - 2\sin^2 \theta) + 2\sin\theta\cos\theta}{1 + (2\cos^2 \theta - 1) + 2\sin\theta\cos\theta}$	A1	1.1b
	$=\frac{2\sin^2\theta+2\sin\theta\cos\theta}{2\cos^2\theta+2\sin\theta\cos\theta}=\frac{2\sin\theta(\sin\theta+\cos\theta)}{2\cos\theta(\cos\theta+\sin\theta)}$	dM1	2.1
	$=\frac{\sin\theta}{\cos\theta}=\tan\theta^*$	A1*	1.1b
		(4)	
(b)	$\frac{1 - \cos 4x + \sin 4x}{1 + \cos 4x + \sin 4x} = 3\sin 2x \Longrightarrow \tan 2x = 3\sin 2x \text{o.e}$	M1	3.1a
	$\Rightarrow \sin 2x - 3\sin 2x \cos 2x = 0$ $\Rightarrow \sin 2x (1 - 3\cos 2x) = 0$ $\Rightarrow (\sin 2x = 0,) \cos 2x = \frac{1}{3}$	A1	1.1b
	$x = 90^{\circ}$, awrt 35.3°, awrt 144.7°	A1 A1	1.1b 2.1
		(4)	
	NT-4	(8	marks)
	Notes		

M1: Attempts to use a correct double angle formulae for both $\sin 2\theta$ and $\cos 2\theta$ (seen once). The application of the formula for $\cos 2\theta$ must be the one that cancels out the "1" So look for $\cos 2\theta = 1 - 2\sin^2 \theta$ in the numerator or $\cos 2\theta = 2\cos^2 \theta - 1$ in the denominator Note that $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ may be used as well as using $\cos^2 \theta + \sin^2 \theta = 1$

A1:
$$\frac{1 - (1 - 2\sin^2\theta) + 2\sin\theta\cos\theta}{1 + (2\cos^2\theta - 1) + 2\sin\theta\cos\theta} \text{ or } \frac{2\sin^2\theta + 2\sin\theta\cos\theta}{2\cos^2\theta + 2\sin\theta\cos\theta}$$

dM1: Factorises numerator and denominator in order to demonstrate cancelling of $(\sin\theta + \cos\theta)$ A1*: Fully correct proof with no errors.

You must see an intermediate line of
$$\frac{2\sin\theta(\sin\theta+\cos\theta)}{2\cos\theta(\cos\theta+\sin\theta)}$$
 or $\frac{\sin\theta}{\cos\theta}$ or even $\frac{2\sin\theta}{2\cos\theta}$

Withhold this mark if you see, within the body of the proof,

- notational errors. E.g. $\cos 2\theta = 1 2\sin^2 \text{ or } \cos^2 \theta$ for $\cos^2 \theta$
- mixed variables. E.g. $\cos 2\theta = 2\cos^2 x 1$

(b)

M1: Makes the connection with part (a) and writes the lhs as $\tan 2x$. Condone $x \leftrightarrow \theta$ $\tan 2\theta = 3\sin 2\theta$

A1: Obtains $\cos 2x = \frac{1}{3}$ o.e. with $x \leftrightarrow \theta$. You may see $\sin^2 x = \frac{1}{3}$ or $\cos^2 x = \frac{2}{3}$ after use of double angle formulae.

A1: Two "correct" values. Condone accuracy of awrt 90°, 35°, 145°

Also condone radian values here. Look for 2 of awrt 0.62, 1.57, 2.53

A1: All correct (allow awrt) and no other values in range. Condone $x \leftrightarrow \theta$ if used consistently

Answers without working in (b): Just answers and no working score 0 marks.

If the first line is written out, i.e. $\tan 2x = 3\sin 2x$ followed by all three correct answers score 1100.

Question	Scheme	Marks	AOs
5 (a)	Sets $50 = 7 \times 14 \sin(SPQ)$ oe	B1	1.2
	Finds $180^\circ - \arcsin\left("\frac{50}{98}"\right)$	M1	1.1b
	=149.32°	A1	1.1b
		(3)	
(b)	Method of finding SQ $SQ^{2} = 14^{2} + 7^{2} - 2 \times 14 \times 7 \cos'' 149.32''$	M1	1.1b
	= 20.3 cm	A1	1.1b
		(2)	
		(5	5 marks)
Alt(a)	States or uses $14h = 50$ or $7h_1 = 50$	B1	1.2
	Full method to find obtuse $\angle SPQ$. In this case it is $90^\circ + \arccos\left(\frac{h}{7}\right)$ or $90^\circ + \arccos\left(\frac{h}{14}\right)$	M1	1.1b
	awrt 149.32°	A1	1.1b
M1: Attem A1: awrt 14 (b) M1: A corr $SQ^{2} =$	$D = 7 \times 14 \sin(SPQ)$ oe pts the correct method of finding obtuse $\angle SPQ$. See scheme. 49.32° rect method of finding SQ using their $\angle SPQ$. $= 14^2 + 7^2 - 2 \times 14 \times 7 \cos'' 149.32''$ scores this mark. 0.3 cm (condone lack of units)		
M1: Full m	$S \xrightarrow{R} R$ $7 \xrightarrow{h} h$ $P \xrightarrow{14} 14$ or uses $14h = 50$ or $7h_1 = 50$ hethod to find obtuse $\angle SPQ$. s case it is $90^\circ + \arccos\left(\frac{h}{7}\right)$ or $90^\circ + \arccos\left(\frac{h_1}{14}\right)$ 49.32°		

Question	Scheme	Marks	AOs
6 (i)	Uses $\cos^2 \theta = 1 - \sin^2 \theta$	M1	1.2
	$5\cos^2\theta = 6\sin\theta \Longrightarrow 5\sin^2\theta + 6\sin\theta - 5 = 0$	A1	1.1b
	$\Rightarrow \sin \theta = \frac{-3 + \sqrt{34}}{5} \Rightarrow \theta = \dots$	dM1	3.1a
	$\Rightarrow \theta = 34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$	A1	1.1b
		A1 (5)	1.1b
(ii) (a)	 One of They cancel by sin x (and hence they miss the solution sin x = 0 ⇒ x = 0) They do not find all the solutions of cos x = 3/5 (in the given range) or they missed the solution x = -53.1° 	B1	2.3
	Both of the above	B1	2.3
		(2)	
(ii) (b)	Sets $5\alpha + 40^\circ = 720^\circ - 53.1^\circ$	M1	3.1a
	$\alpha = 125^{\circ}$	A1	1.1b
		(2)	
		(9) marks)
	Notes		
(i)			
M1: Uses o	$\cos^2 \theta = 1 - \sin^2 \theta$ to form a 3TQ in $\sin \theta$		
A1: Correct	$\pm 3TQ = 0 5\sin^2\theta + 6\sin\theta - 5 = 0$		
dM1: Solve $\cos^2 \theta = \pm 1$	es their 3TQ in $\sin \theta$ to produce one value for θ . It is dependent upot $\pm \sin^2 \theta$	on having u	sed
A1: Two of	Sawrt $\theta = 34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$ (or if in radians two of awrt 0.60, 2	2.54, 6.89)	
A1: All three	ee of awrt $\theta = 34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$ and no other values		
(i) (a)			
See scheme			
(ii)(b)			
M1: Sets 56	$\alpha + 40^\circ = 666.9^\circ$ o.e.		
A1: awrt α	=125°		

Question	Scheme	Marks	AOs
7(a)	$R = \sqrt{5}$	B1	1.1b
-	$\tan \alpha = 2 \Longrightarrow \alpha = \dots$	M1	1.1b
-	$\alpha = 1.107$	A1	1.1b
-		(3)	
	$\theta = 5 + \sqrt{5}\sin\left(\frac{\pi t}{12} + 1.107 - 3\right)$		
(b)	$(5+\sqrt{5})$ °C or awrt 7.24 °C	B1ft	2.2a
		(1)	
(c)	$\frac{\pi t}{12} + 1.107 - 3 = \frac{\pi}{2} \Longrightarrow t =$	M1	3.1b
-	t = awrt 13.2	A1	1.1b
	Either 13:14 or 1:14 pm or 13 hours 14 minutes after midnight.	A1	3.2a
		(3)	
			(7 marks

B1: $R = \sqrt{5}$ only.

M1: Proceeds to a value of α from $\tan \alpha = \pm 2$, $\tan \alpha = \pm \frac{1}{2}$, $\sin \alpha = \pm \frac{2}{"R"}$ OR $\cos \alpha = \pm \frac{1}{"R"}$

It is implied by either awrt 1.11 (radians) or 63.4 (degrees)

A1: α = awrt 1.107

(b)

- **B1ft:** Deduces that the maximum temperature is $(5+\sqrt{5})$ °C or awrt 7.24 °C Remember to isw Condone a lack of units. Follow through on their value of *R* so allow (5+"R") °C
- (c)

M1: An complete strategy to find t from $\frac{\pi t}{12} \pm 1.107 - 3 = \frac{\pi}{2}$.

Follow through on their 1.107 but the angle must be in radians.

It is possible via degrees but only using $15t \pm 63.4 - 171.9 = 90$

- **A1:** awrt *t* = 13.2
- A1: The question asks for the time of day so accept either 13:14, 1:14 pm, 13 hours 14 minutes after midnight, 13h 14, or 1 hour 14 minutes after midday. If in doubt use review

It is possible to attempt parts (b) and (c) via differentiation but it is unlikely to yield correct results.

$$\frac{d\theta}{dt} = \frac{\pi}{12}\cos\left(\frac{\pi t}{12} - 3\right) - \frac{2\pi}{12}\sin\left(\frac{\pi t}{12} - 3\right) = 0 \Rightarrow \tan\left(\frac{\pi t}{12} - 3\right) = \frac{1}{2} \Rightarrow t = 13.23 = 13:14 \text{ scores M1 A1 A1}$$
$$\frac{d\theta}{dt} = \cos\left(\frac{\pi t}{12} - 3\right) - 2\sin\left(\frac{\pi t}{12} - 3\right) = 0 \Rightarrow \tan\left(\frac{\pi t}{12} - 3\right) = \frac{1}{2} \Rightarrow t = 13.23 = 13:14 \text{ they can score M1 A0 A1 (SC)}$$
A value of $t = 1.23$ implies the minimum value has been found and therefore incorrect method M0.

Question	Scheme	Marks	AOs
8 (a)	States or uses $\csc \theta = \frac{1}{\sin \theta}$	B1	1.2
	$\csc \theta - \sin \theta = \frac{1}{\sin \theta} - \sin \theta = \frac{1 - \sin^2 \theta}{\sin \theta}$	M1	2.1
	$=\frac{\cos^2\theta}{\sin\theta}=\cos\theta\times\frac{\cos\theta}{\sin\theta}=\cos\theta\cot\theta$	A1*	2.1
		(3)	
(b)	$\csc x - \sin x = \cos x \cot (3x - 50^{\circ})$		
	$\Rightarrow \cos x \cot x = \cos x \cot (3x - 50^{\circ})$		
	$\cot x = \cot \left(3x - 50^{\circ} \right) \Longrightarrow x = 3x - 50^{\circ}$	M1	3.1a
	$x = 25^{\circ}$	A1	1.1b
	Also $\cot x = \cot(3x - 50^\circ) \Rightarrow x + 180^\circ = 3x - 50^\circ$	M1	2.1
	<i>x</i> =115°	A1	1.1b
	Deduces $x = 90^{\circ}$	B1	2.2a
		(5)	
			(8 marks

(a) Condone a full proof in x (or other variable) instead of θ 's here

B1: States or uses $\csc \theta = \frac{1}{\sin \theta}$ Do not accept $\csc \theta = \frac{1}{\sin \theta}$ with the θ missing

M1: For the key step in forming a single fraction/common denominator

E.g.
$$\csc \theta - \sin \theta = \frac{1}{\sin \theta} - \sin \theta = \frac{1 - \sin^2 \theta}{\sin \theta}$$
. Allow if written separately $\frac{1}{\sin \theta} - \sin \theta = \frac{1}{\sin \theta} - \frac{\sin^2 \theta}{\sin \theta}$

Condone missing variables for this M mark

A1*: Shows careful work with all necessary steps shown leading to given answer. See scheme for necessary steps. There should not be any notational or bracketing errors.

(b) Condone θ 's instead of x's here

M1: Uses part (a), cancels or factorises out the $\cos x$ term, to establish that one solution is found when $x = 3x - 50^{\circ}$.

You may see solutions where $\cot A - \cot B = 0 \Rightarrow \cot(A - B) = 0$ or $\tan A - \tan B = 0 \Rightarrow \tan(A - B) = 0$.

As long as they don't state $\cot A - \cot B = \cot(A - B)$ or $\tan A - \tan B = \tan(A - B)$ this is acceptable

- **A1:** $x = 25^{\circ}$
- M1: For the key step in realising that $\cot x$ has a period of 180° and a second solution can be found by solving $x+180^{\circ}=3x-50^{\circ}$. The sight of $x=115^{\circ}$ can imply this mark provided the step $x=3x-50^{\circ}$ has been seen. Using reciprocal functions it is for realising that $\tan x$ has a period of 180°
- A1: $x = 115^{\circ}$ Withhold this mark if there are additional values in the range (0,180) but ignore values outside. B1: Deduces that a solution can be found from $\cos x = 0 \Rightarrow x = 90^{\circ}$. Ignore additional values here.

.....

Solutions with limited working. The question demands that candidates show all stages of working.

SC: $\cos x \cot x = \cos x \cot (3x - 50^\circ) \Rightarrow \cot x = \cot (3x - 50^\circ) \Rightarrow x = 25^\circ, 115^\circ$

They have shown some working so can score B1, B1 marked on epen as 11000

Question	Scheme	Marks	AOs
9(a)	States $\frac{\sin\theta}{12} = \frac{\sin 27}{7}$	M1	1.1b
	Finds θ = awrt 51° or awrt 129°	A1	1.1b
	= awrt 128.9°	Al	1.1b
		(3)	
(b)	Attempts to find part or all of <i>AD</i> Eg $AD^2 = 7^2 + 12^2 - 2 \times 12 \times 7 \cos 101.9 = (AD = 15.09)$ Eg $(AC)^2 = 7^2 + 12^2 - 2 \times 12 \times 7 \cos (180 - "128.9" - 27)$ Eg 12 cos 27 or 7 cos"51"	M1	1.1b
	Full method for the total length = $12 + 7 + 7 + "15.09" =$	dM1	3.1a
	= 42 m	A1	3.2a
		(3)	
	•	((ó marks)

Notes

(a)

M1: States $\frac{\sin \theta}{12} = \frac{\sin 27}{7}$ oe with the sides and angles in the correct positions

Alternatively they may use the cosine rule on $\angle ACB$ and then solve the subsequent quadratic to find AC and then use the cosine rule again

- A1: awrt 51° or awrt 129°
- A1: Awrt 128.9° only (must be seen in part a))
- (b)
- M1: Attempts a "correct" method of finding either AD or a part of AD eg (AC or CD or forming a perpendicular to split the triangle into two right angled triangles to find AX or XD) which may be seen in (a).

You should condone incorrect labelling of the side. Look for attempted application of the cosine rule

$$(AD)^{2} = 7^{2} + 12^{2} - 2 \times 12 \times 7 \cos("128.9" - 27)$$

or $(AC)^{2} = 7^{2} + 12^{2} - 2 \times 12 \times 7 \cos(180 - "128.9" - 27)$

Or an attempted application of the sine rule
$$\frac{(AD)}{\sin("128.9"-27)} = \frac{7}{\sin 27}$$

Or
$$\frac{(AC)}{\sin(180 - "128.9"-27)} = \frac{7}{\sin 27}$$

Or an attempt using trigonometry on a right-angled triangle to find part of AD12 cos 27 or 7 cos"51"

This method can be implied by sight of awrt 15.1 or awrt 6.3 or awrt 8.8 or awrt 10.7 or awrt 4.4

dM1: A complete method of finding the TOTAL length. There must have been an attempt to use the correct combination of angles and sides. Expect to see 7+7+12+"AD" found using a correct method. This is scored by either 7+7+12+"AD" if $\angle ACB = 128.9^{\circ}$ in a) or 7+7+12+awrt15.1 by candidates who may have assumed $\angle ACB = 51.1^{\circ}$ in a)

A1: Rounds correct 41.09 m (or correct expression) up to 42 m to find steel **bought**

Candidates who assumed $\angle ACB = 51.1^{\circ}$ (acute) in (a): Full marks can still be achieved as candidates may have restarted in (b) or not used the acute angle in their calculation which is often unclear. We are condoning any reference to AC = 15.1 so ignore any labelling of the lengths they are finding.

Diagram of the correct triangle with lengths and angles:

Diagram using the incorrect acute angle:

Question	Scheme	Marks	AOs
10 (a)	(-180°,-3)	B1	1.1b
		(1)	
(b)	(i) $(-720^\circ, -3)$	B1ft	2.2a
	(ii) (-144°,-3)	B1 ft	2.2a
		(2)	
(c)	Attempts to use both $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\sin^2 \theta + \cos^2 \theta = 1$ and solves	M1	3.1a
	a quadratic equation in $\sin \theta$ to find at least one value of θ		
	$3\cos\theta = 8\tan\theta \Longrightarrow 3\cos^2\theta = 8\sin\theta$	B1	1.1b
	$3\sin^2\theta + 8\sin\theta - 3 = 0$	M1	1.1b
	$(3\sin\theta - 1)(\sin\theta + 3) = 0$		
	$\sin\theta = \frac{1}{3}$	Al	2.2a
	awrt 520.5° only	A1	2.1
		(5)	
		(8	8 marks)

B1: Deduces that $P(-180^\circ, -3)$ or $c = -180^{(0)}, d = -3$

(b)(i)

B1ft: Deduces that $P'(-720^\circ, -3)$ Follow through on their $(c, d) \rightarrow (4c, d)$ where d is negative (b)(ii)

B1ft: Deduces that $P'(-144^\circ, -3)$ Follow through on their $(c, d) \rightarrow (c+36^\circ, d)$ where d is negative

(c)

- M1: An overall problem solving mark, condoning slips, for an attempt to
 - use $\tan \theta = \frac{\sin \theta}{\cos \theta}$,
 - use $\pm \sin^2 \theta \pm \cos^2 \theta = \pm 1$
 - find at least one value of θ from a quadratic equation in $\sin \theta$
- **B1:** Uses the correct identity and multiplies across to give $3\cos\theta = 8\tan\theta \Rightarrow 3\cos^2\theta = 8\sin\theta$ oe
- **M1:** Uses the correct identity $\sin^2 \theta + \cos^2 \theta = 1$ to form a 3TQ in $\sin \theta$ which they attempt to solve using an appropriate method. It is OK to use a calculator to solve this
- A1: $\sin \theta = \frac{1}{3}$ Accept sight of $\frac{1}{3}$. Ignore any reference to the other root even if it is "used"
- A1: Full method with all identities correct leading to the answer of awrt 520.5° and no other values.

Question	Scheme	Marks	AOs
11(a)	2 continued y $y = 2x + \frac{1}{2}$ x Diagram 1	B1	3.1a
	For an allowable linear graph and explaining that there is only one intersection	B1	2.4
		(2)	
(b)	$\cos x - 2x - \frac{1}{2} = 0 \Longrightarrow 1 - \frac{x^2}{2} - 2x - \frac{1}{2} = 0$	M1	1.1b
	Solves their $x^2 + 4x - 1 = 0$	dM1	1.1b
	Allow awrt 0.236 but accept $-2 + \sqrt{5}$	A1	1.1b
		(3)	
	1	<u> </u>	(5 marks

B1: Draws $y = 2x + \frac{1}{2}$ on Figure 1 or Diagram 1 with an attempt at the correct gradient and the correct

intercept. Look for a straight line with an intercept at $\approx \frac{1}{2}$ and a further point at $\approx \left(\frac{1}{2}, 1\frac{1}{2}\right)$ Allow a tolerance of

0.25 of a square in either direction on these two points. It must appear in quadrants 1, 2 and 3.

B1: There must be an allowable linear graph on Figure 1 or Diagram1 for this to be awarded

Explains that as there is only one intersection so there is just one root.

This requires a reason and a minimal conclusion.

The question asks candidates to explain but as a bare minimum allow one "intersection"

Note: An allowable linear graph is one with intercept of $\pm \frac{1}{2}$ with one intersection with $\cos x$ OR gradient of

 ± 2 with one intersection with $\cos x$ (b)

M1: Attempts to use the small angle approximation $\cos x = 1 - \frac{x^2}{2}$ in the given equation.

The equation must be in a single variable but may be recovered later in the question. **dM1:** Proceeds to a 3TQ in a single variable and attempts to solve. See General Principles

The previous M must have been scored. Allow completion of square or formula or calculator. Do not allow attempts via factorisation unless their equation does factorise. You may have to use your calculator to check if a calculator is used.

A1: Allow $-2 + \sqrt{5}$ or awrt 0.236.

Do not allow this where there is another root given and it is not obvious that 0.236 has been chosen.

) uestion	Scheme	Marks	AOs
12(a)	$5\sin 2\theta = 9\tan\theta \Longrightarrow 10\sin\theta\cos\theta = 9 \times \frac{\sin\theta}{\cos\theta}$	M1	3.1a
	$A\cos^2\theta = B$ or $C\sin^2\theta = D$ or $P\cos^2\theta\sin\theta = Q\sin\theta$		
	For a correct simplified equation in one trigonometric function Eg $10\cos^2\theta = 9$ $10\sin^2\theta = 1$ oe	A1	1.1b
	Correct order of operations For example $10\cos^2\theta = 9 \Rightarrow \theta = \arccos(\pm)\sqrt{\frac{9}{10}}$	dM1	2.1
	Any one of the four values awrt $\theta = \pm 18.4^{\circ}, \pm 161.6^{\circ}$	Al	1.1b
	All four values $\theta = awrt \pm 18.4^{\circ}, \pm 161.6^{\circ}$	A1	1.1b
	$\theta = 0^{\circ}, \pm 180^{\circ}$	B1	1.1b
		(6)	
(b)	Attempts to solve $x - 25^\circ = -18.4^\circ$	M1	1.1b
	$x = 6.6^{\circ}$	A1ft	2.2a
		(2)	
	1	L	(8 mark

M1: Scored for the whole strategy of attempting to form an equation in one function of the form given in the scheme. For this to be awarded there must be an attempt at using $\sin 2\theta = ...\sin \theta \cos \theta$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and possibly $\pm 1 \pm \sin^2 \theta = \pm \cos^2 \theta$ to form an equation in one "function" usually $\sin^2 \theta$ or $\cos^2 \theta$

Allow for this mark equations of the form $P\cos^2\theta\sin\theta = Q\sin\theta$ oe

A1: Uses the correct identities $\sin 2\theta = 2\sin\theta\cos\theta$ and $\tan\theta = \frac{\sin\theta}{\cos\theta}$ to form a correct simplified equation in one trigonometric function. It is usually one of the equations given in the scheme, but you may see equivalent correct equations such as $10 = 9\sec^2\theta$ which is acceptable, but in almost all cases it is for a correct equation in $\sin\theta$ or $\cos\theta$

dM1: Uses the correct order of operations for their equation, usually in terms of just $\sin \theta$ or $\cos \theta$, to find at least one value for θ (Eg. square root before invcos). It is dependent upon the previous M.

Note that some candidates will use $\cos^2 \theta = \frac{\pm \cos 2\theta \pm 1}{2}$ and the same rules apply.

Look for correct order of operations.

- A1: Any one of the four values $awrt \pm 18.4^\circ, \pm 161.6^\circ$. Allow awrt 0.32 (rad) or 2.82 (rad)
- A1: All four values awrt $\pm 18.4^{\circ}, \pm 161.6^{\circ}$ and no other values apart from $0^{\circ}, \pm 180^{\circ}$
- **B1:** $\theta = 0^{\circ}, \pm 180^{\circ}$ This can be scored independent of method.
- **(b)**

M1: Attempts to solve $x - 25^\circ = "\theta"$ where θ is a solution of their part (a)

A1ft: For awrt $x = 6.6^{\circ}$ but you may ft on their $\theta + 25^{\circ}$ where $-25 < \theta < 0$ If multiple answers are given, the correct value for their θ must be chosen

Question	Scheme	Marks	AOs
13 (a)	Attempts to differentiate $x = 4 \sin 2y$ and inverts $\frac{dx}{dy} = 8 \cos 2y \Longrightarrow \frac{dy}{dx} = \frac{1}{8 \cos 2y}$	M1	1.1b
	$\operatorname{At}(0,0) \ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{8}$	A1	1.1b
		(2)	
(b)	(i) Uses $\sin 2y \approx 2y$ when y is small to obtain $x \approx 8y$	B1	1.1b
	(ii) The value found in (a) is the gradient of the line found in (b)(i)	B1	2.4
		(2)	
(c)	Uses their $\frac{dy}{dx}$ as a function of y and, using both $\sin^2 2y + \cos^2 2y = 1$ and $x = 4 \sin 2y$ in an attempt to write $\frac{dy}{dx}$ or $\frac{dx}{dy}$ as a function of x Allow for $\frac{dy}{dx} = k \frac{1}{\cos 2y} = \frac{1}{\sqrt{1 - (x)^2}}$	M1	2.1
	A correct answer $\frac{dy}{dx} = \frac{1}{8\sqrt{1-\left(\frac{x}{4}\right)^2}}$ or $\frac{dx}{dy} = 8\sqrt{1-\left(\frac{x}{4}\right)^2}$	A1	1.1b
	and in the correct form $\frac{dy}{dx} = \frac{1}{2\sqrt{16-x^2}}$	A1	1.1b
		(3)	
	1	(7 1	marks)

M1: Attempts to differentiate $x = 4 \sin 2y$ and inverts.

Allow for
$$\frac{dx}{dy} = k \cos 2y \Rightarrow \frac{dy}{dx} = \frac{1}{k \cos 2y}$$
 or $1 = k \cos 2y \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{1}{k \cos 2y}$
Alternatively, changes the subject and differentiates $x = 4 \sin 2y \Rightarrow y = \dots \arcsin\left(\frac{x}{4}\right) \Rightarrow \frac{dy}{dx} = \frac{\dots}{\sqrt{1 - \left(\frac{x}{4}\right)^2}}$

It is possible to approach this from $x = 8 \sin y \cos y \Rightarrow \frac{dx}{dy} = \pm 8 \sin^2 y \pm 8 \cos^2 y$ before inverting

A1: $\frac{dy}{dx} = \frac{1}{8}$ Allow both marks for sight of this answer as long as no incorrect working is seen (See below) Watch for candidates who reach this answer via $\frac{dx}{dy} = 8\cos 2x \Rightarrow \frac{dy}{dx} = \frac{1}{8\cos 2x}$ This is M0 A0

EXPERT TUITION

(b)(i)

B1: Uses $\sin 2y \approx 2y$ when y is small to obtain x = 8y or such as x = 4(2y).

Do not allow $\sin 2y \approx 2\theta$ to get $x = 8\theta$ but allow recovery in (b)(i) or (b)(ii)

Double angle formula is B0 as it does not satisfy the demands of the question.

(b)(ii)

B1: Explains the relationship between the answers to (a) and (b) (i).

For this to be scored the first three marks, in almost all cases, must have been awarded and the statement must refer to both answers

Allow for example "The gradients are the same $\left(=\frac{1}{8}\right)$ " 'both have $m = \frac{1}{8}$,

Do not accept the statement that 8 and $\frac{1}{8}$ are reciprocals of each other unless further correct work explains the relationship in terms of $\frac{dx}{dy}$ and $\frac{dy}{dx}$

(c)

M1: Uses their $\frac{dy}{dx}$ as a function of y and, using both $\sin^2 2y + \cos^2 2y = 1$ and $x = 4\sin 2y$, attempts to

write $\frac{dy}{dx}$ or $\frac{dx}{dy}$ as a function of x. The $\frac{dy}{dx}$ may not be seen and may be implied by their calculation.

A1: A correct (un-simplified) answer for $\frac{dy}{dx}$ or $\frac{dx}{dy}$ Eg. $\frac{dy}{dx} = \frac{1}{8\sqrt{1-\left(\frac{x}{4}\right)^2}}$

A1: $\frac{dy}{dx} = \frac{1}{2\sqrt{16-x^2}}$ The $\frac{dy}{dx}$ must be seen at least once in part (c) of this solution

.....

Alt to (c) using arcsin

M1: Alternatively, changes the subject and differentiates

$$x = 4\sin 2y \rightarrow y = \dots \arcsin\left(\frac{x}{4}\right) \rightarrow \frac{dy}{dx} = \frac{\dots}{\sqrt{1 - \left(\frac{x}{4}\right)^2}}$$

`

Condone a lack of bracketing on the $\frac{x}{4}$ which may appear as $\frac{x^2}{4}$

A1:
$$\frac{dy}{dx} = \frac{\frac{1}{8}}{\sqrt{1 - \left(\frac{x}{4}\right)^2}}$$
 oe
A1:
$$\frac{dy}{dx} = \frac{1}{2\sqrt{16 - x^2}}$$

Question	Scheme	Marks	AOs
14 (a)	Uses $18\sqrt{3} = \frac{1}{2} \times 2x \times 3x \times \sin 60^{\circ}$	M1	1.1a
	Sight of $\sin 60^\circ = \frac{\sqrt{3}}{2}$ and proceeds to $x^2 = k$ oe	M1	1.1b
	$x = \sqrt{12} = 2\sqrt{3} *$	A1*	2.1
		(3)	
(b)	Uses $BC^2 = (6\sqrt{3})^2 + (4\sqrt{3})^2 - 2 \times 6\sqrt{3} \times 4\sqrt{3} \times \cos 60^\circ$	M1	1.1b
	$BC^2 = 84$	A1	1.1b
	$BC = 2\sqrt{21}$ (cm)	Al	1.1b
		(3)	
		(6	marks)
	Notes		
If the this we M1: Sight This r A1*: Lool This intern Alternative M1: Attern	pts to use the formula $A = \frac{1}{2}ab\sin C$. candidate writes $18\sqrt{3} = \frac{1}{2} \times 5x \times \sin 60^\circ$ without sight of a previould be M0 of $\sin 60^\circ = \frac{\sqrt{3}}{2}$ or awrt 0.866 and proceeds to $x^2 = k$ oe such as may be awarded from the correct formula or $A = ab\sin C$ as for $x^2 = 12 \Rightarrow x = 2\sqrt{3}$, $x^2 = 4 \times 3 \Rightarrow x = 2\sqrt{3}$ or $x = \sqrt{12} = 2\sqrt{3}$ is a given answer and all aspects must be correct including one of mediate lines. It cannot be scored by using decimal equivalents to the using the given answer of $x = 2\sqrt{3}$ pts to use the formula $A = \frac{1}{2} \times 4\sqrt{3} \times 6\sqrt{3} \sin 60^\circ$ oe of $\sin 60^\circ = \frac{\sqrt{3}}{2}$ and proceeds to $A = 18\sqrt{3}$	$px^2 = q$ The above	ne then

Question	Scheme	Marks	AOs
15(a)	$\frac{10\sin^2\theta - 7\cos\theta + 2}{3 + 2\cos\theta} \equiv \frac{10(1 - \cos^2\theta) - 7\cos\theta + 2}{3 + 2\cos\theta}$	M1	1.1b
	$= \frac{12 - 7\cos\theta - 10\cos^2\theta}{3 + 2\cos\theta}$ $= \frac{(3 + 2\cos\theta)(4 - 5\cos\theta)}{3 + 2\cos\theta}$	A1	1.1b
	$\equiv \frac{(3+2\cos\theta)(4-5\cos\theta)}{3+2\cos\theta}$	M1	1.1b
	$\equiv 4 - 5\cos\theta *$	A1*	2.1
		(4)	
(b)	$4+3\sin x = 4-5\cos x \Longrightarrow \tan x = -\frac{5}{3}$	M1	2.1
	$x = \text{awrt } 121^{\circ}, 301^{\circ}$	A1 A1	1.1b 1.1b
		(3)	
		('	7 marks)
	Notes		
We would we would we would we would we would be a constrained of the second se	$\frac{(4-5\cos\theta)}{(4-5\cos\theta)} \qquad \text{Allow for } \frac{12-7u-10u^2}{3+2u} \text{ where they introduce}$ Id condone mixed variables here. Frect attempt to factorise the numerator, usual rules. Allow candidate by correct proof with correct notation and no errors. old the last mark for (1) Mixed variable e.g. θ and x's (2) Poor not $\cos^2 \theta$ or $\sin^2 = 1 - \cos^2 \text{ within the solution.}$ is incomplete lines if it is obvious that it is just part of their working $\frac{\theta - 7\cos\theta + 2}{1 + 2\cos\theta} = \frac{10(1 - \cos^2\theta) - 7\cos\theta + 2}{1 + 2\cos\theta} = \frac{12 - 7\cos\theta - 10\cos^2\theta}{3 + 2\cos\theta}$	es to use u = ation	= cos θ
Cond Altern sin 2 A1: Either A1: Both	but to use part (a) and proceeds to an equation of the form $\tan x = k$, one $\theta \leftrightarrow x$ Do not condone $a \tan x = 0 \Rightarrow \tan x = b \Rightarrow x =$ atively squares $3\sin x = -5\cos x$ and uses $\sin^2 x = 1 - \cos^2 x$ oe to r $x = A, -1 < A < 1$ or $\cos x = B, -1 < B < 1$ $x = \operatorname{awrt} 121^\circ \operatorname{or} 301^\circ$. Condone awrt 2.11 or 5.25 which are the rac $x = \operatorname{awrt} 121^\circ \operatorname{and} 301^\circ$ and no other solutions.	each	ns

Notes on Question 15 continueAlternative proof in part (a):M1: Multiplies across and form 3TQ in $\cos \theta$ on rhs $10\sin^2 \theta - 7\cos \theta + 2 = (4 - 5\cos \theta)(3 + 2\cos \theta) \Rightarrow 10\sin^2 \theta - 7\cos \theta + 2 = A\cos^2 \theta + B\cos \theta + C$ A1: Correct identity formed $10\sin^2 \theta - 7\cos \theta + 2 = -10\cos^2 \theta - 7\cos \theta + 12$ dM1: Uses $\cos^2 \theta = 1 - \sin^2 \theta$ on the rhs or $\sin^2 \theta = 1 - \cos^2 \theta$ on the lhsAlternatively proceeds to $10\sin^2 \theta + 10\cos^2 \theta = 10$ and makes a statement about $\sin^2 \theta + \cos^2 \theta = 1$ oeA1*: Shows that $(4 - 5\cos \theta)(3 + 2\cos \theta) = 10\sin^2 \theta - 7\cos \theta + 2$ oe AND makes a minimalstatement "hence true"

Question	Scheme	Marks	AOs
16	Attempts either $\sin 3\theta \approx 3\theta$ or $\cos 4\theta \approx 1 - \frac{(4\theta)^2}{2}$ in $\frac{1 - \cos 4\theta}{2\theta \sin 3\theta}$	M1	1.1b
	Attempts both $\sin 3\theta \approx 3\theta$ and $\cos 4\theta \approx 1 - \frac{(4\theta)^2}{2} \rightarrow \frac{1 - \left(1 - \frac{(4\theta)^2}{2}\right)}{2\theta \times 3\theta}$	M1	2.1
	and attempts to simplify		
	$=\frac{4}{3}$ oe	A1	1.1b
		(3)	
		(3 marks)
M1: Atte	empts either $\sin 3\theta \approx 3\theta$ or $\cos 4\theta \approx 1 - \frac{(4\theta)^2}{2}$ in the given expression.		
	below for description of marking of $\cos 4\theta$		
M1: Atter	mpts to substitute both $\sin 3\theta \approx 3\theta$ and $\cos 4\theta \approx 1 - \frac{(4\theta)^2}{2}$		
	$\rightarrow \frac{1 - \left(1 - \frac{\left(4\theta\right)^2}{2}\right)}{2\theta \times 3\theta}$ and attempts to simplify.		
Condone	missing bracket on the 4θ so $\cos 4\theta \approx 1 - \frac{4\theta^2}{2}$ would score the metho	d	
	an answer of k but condone $k\theta$ following a slip		
A1: Use	s both identities and simplifies to $\frac{4}{3}$ or exact equivalent with no incorrect line	es BUT alle	ow
recovery	on missing bracket for $\cos 4\theta \approx 1 - \frac{4\theta^2}{2}$.		
Eg. $\frac{1-\left(1-\frac{1}{2}\right)}{2}$	$\frac{1-\frac{(4\theta)^2}{2}}{(\theta\times3\theta)^2} = \frac{8\theta^2}{6\theta} = \frac{4}{3}$ is M1 M1 A0 awrt 1.33.		
M1 For a	$\frac{\cos 4\theta}{\sin 3\theta} = \frac{1 - (1 - 2\sin^2 2\theta)}{2\theta \sin 3\theta} = \frac{2\sin^2 2\theta}{2\theta \sin 3\theta} = \frac{2 \times (2\theta)^2}{2\theta \times 3\theta} = \frac{4}{3}$ in attempt at $\sin 3\theta \approx 3\theta$ or the identity $\cos 4\theta = 1 - 2\sin^2 2\theta$ with sin both of the above and attempts to simplify to a single term.	$2\theta \approx 2\theta$	

Question	Scheme	Marks	AOs
17	States or uses $\frac{1}{2}r^2\theta = 11$	B1	1.1b
	States or uses $2r + r\theta = 4r\theta$	B1	1.1b
	Attempts to solve, full method $r =$	M1	3.1a
	$r = \sqrt{33}$	A1	1.1b
			[4]
		(4	a marks)
B1: States M1: Full m The initial It cannot b Allow this Allow Allow Allow Allow The whole	or uses $\frac{1}{2}r^2\theta = 11$ This may be implied with an embedded found valor uses $2r + r\theta = 4r\theta$ or equivalent ethod to find $r =$ This involves combining the equations to eliminate θ equations must be of the same "form" (see **) but condone slips when att e scored from impossible values for θ Hence only score if $0 < \theta < 2\pi$ FY is to be scored from equations such as $r^2\theta = 11$ and ones that simplify to their $2r + r\theta = 4r\theta \Rightarrow \theta =$ then substitute this into their $\frac{1}{2}r^2\theta = 11$ their $2r + r\theta = 4r\theta \Rightarrow r\theta =$ then substitute this into their $\frac{1}{2}r^2\theta = 11$ their $\frac{1}{2}r^2\theta = 11 \Rightarrow \theta = {r^2}$ then substitute into their $2r + r\theta = 4r\theta \Rightarrow r\theta$ and $\frac{1}{83}$ only but isw after a correct answer. question can be attempted using θ in degrees. or uses $\frac{\theta}{360} \times \pi r^2 = 11$	θ or find θ empting to $xT \theta = \frac{2}{3} raccorrections$ $r =r\theta$	adians
	or uses $2r + \frac{\theta}{360} \times 2\pi r = 4 \times \frac{\theta}{360} \times 2\pi r$		

Question	Scheme	Marks	AOs
18 (a)	$D = 5 + 2\sin(30 \times 6.5)^\circ = \text{awrt } 4.48 \text{ m}$ with units	B1	3.4
		(1)	
(b)	$3.8 = 5 + 2\sin(30t)^\circ \Longrightarrow \sin(30t)^\circ = -0.6$	M1	1.1b
	$3.0 - 3 + 2 \sin(30t) \rightarrow \sin(30t) - 0.0$	A1	1.1b
	<i>t</i> =10.77	dM1	3.1a
	10:46 a.m. or 10:47 a.m.	A1	3.2a
		(4)	
	1	1	(5 marks)

Notes:

(a)

B1: Scored for using the model ie. substituting t = 6.5 into $D = 5 + 2\sin(30t)^{\circ}$ and stating

D = awrt 4.48 m. The units must be seen somewhere in (a). So allow when D = 4.482... = 4.5 m Allow the mark for a correct answer without any working.

(b)

M1: For using D = 3.8 and proceeding to $\sin(30t)^\circ = k$, $|k| \le 1$

A1: $\sin(30t)^\circ = -0.6$ This may be implied by any correct answer for t such as t = 7.2

If the A1 implied, the calculation must be performed in degrees.

dM1: For finding the first value of t for their $sin(30t)^\circ = k$ after t = 8.5.

You may well see other values as well which is not an issue for this dM mark

(Note that $\sin(30t)^\circ = -0.6 \Rightarrow 30t = 216.9^\circ$ as well but this gives t = 7.2)

For the correct $\sin(30t)^\circ = -0.6 \Rightarrow 30t = 323.1 \Rightarrow t = \text{awrt } 10.8$

For the incorrect $\sin(30t)^\circ = +0.6 \Rightarrow 30t = 396.9 \Rightarrow t = awrt 13.2$

So award this mark if you see 30t = inv sin their - 0.6 to give the first value of t where 30t > 255

A1: Allow 10:46 a.m. (12 hour clock notation) or 10:46 (24 hour clock notation) oe Allow 10:47 a.m. (12 hour clock notation) or 10:47 (24 hour clock notation) oe DO NOT allow 646 minutes or 10 hours 46 minutes.

Question	Scheme	Marks	AOs
19 (a)	Uses $15 = \frac{1}{2} \times 5 \times 10 \times \sin \theta$	M1	1.1b
	$\sin\theta = \frac{3}{5}$ oe	A1	1.1b
	Uses $\cos^2 \theta = 1 - \sin^2 \theta$	M1	2.1
	$\cos\theta = \pm \frac{4}{5}$	A1	1.1b
		(4)	
(b)	Uses $BC^2 = 10^2 + 5^2 - 2 \times 10 \times 5 \times " - \frac{4}{5} "$	M1	3.1a
	$BC = \sqrt{205}$	A1	1.1b
		(2)	
		(6	marks)
	Notes		
	he formula Area = $\frac{1}{2}ab\sin C$ in an attempt to find the v ³ or This mapping he implied here $a = \frac{1}{2}ab\cos C$		

A1: $\sin \theta = \frac{3}{5}$ of This may be implied by $\theta = \text{awrt } 36.9^\circ \text{ or awrt } 0.644 \text{ (radians)}$ M1: Uses their value of $\sin\theta$ to find two values of $\cos\theta$ This may be scored via the formula $\cos^2 \theta = 1 - \sin^2 \theta$ or by a triangle method. Also allow the use of a graphical calculator or candidates may just write down the **two values**. The values must be symmetrical $\pm k$ A1: $\cos\theta = \pm \frac{4}{5}$ or ± 0.8 Condone these values appearing from $\pm 0.79...$ **(b)** M1: Uses a suitable method of finding the longest side. For example chooses the negative value

(or the obtuse angle) and proceeds to find BC using the cosine rule. Alternatively works out BC using both values and chooses the larger value. If stated the cosine rule should be correct (with a minus sign). Note if the sign is +ve and the acute angle is chosen the correct value will be seen. It is however M0 A0

A1: $BC = \sqrt{205}$

Question	Scheme	Marks	AOs
20 (a)	$4\cos\theta - 1 = 2\sin\theta \tan\theta \Longrightarrow 4\cos\theta - 1 = 2\sin\theta \times \frac{\sin\theta}{\cos\theta}$	M1	1.2
	$\Rightarrow 4\cos^2\theta - \cos\theta = 2\sin^2\theta \text{oe}$	A1	1.1b
	$\Rightarrow 4\cos^2\theta - \cos\theta = 2\left(1 - \cos^2\theta\right)$	M1	1.1b
	$6\cos^2\theta - \cos\theta - 2 = 0 *$	A1*	2.1
		(4)	
(b)	For attempting to solve given quadratic	M1	1.1b
	$(\cos 3x) = \frac{2}{3}, -\frac{1}{2}$	B1	1.1b
	$(\cos 3x) = \frac{2}{3}, -\frac{1}{2}$ $x = \frac{1}{3}\arccos\left(\frac{2}{3}\right) \text{ or } \frac{1}{3}\arccos\left(-\frac{1}{2}\right)$	M1	1.1b
	$x = 40^{\circ}, 80^{\circ}, \text{ awrt } 16.1^{\circ}$	A1	2.2a
		(4)	
		(8	marks
This is scor It may be a $\cos\theta$ (4cos M1: Attem A1*: Proce bracketing. (b)	$(\theta - \cos \theta = 2\sin^2 \theta)$ oe. red for a correct line that does not contain any fractional terms. warded later in the solution after the identity $1 - \cos^2 \theta = \sin^2 \theta$ has b $(\theta - 1) = 2(1 - \cos^2 \theta)$ or equivalent pts to use the correct identity $1 - \cos^2 \theta = \sin^2 \theta$ to form an equation reds to correct answer through rigorous and clear reasoning. No error For example $\sin^2 \theta = \sin^2 \theta$ is an error in notation	in just cos s in notatio	θ
$\cos 3x, \cos bd = \pm 2$	tempting to solve the given quadratic " $6y^2 - y - 2 = 0$ " where y courx, or even just y. When factorsing look for $(ay+b)(cy+d)$ where a	$ac = \pm 6$ an	
This may b	e implied by the correct roots (even award for $\left(y \pm \frac{2}{3}\right) \left(y \pm \frac{1}{2}\right)$), an	attempt at	
	an attempt at the quadratic formula, an attempt at completing the sq		
B1: For the	$e \operatorname{roots} \frac{2}{3}, -\frac{1}{2}$ oe		
M1: Finds	at least one solution for x from $\cos 3x$ within the given range for th	eir $\frac{2}{3}, -\frac{1}{2}$	
A1: $x = 40$	°,80°, awrt 16.1° only Withhold this mark if there are any other value the range. Condone 40 and 80 appearing as 40.0 and 80.0	5 4	they

Question	Scheme	Marks	AOs
21(i)	$(2\theta + 10^\circ) = \arcsin(-0.6)$	M1	1.1b
	$(2\theta+10^\circ) = -143.13^\circ, -36.87^\circ, 216.87^\circ, 323.13^\circ$ (Any two)	A1	1.1b
	Correct order to find $\theta = \dots$	dM1	1.1b
	Two of $\theta = -76.6^{\circ}, -23.4^{\circ}, 103.4^{\circ}, 156.6^{\circ}.$	A1	1.1b
	$\theta = -76.6^{\circ}, -23.4^{\circ}, 103.4^{\circ}, 156.6^{\circ}, \text{ only}$	A1	2.1
		(5)	
(ii)	(a) Explains that the student has not considered the negative value of $x(=-29.0^\circ)$ when solving $\cos x = \frac{7}{8}$	B1	2.3
	Explains that the student should check if any solutions of $\sin x = 0$ (the cancelled term) are solutions of the given equation. $x = 0^{\circ}$ should have been included as a solution	B1	2.3
	(b) Attempts to solve $4\alpha + 199^{\circ} = (360 - 29.0)^{\circ}$	M1	2.2a
	$\alpha = 33.0^{\circ}$	A1	1.1b
		(4)	
		(9 n	narks)
Notes:			
A1: Any tw	ots $\operatorname{arcsin}(-0.6)$ implied by any correct answer o of -143.13° , -36.87° , 216.87° , 323.13°		
A1: Any tw A1: A full s	ect method to find any value of θ o of $\theta = -76.6^{\circ}, -23.4^{\circ}, 103.4^{\circ}, 156.6^{\circ}$. olution leading to all four answers and no extras .6°, -23.4°, 103.4°, 156.6°, only		
(ii)(a) B1: See sch B1: See sch			
(ii)(b) M1: For dec	ducing the smallest positive solution occurs when $4\alpha + 199^\circ = (360 - 29)^\circ$.0)°	
A1: $\alpha = 33^{\circ}$			

Question	Scheme	Marks	AOs
22 (a)	R = 2.5	B1	1.1b
	$\tan \partial = \frac{1.5}{2}$ o.e.	M1	1.1b
	$a = 0.6435$, so $2.5\sin(q - 0.6435)$	A1	1.1b
		(3)	
(b)	e.g. $D = 6 + 2\sin\left(\frac{4\rho(0)}{25}\right) - 1.5\cos\left(\frac{4\rho(0)}{25}\right) = 4.5 \text{m}$ or $D = 6 + 2.5\sin\left(\frac{4\rho(0)}{25} - 0.6435\right) = 4.5 \text{m}$	B1	3.4
		(1)	
(c)	$D_{\rm max} = 6 + 2.5 = 8.5 {\rm m}$	B1ft	3.4
		(1)	
(d)	Sets $\frac{4\rho t}{25}$ - "0.6435" = $\frac{5\rho}{2}$ or $\frac{\rho}{2}$	M1	1.1b
	Afternoon solution $\Rightarrow \frac{4\rho t}{25} - "0.6435" = \frac{5\rho}{2} \Rightarrow t = \frac{25}{4\rho} \left(\frac{5\rho}{2} + "0.6435"\right)^{1/2}$	M1	3.1b
	\triangleright t = 16.9052 \triangleright Time = 16:54 or 4:54 pm	A1	3.2a
		(3)	
(e)(i)	• An attempt to find the depth of water at 00:00 on 19th October 2017 for at least one of either Tom's model or Jolene's model.	M1	3.4
	 At 00:00 on 19th October 2017, Tom: D = 3.72 m and Jolene: H = 4.5 m and e.g. As 4.5 ¹ 3.72 then Jolene's model is not true Jolene's model is not continuous at 00:00 on 19th October 2017 Jolene's model does not continue on from where Tom's model has ended 	A1	3.5a
(ii)	To make the model continuous, e.g. • $H = 5.22 + 2\sin\left(\frac{4\pi x}{25}\right) - 1.5\cos\left(\frac{4\pi x}{25}\right), 0 \le x < 24$ • $H = 6 + 2\sin\left(\frac{4\pi(x+24)}{25}\right) - 1.5\cos\left(\frac{4\pi(x+24)}{25}\right), 0 \le x < 24$	B1	3.3
		(3)	
		(11 n	narks)

Quest	on Scheme	Marks	AOs	
22 (d Alt 1	Sets $\frac{1}{2}$ = "0.6435" = $\frac{1}{2}$	M1	1.1b	
	Period = $2p \left(\frac{4p}{25}\right) = 12.5$ Afternoon solution $\Rightarrow t = 12.5 + \frac{25}{4p} \left(\frac{p}{2} + "0.6435"\right)$	M1	3.1b	
	$rac{1}{2}$ $t = 16.9052$ $rac{1}{2}$ Time = 16:54 or 4:54 pm	A1	3.2a	
		(3)		
Questi	on 22 Notes:			
(a)				
B1:	$R = 2.5$ Condone $R = \sqrt{6.25}$			
M1:	For either $\tan a = \frac{1.5}{2}$ or $\tan a = -\frac{1.5}{2}$ or $\tan a = \frac{2}{1.5}$ or $\tan a = -\frac{2}{1.5}$			
A1:	$a = \operatorname{awrt} 0.6435$			
(b)				
B1:	Uses Tom's model to find $D = 4.5$ (m) at 00:00 on 18th October 2017			
(c) B1ft:	Either 8.5 or follow through "6 + their R " (by using their R found in part (a))			
(d) M1:	Realises that $D = 6 + 2\sin\left(\frac{4\rho t}{25 t}\right) - 1.5\cos\left(\frac{4\rho t}{25 t}\right) = 6 + "2.5"\sin\left(\frac{4\rho t}{25} - "0.6435"\right)$) † and		
	so maximum depth occurs when $\sin\left(\frac{4\rho t}{25} - "0.6435"\right) = 1 \Rightarrow \frac{4\rho t}{25} - "0.6435" = \frac{4\rho t}{25}$	$\frac{p}{2}$ or $\frac{5p}{2}$		
M1:	Uses the model to deduce that a p.m. solution occurs when $\frac{4\rho t}{25}$ - "0.6435" = $\frac{5\rho}{2}$ and rearranges			
	this equation to make $t = \dots$			
A1: (d) Alt 1	Finds that maximum depth occurs in the afternoon at 16:54 or 4:54 pm			
M1:	Maximum depth occurs when $\sin\left(\frac{4\rho t}{25} - "0.6435"\right) = 1 \Rightarrow \frac{4\rho t}{25} - "0.6435" = \frac{\rho}{2}$			
M1:	Rearranges to make $t =$ and adds on the period, where period = $2p \left(\frac{4p}{25\frac{1}{2}}\right) =$	12.5}		
A1:	Finds that maximum depth occurs in the afternoon at 16:54 or 4:54 pm			

Question 22 Notes Continued:				
(e)(i)				
M1:	See scheme			
A1:	See scheme			
	Note: Allow Special Case M1 for a candidate who just states that Jolene's model is not continuous at 00:00 on 19th October 2017 o.e.			
(e)(ii)				
B1:	Uses the information to set up a new model for <i>H</i> . (See scheme)			

Question	Scheme		Marks	AOs
23(a)	Way 1Finds third angle of triangle and uses or states $\frac{x}{\sin 60^{\circ}} = \frac{30}{\sin'' 50^{\circ''}}$	Way 2Finds third angle of triangle and uses or states $\frac{y}{\sin 70^{\circ}} = \frac{30}{\sin"50^{\circ}"}$	M1	2.1
	So $x = \frac{30\sin 60^{\circ}}{\sin 50^{\circ}}$ (= 33.9)	So $y = \frac{30\sin 70^{\circ}}{\sin 50^{\circ}}$ (= 36.8)	A1	1.1b
	Area = $\frac{1}{2} \times 30 \times x \times \sin 70^{\circ}$ or	$\frac{1}{2} \times 30 \times y \times \sin 60$	M1	3.1a
	$= 478 \text{ m}^2$		A1ft	1.1b
			(4)	
(b)	Plausible reason e.g. Because the given to four significant figures Or e.g. The lawn may not be flat	e angles and the side length are not	B1	3.2b
			(1)	
	1		(5 n	narks)
Notes:				
A1: Find M1: Con	s sine rule with their third angle to ls expression for, or value of eithen pletes method to find area of trian ains a correct answer for their valu	ngle	5	
	nformation given in the question n so modelling by a plane figure ma	nay not be accurate to 4sf or the lawn y not be accurate	may not l	be

Ques	tion	Scheme	Marks	AOs	
24		Uses $\sin^2 x = 1 - \cos^2 x \Longrightarrow 12(1 - \cos^2 x) + 7\cos x - 13 = 0$	M1	3.1a	
$\Rightarrow 12\cos^2 x - 7\cos x +$		$\Rightarrow 12\cos^2 x - 7\cos x + 1 = 0$	A1	1.1b	
		Uses solution of quadratic to give $\cos x =$	M1	1.1b	
		Uses inverse cosine on their values, giving two correct follow through values (see note)	M1	1.1b	
		$\Rightarrow x = 430.5^\circ, 435.5^\circ$	A1	1.1b	
	(5 marks)				
Note	s:				
M1: A1: M1:	Uses correct identity Correct three term quadratic Solves their three term quadratic to give values for $\cos x$. (The correct answers are $\cos x = \frac{1}{3}$ or $\frac{1}{4}$ but this is not necessary for this method mark)				
M1:	Uses inverse cosine on their values, giving two correct follow through values - may be outside the given domain				
A1:	IWO	correct answers in the given domain			

Quest	tion	Scheme	Marks	AOs		
25((a)	Uses $s = r\theta \Longrightarrow 3 = r \times 0.4$	M1	1.2		
		$\Rightarrow OD = 7.5 \text{ cm}$	A1	1.1b		
			(2)			
(b)		Uses angle $AOB = (\pi - 0.4)$ or uses radius is $(12 - `7.5')$ cm	M1	3.1a		
		Uses area of sector $=\frac{1}{2}r^2\theta = \frac{1}{2} \times (12 - 7.5)^2 \times (\pi - 0.4)$	M1	1.1b		
		$= 27.8 \text{cm}^2$	A1ft	1.1b		
			(3)			
	(5 marks)					
Notes	51					
(a)						
M1:	Attempts to use the correct formula $s = r\theta$ with $s = 3$ and $\theta = 0.4$					
A1:	OD = 7.5 cm (An answer of 7.5cm implies the use of a correct formula and scores both marks)					
(b)						
M1:	$AOB = \pi - 0.4$ may be implied by the use of $AOB =$ awrt 2.74 or uses radius is					
	(12 – their '7.5')					
M1:	Follow through on their radius $(12 - \text{their } OD)$ and their angle					
A1ft:	Allow awrt 27.8 cm ² . (Answer 27.75862562). Follow through on their (12 – their '7.5') Note: Do not follow through on a radius that is negative.					

Question	Scheme	Marks	AOs
26(a)	Deduces that $A = \pm 50$ or $b = \frac{1}{4}$	B1	3.4
	Deduces that $A = \pm 50$ and $b = \frac{1}{4}$	B1	3.4
	Uses $t = 0, H = 1 \Rightarrow \alpha = \dots$ E.g. $1 = "50" \sin(\alpha)^{\circ} \Rightarrow \alpha = \dots$	M1	3.4
	$H = \left \pm 50 \sin\left(\frac{1}{4}t + 1.15\right)^{\circ} \right $	A1	3.3
		(4)	
(b)	E.g. the minimum height above the ground of the passenger on the original model was 0 m or Adding "d" means the passenger does not touch the ground.	B1	3.5b
		(1)	
			(5 mark

- (a) Note that B0B1 is not possible
- **B1**: Uses the equation of the given model to deduce that $A = \pm 50$ or $b = \frac{1}{4}$ o.e.

May be seen embedded within their equation.

B1: Uses the equation of the given model to deduce that $A = \pm 50$ and $b = \frac{1}{4}$ o.e.

May be seen embedded within their equation.

M1: Uses t = 0 and H = 1 in the equation of the model to find a value for α . Follow through on their value for A. Allow for $\pm 1 = "50"\sin(\alpha)^\circ \Rightarrow \alpha = ...$ where α is in degrees or radians.

Note that in radians $\sin^{-1}\left(\frac{1}{50}\right) \approx \frac{1}{50}$ (0.0200...) which may appear incorrect but is in fact ok.

Also in degrees a value of e.g. 1.14 (truncated) would indicate the method.

A1: Writes down the correct full equation of the model: $H = \left| \pm 50 \sin\left(\frac{1}{4}t + 1.15\right)^{\circ} \right|$ o.e.

Condone omission of degrees symbol and allow awrt 1.15 for α .

Allow if a correct equation is seen anywhere in their solution.

- (b)
- B1: Gives a suitable explanation with no contradictory statements.

Condone "so that pod/capsule/seat/passenger/ferris wheel/it etc. will not hit/touch the ground"

Responses that focus on the starting point of the model are likely to score B0

Question	Scheme	Marks	AOs
27(a)	Uses the common ratio $\frac{5+2\sin\theta}{12\cos\theta} = \frac{6\tan\theta}{5+2\sin\theta}$ o.e.	M1	3.1a
	Cross multiplies and uses $\tan \theta \times \cos \theta = \sin \theta$ $(5 + 2\sin \theta)^2 = 6 \times 12\sin \theta$	dM1	1.1b
-	Proceeds to given answer $25 + 20\sin\theta + 4\sin^2\theta = 72\sin\theta$ $\Rightarrow 4\sin^2\theta - 52\sin\theta + 25 = 0 *$	A1*	2.1
		(3)	
(a) Alt	(a) Alternative example:		
	Uses the common ratio $12r\cos\theta = 5 + 2\sin\theta$, $12r^2\cos\theta = 6\tan\theta$ $\Rightarrow 12\cos\theta \left(\frac{5+2\sin\theta}{12\cos\theta}\right)^2 = 6\tan\theta$	M1	3.1a
	$(12\cos\theta^{-1})^{-1}$ Multiplies up and uses $\tan\theta \times \cos\theta = \sin\theta$ $(5+2\sin\theta)^{2} = 6\tan\theta \times 12\cos\theta = 72\sin\theta$	dM1	1.1b
	Proceeds to given answer $25 + 20\sin\theta + 4\sin^2\theta = 72\sin\theta$ $\Rightarrow 4\sin^2\theta - 52\sin\theta + 25 = 0 *$	A1*	2.1
-		(3)	
(b)	$4\sin^2\theta - 52\sin\theta + 25 = 0 \Longrightarrow \sin\theta = \frac{1}{2}\left(,\frac{25}{2}\right)$	M1	1.1b
	$\theta = \frac{5\pi}{6}$	Al	1.2
		(2)	
(c)	Attempts a value for either <i>a</i> or <i>r</i> e.g. $a = 12\cos\theta = 12 \times -\frac{\sqrt{3}}{2}$ or $r = \frac{5+2\sin\theta}{12\cos\theta} = \frac{5+2\times\frac{1}{2}}{12\times-\frac{\sqrt{3}}{2}}$	M1	3.1a
	" a " = $-6\sqrt{3}$ and " r " = $-\frac{1}{\sqrt{3}}$ o.e.	A1	1.1b
	Uses $S_{\infty} = \frac{a}{1-r} = \frac{-6\sqrt{3}}{1+\frac{1}{\sqrt{3}}}$	dM1	2.1
	Rationalises denominator $S_{\infty} = \frac{-6\sqrt{3}}{1 + \frac{1}{\sqrt{3}}} = \frac{-18}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1}$	ddM1	1.1b
	$(S_{\infty} =)9(1-\sqrt{3})$	A1	2.1
-		(5)	
			mark

(a) M1: For the key step in using the ratio of $\frac{a_2}{a_1} = \frac{a_3}{a_2}$

dM1: Cross multiplies and uses $\tan \theta \times \cos \theta = \sin \theta$

A1*: Proceeds to the given answer including the "= 0" with no errors and sufficient working shown.

Alternative:

M1: Expresses the 2nd and 3rd terms in terms of the first term and the common ratio and eliminates "r"

dM1: Multiplies up and uses $\tan \theta \times \cos \theta = \sin \theta$

A1*: Proceeds to the given answer including the "= 0" with no errors and sufficient working shown.

Other approaches may be seen in (a) and can be marked in a similar way e.g. M1 for correctly obtaining an equation in θ using the GP, M1 for applying $\tan \theta \times \cos \theta = \sin \theta$ or equivalent and eliminating fractions, A1 as above

Example:
$$u_2 = \frac{u_1 \times u_3}{u_2} \Longrightarrow 5 + 2\sin\theta = \frac{12\cos\theta \times 6\tan\theta}{5 + 2\sin\theta}$$
 M1
 $\Rightarrow (5 + 2\sin\theta)^2 = 72\sin\theta$ dM1
 $25 + 20\sin\theta + 4\sin^2\theta = 72\sin\theta$
 $\Rightarrow 4\sin^2\theta - 52\sin\theta + 25 = 0$ *

(b)

M1: Attempts to solve $4\sin^2 \theta - 52\sin\theta + 25 = 0$. Must be clear they have found $\sin \theta$ and not e.g. just x from $4x^2 - 52x + 25 = 0$. Working does not need to be seen but see general guidance for solving a 3TQ if necessary. Note that the $\frac{25}{2}$ does not need to be seen.

A1: $\theta = \frac{5\pi}{6}$ and no other values unless they are rejected or the $\frac{5\pi}{6}$ clearly selected here and not in (c)

A minimum requirement in (b) is e.g. $\sin \theta = \frac{1}{2}$, $\theta = \frac{5\pi}{6}$

Do **not** allow 150° for $\frac{5\pi}{6}$

PTO for the notes to part (c)

(c) Allow full marks in (c) if e.g. $\theta = \frac{\pi}{6}$ is their answer to (b) but $\theta = \frac{5\pi}{6}$ is used here.

or if e.g. $\theta = \frac{5\pi}{6}$ is their answer to (b) but $\theta = \frac{\pi}{6}$ is used here allow the M marks only. M1: For attempting a value (exact or decimal) for either *a* or *r* using **their** θ

E.g.
$$a = 12\cos\theta = \left(12 \times -\frac{\sqrt{3}}{2}\right)$$
 or $r = \frac{5+2\sin\theta}{12\cos\theta} = \left(\frac{5+2\times\frac{1}{2}}{12\times-\frac{\sqrt{3}}{2}}\right)$ or e.g. $r = \frac{6\tan\theta}{5+2\sin\theta} = \left(\frac{6\times-\frac{1}{\sqrt{3}}}{5+2\times\frac{1}{2}}\right)$

A1: Finds both $a = -6\sqrt{3}$ and $r = -\frac{1}{\sqrt{3}}$ which can be left unsimplified but $\sin \theta = \frac{1}{2}$, $\cos \theta = -\frac{\sqrt{3}}{2}$

and $\tan \theta = -\frac{\sqrt{3}}{3}$ (if required) must have been used.

dM1: Uses both values of "*a*" and "*r*" with the equation $S_{\infty} = \frac{a}{1-r} = \frac{-6\sqrt{3}}{1+\frac{1}{\sqrt{3}}}$ to create an expression

involving surds where *a* and *r* have come from appropriate work and |r| < 1Depends on the first method mark.

ddM1: Rationalises denominator. The denominator must be of the form $p \pm q\sqrt{3}$ oe e.g. $p + \frac{q}{\sqrt{3}}$

Depends on both previous method marks.

Note that stating e.g.
$$\frac{k}{p+q\sqrt{3}} \times \frac{p-q\sqrt{3}}{p-q\sqrt{3}}$$
 or $\frac{k}{p+\frac{q}{\sqrt{3}}} \times \frac{p-\frac{q}{\sqrt{3}}}{p-\frac{q}{\sqrt{3}}}$ is sufficient.

A1: Obtains $(S_{\infty} =)9(1-\sqrt{3})$

Note that full marks are available in (c) for the use of $\theta = 150^{\circ}$ Note also that marks may be implied in (c) by e.g.

$$S_{\infty} = \frac{a}{1-r} = \frac{12\cos\theta}{1-\frac{5+2\sin\theta}{12\cos\theta}} = \frac{144\cos^2\theta}{12\cos\theta-5-2\sin\theta} = \frac{144\cos^2\frac{5\pi}{6}}{12\cos\frac{5\pi}{6}-5-2\sin\frac{5\pi}{6}}$$
$$= \frac{108}{-6-6\sqrt{3}} = \frac{108}{-6-6\sqrt{3}} \times \frac{-6+6\sqrt{3}}{-6+6\sqrt{3}} = \frac{-648+648\sqrt{3}}{-72} = 9(1-\sqrt{3})$$

Scores M1A1 implied dM1 ddM1 A1

See next page for some other cases in (c) and how to mark them:

$$S_{\infty} = \frac{a}{1-r} = \frac{12\cos\frac{5\pi}{6}}{1-\frac{5+2\sin\frac{5\pi}{6}}{12\cos\frac{5\pi}{6}}} \quad \text{or e.g.} \quad S_{\infty} = \frac{a}{1-r} = \frac{12\cos\frac{\pi}{6}}{1-\frac{5+2\sin\frac{\pi}{6}}{12\cos\frac{\pi}{6}}}$$
And nothing else
scores M1A0dM1ddM0A0

$$S_{\infty} = \frac{a}{1-r} = \frac{12\cos\frac{5\pi}{6}}{1-\frac{5+2\sin\frac{5\pi}{6}}{12\cos\frac{5\pi}{6}}} = 9(1-\sqrt{3})$$

Scores M1A1dM1ddM0A0

$$S_{\infty} = \frac{a}{1-r} = \frac{12\cos\frac{\pi}{6}}{1-\frac{5+2\sin\frac{\pi}{6}}{12\cos\frac{\pi}{6}}} = 9(1+\sqrt{3})$$

Scores M1A0dM1ddM0A0

 $S_{\infty} = 9(1 - \sqrt{3})$ with no working scores no marks

Question	Scheme	Marks	AOs			
28	Examples: $4\sin\frac{\theta}{2} \approx 4\left(\frac{\theta}{2}\right), \ 3\cos^2\theta \approx 3\left(1-\frac{\theta^2}{2}\right)^2$ $3\cos^2\theta = 3\left(1-\sin^2\theta\right) \approx 3\left(1-\theta^2\right)$	M1	1.1a			
	$3\cos^{2}\theta = 3\frac{(\cos 2\theta + 1)}{2} \approx \frac{3}{2}\left(1 - \frac{4\theta^{2}}{2} + 1\right)$ Examples: $4\sin\frac{\theta}{2} + 3\cos^{2}\theta \approx 4\left(\frac{\theta}{2}\right) + 3\left(1 - \frac{\theta^{2}}{2}\right)^{2}$					
	$4\sin\frac{\theta}{2} + 3\cos^2\theta = 4\left(\frac{\theta}{2}\right) + 3\left(1 - \sin^2\theta\right) \approx 2\theta + 3\left(1 - \theta^2\right)$	dM1	1.1b			
	$4\sin\frac{\theta}{2} + 3\cos^2\theta = 4\sin\frac{\theta}{2} + 3\frac{(\cos 2\theta + 1)}{2} \approx 4\left(\frac{\theta}{2}\right) + \frac{3}{2}\left(1 - \frac{4\theta^2}{2} + 1\right)$ $= 2\theta + 3\left(1 - \theta^2 +\right) = 3 + 2\theta - 3\theta^2$	1	2.1			
	$= 2\theta + 3(1 - \theta^{2} +) = 3 + 2\theta - 3\theta$	A1	2.1			
		(3)	monka)			
	Notes	(3	marks)			
M1: Atten	npts to use at least one correct approximation within the given express	ion.				
	er $\sin\frac{\theta}{2} \approx \frac{\theta}{2}$ or $\cos\theta \approx 1 - \frac{\theta^2}{2}$ or e.g. $\sin\theta \approx \theta$ if they write $\cos^2\theta$ as $1 - \frac{\theta^2}{2}$		e.g.			
cos 26	$\cos 2\theta \approx 1 - \frac{(2\theta)^2}{2}$ (condone missing brackets) if they write $\cos^2 \theta$ as $\frac{1 + \cos 2\theta}{2}$.					
	Allow sign slips only with any identities used but the appropriate approximations must be applied.					
dM1: Atte	dM1: Attempts to use correct approximations with the given expression to obtain an expression in terms of θ only. Depends on the first method mark.					
A1: Corre	ct terms following correct work. Allow the terms in any order and igno if given correct or incorrect.	re any ex	tra			

Question	Scheme	Marks	AOs			
29(a)	Angle $AOB = \frac{\pi - \theta}{2}$	B1	2.2a			
	2	(1)				
(b)	Area = $2 \times \frac{1}{2}r^2 \left(\frac{\pi-\theta}{2}\right) + \frac{1}{2}(2r)^2 \theta$	M1	2.1			
	$=\frac{1}{2}r^{2}\pi - \frac{1}{2}r^{2}\theta + 2r^{2}\theta = \frac{3}{2}r^{2}\theta + \frac{1}{2}r^{2}\pi = \frac{1}{2}r^{2}(3\theta + \pi)^{*}$	A1*	1.1b			
		(2)				
(c)	Perimeter = $4r + 2r\left(\frac{\pi - \theta}{2}\right) + 2r\theta$	M1	3.1a			
	$=4r+r\pi+r\theta$ or e.g. $r(4+\pi+\theta)$	A1	1.1b			
		(2)				
	Notos	(5	marks)			
	Notes					
Note	that $\frac{180 - \theta}{2}$ scores B0					
-	correct strategy for the area using their angle from (a) appropriately.					
Need	to see $2 \times \frac{1}{2} r^2 \alpha$ or just $r^2 \alpha$ where α is their angle in terms of θ from					
part (a	a) + $\frac{1}{2}(2r)^2 \theta$ with or without the brackets.					
A1*: Corr	ect proof. For this mark you can condone the omission of the brackets	$\ln \frac{1}{2}(2r)$	$^{2}\theta$ as			
lon	g as they are recovered in subsequent work e.g. when this term become	s $2r^2\theta$				
The	first term must be seen expanded as e.g. $\frac{1}{2}r^2\pi - \frac{1}{2}r^2\theta$ or equivalent					
Need	correct strategy for the perimeter using their angle from (a) appropriate to see $4r + 2r\alpha + 2r\theta$ where α is their angle from part (a) in terms of θ ct simplified expression	ely				
e.g.	some candidates may change the angle to degrees at the start and all ma	urks are av	vailable			
(a) $\frac{180 - \frac{1}{2}}{2}$						
(b) $_2\left(\frac{180}{-1}\right)$	(b) $2\left(\frac{180-\frac{180\theta}{\pi}}{2}\right) \times \frac{1}{360} \times \pi r^2 + \frac{\theta}{360} \times \frac{180}{\pi} \times \pi (2r)^2 = \frac{1}{2}\pi r^2 - \frac{1}{2}r^2\theta + 2r^2\theta = \frac{1}{2}r^2(3\theta + \pi)$					
(c) $4r+2$	$\frac{180 - \frac{180\theta}{\pi}}{2} \right) \times \frac{1}{360} \times 2\pi r + \frac{180\theta}{\pi} \times \frac{1}{360} \times 2\pi (2r) = 4r + \pi r + r\theta$					

Question	Scheme	Marks	AOs		
30(a)	$R = \sqrt{5}$	B1	1.1b		
	$\tan \alpha = \frac{1}{2} \text{ or } \sin \alpha = \frac{1}{\sqrt{5}} \text{ or } \cos \alpha = \frac{2}{\sqrt{5}} \Longrightarrow \alpha = \dots$	M1	1.1b		
	$\alpha = 0.464$	A1	1.1b		
		(3)			
(b)(i)	$3 + 2\sqrt{5}$	B1ft	3.4		
(ii)	(ii) $\cos(0.5t + 0.464) = 1 \Rightarrow 0.5t + 0.464 = 2\pi$ $\Rightarrow t =$				
	<i>t</i> = 11.6	A1	1.1b		
		(3)			
(c)	$3 + 2\sqrt{5}\cos(0.5t + 0.464) = 0$ $\cos(0.5t + 0.464) = -\frac{3}{2\sqrt{5}}$	M1	3.4		
	$\cos\left(0.5t + 0.464\right) = -\frac{3}{2\sqrt{5}} \Rightarrow 0.5t + 0.464 = \cos^{-1}\left(-\frac{3}{2\sqrt{5}}\right)$ $\Rightarrow t = 2\left(\cos^{-1}\left(-\frac{3}{2\sqrt{5}}\right) - 0.464\right)$	dM1	1.1b		
	So the time required is e.g.: 2(3.9770.464) - 2(2.3060.464)	dM1	3.1b		
	= 3.34	A1	1.1b		
		(4)			
(d)	e.g. the "3" would need to vary	B1	3.5c		
		(1)			
		(11	marks)		
	Notes				
	eveds to a value for α from $\tan \alpha = \pm \frac{1}{2}$ or $\sin \alpha = \pm \frac{1}{R''}$ or $\cos \alpha = \pm \frac{2}{R''}$	2"			
A1: $\alpha = av$ (b)(i)	mplied by either awrt 0.464 (radians) or awrt 26.6 (degrees) wrt 0.464 $(3+2\sqrt{5})$ m or awrt 7.47 m and remember to isw. Condone lack of ur	nite			
	$(3+2\sqrt{3})^{11}$ of awre 7.47 in and remember to isw. Condone lack of the				
	ow through on their <i>R</i> value so allow $3 + 2 \times$ Their <i>R</i> . (Allow in decima accuracy)	als with at	least		
M1: Uses Follo	$0.5t \pm "0.464" = 2\pi$ to obtain a value for t w through on their 0.464 but this angle must be in radians. possible in degrees but only using $0.5t \pm "26.6" = 360$ 11.6				

Alternative for (b):

$$H = 3 + 4\cos(0.5t) - 2\sin(0.5t) \Rightarrow \frac{dH}{dt} = -2\sin(0.5t) - \cos(0.5t) = 0$$

$$\Rightarrow \tan(0.5t) = -\frac{1}{2} \Rightarrow 0.5t = 2.677..., 5.819... \Rightarrow t = 5.36, 11.6$$

$$t = 11.6 \Rightarrow H = 7.47$$
Score as follows:
M1: For a complete method:
M1: For a complete method:
Attempts $\frac{dH}{dt}$ and attempts to solve $\frac{dH}{dt} = 0$ for t
A1: For t = awrt 11.6
B1ft: For awrt 7.47 or $3 + 2 \times$ Their R

(c) M1: Uses the model and sets $3 + 2 \sqrt{5} \cos(...) = 0$ and proceeds to $\cos(...) = k$ where |k| < 1. Allow e.g. $3 + 2"\sqrt{5}"\cos(...) < 0$ dM1: Solves $\cos(0.5t \pm 0.464) = k$ where |k| < 1 to obtain at least one value for t This requires e.g. $2\left(\pi + \cos^{-1}(k) \pm \tan^{-1}(\frac{1}{2})\right)$ or e.g. $2\left(\pi - \cos^{-1}(k) \pm \tan^{-1}(\frac{1}{2})\right)$ Depends on the previous method mark. dM1: A fully correct strategy to find the required duration. E.g. finds 2 consecutive values of t when H = 0 and subtracts. Alternatively finds t when H is minimum and uses the times found correctly to find the required duration. Depends on the previous method mark. **Examples:** Second time at water level – first time at water level: $2\left(\pi + \cos^{-1}\left(\frac{3}{2\sqrt{5}}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right) - 2\left(\pi - \cos^{-1}\left(\frac{3}{2\sqrt{5}}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right) = 7.02685... - 3.68492...$ $2 \times ($ first time at minimum point – first time at water level): $2\left(2\left(\pi - \tan^{-1}\left(\frac{1}{2}\right)\right) - 2\left(\pi - \cos^{-1}\left(\frac{3}{2\sqrt{5}}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right)\right) = 2(5.35589...-3.68492...)$ Note that both of these examples equate to $4\cos^{-1}\left(\frac{3}{2\sqrt{5}}\right)$ which is not immediately obvious but may be seen as an overall method. There may be other methods – if you are not sure if they deserve credit send to review. A1: Correct value. Must be 3.34 (not awrt). **Special Cases in (c):** Note that if candidates have an incorrect α and have e.g. $3+2\sqrt{5}\cos(0.5t-0.464)$, this has no impact on the final answer. So for candidates using $3+2\sqrt{5}\cos(0.5t\pm\alpha)$ in (c) allow all the marks including the A mark as a correct method should always lead to 3.34 Some values to look for: $0.5t \pm 0.464'' = \pm 2.306, \pm 3.977, \pm 8.598, \pm 10.26$ (d) B1: Correct refinement e.g. As in scheme. If they suggest a specific function to replace the "3"

then it must be sensible e.g. a trigonometric function rather than e.g. a quadratic/linear one.

Question	Scheme	Marks	AOs
31 (a)	$\cos 3A = \cos (2A + A) = \cos 2A \cos A - \sin 2A \sin A$	M1	3.1a
	$= (2\cos^2 A - 1)\cos A - (2\sin A\cos A)\sin A$	dM1	1.1b
	$= (2\cos^{2} A - 1)\cos A - 2\cos A(1 - \cos^{2} A)$	ddM1	2.1
	$=4\cos^3 A - 3\cos A^*$	A1*	1.1b
		(4)	
(b)	$1 - \cos 3x = \sin^2 x \Longrightarrow \cos^2 x + 3\cos x - 4\cos^3 x = 0$	M1	1.1b
	$\Rightarrow \cos x (4\cos^2 x - \cos x - 3) = 0$ $\Rightarrow \cos x (4\cos x + 3)(\cos x - 1) = 0$ $\Rightarrow \cos x = \dots$	dM1	3.1a
	Two of -90°, 0, 90°, awrt 139°	A1	1.1b
	All four of -90°, 0, 90°, awrt 139°	A1	2.1
		(4)	
			(8 marks)

Notes:

(a)

Allow a proof in terms of x rather than A

M1: Attempts to use the compound angle formula for cos(2A + A) or cos(A + 2A)Condone a slip in sign

dM1: Uses correct double angle identities for $\cos 2A$ and $\sin 2A$

 $\cos 2A = 2\cos^2 A - 1$ must be used. If either of the other two versions are used expect to see an attempt to replace $\sin^2 A$ by $1 - \cos^2 A$ at a later stage.

Depends on previous mark.

ddM1: Attempts to get all terms in terms of cos A using correct and appropriate identities.

Depends on both previous marks.

A1*: A completely correct and rigorous proof including correct notation, no mixed variables, missing brackets etc. Alternative right to left is possible:

$$4\cos^{3} A - 3\cos A = \cos A (4\cos^{2} A - 3) = \cos A (2\cos^{2} A - 1 + 2(1 - \sin^{2} A) - 2) = \cos A (\cos 2A - 2\sin^{2} A)$$

= cos A cos 2A - 2 sin A cos A sin A = cos A cos 2A - sin 2A sin A = cos(2A + A) = cos 3A

Score M1: For $4\cos^3 A - 3\cos A = \cos A (4\cos^2 A - 3)$

dM1: For
$$\cos A \left(2\cos^2 A - 1 + 2(1 - \sin^2 A) - 2 \right)$$
 (Replaces $4\cos^2 A - 1$ by $2\cos^2 A - 1$ and $2(1 - \sin^2 A)$)

ddM1: Reaches $\cos A \cos 2A - \sin 2A \sin A$

A1:
$$\cos(2A + A) = \cos 3A$$

(b)

- M1: For an attempt to produce an equation just in $\cos x$ using both part (a) and the identity $\sin^2 x = 1 \cos^2 x$ Allow one slip in sign or coefficient when copying the result from part (a)
- **dM1: Dependent upon the preceding mark**. It is for taking the cubic equation in $\cos x$ and making a valid attempt to solve. This could include factorisation or division of a $\cos x$ term followed by an attempt to solve the 3 term quadratic equation in $\cos x$ to reach at least one non zero value for $\cos x$.

May also be scored for solving the cubic equation in $\cos x$ to reach at least one non zero value for $\cos x$.

A1: Two of -90°, 0, 90°, awrt 139° **Depends on the <u>first</u> method mark**.

A1: All four of -90° , 0, 90° , awrt 139° with no extra solutions offered within the range.

Note that this is an alternative approach for obtaining the cubic equation in (b):

$$1 - \cos 3x = \sin^2 x \Longrightarrow 1 - \cos 3x = \frac{1}{2}(1 - \cos 2x)$$
$$\Longrightarrow 2 - 2\cos 3x = 1 - \cos 2x$$
$$\Longrightarrow 1 = 2\cos 3x - \cos 2x$$
$$\Longrightarrow 1 = 2(4\cos^3 x - 3\cos x) - (2\cos^2 x - 1)$$
$$\Longrightarrow 0 = 4\cos^3 x - 3\cos x - \cos^2 x$$

The M1 will be scored on the penultimate line when they use part (a) and use the correct identity for $\cos 2x$

Questi	on Scheme	Marks	AOs	
32(a)	Allow explanations such as • student should have worked in radians • they did not convert degrees to radians • 40 should be in radians • θ should be in radians • angle (or θ) should be $\frac{40\pi}{180}$ or $\frac{2\pi}{9}$ • correct formula is $\pi r^2 \left(\frac{\theta}{360}\right)$ {where θ is in degrees} • correct formula is $\pi r^2 \left(\frac{40}{360}\right)$	B1	2.3	
		(1)		
(b) Way 1	{Area of sector = } $\frac{1}{2} (5^2) \left(\frac{2\pi}{9}\right)$	M1	1.1b	
	$= \frac{25}{9}\pi \ \{\text{cm}^2\} \text{or awrt 8.73 } \{\text{cm}^2\}$	A1	1.1b	
		(2)		
(b) Way 2	2 {Area of sector = } $\pi(5^2) \left(\frac{40}{360}\right)$ = $\frac{25}{9} \pi \{\text{cm}^2\}$ or awrt 8.73 {cm ² }	M1	1.1b	
	$= \frac{25}{9}\pi \ \{\text{cm}^2\} \text{or awrt 8.73 } \{\text{cm}^2\}$	A1	1.1b	
		(2)	2 o l o)	
	Notes for Question 32	(3 marks)	
(a)				
B1:	Explains that the formula use is only valid when angle <i>AOB</i> is applied in rad See scheme for examples of suitable explanations.	ians.		
(b)	Way 1			
M1:	Correct application of the sector formula using a correct value for θ in radia	ns		
Note:	Allow exact equivalents for θ e.g. $\theta = \frac{40\pi}{180}$ or θ in the range [0.68, 0.71]			
A1*:	Accept $\frac{25}{9}\pi$ or awrt 8.73 Note: Ignore the units			
(b)	Way 2			
M1:	Correct application of the sector formula in degrees			
A1:	Accept $\frac{25}{9}\pi$ or awrt 8.73 Note: Ignore the units.			
Note:	Allow exact equivalents such as $\frac{50}{18}\pi$			
Note:	Allow M1 A1 for $500\left(\frac{\pi}{180}\right) = \frac{25}{9}\pi \{\text{cm}^2\}$ or awrt 8.73 {cm}^2}			

Question	Scheme	Marks	AOs
33	$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} \equiv 2 \cot 2\theta$		
(-)	$\frac{\sin\theta}{\cos^2\theta\cos\theta} + \sin^2\theta\sin\theta$		
(a) Way 1	$\{LHS = \} \frac{\cos \theta + \sin 3\theta \sin \theta}{\sin \theta \cos \theta}$	M1	3.1a
	$= \frac{\cos(3\theta - \theta)}{\sin\theta\cos\theta} \left\{ = \frac{\cos 2\theta}{\sin\theta\cos\theta} \right\}$	A1	2.1
	$=\frac{\cos 2\theta}{\frac{1}{2}\sin 2\theta}=2\cot 2\theta *$	dM1	1.1b
	$\frac{1}{2}\sin 2\theta$	A1 *	2.1
		(4)	
(a) Way 2	{LHS=} $\frac{\cos 2\theta \cos \theta - \sin 2\theta \sin \theta}{\sin \theta} + \frac{\sin 2\theta \cos \theta + \cos 2\theta \sin \theta}{\cos \theta}$		
	$=\frac{\cos 2\theta \cos^2 \theta - \sin 2\theta \sin \theta \cos \theta + \sin 2\theta \cos \theta \sin \theta + \cos 2\theta \sin^2 \theta}{\sin \theta \cos \theta}$	M1	3.1a
	$= \frac{\cos 2\theta(\cos^2 \theta + \sin^2 \theta)}{\sin \theta \cos \theta} \left\{= \frac{\cos 2\theta}{\sin \theta \cos \theta}\right\}$	A1	2.1
	$-\frac{\cos 2\theta}{\cos 2\theta} = 2 \cot 2\theta *$	dM1	1.1b
	$= \frac{\cos 2\theta}{\frac{1}{2}\sin 2\theta} = 2\cot 2\theta \ *$	A1 *	2.1
		(4)	
(a)	$\{\text{RHS}=\} \frac{2\cos 2\theta}{\cos^2 \theta} = \frac{2\cos(3\theta - \theta)}{\cos^2 \theta} = \frac{2(\cos 3\theta \cos \theta + \sin 3\theta \sin \theta)}{\cos^2 \theta}$	M1	3.1a
Way 3	$\sin 2\theta$ $\sin 2\theta$ $\sin 2\theta$	Al	2.1
	$=\frac{2(\cos 3\theta \cos \theta + \sin 3\theta \sin \theta)}{2\sin \theta \cos \theta}$	dM1	1.1b
	$=\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} *$	A1 *	2.1
		(4)	
(b) Way 1	$\left\{\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4 \Rightarrow \right\} 2\cot 2\theta = 4 \Rightarrow 2\left(\frac{1}{\tan 2\theta}\right) = 4$	M1	1.1b
	Rearranges to give $\tan 2\theta = k$; $k \neq 0$ and applies $\arctan k$	dM1	1.1b
	$\left\{90^{\circ} < \theta < 180^{\circ}, \tan 2\theta = \frac{1}{2} \Longrightarrow\right\}$		
	Only one solution of $\theta = 103.3^{\circ}$ (1 dp) or awrt 103.3°	A1	2.2a
		(3)	
(b) Way 2	$\left\{\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4 \implies \right\} 2\cot 2\theta = 4 \implies \frac{2}{\tan 2\theta} = 4$	M1	1.1b
	$\frac{2}{\left(\frac{2\tan\theta}{1-\tan^2\theta}\right)} = 4 \implies 2(1-\tan^2\theta) = 8\tan\theta$		
	$\Rightarrow \tan^2 \theta + 4 \tan \theta - 1 = 0 \Rightarrow \tan \theta = \frac{-4 \pm \sqrt{(4)^2 - 4(1)(-1)}}{2(1)}$	dM1	1.1b
	$\{\Rightarrow \tan \theta = -2 \pm \sqrt{5}\} \Rightarrow \tan \theta = k; k \neq 0 \Rightarrow \text{ applies } \arctan k$		
	$\{90^\circ < \theta < 180^\circ, \tan \theta = -2 - \sqrt{5} \Rightarrow\}$		
	Only one solution of $\theta = 103.3^{\circ} (1 \text{ dp})$ or awrt 103.3°	A1	2.2a
		(3)	
		(7 marks)

	Notes for Question 33			
(a)	Way 1 and Way 2			
M1:	Correct valid method forming a common denominator of $\sin\theta\cos\theta$			
	i.e. correct process of $\frac{()\cos\theta + ()\sin\theta}{\cos\theta\sin\theta}$			
	$\cos\theta\sin\theta$			
A1:	Proceeds to show that the numerator of their resulting fraction simplifies to $\cos(3\theta - \theta)$ or $\cos 2\theta$			
dM1:	dependent on the previous M mark			
	Applies a correct $\sin 2\theta = 2\sin\theta\cos\theta$ to the common denominator $\sin\theta\cos\theta$			
A1*	Correct proof			
Note:	Writing $\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = \frac{\cos 3\theta \cos \theta}{\sin \theta \cos \theta} + \frac{\sin 3\theta \sin \theta}{\sin \theta \cos \theta}$ is considered a correct valid method			
	of forming a common denominator of $\sin\theta\cos\theta$ for the 1 st M1 mark			
Note:	Give 1 st M0 e.g. for $\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = \frac{\cos 4\theta + \sin 4\theta}{\sin \theta \cos \theta}$			
	$\sin\theta \cos\theta \sin \sin\theta \cos\theta$			
	but allow 1 st M1 for $\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = \frac{\cos 3\theta \cos \theta + \sin 3\theta \sin \theta}{\sin \theta \cos \theta} = \frac{\cos 4\theta + \sin 4\theta}{\sin \theta \cos \theta}$			
	$\frac{1}{10000000000000000000000000000000000$			
Note:	Give 1 st M0 e.g. for $\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = \frac{\cos^2 3\theta + \sin^2 3\theta}{\sin \theta \cos \theta}$			
	but allow 1 st M1 for $\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = \frac{\cos 3\theta \cos \theta + \sin 3\theta \sin \theta}{\sin \theta \cos \theta} = \frac{\cos^2 3\theta + \sin^2 3\theta}{\sin \theta \cos \theta}$			
N T 4	$\frac{\sin\theta}{\cos\theta} \frac{\cos\theta}{\sin\theta} \frac{\sin\theta}{\cos\theta} \frac{\sin\theta}{\sin\theta} \frac{\sin\theta}{\theta} \frac{\sin\theta}$			
Note:	Allow 2^{nd} M1 for stating a correct $\sin 2\theta = 2\sin\theta\cos\theta$ and for attempting to apply it to the common denominator $\sin\theta\cos\theta$			
(a)				
(a) M1:	Way 3Starts from RHS and proceeds to expand $\cos 2\theta$ in the form $\cos 3\theta \cos \theta \pm \sin 3\theta \sin \theta$			
A1:	Shows, as part of their proof, that $\cos 2\theta = \cos 3\theta \cos \theta + \sin 3\theta \sin \theta$			
dM1:	dependent on the previous M mark			
ulv11.	Applies $\sin 2\theta \equiv 2\sin\theta\cos\theta$ to their denominator			
A1*:	Correct proof			
Note:	Allow 1 st M1 1 st A1 (together) for any of LHS $\rightarrow \frac{\cos 2\theta}{\sin \theta \cos \theta}$ or LHS $\rightarrow \frac{\cos 2\theta(\cos^2 \theta + \sin^2 \theta)}{\sin \theta \cos \theta}$			
	or LHS $\rightarrow \cos 2\theta (\cot \theta + \tan \theta)$ or LHS $\rightarrow \cos 2\theta \left(\frac{1 + \tan^2 \theta}{\tan \theta}\right)$			
	(i.e. where $\cos 2\theta$ has been factorised out)			
Note:	Allow 1 st M1 1 st A1 for progressing as far as LHS = = $\cot x - \tan x$			
Note:	The following is a correct alternative solution $\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = \frac{\cos 3\theta \cos \theta + \sin 3\theta \sin \theta}{\sin \theta \cos \theta} = \frac{\frac{1}{2}(\cos 4\theta + \cos 2\theta) - \frac{1}{2}(\cos 4\theta - \cos 2\theta)}{\sin \theta \cos \theta}$			
	$=\frac{\cos 2\theta}{\sin \theta \cos \theta} = \frac{\cos 2\theta}{\frac{1}{2}\sin 2\theta} = 2\cot 2\theta *$			
	$\cos 2\theta \cos^2 \theta - \sin 2\theta \sin \theta \cos \theta + \sin 2\theta \cos \theta \sin \theta + \cos 2\theta \sin^2 \theta = \cos 2\theta$			
Note	E a going from $\frac{\cos 2\theta \cos^2 \theta - \sin 2\theta \sin \theta \cos \theta + \sin 2\theta \cos \theta \sin \theta + \cos 2\theta \sin^2 \theta}{\cos^2 \theta \cos^2 \theta \sin^2 \theta \cos^2 \theta}$ to $\cos 2\theta$			
Note:	E.g. going from $\frac{\cos 2\theta \cos^2 \theta - \sin 2\theta \sin \theta \cos \theta + \sin 2\theta \cos \theta \sin \theta + \cos 2\theta \sin^2 \theta}{\sin \theta \cos \theta}$ to $\frac{\cos 2\theta}{\sin \theta \cos \theta}$			

	Notes for Question 33 Continued
(b)	Way 1
M1:	Evidence of applying $\cot 2\theta = \frac{1}{\tan 2\theta}$
dM1:	dependent on the previous M mark Rearranges to give $\tan 2\theta = k, k \neq 0$, and applies $\arctan k$
A1:	Uses $90^{\circ} < \theta < 180^{\circ}$ to deduce the only solution $\theta = \text{awrt } 103.3^{\circ}$
Note:	Give M0M0A0 for writing, for example, $\tan 2\theta = 2$ with no evidence of applying $\cot 2\theta = \frac{1}{\tan 2\theta}$
Note:	1 st M1 can be implied by seeing $\tan 2\theta = \frac{1}{2}$
Note:	Condone 2 nd M1 for applying $\frac{1}{2} \arctan\left(\frac{1}{2}\right) \{=13.28\}$
(b)	Way 2
M1:	Evidence of applying $\cot 2\theta = \frac{1}{\tan 2\theta}$
dM1:	dependent on the previous M mark
	Applies $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$, forms and uses a correct method for solving a 3TQ to give
	$\tan \theta = k, k \neq 0$, and applies $\arctan k$
A1:	Uses $90^{\circ} < \theta < 180^{\circ}$ to deduce the only solution $\theta = awrt \ 103.3^{\circ}$
Note:	Give M1 dM1 A1 for no working leading to $\theta = a \text{wrt } 103.3^{\circ}$ and no other solutions
Note:	Give M1 dM1 A0 for no working leading to $\theta = a wrt 103.3^{\circ}$ and other solutions which can be
	either outside or inside the range $90^{\circ} < \theta < 180^{\circ}$

Question		Scheme	Marks	AOs
34	(i) $4\sin x = \sec x, \ 0 \le x < \frac{\pi}{2};$	(ii) $5\sin\theta - 5\cos\theta = 2, \ 0 \le \theta < 360^\circ$		
(i) Way 1	For	$\sec x = \frac{1}{\cos x}$	B1	1.2
	$\{4\sin x = \sec x \Longrightarrow\} 4\sin x = \sin x $	$\cos x = 1 \Rightarrow 2\sin 2x = 1 \Rightarrow \sin 2x = \frac{1}{2}$	M1	3.1a
	$x = \frac{1}{2} \arcsin\left(\frac{1}{2}\right)$ or $\frac{1}{2}$	$\frac{1}{2}\left(\pi - \arcsin\left(\frac{1}{2}\right)\right) \Rightarrow x = \frac{\pi}{12}, \frac{5\pi}{12}$	dM1 A1	1.1b 1.1b
			(4)	
(i) Way 2	For	$\sec x = \frac{1}{\cos x}$	B1	1.2
	$\{4\sin x = \sec x \Longrightarrow\} 4\sin x$	$nx\cos x = 1 \Longrightarrow 16\sin^2 x\cos^2 x = 1$		
	$16\sin^2 x(1-\sin^2 x) = 1$	$16(1-\cos^2 x)\cos^2 x = 1$		
	$16\sin^4 x - 16\sin^2 x + 1 = 0$	$16\cos^4 x - 16\cos^2 x + 1 = 0$	M1	3.1a
	$\sin^2 x$ or $\cos^2 x = \frac{16 \pm \sqrt{19}}{32}$			
	$\left(2\pm\sqrt{3} \right)$	$\left(\begin{array}{c} 2\pm\sqrt{3} \end{array}\right)$ π 5π	dM1	1.1b
	$x = \arcsin\left(\sqrt{-4}\right)$ or $\frac{1}{2}$	$x = \arccos\left(\sqrt{\frac{2\pm\sqrt{3}}{4}}\right) \Rightarrow x = \frac{\pi}{12}, \frac{5\pi}{12}$	A1	1.1b
			(4)	
(ii)	finds both <i>R</i> and α , and β • Applies $(5\sin\theta - 5\cos\theta)$	$\theta = 2$ in the form $R\sin(\theta - \alpha) = 2$, proceeds to $\sin(\theta - \alpha) = k$, $ k < 1$, $k \neq 0$ $e^{2} = 2^{2}$, followed by applying both $\ln 2\theta = 2\sin\theta\cos\theta$ to proceed to	M1	3.1a
	$R = \sqrt{50}$ $\tan \alpha = 1 \Longrightarrow \alpha = 45^{\circ}$	$(5\sin\theta - 5\cos\theta)^2 = 2^2 \Rightarrow$ $25\sin^2\theta + 25\cos^2\theta - 50\sin\theta\cos\theta = 4$ $\Rightarrow 25 - 25\sin 2\theta = 4$	M1	1.1b
	$\sin(\theta - 45^\circ) = \frac{2}{\sqrt{50}}$	$\sin 2\theta = \frac{21}{25}$	Al	1.1b
	dependent on the first M mark			
	e.g. $\theta = \arcsin\left(\frac{2}{\sqrt{50}}\right) + 45^{\circ}$	e.g. $\theta = \frac{1}{2} \left(\arcsin\left(\frac{21}{25}\right) \right)$	dM1	1.1b
	$\theta = $ awrt 61.4°, awrt 208.6°			
	Note: Working in radians does not affect any of the first 4 marks			
			(5)	montra
			(9	marks)

Questi	on	Scheme		Marks	AOs
34		(ii) $5\sin\theta - 5\cos\theta = 2, \ 0 \le \theta < 360^{\circ}$			
$(5\sin\theta - 2)^2 = (5\cos\theta)^2$ for and solving a quadratic equ		Complete strategy, i.e. • Attempts to apply $(5\sin\theta)^2 = (2+5\cos\theta)^2$ or $(5\sin\theta-2)^2 = (5\cos\theta)^2$ followed by applying and solving a quadratic equation in either $\sin\theta$ at least one of $\sin\theta = k$ or $\cos\theta = k$, $ k < 1$, $k = 1$	θ or $\cos\theta$ to give	M1	3.1a
		e.g. $25\sin^2\theta = 4 + 20\cos\theta + 25\cos^2\theta$ $\Rightarrow 25(1 - \cos^2\theta) = 4 + 20\cos\theta + 25\cos^2\theta$ or e.g. $25\sin^2\theta - 20\sin\theta + 4 = 25\cos^2\theta$ $\Rightarrow 25\sin^2\theta - 20\sin\theta + 4 = 25(1 - \sin^2\theta)$	$\frac{s^2\theta}{s^2\theta}$	M1	1.1b
		$50\cos^2\theta + 20\cos\theta - 21 = 0 \qquad \qquad 50\sin^2\theta - 2\theta$	$0\sin\theta - 21 = 0$		
		$\cos\theta = \frac{-20 \pm \sqrt{4600}}{100}$, o.e. $\sin\theta = \frac{20 \pm 100}{100}$	$\frac{\sqrt{4600}}{100}$, o.e.	A1	1.1b
		e.g. $\theta = \arccos\left(\frac{-2 + \sqrt{46}}{10}\right)$ e.g. $\theta = \arccos\left(\frac{-2 + \sqrt{46}}{10}\right)$	$\sin\left(\frac{2+\sqrt{46}}{10}\right)$	dM1	1.1b
		$\theta = $ awrt 61.4°, awrt 208.6°		A1	2.1
				(5)	
(i)		Notes for Question	34		
B1:	For	recalling that $\sec x = \frac{1}{\cos x}$			
M1:	 Correct strategy of Way 1: applying sin 2x = 2 sin x cos x and proceeding to sin 2x = k, k ≤ 1, k ≠ 0 Way 2: squaring both sides, applying cos² x + sin² x = 1 and solving a quadratic equation in either sin² x or cos² x to give sin² x = k or cos² x = k, k ≤ 1, k ≠ 0 				
dM1:	Use	s the correct order of operations to find at least one va	lue for x in either rac	dians or deg	rees
A1:	Cle	lear reasoning to achieve both $x = \frac{\pi}{12}, \frac{5\pi}{12}$ and no other values in the range $0 \le x < \frac{\pi}{2}$			
Note:	Giv	Clear reasoning to achieve both $x = \frac{\pi}{12}, \frac{5\pi}{12}$ and no other values in the range $0 \le x < \frac{\pi}{2}$ Give dM1 for $\sin 2x = \frac{1}{2} \Rightarrow$ any of $\frac{\pi}{12}, \frac{5\pi}{12}, 15^{\circ}, 75^{\circ}$, awrt 0.26 or awrt 1.3			
Note:	Giv	e special case, SC B1M0M0A0 for writing down any o	of $\frac{\pi}{12}, \frac{5\pi}{12}, 15^{\circ} \text{ or } 7$	5° with no	working

	Notes for Question 34 Continued
(ii)	
M1:	See scheme
Note:	Alternative strategy: Expresses $5\sin\theta - 5\cos\theta = 2$ in the form $R\cos(\theta + \alpha) = -2$,
	finds both <i>R</i> and α , and proceeds to $\cos(\theta + \alpha) = k$, $ k < 1$, $k \neq 0$
M1:	Either
	• uses $R\sin(\theta - \alpha)$ to find the values of both R and α
	• attempts to apply $(5\sin\theta - 5\cos\theta)^2 = 2^2$, uses $\cos^2\theta + \sin^2\theta = 1$ and proceeds to find an
	equation of the form $\pm \lambda \pm \mu \sin 2\theta = \pm \beta$ or $\pm \mu \sin 2\theta = \pm \beta$; $\mu \neq 0$
	• attempts to apply $(5\sin\theta)^2 = (2+5\cos\theta)^2$ or $(5\sin\theta-2)^2 = (5\cos\theta)^2$ and
	uses $\cos^2 \theta + \sin^2 \theta = 1$ to form an equation in $\cos \theta$ only or $\sin \theta$ only
A1:	For $\sin(\theta - 45^\circ) = \frac{2}{\sqrt{50}}$, o.e., $\cos(\theta + 45^\circ) = -\frac{2}{\sqrt{50}}$, o.e. or $\sin 2\theta = \frac{21}{25}$, o.e.
	or $\cos\theta = \frac{-20 \pm \sqrt{4600}}{100}$, o.e. or $\cos\theta = \text{awrt } 0.48$, $\text{awrt} - 0.88$
	or $\sin \theta = \frac{20 \pm \sqrt{4600}}{100}$, o.e., or $\sin \theta = \text{awrt } 0.88$, $\text{awrt} - 0.48$
Note:	$\sin(\theta - 45^\circ)$, $\cos(\theta + 45^\circ)$, $\sin 2\theta$ must be made the subject for A1
dM1:	dependent on the first M mark
	Uses the correct order of operations to find at least one value for <i>x</i> in either degrees or radians
Note:	dM1 can also be given for $\theta = 180^{\circ} - \arcsin\left(\frac{2}{\sqrt{50}}\right) + 45^{\circ}$ or $\theta = \frac{1}{2}\left(180^{\circ} - \arcsin\left(\frac{21}{25}\right)\right)$
A1:	Clear reasoning to achieve both θ = awrt 61.4°, awrt 208.6° and no other values in
	the range $0 \le \theta < 360^{\circ}$
Note:	Give M0M0A0M0A0 for writing down any of θ = awrt 61.4°, awrt 208.6° with no working
Note:	Alternative solutions: (to be marked in the same way as Alt 1):
	• $5\sin\theta - 5\cos\theta = 2 \implies 5\tan\theta - 5 = 2\sec\theta \implies (5\tan\theta - 5)^2 = (2\sec\theta)^2$
	$\Rightarrow 25\tan^2\theta - 50\tan\theta + 25 = 4\sec^2\theta \Rightarrow 25\tan^2\theta - 50\tan\theta + 25 = 4(1 + \tan^2\theta)$
	$\Rightarrow 21\tan^2\theta - 50\tan\theta + 21 = 0 \Rightarrow \tan\theta = \frac{50 \pm \sqrt{736}}{42} = \frac{25 \pm 2\sqrt{46}}{21} = 1.8364, 0.5445$
	$\Rightarrow \theta = \text{awrt } 61.4^\circ, \text{ awrt } 208.6^\circ \text{ only}$
	$\Rightarrow \theta = \text{awrt } 61.4^\circ, \text{ awrt } 208.6^\circ \text{ only}$ • $5\sin\theta - 5\cos\theta = 2 \Rightarrow 5 - 5\cot\theta = 2\csc\theta \Rightarrow (5 - 5\cot\theta)^2 = (2\csc\theta)^2$
	• $5\sin\theta - 5\cos\theta = 2 \implies 5 - 5\cot\theta = 2\csc\theta \implies (5 - 5\cot\theta)^2 = (2\csc\theta)^2$

Questi	on Scheme	Marks	AOs
35	$1 - \cos 2\theta \equiv \tan \theta \sin 2\theta, \ \theta \neq \frac{(2n+1)\pi}{2}, \ n \in \mathbb{Z}$		
(a) Way 1	$\tan\theta\sin 2\theta = \left(\frac{\sin\theta}{\cos\theta}\right)(2\sin\theta\cos\theta)$	M1	1.1b
	$= \left(\frac{\sin\theta}{\cos\theta}\right)(2\sin\theta\cos\theta) = 2\sin^2\theta = 1 - \cos2\theta *$	M1	1.1b
	$(\cos\theta)$	(3)	2.1
(a) Way 2	$1 - \cos 2\theta = 1 - (1 - 2\sin^2 \theta) = 2\sin^2 \theta$	M1	1.1b
v	$= \left(\frac{\sin\theta}{\cos\theta}\right)(2\sin\theta\cos\theta) = \tan\theta\sin2\theta \ *$	M1 A1*	1.1b 2.1
		(3)	
	$(\sec^2 x - 5)(1 - \cos 2x) = 3\tan^2 x \sin 2x, -\frac{\pi}{2} < x < \frac{\pi}{2}$		
(b)	$(\sec^2 x - 5)\tan x \sin 2x = 3\tan^2 x \sin 2x$		
Way 1	1 or $(\sec^2 x - 5)(1 - \cos 2x) = 3\tan x(1 - \cos 2x)$		
	Deduces $x = 0$	B1	2.2a
	Uses $\sec^2 x = 1 + \tan^2 x$ and cancels/factorises out $\tan x$ or $(1 - \cos 2x)$ e.g. $(1 + \tan^2 x - 3\tan x - 5)\tan x = 0$ or $(1 + \tan^2 x - 3\tan x - 5)(1 - \cos 2x) = 0$	M1	2.1
	or $1 + \tan^2 x - 5 = 3\tan x$		
	$\tan^2 x - 3\tan x - 4 = 0$	A1	1.1b
	$(\tan x - 4)(\tan x + 1) = 0 \Longrightarrow \tan x = \dots$	M1	1.1b
	$x = -\frac{\pi}{2}, 1.326$	A1	1.1b
	4	A1 (6)	1.1b
) marks)
	Notes for Question 35		
(a) M1:	Way 1 Applies $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sin 2\theta = 2\sin \theta \cos \theta$ to $\tan \theta \sin 2\theta$		
M1:	Cancels as scheme (may be implied) and attempts to use $\cos 2\theta = 1 - 2\sin^2 \theta$	<u></u>	
A1*:	For a correct proof showing all steps of the argument	<u>,</u>	
(a) Way 2			
M1:	For using $\cos 2\theta = 1 - 2\sin^2 \theta$		
Note:	If the form $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ or $\cos 2\theta = 2\cos^2 \theta - 1$ is used, the mark	cannot be aw	arded
	until $\cos^2 \theta$ has been replaced by $1 - \sin^2 \theta$		
M1:	Attempts to write their $2\sin^2\theta$ in terms of $\tan\theta$ and $\sin 2\theta$ using $\tan\theta = \frac{s}{c}$	$\frac{\sin\theta}{\cos\theta}$ and	
	$\sin 2\theta = 2\sin \theta \cos \theta$ within the given expression		
A1*:	For a correct proof showing all steps of the argument If a more function in the middle set of the argument $UIS = 2 \sin^2 \theta$ and $DUS = 2$	$ain^2 0$ 1	
Note:	If a proof meets in the middle; e.g. they show LHS = $2\sin^2\theta$ and RHS = 2 in direction must be given that the proof is complete. $\Gamma = 1 - \cos^2\theta = \tan\theta \sin^2\theta$		
	indication must be given that the proof is complete. E.g. $1 - \cos 2\theta \equiv \tan \theta \sin \theta$	$m \omega$, QED, t	DOX

	Notes for Ques	tion	35 Continued		
(b)					
B1:	Deduces that the given equation yields a solution $x = 0$				
M1:	For using the key step of $\sec^2 x = 1 + \tan^2 x$	<i>x</i> and	cancels/factorises out $\tan x$ or	$(1-\cos 2x)$	c)
	or $\sin 2x$ to produce a quadratic factor or			×	,
Note:	Allow the use of $\pm \sec^2 x = \pm 1 \pm \tan^2 x$ for M1				
A1:	Correct 3TQ in tan x. E.g. $\tan^2 x - 3\tan x - 4 = 0$				
Note:	E.g. $\tan^2 x - 4 = 3\tan x$ or $\tan^2 x - 3\tan x$				
M1:	For a correct method of solving their 3TQ		·		
A1:	Any one of $-\frac{\pi}{4}$, awrt -0.785 , awrt 1.326	ō, −4:	5°, awrt 75.964°		
A1:	Only $x = -\frac{\pi}{4}$, 1.326 cao stated in the range $-\frac{\pi}{2} < x < \frac{\pi}{2}$				
Note:	Alternative Method (Alt 1)				-
	$(\sec^2 x - 5)\tan x \sin 2x$	=3ta	$n^2 x \sin 2x$		
	or $(\sec^2 x - 5)(1 - \cos 2x) =$	= 3 tai	$n x(1 - \cos 2x)$		
	Deduces x	=0		B1	2.2a
	$\sec^2 x - 5 = 3\tan x \Rightarrow \frac{1}{\cos^2 x} - 5 = 3\left(\frac{\sin x}{\cos x}\right)$ $1 - 5\cos^2 x = 3\sin x \cos x$ $1 - 5\left(\frac{1 + \cos 2x}{2}\right) = \frac{3}{2}\sin 2x$	$\left(\frac{x}{x}\right)$	Complete process (as shown) of using the identities for $\sin 2x$ and $\cos 2x$ to proceed as far as $\pm A \pm B \cos 2x = \pm C \sin 2x$	M1	2.1
	$-\frac{3}{2} - \frac{5}{2}\cos 2x = \frac{3}{2}\sin 2x$ {3sin 2x + 5cos 2x = -3}		$-\frac{3}{2} - \frac{5}{2}\cos 2x = \frac{3}{2}\sin 2x$ o.e.	A1	1.1b
	$\sqrt{34}\sin(2x+1.03) = -3$		xpresses their answer in the rm $R\sin(2x+\alpha) = k; k \neq 0$ with values for <i>R</i> and α	M1	1.1b
	sin(2x+1.03) =	=	3 34		
	$x = -\frac{\pi}{4}, 1.$	326		A1	1.1b
	1 $x = 4$, 1.	520		A1	1.1b

on Scheme	Marks	AOs
$\frac{1}{2}r^2(4.8)$	M1	1.1a
$\frac{1}{2}r^2(4.8) = 135 \implies r^2 = \frac{225}{4} \implies r = 7.5$ o.e.	A1	1.1b
length of minor arc = $7.5(2\pi - 4.8)$	dM1	3.1a
$= 15\pi - 36 \{a = 15, b = -36\}$	A1	1.1b
	(4)	
$\frac{1}{2}r^2(4.8)$	M1	1.1a
$\frac{1}{2}r^2(4.8) = 135 \implies r^2 = \frac{225}{4} \implies r = 7.5$ o.e.	A1	1.1b
length of major arc = $7.5(4.8) \{= 36\}$		
length of minor arc = $2\pi(7.5) - 36$	dM1	3.1a
$= 15\pi - 36 \{a = 15, b = -36\}$	A1	1.1b
	(4)	
	(4 n	narks)
on 36 Notes:		
Applies formula for the area of a sector with $\theta = 4.8$; i.e. $\frac{1}{2}r^2\theta$ with $\theta = 4.8$		
Note: Allow M1 for considering ratios. E.g. $\frac{135}{\pi r^2} = \frac{4.8}{2\pi}$		
Uses a correct equation $\left(\text{e.g.} \frac{1}{2}r^2(4.8) = 135\right)$ to obtain a radius of 7.5		
Depends on the previous M mark. A complete process for finding the length of the minor arc <i>AB</i> , by either • (their r)×(2 π – 4.8) • 2 π (their r) – (their r)(4.8)		
	$\frac{\frac{1}{2}r^{2}(4.8)}{\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.}}{12r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.}}{\frac{1}{2}r^{2}(4.8)}$ $\frac{\frac{1}{2}r^{2}(4.8)}{\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.}}{12r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.}}{\frac{12}{4}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.}}{\frac{12}{4}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.}}{\frac{12}{4}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.}}{\frac{12}{4}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.}}{\frac{12}{4}r^{2}(4.8) = 15\pi - 36}{\frac{12}{4}r^{2}(4.8) = 15\pi - 36}}$	$\frac{\frac{1}{2}r^{2}(4.8)}{\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}(4.8) = 15\pi - 36 \{a = 15, b = -36\} $ A1 $\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{225}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}(4.8) = 135 \Rightarrow r^{2} = \frac{27}{4} \Rightarrow r = 7.5 \text{ o.e.} $ A1 $\frac{1}{2}r^{2}\theta \text{ with } \theta = 4.8 \text{ or } 100000000000000000000000000000000000$

Questi	on Scheme	Marks	AOs
37(a	Attempts to substitute $\cos\theta \approx 1 - \frac{1}{2}\theta^2$ into either $1 + 4\cos\theta$ or $3\cos^2\theta$	M1	1.1b
	$1 + 4\cos\theta + 3\cos^2\theta \approx 1 + 4\left(1 - \frac{1}{2}\theta^2\right) + 3\left(1 - \frac{1}{2}\theta^2\right)^2$		
	$= 1 + 4\left(1 - \frac{1}{2}\theta^{2}\right) + 3\left(1 - \theta^{2} + \frac{1}{4}\theta^{4}\right)$	M1	1.1b
	$= 1 + 4 - 2\theta^2 + 3 - 3\theta^2 + \frac{3}{4}\theta^4$		
	$= 8 - 5\theta^2 *$	A1*	2.1
		(3)	
(b)(i	 E.g. Adele is working in degrees and not radians Adele should substitute θ = 5π/180 and not θ = 5 into the approximation 	B1	2.3
(b)(ii	8 - 5 $\left(\frac{5\pi}{180}\right)^2$ = awrt 7.962, so θ = 5° gives a good approximation.	B1	2.4
		(2)	
		(5 n	narks)
Questi	on 37 Notes:		
(a)(i)			
M1:	See scheme		
M1:	Substitutes $\cos\theta \approx 1 - \frac{1}{2}\theta^2$ into $1 + 4\cos\theta + 3\cos^2\theta$ and attempts to apply $\left(1 - \frac{1}{2}\theta^2\right)$	$\left(\frac{1}{2}\theta^2\right)^2$	
	Note: It is not a requirement for this mark to write or refer to the term in θ^4		
A1*:	Correct proof with no errors seen in working.		
	Note: It is not a requirement for this mark to write or refer to the term in θ^4		
(a)(ii)			
B1:	See scheme		
(b)(i) P1.	See ashama		
B1: (b)(ii)	See scheme		
(b)(ll) B1:	Substitutes $\theta = \frac{5\pi}{180}$ or $\frac{\pi}{36}$ into $8 - 5\theta^2$ to give awrt 7.962 <i>and</i> an appropriate contrast of the second secon	nclusion.	

Question	Scheme	Marks	AOs
38 (a)	$\csc 2x + \cot 2x \equiv \cot x, \ x \neq 90n^{\circ}, \ n \in \Box$		
	$\csc 2x + \cot 2x = \frac{1}{\sin 2x} + \frac{\cos 2x}{\sin 2x}$	M1	1.2
	$=\frac{1+\cos 2x}{\sin 2x}$	M1	1.1b
	$= \frac{1 + 2\cos^2 x - 1}{2\sin x \cos x} = \frac{2\cos^2 x}{2\sin x \cos x}$	M1	2.1
	$= \frac{1}{2\sin x \cos x} = \frac{1}{2\sin x \cos x}$	A1	1.1b
	$=\frac{\cos x}{\sin x}=\cot x$ *	A1*	2.1
		(5)	
(b)	$\csc(4\theta + 10^\circ) + \cot(4\theta + 10^\circ) = \sqrt{3}; 0, \theta < 180^\circ,$		
	$\cot(2\theta \pm^{\circ}) = \sqrt{3}$	M1	2.2a
	$2\theta \pm = 30^\circ \Rightarrow \theta = 12.5^\circ$	M1	1.1b
	$20 \pm \dots \pm 50 \rightarrow 0 - 12.5$	A1	1.1b
	$2\theta + 5^\circ = 180^\circ + PV^\circ \implies \theta =^\circ$	M1	2.1
	$\theta = 102.5^{\circ}$	Al	1.1b
		(5)	
		(10 n	narks)

Quest	ion 38 Notes:
(a)	
M1:	Writes $\csc 2x = \frac{1}{\sin 2x}$ and $\cot 2x = \frac{\cos 2x}{\sin 2x}$
M1:	Combines into a single fraction with a common denominator
M1:	Applies $\sin 2x = 2\sin x \cos x$ to the denominator and applies either
	$\bullet \cos 2x = 2\cos^2 x - 1$
	• $\cos 2x = 1 - 2\sin^2 x$ and $\sin^2 x + \cos^2 x = 1$
	• $\cos 2x = \cos^2 x - \sin^2 x$ and $\sin^2 x + \cos^2 x = 1$
	to the numerator and manipulates to give a one term numerator expression
A1:	Correct algebra leading to $\frac{2\cos^2 x}{2\sin x \cos x}$ or equivalent.
A1*:	Correct proof with correct notation and no errors seen in working
(b)	
M1:	Uses the result in part (a) in an attempt to deduce either $2x = 4\theta + 10$ or $x = 2\theta +$ and uses
	$x = 2\theta +$ to write down or imply $\cot(2q \pm^{\circ}) = \sqrt{3}$
M1:	Applies $\operatorname{arccot}(\sqrt{3}) = 30^{\circ} \text{ or } \operatorname{arctan}\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$
	and attempts to solve $2\theta \pm = 30^{\circ}$ to give $\theta =$
A1:	Uses a correct method to obtain $\theta = 12.5^{\circ}$
M1:	Uses $2\theta + 5 = 180 + \text{their } PV^{\circ}$ in a complete method to find the second solution, $\theta = \dots$
A1:	Uses a correct method to obtain $\theta = 102.5^{\circ}$, with no extra solutions given either inside or outside the required range 0, $\theta < 180^{\circ}$

Ques	stion	Scheme	Marks	AOs
39	P(a)	Identifies an error for student A: They use $\frac{\cos\theta}{\sin\theta} = \tan\theta$ It should be $\frac{\sin\theta}{\cos\theta} = \tan\theta$	B1	2.3
			(1)	
(b)		(i) Shows $\cos(-26.6^\circ) \neq 2\sin(-26.6^\circ)$, so cannot be a solution	B1	2.4
		(ii) Explains that the incorrect answer was introduced by squaring	B1	2.4
			(2)	
			(3 n	narks)
Notes	s:			
(a) B1:	Acce	ept a response of the type 'They use $\frac{\cos\theta}{\sin\theta} = \tan\theta$. This is incorrect as	$\frac{\sin\theta}{\cos\theta} = \tan\theta$	θ'
	It ca	n be implied by a response such as 'They should get $\tan \theta = \frac{1}{2}$ not tar	$\theta = 2'$	
	Acce	ept also statements such as 'it should be $\cot \theta = 2$ '		
(b) B1:		ept a response where the candidate shows that -26.6° is not a solution $\theta = 2\sin\theta$. This can be shown by, for example, finding both $\cos(-2\theta)$		
	2sir	$n(-26.6^{\circ})$ and stating that they are not equal. An acceptable alternative	e is to state	that
		$(-26.6^\circ) = +ve$ and $2\sin(-26.6^\circ) = -ve$ and stating that they therefore		
B1:	Expl	ains that the incorrect answer was introduced by squaring Accept an ex For example $x = 5$ squared gives $x^2 = 25$ which has answers ± 5	cample sho	owing

Questi	on Scheme	Marks	AOs
40(a)	Uses $\cos^2 x = 1 - \sin^2 x \implies 3\sin^2 x + \sin x + 8 = 9(1 - \sin^2 x)$	M1	3.1a
	$\Rightarrow 12\sin^2 x + \sin x - 1 = 0$	A1	1.1b
	$\Rightarrow (4\sin x - 1)(3\sin x + 1) = 0$	M1	1.1b
	$\Rightarrow \sin x = \frac{1}{4}, -\frac{1}{3}$	A1	1.1b
	Uses arcsin to obtain two correct values	M1	1.1b
	All four of $x = 14.48^{\circ}, 165.52^{\circ}, -19.47^{\circ}, -160.53^{\circ}$	A1	1.1b
		(6)	
(b)	Attempts $2\theta - 30^\circ = -19.47^\circ$	M1	3.1a
	$\Rightarrow \theta = 5.26^{\circ}$	A1ft	1.1b
		(2)	
	· ·	(8 n	narks)
Notes:			
	Substitutes $\cos^2 x = 1 - \sin^2 x$ into $3\sin^2 x + \sin x + 8 = 9\cos^2 x$ to create a cequation in just $\sin x$	luadratic	
A1:	$12\sin^2 x + \sin x - 1 = 0$ or exact equivalent		
	Attempts to solve their quadratic equation in $\sin x$ by a suitable method. The network factorisation, formula or completing the square.	hese could	
A1:	$\sin x = \frac{1}{4}, -\frac{1}{3}$		
M1:	Obtains two correct values for their $\sin x = k$		

A1: All four of $x = 14.48^{\circ}, 165.52^{\circ}, -19.47^{\circ}, -160.53^{\circ}$

(b)

- M1: For setting $2\theta 30^\circ = \text{their'} 19.47^\circ$ '
- A1ft: $\theta = 5.26^{\circ}$ but allow a follow through on their '-19.47°'

Questio	n Scheme	Marks	AOs
41(a)	$R = \sqrt{109}$	B1	1.1b
	$\tan \alpha = \frac{3}{10}$	M1	1.1b
	$\alpha = 16.70^{\circ}$ so $\sqrt{109}\cos(\theta + 16.70^{\circ})$	A1	1.1b
		(3)	
(b)	(i) e.g $H = 11 - 10\cos(80t)^\circ + 3\sin(80t)^\circ$ or $H = 11 - \sqrt{109}\cos(80t + 16.70)^\circ$	B1	3.3
	(ii) $11 + \sqrt{109}$ or 21.44 m	B1ft	3.4
		(2)	
(c)	Sets $80t + "16.70" = 540$	M1	3.4
	$t = \frac{540 - "16.70"}{80} = (6.54)$	M1	1.1b
	t = 6 mins 32 seconds	A1	1.1b
		(3)	
(d)	Increase the '80' in the formula For example use $H = 11 - 10\cos(90t)^\circ + 3\sin(90t)^\circ$		3.3
		(1)	
Notes:		(9 n	narks)
(a)			
	$R = \sqrt{109}$ Do not allow decimal equivalents		
M1: A	allow for $\tan \alpha = \pm \frac{3}{10}$		
	$x = 16.70^{\circ}$		
(b)(i)			
B1: s	ee scheme		
(b)(ii) B1ft: t	heir 11+ their $\sqrt{109}$ Allow decimals here.		
(c) M1.	eta 904 - 116 701 540 Fellow throws have the in 16 70		
	ets $80t + "16.70" = 540$. Follow through on their 16.70 olves their $80t + "16.70" = 540$ correctly to find <i>t</i>		
	= 6 mins 32 seconds		
	tates that to increase the speed of the wheel the 80's in the equation woul acreased.	d need to b	e

Question Number	Scheme	Marks
42. (a)	Usually answered in radians: Uses Area $ZYW = \frac{1}{2} \times 5^2 \times (angle), =12.5 \times 0.7 = 8.75 \text{ o.e.}(\text{cm}^2)$	M1 A1 (2)
(b)	Area of triangle $XYZ = \frac{1}{2} \times 7 \times 5 \times \sin Y = (11.273)$ (cm ²)	M1
	Area of whole flag = " 8.75 " + " 11.273 ", = 20.02 (cm ²)	M1, A1
(c)	$(XZ^{2}) = 7^{2} + 5^{2} - 2 \times 7 \times 5\cos(\pi - 0.7), \qquad \text{Or} (XZ^{2}) = (7 + 5\cos 0.7)^{2} + (5\sin 0.7)^{2}$ Use of arc length formula $s = 5\theta$ (= 3.5) Total perimeter = 12 + "3.5"+ "11.293" = 26.79 cm	(3) M1, M1 ddM1 A1 (4)
	Notes	(9 marks)
(If the ang A1: 8.75 (b) M1 for us need to se This may method se This may rounds to M1 for ad A1 for 20 (c) M1: Uses (do not ne M1: Uses ddM1: (N This mark	$A = 12.5 \times \theta \text{ with } \theta \text{ in radians or completely correct work in degrees.}$ gle is given as 0.7π and the formula has not been quoted correctly do not give this mark or $\frac{35}{4}$ or equivalent (do not need to see units) e of $A = \frac{1}{2} \times 7 \times 5 \times \sin Y$ (where $Y = 0.7$ or attempt at $(\pi - 0.7)$ they give the same answer the 11.273 (Do not allow use of 0.7 or $\pi - 0.7$ instead of their respective sines) arise from use of $A = \frac{1}{2} \times a \times b \times \sin C$ formula or from $A = \frac{1}{2} \times b \times h$ with h found by a cor- to either $A = \frac{1}{2} \times 7 \times (5 \sin Y)$ or $A = \frac{1}{2} \times 5 \times (7 \sin Y)$ follow a long method finding all the angles and side lengths of triangle <i>XYZ</i> . If their an 11.3 credit should be given. E.g. $A = \frac{1}{2} \times 11.293 \times 1.996$ bling two numerical areas – triangle and sector (not dependent on previous M marks) 0.02 (do not need to see units) (Allow answers which round to 20.02 e.g. do not allow 2 cosine rule with correct angle (allow 2.4) or uses right angle triangle with correct sides we to see $XZ = 11.293$) This may be calculated in part (b) are length with correct radius (may use wrong angle) eeds to have earned both previous M marks) Adds $7 + 5 +$ their arc length + their XZ is should not be awarded if they use their answer for XZ^2 instead of XZ .) Do not rrect swer 0.05)

Question Number	Scheme	Marks
43. (i)	$4\cos(x+70^{\circ})=3$	
	$\cos(x+70^\circ)=0.75$, so $x+70^\circ=41.4(1)^\circ$	M1A1
	$x = 248.6^{\circ}$ or 331.4°	M1 A1
		(4
(ii)	$6\cos^2\theta - 5 = 6\sin^2\theta + \sin\theta$ so $6(1 - \sin^2\theta) - 5 = 6\sin^2\theta + \sin\theta$	M1
	$12\sin^2\theta + \sin\theta - 1 = 0$	A1
	$(4\sin\theta - 1)(3\sin\theta + 1) = 0 \ so \ \sin\theta =$	M1
	0 = 0.252 , 2.80 , 2.48 , 5.04	A1 A1
	$\theta = 0.253, \ 2.89, \ 3.48, \ 5.94$	(5)
		[9
	Notes	
Or $(x =)$ M1: One A1: Both outside th	Correct answer for $x + 70^{\circ}$ or for x (not necessarily in the range) Accept awrt 41.4 -28.6. If an intermediate answer here is not seen the final correct answers imply the correct answer (awrt) so awrt 331.4 or 248.6 answers – accept awrt (Lose this mark for extra answers in the range) Ignore extra a ne range. Is and 5.8 radians is special case: M1A0M1A0	
(ii)		
· · ·	$\cos^2 \theta = 1 - \sin^2 \theta$	
A1: corre	ct three term quadratic – any equivalent - so $12\sin^2\theta + \sin\theta = 1$ is acceptable es their quadratic to give values for $\sin\theta$ (implied if arcsin is used on their answer(s	\\

Question Number	Scheme	Marks	
44.	$\frac{\sin x}{16} = \frac{\sin 50^\circ}{13}$	M1	
	$(\sin x) = \frac{16 \times \sin 50}{13} (= 0.943 \text{ but accept } 0.94)$	A1	
	<i>x</i> = awrt 70.5(3) and 109.5 or 70.6 and 109.4	dM1 A1 (4) [4]	
	Notes	[4]	
	M1: use sine formula correctly in any form. Allow awrt 0.77 for $\sin 50^{\circ}$ A1: give the correct value or correct expression for $\sin x$ (this implies the M1 mark). $\sin 50 \times 16$		
	If it is given as expression they do not need degrees symbol. $\frac{\sin 30\times10}{13}$ is fine, If this is given as a decimal allow answers which round to 0.94. Allow awrt -0.323 (radians) here but no further marks are available. If they give this as x (not sinx) and do not recover this is A0		
	 dM1: Correct work leading to x= (via inverse sin) expression or value for sinx If the previous A mark has been awarded for a correct expression then this is for getting to awrt 70.5 or 109.5 (allow for 70.6 or 109.4). If the previous A mark was not gained, e.g. rounding errors were made in rearranging the correct 		
	sine formula then award dM1 for evidence of use of inverse sin in degrees on their value for sinx (may need to check on calculator). NB 70.5 following a correct sine formula will gain M1A1M1.		
	A1: deduce and state both of the answers $x = 70.5$ and 109.5 (do not need degrees) Accept awrt these. Also accept 70.6 and 109.4. (Second answer is sometimes obtained by a long indirect route but still scores A1)		
	If working in radians throughout, answers are 1.23 and 1.91 and this can be awarded M1 A1 M1 A0 (Working with 50 radians gives probable answers of -0.3288 and 3.47 giving M1A1M0A0)		
	Special case: Wrong labelling of triangle. This simplifies the problem as there is only one solution for angle <i>x</i> . So it is not treated as a misread. If they find the missing side as awrt 12.6 then proceed to find an angle or its sine or cosine then give M1A0M0A0		
	Alternative Method using cosine rule Let $BC = a$.		
	Let $BC = a$. M1: uses the cosine rule to form to form a three term quadratic equation in a (e.g.		
	$a^2 - 32a\cos 50^\circ + 87 = 0$ or $a^2 - a \operatorname{wrt} 20.6a + 87 = 0$ though allow slips in signs rearranging)		
	A1: Solves and obtains a correct value for <i>a</i> of awrt 14.6 or awrt 5.95. dM1: A correct full method to find (at least) one of the two angles. May use cosine rule again, or find angle <i>BAC</i> and then use sine rule. As in the main scheme, if the previous A mark has been		
	awarded then they should obtain one of the correct angles for this mark. A1: deduces both correct answer as in main scheme.		
	NB obtaining only one correct angle will usually score M1A1M1A0 in any method.		

Question Number	Scheme	Marks	
45. (a)	Usually answered in radians: Uses $BCD = 3.5 \times (angle)$, $= 3.5 \times 1.77 = 6.195$ (m) (accept awrt 6.20)	M1 A1 (2)	
(b)	Area = $\frac{1}{2}(3.5)^2 \times 1.77 = 10.84$ (m ²)	M1 A1	
		(2)	
(c)	Area of triangle = $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\text{angle})$, = $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\frac{\pi}{2} - \frac{1.77}{2})$ (=awrt 4.1)	M1, A1	
	Total area = $"10.84"+2\times"4.101"$ = 19.04	M1 A1cao	
		(4) [8]	
	Notes		
(a)	M1: uses $s = 3.5 \times \theta$ with θ in radians or completely correct work in degrees		
(b)	A1: awrt 6.20 or just 6.2 (do not need to see units) Correct answer can imply the method.		
(b)	M1 for attempt to use $A = \frac{1}{2} \times 3.5^2 \times \theta$ (Accept θ in degrees.)		
	A1 for awrt 10.84 (do not need to see units) isw if correct answer is followed by 10.8. Correct can imply the method.	ct answer	
(c)	M1: Uses area of triangle $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\text{angle})$ Must be correct method for area of triangle but may		
	be less direct.		
	A1: Correct expression using correct angle i.e. $\frac{\pi}{2} - \frac{1.77}{2}$ or awrt 0.69 or awrt 39 degrees (need at least 2		
	sf if no other work seen, but may be implied by correct final answer) If correct expression is given then isw (so e.g. isw an answer of 0.0775 implying angle set to degrees on calculator) M1: Adds twice their second calculated area (even if rectangle or segment) to their sector area (may have been slips or errors in one or both formulae – such as missing ½ or mixture of degrees and radians or weak attempt at triangle area) so M0A0M1A0 is a possible mark distribution		
	A1: 19.04 cao (common answer through insufficient accuracy is 19.08 which loses final mar Special Case . The mark profile M1A0M1A0M1A0M1A0 can be given if the angle is misune as 1.77π or as <i>AFB</i> for example		
	If " 10.84 "+ 3.5×3.7 sin(angle) is used then this can gain both M marks and the A marks if correct.		
	But use of $3.5 \times 3.7 \sin(\text{angle})$ and later doubled and added to "10.84" is 1 st M0, 2 nd M1.		

Question Number		Scheme	Marks
46. (a)	Way 1	Way 2	
	$1 - \sin^2 x = 8\sin^2 x - 6\sin x$	2 = $(3\sin x - 1)^2$ gives $9\sin^2 x - 6\sin x + 1 = 2$ so $\sin^2 x + 8\sin^2 x - 6\sin x + 1 = 2$	B1
	E.g. $9\sin^2 x - 6\sin x = 1$ or $9\sin^2 x - 6\sin x - 1 = 0$ or $9\sin^2 x - 6\sin x + 1 = 2$	so $8\sin^2 x - 6\sin x = 1 - \sin^2 x$	M1
	So $9\sin^2 x - 6\sin x + 1 = 2$ So $9\sin^2 x - 6\sin x + 1 = 2$ or $(3\sin x - 1)^2 - 2 = 0$ so $(3\sin x - 1)^2 = 2$ or $2 = (3\sin x - 1)^2 *$	$8\sin^2 x - 6\sin x = \cos^2 x *$	A1cso*
(b)	Way 1: $(3\sin x - 1) = (\pm)\sqrt{2}$	Way 2: Expands $(3\sin x - 1)^2 = 2$ and uses quadratic formula on 3TQ	(3) M1
	$\sin x = \frac{1 \pm \sqrt{2}}{2} \text{or} \text{awrt } 0.8047 \text{ an}$	d awrt – 0.1381	A1
	x = 53.58, 126.42 (or 126.41), 352.06, 187.94		dM1A1 A1
			(5) [8]
		Notes	
(a)	Way 1 B1: Uses $\cos^2 x = 1 - \sin^2 x$		
	M1: Collects $\sin^2 x$ terms to form a three term quadratic or into a suitable completed square format. May be sign slips in the collection of terms. A1*: cso This needs an intermediate step from 3 term quadratic and no errors in answer and printed		
	answer stated but allow $2 = (3\sin x - 1)^2$. If sin is used throughout instead of sinx it is A0. Way 2 B1: Needs correct expansion and split		
	M1: Collects $1 - \sin^2 x$ together		
	A1*: Conclusion and no errors seen		
(b)	 M1: Square roots both sides(Way 1), or expands and uses quadratic formula (Way 2) Attempts at factorization after expanding are M0. A1: Both correct answers for sin<i>x</i> (need plus and minus). Need not be simplified. dM1: Uses inverse sin to give one of the given correct answers 1st A1: Need two correct angles (allow awrt) Note that the scheme allows 126.41 in place of 126.42 		
	though 126.42 is preferred A1: All four solutions correct (Extra solutions in range lose this A mark, but outside range - ignore) (Premature approximation :- in the final three marks lose first A1 then ft other angles for second A mark)		
	Do not require degrees symbol for the s Special case: Working in radians M1A1A0 for the <i>correct</i> 0.94, 2.21, 6.1		

Question Number	Scheme	Marks
47.	$1 - 2\cos\left(\theta - \frac{\pi}{5}\right) = 0; -\pi < \theta,, \pi$	
(i)	$\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$ Rearranges to give $\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$ or $-\frac{1}{2}$	M1
	$\theta = \left\{ -\frac{2\pi}{15}, \frac{8\pi}{15} \right\}$ At least one of $-\frac{2\pi}{15}$ or $\frac{8\pi}{15}$ or -24° or 96° or awrt 1.68 or awrt -0.419	A1
	Both $-\frac{2\pi}{15}$ and $\frac{8\pi}{15}$	A1
NB Misread	Misreading $\frac{\pi}{5}$ as $\frac{\pi}{6}$ or $\frac{\pi}{3}$ (or anything else)– treat as misread so M1 A0 A0 is maximum mark	[3]
	$4\cos^2 x + 7\sin x - 2 = 0, 0, x < 360^\circ$	
(ii)	$4(1 - \sin^2 x) + 7\sin x - 2 = 0$ Applies $\cos^2 x = 1 - \sin^2 x$	M1
	$4 - 4\sin^2 x + 7\sin x - 2 = 0$	
	$4\sin^2 x - 7\sin x - 2 = 0$ Correct 3 term, $4\sin^2 x - 7\sin x - 2 \{= 0\}$	A1 oe
	$(4\sin x + 1)(\sin x - 2) \{= 0\}$, $\sin x =$ Valid attempt at solving and $\sin x =$	M1
	$\sin x = -\frac{1}{4}$, $\{\sin x = 2\}$ $\sin x = -\frac{1}{4}$ (See notes.)	A1 cso
	$x = awrt \{194.5, 345.5\}$ At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or awrt 6.0	A1ft
	awrt 194.5 and awrt 345.5	A1 [6] 9
NB Misread	Writing equation as $4\cos^2 x - 7\sin x - 2 = 0$ with a sign error should be marked by applying the scheme as it simplifies the solution (do not treat as misread) Max mark is 3/6	
	$4(1 - \sin^2 x) - 7\sin x - 2 = 0$	M1
	$4\sin^2 x + 7\sin x - 2 = 0$	A0
	$(4\sin x - 1)(\sin x + 2) \{= 0\}$, $\sin x = \dots$ Valid attempt at solving and $\sin x = \dots$	M1
	$\sin x = +\frac{1}{4}$, $\{\sin x = -2\}$ $\sin x = \frac{1}{4}$ (See notes.)	A0
	x = awrt165.5	A1ft
	Incorrect answers	A0

	Question 47 Notes		
(i)	M1	Rearranges to give $\cos\left(\theta - \frac{\pi}{5}\right) = \pm \frac{1}{2}$	
	Note	M1 can be implied by seeing either $\frac{\pi}{3}$ or 60° as a result of taking cos ⁻¹ ().	
	A1	Answers may be in degrees or radians for this mark and may have just one correct answer Ignore mixed units in working if correct answers follow (recovery)	
	A1	Both answers correct and in radians as multiples of $\pi = -\frac{2\pi}{15}$ and $\frac{8\pi}{15}$	
		Ignore EXTRA solutions outside the range $-\pi < \theta \le \pi$ but lose this mark for extra solutions in this range.	
(ii)	1 st M1	Using $\cos^2 x = 1 - \sin^2 x$ on the given equation. [Applying $\cos^2 x = \sin^2 x - 1$, scores M0.]	
	1 st A1	Obtaining a correct three term equation eg. either $4\sin^2 x - 7\sin x - 2 \{=0\}$	
		or $-4\sin^2 x + 7\sin x + 2 = 0$ or $4\sin^2 x - 7\sin x = 2$ or $4\sin^2 x = 7\sin x + 2$, etc.	
	2 nd M1	For a valid attempt at solving a 3TQ quadratic in sine. Methods include factorization, quadratic formula, completion of the square (unlikely here) and calculator. (See notes on page 6 for general principles on awarding this mark) Can use any variable here, s , y , x or $sin x$, and an attempt to find at least one of the solutions for $sinx$. This solution may be outside the range for $sinx$	
	2 nd A1	$\sin x = -\frac{1}{4}$ BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore extra answer	
		of $\sin x = 2$, but penalise if candidate states an incorrect result. e.g. $\sin x = -2$.	
	Note	$\sin x = -\frac{1}{4}$ can be implied by later correct working if no errors are seen.	
	3 rd A1ft	At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or awrt 6.0. This is a limited follow through.	
		Only follow through on the error sin $x = \frac{1}{4}$ and allow for 165.5 special case (as this is equivalent	
		work) This error is likely to earn M1A1M1A0A1A0 so 4/6 or M1A0M1A0A1A0 if the quadratic had a sign slip.	
	4 th A1	awrt 194.5 and awrt 345.5	
	Note	If there are any EXTRA solutions inside the range 0, $x < 360^{\circ}$ and the candidate would	
		otherwise score FULL MARKS then withhold the final A1 mark. Ignore EXTRA solutions outside the range 0 ,, $x < 360^{\circ}$.	
	Special Cases	Rounding error Allow M1A1M1A1A1A0 for those who give two correct answers but wrong accuracy e.g. awrt 194, 346 (Remove final A1 for this error) Answers in radians:– lose final mark so either or both of 3.4, 6.0 gets A1ftA0	
		It is possible to earn M1A0A1A1 on the final 4 marks if an error results fortuitously in $\sin x = -1/4$ then correct work follows.	

Question Number	Scheme	Marks
48.(a)	In triangle OCD complete method used to find angle COD so:	
	Either $\cos C \Theta D = \frac{8^2 + 8^2 - 7^2}{2 \times 8 \times 8}$ or uses $\angle COD = 2 \times \arcsin \frac{3.5}{8}$ oe so $\angle COD =$	M1
	$(\angle COD = 0.9056(331894)) = 0.906(3sf) *$ accept awrt 0.906	A1 * (2)
(b)	Uses $s = 8\theta$ for any θ in radians or $\frac{\theta}{360} \times 2\pi \times 8$ for any θ in degrees	M1
	$\theta = \frac{\pi - "COD"}{2} (= awrt \ 1.12) \text{ or } 2\theta (= awrt \ 2.24) \text{ and Perimeter} = 23 + (16 \times \theta)$	M1
(c)	accept awrt 40.9 (cm) Either Way 1: (Use of Area of two sectors + area of triangle)	A1 (3)
	Area of triangle = $\frac{1}{2} \times 8 \times 8 \times \sin 0.906$ (or 25.1781155 accept awrt 25.2)or	M1
	$\frac{1}{2} \times 8 \times 7 \times \sin 1.118$ or $\frac{1}{2} \times 7 \times h$ after <i>h</i> calculated from correct Pythagoras or trig.	
	Area of sector = $\frac{1}{2}8^2 \times 1.117979732$ (or 35.77535142 accept awrt 35.8)	M1
	Total Area = Area of two sectors + area of triangle = awrt 96.7 or 96.8 or 96.9 (cm^2)	A1 (3)
	Or Way 2: (Use of area of semicircle – area of segment)	
	Area of semi-circle = $\frac{1}{2} \times \pi \times 8 \times 8$ (or 100.5)	M1
	Area of segment = $\frac{1}{2}8^2 \times ("0.906" - \sin"0.906")$ (or 3.807)	M1
	So area required = awrt 96.7 or 96.8 or 96.9 (cm^2)	A1 (3) [8]
	Notes	
Ors	her use correctly quoted cosine rule – may quote as $7^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \cos \alpha \Rightarrow \alpha =$ split isosceles triangle into two right angled triangles and use arcsin or longer methods using Pythagoras	5
	arcos (i.e. $\pi - 2 \times \arccos \frac{3.5}{8}$). There are many ways of showing this result.	
A1*: (N state does	at conclude that $\angle COD =$ B this is a given answer) If any errors or over-approximation is seen this is A0. It needs correct work less ed answer of 0.906 or awrt 0.906 for A1. The cosine of <i>COD</i> is equal to 79/128 or awrt 0.617. Use of a not lead to printed answer. They may give 51.9 in degrees then convert to radians. This is fine.	0.62 (2sf)
	minimal solution $7^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \cos \alpha \Rightarrow \alpha = \dots 0.906$ (with no errors seen) can have M1A1 be ranging result in M1A0	ut errors
(b) M1 : Us	es formula for arc length with $r = 8$ and any angle i.e. $s = 8\theta$ if working in rads or $s = \frac{\theta}{360} \times 2\pi \times 8$ in	degrees
M1: Use Per	he formula is quoted with r the 8 may be implied by the value of their $r\theta$) es angles on straight line (or other geometry) to find angle <i>BOC</i> or <i>AOD</i> and uses imeter = 23 + arc lengths <i>BC</i> and <i>AD</i> (may make a slip – in calculation or miscopying) rect work leading to awrt 40.9 not 40.8 (do not need to see cm) This answer implies M1M1A1	
	M1 : Mark is given for correct statement of area of triangle $\frac{1}{2} \times 8 \times 8 \times \sin 0.906$ (must use correct	
	or for correct answer (awrt 25.2) Accept alternative correct methods using Pythagoras and ¹ / ₂ base×height	
	irk is given for formula for area of sector $\frac{1}{2}8^2 \times 1.117979732$ with $r = 8$ and their angle BOC or AOD θ	or
(BOC +	AOD) not COD. May use $A = \frac{\theta}{360} \times \pi \times 8^2$ if working in degrees	
	rect work leading to awrt 96.7, 96.8 or 96.9 (This answer implies M1M1A1) ion may combine the two sectors for part (b) and (c) and so might use $2 \times \angle BOC$ rather than $\angle BOC$	
	M1: Mark is given for correct statement of area of semicircle $\frac{1}{2} \times \pi \times 8 \times 8$ or for correct answer 100	.5

Question	Scheme	Marks	
Number		IVIGINS	
49. (i)	Way 1: Divides by $\cos 3\theta$ to give Or Way 2: Squares both sides, uses		
	$\tan 3\theta = \sqrt{3}$ so $\cos^2 3\theta + \sin^2 3\theta = 1$, obtains	M1	
	$(3\theta) = \frac{\pi}{3} \qquad \qquad \cos 3\theta = \pm \frac{1}{2} \text{ or } \sin 3\theta = \pm \frac{\sqrt{3}}{2} \text{ so } (3\theta) = \frac{\pi}{3}$		
	Adds π or 2π to previous value of angle (to give $\frac{4\pi}{3}$ or $\frac{7\pi}{3}$)	M1	
	So $\theta = \frac{\pi}{9}, \frac{4\pi}{9}, \frac{7\pi}{9}$ (all three, no extra in range)	A1 (3)	
(ii)(a)(1-	$\cos^2 x) + \cos x = 4 - k$ Applies $\sin^2 x = 1 - \cos^2 x$	M1	
	Attempts to solve $4\cos^2 x - \cos x - k = 0$, to give $\cos x =$	dM1	
	$\cos x = \frac{1 \pm \sqrt{1 + 16k}}{8} \text{ or } \cos x = \frac{1}{8} \pm \sqrt{\frac{1}{64} + \frac{k}{4}} \text{ or other correct equivalent}$	A1 (3)	
(b)	$\cos x = \frac{1 \pm \sqrt{49}}{8} = 1$ and $-\frac{3}{4}$ (see the note below if errors are made)	M1	
	Obtains two solutions from 0, 139, 221 (0 or 2.42 or 3.86 in radians)	dM1	
	x = 0 and 139 and 221 (allow awrt 139 and 221) must be in degrees	A1	
		(3) [9]	
	Notes		
	btains $\frac{\pi}{3}$. Allow $x = \frac{\pi}{3}$ or even $\theta = \frac{\pi}{3}$. Need not see working here. May be implied by 1 answer (allow $(3\theta) = 1.05$ or $\theta = 0.349$ as decimals or $(3\theta) = 60$ or $\theta = 20$ as degree k)	9	
Do not allow $\tan 3\theta = -\sqrt{3}$ nor $\tan 3\theta = \pm \frac{1}{\sqrt{3}}$			
$\sqrt{3}$ M1: Adding π or 2π to a previous value however obtained. It is not dependent on the previous mark.			
	by be implied by final answer of $\theta = \frac{4\pi}{9}$ or $\frac{7\pi}{9}$). This mark may also be given for an		
dec: A1: Ne Th	imals [4.19 or 7.33], or degrees (240 or 420). eed all three correct answers in terms of π and no extras in range . ree correct answers implies M1M1A1 = 20°, 80°, 140° earns M1M1A0 and 0.349, 1.40 and 2.44 earns M1M1A0		
 (ii) (a) M1: Applies sin² x = 1-cos² x (allow even if brackets are missing e.g. 4×1-cos² x). This must be awarded in (ii) (a) for an expression with k not after k = 3 is substituted. dM1: Uses formula or completion of square to obtain cosx = expression in k (Factorisation attempt is M0) A1: cao - award for their final simplified expression (b) M1: Either attempts to substitute k = 3 into their answer to obtain two values for cosx Or restarts with k = 3 to find two values for cosx (They cannot earn marks in ii(a) for this) In both cases they need to have applied sin² x = 1-cos² x (brackets may be missing) and correct method for solving their quadratic (usual rules – see notes) The values for cosx may be >1 or < -1 dM1: Obtains two correct values for x A1: Obtains all three correct values in degrees (allow awrt 139 and 221) including 0. Ignore excess answers outside range (including 360 degrees) Lose this mark for excess answers in the range or radian answers. 			

Question Number	Scheme		Mark
50. (a)	Area <i>BDE</i> = $\frac{1}{2}(5)^2(1.4)$	M1: Use of the correct formula or method for the area of the sector	M1A
	$= 17.5 (cm^2)$	A1: 17.5 oe	
			[2
(b)		$\frac{5}{2} + 7.5^2 - 6.1^2$	
		or $\cos DBC = \frac{5^2 + 7.5^2 - 6.1^2}{2 \times 5 \times 7.5}$ (or equivalent)	M1
		nent involving the angle <i>DBC</i>	
	Angle $DBC = 0.943201$	awrt 0.943	A1
	Note that work for (b) may	be seen on the diagram or in part (c)	Г^
(c)	Note that candidates may work in d	egrees in (c) (Angle $DBC = 54.04deg rees$)	[2
	Area <i>CBD</i> :	$=\frac{1}{2}5(7.5)\sin(0.943)$	
		Area $CBD = \frac{1}{2}5(7.5)\sin(\text{their } 0.943)$ or awrt	
	Angle $EBA = \pi - 1.4 - "0.943"$	15.2. (Note area of $CBD = 15.177$)	M1
	(Maybe seen on the diagram)	A correct method for the area of triangle <i>CBD</i> which can be implied by awrt 15.2	
	π – 1.4	- "their 0.943"	
	A value for angle <i>EBA</i> of awrt 0.8 (from 0.7985926536 or 0.7983916536) or value for angle		M1
	<i>EBA</i> of (1.74159their)	angle DBC would imply this mark.	
	$AB = 5\cos(\theta)$	$s(\pi - 1.4 - "0.943")$	
	$AE = 5 \sin \theta$	or $(\pi - 1.4 - "0.943")$	
		$AB = 5\cos(\pi - 1.4 - \text{their } 0.943)$ $AB = 5\cos(0.79859) = 3.488577938$ Allow M1 for $AB = \text{awrt } 3.49$ Or $AE = 5\sin(\pi - 1.4 - \text{their } 0.943)$	
		$AE = 5\sin(0.79859) = 3.581874365688$ Allow M1 for $AE = awrt 3.58$ It must be clear that $\pi - 1.4 - "0.943"$ is	M1
		being used for angle EBA. Note that some candidates use the sin rule here but it must be used correctly – do not allow mixing of degrees and radians.	
	Area $EAB = \frac{1}{2}5\cos(\pi - 1.4 + 1.4)$	$-"0.943") \times 5\sin(\pi - 1.4 - "0.943")$	
	and there must be no other err	<u>ent on the previous M1</u> ors in finding the area of triangle EAB	d M1
	Allow M1 for area $EAB = awrt 6.2$		
	Area $ABCDE = 15.1$	7+ 17.5 + 6.24 = 38.92	<u> </u>
		awrt 38.9	Alcs
		btuse angle (2.198) and could lead to the correct	[: Tot

(ii) $2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1 Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$ $2\sin x - 3\sin x \cos x = 0$ $\sin x(2 - 3\cos x) = 0$ A1 $\cos x = \frac{2}{3}$ A1 $A1: One of either awrt 0.84 or awrt - 0.84$ A1ft: You can apply ft for $x = \pm \alpha$, where $\alpha = \cos^{-1} k$ and $-1 \le k \le 1$ A1AIft $\left\{\sin x = 0 \Rightarrow\right\} x = 0 \text{ and } -\pi$ $\left\{\sin x = 0 \text{ and } -\pi \right\}$ Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ Ignore extra solutions outside the range For all answers in degrees in (ii) M1A1A0A1ftB0 is possible Allow the use of θ in place of x in (ii)	Question Number	Scheme		Marks
(i) $2\tan x - 3\sin x = 0; -\pi \le x < \pi$ (i) $\sin(\theta + 60^{\circ}) = \frac{4}{9}, \text{ so } (\theta + 60^{\circ}) = 26.3877$ Sight of $\sin^{-1}(\frac{4}{9})$ or awrt 26.4° or 0.461° Can also be implied for $\theta = awrt - 33.6$ (i.e. $M1$ $(\alpha = 26.3877)$ $0 + 60^{\circ} = (153.6122, 386.3877)$ So, $\theta + 60^{\circ} = \{153.6122, 386.3877\}$ $0 + 60^{\circ} = (awrt - 30.6) + their a^{\circ}$ or "360° + their a^{\circ} or "360° + their a^{\circ} or "360° + their a^{\circ}. This can be implied by later working. The candidate's a could also be in radians but do not allow mixing of degrees and radians. All Allow the sing of degrees and radians. All Allow the final Alfor any extra solutions outside the range. In an otherwise fully correct solution deduct the final Alfor any extra solutions in range (ii) $2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1 Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$ $2\sin x - 3\sin x \cos x = 0$ $\sin x(2 - 3\cos x) = 0$ $\cos x = \frac{2}{3}$ $\cos x = \frac{2}{3}$ Al Al: One of either awrt 0.84 or awrt -0.844 Alft: You can apply ft for $x = \pm \alpha$, where $\alpha = \cos^{-1} k$ and $-1 \le k \le 1$ In this part of the solution, if there are any extra assures in range in an otherwise correct solution withhold the Alft. Both $x = 0$ and $-\pi$ $\sin x = 0$ $\sin x = 0$ and $-\pi$ $\sin x = 0$ Note solutions are: $x = \{-3.1415, 0.8410\}$ B1 Mote solutions are: $x = \{-3.1415, 0.8410\}$ B1 Note solutions are: $x = \{-3.1415, 0.8410\}$ In this part of the solution are: $x = \{-3.1415, 0.8410\}$ Alalfting $x = 0$ and $-\pi$ $x = awrt \{-3.1415, 0.8410\}$ In this part of the solution are: $x = \{-3.1415, 0.8410\}$ In this part of the solution are: $x = \{-3.1415, 0.8410)$ B1 Note solutions are: $x = \{-3.1415, 0.8410$	F 4	(i) $9\sin(\theta + 60^\circ)$	$=4; 0 \le \theta < 360^{\circ}$	
$(a = 26.3877)$ Can also be implied for $\theta = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $264 - 60)$ $\theta + 60^{\circ} = awrt - 33.6$ (i.e. $awr - 330^{\circ} + bwr - 33.6$ (i.e. $awr - 33.6^{\circ} + bwr - $	51.	(ii) $2\tan x - 3\sin x = 0; -\pi \le x < \pi$		
$ \begin{aligned} & \left(\alpha = 26.3877 \right) & Can also be implied for \theta = awrt - 33.6 (i.e. 26.4 - 60) 26.4 - 60 26.4 - 60 0 \theta + 60^{\circ} = awrt - 33.6 (i.e. 26.4 - 60) \theta + 60^{\circ} = awrt - 33.6 (i.e. 26.4 - 60) \theta + 60^{\circ} = awrt - 33.6 (i.e. 26.4 - 60) \theta + 60^{\circ} = awrt - 33.6 (i.e. 26.4 - 60) \theta + 60^{\circ} = awrt - 33.6 (i.e. 26.4 - 60) \theta + 60^{\circ} = awrt - 33.6 (i.e. 26.4 - 60) \theta + 60^{\circ} = awrt - 33.6 (i.e. 26.4 - 60) \theta + 60^{\circ} = awrt - 33.6 (i.e. 26.4 - 60) wrt - 360^{\circ} + their \alpha^{\circ} or wrt^{\circ} model heir \alpha^{\circ} or wrt^{\circ} models be in radians but do not allow mixing of degrees and radians. All is a be implied by later working. The candidate's \alpha could also be in radians but do not allow mixing of degrees and radians. All is At least one of awrt 93.6 and awrt 326.4^{\circ} Art At least one of awrt 93.6 and awrt 326.4^{\circ} Art At least one of awrt 93.6 and awrt 326.4^{\circ} Art At least one of awrt 93.6 art awrt 326.4^{\circ} Art At least one of awrt 93.6 art awrt 326.4^{\circ} Art At least one of awrt 93.6 art awrt 326.4^{\circ} Art At least one of awrt 93.6 art awrt 326.4^{\circ} Art At least one of awrt 93.6 art awrt 326.4^{\circ} Art At least one of awrt 93.6^{\circ} or awrt 326.4^{\circ} Art At least one of awrt 93.6^{\circ} or awrt 326.4^{\circ} Art At least one of awrt 93.6^{\circ} or awrt 326.4^{\circ} Art At least one of awrt 93.6^{\circ} or awrt 326.4^{\circ} Art At least one of awrt 93.6^{\circ} or awrt 326.4^{\circ} Art At least one of awrt 93.6^{\circ} or awrt 326.4^{\circ} Art At least one of awrt 93.6^{\circ} or awrt 326.4^{\circ} Art At least one of awrt 93.6^{\circ} or awrt 326.4^{\circ} Art At least one of awrt 93.6^{\circ} or awrt 326.4^{\circ} Art At least one of awrt 93.6^{\circ} or awrt - 30.4^{\circ} awrt 93.6^{\circ} or awrt - 30.4^{\circ} awrt - 30.4^{\circ}$	(i)	$\sin(\theta + 60^{\circ}) = \frac{4}{9}$, so $(\theta + 60^{\circ}) = 26.3877$	Sight of $\sin^{-1}\left(\frac{4}{9}\right)$ or awrt 26.4° or 0.461°	M1
So, $\theta + 60^{\circ} = \{153.6122, 386.3877\}$ So, $\theta + 60^{\circ} = \{153.6122, 386.3877\}$ and $\theta = \{93.6122, 326.3877\}$ Both answers are cso and allow mixing of degrees and radians. A1: At least one of awrt 93.6' or awrt 326.4' A1 A1 A1: Both awrt 93.6' and awrt 326.4' A1 A1 A1: Both awrt 93.6' and awrt 326.4' A1 A1 A1: Both awrt 93.6' and awrt 326.4' A1 A1 Both answers are cso and must come from correct work Ignore extra solutions outside the range. In an otherwise fully correct solution deduct the final A1for any extra solutions in range In an otherwise fully correct solution deduct the final A1for any extra solutions in range (ii) $2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1 Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$ $2\sin x - 3\sin x \cos x = 0$ $\sin x(2 - 3\cos x) = 0$ $\cos x = \frac{2}{3}$ $\cos x = \frac{2}{3}$ A1 A1: One of either awrt 0.84 or awrt -0.84 A1: One of either awrt 0.84 or awrt -0.84 $x = awrt\{0.84, -0.84\}$ $a = 0 and -\pi$ a = 0 $a = 0 and -\pi$ a = 0 a = 0 an		$(\alpha = 26.3877)$	26.4 - 60)	1011
So, $\theta + 60^\circ = \{153.6122, 386.3877\}$ "180 - their α " or "360 [°] + their α ". This can be implied by later working. The candidate's α could also be in radians but do not allow mixing of degrees and radians.M1and $\theta = \{93.6122, 326.3877\}$ A1: At least one of awrt 93.6 [°] or awrt 326.4 [°] A1 A1A1: At least one of awrt 93.6 [°] or awrt 326.4 [°] A1 A1Both answers are cso and must come from correct work Ignore extra solutions outside the range. In an otherwise fully correct solution deduct the final A1for any extra solutions in rangeIf(ii) $2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1Note: Applies $\tan x = \frac{\sin x}{\cos x}$ M1Note: Applies $\tan x = \frac{\sin x}{\cos x}$ M1 $2\sin x - 3\sin x \cos x = 0$ $\sin x(2-3\cos x) = 0$ A1 $\cos x = \frac{2}{3}$ A1A1: One of either avrt 0.84 or avrt -0.84 $x = awrt \{0.84, -0.84\}$ A1: One of either avrt 0.84 or avrt -0.84 $x = awrt \{0.84, -0.84\}$ Both $x = 0$ and $-\pi$ or $awrt -3.14$ from $\sin x = 0$ $\sin x = 0 \Rightarrow 3 x = 0$ and $-\pi$ Both $x = 0$ and $-\pi$ or $awrt -3.14$ from $\sin x = 0$ In this part of the solution, if there are any extra answers in rangeB1 $\sin x = 0 \Rightarrow 3 x = 0$ and $-\pi$ B1In this part of the solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ B1 $\sin x = 0$ In this part of the solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ B1 $\sin x = 0$ In this part of the solutions outside the rangeB1<				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
A1: At least one of awrt 93.6' or awrt 326.4'A1 A1Both answers are cso and must come from correct work Ignore extra solutions outside the range. In an otherwise fully correct solution deduct the final A1 for any extra solutions in rangeA1 A1(ii) $2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$ M1 $2\sin x - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$ A1 $2\sin x - 3\sin x \cos x = 0$ $\sin x(2 - 3\cos x) = 0$ A1 $\cos x = \frac{2}{3}$ $\cos x = \frac{2}{3}$ A1 $x = awrt\{0.84, -0.84\}$ A1: One of either awrt 0.84 or $awrt - 0.84$ A1 $x = awrt\{0.84, -0.84\}$ A1: One of either awrt 0.84 or $awrt - 3.14$ from $\sin x = 0$ A1A1 $\sin x = 0 \Rightarrow x = 0$ and $-\pi$ Both $x = 0$ and $-\pi$ or $awrt - 3.14$ from $\sin x = 0$ B1Note solutions are: $x = \{-3.1415, -0.8410, 0.8410, \}$ B1In this part of the solutions are: $x = \{-3.1415, -0.8410, 0.8410, \}$ B1In this part of the solutions are: $x = \{-3.1415, -0.8410, 0.8410, \}$ B1In this part of the solutions are: $x = \{-3.1415, -0.8410, 0.8410, \}$ B1In this part of the solutions are: $x = \{-3.1415, -0.8410, 0.8410, \}$ B1In this part of the solutions are: $x = \{-3.1415, -0.8410, 0.8410, \}$ B1In this part of the solutions are: $x = \{-3.1415, -0.8410, 0.8410, \}$ B1In this part of the solutions are: $x = \{-3.1415, -0.8410, 0.8410, \}$		So, $\theta + 60^{\circ} = \{153.6122, 386.3877\}$	can be implied by later working. The candidate's α could also be in radians but	M1
A1: Both awrt 93.6 and awrt 326.4A1: Both awrt 93.6 and awrt 326.4Both answers are cso and must come from correct workIgnore extra solutions outside the range.In an otherwise fully correct solution deduct the final A1 for any extra solutions in range(ii) $2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$ M1 $2\sin x - 3\sin x \cos x = 0$ $\sin x(2 - 3\cos x) = 0$ A1: One of either awrt 0.84 or awrt -0.84 $x = awrt \{0.84, -0.84\}$ A1: One of either awrt 0.84 or awrt -0.84 A1: A1: The amplitude of $x = \frac{2}{3}$ A1In this part of the solution, if there are any extra answers in range in an otherwise correct solution withhold the A1ft.Both $x = 0$ and $-\pi$ $\sin x = 0$ $\sin x = 0$ B1B1B1B1In this part of the solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410 \}$ Ignore extra solutions outside the rangeFor all answers in degrees in (ii) M1A1A0A1ftB0 is possibleAllow the use of θ in place of x in (ii)				
Both answers are cso and must come from correct workIgnore extra solutions outside the range. In an otherwise fully correct solution deduct the final A1 for any extra solutions in range(ii) $2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2-3\cos x)$ $2\sin x - 3\sin x \cos x = 0$ $\cos x = \frac{2}{3}$ A1 $\cos x = \frac{2}{3}$ A1 $x = awrt {0.84, -0.84}$ In this part of the solution, if there are any extra answers in range in an otherwise correct solution withhold the A1ft.Both $x = 0$ and $-\pi$ $\{\sin x = 0 \Rightarrow\} x = 0$ and $-\pi$ Both $x = awrt - 3.14$ from $\sin x = 0$ In this part of the solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ B1Ignore extra solutions outside the range $\sin x = 0$ In this part of the solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ Ignore extra solutions outside the range $1000000000000000000000000000000000000$		and $\theta = \{93.6122, 326.3877\}$	awrt 93.6° or awrt 326.4°	A1 A1
Ignore extra solutions outside the range. In an otherwise fully correct solution deduct the final A1 for any extra solutions in range(ii) $2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$ $2\sin x - 3\sin x \cos x = 0$ $\cos x = \frac{2}{3}$ $\cos x = \frac{2}{3}$ All $x = awrt \{0.84, -0.84\}$ $\sin x = 0$ and $-\pi$ $\sin x = 0$ and $-\pi$ $\sin x = 0$ $\sin x = 0$ and $-\pi$ $\sin x = 0$ and $-\pi$ $\sin x = 0$ $\sin x(2 - 3\cos x) = 0$ $2\sin x - 3\sin x \cos x = 0$ $\sin x(2 - 3\cos x) = 0$ $\cos x = \frac{2}{3}$ $A1$ $x = awrt \{0.84, -0.84\}$ $\cos x = \frac{2}{3}$ $A1$ $x = awrt \{0.84, -0.84\}$ $A1$: One of either awrt 0.84 or $awrt -0.84$ $A1$: One of either awrt 0.84 or $awrt -0.84$ $A1$: One of either awrt 0.84 or $awrt -0.84$ $A1$: One of either awrt 0.84 or $awrt -0.84$ $A1$: One of either awrt 0.84 or $awrt -0.84$ $A1$: One of either awrt 0.84 or $awrt -0.84$ $A1$: One of either awrt 0.84 or $awrt -0.84$ $A1$: One of either awrt 0.84 or $awrt -0.84$ $A1$: One of either awrt 0.84 or $awrt -0.84$ $A1$: One of either aw			A1: Both awrt 93.6° and awrt 326.4°	
In an otherwise fully correct solution deduct the final A1 for any extra solutions in rangeIn(ii) $2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$ $2\sin x - 3\sin x\cos x = 0$ M1 $2\sin x - 3\sin x\cos x = 0$ $\cos x = \frac{2}{3}$ A1 $\cos x = \frac{2}{3}$ $\cos x = \frac{2}{3}$ A1 $x = awrt \{0.84, -0.84\}$ $A1:$ One of either awrt 0.84 or $awrt -0.84$ A1A1ft $x = awrt \{0.84, -0.84\}$ $A1:$ One of either awrt 0.84 or $awrt -0.84$ A1A1ft $x = awrt \{0.84, -0.84\}$ $A1:$ One of either awrt 0.84 or $awrt -0.84$ A1A1ft $x = awrt \{0.84, -0.84\}$ $A1:$ One of either awrt 0.84 or $awrt -0.84$ A1A1ft $x = awrt \{0.84, -0.84\}$ $A1:$ One of either awrt 0.84 or $awrt -0.84$ A1A1ft $x = awrt \{0.84, -0.84\}$ $A1:$ One of either awrt 0.84 or $awrt -0.84$ A1A1ft $x = awrt \{0.84, -0.84\}$ $B1:$ $B0th x = 0$ and $-\pi \leq x = 1$ $B1$ $ax = 0 \Rightarrow \} x = 0$ and $-\pi$ $ax = ax =$				
(ii) $2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$ Applies $\tan x = \frac{\sin x}{\cos x}$ M1 Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$ $2\sin x - 3\sin x\cos x = 0$ $\sin x(2 - 3\cos x) = 0$ All Ali: One of either awrt 0.84 or awrt -0.84 Alf: You can apply ft for $x = \pm \alpha$, where $\alpha = \cos^{-1}k$ and $-1 \le k \le 1$ Ali Ali: Ali: Ali: Ali: Ali: Ali: Ali: A				
$\frac{2\left(\frac{1}{\cos x}\right)^{-3}\sin x = 0}{\cos x} \qquad \text{Applies } \tan x = \frac{\sin x}{\cos x} \qquad \text{M1}$ Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$ $\frac{2\sin x - 3\sin x \cos x = 0}{\sin x(2 - 3\cos x) = 0}$ $\frac{\cos x = \frac{2}{3}}{\cos x} \qquad \cos x = \frac{2}{3}$ A1 $\frac{\text{A1: One of either awrt } 0.84 \text{ or awrt } -0.84}{\text{A1ft: You can apply ft for } x = \pm \alpha \text{ , where } \alpha = \cos^{-1} k \text{ and } -1 \le k \le 1}$ A1A1ft $\frac{\sin x = 0 \Rightarrow x = 0 \text{ and } -\pi}{\sin x = 0}$ B1 $\frac{\sin x = 0 \Rightarrow x = 0 \text{ and } -\pi}{\sin x = 0}$ B1 $\frac{\sin x = 0 \Rightarrow x = 0 \text{ and } -\pi}{\sin x = 0}$ $\frac{\sin x = 0 \Rightarrow x = 0 \text{ and } -\pi}{\sin x = 0}$ $\frac{\sin x = 0 \Rightarrow x = 0 \text{ and } -\pi}{\sin x = 0}$ $\frac{\cos x = \frac{2}{3}}{\sin x = 0}$ \frac		In an otherwise runy correct solution deduc		[4]
$\frac{2 \sin x - 3 \sin x \cos x = 0}{\sin x(2 - 3 \cos x) = 0}$ $\frac{2 \sin x - 3 \sin x \cos x = 0}{\cos x = \frac{2}{3}}$ A1 $\frac{1 \cos x = \frac{2}{3}}{\sin x = 0 \text{ and } -\pi}$ $\frac{1 \sin x = 0}{\sin x = 0 \text{ and } -\pi}$ A1A1ft $\frac{1 \sin x = 0}{\sin x = 0 \text{ and } -\pi}$ A1A1ft $\frac{1 \sin x = 0}{\sin x = 0 \text{ and } -\pi}$ Both $x = 0$ and $-\pi$ or awrt -3.14 from $\sin x = 0$ In this part of the solution, if there are any extra answers in range in an otherwise correct solution withhold the A1ft. B1 $\frac{1 \sin x = 0}{\sin x = 0} \text{ and } -\pi$ $\frac{1 \sin x = 0}{\sin x = 0}$ A1A1ft $\frac{1 \sin x = 0}{\sin x = 0} \text{ and } -\pi$ $\frac{1 \sin x = 0}{\sin x = 0}$ A1A1ft $\frac{1 \sin x = 0}{\sin x = 0} \text{ and } -\pi$	(ii)	$2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$	Applies $\tan x = \frac{\sin x}{\cos x}$	M1
$\frac{2\sin x - 3\sin x \cos x = 0}{\sin x(2 - 3\cos x) = 0}$ $\frac{\cos x = \frac{2}{3}}{\cos x = \frac{2}{3}}$ A1 $\frac{A1: \text{ One of either awrt } 0.84 \text{ or awrt } -0.84}{A1: \text{ One of either awrt } 0.84 \text{ or awrt } -0.84} $ $x = awrt\{0.84, -0.84\}$ A1: One of either awrt $0.84 \text{ or awrt } -0.84$ A1: One of either awrt $0.84 \text{ or awrt } -3.14 \text{ from sinx } = 0$ In this part of the solution, ignore extra solutions outside the range For all answers in degrees in (ii) M1A1A0A1ftB0 is possible Allow the use of θ in place of x in (ii) [5]		Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied	1 by $2\tan x - 3\sin x = 0 \Rightarrow \tan x (2 - 3\cos x)$	
$\cos x = \frac{2}{3}$ $\cos x = \frac{2}{3}$ A1 $x = \operatorname{awrt}\{0.84, -0.84\}$ A1: One of either awrt 0.84 or awrt -0.84 A1ft: You can apply ft for $x = \pm \alpha$, where $\alpha = \cos^{-1}k$ and $-1 \le k \le 1$ A1A1ftIn this part of the solution, if there are any extra answers in range in an otherwise correct solution withhold the A1ft. $\{\sin x = 0 \Rightarrow\} x = 0$ and $-\pi$ Both $x = 0$ and $-\pi$ or awrt -3.14 from $\sin x = 0$ In this part of the solution, ignore extra solutions in range.B1Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ Ignore extra solutions outside the range For all answers in degrees in (ii) M1A1A0A1ftB0 is possibleA1				
$\frac{5}{x = awrt\{0.84, -0.84\}} = \frac{5}{A1: One of either awrt 0.84 or awrt -0.84} = A1A1ft$ $\frac{A1: One of either awrt 0.84 or awrt -0.84}{A1ft: You can apply ft for x = \pm \alpha, where \alpha = \cos^{-1}k and -1 \le k \le 1 In this part of the solution, if there are any extra answers in range in an otherwise correct solution withhold the A1ft. \begin{cases} \sin x = 0 \Rightarrow \} x = 0 \text{ and } -\pi \end{cases} = \begin{bmatrix} Both \ x = 0 \ and \ -\pi \ or \ awrt \ -3.14 \ from \ sin x = 0 \end{bmatrix} B1 \begin{cases} \sin x = 0 \Rightarrow \} x = 0 \ and \ -\pi \end{cases} = \begin{cases} -3.1415, \ -0.8410, \ 0, \ 0.8410 \} \\ Ignore \ extra \ solutions \ outside \ the \ range \ For \ all \ answers \ in \ degrees \ in \ (ii) \\ \hline M1A1A0A1ftB0 \ is \ possible \ Allow \ the \ use \ of \ \theta \ in \ place \ of \ x \ in \ (ii) \\ \hline M1A1A0A1ftB0 \ is \ possible \ Allow \ the \ use \ of \ \theta \ in \ place \ of \ x \ in \ (ii) \\ \hline M1A1A0A1ftB0 \ is \ possible \ Allow \ the \ use \ of \ \theta \ in \ place \ of \ x \ in \ (ii) \\ \hline M1A1A0A1ftB0 \ is \ possible \ Allow \ the \ use \ of \ \theta \ in \ place \ of \ x \ in \ (ii) \\ \hline M1A1A0A1ftB0 \ is \ possible \ Allow \ the \ use \ of \ \theta \ in \ place \ of \ x \ in \ (ii) \\ \hline M1A1A0A1ftB0 \ is \ possible \ Allow \ the \ use \ of \ \theta \ in \ place \ of \ x \ in \ (ii) \\ \hline M1A1A0A1ftB0 \ is \ possible \ Allow \ the \ use \ of \ \theta \ in \ place \ of \ x \ in \ (ii) \\ \hline M1A1A0A1ftB0 \ (ii) \ M1A1A0A1ftB0 \ is \ possible \ Allow \ the \ use \ of \ \theta \ in \ place \ dot \ x \ in \ (ii) \\ \hline M1A1A0A1ftB0 \ is \ possible \ Allow \ the \ use \ of \ \theta \ in \ place \ dot \ x \ in \ (ii) \\ \hline M1A1A0A1ftB0 \ (ii) \ M1A1A0A1ftB0 \ is \ possible \ Allow \ the \ use \ of \ \theta \ in \ place \ dot \ x \ in \ (ii) $				
$x = awrt\{0.84, -0.84\}$ A1ft: You can apply ft for $x = \pm \alpha$, where $\alpha = cos^{-1}k$ and $-1 \le k \le 1$ A1A1ftIn this part of the solution, if there are any extra answers in range in an otherwise correct solution withhold the A1ft. $\{sin x = 0 \Rightarrow\} x = 0$ and $-\pi$ Both $x = 0$ and $-\pi$ or awrt -3.14 from $sinx = 0$ In this part of the solution, ignore extra solutions in range.Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ Ignore extra solutions outside the rangeFor all answers in degrees in (ii) M1A1A0A1ftB0 is possibleAllow the use of θ in place of x in (ii)		2	2	A1
$\alpha = \cos^{-1}k$ and $-1 \le k \le 1$ In this part of the solution, if there are any extra answers in range in an otherwise correct solution withhold the A1ft. $\{\sin x = 0 \Rightarrow\} x = 0$ and $-\pi$ Both $x = 0$ and $-\pi$ or awrt -3.14 from $\sin x = 0$ In this part of the solution, ignore extra solutions in range.B1Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ Ignore extra solutions outside the rangeB1For all answers in degrees in (ii) M1A1A0A1ftB0 is possibleImage: Constant of the solution is possibleImage: Constant of the solution is possibleAllow the use of θ in place of x in (ii)Image: Constant of the solution is possibleImage: Constant of the solution is possible			A1: One of either awrt 0.84 or awrt -0.84	
In this part of the solution, if there are any extra answers in range in an otherwise correct solution withhold the A1ft. $\{\sin x = 0 \Rightarrow\} x = 0 \text{ and } -\pi$ Both $x = 0$ and $-\pi$ or $\operatorname{awrt} -3.14$ from $\sin x = 0$ In this part of the solution, ignore extra solutions in range.B1Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ Ignore extra solutions outside the range For all answers in degrees in (ii) M1A1A0A1ftB0 is possibleB1		$x = \operatorname{awrt}\{0.84, -0.84\}$	A1ft: You can apply ft for $x = \pm \alpha$, where	A1A1ft
correct solution withhold the A1ft. $\{\sin x = 0 \Rightarrow\} x = 0 \text{ and } -\pi$ Both $x = 0$ and $-\pi$ or awrt -3.14 from $\sin x = 0$ B1In this part of the solution, ignore extra solutions in range.B1Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ B1Ignore extra solutions outside the rangeFor all answers in degrees in (ii) M1A1A0A1ftB0 is possibleAllow the use of θ in place of x in (ii)[4]			$\alpha = \cos^{-1}k$ and $-1 \le k \le 1$	
$\begin{cases} \sin x = 0 \Rightarrow \} x = 0 \text{ and } -\pi \end{cases} \qquad \begin{array}{l} \text{Both } x = 0 \text{ and } -\pi \text{ or awrt } -3.14 \text{ from} \\ \sin x = 0 \\ \text{In this part of the solution, ignore extra solutions in range.} \end{cases} \qquad B1$ $\begin{array}{l} \text{Note solutions are: } x = \{-3.1415, -0.8410, 0, 0.8410\} \\ \text{Ignore extra solutions outside the range} \\ \text{For all answers in degrees in (ii) M1A1A0A1ftB0 is possible} \\ \hline \text{Allow the use of } \theta \text{ in place of } x \text{ in (ii)} \\ \hline \end{array}$				
$\begin{cases} \sin x = 0 \implies x = 0 \text{ and } -\pi & \text{sin} x = 0 \\ \text{In this part of the solution, ignore extra solutions in range.} & \text{B1} \end{cases}$ $\text{Note solutions are: } x = \{-3.1415, -0.8410, 0, 0.8410\}$ $\text{Ignore extra solutions outside the range}$ $\text{For all answers in degrees in (ii) M1A1A0A1ftB0 is possible}$ $\text{Allow the use of } \theta \text{ in place of } x \text{ in (ii)}$		correct solution		
Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ Ignore extra solutions outside the rangeFor all answers in degrees in (ii) M1A1A0A1ftB0 is possibleAllow the use of θ in place of x in (ii)		$\{\sin x = 0 \Rightarrow\} x = 0 \text{ and } -\pi$	sin x = 0 In this part of the solution, ignore extra	B1
Ignore extra solutions outside the range For all answers in degrees in (ii) M1A1A0A1ftB0 is possible Allow the use of θ in place of x in (ii)		Note solutions are: $r = \int -31/$	· · · · · · · · · · · · · · · · · · ·	
For all answers in degrees in (ii) M1A1A0A1ftB0 is possibleAllow the use of θ in place of x in (ii)[5]		× ×	,	
Allow the use of θ in place of x in (ii) [4]				
l lotal y				[5]
				1 otal 9

Question Number	Schem	Scheme	
52(a)	Length $DEA = 7(2.1) = 14.7$	M1:7×2.1 only A1: 14.7	M1A1
			[2]
	Angle $CBD = \pi - 2.1$	May be seen on the diagram (allow awrt 1.0 and allow 180 – 120). Could score for sight of Angle <i>CBD</i> = awrt 60 degrees.	M1
(b)	Both $7\cos(\pi - 2.1)$ and $7\sin(\pi - 2.1)$ or Both $7\cos(\pi - 2.1)$ and $\sqrt{7^2 - (7\cos(\pi - 2.1))}$ or Both $7\sin(\pi - 2.1)$ and $\sqrt{7^2 - (7\sin(\pi - 2.1))}$ Or equivalents to these	A correct attempt to find BC and BD. You can ignore how the candidate assigns <i>BC</i> and <i>CD</i> . $7\cos(\pi - 2.1)$ can be implied by awrt 3.5 and $7\sin(\pi - 2.1)$ can be implied by awrt 6. Note if the sin	dM1
	Note that 2.1 radians is 120 degrees (to 3sf		
	degrees. If used this gives a correct per		
	marks		
	$P = 7\cos(\pi - 2.1) + 7\sin(\pi - 2.1) + 7 + 14.7$	their BC + their CD + 7 + their DEA Dependent on <u>both</u> previous method marks	ddM1
	= 31.2764	Awrt 31.3	A1
			[4] Total 6

Question Number	S	cheme	Marks
	$\frac{\sin 2\theta}{(4\sin 2\theta - 1)} = 1; \ 0 \leqslant \theta < 180^{\circ}$		
-	$\sin 2\theta = \frac{1}{3}$	$\sin 2\theta = k$ where $-1 < k < 1$ Must be 2 θ and not θ .	M1
	$\left\{2\theta = \left\{19.47\right\}\right\}$	12, 160.5288} }	
53.(i)	$\theta = \{9.7356, 80.2644\}$	A1: Either awrt 9.7 or awrt 80.3 A1: Both awrt 9.7 and awrt 80.3	A1 A1
		than once e.g. 9.8 and 80.2 from correct score M1A1A0	
		adians award A1A0 otherwise A0A0 ers are 0.2 and 1.4	
-		wise fully correct solution deduct the last A1	
			[3]
	$5\sin^2 x - 2\cos x$	$-5=0, 0 \le x < 2\pi.$	
	$5(1 - \cos^2 x) - 2\cos x - 5 = 0$	Applies $\sin^2 x = 1 - \cos^2 x$	M1
	$5\cos^{2} x + 2\cos x = 0$ $\cos x(5\cos x + 2) = 0$ $\Rightarrow \cos x = \dots$	Cancelling out $\cos x$ or a valid attempt at solving the quadratic in $\cos x$ and giving $\cos x = \dots$ Dependent on the	dM1
-	awrt 1.98 or awrt 4.3(0)	previous method mark.Degrees: 113.58, 246.42	A1
(ii)	Both 1.98 and 4.3(0)	or their α and their $2\pi - \alpha$, where $\alpha \neq \frac{\pi}{2}$. If working in degrees allow 360 – their	Alft
-	awrt 1.57 or $\frac{\pi}{2}$ and 4.71 or $\frac{3\pi}{2}$ or 90° and 270°	α These answers only but ignore other answers <u>outside</u> the range	B1
			[5]
	NB: $x = awrt \left\{ 1.98, 4.3 \right\}$	(0), 1.57 or $\frac{\pi}{2}$, 4.71 or $\frac{3\pi}{2}$	8
		grees: 113.58, 246.42, 90, 270 re M1M1A0A1ftB1 (4/5)	

Question Number	Scheme	Marks
	Mark (a) and (b) together.	
54. (a)	Usually answered in radians: Uses either $\frac{1}{2}ab\sin(\text{angle})$ or $\frac{1}{2}(12)^2(\text{angle})$ or both	M1
	Area = $\frac{1}{2}(23)(12)\sin 0.64$ or $\frac{1}{2}(12)^2(\pi - 0.64)$ {= 82.41297091 or 180.1146711}	A1
	Area = $\frac{1}{2}(23)(12)\sin 0.64 + \frac{1}{2}(12)^2(\pi - 0.64)$ {= 82.41297091 + 180.1146711}	A1
	{Area = 262.527642 } = awrt 262.5 (m ²) or 262.4(m ²) or 262.6 (m ²)	A1 (4)
(b)	$CDE = 12 \times (angle), = 12(\pi - 0.64) \{ \Rightarrow CDE = 30.01911 \}$	M1, A1
	$AE^2 = 23^2 + 12^2 - 2(23)(12)\cos(0.64) \Rightarrow AE^2 = \text{ or } AE = $ { $AE = 15.17376$ }	M1
	Perimeter = $23 + 12 + 15.17376 + 30.01911$	M1
	= 80.19287 = awrt 80.2 (m)	A1
		(5) [9]
	Notes for Question 54	
(a)	M1: uses either area of triangle formula as given in mark scheme, or area of sector or both (rimplied by answer)	nay be
	A1: one correct area expression (with correct angle used) $\frac{1}{2}(23)(12)\sin 0.64$ or $\frac{1}{2}(12)^2(\pi - 12)^2(\pi - 12)^2)$	- 0.64) or
	see awrt 82.4 or awrt 180 (180 may be split as 226.2(semicircle) minus 46.1(small sector)) A1: two correct area expressions (with correct angles) added together (allow 2.5 as implyin $\pi - 0.64$) or see awrt 82.4 + awrt 180 (or 226 - 46)	ıg
	A1: answers which round to 262.5 or 262.4 or 262.6	
(b)	1 st M1 for attempt to use $s = r \theta$ (any angle)	
	1 st A1 for $\pi - 0.64$ in the formula (or 2.5) 2 nd M1: Uses correct cosine rule to obtain AE or AE ² (this may appear in part (a))	
	3^{rd} M1(independent): Perimeter = $23 + 12 +$ their AE + their CDE	
	2^{nd} A1: awrt 80.2 (ignore units – even incorrect units)	
Degrees (a)	Uses either $\frac{1}{2}ab\sin(\text{angle})$ or $\frac{\text{angle in degrees}}{360} \times \pi (12)^2$ or both for M1	
	Area = $\frac{1}{2}(23)(12)\sin 36.7$ or $\frac{(180-36.7)}{360} \times \pi (12)^2 \{= awrt \ 82.4 \text{ or } 180\}$ A1	
	Area = $\frac{1}{2}(23)(12)\sin 36.7 + \frac{(180-36.7)}{360} \times \pi(12)^2 \{= awrt \ 82.4 + 180\}$ A1	
	Final mark as before	
(b)	$CDE = \frac{\text{Angle in degrees}}{360} \times 24\pi, = \frac{180 - 36.7}{360} \times 24\pi \{ \Rightarrow CDE = 30.01268 \}$ M1, A1	
	Final three marks as before	

Question Number	Scheme	Marks
55. (i)	$(\alpha = 56.3099)$	
	$x = \{\alpha + 40 = 96.309993\} = $ awrt 96.3	B1
	$x - 40^{\circ} = -180 + "56.3099"$ or $x - 40^{\circ} = -\pi + "0.983"$	M1
	$x = \{-180 + 56.3099 + 40 = -83.6901\} = $ awrt - 83.7	A1
		(3)
(ii)(a)	$\sin\theta\left(\frac{\sin\theta}{\cos\theta}\right) = 3\cos\theta + 2$	M1
	$\left(\frac{1-\cos^2\theta}{\cos\theta}\right) = 3\cos\theta + 2$	dM1
	$1 - \cos^2 \theta = 3\cos^2 \theta + 2\cos \theta \implies 0 = 4\cos^2 \theta + 2\cos \theta - 1^*$	A1 cso * (3)
(b)	$-2 + \sqrt{4 - 4(4)(-1)}$	(3)
	$\cos\theta = \frac{-2 \pm \sqrt{4 - 4(4)(-1)}}{8}$	M1
	or $4(\cos\theta \pm \frac{1}{4})^2 \pm q \pm 1 = 0$, or $(2\cos\theta \pm \frac{1}{2})^2 \pm q \pm 1 = 0$, $q \neq 0$ so $\cos\theta =$	
	One solution is 72° or 144° , Two solutions are 72° and 144°	A1, A1
	$\theta = \{72, 144, 216, 288\}$	M1 A1
		(5) [11]
	Notes for Question 55	
(i)	 B1: 96.3 by any or no method M1: Takes 180 degrees from arctan (1.5) or from their "96.3" May be implied by A1. (Could obtained by adding 180, then subtracting 360). A1: awrt -83.7 Extra answers: ignore extra answers outside range. Any extra answers in range lose final A mearned) 	
	Working in radians – could earn M1 for $x - 40^{\circ} = -\pi + "0.983"$ so B0M1A0	
(ii) (a)	M1: uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ or equivalent in equation (not just $\tan = \frac{\sin \theta}{\cos \theta}$, with r	10
	argument) dM1: uses $\sin^2 \theta = 1 - \cos^2 \theta$ (quoted correctly) in equation A1: completes proof correctly, with no errors to give printed answer*. Need at least three step and need to achieve the correct quadratic with all terms on one side and "=0"	os in proof
(b)	 M1: Attempts to solve quadratic by correct quadratic formula, or completion of the square . Factorisation attempts score M0. 1st A1: Either 72 or 144, 2nd A1: both 72 and 144 (allow 72.0 etc.) M1: 360 – "a previous solution" (provided that cos was being used) (not dependent on previous M) A1: All four solutions correct (Extra solutions in range lose this A mark, but outside range - ignore) (Premature approximation: e.g. 71.9, 144.1, 288.1 and 215.9 – lose first A1 then ft other angles) Do not require degrees symbol for the marks Special case: Working in radians 	
	M1: as before, A1 for either $\theta = \frac{2}{5}\pi$ or $\theta = \frac{4}{5}\pi$ or decimal equivalents, and 2 nd A1: both	
	M1: $2\pi - \alpha_1$ or $2\pi - \alpha_2$ then A0 so 4/5	

Question Number	Scheme	Marks		
56.(a)	Way 1 : $10^2 = 7^2 + 13^2 - 2 \times 7 \times 13 \cos \theta$ or $\cos \theta = \frac{7^2 + 13^2 - 10^2}{2 \times 7 \times 13}$	M1		
	$\cos\theta = \frac{59}{91}$ or $\cos\theta = \frac{7^2 + 13^2 - 10^2}{2 \times 7 \times 13}$ or $\cos\theta = 0.6483$ or 0.8644	A1 o.e		
	$(\theta = 0.8653789549) = 0.865 * (to 3 dp)$	A1* cso (3)		
	Way 2: Uses $\cos \theta = \frac{x}{7}$, where $7^2 - x^2 = 10^2 - (13 - x)^2$ and finds x (= 59/13)	M1		
	$\cos\theta = \frac{59}{91}$ and $(\theta = 0.8653789549) = 0.865 * (to 3 dp) - as in Way 1$	A1, A1 (3)		
(b)	Area triangle $ABC = \frac{1}{2} \times 13 \times 7 \sin 0.865$ or $\frac{1}{2} \times 13 \times 7 \sin 49.6$ or $20\sqrt{3}$	M1		
	Area sector $ABD = \frac{1}{2} \times 7^2 \times 0.865$ or $\frac{49.6}{360} \times \pi \times 7^2$	M1		
	=34.6 (triangle) or 21.2 (Sector)	A1		
	Area of $S = \frac{1}{2} \times 13 \times 7 \sin 0.865 - \frac{1}{2} \times 7^2 \times 0.865$ (=13.4)	M1 A1		
	(Amount of seed =) $13.4 \times 50 = 670$ g or 680 g (need one of these two answers)	M1 A1 (7)		
		Total 10		
(a)	Notes for Question 56			
(a)	M1: use correct cosine formula in any form A1: give a value for $\cos \theta$ NB $\cos \theta = \frac{7^2 + 13^2 - 10^2}{2 \times 7 \times 13}$ earns M1A1			
(b)	A1: deduce and state the printed answer $\theta = 0.865$ M1: Uses Correct method for area of the correct triangle i.e. <i>ABC</i>			
	M1: Uses Correct method for the area of the sector			
	A1: This is earned for one of the correct answers. May be implied if these ans calculated but the final answer is correct with no errors (or shaded area is 13.4			
	M1: Their area of Triangle ABC– Area of Sector (may have $kr^2\theta$ but not $k\theta$,		
	A1: Correct expression or awrt 13.4 or 13.5 (may be implied by final answer	;)		
	M1: Multiply their previous answer by 50 A1: 670g or 680 g (There is an argument for rounding answer up to provide enough seed)			
N.B. $(\frac{1}{2} \times 1)$	$3 \times 7 \sin 0.865 - \frac{1}{2} \times 7^2 \times 0.865$) $\times 50 = 670$ or 680 earns full marks			
$(\frac{1}{2} \times 1)$	$3 \times 7 \sin 0.865 - \frac{1}{2} \times 7^2 \times 0.865$) $\times 50 = $ awrt 670 or 680 just loses last mark			
	$(\frac{1}{2} \times 13 \times 7 \sin 0.865 - \frac{1}{2} \times 7^2 \times 0.865) \times 50 = \text{wrong answer M1M1A0M1A1M1A0}$			

Question Number	Scheme	Marks
57.(a)	$\sin(2\theta - 30) = -0.6$ or $2\theta - 30 = -36.9$ or implied by 216.9	B1
	$2\theta - 30 = 216.87 = (180 + 36.9)$	M1
	$\theta = \frac{216.87 + 30}{2} = 123.4 \text{ or } 123.5$	A1
	$2\theta - 30 = 360 - 36.9$ or 323.1	M1
	$\theta = \frac{323.1 + 30}{2} = 176.6$	A1 (5)
(b)	$9\cos^{2} x - 11\cos x + 3(1 - \cos^{2} x) = 0 \text{ or } 6\cos^{2} x - 11\cos x + 3(\sin^{2} x + \cos^{2} x) = 0$	M1
	$6\cos^2 x - 11\cos x + 3 = 0 \{ as (sin^2 x + cos^2 x) = 1 \}$	A1
	$(3\cos x-1)(2\cos x-3)=0$ implies $\cos x=$	M1
	$\cos x = \frac{1}{3}, \left(\frac{3}{2}\right)$	A1
	x = 70.5	B1
	x = 360 - "70.5"	M1
	x = 289.5	A1cao (7)
		Total 12
(a)	Notes for Question 57B1: This statement seen and must contain no errors or may implied by – 36.9	
(a)	M1: Uses $180 - \arcsin(-0.6)$ i.e. $180 + 36.9$ (or $\pi + \arcsin(0.6)$ in radians) (in 3^{rd} c	uadrant)
	A1: allow answers which round to 123.4 or 123.5 must be in degrees	•
	M1: Uses $360 + \arcsin(-0.6)$ i.e. $360 - 36.9$ (or $2\pi + \arcsin(-0.6)$ in radians) (in	n 4th quadrant)
	A1: allow answers which round to 176.6 must be in degrees (A1 implies M1)	sa if bath D
	Ignore extra answers outside range but lose final A1 for extra answers in the rang and A marks have been earned)	ge II boul b
	Working in radians may earn B1M1A0M1A0	
(b)	M1: Use of $\sin^2 x = (1 - \cos^2 x)$ or $(\sin^2 x + \cos^2 x) = 1$ in the given equation	
	A1: Correct three term quadratic in any equivalent form M1: Uses standard method to solve quadratic and obtains $\cos x =$	
	A1: A1 for $\frac{1}{3}$ with $\frac{3}{2}$ ignored but A0 if $\frac{3}{2}$ is incorrect	
	B1: 70.5 or answers which round to this value	
	M1: 360 – $\arccos(their 1/3)$ (or $2\pi - \arccos(their 1/3)$ in radians)	
	A1: Second answer Working in radians in (b) may earn M1A1M1A1B0M1A0	
	Extra values in the range coming from $\arccos(1/3)$ – deduct final A mark - so A0	

58.			
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1
	$3x - 10 = \alpha \Longrightarrow x = \frac{\alpha + 10}{3}$	Uses their α to find x. Allow $x = \frac{\alpha \pm 10}{3}$ not $\frac{\alpha}{3} \pm 10$	M1
	<i>x</i> = 41.2	Awrt	A1
	$(3x-10=)360-\alpha$ (246.4)	$360 - \alpha$ (can be implied by 246.4)	M1
	x = 85.5	Awrt	A1
	$(3x-10=)360+\alpha$ (=473.57)	$360 + \alpha$ (Can be implied by 473.57)	M1
	<i>x</i> = 161.2	Awrt	A1

59.			
(a)	$9^2 = 4^2 + 6^2 - 2 \times 4 \times 6 \cos \alpha \Longrightarrow \cos \alpha = \dots$	Correct use of cosine rule leading to a value for $\cos \alpha$	M1
	$\cos \alpha = \frac{4^2 + 6^2 - 9^2}{2 \times 4 \times 6} \left(= -\frac{29}{48} = -0.604 \right)$		
	$\alpha = 2.22 *$	Cso (2.22 must be seen here)	A1
	$(NB \ \alpha = 2.219516005)$		(2)
(a) Way 2	$XY^{2} = 4^{2} + 6^{2} - 2 \times 4 \times 6\cos 2.22 \Longrightarrow XY^{2} = .$	Correct use of cosine rule leading to a value for XY^2	M1
	$XY^2 = 81.01$		
	<i>XY</i> = 9.00		A1
			(2)
(b)	$2\pi - 2.22 (= 4.06366)$	$2\pi - 2.22$ or awrt 4.06	B1
	$\frac{1}{2} \times 4^2 \times "4.06"$	Correct method for major sector area.	M1
	32.5	Awrt 32.5	A1
			(3)
(b) Way2	Circle – Minor sector		
	$\pi imes 4^2$	Correct expression for circle area	B1
	$\frac{\pi \times 4^2}{\pi \times 4^2 - \frac{1}{2} \times 4^2 \times 2.22 = 32.5}$	Correct method for circle - minor sector area	M1
		Awrt 32.5	A1
			(3)
(c)		Correct expression for the area of triangle XYZ	B1
	So area required = "9.56 + "32.5 "	Their Triangle XYZ + (part (b) answer or correct attempt at major sector)	M1
	$= 42.1 \text{ cm}^2 \text{ or } 42.0 \text{ cm}^2$	Awrt 42.1 or 42.0 (Or just 42)	A1
			(3)
	Arc length = $4 \times 4.06(=16.24)$	M1: $4 \times their(2\pi - 2.22)$	
(d)	Or $8\pi - 4 \times 2.22$	Or circumference – minor arc A1: Correct ft expression	M1A1ft
	Perimeter = $ZY + WY$ + Arc Length	9 + 2 + Any Arc	M1
	Perimeter = 27.2 or 27.3	Awrt 27.2 or awrt 27.3	A1
			(4)
			[12]

Question number	Scheme		Marks
60(a)	States or uses $\tan 2x = \frac{\sin 2x}{\cos 2x}$		M1
	$\frac{\sin 2x}{\cos 2x} = 5\sin 2x \Rightarrow \sin 2x - 5\sin 2x \cos 2x = 0 \Rightarrow \sin 2x \sin 2x + 5\sin 2x \cos 2x = 0$	$n 2x(1-5\cos 2x) = 0 $	A1 (2)
(b)	$\sin 2x = 0$ gives $2x = 0$, 180, 360 so $x = 0$, 90, 180	B1 for two correct answers, second B1 for all three correct. Excess in range – lose last B1	B1, B1
	$\cos 2x = \frac{1}{5}$ gives $2x = 78.46$ (or 78.5 or 78.4) or 2	2x = 281.54 (or 281.6)	M1
	<i>x</i> = 39.2 (or 39.3), 140.8 (or 141)		A1, A1 (5)
			7 marks
	(a) M1 : Statement that $\tan \theta = \frac{\sin \theta}{\cos \theta}$ or Replacement of tan (wherever it appears). Mu statement but may involve θ instead of 2 <i>x</i> . A1 : the answer is given so all steps should be given. N.B. $\sin 2x - 5\sin 2x \cos 2x = 0$ or $-5\sin 2x \cos 2x + \sin 2x = 0$ or $\sin 2x(\frac{1}{\cos 2x} - \frac{1}{\cos 2x} + $		

Question number	Scheme	Marks
61 (a)	$r\theta = 6 \times 0.95, = 5.7$ (cm)	M1, A1 (2)
(b)	$\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times 0.95, = 17.1 \text{ (cm}^2\text{)}$	M1, A1 (2)
(c)	Let $AD = x$ then $\frac{x}{\sin 0.95} = \frac{6}{\sin 1.24}$ so $x = 5.16$ *	M1 A1
	OR $x = 3 / \cos 0.95$ OR so $x = 3 / \sin 0.62$ so $x = 5.16$ *	(2)
(d)	OR $x^2 = 6^2 + x^2 - 12x \cos 0.95$ leading to $x = 0.95$, so $x = 5.16$ * Perimeter = $(5.7) + 5.16 + 6 - 5.16 = (11.7)$ or $6 + $ their 5.7	M1A1 ft (2)
(e)	Area of triangle $ABD = \frac{1}{2} \times 6 \times 5.16 \times \sin 0.95 = 12.6$ or	M1 A1
	$\frac{1}{2} \times 6 \times 3 \times \tan 0.95 = 12.6 (\frac{1}{2} \text{ base x height}) \text{ or } \frac{1}{2} \times 5.16 \times 5.16 \times \sin 1.24 = 12.6$ So Area of $R = `17.1' - `12.6' = 4.5$	M1 A1 (4)
Notes	 (a) M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula. A1: Does not need units (b) M1: Needs θ in radians for this formula. Could convert to degrees and use de formula. A1: Does not need units 	egrees
	 (c) M1: Needs complete correct trig method to achieve x = May have worked in degrees, using 54.4 degrees and 71.1 degrees Using angles of triangle sum to 360degrees is not correct method so is M0 A1: accept answers which round to 5.16 (NB This is given answer) If the answer 5.16 is assumed and verified award M1A0 for correct work 	
	(d) M1: Accept answer only as implying method, or just 6 + 5.7	
	 A1 : can be scored even following wrong answer to part (c) (e) M1: needs complete method for area of triangle ABD not ABC A1: Accept awrt 12.6 (If area of triangle is not evaluated or is given as 12.5 (this mark may be implied by 4.5 later) M1: Uses area of R = area of sector – area of triangle ABD (not ABC) A1: Answers wrt 4.5 	(truncated)
Alternative For part (e)	Finds area of segment and area of triangle <i>BDC</i> by correct methods M1 Obtains 2.4585 and 2.0498 – accept answers wrt 2.5, 2.1 A1 Uses area of segment + area of triangle <i>BDC</i> , to obtain 4.5 (not 4.6) M1, A1 NB Just finding area of segment is M0	

Question number	Scheme	Marks	
62 (i)	$\sin(3x-15) = \frac{1}{2}$ so $3x-15 = 30$ (α) and $x = 15$	M1 A1	
	Need $3x - 15 = 180 - \alpha$ or $3x - 15 = 540 - \alpha$	M1	
	Need $3x - 15 = 180 - \alpha$ and $3x - 15 = 360 + \alpha$ and $3x - 15 = 540 - \alpha$	M1	
	<i>x</i> = 55 or 175	A1	
	x = 55, 135, 175	A1	(6)
Notes	M1 Correct order of operation: inverse sine then linear algebra - not just $3x-15 = 30$ (slips in linear algebra lose Accuracy mark) A1 Obtains first solution 15 M1 Uses either $180 - \alpha$ or $540 - \alpha$, M1 uses all three $180 - \alpha$ and $360 + \alpha$ and $540 - \alpha$ A1 , for one further correct solution 55 or 175, (depends only on second M1) A1 – all 3 further correct solutions If more than 4 solutions in range, lose last A1 Common slips: Just obtains 15 and 55, or 15 and 175 – usually M1A1M1M0A1A0 Just obtains 15 and 135 is usually M1A1M0M0A0A0 (It is easy to get this erroneously) Obtains 5, 45, 125 and 165 – usually M1A0M1M1A0A0 Obtains 25, 65, 145, (185) usually M1A0M1M1A0A0 Working in radians – lose last A1 earned for $\frac{\pi}{12}$, $\frac{11\pi}{36}$, $\frac{3\pi}{4}$ and $\frac{35\pi}{36}$ or numerical equivalents Mixed radians and degrees is usually Method marks only Methods involving no working should be sent to Review		
62 (ii)	At least one of $(\frac{a\pi}{10} - b) = 0$ (or $n\pi$) $(\frac{a3\pi}{5} - b) = \pi$ {or $(n+1)\pi$ } or in degrees or $(\frac{a11\pi}{10} - b) = 2\pi$ {or $(n+2)\pi$ } If two of above equations used eliminates <i>a</i> or <i>b</i> to find one or both of these	M1	
	or uses period property of curve to find <i>a</i> or uses other valid method to find either <i>a</i> or <i>b</i> (May see $\frac{5\pi}{10}a = \pi$ so $a = $)	M1	
	Obtains $a = 2$	A1	

Notes	M1: Award for $(\frac{a\pi}{10} - b) = 0$ or $\frac{a\pi}{10} = b$ BUT $\sin(\frac{a\pi}{10} - b) = 0$ is M0
	M1: As described above but solving $\left(\frac{a\pi}{10} - b\right) = 0$ with $\left(\frac{a3\pi}{5} - b\right) = 0$ is M0 (It gives $a = b = 0$)
	Special cases: Can obtain full marks here for both correct answers with no working M1M1A1A1
	For $a = 2$ only, with no working, award M0M1A1A0 For $b = \frac{\pi}{5}$ only with no working
	M1M0A0A1
Alternative	Some use translations and stretches to give answers.
	If they achieve $a=2$ they earn second method and first accuracy. If they achieve correct value for b
	they earn first method and second accuracy.
	Common error is $a = 2$ and $b = \frac{\pi}{10}$. This is usually M0M1A1A0 unless they have stated
	$\left(\frac{a\pi}{10}-b\right) = 0$ earlier in which case they earn first M1.

Question Number	Scheme	Marks
63.	$\frac{1}{2}r^{2}\theta = \frac{1}{2}(6)^{2}\left(\frac{\pi}{3}\right) = 6\pi \text{ or } 18.85 \text{ or awrt } 18.8 \text{ (cm)}^{2}$ Using $\frac{1}{2}r^{2}\theta$ (See notes)	M1
(a)	$2 \qquad 2^{(3)} \qquad 6\pi \text{ or } 18.85 \text{ or a wrt } 18.8$	A1
		[2]
(b)	$\sin\left(\frac{\pi}{6}\right) = \frac{r}{6-r}$ $\sin\left(\frac{\pi}{6}\right) \text{ or } \sin 30^\circ = \frac{r}{6-r}$	M1
	$\frac{1}{2} = \frac{r}{6-r}$ Replaces sin by numeric value $6 - r = 2r \Rightarrow r = 2$ $r = 2$	dM1
	$6 - r = 2r \Longrightarrow r = 2 \qquad \qquad r = 2$	A1 cso [3]
(c)	Area = $6\pi - \pi (2)^2 = 2\pi$ or awrt 6.3 (cm) ² 2π or awrt 6.3	M1 A1 cao [2] 7
(a)	M1: Needs θ in radians for this formula. Candidate could convert to degrees and use the degrees formula. A1: Does not need units. Answer should be either 6π or 18.85 or awrt 18.8 Correct answer with no working is M1A1. This M1A1 can only be awarded in part (a).	,
(b)	M1: Also allow $\cos\left(\frac{\pi}{3}\right)$ or $\cos 60^\circ = \frac{r}{6-r}$.	
	1 st M1: Needs correct trigonometry method. Candidates could state $\sin\left(\frac{\pi}{6}\right) = \frac{r}{x}$ and $x + r = \frac{1}{2}$	= 6 or
	equivalent in their working to gain this method mark.	
	dM1: Replaces sin by numerical value. $0.009 = \frac{r}{6-r}$ from working "incorrectly" in degree here for dM1.	ees is fine
	A1: For $r = 2$ from correct solution only. <u>Alternative:</u> 1 st M1 for $\frac{r}{OC} = \sin 30$ or $\frac{r}{OC} = \cos 60$. 2 nd M1 for $OC = 2r$ and then A1 for $r =$ Note seeing $OC = 2r$ is M1M1.	= 2.
	Special Case: If a candidate states an answer of $r = 2$ (must be in part (b)) as a guess or from incorrect method then award SC: M0M0B1. Such a candidate could then go on to score M1A	
(c)	(c). M1: For "their area of sector – their area of circle", where $r > 0$ is ft from their answer to part	rt (b).
	Allow the method mark if "their area of sector" < "their area of circle". The candidate must s somewhere in their working that they are subtracting the correct way round, even if their answ negative.	
	Some candidates in part (c) will either use their value of r from part (b) or even introduce a value in part (c). You can apply the scheme to award either M0A0 or M1A0 or M1A1 to these cance Note: Candidates can get M1 by writing "their part (a) answer $-\pi r^2$ ", where the radius of the radiu	didates.
	Note: Candidates can get W1 by writing their part (a) answer $-\pi r$, where the radius of the not substituted.	
	A1: cao – accept exact answer or awrt 6.3 Correct answer only with no working in (c) gets M1A1 Beware: The answer in (c) is the same as the arc length of the pendant	
	2011201 The unstreet in (c) is the buille us the fire fongth of the pendulit	

Question Number	Scheme	Marks
64.	(a) $3\sin(x+45^{\circ}) = 2$; $0 \le x < 360^{\circ}$ (b) $2\sin^2 x + 2 = 7\cos x$; $0 \le x < 2\pi$	
(a)	$\sin(x+45^{\circ}) = \frac{2}{3}$, so $(x+45^{\circ}) = 41.8103$ $(\alpha = 41.8103)$ $\sin^{-1}\left(\frac{2}{3}\right)$ or awrt 41.8	M1
	So, $x + 45^{\circ} = \{138.1897, 401.8103\}$ $x + 45^{\circ} = \text{either "}180 - \text{their } \alpha \text{" or "}360^{\circ} + \text{their } \alpha \text{" (}\alpha \text{ could be in radians).}$	M1
	and $x = \{93.1897, 356.8103\}$ Either awrt 93.2° or awrt 356.8°	A1
	Both awrt 93.2° and awrt 356.8°	A1
(b)	$2(1 - \cos^2 x) + 2 = 7\cos x$ Applies $\sin^2 x = 1 - \cos^2 x$	[4] M1
	$2\cos^{2} x + 7\cos x - 4 = 0$ Correct 3 term, $2\cos^{2} x + 7\cos x - 4 \{ = 0 \}$	A1 oe
	$(2\cos x - 1)(\cos x + 4) \{= 0\}$, $\cos x = \dots$ Valid attempt at solving and $\cos x = \dots$	M1
	$\cos x = \frac{1}{2}$, $\{\cos x = -4\}$ $\cos x = \frac{1}{2}$ (See notes.)	A1 cso
	$\left(\beta = \frac{\pi}{3}\right)$	
	$x = \frac{\pi}{3}$ or 1.04719 ^c Either $\frac{\pi}{3}$ or awrt 1.05 ^c	B1
	$x = \frac{5\pi}{3}$ or 5.23598° Either $\frac{5\pi}{3}$ or awrt 5.24° or 2π – their β (See notes.)	B1 ft
		[6] 10

Question Number	Notes	Marks	
(a)	1 st M1: can also be implied for $x = awrt - 3.2$		
	2^{nd} M1: for $x + 45^{\circ}$ = either "180 – their α " or "360° + their α ". This can be implied by later		
	working. The candidate's α could also be in radians.		
	Note that this mark is not for $x = \text{either "}180 - \text{their } \alpha \text{" or "}360^\circ + \text{their } \alpha \text{"}$.		
	Note: Imply the first two method marks or award M1M1A1 for either awrt 93.2° or awrt 35	6.8°.	
	<u>Note</u> : Candidates who apply the following incorrect working of $3\sin(x + 45^\circ) = 2$		
	\Rightarrow 3(sin x + sin 45) = 2, etc will usually score M0M0A0A0.		
	If there are any EXTRA solutions inside the range $0 \le x < 360$ and the candidate would othe	rwise	
	score FULL MARKS then withhold the final aA2 mark (the final mark in this part of the question Also ignore EXTRA solutions outside the range $0 \le x < 360$.		
	Working in Radians: Note the answers in radians are $x = awrt 1.6$, awrt 6.2		
	If a candidate works in radians then mark part (a) as above awarding the A marks in the same If the candidate would then score FULL MARKS then withhold the final aA2 mark (the final this part of the question.)	•	
	No working: Award M1M1A1A0 for one of awrt 93.2° or awrt 356.8° seen without any w	orking.	
	Award M1M1A1A1 for both awrt 93.2° and awrt 356.8° seen without any working.		
	Allow benefit of the doubt (FULL MARKS) for final answer of		
	$\sin x \{ \text{and not } x \} = \{ \text{awrt } 93.2, \text{ awrt } 356.8 \}$		

edexcel

Question	Notes	Marks
Number		Mariks
(b)	1 st M1: for a correct method to use $\sin^2 x = 1 - \cos^2 x$ on the given equation.	
	Give bod if the candidate omits the bracket when substituting for $\sin^2 x$, but	
	$2 - \cos^2 x + 2 = 7\cos x$, without supporting working, (eg. seeing " $\sin^2 x = 1 - \cos^2 x$ ") would 1 st M0.	ld score
	Note that applying $\sin^2 x = \cos^2 x - 1$, scores M0.	
	1 st A1: for obtaining either $2\cos^2 x + 7\cos x - 4$ or $-2\cos^2 x - 7\cos x + 4$.	
	1 st A1: can also awarded for a correct three term equation eg. $2\cos^2 x + 7\cos x = 4$ or	
	$2\cos^2 x = 4 - 7\cos x \text{ etc.}$	
	2^{nd} M1: for a valid attempt at factorisation of a quadratic (either 2TQ or 3TQ) in cos, can use variable here, <i>c</i> , <i>y</i> , <i>x</i> or cos <i>x</i> , and an attempt to find at least one of the solutions. See introd the Mark Scheme. <i>Alternatively</i> , using a correct formula for solving the quadratic. Either the formula must be stated correctly or the correct form must be implied by the substitution.	uction to
	2^{nd} A1: for $\cos x = \frac{1}{2}$, BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore	extra
	answer of $\cos x = -4$, but penalise if candidate states an incorrect result e.g. $\cos x = 4$. If the	y have
	used a substitution, a correct value of their c or their y or their x .	
	Note: 2^{nd} A1 for $\cos x = \frac{1}{2}$ can be implied by later working.	
	1 st B1: for either $\frac{\pi}{3}$ or awrt 1.05 ^c	
	2^{nd} B1: for either $\frac{5\pi}{3}$ or awrt 5.24° or can be ft from 2π – their β or 360° – their β where	
	$\beta = \cos^{-1}(k)$, such that $0 < k < 1$ or $-1 < k < 0$, but $k \neq 0$, $k \neq 1$ or $k \neq -1$.	
	If there are any EXTRA solutions inside the range $0 \le x < 2\pi$ and the candidate would other	
	score FULL MARKS then withhold the final bB2 mark (the final mark in this part of the que Also ignore EXTRA solutions outside the range $0 \le x < 2\pi$.	stion).
	Working in Degrees: Note the answers in degrees are $x = 60, 300$	
	If a candidate works in degrees then mark part (b) as above awarding the B marks in the same If the candidate would then score FULL MARKS then withhold the final bB2 mark (the final this part of the question.) Answers from no working:	-
	$x = \frac{\pi}{3}$ and $x = \frac{5\pi}{3}$ scores M0A0M0A0B1B1,	
	x = 60 and $x = 300$ scores M0A0M0A0B1B0,	
	$x = \frac{\pi}{3}$ ONLY or $x = 60$ ONLY scores M0A0M0A0B1B0,	
	$x = \frac{5\pi}{3}$ ONLY or $x = 120$ ONLY scores M0A0M0A0B0B1.	
	No working: You cannot apply the ft in the B1ft if the answers are given with NO working.	
	Eg: $x = \frac{\pi}{5}$ and $x = \frac{9\pi}{3}$ FROM NO WORKING scores M0A0M0A0B0B0.	
	For candidates using trial & improvement, please forward these to your Team Leader.	

Question	Scheme	Marks
Number 65.		
	$11^{2} = 8^{2} + 7^{2} - (2 \times 8 \times 7 \cos C)$	M1
	$\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7} $ (or equivalent)	A1
	$\left\{ \hat{C} = 1.64228 \right\} \Rightarrow \hat{C} = \text{awrt } 1.64$	A1 cso
		(3)
(b)	Use of Area $\triangle ABC = \frac{1}{2}ab\sin(\text{their }C)$, where <i>a</i> , <i>b</i> are any of 7, 8 or 11.	M1
	$=\frac{1}{2}(7 \times 8)\sin C$ using the value of their C from part (a).	A1 ft
	$\{=27.92848 \text{ or } 27.93297\} = awrt 27.9 \text{ (from angle of either } 1.64^{\circ} \text{ or } 94.1^{\circ}\text{)}$	A1 cso
		(3) [6]
	Notes	
(a)	M1 is also scored for $8^2 = 7^2 + 11^2 - (2 \times 7 \times 11 \cos C)$ or $7^2 = 8^2 + 11^2 - (2 \times 8 \times 11 \cos C)$	$\cos C$
	or $\cos C = \frac{7^2 + 11^2 - 8^2}{2 \times 7 \times 11}$ or $\cos C = \frac{8^2 + 11^2 - 7^2}{2 \times 8 \times 11}$	
	1 st A1: Rearranged correctly to make $\cos C = \dots$ and numerically correct (possibly	
	unsimplified). Award A1 for any of $\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7}$ or $\cos C = \frac{-8}{112}$ or $\cos C$	$C = -\frac{1}{14}$ or
	$\cos C = \operatorname{awrt} - 0.071.$	
	SC: Also allow $1^{st} A1$ for $112 \cos C = -8$ or equivalent.	
	Also note that the 1 st A1 can be implied for \hat{C} = awrt 1.64 or \hat{C} = awrt 94.1°.	
	Special Case: $\cos C = \frac{1}{14}$ or $\cos C = \frac{11^2 - 8^2 - 7^2}{2 \times 8 \times 7}$ scores a SC: M1A0A0.	
	2^{nd} A1: for awrt 1.64 cao	
	Note that $A = 0.6876^{\circ}$ (or 39.401°), $B = 0.8116^{\circ}$ (or 46.503°)	
(b)	M1: alternative methods must be fully correct to score the M1. For any (or both) of the M1 or the 1^{st} A1; their <i>C</i> can either be in degrees or radians	
	Candidates who use $\cos C = \frac{1}{14}$ to give $C = 1.499$, can achieve the correct answer	of awrt
	27.9 in part (b). These candidates will score M1A1A0cso, in part (b). Finding $C = 1.499$ in part (a) and achieving awrt 27.9 with no working scores M1A1A0cso.	
	Otherwise with no working in part (b), awrt 27.9 scores M1A1A1. Special Case: If the candidate gives awrt 27.9 from any of the below then award M1A1A1.	
	$\frac{1}{2}(7 \times 11)\sin(0.8116^{\circ} \text{ or } 46.503^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ})$	wrt 27.9.
	<u>Alternative: Hero's Formula:</u> $A = \sqrt{13(13-11)(13-8)(13-7)} = \text{awrt } 27.9$, where	M1 is
	attempt to apply $A = \sqrt{s(s-11)(s-8)(s-7)}$ and the first A1 is for the correct applied	
	the formula.	

Question Number	Scheme		Marks
66 .			
(a)	$3\sin^2 x + 7\sin x = \cos^2 x - 4$; $0 \le x < 360^\circ$		
	$3\sin^2 x + 7\sin x = (1 - \sin^2 x) - 4$		M1
	$4\sin^2 x + 7\sin x + 3 = 0$ AG		A1 * cso
	$-5 \ln x + 7 \sin x + 5 = 0$		(2
(1)		Valid attempt at factorisation	
(b)	$(4\sin x + 3)(\sin x + 1) \{= 0\}$	and $\sin x = \dots$	M1
	$\sin x = -\frac{3}{4}, \qquad \sin x = -1$	Both $\sin x = -\frac{3}{4}$ and $\sin x = -1$.	A1
	$(\alpha = 48.59)$		
	x = 180 + 48.59 or $x = 360 - 48.59$	Either $(180 + \alpha)$ or $(360 - \alpha)$	dM1
	x = 228.59, x = 311.41	Both awrt 228.6 and awrt 311.4	A1
	$\{\sin x = -1\} \implies x = 270$	270	B1
		270	(5
			[7
		Notes	
(a)	M1 for a correct method to change $\cos^2 x$ into	$\sin^2 x$ (must use $\cos^2 x = 1 - \sin^2 x$).	
	Note that applying $\cos^2 x = \sin^2 x - 1$, scores 1	M0.	
	A1 for obtaining the printed answer without e the equation at the end of the proof must be = score M1A1.		-
(b)	1 st M1 for a valid attempt at factorisation, can attempt to find at least one of the solutions. <i>Alternatively</i> , using a correct formula for solv stated correctly or the correct form must be in 1 st A1 for the two correct values of $\sin x$. If t their <i>s</i> or their <i>y</i> or their <i>x</i> . 2 nd M1 for solving $\sin x = -k$, $0 < k < 1$ and r	ring the quadratic. Either the formula n nplied by the substitution. hey have used a substitution, a correct v	nust be value of
	$(180 + \alpha)$ or $(360 - \alpha)$ where $\alpha = \sin^{-1}(k)$.	Ũ	
	$\sin x = -1 \Rightarrow x = 270$. Note that this mark is c^{nd} A1 for both awrt 228.6 and awrt 311.4	iependent upon the 1 M1 mark awarde	a.
	B1 for 270.		
	If there are any EXTRA solutions inside the r otherwise score FULL MARKS then withhole of the question).		
	Also ignore EXTRA solutions outside the ran	ge $0 \le x < 360^{\circ}$.	
	Working in Radians: Note the answers in ra	-	3
	If a candidate works in radians then mark part	t (b) as above awarding the 2^{nd} A1 for b	oth awrt
	4.0 and awrt 5.4 and the B1 for awrt 4.7 or $\frac{3\pi}{2}$		
	MARKS then withhold the final bA2 mark (th		on.)
	No working: Award B1 for 270 seen withou Award M0A0M1A1 for awart 228 6 and awart		
			nσ
	Award M0A0M1A1 for awrt 228.6 and awrt 228. Award M0A0M1A0 for any one of awrt 228.	311.4 seen without any working.	ng

Question Number	Scheme	Marks
67	(a) $\tan \theta = \frac{2}{5}$ (or 0.4) (i.s.w. if a value of θ is subsequently found)	B1 (1)
	Requires the correct value with no incorrect working seen.	
	(b) awrt 21.8 (α)	B1
	(Also allow awrt 68.2, ft from $\tan \theta = \frac{5}{2}$ in (a), but no other ft)	
	(This value must be seen in part (b). It may be implied by a correct solution, e.g. 10.9)	
	180 + α (= 201.8), or 90 + ($\alpha/2$) (if division by 2 has already occurred) (α found from tan 2x = or tan x = or sin 2x = ±)	M1
	360 + α (= 381.8), or 180 + ($\alpha/2$) (α found from tan 2x = or sin 2x = or cos 2x =)	M1
	OR $540 + \alpha$ (= 561.8), or $270 + (\alpha/2)$ (α found from tan $2x =$)	
	Dividing at least one of the angles by 2 (α found from tan $2x =$ or sin $2x =$ or cos $2x =$)	M1
	x = 10.9, 100.9, 190.9, 280.9 (Allow awrt)	A1 (5) 6
<u>Comm</u> 10.9 at 10.9 at <u>Altern</u>	$2x - 5\sin 2x = 0 R\cos(2x + \lambda) = 0 \lambda = 68.2 \implies 2x + 68.2 = 90$	
		м1 м1
		M1
(ii) 25 sin	$x^{2} 2x = 4\cos^{2} 2x = 4(1 - \sin^{2} 2x)$	
The M Using B1: Ca M1: F M1: F M1: F A1: Fo (Corre	Psin ² $2x = 4$ $2x = 21.8$ B1 I marks are scored as in the main scheme, but extra solutions will be likely, lo <u>radians</u> : an be given for awrt 0.38 (β) or $\pi + \beta$ or $3\pi + \beta$ (Must now be consistently radians) or dividing at least one of the angles by 2 or this mark, the answers must be in degrees. ct) answers only (or by graphical methods): M marks can be awarded by implication, e.g. cores B1 M0 M0 M1 A0	sing the A mark.

Question Number	Scheme	Marks	
68	(a) $r\theta = 9 \times 0.7 = 6.3$ (Also allow 6.30, or awrt 6.30)	M1 A1	(2)
	(b) $\frac{1}{2}r^2\theta = \frac{1}{2} \times 81 \times 0.7 = 28.35$ (Also allow 28.3 or 28.4, or awrt 28.3 or 28.4) (Condone 28.35 ² written instead of 28.35 cm ²)	M1 A1	(2)
	(c) $\tan 0.7 = \frac{AC}{9}$ AC = 7.58 (Allow awrt) <u>NOT</u> 7.59 (see below)	M1 A1	
	(d) Area of triangle $AOC = \frac{1}{2}(9 \times \text{their } AC)$ (or other complete method)	M1	(2)
	Area of $R = "34.11" - "28.35"$ (triangle – sector) or (sector – triangle) (needs a <u>value</u> for each) = 5.76 (Allow awrt)	M1 A1	(3)
	(a) M: Use of $r\theta$ (with θ in radians), or equivalent (could be working in degrees with a correct degrees formula).		9
	(b) M: Use of $\frac{1}{2}r^2\theta$ (with θ in radians), or equivalent (could be working in degrees with a correct degrees formula).		
	(c) M: Other methods must be fully correct, e.g. $\frac{AC}{\sin 0.7} = \frac{9}{\sin(\frac{\pi}{2} - 0.7)}$		
	$(\pi - 0.7)$ instead of $\left(\frac{\pi}{2} - 0.7\right)$ here is <u>not</u> a fully correct method.		
	<u>Premature approximation (e.g. taking angle C as 0.87 radians)</u> : This will often result in loss of A marks, e.g. $AC = 7.59$ in (c) is A0.		

Question Number	Scheme	Marks
69 (a)	$5\sin x = 1 + 2(1 - \sin^2 x)$	M1
	$2\sin^2 x + 5\sin x - 3 = 0$ (*)	A1cso (2)
(b)	(2s-1)(s+3) = 0 giving $s =$	M1
	$\begin{bmatrix} \sin x = -3 \text{ has no solution} \end{bmatrix}$ so $\sin x = \frac{1}{2}$	A1
	$\therefore x = 30, 150$	B1, B1ft (4) [6]
(a) (b)	M1 for a correct method to change $\cos^2 x$ into $\sin^2 x$ (must use $\cos^2 x = 1 - \sin^2 x$) A1 need 3 term quadratic printed in any order with =0 included M1 for attempt to solve given quadratic (usual rules for solving quadratics)	
	(can use any variable here, <i>s</i> , <i>y</i> , <i>x</i> , or sin <i>x</i>) A1 requires no incorrect work seen and is for sin $x = \frac{1}{2}$ or $x = \sin^{-1}\frac{1}{2}$ $y = \frac{1}{2}$ is A0 (unless followed by $x = 30$) B1 for 30 (α) not dependent on method 2^{nd} B1 for 180 - α provided in required range (otherwise 540 - α) Extra solutions outside required range: Ignore Extra solutions inside required range: Lose final B1 Answers in radians: Lose final B1 S.C. Merely writes down two correct answers is M0A0B1B1 Or sin $x = \frac{1}{2}$ \therefore $x = 30$, 150 is M1A1B1B1 Just gives one answer : 30 only is M0A0B1B0 or 150 only is M0A0B0B1 NB Common error is to factorise wrongly giving $(2\sin x + 1)(\sin x - 3) = 0$ [sin $x = 3$ gives no solution] sin $x = -\frac{1}{2}$ \Rightarrow $x = 210, 330$ This earns M1 A0 B0 B1ft Another common error is to factorise correctly $(2\sin x - 1)(\sin x + 3) = 0$ and follow this	
	with $\sin x = \frac{1}{2}$, $\sin x = 3$ then $x = 30^{\circ}, 150^{\circ}$ This would be M1 A0 B1 B1	

Question Number	Scheme	Marks
70 (a)	Either $\frac{\sin(A\hat{C}B)}{5} = \frac{\sin 0.6}{4}$ $\therefore A\hat{C}B = \arcsin(0.7058)$ = [0.7835 or 2.358] Use angles of triangle $A\hat{B}C = \pi - 0.6 - A\hat{C}B$ (But as AC is the longest side so) $A\hat{B}C = 1.76$ (*)(3sf) [Allow 100.7° \rightarrow 1.76] In degrees $0.6 = 34.377^{\circ}$, $A\hat{C}B = 44.9^{\circ}$ or $4^2 = b^2 + 5^2 - 2 \times b \times 5 \cos 0.6$ $\therefore b = \frac{10\cos 0.6 \pm \sqrt{(100\cos^2 0.6 - 36)}}{2}$ = [6.96 or 1.29] Use sine / cosine rule with value for b $\sin B = \frac{\sin 0.6}{4} \times b \text{ or } \cos B = \frac{25 + 16 - b^2}{40}$ (But as AC is the longest side so) $A\hat{B}C = 1.76$ (*)(3sf) [Allow 100.7° \rightarrow 1.76] In degrees $0.6 = 34.377^{\circ}$, $A\hat{C}B = 44.9^{\circ}$	M1 M1 M1, A1 (4)
(b)	$\begin{bmatrix} C\hat{B}D = \pi - 1.76 = 1.38 \end{bmatrix} \text{ Sector area} = \frac{1}{2} \times 4^2 \times (\pi - 1.76) = \begin{bmatrix} 11.0 \sim 11.1 \end{bmatrix} \frac{1}{2} \times 4^2 \times 79.3 \text{ is M0}$ Area of $\triangle ABC = \frac{1}{2} \times 5 \times 4 \times \sin(1.76) = \begin{bmatrix} 9.8 \end{bmatrix} \text{ or } \frac{1}{2} \times 5 \times 4 \times \sin 101$ Required area = awrt 20.8 or 20.9 or 21.0 or gives 21 (2sf) after correct work.	M1 M1 A1 (3) [7]
(a) (b)	2^{nd} M1 for a correct expression for angle <i>ACB</i> (This mark may be implied by .7835 or by arcsin (.7058)) and needs accuracy. In second method this M1 is for correct expression for <i>b</i> – may be implied by 6.96. [Note $10 \cos 0.6 \approx 8.3$] (do not need two answers) 3^{rd} M1 for a correct method to get angle <i>ABC</i> in method (i) or sin <i>ABC</i> or cos <i>ABC</i> , in method (ii) (If sin <i>B</i> >1, can have M1A0) A1cso for correct work leading to 1.76 3sf. Do not need to see angle 0.1835 considered and rejected. 1^{st} M1 for a correct expression for sector area or a value in the range $11.0 - 11.1$ 2^{nd} M1 for a correct expression for the area of the triangle or a value of 9.8	
(a)	Special case If answer 1.76 is assumed then usual mark is M0 M0 M0 A0. A Fully checked method may M1 M1 M0 A0. A maximum of 2 marks. The mark is either 2 or 0. Either M1 for $A\hat{C}B$ is found to be 0,7816 (angles of triangle) then M1 for checking $\frac{\sin(A\hat{C}B)}{5} = \frac{\sin 0.6}{4}$ with conclusion giving numerical answers This gives a maximum mark of 2/4 OR M1 for <i>b</i> is found to be 6.97 (cosine rule) M1 for checking $\frac{\sin(ABC)}{b} = \frac{\sin 0.6}{4}$ with conclusion giving numerical answers This gives a maximum mark of 2/4 Candidates making this assumption need a complete method. They cannot earn M1M0. So the score will be 0 or 2 for part (a). Circular arguments earn 0/4.	be worth

Question Number	Scheme	Marks
71 (i)	$\tan \theta = -1 \Rightarrow \qquad \theta = -45, 135$ $\sin \theta = \frac{2}{5} \Rightarrow \qquad \theta = 23.6, 156.4 \qquad (AWRT: 24, 156)$	B1, B1ft B1, B1ft (4)
(ii)	$4\sin x = \frac{3\sin x}{\cos x}$	M1
	$4\sin x \cos x = 3\sin x \implies \sin x(4\cos x - 3) = 0$ Other possibilities (after squaring): $\sin^2 x(16\sin^2 x - 7) = 0$, $(16\cos^2 x - 9)(\cos^2 x - 1) = 0$	M1
	x = 0, 180 seen	B1, B1
	x = 41.4, 318.6 (AWRT: 41, 319)	B1, B1ft (6)
		[10]
(i) (ii)	1 st B1 for -45 seen (α, where α < 90) 2 nd B1 for 135 seen, or ft (180 + α) if α is negative, or (α - 180) if α is positive. If tan θ = k is obtained from wrong working, 2 nd B1ft is still available. 3 rd B1 for awrt 24 (β, where β < 90) 4 th B1 for awrt 156, or ft (180 - β) if β is positive, or - (180 + β) if β is negative. If sin θ = k is obtained from wrong working, 4 th B1ft is still available. 1 st M1 for use of tan $x = \frac{\sin x}{\cos x}$. Condone $\frac{3 \sin x}{3 \cos x}$. 2 nd M1 for correct work leading to 2 factors (may be implied). 1 st B1 for 0, 2 nd B1 for 180. 3 rd B1 for awrt 41 (γ, where γ < 180) 4 th B1 for awrt 319, or ft (360 - γ). If $\cos \theta = k$ is obtained from wrong working, 4 th B1ft is still available. N.B. Losing sin x = 0 usually gives a maximum of 3 marks M1M0B0B0B1B1 Alternative: (squaring both sides) 1 st M1 for reaching a factorised form. e.g. $16 \sin^2 \theta = 9(\sec^2 \theta - 1)$ 2 nd M1 for reaching a factorised form. e.g. $(16 \cos^2 \theta - 9)(\cos^2 \theta - 1) = 0$ Then marks are equivalent to the main scheme. Extra solutions, if not rejected, are pend the main scheme. For both parts of the question: Extra solutions outside required range: Ignore Extra solutions outside required range: For each <u>pair</u> of B marks, the 2 nd B mark is lost if there are two correct values and one more extra solution(s), e.g. an θ = -1 ⇒ θ = 45, -45, 135 is B1 B0 Answers in radians: Loses a maximum of 2 B marks in the whole question (to be deducted at the first and second occurrence).	

Que: Num	stion ber	Scheme	Marks	S
72	(a)	$\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times 2.2 = 39.6$ (cm ²)	M1 A1	(2)
	(b)	$\frac{1}{2}r^{2}\theta = \frac{1}{2} \times 6^{2} \times 2.2 = 39.6 (cm^{2})$ $\left(\frac{2\pi - 2.2}{2}\right) \pi - 1.1 = 2.04 (rad)$	M1 A1	(2)
		(c) $\Delta DAC = \frac{1}{2} \times 6 \times 4 \sin 2.04$ (\$\approx 10.7)	M1 A1ft	
		Total area = sector + 2 triangles = 61 (cm^2)	M1 A1	(4) [8]
	(a)	M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula.		
		A1: Does not need units. Answer should be 39.6 exactly. Answer with no working is M1 A1. This M1A1 can only be awarded in part (a).		
	(b)	M1: Needs full method to give angle in radians A1: Allow answers which round to 2.04 (Just writes 2.04 – no working i	is 2/2)	
	(C)	M1: Use $\frac{1}{2} \times 6 \times 4 \sin A$ (if any other triangle formula e.g. $\frac{1}{2}b \times h$ is used the method		
		must be complete for this mark) (No value needed for <i>A</i> , but should not be using 2.2) A1: ft the value obtained in part (b) – need not be evaluated- could be in degrees M1: Uses Total area = sector + 2 triangles or other complete method A1: Allow answers which round to 61. (Do not need units)		
		Special case degrees: Could get M0A0, M0A0, M1A1M1A0 Special case: Use $\Delta BDC - \Delta BAC$ Both areas needed for first M1 Total area = sector + area found is second M1 NB Just finding lengths BD, DC, and angle BDC then assuming area BDC if find area BDC is 0/4	is a sector t	to

Question Number	Scheme	Marks	i.
73 (a)	$4(1 - \cos^2 x) + 9\cos x - 6 = 0 \qquad 4\cos^2 x - 9\cos x + 2 = 0 $ (*)	M1 A1	(2)
(b)	$(4\cos x - 1)(\cos x - 2) = 0 \qquad \cos x =, \qquad \frac{1}{4}$	M1 A1	
	$x = 75.5 \qquad (\alpha)$	B1	
	$360 - \alpha$, $360 + \alpha$ or $720 - \alpha$ 284.5, 435.5, 644.5	M1, M1 A1	(6) [8]
(a)	M1: Uses $\sin^2 x = 1 - \cos^2 x$ (may omit bracket) not $\sin^2 x = \cos^2 x - 1$ A1: Obtains the printed answer without error – must have = 0		
(b)	 M1: Solves the quadratic with usual conventions A1: Obtains ¼ accurately- ignore extra answer 2 but penalise e.g2. B1: allow answers which round to 75.5 M1: 360-α ft their value, M1: 360+α ft their value or 720 - α ft A1: Three and only three correct exact answers in the range achieves the second secon	ne mark	
Special cases	In part (b) Error in solving quadratic (4cosx-1)(cosx+2) Could yield, M1A0B1M1M1A1 losing one mark for the error		
	Works in radians: Complete work in radians :Obtains 1.3 B0 . Then allow M1 M1 for $2\pi - \alpha$ $4\pi - \alpha$ Then gets 5.0, 7.6, 11.3 A0 so 2/4 Mixed answer 1.3, 360 – 1.3, 360 + 1.3, 720 – 1.3 still gets B0M1M1A0	α , $2\pi + \alpha$ of	or

Question number	Scheme	Marks	
74.	(a) $r\theta = 7 \times 0.8 = 5.6$ (cm) (b) $\frac{1}{2}r^2\theta = \frac{1}{2} \times 7^2 \times 0.8 = 19.6$ (cm ²)	M1 A1 M1 A1	(2) (2)
	(c) $BD^{2} = 7^{2} + (\text{their } AD)^{2} - (2 \times 7 \times (\text{their } AD) \times \cos 0.8)$ $BD^{2} = 7^{2} + 3.5^{2} - (2 \times 7 \times 3.5 \times \cos 0.8)$ (or awrt 46° for the angle) (BD = 5.21) Perimeter = (their DC) + "5.6" + "5.21" = 14.3 (cm) (Accept awrt)	M1 A1 M1 A1	(4)
	(d) $\Delta ABD = \frac{1}{2} \times 7 \times (\text{their } AD) \times \sin 0.8$ (or awrt 46° for the angle) (ft their AD) (= 8.78) (If the correct formula $\frac{1}{2}ab\sin C$ is <u>quoted</u> the use of any two of the sides of		
	ΔABD as <i>a</i> and <i>b</i> scores the M mark). Area = "19.6" – "8.78" = 10.8 (cm ²) (Accept awrt)	M1 A1	(4) 12
	Units (cm or cm ²) are not required in any of the answers. (a) and (b): Correct answers without working score both marks.		
	(a) M: Use of $r\theta$ (with θ in radians), or equivalent (could be working in degrees with a correct degrees formula).		
	(b) M: Use of $\frac{1}{2}r^2\theta$ (with θ in radians), or equivalent (could be working in degrees with a correct degrees formula).		
	 (c) 1st M: Use of the (correct) cosine rule formula to find BD² or BD. Any other methods need to be complete methods to find BD² or BD. 2nd M: Adding their DC to their arc BC and their BD. 		
	<u>Beware</u> : If 0.8 is used, but calculator is in degree mode, this can still earn M1 A1 (for the required expression), but this gives $BD = 3.50$ so the perimeter may appear as $3.5 + 5.6 + 3.5$ (earning M1 A0).		
	(d) 1 st M: Use of the (correct) area formula to find $\triangle ABD$. Any other methods need to be complete methods to find $\triangle ABD$. 2 nd M: Subtracting their $\triangle ABD$ from their sector ABC.		
	Using segment formula $\frac{1}{2}r^2(\theta - \sin\theta)$ scores no marks in part (d).		

Question number	Scheme	Marks	
<u>110</u> 11 <u>0C1</u>	(a) 45 (α)(This mark can be implied by an answer 65) $180 - \alpha$,Add 20 (for at least one angle)	B1 M1, M1	
75.	65 155	A1	(4)
	(b) 120 or 240 (β): (This mark can be implied by an answer 40 or 80) (Could be achieved by working with 60, using 180 – 60 and/or180 + 60)	B1	
	$360 - \beta$, $360 + \beta$ (or $120 + an$ angle that has been divided by 3) Dividing by 3 (for at least one angle)	M1, M1 M1	
	40 80 160 200 280 320 First A1: at least 3 correct	A1 A1	(6) 10
	(a) Extra solution(s) in range: Loses the A mark.Extra solutions outside range: Ignore (whether correct or not).Common solutions:		
	65 (only correct solution) will scoreB1 M0 M1 A0 (2 marks)65 and 115 will scoreB1 M0 M1 A0 (2 marks)		
	44.99 (or similar) for α is B0, and 64.99, 155.01 (or similar) is A0.		
	(b) Extra solution(s) in range: Loses the final A mark.Extra solutions outside range: Ignore (whether correct or not).Common solutions:		
	40 (only correct solution) will scoreB1 M0 M0 M1 A0 A0 (2 marks)40 and 80 (only correct solutions)B1 M1 M0 M1 A0 A0 (3 marks)40 and 320 (only correct solutions)B1 M0 M0 M1 A0 A0 (2 marks)		
	Answers without working: Full marks can be given (in both parts), B and M marks by implication.		
	Answers given in radians: Deduct a maximum of 2 marks (misread) from B and A marks. (Deduct these at first and second occurrence.)		
	<u>Answers that begin</u> with statements such as $sin(x-20) = sin x - sin 20$ or		
	$\cos x = -\frac{1}{6}$, then go on to find a value of ' α ' or ' β ', however badly, <u>can</u>		
	continue to earn the first M mark in either part, but will score <u>no further marks</u> .		
	<u>Possible misread</u> : $\cos 3x = \frac{1}{2}$, giving 20, 100, 140, 220, 260, 340		
	Could score up to 4 marks B0 M1 M1 M1 A0 A1 for the above answers.		

76. (a)	$3\sin^2\theta - 2\cos^2\theta = 1$	
	$3\sin^2\theta - 2(1 - \sin^2\theta) = 1$ (M1: Use of $\sin^2\theta + \cos^2\theta = 1$)	M1
	$3\sin^2\theta - 2 + 2\sin^2\theta = 1$	
	$5 \sin^2 \theta = 3$ cso AG	A1 (2)
(b)	$\sin^2\theta = \frac{3}{5}$, so $\sin\theta = (\pm)\sqrt{0.6}$	M1
	Attempt to solve both $\sin \theta = +$ and $\sin \theta = -$ (may be implied by later work) M1	
	θ = 50.7685° awrt θ = 50.8° (dependent on first M1 only)	A1
	θ (= 180° - 50.7685 _c °); = 129.23° awrt 129.2°	M1; A1 √
	[f.t. dependent on first M and 3rd M]	
	$\sin \theta = -\sqrt{0.6}$	
	θ = 230.785° and 309.23152° awrt 230.8°, 309.2° (both)	M1A1 (7)
		[9]
Notes:	 (a) N.B: AG; need to see at least one line of working after substituting cos²θ. (b) First M1: Using 5sin²θ = 3 to find value for sin θ or θ Second M1: Considering the – value for sin θ. (usually later) First A1: Given for awrt 50.8°. Not dependent on second M. Third M1: For (180 – 50.8c)°, need not see written down Final M1: Dependent on second M (but may be implied by answers) For (180 + candidate' s 50.8)° or (360 – 50.8c)° or equiv. Final A1: Requires both values. (no follow through) [Finds cos² θ = k (k = 2/5) and so cos θ = (±)M1, then mark equivalently] 	

77. C B θ° 700m 500m 15x	
77. B θ° 700m	
$B \qquad \qquad$	
B 700m	
700m	
15	
	M1 A1
(= 63851.92) BC = 253 awrt	A1 (3)
(a) $\frac{\sin B}{700} = \frac{\sin 15}{\text{candidate's } BC}$	M1
$\sin B = \sin 15 \times 700 / 253_c = 0.716$ and giving an obtuse B (134.2°) dep	M1
(b) $\theta = 180^\circ$ – candidate's angle <i>B</i> (Dep. on first M only, B can be acute) M1	
$\theta = 180 - 134.2 = (0)45.8$ (allow 46 or awrt 45.7, 45.8, 45.9)	A1 (4) [7]
[46 needs to be from correct working]	
Notes: (a) If use cos 15° =, then A1 not scored until written as BC ² = correctly	
Splitting into 2 triangles BAX and CAX, where X is foot of perp. from B to AC Finding value for BX and CX and using Pythagoras M1	
$BC^{2} = (500\sin 15^{\circ})^{2} + (700 - 500\cos 15^{\circ})^{2}$ A1	
BC = 253 awrt A1	
(b) Several alternative methods: (Showing the M marks, 3^{rd} M dep. on first M))	
(i) $\cos B = \frac{500^2 + \text{candidate's}BC^2 - 700^2}{2x500 \text{ xcandidate's}BC}$ or $700^2 = 500^2 + BC_c^2 - 2x500 xBC_c$ M1	
Finding angle B M1, then M1 as above	
(ii) 2 triangle approach, as defined in notes for (a)	
$\tan CBX = \frac{700 - value for AX}{value for BX} $ M1	
valueforBXFinding value for $\angle CBX (\approx 59^{\circ})$ M1	
$\theta = [180^{\circ} - (75^{\circ} + candidate's \angle CBX)] \qquad M1$	
(iii) Using sine rule (or cos rule) to find <i>C</i> first:Correct use of sine or cos rule for C M1, Finding value for C M1	
Either $B = 180^{\circ} - (15^{\circ} + \text{candidate's } C)$ or $\theta = (15^{\circ} + \text{candidate's } C)$ M1	
(iv) $700\cos 15^\circ = 500 + BC\cos\theta$ M2 {first two Ms earned in this case} Solving for θ ; $\theta = 45.8$ (allow 46 or 5.7, 45.8, 45.9 M1;A1	
Solving for v , $v = 45.6$ (anow 40 015.7, 45.0, 45.7 W11,A1	
	ļ

EXPERT TUITION

£

Question Number	Scheme	Marks
78(i)	$\frac{\tan 2x + \tan 32^{\circ}}{1 - \tan 2x \tan 32^{\circ}} = 5 \Longrightarrow \tan(2x + 32^{\circ}) = 5$	B1
	$\Rightarrow x = \frac{\arctan 5 - 32^{\circ}}{2}$	M1
	$\Rightarrow x = awrt 23.35^{\circ}, -66.65^{\circ}$	A1A1
(ii)(a)	$\tan(3\theta - 45^\circ) = \frac{\tan 3\theta - \tan 45^\circ}{1 + \tan 45^\circ \tan 3\theta} = \frac{\tan 3\theta - 1}{1 + \tan 3\theta}$	(4) M1A1* (2)
(b)	$(1 + \tan 3\theta)\tan(\theta + 28^\circ) = \tan 3\theta - 1$	
	$\Rightarrow \tan(\theta + 28^\circ) = \tan(3\theta - 45^\circ)$	B1
	$\theta + 28^{\circ} = 3\theta - 45^{\circ} \Longrightarrow \theta = 36.5^{\circ}$	M1A1
	$\theta + 28^{\circ} + 180^{\circ} = 3\theta - 45^{\circ} \Longrightarrow \theta = 126.5^{\circ}$	dM1A1
		(5)
		(11 marks)
78(i) ALT 1	$\frac{\tan 2x + \tan 32^{\circ}}{1 - \tan 2x \tan 32^{\circ}} = 5 \Longrightarrow \tan 2x = \frac{5 - \tan 32^{\circ}}{1 + 5 \tan 32^{\circ}} = awrt1.06$	B1
	$\Rightarrow x = \frac{\arctan\left(\frac{5 - \tan 32^{\circ}}{1 + 5\tan 32^{\circ}}\right)}{2}$	M1
	$\Rightarrow x = 23.35^{\circ}, -66.65^{\circ}$	A1A1 (4)
78(ii) ALT 2	$\frac{\tan 2x + \tan 32^{\circ}}{1 - \tan 2x \tan 32^{\circ}} = 5 \Longrightarrow \frac{2\tan x}{1 - \tan^2 x} + \tan 32^{\circ} = 5 - 5 \times \frac{2\tan x}{1 - \tan^2 x} \tan 32^{\circ}$	
	$\Rightarrow (5 - \tan 32^\circ) \tan^2 x + (2 + 10 \tan 32^\circ) \tan x + \tan 32^\circ - 5 = 0$	
	$OR \implies awrt \ 4.38 \tan^2 x + 8.25 \tan x - 4.38 = 0$	B1
	Quadratic formula $\Rightarrow \tan x = 0.4316, -2.3169 \Rightarrow x =$	M1
	$\Rightarrow x = 23.35^{\circ}, -66.65^{\circ}$	A1 A1
		(4)

(i)

B1: Stating or implying by subsequent work $tan(2x+32^\circ) = 5$

M1: Scored for the correct order of operations from $\tan(2x \pm 32^\circ) = 5$ to $x = \dots = x = \frac{\arctan 5 \pm 32^\circ}{2}$

This may be implied by one correct answer

A1: One of awrt $x = 23.3/23.4^\circ$, -66.6/-66.7° One dp accuracy required for this penultimate mark. A1: Both of $x = awrt 23.35^\circ$, -66.65° and no other solutions in the range $-90^\circ < x < 90^\circ$ Using Alt I

B1: $\tan 2x = \operatorname{awrt1.06}$

M1: For attempting to make $\tan 2x$ the subject followed by correct inverse operations to find a value for x from their $\tan 2x = k$

If they write down $tan(2x+32^\circ) = 5$ and then the answers that is fine for all 4 marks.

Answers mixing degrees and radians can only score the first B1

(ii)(a)

- **M1:** States or implies (just rhs) $\tan(3\theta 45^\circ) = \frac{\tan 3\theta \pm \tan 45^\circ}{1 \pm \tan 45^\circ \tan 3\theta}$
- A1*: Complete proof with the lhs, the correct identity $\frac{\tan 3\theta \tan 45^{\circ}}{1 + \tan 45^{\circ} \tan 3\theta}$ and either stating that $\tan 45^{\circ} = 1$ or substituting $\tan 45^{\circ} = 1$ (which may only be seen on the numerator) and proceeding to given answer. It is possible to work backwards here $\frac{\tan 3\theta - 1}{1 + \tan 3\theta} = \frac{\tan 3\theta - \tan 45^{\circ}}{1 + \tan 45^{\circ} \tan 3\theta} = \tan(3\theta - 45^{\circ})$ with M1 A1 scored at the end. Do not allow the final A1* if there are errors.

(ii)(b)

- **B1:** Uses (ii)(a) to state or imply that $\tan(\theta + 28^\circ) = \tan(3\theta 45^\circ)$ Allow this mark for $(1 + \tan 3\theta)\tan(\theta + 28^\circ) = (1 + \tan 3\theta)\tan(3\theta - 45^\circ)$
- M1: $\theta + 28^\circ = 3\theta 45^\circ \Rightarrow \theta = ...$

We have seen two incorrect methods that should be given M0.

 $\tan(\theta + 28^\circ) = \tan(3\theta - 45^\circ) \Rightarrow \tan(3\theta - 45^\circ) - \tan(\theta + 28^\circ) = 0 \Rightarrow (3\theta - 45^\circ) - (\theta + 28^\circ) = 0 \Rightarrow \theta = \dots$ and $\tan 3\theta - \tan 45^\circ = \tan \theta + \tan 28^\circ \Rightarrow 3\theta - 45^\circ = \theta + 28^\circ \Rightarrow \theta = \dots$

A1:
$$\theta = 36.5^{\circ}$$
 oe such as $\frac{75}{2}$

dM1: A correct method of finding a 2nd solution $\theta + 28^\circ + 180^\circ = 3\theta - 45^\circ \Rightarrow \theta = ..$ The previous M must have been awarded. The method may be implied by their $\theta_1 + 90^\circ$ but only if the previous M was scored.

It is an incorrect method to substitute the acute angle into one side of $\tan(\theta + 28^\circ) = \tan(3\theta - 45^\circ)$ Eg. $\tan(36.5 + 28^\circ) = \tan(3\theta - 45^\circ)$ and use trig to find another solution.

A1: $\theta = 36.5^{\circ}, 126.5^{\circ}$ oe and no other solutions in the range.

The questions states 'hence' so the minimum expected working is $\tan(\theta + 28^\circ) = \tan(3\theta - 45^\circ)$. Full marks can be awarded when this point is reached.

(ii) (b) Alternative solution using compound angles.

(ii) (b) Alternative solution using compound angles.

From the B1 mark, $\tan(\theta + 28^\circ) = \tan(3\theta - 45^\circ)$ they proceed to

$$\frac{\sin(\theta + 28^\circ)}{\cos(\theta + 28^\circ)} = \frac{\sin(3\theta - 45^\circ)}{\cos(3\theta - 45^\circ)} \Rightarrow \sin((3\theta - 45^\circ) - (\theta + 28^\circ)) = 0$$
 via the compound angle identity

So, M1 is gained for an attempt at one value for $\sin(2\theta - 73^\circ) = 0$, condoning slips and A1 for $\theta = 36.5^\circ$

.....

Question Number	Scheme	Marks
79. (a)	$R = \sqrt{5}$	B1
	$\tan \alpha = 2 \Longrightarrow \alpha = \text{awrt } 1.107$	M1A1 (3)
(b)(i)	$40+9R^2 = 85$	M1A1
(ii)	$\theta = \frac{\pi}{2} + 1.107 \Longrightarrow \theta = \text{awrt } 2.68$	B1ft
	2	(3)
(c)(i)	6	B1
(ii)	$2\theta - 1.107 = 3\pi \Longrightarrow \theta = \text{awrt } 5.27$	M1A1
		(9 marks) (3)

(a)

B1: Accept $R = \sqrt{5}$ **Do not accept** $R = \pm \sqrt{5}$

M1: For sight of $\tan \alpha = \pm 2$, $\tan \alpha = \pm \frac{1}{2}$. Condone $\sin \alpha = 2$, $\cos \alpha = 1 \Longrightarrow \tan \alpha = \frac{2}{1}$ If *R* is found first, accept $\sin \alpha = \pm \frac{2}{R}$, $\cos \alpha = \pm \frac{1}{R}$ A1: $\alpha = \text{awrt } 1.107$. The degrees equivalent 63.4° is A0.

(b)(i)

M1: Attempts $40+9R^2$ OR $40+3R^2$ using their R. Can be scored for sight of the statement $40+9R^2$

It can be done via calculus. The M mark will probably be awarded when $\left(\alpha'' - \frac{\pi}{2} \right) = -0.464$ is substituted

into $M(\theta)$

A1: 85 exactly. Without any method this scores both marks. Do not accept awrt 85. (b)(ii)

B1ft: For awrt 2.68 or $\left(\frac{\pi}{2} + \alpha^*\right)$ A simple way would be to add 1.57 to their α to 2dp

Accept awrt 153.4° for candidates who work in degrees. Follow through in degrees on $90^{\circ} + '\alpha'$ (c)(i) **B1:** 6

(c)(ii)

M1: Using $2\theta \pm 1.107' = n\pi$ where *n* is a positive integer leading to a value for θ In degrees for $2\theta \pm$ their 63.43' = 180*n* where *n* is a positive integer leading to a value for θ Another alternative is to solve $\tan 2\theta = 2$ so score for $\frac{180n + \arctan 2}{2}$ or $\frac{\pi n + \arctan 2}{2}$ A1: $\theta = \text{awrt } 5.27$ or if candidate works in degrees awrt 301.7°

Question Number	Scheme	Marks	
80.(a)	$R = \sqrt{29}$	B1	
	$\tan \alpha = \frac{2}{5} \Longrightarrow \alpha = \text{awrt } 0.381$	M1A1	
	$\cos 2x = 3$		(3)
(b)	$5 \cot 2x - 3 \csc 2x = 2 \Longrightarrow 5 \frac{\cos 2x}{\sin 2x} - \frac{3}{\sin 2x} = 2$	M1	
	\Rightarrow 5 cos 2x - 2 sin 2x = 3	A1	(2)
(c)	$5\cos 2x - 2\sin 2x = 3 \Longrightarrow \cos(2x + 0.381) = \frac{3}{\sqrt{29}}$	M1	
	$2x + 0.381 = \arccos\left(\frac{3}{\sqrt{29}}\right) \Longrightarrow x = \dots$	dM1	
	x = awrt 0.30, 2.46	A1A1	
			(4)
		(9 marks)	
Alt I (c)	$5\cos 2x - 2\sin 2x = 3 \Longrightarrow 10\cos^2 x - 5 - 4\sin x \cos x = 3$		
	$\Rightarrow 4\tan^2 x + 2\tan x - 1 = 0$	M1	
	$\Rightarrow \tan x = \frac{-1 \pm \sqrt{5}}{4} \Rightarrow x =$	dM1	
	x = awrt 0.30, 2.46	A1A1	(4)
Alt II (c)	$5\cos 2x - 2\sin 2x = 3 \Longrightarrow (5\cos 2x)^2 = (3 + 2\sin 2x)^2 \& \cos^2 2x = 1 - \sin^2 2x$		
	$\Rightarrow 29\sin^2 2x + 12\sin 2x - 16 = 0$	M1	
	$\Rightarrow \sin 2x = \frac{-12 \pm \sqrt{2000}}{58} \Rightarrow 2x = \Rightarrow x =$	dM1	
	x = awrt 0.30, 2.46	A1A1	
			(4)

(a)

B1 $R = \sqrt{29}$

Condone $R = \pm \sqrt{29}$ (Do not allow decimals for this mark Eg 5.39 but remember to isw after $\sqrt{29}$) M1 $\tan \alpha = \pm \frac{2}{5}$, $\tan \alpha = \pm \frac{5}{2} \Rightarrow \alpha = ...$

If *R* is used to find α accept $\sin \alpha = \pm \frac{2}{R}$ or $\cos \alpha = \pm \frac{5}{R} \Longrightarrow \alpha = ...$

A1 $\alpha = \text{awrt } 0.381$

M1 Replaces $\cot 2x$ by $\frac{\cos 2x}{\sin 2x}$ and $\csc 2x$ by $\frac{1}{\sin 2x}$ in the lhs Do not be concerned by the coefficients 5 and -3. Replacing $\cot 2x$ by $\frac{1}{\tan 2x}$ does not score marks until the $\tan 2x$ has been replaced by $\frac{\sin 2x}{\cos 2x}$ They may state $\times \sin 2x \Rightarrow 5\cos 2x - 3 = 2\sin 2x$ which implies this mark

A1 cso $5\cos 2x - 2\sin 2x = 3$ There is no need to state the value of 'c' The notation must be correct. They cannot mix variables within their equation

Do not accept for the final A1 $\tan 2x = \frac{\sin 2x}{\cos 2x}$ within their equations

(c)

M1 Attempts to use part (a) and (b). They must be using their *R* and
$$\alpha$$
 from part (a) and their *c* from part (b)
Accept $\cos(2x\pm'\alpha') = \frac{c'}{R'}$ Condone $\cos(\theta\pm'\alpha') = \frac{c'}{R'}$ or $\exp\cos(x\pm'\alpha') = \frac{c'}{R'}$ for the first M

dM1 Score for dealing with the cos, the α and the 2 **correctly** and in that order to reach x = ...Don't be concerned if they change the variable in the question and solve for $\theta =$ (as long as all operations have been undone). You may not see any working. It is implied by one correct answer. You may need to check with a calculator.

Eg for an incorrect $\alpha \cos(2x+1.19) = \frac{3}{\sqrt{29}} \Rightarrow x = -0.105$ would score M1 dM1 A0 A0

- A1 One solution correct, usually x = 0.3/0.30 or x = 2.46 or in degrees 17.2° or $141.(0)^{\circ}$
- A1 Both solutions correct awrt x = awrt 0.30, 2.46 and no extra values in the range. Condone candidates who write 0.3 and 2.46 without any (more accurate) answers In degrees accept awrt 1 dp 17.2°, 141.(0)° and no extra values in the range.

Special case: For candidates who are misreading the question and using their part (a) with 2 on the rhs. They will be allowed to score a maximum of SC M1 dM1 A0 A0

M1 Attempts to use part (a) with 2. They must be using their R and α from part (a)

Accept
$$\cos(2x \pm \alpha') = \frac{2}{R'}$$
 Condone $\cos(\theta \pm \alpha') = \frac{2}{R'}$ or $\exp\cos(x \pm \alpha') = \frac{2}{R'}$ for the first M

dM1 Score for dealing with the cos, the α and the 2 **correctly** and in that order to reach x = ...You may not see any working. It is implied by one correct answer. You may need to check with a calculator.

Eg for an correct
$$\alpha$$
 and $R \cos(2x+0.381) = \frac{2}{\sqrt{29}} \Rightarrow x = 0.405$

Alt to part (c)

- M1 Attempts both double angle formulae condoning sign slips on $\cos 2x$, divides by $\cos^2 x$
 - and forms a quadratic in tan by using the identity $\pm 1 \pm \tan^2 x = \sec^2 x$
- dM1 Attempts to solve their quadratic in tanx leading to a solution for x.
- A1 A1 As above

Question Number	Scheme	Marks
81(a)	$\sin 2x - \tan x = 2\sin x \cos x - \tan x$	M1
	$=\frac{2\sin x\cos^2 x}{\cos x}-\frac{\sin x}{\cos x}$	M1
	$=\frac{\sin x}{\cos x} \times (2\cos^2 x - 1)$	
	$= \tan x \cos 2x$	dM1 A1*
		(4)
(b)	$\tan x \cos 2x = 3\tan x \sin x \Longrightarrow \tan x (\cos 2x - 3\sin x) = 0$	
	$\cos 2x - 3\sin x = 0$	M1
	$\Rightarrow 1 - 2\sin^2 x - 3\sin x = 0$	M1
	$\Rightarrow 2\sin^2 x + 3\sin x - 1 = 0 \Rightarrow \sin x = \frac{-3 \pm \sqrt{17}}{4} \Rightarrow x = \dots$	M1
	Two of $x = 16.3^{\circ}, 163.7^{\circ}, 0, 180^{\circ}$	A1
	All four of $x = 16.3^{\circ}, 163.7^{\circ}, 0, 180^{\circ}$	A1
		(5)
		(9 marks)

M1 Uses a correct double angle identity involving $\sin 2x$ Accept $\sin(x+x) = \sin x \cos x + \cos x \sin x$

M1 Uses $\tan x = \frac{\sin x}{\cos x}$ with $\sin 2x = 2\sin x \cos x$ and attempts to combine the two terms using a common denominator. This can be awarded on two separate terms with a common denominator. Alternatively uses $\sin x = \tan x \cos x$ and attempts to combine two terms using factorisation of $\tan x$ dM1 Both M's must have been scored. Uses a correct double angle identity involving $\cos 2x$.

A1* A fully correct solution with no errors or omissions. All notation must be correct and variables must be consistent

Withhold this mark if for instance they write $\tan x = \frac{\sin x}{\cos x}$

If the candidate $\times \cos x$ on line 1 and/or $\div \sin x$ they cannot score any more than one mark unless they are working with both sides of the equation or it is fully explained.

(b)

M1 The tan x must be cancelled or factorised out to produce $\cos 2x - 3\sin x = 0$ or $\frac{\cos 2x}{\sin x} = 3$ oe Condone slips

M1 Uses $\cos 2x = 1 - 2\sin^2 x$ to form a 3TQ=0 in $\sin x$ The = 0 may be implied by later work

M1 Uses the formula/completion of square or GC with invsin to produce at least one value for x It may be implied by one correct value.

This mark **can** be scored from factorisation of their 3TQ in sin *x* **but only if** their quadratic factorises.

- A1 Two of $x = 0,180^\circ$, awrt 16.3°, awrt 163.7° or in radians two of awrt 0.28, 2.86, 0 and π or 3.14 This mark can be awarded as a SC for those students who just produce $0,180^\circ$ (or 0 and π) from tan x = 0 or $\sin x = 0$.
- A1 All four values in degrees $x = 0,180^\circ$, awrt 16.3°, awrt 163.7° and no extra's inside the range 0, $x < 360^\circ$. Condone 0 = 0.0 and $180^\circ = 180.0^\circ$ Ignore any roots outside range.

Alternatives to parts (a) and (b)

(a) Alt 1
$$\tan x \cos 2x = \tan x (2\cos^2 x - 1)$$

$$= 2 \tan x \cos^2 x - \tan x$$

$$= 2 \frac{\sin x}{\cos x} \cos^2 x - \tan x$$

$$= 2 \sin x \cos x - \tan x$$

$$= \sin 2x - \tan x$$

(4)

a) Alt 1 Starting from the rhs

M1 Uses a correct double angle identity for $\cos 2x$. Accept any correct version including $\cos(x+x) = \cos x \cos x - \sin x \sin x$

M1 Uses
$$\tan x = \frac{\sin x}{\cos x}$$
 with $\cos 2x = 2\cos^2 x - 1$ and attempts to multiply out the bracket

- dM1 Both M's must have been scored. It is for using $2\sin x \cos x = \sin 2x$
- A1* A fully correct solution with no errors or omissions. All notation must be correct and variables must be consistent. See Main scheme for how to deal with candidates who $\div \tan x$

(a) Alt 2	$\sin 2x - \tan x \equiv \tan x \cos 2x$	
	$2\sin x \cos x - \tan x \equiv \tan x (2\cos^2 x - 1)$	M1
	$2\sin x \cos x - \tan x \equiv 2\tan x \cos^2 x - \tan x$	
	$2\sin x \cos x \equiv 2\frac{\sin x}{\cos x} \cos^2 x$	M1
	$2\sin x \cos x \equiv 2\sin x \cos x$	dM1
	+statement that it must be true	A1*

a) Alt 2 Candidates who use both sides

M1 Uses a correct double angle identity involving $\sin 2x$ or $\cos 2x$. Can be scored from either side Accept $\sin(x+x) = \sin x \cos x + \cos x \sin x$ or $\cos(x+x) = \cos x \cos x - \sin x \sin x$

M1 Uses $\tan x = \frac{\sin x}{\cos x}$ with $\cos 2x = 2\cos^2 x - 1$ and cancels the $\tan x$ term from both sides

dM1 Uses a correct double angle identity involving $\sin 2x$ Both previous M's must have been scored

A1* A fully correct solution with no errors or omissions AND statement "hence true", "a tick", "QED". W⁵ All notation must be correct and variables must be consistent

.....

It is possible to solve part (b) without using the given identity. There are various ways of doing this, one of which is shown below.

$$\sin 2x - \tan x = 3 \tan x \sin x \implies 2 \sin x \cos x - \frac{\sin x}{\cos x} = 3 \frac{\sin x}{\cos x} \sin x$$

$$2 \sin x \cos^2 x - \sin x = 3 \sin^2 x$$

$$2 \sin x (1 - \sin^2 x) - \sin x = 3 \sin^2 x$$

$$(2 \sin^2 x + 3 \sin x - 1) \sin x = 0$$

$$x = ..$$

$$M1$$
 Solving equation to find at least one x
$$Two \text{ of } x = 16.3^\circ, 163.7^\circ, 0, 180^\circ$$
A1
All four of $x = 16.3^\circ, 163.7^\circ, 0, 180^\circ$ and no extras A1

Question	Scheme	Marks
82.(a)	$R = \sqrt{5}$	B1
	$\tan \alpha = \frac{1}{2} \Longrightarrow \alpha = 26.57^{\circ}$	M1A1
		(3)
(b)	$\frac{2}{2\cos\theta - \sin\theta - 1} = 15 \Longrightarrow \frac{2}{\sqrt{5}\cos(\theta + 26.6^\circ) - 1} = 15$	
	$\Rightarrow \cos(\theta + 26.6^\circ) = \frac{17}{15\sqrt{5}} = (awrt\ 0.507)$	M1A1
	$\theta + 26.57^{\circ} = 59.54^{\circ}$	
	$\Rightarrow \theta = awrt 33.0^{\circ} \text{ or } awrt 273.9^{\circ}$	A1
	$\theta + 26.6^{\circ} = 360^{\circ} - \text{their} 59.5^{\circ}$	dM1
	$\Rightarrow \theta = awrt \ 273.9^{\circ} \text{ and } awrt \ 33.0^{\circ}$	A1
		(5)
(c)	θ – their 26.57° = their 59.54° $\Rightarrow \theta = \dots$	M1
	$\theta = \operatorname{awrt} 86.1^{\circ}$	A1
		(2)
		(10 marks)

(b)

B1 $R = \sqrt{5}$. Condone $R = \pm \sqrt{5}$ Ignore decimals

M1
$$\tan \alpha = \pm \frac{1}{2}, \tan \alpha = \pm \frac{2}{1} \Longrightarrow \alpha = \dots$$

If their value of R is used to find the value of α only accept $\cos \alpha = \pm \frac{2}{R}$ OR $\sin \alpha = \pm \frac{1}{R} \Rightarrow \alpha = ...$

A1
$$\alpha = awrt \ 26.57$$

M1 Attempts to use part (a) $\Rightarrow \cos(\theta \pm \text{their } 26.6^\circ) = K$, |K|, 1

A1 $\cos(\theta \pm \text{their } 26.6^\circ) = \frac{17}{15\sqrt{5}} = (\text{awrt } 0.507).$ Can be implied by $(\theta \pm \text{their } 26.6^\circ) = \text{awrt } 59.5^\circ / 59.6^\circ$

- A1 One solution correct, $\theta = awrt 33.0^{\circ}$ or $\theta = awrt 273.9^{\circ}$ Do not accept 33 for 33.0.
- dM1 Obtains a second solution in the range. It is dependent upon having scored the previous M. Usually for $\theta \pm$ their 26.6° = 360° their 59.5° $\Rightarrow \theta = ...$
- A1 Both solutions $\theta = awrt 33.0^{\circ}$ and $awrt 273.9^{\circ}$. Do not accept 33 for 33.0. Extra solutions inside the range withhold this A1. Ignore solutions outside the range 0, $\theta < 360^{\circ}$
- (c)
- M1 θ their 26.57° = their 59.54° \Rightarrow θ = ...

Alternatively $-\theta$ + their 26.6° = – their 59.5° $\Rightarrow \theta$ = ...

If the candidate has an incorrect sign for α , for example they used $\cos(\theta - 26.57^\circ)$ in part (b) it would be scored for θ + their 26.57° = their 59.54° $\Rightarrow \theta = \dots$

A1 awrt 86.1° ONLY. Allow both marks following a correct (a) and (b) They can restart the question to achieve this result. Do not award if 86.1 was their smallest answer in (b). This occurs when they have $\cos(\theta - 26.57^{\circ})$ instead of $\cos(\theta + 26.57^{\circ})$ in (b)

Answers in radians: Withhold only one A mark, the first time a solution in radians appears FYI (a) $\alpha = 0.46$ (b) $\theta_1 = awrt 0.58$ and $\theta_2 = awrt 4.78$ (c) $\theta_3 = awrt 1.50$. Require 2 dp accuracy

Question	Scheme	Marks
83 (a)	$2\cot 2x + \tan x = \frac{2}{\tan 2x} + \tan x$	B1
	$\equiv \frac{(1-\tan^2 x)}{\tan x} + \frac{\tan^2 x}{\tan x}$	M1
	$\equiv \frac{1}{\tan x}$	M1
	$= \cot x$	A1*
(b)	$6 \cot 2x + 3 \tan x = \csc^2 x - 2 \Longrightarrow 3 \cot x = \csc^2 x - 2$	(4)
(0)	$\Rightarrow 3\cot x = 1 + \cot^2 x - 2$	M1
	$\Rightarrow 0 = \cot^2 x - 3 \cot x - 1$	A1
	$\Rightarrow \cot x = \frac{3 \pm \sqrt{13}}{2}$	M1
	$\Rightarrow \tan x = \frac{2}{3 \pm \sqrt{13}} \Rightarrow x =$	M1
	$\Rightarrow x = 0.294, -2.848, -1.277, 1.865$	A2,1,0
		(6) (10 marks)
83 (a)alt	$2\cot 2x + \tan x \equiv \frac{2\cos 2x}{\sin 2x} + \tan x$	B1
	$\equiv 2\frac{\cos^2 x - \sin^2 x}{2\sin x \cos x} + \frac{\sin x}{\cos x}$	M1
	$\equiv \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} + \frac{\sin^2 x}{\sin x \cos x} \equiv \frac{\cos^2 x}{\sin x \cos x}$	M1
	$\equiv \frac{\cos x}{\sin x}$	
		A1*
83 (a)alt 2	$2\cot 2x + \tan x \equiv 2\frac{(1-\tan^2 x)}{2\tan x} + \tan x$	B1M1
	$\equiv \frac{2}{2\tan x} - \frac{2\tan^2 x}{2\tan x} + \tan x \qquad \text{or } \frac{(1 - \tan^2 x) + \tan^2 x}{\tan x}$	
	$\equiv \frac{2}{2\tan x} = \cot x$	M1A1*
Alt (b)	$6\cot 2x + 3\tan x = \csc^2 x - 2 \Longrightarrow \frac{3\cos x}{\sin x} = \frac{1}{\sin^2 x} - 2$	
	$(\times \sin^2 x) \Rightarrow 3\sin x \cos x = 1 - 2\sin^2 x$	M1
	$\Rightarrow \frac{3}{2}\sin 2x = \cos 2x$	M1A1
	$\Rightarrow \tan 2x = \frac{2}{3} \Rightarrow x =$	M1
	$\Rightarrow x = 0.294, -2.848, -1.277, 1.865$	A2,1,0 (6)

- (a) States or uses the identity $2\cot 2x = \frac{2}{\tan 2x}$ or alternatively $2\cot 2x = \frac{2\cos 2x}{\sin 2x}$ **B**1 This may be implied by $2 \cot 2x = \frac{1 - \tan^2 x}{\tan x}$. Note $2 \cot 2x = \frac{1}{2 \tan 2x}$ is B0 Uses the correct double angle identity $\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$ **M**1 Alternatively uses $\sin 2x = 2\sin x \cos x$, $\cos 2x = \cos^2 x - \sin^2 x$ oe and $\tan x = \frac{\sin x}{\cos x}$ Writes their two terms with a single common denominator and simplifies to a form $\frac{ab}{cd}$. **M**1 For this to be scored the expression must be in either $\sin x$ and $\cos x$ or just $\tan x$. In alternative 2 it is for splitting the complex fraction into parts and simplifying to a form $\frac{db}{cd}$. You are awarding this for a correct method to proceed to terms like $\frac{\cos^2 x}{\sin x \cos x}$, $\frac{2\cos^3 x}{2\sin x \cos^2 x}$, $\frac{2}{2\tan x}$ cso. For proceeding to the correct answer. This is a given answer and all aspects must be correct A1* including the consistent use of variables. If the candidate approaches from both sides there must be a conclusion for this mark to be awarded. Occasionally you may see a candidate attempting to prove $\cot x - \tan x = 2 \cot 2x$. This is fine but again there needs to be a conclusion for the A1* If you are unsure of how some items should be marked then please use review (b) For using part (a) and writing $6\cot 2x + 3\tan x$ as $k\cot x$, $k \ne 0$ in their equation (or equivalent) M1WITH an attempt at using $\csc^2 x = \pm 1 \pm \cot^2 x$ to produce a quadratic equation in just $\cot x / \tan x$ $\cot^2 x - 3\cot x - 1 = 0$ The = 0 may be implied by subsequent working A1 Alternatively accept $\tan^2 x + 3\tan x - 1 = 0$ Solves a 3TQ=0 in cot x (or tan) using the formula or any suitable method for their quadratic to find at **M**1
 - M1 Solves a 3TQ=0 in $\cot x$ (or tan) using the formula or any suitable method for their quadratic to find at least one solution. Accept answers written down from a calculator. You may have to check these from an incorrect quadratic. FYI answers are $\cot x = awrt 3.30$, -0.30

Be aware that $\cot x = \frac{3 \pm \sqrt{13}}{2} \Longrightarrow \tan x = \frac{-3 \pm \sqrt{13}}{2}$

- M1 For $\tan x = \frac{1}{\cot x}$ and using arctan producing at least one answer for x in degrees or radians. You may have to check these with your calculator.
- A1 Two of x = 0.294, -2.848, -1.277, 1.865 (awrt 3dp) in radians or degrees. In degrees the answers you would accept are (awrt 2dp) $x = 16.8^{\circ}$, 106.8° , -73.2° , -163.2°
- A1 All four of x = 0.294, -2.848, -1.277, 1.865 (awrt 3 dp) with no extra solutions in the range $-\pi$, $x \times \pi$

See main scheme for Alt to (b) using Double Angle formulae still entered M A M M A A in epen

1st M1 For using part (a) and writing $6\cot 2x + 3\tan x$ as $k \cot x$, $k \ne 0$ in their equation (or equivalent)

then using $\cot x = \frac{\cos x}{\sin x}$, $\csc^2 x = \frac{1}{\sin^2 x}$ and $\times \sin^2 x$ to form an equation sin and $\cos^2 x = \frac{1}{\sin^2 x}$

1st A1 For $\frac{3}{2}\sin 2x = \cos 2x$ or equivalent. Attached to the next M

2nd M1 For using both correct double angle formula

3rd M1 For moving from $\tan 2x = C$ to x = ... using the correct order of operations.

Question Number	Scheme	Marks
84.(a)	$\tan 2\theta^\circ = \frac{2\tan\theta^\circ}{1-\tan^2\theta^\circ} = \frac{2p}{1-p^2}$ Final answer	M1A1 (2)
(b)	$\cos\theta^{\circ} = \frac{1}{\sec\theta^{\circ}} = \frac{1}{\sqrt{1+\tan^2\theta^{\circ}}} = \frac{1}{\sqrt{1+p^2}}$ Final answer	M1A1
(c)	$\cot(\theta - 45)^\circ = \frac{1}{\tan(\theta - 45)^\circ} = \frac{1 + \tan\theta^\circ \tan 45^\circ}{\tan\theta^\circ - \tan 45^\circ} = \frac{1 + p}{p - 1}$ Final answer	(2) M1A1
		(2) (6 marks)

- M1 Attempt to use the double angle formula for tangent followed by the substitution $\tan \theta = p$. For example accept $\tan 2\theta^\circ = \frac{2\tan\theta^\circ}{1\pm\tan^2\theta^\circ} = \frac{2p}{1\pm p^2}$ Condone unconventional notation such as $\tan 2\theta^\circ = \frac{2\tan\theta^\circ}{1\pm\tan\theta^{2\circ}}$ followed by an attempt to substitute $\tan \theta = p$ for the M mark. Recovery from this notation is allowed for the A1. Alternatively use $\tan(A+B) = \frac{\tan A + \tan B}{1\pm \tan A \tan B}$ with an attempt at substituting $\tan A = \tan B = p$. The unsimplified answer $\frac{p+p}{1-p\times p}$ is evidence It is possible to use $\tan 2\theta^\circ = \frac{\sin 2\theta^\circ}{\cos 2\theta^\circ} = \frac{2\sin\theta^\circ\cos\theta^\circ}{2\cos^2\theta^\circ-1} = \frac{2'}{2'}\frac{\frac{p}{\sqrt{1\pm p^2}}}{\frac{1}{1\pm p^2}}$ but it is unlikely to succeed.
- A1 Correct **simplified** answer of $\tan 2\theta^\circ = \frac{2p}{1-p^2}$ or $\frac{2p}{(1-p)(1+p)}$. Do not allow if they "simplify" to $\frac{2}{1-p}$

Allow the correct answer for both marks as long as no incorrect working is seen.

- (b)
- M1 Attempt to use **both** $\cos\theta = \frac{1}{\sec\theta}$ **and** $1 + \tan^2\theta = \sec^2\theta$ with $\tan\theta = p$ in an attempt to obtain an expression for $\cos\theta$ in terms of *p*. Condone a slip in the sign of the second identity. Evidence would be $\cos^2\theta = \frac{1}{\pm 1 \pm p^2}$

Alternatively use a triangle method, attempt Pythagoras' theorem and use $\cos \theta = \frac{adj}{hyp}$ The attempt to use Pythagoras must attempt to use the squares of the lengths.

A1 $\cos\theta^\circ = \frac{1}{\sqrt{1+p^2}}$ Accept versions such as $\cos\theta^\circ = \sqrt{\frac{1}{1+p^2}}$, $\cos\theta^\circ = \pm \frac{1}{\sqrt{1+p^2}}$

Withhold this mark if the candidate goes on to write $\cos \theta^{\circ} = \frac{1}{1+p}$

(c)

M1 Use the correct identity $\cot(\theta - 45) = \frac{1}{\tan(\theta - 45)}$ and an attempt to use the $\tan(A - B)$ formula with $A = \theta$, B = 45 and $\tan \theta = p$. For example accept an unsimplified answer such as $\frac{1}{\frac{\tan \theta \pm \tan 45}{1 \pm \tan \theta \tan 45}} = \frac{1}{\frac{p \pm \tan 45}{1 \pm p \tan 45}}$

It is possible to use $\cot(\theta - 45) = \frac{\cos(\theta - 45)}{\sin(\theta - 45)}$ and an attempt to use the formulae for $\sin(A - B)$

and
$$\cos(A-B)$$
 with $A=\theta$, $B=45 . \sin\theta = \frac{p}{\sqrt{1\pm p^2}}$ and $\cos\theta = \frac{1}{\sqrt{1\pm p^2}}$
Sight of an expression $\frac{\frac{1}{\sqrt{1\pm p^2}}\cos 45\pm \frac{p}{\sqrt{1\pm p^2}}\sin 45}{\frac{p}{\sqrt{1\pm p^2}}\cos 45\pm \frac{1}{\sqrt{1\pm p^2}}\sin 45}$ is evidence.

A1 Uses $\tan 45 = 1 \text{ or } \sin 45 = \cos 45 = \frac{\sqrt{2}}{2} oe$ and simplifies answer. Accept $\frac{1+p}{1-p}$ or $1+\frac{2}{p-1}$ Note that there is no isw in any parts of this question.

Question Number	Scheme	Marks
85(a)	$4\cos 2\theta + 2\sin 2\theta = R\cos(2\theta - \alpha)$	
	$R = \sqrt{4^2 + 2^2} = \sqrt{20} = \left(2\sqrt{5}\right)$	B1
	$\alpha = \arctan\left(\frac{1}{2}\right) = 26.565^{\circ} \dots = \text{awrt } 26.57^{\circ}$	M1A1
		(3)
(b)	$\sqrt{20}\cos(2\theta - 26.6) = 1 \Phi \cos(2\theta - 26.57) = \frac{1}{\sqrt{20}}$	M1
	$P(2\theta - 26.57) = +77.1P \theta =$	dM1
	$\theta = $ awrt 51.8°	A1
	2θ - 26.57 = '- 77.1' Φ θ = - awrt 25.3°	ddM1A1
		(5)
(c)	$k < -\sqrt{20}, k > \sqrt{20}$	B1ft either B1ft both
		(2)
		(10 marks)

You can marks parts (a) and (b) together as one.

- (a)
- B1 For $R = \sqrt{20} = 2\sqrt{5}$. Condone $R = \pm\sqrt{20}$
- M1 For $\alpha = \arctan\left(\pm\frac{1}{2}\right)$ or $\alpha = \arctan(\pm 2)$ leading to a solution of α

Condone any solutions coming from $\cos \alpha = 4$, $\sin \alpha = 2$

Condone for this mark $2\alpha = \arctan\left(\pm\frac{1}{2}\right) \Rightarrow \alpha = ..$ If *R* has been used to find α award for only $\alpha = \arccos\left(\pm\frac{4}{R'}\right)\alpha = \arcsin\left(\pm\frac{2}{R'}\right)$

A1 $\alpha = \text{awrt } 26.57^{\circ}$

- (b)
- M1 Using part (a) and proceeding as far as $\cos(2\theta \pm \text{their } 26.57) = \frac{1}{\text{their } R}$.

This may be implied by
$$(2\theta \pm \text{their } 26.57) = \arccos \underbrace{\frac{\partial \hat{U}}{\partial \hat{U}}}_{\text{their } R \to 0} \frac{\partial \hat{U}}{\partial \hat{U}}$$

Allow this mark for $\cos(\theta \pm \text{their } 26.57) = \frac{1}{\text{their } R}$

dM1 Dependent upon the first M1- it is for a correct method to find θ from their principal value Look for the correct order of operations, that is dealing with the "26.57" before the "2". Condone subtracting 26.57 instead of adding.

$$\cos(2\theta \pm \text{their } 26.57) = \dots P \quad 2\theta \pm \text{their } 26.57 = \beta P \quad \theta = \frac{\beta \pm \text{their } 26.57}{2}$$

A1 awrt $\theta = 51.8^{\circ}$

ddM1For a correct method to find a secondary value of θ in the range

Either $2\theta \pm 26.57 = -\beta' \Phi \theta = \text{OR } 2\theta \pm 26.57 = 360 - \beta' \Phi \theta = \text{THEN MINUS } 180$ A1 awrt $\theta = -25.3^{\circ}$

Withhold this mark if there are extra solutions in the range.

Radian solution: Only lose the first time it occurs.

FYI. In radians desired accuracy is awrt 2 dp (a) $\alpha = 0.46$ and (b) $\theta_1 = 0.90, \theta_2 = -0.44$ Mixing degrees and radians only scores the first M

(c)

- B1ft Follow through on their *R*. Accept decimals here including $\sqrt{20} \gg \text{awrt } 4.5$. Score for one of the ends $k \ge \sqrt{20}$, $k \le \sqrt{20}$ Condone versions such as $g(\theta) \ge \sqrt{20}$, $y \ge \sqrt{20}$ or both ends including the boundaries $k = \sqrt{20}$, $k_{y} = \sqrt{20}$
- B1 ft For both intervals in terms of *k*.

Accept $k > \sqrt{20}$ or $k < -\sqrt{20}$. Accept $|k| > \sqrt{20}$ Accept $k\hat{1}(\sqrt{20}, \underline{\Psi})(-\underline{\Psi}, -\sqrt{20})$ Condone $k > \sqrt{20}, k < -\sqrt{20}$ $k > \sqrt{20}$ and $k < -\sqrt{20}$ for both marks but $-\sqrt{20} > k > \sqrt{20}$ is B1 B0

Question Number	Scheme	Marks
86(a)	$\sec 2A + \tan 2A = \frac{1}{\cos 2A} + \frac{\sin 2A}{\cos 2A}$	B1
		M1
	$=\frac{1+2\sin A\cos A}{\cos^2 A-\sin^2 A}$	M1
	$= \frac{(\cos A + \sin A)(\cos A + \sin A)}{(\cos A + \sin A)(\cos A - \sin A)}$ $= \frac{\cos A + \sin A}{\cos A - \sin A}$	M1 A1*
(b)	$\sec 2\theta + \tan 2\theta = \frac{1}{2} \mathbf{p} \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = \frac{1}{2}$	(5
	$\oint 2\cos\theta + 2\sin\theta = \cos\theta - \sin\theta$	
	$P \tan \theta = -\frac{1}{3}$	M1 A1
	$\Phi = awrt 2.820, 5.961$	dM1A1 (4
		(9 marks)
	orrect identity for $\sec 2A = \frac{1}{\cos 2A}$ OR $\tan 2A = \frac{\sin 2A}{\cos 2A}$.	
M1 For fract	the proof and it could be implied by the sight of $\sec 2A = \frac{1}{\cos^2 A - \frac{1}{2}}$ setting their expression as a single fraction. The denominator must be correct for tions and at least two terms on the numerator. The is usually scored for $\frac{1 + \cos 2A \tan 2A}{\cos 2A}$ or $\frac{1 + \sin 2A}{\cos 2A}$	5111 21
M1 For	getting an expression in just $\sin A$ and $\cos A$ by using the double angle identities	
Alt	$2A = 2\sin A\cos A$ and $\cos 2A = \cos^2 A - \sin^2 A$, $2\cos^2 A - 1$ or $1 - 2\sin^2 A$. ternatively for getting an expression in just $\sin A$ and $\cos A$ by using the double a entities $\sin 2A = 2\sin A\cos A$ and $\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$ with $\tan A = \frac{\sin A}{\cos A}$.	ngle
Fo	r example = $\frac{1}{\cos^2 A - \sin^2 A} + \frac{\frac{2 \sin A}{\cos A}}{1 - \frac{\sin^2 A}{\cos A}}$ is B1M0M1 so far	

M1 In the main scheme it is for replacing 1 by $\cos^2 A + \sin^2 A$ and factorising both numerator and denominator

A1* Cancelling to produce given answer with no errors. Allow a consistent use of another variable such as θ , but mixing up variables will lose the A1*.

(b)

M1 For using part (a), cross multiplying, dividing by $\cos \theta$ to reach $\tan \theta = k$ Condone $\tan 2\theta = k$ for this mark only

A1 $\tan \theta = -\frac{1}{3}$

dM1 Scored for $\tan \theta = k$ leading to at least one value (with 1 dp accuracy) for θ between 0 and 2π . You may have to use a calculator to check. Allow answers in degrees for this mark.

A1 $\theta = awrt 2.820, 5.961$ with no extra solutions within the range. Condone 2.82 for 2.820. You may condone different/ mixed variables in part (b)

There are some long winded methods. Eg. M1, dM1 applied as in main scheme

$$\Rightarrow (2\cos\theta + 2\sin\theta)^{2} = (\cos\theta - \sin\theta)^{2} \Rightarrow 4 + 4\sin 2\theta = 1 - \sin 2\theta$$

$$\Rightarrow \sin 2\theta = -\frac{3}{5} \text{ is } \text{M1} (\text{ for } \sin 2\theta = k) \text{ A1}$$

$$\Rightarrow \theta = 2.820, 5.961 \text{ for } d\text{M1} (\text{for } \theta = \frac{\arcsin k}{2}) \text{ A1}$$

$$\cos\theta + 3\sin\theta = 0 \Rightarrow (\sqrt{10})\cos(\theta - 1.25) = 0 \text{ M1 for } ..\cos(\theta - \alpha) = 0, \alpha = \arctan\left(\pm\frac{3}{1}\text{ or } \pm\frac{1}{3}\right) \text{ A1}$$

$$\Rightarrow \theta = 2.820, 5.961 \text{ dM1 A1}$$

 $\cos\theta + 3\sin\theta = 0 \Rightarrow (\sqrt{10})\sin(\theta + 0.32) = 0 \text{ M1 A1}$ $\Rightarrow \theta = 2.820, 5.961 \text{ dM1 A1}$

 $\cos\theta = -3\sin\theta \Rightarrow \cos^2\theta = 9\sin^2\theta \Rightarrow \sin^2\theta = \frac{1}{10} \Rightarrow \sin\theta = (\pm)\sqrt{\frac{1}{10}} \text{ M1 A1}$ $\Rightarrow \theta = 2.820, 5.961 \text{ dM1 A1}$ $\cos\theta = -3\sin\theta \Rightarrow \cos^2\theta = 9\sin^2\theta \Rightarrow \cos^2\theta = \frac{9}{10} \Rightarrow \cos\theta = (\pm)\sqrt{\frac{9}{10}} \text{ M1 A1}$ $\Rightarrow \theta = 2.820, 5.961 \text{ dM1 A1}$

Question Number	Scheme	Marks
Alt I From RHS	$\frac{\cos A + \sin A}{\cos A - \sin A} = \frac{\cos A + \sin A}{\cos A - \sin A} \times \frac{\cos A + \sin A}{\cos A + \sin A}$ $= \frac{\cos^2 A + \sin^2 A + 2\sin A \cos A}{\underbrace{\cos^2 A - \sin^2 A}}$ $= \frac{1 + \sin 2A}{\cos 2A} \underbrace{\leftarrow}$ $= \frac{1}{\cos 2A} + \frac{\sin 2A}{\cos 2A}$ $= \sec 2A + \tan 2A$	(Pythagoras) M1 (Double Angle) M1 (Single Fraction) M1 B1(Identity), A1*
Alt II Both sides	Assume true $\sec 2A + \tan 2A = \frac{\cos A + \sin A}{\cos A - \sin A}$ $\frac{1}{\cos 2A} + \frac{\sin 2A}{\cos 2A} = \frac{\cos A + \sin A}{\cos A - \sin A}$ $\frac{1 + \sin 2A}{\cos 2A} = \frac{\cos A + \sin A}{\cos A - \sin A}$ $\frac{1 + 2\sin A \cos A}{\cos^2 A - \sin^2 A} = \frac{\cos A + \sin A}{\cos A - \sin A}$ $\times (\cos A - \sin A) \Rightarrow \frac{1 + 2\sin A \cos A}{\cos A + \sin A} = \cos A + \sin A$ $1 + 2\sin A \cos A = \cos^2 A + 2\sin A \cos A + \sin^2 A = 1 + 2\sin A \cos A$ True	B1 (identity) M1 (single fraction) M1(double angles) M1(Pythagoras)A1*
Alt 111	$\sec 2A + \tan 2A = \frac{1}{\cos 2A} + \tan 2A$ $= \frac{1}{\cos 2A} + \frac{2\tan A}{1 - \tan^2 A}$	(Identity) B1
Very difficult	$= \frac{\frac{\cos 2A + 1 - \tan^2 A}{\sin^2 A + 2\tan A \cos 2A}}{\cos 2A(1 - \tan^2 A)}$ $= \frac{1 - \tan^2 A + 2\tan A(\cos^2 A - \sin^2 A)}{(\cos^2 A - \sin^2 A)(1 - \tan^2 A)}$ $= \frac{1 - \frac{\sin^2 A}{\cos^2 A} + 2\frac{\sin A}{\cos A}(\cos^2 A - \sin^2 A)}{(\cos^2 A - \sin^2 A)\left(1 - \frac{\sin^2 A}{\cos^2 A}\right)}$	(Single fraction) M1 (Double Angle and in just sin and cos) M1
	$(\cos^{2} A - \sin^{2} A) \left[1 - \frac{\sin^{2} A}{\cos^{2} A} \right]$ $\times \cos^{2} A = \frac{\cos^{2} A - \sin^{2} A + 2\sin A \cos A (\cos^{2} A - \sin^{2} A)}{(\cos^{2} A - \sin^{2} A)(\cos^{2} A - \sin^{2} A)}$ $= \frac{(\cos^{2} A - \sin^{2} A)((\cos^{2} A - \sin^{2} A))}{(\cos^{2} A - \sin^{2} A)((\cos^{2} A - \sin^{2} A))}$ Final two marks as in main scheme	M1A1*

Question Number	Scheme	Marks
87.(a)	$\csc 2x + \cot 2x = \frac{1}{\sin 2x} + \frac{\cos 2x}{\sin 2x}$	M1
	$=\frac{1+\cos 2x}{\sin 2x}$	M1
	$=\frac{1+2\cos^2 x-1}{2\sin x\cos x}$	
	$=\frac{2\cos^2 x}{2\sin x \cos x}$	M1 A1
	$=\frac{\cos x}{\sin x}=\cot x$	A1*
	_	(5)
(b)	$\operatorname{cosec}(4\theta + 10^\circ) + \operatorname{cot}(4\theta + 10^\circ) = \sqrt{3}$	
	$\cot(2\theta \pm^{\circ}) = \sqrt{3}$	M1
	$2\theta \pm = 30^{\circ} \Longrightarrow \theta = 12.5^{\circ}$	dM1, A1
	$2\theta \pm = 180 + PV^{\circ} \Longrightarrow \theta =^{\circ}$	dM1
	$\theta = 102.5^{\circ}$	A1
		(5)
		(10 marks)

M1 Writing
$$\csc 2x = \frac{1}{\sin 2x}$$
 and $\cot 2x = \frac{\cos 2x}{\sin 2x} or \frac{1}{\tan 2x}$

M1 Writing the lhs as a single fraction $\frac{a+b}{c}$. The denominator must be correct for their terms.

M1 Uses the appropriate double angle formulae/trig identities to produce a fraction in a form containing no addition or subtraction signs. A form $\frac{p \times q}{s \times t}$ or similar

A1 A correct intermediate line. Accept $\frac{2\cos^2 x}{2\sin x \cos x}$ or $\frac{2\sin x \cos x}{2\sin x \cos x \tan x}$ or similar This cannot be scored if errors have been made

A1* Completes the proof by cancelling and using either $\frac{\cos x}{\sin x} = \cot x$ or

 $\frac{1}{\tan x} = \cot x$

The cancelling could be implied by seeing $\frac{2}{2} \frac{\cos x}{\sin x} \frac{\cos x}{\cos x} = \cot x$

The proof cannot rely on expressions like $\cot = \frac{\cos}{\sin}$ (with missing *x*'s) for the final A1

(b)

M1 Attempt to use the solution to part (a) with $2x = 4\theta + 10 \Rightarrow$ to write or imply $\cot(2\theta \pm ...^{\circ}) = \sqrt{3}$

Watch for attempts which start $\cot \alpha = \sqrt{3}$. The method mark here is not scored until the α has been replaced by $2\theta \pm ...^{\circ}$

Accept a solution from $\cot(2x \pm ...^{\circ}) = \sqrt{3}$ where θ has been replaced by another variable.

dM1 Proceeds from the previous method and uses
$$\tan ... = \frac{1}{\cot ...}$$
 and

$$\arctan\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$$
 to solve $2\theta \pm ...^{\circ} = 30^{\circ} \Rightarrow \theta = ..$

- A1 $\theta = 12.5^{\circ}$ or exact equivalent. Condone answers such as $x = 12.5^{\circ}$
- dM1 This mark is for the correct method to find a second solution to θ . It is dependent upon the first M only. Accept $2\theta \pm ... = 180 + PV^{\circ} \Longrightarrow \theta = ..^{\circ}$

A1 $\theta = 102.5^{\circ}$ or exact equivalent. Condone answers such as $x = 102.5^{\circ}$ Ignore any solutions outside the range. This mark is withheld for any extra solutions within the range.

If radians appear they could just lose the answer marks. So for example

$$2\theta \pm ... = \frac{\pi}{6} (0.524) \Longrightarrow \theta = ...$$
 is M1dM1A0 followed by
 $2\theta \pm ... = \pi + \frac{\pi}{6} \Longrightarrow \theta = ...$ dM1A0

Special case 1: For candidates in (b) who solve $\cot(4\theta \pm ...^{\circ}) = \sqrt{3}$ the mark scheme is severe, so we are awarding a special case solution, scoring 00011. $\cot(4\theta + \beta^{\circ}) = \sqrt{3} \Rightarrow 4\theta + \beta = 30^{\circ} \Rightarrow \theta = ..$ is M0M0A0 where $\beta = 5^{\circ} \text{ or } 10^{\circ}$ $\Rightarrow 4\theta + \beta = 210^{\circ} \Rightarrow \theta = ..$ can score M1A1 Special case. If $\beta = 5^{\circ}$, $\theta = 51.25$ If $\beta = 10^{\circ}$, $\theta = 50$

Special case 2: Just answers in (b) with no working scores 1 1 0 0 0 for 12.5 and 102.5 BUT $\cot(2\theta \pm 5^\circ) = \sqrt{3} \Rightarrow \theta = 12.5^\circ$, 102.5° scores all available marks.

Question Number	Scheme	Marks
87.(a)Alt 1	$\csc 2x + \cot 2x = \frac{1}{\sin 2x} + \frac{1}{\tan 2x}$	1 ST M1
	$= \frac{1}{2\sin x \cos x} + \frac{1 - \tan^2 x}{2\tan x}$ $= \frac{\tan x + (1 - \tan^2 x)\sin x \cos x}{2\sin x \cos x \tan x} \text{or} = \frac{2\tan x + 2(1 - \tan^2 x)\sin x \cos x}{4\sin x \cos x \tan x}$ $= \frac{\tan x + \sin x \cos x - \tan^2 x \sin x \cos x}{2\sin x \cos x}$	2 nd M1
	$2\sin x \cos x \tan x$ $= \frac{\tan x + \sin x \cos x - \tan x \sin^2 x}{2\sin x \cos x \tan x}$ $= \frac{\tan x (1 - \sin^2 x) + \sin x \cos x}{2\sin x \cos x \tan x}$ $= \frac{\tan x \cos^2 x + \sin x \cos x}{2\sin x \cos x \tan x}$ $= \frac{\sin x \cos x + \sin x \cos x}{2\sin x \cos x \tan x}$	
	$=\frac{2\sin x\cos x}{2\sin x\cos x\tan x}$ oe	3 rd M1A1
	$=\frac{1}{\tan x}=\cot x$	A1* (5)
87.(a)Alt 2	Example of how main scheme could work in a roundabout route $\csc 2x + \cot 2x = \cot x \Leftrightarrow \frac{1}{\sin 2x} + \frac{1}{\tan 2x} = \frac{1}{\tan x}$	1 st M1
	$\Leftrightarrow \tan 2x \tan x + \sin 2x \tan x = \sin 2x \tan 2x$	2 nd M1
	$\Leftrightarrow \frac{2\tan x}{1-\tan^2 x} \times \tan x + 2\sin x \cos x \times \frac{\sin x}{\cos x} = 2\sin x \cos x \times \frac{2\tan x}{1-\tan^2 x}$	

Question Number	Scheme	Marks
	$\Leftrightarrow \frac{2\tan^2 x}{1-\tan^2 x} + 2\sin^2 x = \frac{4\sin^2 x}{1-\tan^2 x}$ $\times (1-\tan^2 x) \Leftrightarrow 2\tan^2 x + 2\sin^2 x (1-\tan^2 x) = 4\sin^2 x$ $\Leftrightarrow 2\tan^2 x - 2\sin^2 x \tan^2 x = 2\sin^2 x$ $\Leftrightarrow 2\tan^2 x (1-\sin^2 x) = 2\sin^2 x$ $\div 2\tan^2 x \Leftrightarrow 1-\sin^2 x = \cos^2 x$ As this is true, initial statement is true	3 rd M1 A1 A1*
		(5)

Question Number	Scheme	Marks	
88.(a)	$R = \sqrt{20}$	B1	
	$\tan \alpha = \frac{4}{2} \Longrightarrow \alpha = \text{awrt } 1.107$	M1A1	
		(3))
(b)(i)	$4 + 5R^2 = 104$	B1ft	
(ii)	$3\theta - 1.107 = \frac{\pi}{2} \Longrightarrow \theta = \text{awrt } 0.89$	M1A1	
	2	(3))
(c)(i)	4	B1	
(ii)	$3\theta - 1.107 = 2\pi \Longrightarrow \theta = \text{awrt } 2.46$	M1A1	
		(3) (9 marks)	,

- Accept $R = \sqrt{20}$ or $2\sqrt{5}$ or awrt 4.47 **B**1 Do not accept $R = \pm \sqrt{20}$ This could be scored in parts (b) or (c) as long as you are certain it is Rfor sight of $\tan \alpha = \pm \frac{4}{2}$, $\tan \alpha = \pm \frac{2}{4}$. Condone $\sin \alpha = 4$, $\cos \alpha = 2 \Longrightarrow \tan \alpha = \frac{4}{2}$ M1 If R is found first only accept $\sin \alpha = \pm \frac{4}{R}$, $\cos \alpha = \pm \frac{2}{R}$ A1 α = awrt 1.107. The degrees equivalent 63.4° is A0. If a candidate does all the question in degrees they will lose just this mark. (b)(i) Either 104 or if R was incorrect allow for the numerical value of their $4+5R^2$. B1ft Allow a tolerance of 1 dp on decimal *R*'s. (b)(ii) Using $3\theta \pm \text{their '1.107'} = \frac{\pi}{2} \Longrightarrow \theta = ..$ **M**1 Accept $3\theta \pm \text{their '}1.107 = (2n+1)\frac{\pi}{2} \Rightarrow \theta = ..$ where *n* is an integer Allow slips on the lhs with an extra bracket such as $3(\theta \pm \text{their '1.107'}) = \frac{\pi}{2} \Longrightarrow \theta = ..$ The degree equivalent is acceptable 3θ – their '63.4°' = 90° $\Rightarrow \theta$ = Do not allow mixed units in this question awrt 0.89 radians or 51.1°. Do not allow multiple solutions for this mark. A1 (c)(i)**B**1 4 (c)(ii) Using $3\theta \pm$ their '1.107' = $2\pi \Rightarrow \theta = ...$ **M**1 Accept $3\theta \pm$ their '1.107' = $n\pi \Rightarrow \theta$ = ... where *n* is an integer, including 0 Allow slips on the lhs with an extra bracket such as $3(\theta \pm \text{their '}1.107 \text{'}) = 2\pi \Longrightarrow \theta = ..$ The degree equivalent is acceptable 3θ – their '63.4°' = $360^{\circ} \Rightarrow \theta$ = but
 - Do not allow mixed units in this question
- θ = awrt 2.46 radians or 141.1° Do not allow multiple solutions for this mark. A1

Question Number	Scheme	Marks
89. (i) (a) (b)	$2\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x} = \frac{5}{\sin x}$ Uses common denominator to give $2\sin^2 x - \cos^2 x = 5\cos x$ Replaces $\sin^2 x$ by $(1 - \cos^2 x)$ to give $2(1 - \cos^2 x) - \cos^2 x = 5\cos x$ Obtains $3\cos^2 x + 5\cos x - 2 = 0$ ($a = 3, b = 5, c = -2$) Solves $3\cos^2 x + 5\cos x - 2 = 0$ to give $\cos x = \cos x = \frac{1}{3}$ only (rejects $\cos x = -2$) So $x = \frac{1}{3}$ only (rejects $\cos x = -2$)	B1 M1 M1 A1 (4) M1 A1 dM1A1
(ii)	Either $\tan \theta + \cot \theta \equiv \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $\equiv \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$ $= \frac{\tan^2 \theta + 1}{\tan \theta}$	(4) B1 M1
	$\equiv \frac{2}{\sin 2\theta}$ $\equiv 2 \cos \sec 2\theta \text{ (so } \lambda = 2 \text{)}$ $\equiv \frac{1}{\cos^2 \theta \times \frac{\sin \theta}{\cos \theta}} \equiv \frac{2}{\sin 2\theta}$ $\equiv 2 \cos \sec 2\theta \text{ (so } \lambda = 2 \text{)}$	M1 A1 (4) 12 marks
	Alternatives to Main Scheme	
89. (i) (a)	$2\tan x - \frac{1}{\tan x} = \frac{5}{\sin x} \text{ does not score any marks until}$ $\times \tan x \Rightarrow 2\tan^2 x + 1 = 5\sec x$ Replaces $\tan^2 x$ by $(\sec^2 x - 1)$ to give $2(\sec x^2 - 1) + 1 = 5\sec x$ Obtains $3\cos^2 x + 5\cos x - 2 = 0$ ($a = 3, b = 5, c = -2$)	B1, M1 M1 A1 (4)
(b)	Solves $3\cos^2 x + 5\cos x - 2 = 0$ to give $\cos x =$ or $2\sec^2 x - 5\sec x - 3 = 0 \Rightarrow \sec x =$ $\cos x = \frac{1}{3}$ only (rejects $\cos x = -2$) So $x = 1.23$ or 5.05	M1 A1 dM1A1 (4)
89. (ii)	$\tan \theta + \cot \theta = \lambda \operatorname{cosec} 2\theta \Longrightarrow \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\lambda}{\sin 2\theta} = \underbrace{\lambda}_{2\sin \theta} \underbrace{\lambda}_{2} \underbrace{\lambda}$	(4) B1 M1 M1 A1 (4)

(i)(a)

B1 Uses definitions $\tan x = \frac{\sin x}{\cos x}$, $\cot x = \frac{\cos x}{\sin x}$ and $\csc x = \frac{1}{\sin x}$ to write the equation in terms of

 $\cos x$ and $\sin x$. Condone $5\csc x = \frac{1}{5\sin x}$ as the intention is clear.

Alternatively uses $\cot x = \frac{1}{\tan x}$ and $\csc x = \frac{1}{\sin x}$ to write the equation in terms of $\tan x$ and $\sin x$

This may be implied by later work that achieves $A \tan^2 x \pm B = C \sec x$

M1 Either uses common denominator and cross multiples, or multiplies each term by $\sin x \cos x$ to achieve an equation of the form equivalent to $A \sin^2 x \pm B \cos^2 x = C \cos x$. It may be seen on the numerator of a fraction

Alternatively multiplies by $\tan x$ to achieve $A \tan^2 x \pm B = C \sec x$

- M1 Uses a correct Pythagorean relationship, usually $\sin^2 x = 1 \cos^2 x$ to form a quadratic equation in terms of $\cos x$. In the alternative uses $\tan^2 x = \sec^2 x 1$ to form a quadratic in sec *x*, followed by $\sec x = \frac{1}{\cos x}$ to form a quadratic equation in terms of $\cos x$
- A1 Obtains $\pm K(3\cos^2 x + 5\cos x 2) = 0$ (*a*=3, *b*=5, *c*=-2)

(i)(b)

- M1 Uses a standard method to solve their quadratic equation in $\cos x$ from (i)(a) **OR** secx from an earlier line in (a) See General Principles for Core Mathematics on how to solve quadratics
- A1 $\cos x = \frac{1}{3}$ only Do not need to see -2 rejected
- dM1 Uses arcos on their value to obtain at least one answer. It is dependent upon the previous M. It may be implied by one correct answer
- A1 Both values correct awrt 3sf x = 1.23 and 5.05. Ignore any solutions outside the range. Any extra solutions in the range will score A0. Answers in degrees will score A0.
- **(ii)**
- B1 Uses a definition of cot with matching expression for tan. Acceptable answers are

$$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}, \frac{\sin\theta}{\cos\theta} + \frac{1}{\frac{\sin\theta}{\cos\theta}}, \tan\theta + \frac{1}{\tan\theta}.$$
 Condone a miscopy on the sign. Eg Allow $\tan\theta - \frac{1}{\tan\theta}$

- M1 Uses common denominator, writing their expression as a single fraction. In the examples given above, example 2 would need to be inverted. The denominator has to be correct and one of the terms must be adapted.
- M1 Uses identities $\sin^2 \theta + \cos^2 \theta = 1$ and $\sin 2\theta = 2\sin \theta \cos \theta$ specifically to achieve an expression of the form $\frac{\lambda}{\sin 2\theta}$

Alternatively uses $1 + \tan^2 \theta = \sec^2 \theta = \frac{1}{\cos^2 \theta}$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sin 2\theta = 2\sin \theta \cos \theta$ specifically to achieve an

expression of the form $\frac{\lambda}{\sin 2\theta}$. A line of $\frac{1}{\sin \theta \cos \theta}$ achieved on the lhs followed by $\lambda = \frac{1}{2}$ or 2 would imply this mark A1 Achieves printed answer with no errors.

All Achieves printed answer with no errors.

Allow for a different variable as long as it is used consistently.

Question Number	Scheme	Marks
90. (a)	$R = \sqrt{6^2 + 2.5^2} = 6.5$	B1
	$\tan \alpha = \frac{2.5}{6}, \Rightarrow \alpha = \text{awrt } 0.395$	M1A1
(b)	(0,6), awrt (1.97,0) (5.11,0)	B1 M1A1 (1
(c)	$H_{\rm max} = 18.5, H_{\rm min} = 5.5$	M1A1A1
(d)	Sub $H = 16$ and proceed to $6.5 \cos\left(\frac{2\pi t}{52} \pm 0.395\right) = 4$	M1
	$\left(\frac{2\pi t}{52} - 0.395'\right) = \operatorname{awrt} 0.91$	A1
	$t = (awrt 0.908 \pm '0.395') \times \frac{52}{2\pi} = 11 \ (10.78)$	dM1A1
	$\left(\frac{2\pi t}{52} \pm 0.395'\right) = awrt 2\pi - 0.908 \Longrightarrow t = 48 (47.75)$	ddM1A1
		((15 mark

B1
$$R = 6.50, \frac{13}{2}$$
. Accept $R =$ awrt 6.50. Do not accept $R = \pm 6.50$

M1 For reaching $\tan \alpha = \pm \frac{2.5}{6}$ or $\tan \alpha = \pm \frac{6}{2.5}$.

If R has been attempted first then only accept $\sin \alpha = \pm \frac{2.5}{R'}$ or $\cos \alpha = \pm \frac{6}{R'}$

A1 Correct value $\alpha = awrt \ 0.395$. The answer in degrees 22.6° is A0

- (b)
- B1 The correct y intercept. Accept y = 6, (0,6), awrt y = 6.00, f(0) = 6 or it marked on the curve. Do not accept (6,0)
- M1 Attempt to find either x intercept from $\frac{\pi}{2}$ + their 0.395, or $\frac{3\pi}{2}$ + their 0.395 If the candidate is working in degrees accept 90 + their 22.6 or 270 + their 22.6 One answer correct will imply this.
- A1 Both answers correct. Accept awrt (1.97,0) and (5.11,0), Accept x = 1.97 and x = 5.11 or both being marked on the curve. Do not accept (0,1.97) and (0,5.11) for both marks In degrees accept (112.6,0) and (292.6,0)

(c)

- M1 Attempts either 12 + R' OR 12 R'
- A1 Either of 18.5 or 5.5. Accept one of these for two marks
- A1 Both 18.5 and 5.5.

Accept for 3 marks answers just written down with limited or no working.

Attempted answers via differentiation will be few and far between but can score 3 marks.

M1 Differentiates to
$$H' = \pm A \sin\left(\frac{2\pi t}{52}\right) \pm B \cos\left(\frac{2\pi t}{52}\right)$$
, followed by $H' = 0$
 $\Rightarrow \tan\left(\frac{2\pi t}{52}\right) = \left(\frac{5}{12}\right) \Rightarrow t = \text{awrt } 3.2.., 29.2...$

For the M to be scored they need to sub one value of t (which may not be correct) into H =

- A1 Either of 18.5 or 5.5. A 1 Both 18.5 and 5.5.
- (d)

M1 Substitutes H = 16 into the equation for H and proceeds to $(6.5)\cos\left(\frac{2\pi t}{52} \pm (0.395)\right) = 4$

Accept for this mark $(6.5)\cos(x \pm 0.395) = 4$

A1 A correct intermediate line, which may be implied by a correct final answer. Follow through on their numerical value of α

Accept in terms of 't'
$$\left(\frac{2\pi t}{52} - 0.395'\right) = awrt 0.91$$
 or in terms of 'x' $(x - 0.395') = awrt 0.91$
Accept in terms of 't' $\left(\frac{2\pi t}{52} - 0.395'\right) = \operatorname{invc} \operatorname{os} \frac{4}{6.5}$

dM1 A full method to find one value of t. It is dependent upon the previous M mark having been awarded.

Accept
$$t = (their \, 0.908 \pm '0.395') \times \frac{52}{2\pi}$$
.

Don't be overly concerned with the mechanics of this but the '0.395' the 2π and the 52 must have been used to find *t*.

- A1 One correct value of *t* with a correct solution. Both M's must have been scored. Accept awrt 10.7/10.8 or 11 or 47.7/47.8 or 48.
- ddM1 A full method to find a secondary value of t. It is dependent upon both previous M's.

$$\left(\frac{2\pi t}{52} \pm their' 0.395'\right) = awrt \, 2\pi - their \, 0.91 \Longrightarrow t = ..$$

Don't be overly concerned with the mechanics of this but the '0.395' the 2π and the 52 must have been used to find *t*.

A1 Accept 11 and 48 coming from awrt 10.8/10.7 and 47.7/47.8. Both values of *t* need to be correct and have been rounded from *t* values that were correct to 1 dp. The intermediate values can be implied by seeing the whole calculation as written out in the mark scheme

Answers obtained by graphical or numerical means are not acceptable.

Answers obtained from degrees are perfectly acceptable only if degrees were used throughout (d) with π , being replaced by 180° in the formula and the answers in degrees converted back to radians at the end. Mixed units can only score the first M1A1

$$6.5\cos\left(\frac{2\pi t}{52} - 22.6'\right) = 4 \Longrightarrow \left(\frac{2\pi t}{52} - 22.6'\right) = awrt\,52.0$$

Question Number	Scheme	Marks
91(a)	$2\cos x\cos 50 - 2\sin x\sin 50 = \sin x\cos 40 + \cos x\sin 40$	M1
	$\sin x(\cos 40 + 2\sin 50) = \cos x(2\cos 50 - \sin 40)$	
	$\div \cos x \Longrightarrow \tan x(\cos 40 + 2\sin 50) = 2\cos 50 - \sin 40$	M1
	$\tan x = \frac{2\cos 50 - \sin 40}{\cos 40 + 2\sin 50}, \qquad \text{(or numerical answer awrt 0.28)}$	A1
	States or uses $\cos 50 = \sin 40$ and $\cos 40 = \sin 50$ and so $\tan x^\circ = \frac{1}{3} \tan 40^\circ *$ cao	A1 * (4)
(b)	Deduces $\tan 2\theta = \frac{1}{3}\tan 40$	M1
	$2\theta = 15.6$ so $\theta = \text{ awrt } 7.8(1)$ One answer	A1
	Also $2\theta = 195.6, 375.6, 555.6 \Rightarrow \theta =$	M1
	$\theta = $ awrt 7.8 , 97.8, 187.8, 277.8 All 4 answers	A1
		(4)
		[8 marks]
Alt 1 91(a)	$2\cos x\cos 50 - 2\sin x\sin 50 = \sin x\cos 40 + \cos x\sin 40$	M1
	$2\cos x\sin 40 - 2\sin x\cos 40 = \sin x\cos 40 + \cos x\sin 40$	
	$\div \cos x \Longrightarrow 2\sin 40 - 2\tan x \cos 40 = \tan x \cos 40 + \sin 40$	M1
	$\tan x = \frac{\sin 40}{3\cos 40} (\text{ or numerical answer awrt } 0.28), \implies \tan x = \frac{1}{3} \tan 40$	A1,A1
Alt 2	$2\cos(x+50) = \sin(x+40) \Longrightarrow 2\sin(40-x) = \sin(x+40)$	
91(a)	$2\cos x\sin 40 - 2\sin x\cos 40 = \sin x\cos 40 + \cos x\sin 40$	M1
	$\div \cos x \Longrightarrow 2\sin 40 - 2\tan x \cos 40 = \tan x \cos 40 + \sin 40$	M1
	$\tan x = \frac{\sin 40}{3\cos 40} (\text{ or numerical answer awrt } 0.28), \implies \tan x = \frac{1}{3}\tan 40$	A1,A1

	Notes for Question 91
(a)	
M1	Expand both expressions using $\cos(x+50) = \cos x \cos 50 - \sin x \sin 50$ and
	$\sin(x+40) = \sin x \cos 40 + \cos x \sin 40$. Condone a missing bracket on the lhs.
	The terms of the expansions must be correct as these are given identities. You may condone a sign error
	on one of the expressions.
	Allow if written separately and not in a connected equation.
M1	Divide by $\cos x$ to reach an equation in $\tan x$.
	Below is an example of M1M1 with incorrect sign on left hand side
	$2\cos x\cos 50 + 2\sin x\sin 50 = \sin x\cos 40 + \cos x\sin 40$
	$\Rightarrow 2\cos 50 + 2\tan x \sin 50 = \tan x \cos 40 + \sin 40$
	This is independent of the first mark.
	$\tan x = \frac{2\cos 50 - \sin 40}{\cos 40 + 2\sin 50}$
A1	$\tan x = \frac{1}{\cos 40 + 2\sin 50}$
	Accept for this mark $\tan x = \operatorname{awrt} 0.28$ as long as M1M1 has been achieved.
A1*	States or uses cos50=sin40 and cos40=sin50 leading to showing
	$\tan x = \frac{2\cos 50 - \sin 40}{\cos 40 + 2\sin 50} = \frac{\sin 40}{3\cos 40} = \frac{1}{3}\tan 40$
	This is a given answer and all steps above must be shown. The line above is acceptable.
	Do not allow from $\tan x = \text{awrt } 0.28$
(b)	
M1	For linking part (a) with (b). Award for writing $\tan 2\theta = \frac{1}{3} \tan 40$
A1	Solves to find one solution of θ which is usually (awrt) 7.8
M1	Uses the correct method to find at least another value of $ heta$. It must be a full method but can be implied
by an	y correct answer.
	$180 \pm their \alpha$ $360 \pm their \alpha$ $540 \pm their \alpha$
	Accept $\theta = \frac{180 + their\alpha}{2}$, $(or)\frac{360 + their\alpha}{2}$, $(or)\frac{540 + their\alpha}{2}$
A1	Obtains all four answers awrt 1dp. θ = 7.8, 97.8, 187.8, 277.8.
	Ignore any extra solutions outside the range.
	Withhold this mark for extras inside the range.
	Condone a different variable. Accept $x = 7.8, 97.8, 187.8, 277.8$
Answ	ers fully given in radians, loses the first A mark.
	otable answers in rads are awrt 0.136, 1.71, 3.28, 4.85
· · ·	

Mixed units can only score the first M 1

Question Number	Scheme	Marks
92(a)	$R = \sqrt{\left(7^2 + 24^2\right)} = 25$	B1
	$\tan \alpha = \frac{24}{7}, \implies \alpha = \operatorname{awrt} 73.74^{\circ}$	M1A1
(b)	maximum value of $24\sin x + 7\cos x = 25$ so $V_{\min} = \frac{21}{25} = (0.84)$	(3) M1A1 (2)
(c)	Distance $AB = \frac{7}{\sin \theta}$, with $\theta = \alpha$	M1, B1
	So distance = 7.29m = $\frac{175}{24}$ m	A1
(d)	$R\cos(\theta - \alpha) = \frac{21}{1.68} \Longrightarrow \cos(\theta - \alpha) = 0.5$	(3) M1, A1
	$\theta - \alpha = 60 \Longrightarrow \theta = \dots, \theta - \alpha = -60 \Longrightarrow \theta = \dots$	dM1, dM1
	$\theta = $ awrt 133.7, 13.7	A1, A1 (6)
	Notes for Question 92	(14 marks)
M1 For	Accept 25.0 but not $\sqrt{625}$ or answers that are not exactly 25. Eg 25.0001 $\tan \alpha = \pm \frac{24}{7}$, $\tan \alpha = \pm \frac{7}{24}$. the value of R is used only accept $\sin \alpha = \pm \frac{24}{R}$, $\cos \alpha = \pm \frac{7}{R}$	
A1 Act	cept answers which round to 73.74 – must be in degrees for this mark	
M1 Ca	Calculates $V = \frac{21}{their'R'}$ NOT - R	
A1 Ot	Obtains correct answer. $V = \frac{21}{25}$ Accept 0.84	
	not accept if you see incorrect working- ie from $\cos(\theta - \alpha) = -1$ or the minus just divious line.	sappearing from a
Questions i	nvolving differentiation are acceptable. To score M1 the candidate would have to dift trule (or similar), set $V=0$ to find θ and then sub this back into V to find its value.	ferentiate V by

	Notes for Question 92 Continued
(c)	
M1	Uses the trig equation $\sin \theta = \frac{7}{AB}$ with a numerical θ to find $AB =$
B1	Uses θ = their value of α in a trig calculation involving sin. (sin $\alpha = \frac{AB}{7}$ is condoned)
A1	Obtains answer $\frac{175}{24}$ or awrt 7.29
(d)	
M1	Substitutes $V = 1.68$ and their answer to part (a) in $V = \frac{21}{24\sin\theta + 7\cos\theta}$ to get an equation
	of the form $R\cos(\theta \pm \alpha) = \frac{21}{1.68}$ or $1.68R\cos(\theta \pm \alpha) = 21$ or $\cos(\theta \pm \alpha) = \frac{21}{1.68R}$.
	Follow through on their R and α
A1	Obtains $\cos(\theta \pm \alpha) = 0.5$ oe. Follow through on their α . It may be implied by later working.
dM1	Obtains one value of θ in the range $0 < \theta < 150$ from inverse cos +their α
	It is dependent upon the first M being scored.
dM1	Obtains second angle of θ in the range $0 < \theta < 150$ from inverse cos +their α
	It is dependent upon the first M being scored.
A1	one correct answer awrt $\theta = 133.7 or 13.7 1 dp$
A1	both correct answers awrt $\theta = 133.7$ and 13.7 ldp.
Extra so	plutions in the range loses the last A1.
	rs in radians, lose the first time it occurs. Answers must be to 3dp
For you	ar info $\alpha = 1.287, \theta_1 = 2.334, \theta_2 = 0.240$

Question Number	Scheme	Marks
93.	(a) $\cot 40^{\circ} = \frac{1}{\tan 40^{\circ}} = \frac{1}{p}$	B1 (1)
	(b) Attempts to use $1 + \tan^2 40^0 = \sec^2 40^0$	M1
	$\Rightarrow \sec 40^{\circ} = \sqrt{(1+p^2)}$	A1
		(2)
	(c) Attempts to use $\tan 85^\circ = \tan(45^\circ + 40^\circ) = \frac{\tan 45^\circ + \tan 40^\circ}{1 - \tan 45^\circ \tan 40^\circ}$	M1
	$\Rightarrow \tan 85^{\circ} = \frac{1+p}{1-p}$	A1
		(2)
		(5 marks)

Question Number	Scheme	Marks
94.	(a) $\frac{\cos x}{1-\sin x} + \frac{1-\sin x}{\cos x} = \frac{\cos x \cos x + (1-\sin x)(1-\sin x)}{(1-\sin x)\cos x}$ $= \frac{\cos^2 x + \sin^2 x + 1 - 2\sin x}{(1-\sin x)\cos x}$	M1A1
	$(1-\sin x)\cos x$ $=\frac{2-2\sin x}{(1-\sin x)\cos x}$ $=\frac{2(1-\sin x)}{(1-\sin x)\cos x}$	M1
	$=\frac{2}{\cos x}=2\sec x$	A1*
		(4)
	(b) $\frac{\cos x}{1-\sin x} + \frac{1-\sin x}{\cos x} = 8\sin x$ $2\sec x = 8\sin x$	
	$1 = 4\sin x \cos x \qquad \qquad a\sin x \cos x = b$	M1
	$\sin 2x = \frac{1}{2} \qquad \qquad$	M1
	$x = \frac{1}{2} \arcsin(\frac{1}{2}) = \frac{\pi}{12}$	M1,A1
		(4)
		(8 marks)

Question Number	Scheme	Marks
95.	(a) $9\cos\theta - 2\sin\theta = R\cos(\theta + \alpha)$	
	$R = \sqrt{(9^2 + 2^2)} = \sqrt{85}$	B1
	$\alpha = \arctan(\frac{2}{9}) = 0.21866 = awrt \ 0.2187$	M1A1
		(3)
	(b) (i) $\sqrt{85}$	B1√
	(ii) $\theta + \alpha = 2\pi \Longrightarrow \theta = \text{awrt } 6.06 \text{ 2dp}$	M1A1
		(3)
	(c) Seeing (or implied by their working)	
	$H = 10 - R\cos(\frac{\pi t}{5} + \alpha)$ for their R and α	M1
	$H_{\rm max} = 10 + their R = 10 + \sqrt{85}$ (=19.22m)	A1√
	Maximum occurs when $\cos(\frac{\pi t}{5} + \alpha) = -1$ or $(\frac{\pi t}{5} + \alpha) = \pi$	M1
	<i>t</i> = awrt 4.65	A1
		(4)
	(d) Setting and solving $\frac{\pi t}{5} = 2\pi$ (for 1 cycle) or $\frac{\pi t}{5} = 4\pi$ (for 2 cycles)	M1
	Two revolutions $= 20$ minutes	A1
		(2)
		(12 marks)

Question Number	Scheme	Marks
96.(a)	$7\cos x + \sin x = R\cos(x - \alpha)$	
	$R = \sqrt{(7^2 + 1^2)} = \sqrt{50} = (5\sqrt{2})$	B1
	$\alpha = \arctan\left(\frac{1}{7}\right) = 8.13 = \text{awrt } 8.1^{\circ}$	M1A1
		(3)
(b)	$\sqrt{50}\cos(x-8.1) = 5 \Longrightarrow \cos(x-8.1) = \frac{5}{\sqrt{50}}$	M1
	$x - 8.1 = 45 \Longrightarrow x = 53.1^{\circ}$	M1,A1
	AND $x-8.1=315 \Rightarrow x=323.1^{\circ}$	M1A1
		(5)
(c)	One solution if $\frac{k}{\sqrt{50}} = \pm 1, \Rightarrow k = \pm \sqrt{50}$ ft on R	M1A1ft
		(2)
		(10 marks)

Notes for Question 96		
(a)		
B1	$R = \sqrt{50}$. Accept $5\sqrt{2}$ Accept $R = \pm\sqrt{50}$	
	Do not accept $R = \sqrt{(7^2 + 1^2)}$ or the decimal equivalent 7.07unless you see $\sqrt{50}$ or $5\sqrt{2}$ as well	
M1	For $\tan \alpha = \pm \frac{1}{7}$ or $\tan \alpha = \pm \frac{7}{1}$. Condone if this comes from $\cos \alpha = 7$, $\sin \alpha = 1$	
	If <i>R</i> is used then only accept $\sin \alpha = \pm \frac{1}{R}$ or $\cos \alpha = \pm \frac{7}{R}$	
A1	$\alpha = $ awrt 8.1.	
	Be aware that $\tan \alpha = 7 \Rightarrow \alpha = 81.9$ can easily be mistaken for the correct answer Note that the radian answer awrt 0.1418 is A0	
(b)	F	
M1	For using their answers to part (a) and moving from $R\cos(x \pm \alpha) = 5 \Rightarrow \cos(x \pm \alpha) = \frac{5}{R}$ using their	
numer	ical values of <i>R</i> and α This may be implied for sight of 53.1 if <i>R</i> and α were correct	
M1	For achieving $x \pm \alpha = a \operatorname{wrt} 45^\circ$ or 315, leading to one value of <i>x</i> in the range Note that for this to be scored <i>R</i> has to be correct (to 2sf) as awrt 45, 315 must be achieved This may be implied for achieving an answer of either $45 + their \alpha$ or $315 + their \alpha$	
A1	One correct answer, either awrt 53.1° or 323.1°	
M1	For an attempt at finding a secondary value of x in the range. Usually this is an attempt at solving $x - their \ 8.1^0 = 360^0 - their \ 45^0 \Rightarrow x =$	
A1 (c)	Both values correct awrt 53.1° and 323.1°. Withhold this mark if there are extra values in the range. Ignore extra values outside the range	
M1	For stating that $\frac{k}{their R} = 1$ OR $\frac{k}{their R} = -1$	
	This may be implied by seeing $k = (\pm)their R$	
A1ft	Both values $k = \pm \sqrt{50}$ oe . Follow through on their numerical R	
Answe	ers all in radians. Lose the first time that it appears but demand an accuracy of 2dp.	
Part (a	$R = \sqrt{50} \alpha = awrt \ 0.14$	
Part (b	$x = awrt \ 0.927, \ 5.64$. Accuracy must be to 3 sf.	
With c	correct working this would score (a) B1M1A0 (b) M1A1A1M1A1	
Mixed	degrees and radians refer to the main scheme	

Question Number	Scheme	Marks
97.	(a) $R^2 = 6^2 + 8^2 \Longrightarrow R = 10$	M1A1
	$\tan \alpha = \frac{8}{6} \Longrightarrow \alpha = \text{awrt } 0.927$	M1A1
	Ŭ	(4)
	(b)(i) $p(x) = \frac{4}{12 + 10\cos(\theta - 0.927)}$	
	$p(x) = \frac{4}{12 - 10}$	M1
	Maximum $= 2$	A1
	(b)(ii) $\theta - 'their \alpha' = \pi$	(2) M1
	$\theta = $ awrt 4.07	A1
		(2) (8 marks)

- (a) M1 Using Pythagoras' Theorem with 6 and 8 to find *R*. Accept $R^2 = 6^2 + 8^2$ If α has been found first accept $R = \pm \frac{8}{\sin'\alpha'}$ or $R = \pm \frac{6}{\cos'\alpha'}$
 - A1 R = 10. Many candidates will just write this down which is fine for the 2 marks. Accept ± 10 but not -10
 - M1 For $\tan \alpha = \pm \frac{8}{6}$ or $\tan \alpha = \pm \frac{6}{8}$

If *R* is used then only accept $\sin \alpha = \pm \frac{8}{R}$ or $\cos \alpha = \pm \frac{6}{R}$

- A1 $\alpha =$ awrt 0.927 . Note that 53.1° is A0
- (b) Note that (b)(i) and (b)(ii) can be marked together
- (i) M1 Award for $p(x) = \frac{4}{12 R'}$.
 - A1 Cao $p(x)_{max} = 2$. The answer is acceptable for both marks as long as no incorrect working is seen
- (ii) M1 For setting $\theta 'their \alpha ' = \pi$ and proceeding to $\theta = ..$ If working exclusively in degrees accept $\theta - 'their \alpha ' = 180$ Do not accept mixed units
 - A1 θ = awrt 4.07. If the final A mark in part (a) is lost for 53.1, then accept awrt 233.1

Question Number	Scheme	Marks
98.	(i) $(\sin 22.5 + \cos 22.5)^2 = \sin^2 22.5 + \cos^2 22.5 + \dots$	M1
201	$= \sin^2 22.5 + \cos^2 22.5 + 2\sin 22.5 \cos 22.5$	
	States or uses $\sin^2 22.5 + \cos^2 22.5 = 1$	B1
	Uses $2\sin x \cos x = \sin 2x \implies 2\sin 22.5 \cos 22.5 = \sin 45$	M1
	$(\sin 22.5 + \cos 22.5)^2 = 1 + \sin 45$	A1
	$=1+\frac{\sqrt{2}}{2} \text{ or } 1+\frac{1}{\sqrt{2}}$ cso	A1
		(5)
	(ii) (a) $\cos 2\theta + \sin \theta = 1 \Longrightarrow 1 - 2\sin^2 \theta + \sin \theta = 1$	M1
	$\sin\theta - 2\sin^2\theta = 0$	
	$2\sin^2\theta - \sin\theta = 0$ or $k = 2$	A1*
		(2)
	(b) $\sin\theta(2\sin\theta-1)=0$	M1
	$\sin \theta = 0, \sin \theta = \frac{1}{2}$	A1
	Any two of 0,30,150,180	B1
	All four answers 0,30,150,180	A1
		(4)
		(11 marks)
M1	Attempts to expand $(\sin 22.5 + \cos 22.5)^2$. Award if you see $\sin^2 22.5 + \cos^2 2$. There must be > two terms. Condone missing brackets ie $\sin 22.5^2 + \cos 22$.	
	Note that this may also come from using the double angle formula $\sin^2 22.5 + \cos^2 22.5 = (\frac{1 - \cos 45}{2}) + (\frac{1 + \cos 45}{2}) = 1$	
M1 A1	Uses $2\sin x \cos x = \sin 2x$ to write $2\sin 22.5 \cos 22.5 \operatorname{as} \sin 45$ or $\sin(2 \times 22.5)$ Reaching the intermediate answer $1 + \sin 45$	
A1	$\operatorname{Csol} + \frac{\sqrt{2}}{2}$ or $1 + \frac{1}{\sqrt{2}}$. Be aware that both 1.707 and $\frac{2 + \sqrt{2}}{2}$ can be found by	y using a calcula
	for 1+sin45. Neither can be accepted on their own without firstly seeing one given above. Each stage should be shown as required by the mark schemer schemer states are shown as required by the mark schemer states are shown as required by the mark schemer states are specified as the states are specified as the states are specified as the specifi	
	Note that if the candidates use $(\sin \theta + \cos \theta)^2$ they can pick up the first M as	
	others until they use $\theta = 22.5$. All other marks then become available.	
) M1	Substitutes $\cos 2\theta = 1 - 2\sin^2 \theta$ in $\cos 2\theta + \sin \theta = 1$ to produce an equation in	$\sin\theta$ only.
,	It is acceptable to use $\cos 2\theta = 2\cos^2 \theta - 1 \operatorname{or} \cos^2 \theta - \sin^2 \theta$ as long as the co	$e^{2}\theta$ is
	subsequently replaced by $1 - \sin^2 \theta$	
A1*	Obtains the correct simplified equation in $\sin \theta$.	
	$\sin\theta - 2\sin^2\theta = 0$ or $\sin\theta = 2\sin^2\theta$ must be written in the form $2\sin^2\theta - \sin\theta$	$\theta = 0$ as required b
	the question. Also accept $k = 2$ as long as no incorrect working is seen.	1
) M1	Factorises or divides by $\sin \theta$. For this mark $1 = k' \sin \theta$ is acceptable. If they $\sin \theta$ this can be scored for correct factorisation	have a 3 TQ in
A1	Both $\sin \theta = 0$, and $\sin \theta = \frac{1}{2}$	
B1	Any two answers from $0, 30, 150, 180$.	
A1	All four answers 0, 30, 150, 180 with no extra solutions inside the range. Igr outside the range.	nore solutions

Question Number	Scheme	Marks
98.alt 1	(i) $(\sin 22.5 + \cos 22.5)^2 = \sin^2 22.5 + \cos^2 22.5 + \dots$	M1
	$=\sin^2 22.5 + \cos^2 22.5 + 2\sin 22.5 \cos 22.5$	
	States or uses $\sin^2 22.5 + \cos^2 22.5 = 1$	B1
	Uses $2\sin x \cos x = 2\sqrt{\frac{1-\cos 2x}{2}}\sqrt{\frac{\cos 2x+1}{2}} \Rightarrow \sqrt{1-\cos 45}\sqrt{1+\cos 45}$	M1
	$=\sqrt{1-\cos^2 45}$	A1
	Hence $(\sin 22.5 + \cos 22.5)^2 = 1 + \frac{\sqrt{2}}{2}$ or $1 + \frac{1}{\sqrt{2}}$	A1
		(5)

Question Number	Scheme	Marks
98.alt 2	(i) Uses Factor Formula $(\sin 22.5 + \sin 67.5)^2 = (2\sin 45\cos 22.5)^2$	M1,A1
	Reaching the stage = $2\cos^2 22.5$	B1
	Uses the double angle formula $= 2\cos^2 22.5 = 1 + \cos 45$	M1
	$=1+\frac{\sqrt{2}}{2} \text{ or } 1+\frac{1}{\sqrt{2}}$	A1
		(5)

Question Number	Scheme	Marks
98.alt 3	(i) Uses Factor Formula $(\cos 67.5 + \cos 22.5)^2 = (2\cos 45\cos 22.5)^2$	M1,A1
	Reaching the stage = $2\cos^2 22.5$	B1
	Uses the double angle formula $= 2\cos^2 22.5 = 1 + \cos 45$	M1
	$=1+\frac{\sqrt{2}}{2} \text{ or } 1+\frac{1}{\sqrt{2}}$	A1
		(5)

Question Number	Scheme	Marks
99.	(a) $4 \csc^2 2\theta - \csc^2 \theta = \frac{4}{\sin^2 2\theta} - \frac{1}{\sin^2 \theta}$ $= \frac{4}{(2\sin\theta\cos\theta)^2} - \frac{1}{\sin^2 \theta}$	B1 B1
	(b) $\frac{4}{(2\sin\theta\cos\theta)^2} - \frac{1}{\sin^2\theta} = \frac{4}{4\sin^2\theta\cos^2\theta} - \frac{1}{\sin^2\theta}$	(2)
	$=\frac{1}{\sin^2\theta\cos^2\theta}-\frac{\cos^2\theta}{\sin^2\theta\cos^2\theta}$	M1
	Using $1 - \cos^2 \theta = \sin^2 \theta$ = $\frac{\sin^2 \theta}{\sin^2 \theta \cos^2 \theta}$ = $\frac{1}{\cos^2 \theta} = \sec^2 \theta$	M1
	$=\frac{1}{\cos^2\theta}=\sec^2\theta$	M1A1*
	1	(4)
	(c) $\sec^2 \theta = 4 \Longrightarrow \sec \theta = \pm 2 \Longrightarrow \cos \theta = \pm \frac{1}{2}$	M1
	$\theta = \frac{\pi}{3}, \frac{2\pi}{3}$	A1,A1
	a) can be seared together	(3) (9 marks)

Note (a) and (b) can be scored together

(a) B1 One term correct. Eg. writes $4\csc^2 2\theta$ as $\frac{4}{(2\sin\theta\cos\theta)^2}$ or $\csc^2\theta$ as $\frac{1}{\sin^2\theta}$. Accept terms like

 $\csc^2\theta = 1 + \cot^2\theta = 1 + \frac{\cos^2\theta}{\sin^2\theta}$. The question merely asks for an expression in $\sin\theta$ and $\cos\theta$

B1 A fully correct expression in $\sin \theta$ and $\cos \theta$. Eg. $\frac{4}{(2\sin\theta\cos\theta)^2} - \frac{1}{\sin^2\theta}$ Accept equivalents

Allow a different variable say x's instead of θ 's but do not allow mixed units.

- b) M1 Attempts to combine their expression in $\sin\theta$ and $\cos\theta$ using a common denominator. The terms can be separate but the denominator must be correct and one of the numerators must have been adapted M1 Attempts to form a 'single' term on the numerator buyering the identity $1 - \cos^2 \theta = \sin^2 \theta$
 - M1 Attempts to form a 'single' term on the numerator by using the identity $1 \cos^2 \theta = \sin^2 \theta$
 - M1 Cancels correctly by $\sin^2 \theta$ terms and replaces $\frac{1}{\cos^2 \theta}$ with $\sec^2 \theta$

A1* Cso. This is a given answer. All aspects must be correct

IF IN ANY DOUBT SEND TO REVIEW OR CONSULT YOUR TEAM LEADER

c) M1 For $\sec^2 \theta = 4$ leading to a solution of $\cos \theta$ by taking the root and inverting in either order. Similarly accept $\tan^2 \theta = 3$, $\sin^2 \theta = \frac{3}{4}$ leading to solutions of $\tan \theta$, $\sin \theta$. Also accept $\cos 2\theta = -\frac{1}{2}$

- A1 Obtains one correct answer usually $\theta = \frac{\pi}{3}$ Do not accept decimal answers or degrees
- A1 Obtains both correct answers. $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$ Do not award if there are extra solutions inside the range. Ignore solutions outside the range.

Question Number	Scheme	Marks
100.	(a) R=25	B1
	$\tan \alpha = \frac{24}{7} \Longrightarrow \alpha = (\text{awrt})73.7^{\circ}$	M1A1
		(3)
	(b) $\cos(2x + their \alpha) = \frac{12.5}{their R}$	M1
	$2x + their'\alpha' = 60^{\circ}$	A1
	$2x + their' \alpha' = their 300^{\circ} \text{ or their } 420^{\circ} \Rightarrow x =$	M1
	$x = awrt 113.1^{\circ}, 173.1^{\circ}$	A1A1
	(c)	(5)
	Attempts to use $\cos 2x = 2\cos^2 x - 1$ AND $\sin 2x = 2\sin x \cos x$ in the expression	M1
	$14\cos^2 x - 48\sin x\cos x = 7(\cos 2x + 1) - 24\sin 2x$	
	$=7\cos 2x - 24\sin 2x + 7$	A1
	(d)	(2)
	$14\cos^2 x - 48\sin x \cos x = R\cos(2x + \alpha) + 7$	
	Maximum value =' R '+' c ' = 32 cao	M1 A1
		(2) (12 marks)

(a) B1 Accept 25, awrt 25.0, $\sqrt{625}$. Condone ± 25

M1 For
$$\tan \alpha = \pm \frac{24}{7}$$
 $\tan \alpha = \pm \frac{7}{24} \sin \alpha = \pm \frac{24}{their R}$, $\cos \alpha = \pm \frac{7}{their R}$

A1 $\alpha = (awrt)73.7^{\circ}$. The answer 1.287 (radians) is A0

(b) M1 For using part (a) and dividing by their *R* to reach $cos(2x + their \alpha) = \frac{12.5}{their R}$

- A1 Achieving $2x + their \alpha = 60^{(0)}$. This can be implied by $113.1^{(0)}/113.2^{(0)}$ or $173.1^{(0)}/173.2^{(0)}$ or $6.8^{(0)}/-6.85^{(0)}/-6.9^{(0)}$
- M1 Finding a secondary value of x from their principal value. A correct answer will imply this mark Look for $\frac{360 \pm \text{'their' principal value}\pm \text{'their'} \alpha}{2}$
- A1 $x = awrt 113.1^{\circ} / 113.2^{\circ}$ OR $173.1^{\circ} / 173.2^{\circ}$.
- A1 $x = awrt 113.1^{\circ}$ AND 173.1°. Ignore solutions outside of range. Penalise this mark for extra solutions inside the range

- (c) M1 Attempts to use $\cos 2x = 2\cos^2 x 1$ and $\sin 2x = 2\sin x \cos x$ in expression. Allow slips in sign on the $\cos 2x$ term. So accept $2\cos^2 x = \pm \cos 2x \pm 1$
 - A1 Cao = $7\cos 2x 24\sin 2x + 7$. The order of terms is not important. Also accept a=7, b=-24, c=7
- (d) M1 This mark is scored for adding their R to their cA1 cao 32

Radian solutions- they will lose the first time it occurs (usually in a with 1.287 radians) Part b will then be marked as follows

- (b) M1 For using part (a) and dividing by their R to reach $\cos(2x + their \alpha) = \frac{12.5}{their R}$
 - A1 The correct principal value of $\frac{\pi}{3}$ or awrt 1.05 radians. Accept 60⁽⁰⁾ This can be implied by awrt – 0.12 radians or awrt or 1.97 radians or awrt 3.02 radians
 - M1 Finding a secondary value of x from their principal value. A correct answer will imply this mark Look for $\frac{2\pi \pm \text{'their' principal value}\pm \text{'their'} \alpha}{2}$ Do not allow mixed units.
 - A1 x = awrt 1.97 OR 3.02.
 - A1 x = awrt 1.97 AND 3.02. Ignore solutions outside of range. Penalise this mark for extra solutions inside the range

	tion No		Scheme		Marks
101.			Uses the identity $cot^2(3\theta) = cosec^2(3\theta)$ –	– 1 in	M1
			$2cot^2(3\theta) = 7cosec(3\theta) - 5$		
			$2cosec^{2}(3\theta) - 7cosec(3\theta) + 3 = 0$		A1
			$(2cosec3\theta - 1)(cosec3\theta - 3) = 0$		dM1
			$cosec3\theta = 3$		A1
			$\theta = \frac{invsin(\frac{1}{3})}{3}, \ \frac{19.5^{\circ}}{3} = awrt \ 6.5^{\circ}$		ddM1, A1
			$\theta = \frac{180^{\circ} - invsin(\frac{1}{3})}{3}, 53.5^{\circ}$	Correct 2 nd	ddM1,A1
		value			
			$\theta = \frac{360^\circ + invsin(\frac{1}{3})}{3}$	Correct 3 rd value	ddM1
			All 4 correct answers awrt 6.5 ⁰ ,53.5 ⁰ ,126.	.5 ° or 173.5°	A1 (10 marks)
A1 JM1	Accept 'invisible' brackets in which $2cot^{2}(3\theta)$ is replaced by $2cosec^{2}(3\theta) - 1$ A (longer) but acceptable alternative is to convert everything to $sin(3\theta)$. For this to be scored $cot^{2}3\theta$ must be replaced by $\frac{cos^{2}(3\theta)}{sin^{2}(3\theta)}$, $cosec(3\theta)$ must be replaced by $\frac{1}{sin3\theta}$. An attempt must be made to multiply by $sin^{2}(3\theta)$ and finally $cos^{2}(3\theta)$ replaced by $= \pm 1 \pm sin^{2}(3\theta)$ A correct equation (=0) written or implied by working is obtained. Terms must be collected together on one side of the equation. The usual alternatives are $2cosec^{2}(3\theta) - 7cosec(3\theta) + 3 = 0$ or $3sin^{2}(3\theta) - 7sin(3\theta) + 2 = 0$ Either an attempt to factorise a 3 term quadratic in $cosec(3\theta)$ or $sin(3\theta)$ with the usual rules				$in^2(3\theta)$
A 1			a to produce a solution in $cosec(3\theta)$ or $sin(3\theta)$ e of $cosec(3\theta) = 3$ or $sin(3\theta) = \frac{1}{3}$. Ignore o		
ddM1			e the principal value of θ . It is dependent upon		ed
		$\theta = \frac{invsin(their\frac{1}{3})}{3}$		the two ivi s being seen	
A1	Awrt 6.5	-			
ddM1		-	e a secondary value. This is dependent upon the $\frac{180-\text{their 19.5}}{3}$ or $\frac{360+\text{their 19.5}}{3}$ or $\frac{540-\text{their }}{3}$	-	ed the first 2
			be marked correct BUT 360+their 6.5 is inco		
A 1	Any other	r correct answer.	Awrt 6.5,53.5,126.5 or 173.5		
ddM1		nethod to produce see above for alter	a THIRD value. This is dependent upon the contractives	andidate having scored	the first 2
A 1	All 4 corr the range.		6.5,53.5,126.5 or 173.5 and no extras inside th	he range. Ignore any ans	swers outside
Radian	answers:	awrt 0.11, 0.93, 2	2.21, 3.03. Accuracy must be to 2dp.		
			2.21, 3.03. Accuracy must be to 2dp. e been scored. Fully correct radian answer scor	res 1,1,1,1,1,0,1,1,1,1=9	marks
Lose th	ne first mar	k that could have		res 1,1,1,1,1,0,1,1,1,1=9	marks

$$\sin(\theta \text{ or } x) = \frac{1}{3}.$$

$$\frac{\Gamma}{T} \begin{vmatrix} \text{EXPERT} \\ \text{TUITION} \end{vmatrix}$$

M1 Combines the two fractions to form a single fraction with a common denominator. Cubic denominators are fine for this mark. Allow slips on the numerator but one must have been adapted. Allow 'invisible' brackets. Accept two separate fractions with the same denominator. Amongst many possible options are

Correct $\frac{3(x+1)-(2x-1)}{(2x-1)(x+4)}$, Invisible bracket $\frac{3x+1-2x-1}{(2x-1)(x+4)}$,

Cubic and separate $\frac{3(x+1)(x+4)}{(2x^2+7x-4)(x+4)} - \frac{2x^2+7x-4}{(2x^2+7x-4)(x+4)}$

M1 Simplifies the (now) single fraction to one with a linear numerator divided by a quadratic factorised denominator. Any cubic denominator must have been fully factorised (check first and last terms) and cancelled with terms on a fully factorised numerator (check first and last terms).

A1* Cso. This is a given solution and it must be fully correct. All bracketing/algebra must have been correct. You can however accept $\frac{x+4}{(2x-1)(x+4)}$ going to $\frac{1}{2x-1}$ without the need for 'seeing' the cancelling For example $\frac{3(x+1)-2x-1}{(2x-1)(x+4)} = \frac{x+4}{(2x-1)(x+4)} = \frac{1}{2x-1}$ scores B1,M1,M1,A0. Incorrect line leading to solution.

Whereas
$$\frac{3(x+1)-(2x-1)}{(2x-1)(x+4)} = \frac{x+4}{(2x-1)(x+4)} = \frac{1}{2x-1}$$
 scores B1,M1,M1,A1

(b)

- M1 This is awarded for an attempt to make x or a swapped y the subject of the formula. The minimum criteria is that they start by multiplying by (2x-1) and finish with x= or swapped y=. Allow 'invisible' brackets.
- M1 For applying the order of operations correctly. Allow maximum of one 'slip'. Examples of this are

$$y = \frac{1}{2x-1} \to y(2x-1) = 1 \to 2x - 1 = \frac{1}{y} \to x = \frac{\frac{1}{y} \pm 1}{2}$$
 (allow slip on sign)

$$y = \frac{1}{2x-1} \rightarrow y(2x-1) = 1 \rightarrow 2xy - y = 1 \rightarrow 2xy = 1 \pm y \rightarrow x = \frac{1\pm y}{2y} \text{ (allow slip on sign)}$$
$$y = \frac{1}{2x-1} \rightarrow 2x - 1 = \frac{1}{y} \rightarrow 2x = \frac{1}{y} + 1 \rightarrow x = \frac{1}{2y} + 1 \text{ (allow slip on } \div 2)$$

- A1 Must be written in terms of x but can be $y = \frac{1+x}{2x}$ or equivalent inc $y = \frac{1}{x} + \frac{1}{2}$, $y = \frac{x^{-1}+1}{2}$, $y = \frac{1}{2x} + \frac{1}{2}$ (c)
- B1 Accept x>0, (0, ∞), domain is all values more than 0. Do not accept x \ge 0, y>0, [0, ∞], $f^{-1}(x) > 0$
- (**d**)
- M1 Attempt to write down fg(x) and set it equal to 1/7. The order must be correct but accept incorrect or lack of bracketing. Eg $\frac{1}{2lnx+1-1} = \frac{1}{7}$
- A1 Achieving correctly the line $\ln(x + 1) = 4$. Accept also $\ln(x + 1)^2 = 8$
- M1 Moving from $\ln(x \pm A) = c$ $A \neq 0$ to x = The ln work must be correct Alternatively moving from $\ln(x + 1)^2 = c$ to $x = \cdots$ Full solutions to calculate x leading from $gf(x) = \frac{1}{7}$, that is $\ln\left(\frac{1}{2x-1} + 1\right) = \frac{1}{7}$ can score this mark.
- A1 Correct answer only $= e^4 1$. Accept $e^4 e^0$

Question No	Scheme	Marks	
102	(a) $\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$	M1A1	
	$\cos(A+B)$ $\cos A\cos B - \sin A\sin B$		
	$=\frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{1 - \frac{\sin A \sin B}{\cos A \cos B}} \qquad (\div \cos A \cos B)$	M1	
	$=\frac{tanA+tanB}{1-tanAtanB}$	A1 *	
	(b) $\tan\left(\theta + \frac{\pi}{6}\right) = \frac{tan\theta + tan\frac{\pi}{6}}{1 - tan\theta tan\frac{\pi}{6}}$	M1	(4)
	$=\frac{tan\theta+\frac{1}{\sqrt{3}}}{1-tan\theta\frac{1}{\sqrt{3}}}$	M1	
	$=\frac{\sqrt{3}\tan\theta+1}{\sqrt{3}-\tan\theta}$	A1 *	(3)
	(c) $\tan\left(\theta + \frac{\pi}{6}\right) = \tan(\pi - \theta).$	M1	(3)
	$\left(\theta + \frac{\pi}{6}\right) = (\pi - \theta)$	dM1	
	$(0 + \frac{5}{6}) = (n - 0)$ $\theta = \frac{5}{12}\pi$	ddM1 A1	
	$\tan\left(\theta + \frac{\pi}{6}\right) = \tan(2\pi - \theta)$	dddM1	
	$\theta = \frac{11}{12}\pi$	A1	
		(13 MARKS)	(6)

(a)

M1 Uses the identity { $\tan(A + B) = \frac{\sin(A+B)}{\cos(A+B)}$ } = $\frac{\sin A \cos B \pm \cos A \sin B}{\cos A \cos B \mp \sin A \sin B}$. Accept incorrect signs for this. Just the right hand side is acceptable.

A1 Fully correct statement in terms of cos and sin $\{ \tan(A+B) \} = \frac{sinAcosB+cosAsinB}{cosAcosB-sinAsinB}$

- M1 Divide **both** numerator and denominator by cosAcosB. This can be stated or implied by working. If implied you must have seen at least one term modified on both the numerator and denominator.
- A1* This is a given solution. The last two principal's reports have highlighted lack of evidence in such questions. Both sides of the identity must be seen or implied. Eg lhs= The minimum expectation for full marks is

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B} = \frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{1 - \frac{\sin A \sin B}{\cos A \cos B}} = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

The solution $\tan(A + B) = \frac{\sin(A+B)}{\cos(A+B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B} = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ scores M1A1M0A0

The solution $\tan(A + B) = \frac{\sin(A+B)}{\cos(A+B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$ (÷ $\cos A \cos B$) = $\frac{\tan A + \tan B}{1 - \tan A \tan B}$ scores M1A1M1A0

(b)

M1 An attempt to use part (a) with A= θ and B= $\frac{\pi}{6}$. Seeing $\frac{tan\theta+tan\frac{\pi}{6}}{1-tan\theta tan\frac{\pi}{6}}$ is enough evidence. Accept sign slips

M1 Uses the identity $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$ in the rhs of the identity on both numerator and denominator

A1* cso. This is a given solution. Both sides of the identity must be seen. All steps must be correct with no unreasonable jumps. Accept

$$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{\tan\theta + \tan\frac{\pi}{6}}{1 - \tan\theta\tan\frac{\pi}{6}} = \frac{\tan\theta + \frac{1}{\sqrt{3}}}{1 - \tan\theta\frac{1}{\sqrt{3}}} = \frac{\sqrt{3}\tan\theta + 1}{\sqrt{3} - \tan\theta}$$

However the following is only worth 2 out of 3 as the last step is an unreasonable jump without further explanation

$$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{\tan\theta + \tan\frac{\pi}{6}}{1 - \tan\theta\tan\frac{\pi}{6}} = \frac{\tan\theta + \frac{\sqrt{3}}{3}}{1 - \tan\theta\frac{\sqrt{3}}{3}} = \frac{\sqrt{3}\tan\theta + 1}{\sqrt{3} - \tan\theta}$$

(c)

- M1 Use the given identity in (b) to obtain $\tan\left(\theta + \frac{\pi}{6}\right) = \tan(\pi \theta)$. Accept sign slips
- dM1 Writes down an equation that will give one value of θ , usually $\theta + \frac{\pi}{6} = \pi \theta$. This is dependent upon the first M mark. Follow through on slips
- ddM1 Attempts to solve their equation in θ . It must end θ = and the first two marks must have been scored.

A1 Cso $\theta = \frac{5}{12}\pi$ or $\frac{11}{12}\pi$

dddM1 Writes down an equation that would produce a second value of θ . Usually $\theta + \frac{\pi}{6} = 2\pi - \theta$

A1 cso $\theta = \frac{5}{12}\pi$ (accept $\frac{\pi}{2.4}$) and $\frac{11}{12}\pi$ with no extra solutions in the range. Ignore extra solutions outside the range.

Note that under this method one correct solution would score 4 marks. A small number of candidates find the second solution only. They would score 1,1,1,1,0,0

Alternative to (a) starting from rhs

M1 Uses correct identities for both *tan*A and *tan*B in the rhs expression. Accept only errors in signs

Α1	tanA+tanB	$\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}$
AI	1-tanAtanB _	$1 - \frac{sinAsinB}{cosAcosB}$

- M1 Multiplies both numerator and denominator by *cosAcosB*. This can be stated or implied by working. If implied you must have seen at least one term modified on both the numerator and denominator
- A1 This is a given answer. Correctly completes proof. All three expressions must be seen or implied. $\frac{sinAcosB+cosAsinB}{cosAcosB-sinAsinB} = \frac{sin(A+B)}{cos(A+B)} = tan(A+B)$

Alternative to (a) starting from both sides

The usual method can be marked like this

M1 Uses correct identities for both *tan*A and *tan*B in the rhs expression. Accept only errors in signs

A1
$$\frac{tanA+tanB}{1-tanAtanB} = \frac{\frac{sinA}{cosA} + \frac{sinB}{cosA}}{1-\frac{sinAsinB}{cosAcosB}}$$

- M1 Multiplies both numerator and denominator by *cosAcosB*. This can be stated or implied by working. If implied you must have seen at least one term modified on both the numerator and denominator
- A1 Completes proof. Starting now from the lhs writes $\tan(A + B) = \frac{\sin(A+B)}{\cos(A+B)} = \frac{\sinA\cosB + \cosA\sinB}{\cosA\cosB \sinA\sinB}$ And then states that the lhs is equal to the rhs **Or** hence proven. There must be a statement of closure

Alternative to (b) from sin and cos

M1 Writes
$$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{\sin\left(\theta + \frac{\pi}{6}\right)}{\cos\left(\theta + \frac{\pi}{6}\right)} = \frac{\sin\theta\cos\frac{\pi}{6} + \cos\theta\sin\frac{\pi}{6}}{\cos\theta\cos\frac{\pi}{6} - \sin\theta\sin\frac{\pi}{6}}$$

M1 Uses the identities $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ oe in the rhs of the identity on both numerator and denominator and divides both numerator and denominator by $\cos\theta$ to produce an identity in $\tan\theta$ A1 As in original scheme

<u>Alternative solution for c.</u> Starting with $1 + \sqrt{3}tan\theta = (\sqrt{3} - \tan\theta)tan(\pi - \theta)$

Let
$$\tan \theta = t$$

$$1 + \sqrt{3t} = (\sqrt{3} - t)(-t)$$

$$t^{2} - 2\sqrt{3t} - 1 = 0$$

$$t = \frac{2\sqrt{3} \pm \sqrt{(12+4)}}{2}$$

$$= \sqrt{3} \pm 2$$

Must find an exact surd

$$\theta = \frac{5\pi}{12}, \ \frac{11\pi}{12}$$

Accept the use of a calculator for the A marks as long as there is an exact surd for the solution of the quadratic and exact answers are given.

- M1 Starting with $1 + \sqrt{3}tan\theta = (\sqrt{3} \tan\theta)tan(\pi \theta)$ expand $\tan(\pi \theta)$ by the correct compound angle identity (or otherwise) and substitute $\tan \pi = 0$ to produce an equation in $\tan \theta$
- dM1 Collect terms and produce a 3 term quadratic in $\tan \theta$
- ddM1 Correct use of quadratic formula to produce exact solutions to tan θ . All previous marks must have been scored.
- dddM1 All 3 previous marks must have been scored. This is for producing two exact values for θ

A1 One solution
$$\frac{5}{12}\pi$$
 (accept $\frac{\pi}{2.4}$) or $\frac{11}{12}\pi$

A1 Both solutions $\frac{5}{12}\pi$ (accept $\frac{\pi}{2.4}$) and $\frac{11}{12}\pi$ and no extra solutions inside the range. Ignore extra solutions outside the range.

Special case: Watch for candidates who write $tan(\pi - \theta) = tan(\pi) - tan(\theta) = -tan(\theta)$ and proceed correctly. They will lose the first mark but potentially can score the others.

Solutions in degrees

Apply as before. Lose the first correct mark that would have been scored-usually 75^o

Question Number	Scheme		Marl	ks
103. (a)	$7\cos x - 24\sin x = R\cos(x+\alpha)$			
	$7\cos x - 24\sin x = R\cos x\cos \alpha - R\sin x\sin \alpha$			
	Equate $\cos x$: $7 = R \cos \alpha$ Equate $\sin x$: $24 = R \sin \alpha$			
	$R = \sqrt{7^2 + 24^2};= 25$	<i>R</i> = 25	B1	
	$\tan \alpha = \frac{24}{7} \implies \alpha = 1.287002218^{c}$	$\tan \alpha = \frac{24}{7}$ or $\tan \alpha = \frac{7}{24}$ awrt 1.287	M1 A1	
	Hence, $7\cos x - 24\sin x = 25\cos(x + 1.287)$			(3)
(b)	Minimum value = -25	-25 or -R	B1ft	(1)
(c)	$7\cos x - 24\sin x = 10$			
	$25\cos(x+1.287) = 10$			
	$\cos\left(x+1.287\right) = \frac{10}{25}$	$\cos(x \pm \text{their } \alpha) = \frac{10}{(\text{their } R)}$	M1	
	$PV = 1.159279481^{\circ}$ or 66.42182152°	For applying $\cos^{-1}\left(\frac{10}{\text{their }R}\right)$	M1	
	So, $x + 1.287 = \{1.159279^{c}, 5.123906^{c}, 7.442465^{c}\}$	either 2π + or – their PV ^c or 360° + or – their PV [°]	M1	
	gives, $x = \{3.836906, 6.155465\}$	awrt 3.84 OR 6.16 awrt 3.84 AND 6.16	A1 A1	(5) [9]

Question Number	Scheme	Marks
104.	$2\cos 2\theta = 1 - 2\sin \theta$ $2(1 - 2\sin^2 \theta) = 1 - 2\sin \theta$ $2 - 4\sin^2 \theta = 1 - 2\sin \theta$ Substitutes either $1 - 2\sin^2 \theta$ or $2\cos^2 \theta - \cos^2 \theta$ or $\cos^2 \theta - \sin^2 \theta$ for $\cos 2\theta$	1 M1
	$4\sin^2 \theta - 2\sin \theta - 1 = 0$ Forms a "quadratic in sine" = $\sin \theta = \frac{2 \pm \sqrt{4 - 4(4)(-1)}}{8}$ Applies the quadratic formula See notes for alternative method	a _{M1}
	PVs: $\alpha_1 = 54^{\circ}$ or $\alpha_2 = -18^{\circ}$ $\theta = \{54, 126, 198, 342\}$ Any one correct answer 180-their p All four solutions correct	v dM1(*)

Question Number	Scheme	Marks	
105 . (a	$)\frac{2\sin\theta\cos\theta}{1+2\cos^2\theta-1}$	M1	
	$\frac{\cancel{2}\sin\theta\cos\theta}{\cancel{2}\cos\theta\cos\theta} = \tan\theta \text{ (as required) AG}$	A1 cso	(2)
(b)	$2\tan\theta = 1 \implies \tan\theta = \frac{1}{2}$	M1	(2)
	$ \theta_1 = \text{awrt } 26.6^\circ $ $ \theta_2 = \text{awrt } -153.4^\circ $	A1 A1√	
	0 ₂ - umit 155.4	ATV	(3) [5]
	(a) M1: Uses both a correct identity for $\sin 2\theta$ and a correct identity for $\cos 2\theta$. Also allow a candidate writing $1 + \cos 2\theta = 2\cos^2 \theta$ on the denominator. Also note that angles must be consistent in when candidates apply these identities. A1: Correct proof. No errors seen.		
	(b) 1 st M1 for either $2 \tan \theta = 1$ or $\tan \theta = \frac{1}{2}$, seen or implied.		
	A1: awrt 26.6 A1 $$: awrt -153.4° or $\theta_2 = -180^\circ + \theta_1$		
	Special Case : For candidate solving, $\tan \theta = k$, where $k \neq \frac{1}{2}$, to give θ_1 and $\theta_2 = -180^\circ + \theta_2$, then exceed M0A0P1 in part (b)		
	$\theta_2 = -180^\circ + \theta_1$, then award M0A0B1 in part (b). Special Case: Note that those candidates who writes $\tan \theta = 1$, and gives ONLY two answers of 45° and -135° that are inside the range will be awarded SC M0A0B1.		

Question Number	Scheme	Marks	ŝ
106 .(a)	$R = \sqrt{6.25}$ or 2.5	B1	
	$\tan \alpha = \frac{1.5}{2} = \frac{3}{4} \implies \alpha = \text{awrt } 0.6435$	M1A1	(3)
(b) (i)	Max Value = 2.5	B1√	(3)
(ii)	$\underline{\sin(\theta - 0.6435) = 1} \text{or} \underline{\theta - \text{their } \alpha = \frac{\pi}{2}} \Rightarrow \theta = \text{awrt } 2.21$	<u>M1</u> ;A1 √	- (3)
(C)	$H_{\rm Max} = 8.5 \ ({\rm m})$	B1√	(3)
	$\frac{\sin\left(\frac{4\pi t}{25} - 0.6435\right) = 1}{25} \text{ or } \frac{4\pi t}{25} = \text{ their (b) answer } \Rightarrow t = \text{ awrt } 4.41$	M1;A1	
(d)	$\Rightarrow 6 + 2.5 \sin\left(\frac{4\pi t}{25} - 0.6435\right) = 7; \Rightarrow \sin\left(\frac{4\pi t}{25} - 0.6435\right) = \frac{1}{2.5} = 0.4$	M1;M1	(3)
	$\left\{\frac{4\pi t}{25} - 0.6435\right\} = \sin^{-1}(0.4) \text{ or awrt } 0.41$	A1	
	Either $t = awrt 2.1$ or awrt 6.7	A1	
	So, $\left\{\frac{4\pi t}{25} - 0.6435\right\} = \left\{\pi - 0.411517 \text{ or } 2.730076^{c}\right\}$	ddM1	
	Times = $\{14:06, 18:43\}$	A1	(6) [15]
	(a) B1: $R = 2.5$ or $R = \sqrt{6.25}$. For $R = \pm 2.5$, award B0.		
	M1: $\tan \alpha = \pm \frac{1.5}{2}$ or $\tan \alpha = \pm \frac{2}{1.5}$		
	A1: $\alpha = \text{awrt } 0.6435$		
	(b) B1 $$: 2.5 or follow through the value of <i>R</i> in part (a). M1: For sin(θ - their α) = 1		
	Al $$: awrt 2.21 or $\frac{\pi}{2}$ + their α rounding correctly to 3 sf.		
	(c) B1 $$: 8.5 or 6 + their <i>R</i> found in part (a) as long as the answer is greater than		
	6. M1: $\sin\left(\frac{4\pi t}{25} \pm \text{their } \alpha\right) = 1 \text{ or } \frac{4\pi t}{25} = \text{their (b) answer}$		
	A1: For $\sin^{-1}(0.4)$ This can be implied by awrt 4.41 or awrt 4.40.		
	(d) M1: $6 + (\text{their } R) \sin\left(\frac{4\pi t}{25} \pm \text{their } \alpha\right) = 7$, M1:		
	$\sin\left(\frac{4\pi t}{25} \pm \text{their } \alpha\right) = \frac{1}{\text{their } R}$		
	A1: For $\sin^{-1}(0.4)$. This can be implied by awrt 0.41 or awrt 2.73 or other values for		
	different α 's. Note this mark can be implied by seeing 1.055. A1: Either $t = awrt 2.1$ or $t = awrt 6.7$		
	A1: Either $\tau = a \text{ wrt } 2.1$ or $\tau = a \text{ wrt } 6.7$ ddM1: either π – their PV ^c . Note that this mark is dependent upon the two M marks.		
	This mark will usually be awarded for seeing either 2.730 or 3.373 A1: Both $t = 14:06$ and $t = 18:43$ or both 126 (min) and 403 (min) or both 2 hr 6		
	min and 6 hr 43 min.		

Question Number	Scheme	Marks
107 (a)	$5\cos x - 3\sin x = R\cos(x + \alpha), R > 0, 0 < x < \frac{\pi}{2}$	
	$5\cos x - 3\sin x = R\cos x\cos \alpha - R\sin x\sin \alpha$	
	Equate $\cos x$: $5 = R \cos \alpha$ Equate $\sin x$: $3 = R \sin \alpha$ $R = \sqrt{5^2 + 3^2}$; $= \sqrt{34} \{= 5.83095\}$ $R^2 = 5^2 + 3^2$ $\sqrt{34}$ or awrt 5.8	
	$\tan \alpha = \pm \frac{3}{5} \Rightarrow \alpha = 0.5404195003^{c}$ $\tan \alpha = \pm \frac{3}{5} \text{ or } \tan \alpha = \pm \frac{5}{3} \text{ or } \sin \alpha = \pm \frac{3}{\text{their } R} \text{ or } \cos \alpha = \pm \frac{5}{\text{their } R}$ $\alpha = \text{awrt } 0.54 \text{ or } \alpha = \frac{\pi}{2}$	M1 A1
	$\alpha = \operatorname{awrt} 0.17\pi \text{ or } \alpha = \frac{\pi}{\operatorname{awrt} 5.8}$ Hence, $5\cos x - 3\sin x = \sqrt{34}\cos(x + 0.5404)$	(4)
(b)	$5\cos x - 3\sin x = 4$	
	$\sqrt{34}\cos(x+0.5404) = 4$	
	$\cos(x+0.5404) = \frac{4}{\sqrt{34}} \{= 0.68599\}$ $\cos(x \pm \text{their } \alpha) = \frac{4}{\text{their } R}$	M1
	$(x + 0.5404) = 0.814826916^{c}$ For applying $\cos^{-1}\left(\frac{4}{\text{their } R}\right)$	M1
	$x = 0.2744^{c}$ awrt 0.27^{c}	A1
	$(x + 0.5404) = 2\pi - 0.814826916^{\circ} \{ = 5.468358^{\circ} \}$ 2π - their 0.8148	ddM1
	$x = 4.9279^{c}$ awrt 4.93^{c}	A1
	Hence, $x = \{0.27, 4.93\}$	(5)
		[9]

Part (b): If there are any EXTRA solutions inside the range $0 \le x < 2\pi$, then withhold the final accuracy mark if the candidate would otherwise score all 5 marks. Also ignore EXTRA solutions outside the range $0 \le x < 2\pi$.

Question Number	Scheme		Marks
108	$\csc^2 2x - \cot 2x = 1$, (eqn *) $0 \le x \le 180^\circ$		
	Using $\csc^2 2x = 1 + \cot^2 2x$ gives $1 + \cot^2 2x - \cot 2x = 1$	Writing down or using $\csc^2 2x = \pm 1 \pm \cot^2 2x$ or $\csc^2 \theta = \pm 1 \pm \cot^2 \theta$.	M1
	$\underline{\cot^2 2x - \cot 2x} = 0 \text{or} \cot^2 2x = \cot 2x$	For either $\underline{\cot^2 2x - \cot 2x} \{= 0\}$ or $\cot^2 2x = \cot 2x$	A1
	$\cot 2x(\cot 2x - 1) = 0$ or $\cot 2x = 1$	Attempt to factorise or solve a quadratic (See rules for factorising quadratics) or cancelling out $\cot 2x$ from both sides.	dM1
	$\cot 2x = 0$ or $\cot 2x = 1$	Both $\cot 2x = 0$ and $\cot 2x = 1$.	A1
	$\cot 2x = 0 \Rightarrow (\tan 2x \rightarrow \infty) \Rightarrow 2x = 90,270$ $\Rightarrow x = 45,135$ $\cot 2x = 1 \Rightarrow \tan 2x = 1 \Rightarrow 2x = 45,225$ $\Rightarrow x = 22.5,112.5$	Candidate attempts to divide at least one of their principal angles by 2. This will be usually implied by seeing $x = 22.5$ resulting from $\cot 2x = 1$.	ddM1
	Overall, $x = \{22.5, 45, 112.5, 135\}$	Both $x = 22.5$ and $x = 112.5$ Both $x = 45$ and $x = 135$	A1 B1
			[7]

If there are any EXTRA solutions inside the range $0 \le x \le 180^{\circ}$ and the candidate would otherwise score FULL MARKS then withhold the final accuracy mark (the sixth mark in this question). Also ignore EXTRA solutions outside the range $0 \le x \le 180^{\circ}$.

Question Number	Scheme		Mark	s
109 (a)	$\cos^2\theta + \sin^2\theta = 1 (\div \cos^2\theta)$			
	$\frac{\cos^2\theta}{\cos^2\theta} + \frac{\sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$	Dividing $\cos^2 \theta + \sin^2 \theta = 1$ by $\cos^2 \theta$ to give <u>underlined</u> equation.	M1	
	$1 + \tan^2 \theta = \sec^2 \theta$			
	$\tan^2 \theta = \sec^2 \theta - 1$ (as required) AG	Complete proof. No errors seen.	A1 cso	(2)
(b)	$2\tan^2\theta + 4\sec\theta + \sec^2\theta = 2$, (eqn *) $0 \le \theta \le 360^\circ$			
	$2(\sec^2\theta - 1) + 4\sec\theta + \sec^2\theta = 2$	Substituting $\tan^2 \theta = \sec^2 \theta - 1$ into eqn * to get a quadratic in $\sec \theta$ only	M1	
	$2\sec^2\theta - 2 + 4\sec\theta + \sec^2\theta = 2$			
	$\underline{3\sec^2\theta + 4\sec\theta - 4} = 0$	Forming a three term "one sided" quadratic expression in $\sec \theta$.	M1	
	$(\sec\theta + 2)(3\sec\theta - 2) = 0$	Attempt to factorise or solve a quadratic.	M1	
	$\sec \theta = -2$ or $\sec \theta = \frac{2}{3}$			
	$\frac{1}{\cos\theta} = -2$ or $\frac{1}{\cos\theta} = \frac{2}{3}$			
	$\underline{\cos\theta = -\frac{1}{2}}; \text{ or } \cos\theta = \frac{3}{2}$	$\frac{\cos\theta = -\frac{1}{2}}{2}$	A1;	
	$\alpha = 120^{\circ}$ or $\alpha = \text{no solutions}$			
	$\theta_1 = \underline{120^\circ}$	<u>120°</u>	<u>A1</u>	
	$\theta_2 = 240^{\circ}$	$\underline{240^{\circ}}$ or $\theta_2 = 360^{\circ} - \theta_1$ when solving using $\cos \theta =$	Β1√	
	$\theta = \left\{ 120^{\circ}, 240^{\circ} \right\}$	Note the final A1 mark has been changed to a B1 mark.		(6)
				[8]

Questio Numbe		Scheme			Marks	s
110 (a	$A = B \Longrightarrow \cos(A + A) = \cos 2A$	$= \cos A \cos A - \sin A \sin A$	Applies $A = B$ to $\cos(A + B)$ to give the <u>underlined</u> equation or $\cos 2A = \frac{\cos^2 A - \sin^2 A}{\sin^2 A}$	M1		
	$\cos 2A = \cos^2 A - \sin^2 A$ and gives	$1 \cos^2 A + \sin^2 A = 1$				
	$\frac{\cos 2A}{\operatorname{required}} = 1 - \sin^2 A - \sin^2 A =$	$\frac{1-2\sin^2 A}{2}$ (as	Complete proof, with a link between LHS and RHS. No errors seen.	A1	AG	(2)
(b	$C_1 = C_2 \implies 3\sin 2x = 4\sin^2 x$	$z - 2\cos 2x$	Eliminating <i>y</i> correctly.	M1		
	$3\sin 2x = 4\left(\frac{1-\cos 2x}{2}\right) - 2\cos x$	s2 <i>x</i>	Using result in part (a) to substitute for $\sin^2 x$ as $\frac{\pm 1 \pm \cos 2x}{2}$ or $k \sin^2 x$ as $k\left(\frac{\pm 1 \pm \cos 2x}{2}\right)$ to produce an equation in only double angles.	M1		
	$3\sin 2x = 2(1-\cos 2x) - 2\cos x$	2 <i>x</i>				
	$3\sin 2x = 2 - 2\cos 2x - 2\cos 2$	2 <i>x</i>				
	$3\sin 2x + 4\cos 2x = 2$		Rearranges to give correct result	A1	AG	(3)
(0	$3\sin 2x + 4\cos 2x = R\cos(2x)$	$-\alpha)$				
	$3\sin 2x + 4\cos 2x = R\cos 2xc$	$\cos\alpha + R\sin 2x\sin\alpha$				
	Equate $\sin 2x$: $3 = R \sin \alpha$ Equate $\cos 2x$: $4 = R \cos \alpha$					
	$R = \sqrt{3^2 + 4^2} ;= \sqrt{25} = 5$		<i>R</i> = 5	B1		
	$\tan \alpha = \frac{3}{4} \Rightarrow \alpha = 36.86989765$	5°	$\tan \alpha = \pm \frac{3}{4}$ or $\tan \alpha = \pm \frac{4}{3}$ or $\sin \alpha = \pm \frac{3}{\text{their } R}$ or $\cos \alpha = \pm \frac{4}{\text{their } R}$ awrt 36.87	M1 A1		
	Hence, $3\sin 2x + 4\cos 2x = 50$	$\cos(2x-36.87)$				(3)

Question Number	Scheme	Marks
(d)	$3\sin 2x + 4\cos 2x = 2$	
	$5\cos(2x-36.87) = 2$	
	$\cos(2x - 36.87) = \frac{2}{5}$ $\cos(2x \pm \text{their } \alpha) = \frac{2}{\text{their } R}$	M1
	$(2x - 36.87) = 66.42182^{\circ}$ awrt 66	A1
	$(2x - 36.87) = 360 - 66.42182^{\circ}$	
	Hence, $x = 51.64591^{\circ}$, 165.22409° Due of either awrt 51.6 or awrt 51.7 or awrt 165.2 or awrt 165.3 Due to 165.22409°	A1
	Both awrt 51.6 AND awrt 165.2 If there are any EXTRA solutions inside the range $0 \le x < 180^{\circ}$ then withhold the final accuracy mark. Also ignore EXTRA solutions outside the range $0 \le x < 180^{\circ}$.	A1 (4
		[12

Question Number		Scheme			Marks		
111	(a)	$\sin 2x = \underline{2\sin x \cos x}$	$2\sin x\cos x$	B1	aef	(1)	
	(b)	$\csc x - 8\cos x = 0, \qquad 0 < x < \infty$	π				
		$\frac{1}{\sin x} - 8\cos x = 0$	Using $\operatorname{cosec} x = \frac{1}{\sin x}$	M1			
		$\frac{1}{\sin x} = 8\cos x$					
		$1 = 8\sin x \cos x$					
		$1 = 4(2\sin x \cos x)$					
		$1 = 4\sin 2x$					
		$\frac{\sin 2x = \frac{1}{4}}{4}$	$\sin 2x = k$, where $-1 < k < 1$ and $k \neq 0$ $\frac{\sin 2x = \frac{1}{4}}{}$	M1 <u>A1</u>			
		Radians $2x = \{0.25268, 2.88891\}$ Degrees $2x = \{14.4775, 165.5225\}$					
		Radians $x = \{0.12634, 1.44445\}$ Degrees $x = \{7.23875, 82.76124\}$	Either arwt 7.24 or 82.76 or 0.13 or 1.44 or 1.45 or awrt 0.04π or awrt 0.46π . Both <u>0.13</u> and <u>1.44</u>	A1 A1	сао		
			Solutions for the final two A marks must be given in <i>x</i> only. If there are any EXTRA solutions inside the range $0 < x < \pi$ then			(5)	
			withhold the final accuracy mark. Also ignore EXTRA solutions outside the range $0 < x < \pi$.			[6]	

Question Number	Schomo	
112.	(a)(i) $\sin 3\theta = \sin (2\theta + \theta)$ $= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ $= 2\sin \theta \cos \theta \cdot \cos \theta + (1 - 2\sin^2 \theta) \sin \theta$ $= 2\sin \theta (1 - \sin^2 \theta) + \sin \theta - 2\sin^3 \theta$ $= 3\sin \theta - 4\sin^3 \theta \bigstar \qquad \qquad$	M1 A1 M1 A1 (4)
	(ii) $8\sin^{3}\theta - 6\sin\theta + 1 = 0$ $-2\sin 3\theta + 1 = 0$ $\sin 3\theta = \frac{1}{2}$ $3\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ $\theta = \frac{\pi}{18}, \frac{5\pi}{18}$	M1 A1 M1 A1 A1 (5)
	(b) $\sin 15^\circ = \sin (60^\circ - 45^\circ) = \sin 60^\circ \cos 45^\circ - \cos 60^\circ \sin 45^\circ$ $= \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} - \frac{1}{2} \times \frac{1}{\sqrt{2}}$ $= \frac{1}{4} \sqrt{6} - \frac{1}{4} \sqrt{2} = \frac{1}{4} (\sqrt{6} - \sqrt{2}) \bigstar \qquad \qquad$	M1 M1 A1 A1 (4) [13]
	Alternatives to (b) ① $\sin 15^\circ = \sin (45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ$ $= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}$ $= \frac{1}{4} \sqrt{6} - \frac{1}{4} \sqrt{2} = \frac{1}{4} (\sqrt{6} - \sqrt{2})$ * cso	M1 M1 A1 A1 (4)
	$ (2) Using \cos 2\theta = 1 - 2\sin^2 \theta, \ \cos 30^\circ = 1 - 2\sin^2 15^\circ 2\sin^2 15^\circ = 1 - \cos 30^\circ = 1 - \frac{\sqrt{3}}{2} \sin^2 15^\circ = \frac{2 - \sqrt{3}}{4} \left(\frac{1}{4}(\sqrt{6} - \sqrt{2})\right)^2 = \frac{1}{16}(6 + 2 - 2\sqrt{12}) = \frac{2 - \sqrt{3}}{4} $	M1 A1 M1
	Hence $\sin 15^\circ = \frac{1}{4} (\sqrt{6} - \sqrt{2})$ * cso	A1 (4)

Scheme		Marks		
(a) (b)	$R^{2} = 3^{2} + 4^{2}$ $R = 5$ $\tan \alpha = \frac{4}{3}$ $\alpha = 53 \dots^{\circ}$ Maximum value is 5	awrt 53° ft their <i>R</i>	M1 A1 M1 A1 B1 ft	(4)
	At the maximum, $\cos(\theta - \alpha) = 1$ or $\theta - \alpha = 0$ $\theta = \alpha = 53 \dots^{\circ}$	ft their α	M1 A1 ft	(3)
(c)	$f(t) = 10 + 5\cos(15t - \alpha)^{\circ}$ Minimum occurs when $\cos(15t - \alpha)^{\circ} = -1$ The minimum temperature is $(10-5)^{\circ} = 5^{\circ}$		M1 A1 ft	(2)
(d)	$15t - \alpha = 180$ $t = 15.5$	awrt 15.5	M1 M1 A1	(3) [12]
	(b) (c)	(a) $R^{2} = 3^{2} + 4^{2}$ $R = 5$ $\tan \alpha = \frac{4}{3}$ $\alpha = 53 \dots^{\circ}$ (b) Maximum value is 5 At the maximum, $\cos(\theta - \alpha) = 1 \text{ or } \theta - \alpha = 0$ $\theta = \alpha = 53 \dots^{\circ}$ (c) $f(t) = 10 + 5\cos(15t - \alpha)^{\circ}$ Minimum occurs when $\cos(15t - \alpha)^{\circ} = -1$ The minimum temperature is $(10 - 5)^{\circ} = 5^{\circ}$ (d) $15t - \alpha = 180$	(a) $R^{2} = 3^{2} + 4^{2}$ $R = 5$ $\tan \alpha = \frac{4}{3}$ $\alpha = 53 \dots^{\circ}$ (b) Maximum value is 5 At the maximum, $\cos(\theta - \alpha) = 1 \text{ or } \theta - \alpha = 0$ $\theta = \alpha = 53 \dots^{\circ}$ ft their α (c) f(t) = 10 + 5 cos(15t - α)° Minimum occurs when $\cos(15t - \alpha)^{\circ} = -1$ The minimum temperature is $(10 - 5)^{\circ} = 5^{\circ}$ (d) $15t - \alpha = 180$	(a) $R^2 = 3^2 + 4^2$ $R = 5$ $\tan \alpha = \frac{4}{3}$ $\alpha = 53 \dots^{\circ}$ M1 A1(b)Maximum value is 5ft their RB1 ft(b)Maximum, $\cos(\theta - \alpha) = 1$ or $\theta - \alpha = 0$ $\theta = \alpha = 53 \dots^{\circ}$ M1 A1 ft(c)f(t) = 10 + 5 cos(15t - \alpha)^{\circ} Minimum occurs when $cos(15t - \alpha)^{\circ} = -1$ The minimum temperature is $(10 - 5)^{\circ} = 5^{\circ}$ M1 A1 ft(d) $15t - \alpha = 180$ M1

Question Number	Scheme	Marks	
114.	(a) $R^{2} = 5^{2} + 12^{2}$ R = 13 $\tan \alpha = \frac{12}{5}$ $\alpha \approx 1.176$ cao (b) $\cos(x-\alpha) = \frac{6}{13}$ $x-\alpha = \arccos \frac{6}{13} = 1.091 \dots$	M1 A1 M1 A1 (4) M1	
	$x - \alpha = \arccos \frac{13}{13} = 1.091 \dots$ $x = 1.091 \dots + 1.176 \dots \approx 2.267 \dots$ awrt 2.3 $x - \alpha = -1.091 \dots$ $x = -1.091 \dots + 1.176 \dots \approx 0.0849 \dots$ awrt 0.084 or 0.085 (c)(i) $R_{\max} = 13$ ft their R (ii) At the maximum, $\cos(x - \alpha) = 1$ or $x - \alpha = 0$ $x = \alpha = 1.176 \dots$ awrt 1.2, ft their α	A1 A1 M1 A1 (5) B1 ft M1 A1ft (3) [12]	

Question Number	Scheme	Marks	
115.	(a) $\sin^{2}\theta + \cos^{2}\theta = 1$ $\div \sin^{2}\theta \qquad \frac{\sin^{2}\theta}{\sin^{2}\theta} + \frac{\cos^{2}\theta}{\sin^{2}\theta} = \frac{1}{\sin^{2}\theta}$ $1 + \cot^{2}\theta = \csc^{2}\theta + \cos^{2}\theta = 1$ $1 + \cot^{2}\theta = 1 + \frac{\cos^{2}\theta}{\sin^{2}\theta} = \frac{\sin^{2}\theta + \cos^{2}\theta}{\sin^{2}\theta} = \frac{1}{\sin^{2}\theta}$ $= \csc^{2}\theta + \csc^{2}\theta + \csc^{2}\theta + \csc^{2}\theta + \csc^{2}\theta + \sec^{2}\theta + \sec^{$	M1 A1 (2) M1 A1 M1 M1 M1 A1 A1 A1 A1 A1 A1 (6) [8]	

Question Number	Scheme	Marks	
116.	(a) $\cos(2x+x) = \cos 2x \cos x - \sin 2x \sin x$ $= (2\cos^2 x - 1)\cos x - (2\sin x \cos x)\sin x$ $= (2\cos^2 x - 1)\cos x - 2(1 - \cos^2 x)\cos x \text{any correct expression}$ $= 4\cos^3 x - 3\cos x$	M1 M1 A1 A1 (4)	
	(b)(i) $\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = \frac{\cos^2 x + (1+\sin x)^2}{(1+\sin x)\cos x}$ $= \frac{\cos^2 x + 1 + 2\sin x + \sin^2 x}{(1+\sin x)\cos x}$	M1 A1	
	$=\frac{2(1+\sin x)}{(1+\sin x)\cos x}$	M1	
	$=\frac{2}{\cos x}=2\sec x \bigstar \qquad \qquad$	A1 (4)	
	(c) $\sec x = 2 \text{ or } \cos x = \frac{1}{2}$	M1	
	$x = \frac{\pi}{3}, \frac{5\pi}{3}$ accept awrt 1.05, 5.24	A1, A1 (3) [11]	
117.	(a) $\frac{dy}{dx} = 6\cos 2x - 8\sin 2x$	M1 A1	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 = 6$	B1	
	$y-4 = -\frac{1}{6}x$ or equivalent	M1 A1 (5)	
	(b) $R = \sqrt{3^2 + 4^2} = 5$	M1 A1	
	$\tan \alpha = \frac{4}{3}, \ \alpha \approx 0.927$ awrt 0.927	M1 A1 (4)	
	(c) $\sin(2x + \text{their } \alpha) = 0$ x = -2.03, -0.46, 1.11, 2.68	M1 A1 A1 A1 (4)	
	First A1 any correct solution; second A1 a second correct solution; third A1 all four correct and to the specified accuracy or better. Ignore the y-coordinate.		

