

Maths Questions By Topic:

Trigonometry

A-Level Edexcel

- **Q** 0207 060 4494
- www.expert-tuition.co.uk
- ☐ online.expert-tuition.co.uk
- □ enquiries@expert-tuition.co.uk
- The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New	Spec
-----	------

Paper 1	Page 1
Paper 2	Page 75
Old Spec	
Core 2	Page 121
Core 3	Page 192

1.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	(a) Given that	
	$2\sin(x - 60^{\circ}) = \cos(x - 30^{\circ})$	
	show that	
	$\tan x = 3\sqrt{3}$	
		(4)
	(b) Hence or otherwise solve, for $0 \le \theta < 180^{\circ}$	
	$2\sin 2\theta = \cos(2\theta + 30^\circ)$	
	giving your answers to one decimal place.	(4)
		(1)

Question 1 continued

Question 1 continued

Question 1 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total for Question 1 is 8 marks)	_

2.

Figure 1

Figure 1 shows a sketch of triangle ABC with AB = (x + 2) cm, BC = (3x + 10) cm, AC = 7x cm, angle $BAC = 60^{\circ}$ and angle $ACB = \theta^{\circ}$

(a) (i) Show that $17x^2 - 35x - 48 = 0$

(3)

(ii) Hence find the value of x.

(1)

(b) Hence find the value of θ giving your answer to one decimal place.

(2)

Question 2 continued

Question 2 continued

Question 2 continued
(Total for Question 2 is 6 marks)

3.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	(a) Show that	
	$\frac{1}{\cos \theta} + \tan \theta \equiv \frac{\cos \theta}{1 - \sin \theta} \qquad \theta \neq (2n+1)90^{\circ} n \in \mathbb{Z}$	(3)
	Given that $\cos 2x \neq 0$	
	(b) solve for $0 < x < 90^{\circ}$	
	$\frac{1}{\cos 2x} + \tan 2x = 3\cos 2x$	
	giving your answers to one decimal place.	(5)

Question 3 continued

Question 3 continued		

Question 3 continued	
(Total for Qu	nestion 3 is 8 marks)

4.	In this question you should show all stages of your working.		
	Solutions relying entirely on calculator technology are not acceptable.		
	(a) Given that $1 + \cos 2\theta + \sin 2\theta \neq 0$ prove that		
	$\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} \equiv \tan \theta$	(4)	
	(b) Hence solve, for $0 < x < 180^{\circ}$		
	$\frac{1-\cos 4x + \sin 4x}{1+\cos 4x + \sin 4x} = 3\sin 2x$		
	giving your answers to one decimal place where appropriate.	(4)	

Question 4 continued	

Question 4 continued

Question 4 continued
(Total for Question 4 is 8 marks)

5.	A parallelogram <i>PQRS</i> has area 50 cm ²	
	Given	
	• PQ has length 14 cm	
	• QR has length 7 cm	
	• angle <i>SPQ</i> is obtuse	
	find	
	(a) the size of angle <i>SPQ</i> , in degrees, to 2 decimal places,	
	(a) the bize of angle 51 g, in degrees, to 2 decimal places,	(3)
	(b) the length of the diagonal SQ, in cm, to one decimal place.	
		(2)

Question 5 continued	
	(Total for Question 5 is 5 marks)
	(

6. In this question you should show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

(i) Solve, for $0 < \theta \le 450^{\circ}$, the equation

$$5\cos^2\theta = 6\sin\theta$$

giving your answers to one decimal place.

(5)

(ii) (a) A student's attempt to solve the question

"Solve, for $-90^{\circ} < x < 90^{\circ}$, the equation $3 \tan x - 5 \sin x = 0$ "

is set out below.

$$3\tan x - 5\sin x = 0$$

$$3\frac{\sin x}{\cos x} - 5\sin x = 0$$

$$3\sin x - 5\sin x \cos x = 0$$

$$3 - 5\cos x = 0$$

$$\cos x = \frac{3}{5}$$

$$x = 53.1^{\circ}$$

Identify two errors or omissions made by this student, giving a brief explanation of each.

(2)

The first four positive solutions, in order of size, of the equation

$$\cos\left(5\alpha + 40^{\circ}\right) = \frac{3}{5}$$

are α_1 , α_2 , α_3 and α_4

(b) Find, to the nearest degree, the value of α_4

(2)

Question 6 continued	
Question o continued	

Question 6 continued

Question 6 continued	
	(Total for Question 6 is 0 montes)
	(Total for Question 6 is 9 marks)

7. (a) Express $\sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$ where R and α are constants, $R > 0$ and $0 < \alpha < \frac{\pi}{2}$	
Give the exact value of R and give the value of α in radians to 3 decimal places.	(3)
The temperature, θ °C, inside a room on a given day is modelled by the equation	
$\theta = 5 + \sin\left(\frac{\pi t}{12} - 3\right) + 2\cos\left(\frac{\pi t}{12} - 3\right) \qquad 0 \leqslant t < 24$	
where t is the number of hours after midnight.	
Using the equation of the model and your answer to part (a),	
(b) deduce the maximum temperature of the room during this day,	(1)
(c) find the time of day when the maximum temperature occurs, giving your answer to the nearest minute.	
	(3)

Question 7 continued		

Question 7 continued		

Question 7 continued	
	(Total for Question 7 is 7 marks)

8.	In this question you must show all stages of your working.		
	Solutions relying entirely on calculator technology are not acceptable.		
	(a) Show that		
	$\csc \theta - \sin \theta \equiv \cos \theta \cot \theta$ $\theta \neq (180n)^{\circ}$ $n \in \mathbb{Z}$	(3)	
	(b) Hence, or otherwise, solve for $0 < x < 180^{\circ}$		
	$\csc x - \sin x = \cos x \cot (3x - 50^{\circ})$		
		(5)	

Question 8 continued	

Question 8 continued		

Question 8 continued	
	(Total for Question 8 is 8 marks)

9.

Figure 1

Figure 1 shows the design for a structure used to support a roof.

The structure consists of four steel beams, AB, BD, BC and AD.

Given AB = 12 m, BC = BD = 7 m and angle $BAC = 27^{\circ}$

(a) find, to one decimal place, the size of angle ACB.

(3)

Not to scale

The steel beams can only be bought in whole metre lengths.

(b) Find the minimum length of steel that needs to be bought to make the complete structure.

(3)

Question 9 continued
(Total for Question 9 is 6 marks)

10.

Figure 3 shows part of the curve with equation $y = 3\cos x^{\circ}$.

The point P(c, d) is a minimum point on the curve with c being the smallest negative value of x at which a minimum occurs.

(a) State the value of c and the value of d.

(1)

(b) State the coordinates of the point to which P is mapped by the transformation which transforms the curve with equation $y = 3\cos x^{\circ}$ to the curve with equation

(i)
$$y = 3\cos\left(\frac{x^{\circ}}{4}\right)$$

(ii)
$$y = 3\cos(x - 36)^{\circ}$$

(2)

(c) Solve, for $450^{\circ} \le \theta < 720^{\circ}$,

$$3\cos\theta = 8\tan\theta$$

giving your solution to one decimal place.

In part (c) you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

(5)

Question 10 continued			

Question 10 continued

Question 10 continued
(Total for Question 10 is 8 marks)

11.

Figure 1

Figure 1 shows a plot of part of the curve with equation $y = \cos x$ where x is measured in radians. Diagram 1, on the opposite page, is a copy of Figure 1.

(a) Use Diagram 1 to show why the equation

$$\cos x - 2x - \frac{1}{2} = 0$$

has only one real root, giving a reason for your answer.

(2)

Given that the root of the equation is α , and that α is small,

(b) use the small angle approximation for $\cos x$ to estimate the value of α to 3 decimal places.

Question 11 continued χ Diagram 1 (Total for Question 11 is 5 marks)

19 (a) Calara for 1900 < 0 < 1900 4ha annadan	
12. (a) Solve, for $-180^{\circ} \le \theta \le 180^{\circ}$, the equation	
$5\sin 2\theta = 9\tan \theta$	
giving your answers, where necessary, to one decimal place.	
[Solutions based entirely on graphical or numerical methods are not acceptable.]	(6)
(b) Deduce the smallest positive solution to the equation	
$5\sin(2x - 50^\circ) = 9\tan(x - 25^\circ)$	(2)

Question 12 continued	

Question 12 continued

Question 12 continued	
	Total for Question 12 is 8 marks)
	otal 101 Yucstivii 12 is o iliai ksj

13.	The curve	<i>C</i> , ir	the	standard	Cartesian	plane,	is	defined	by	the equation	l
-----	-----------	---------------	-----	----------	-----------	--------	----	---------	----	--------------	---

$$x = 4\sin 2y \qquad \frac{-\pi}{4} < y < \frac{\pi}{4}$$

The curve C passes through the origin O

(a) Find the value of $\frac{dy}{dx}$ at the origin.

(2)

- (b) (i) Use the small angle approximation for $\sin 2y$ to find an equation linking x and y for points close to the origin.
 - (ii) Explain the relationship between the answers to (a) and (b)(i).

(2)

(c) Show that, for all points (x, y) lying on C,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{a\sqrt{b-x^2}}$$

where a and b are constants to be found.

(3)

Question 13 continued	

Question 13 continued	
	(Total for Question 13 is 7 marks)

14.

Figure 1

Figure 1 shows a sketch of a triangle ABC with AB = 3x cm, AC = 2x cm and angle $CAB = 60^{\circ}$

Given that the area of triangle ABC is $18\sqrt{3}$ cm²

(a) show that $x = 2\sqrt{3}$

(3)

(b) Hence find the exact length of BC, giving your answer as a simplified surd.

(3)

\mathcal{I}	EXPERT
T	THITION

Question 14 continued		
	Total for Question 14 is 6 marks)	
	Total for Question 14 is o marks)	

15. (a) Show that		
(b) Hence, or otherwise, solv	$\frac{10\sin^2\theta - 7\cos\theta + 2}{3 + 2\cos\theta} \equiv 4 - 5\cos\theta$ We, for $0 \le x < 360^\circ$, the equation	(4)
	$\frac{10\sin^2 x - 7\cos x + 2}{3 + 2\cos x} = 4 + 3\sin x$	(3)

Question 15 continued		

Question 15 continued		

Question 15 continued		
	(Total for Question 15 is 7 marks)	
	(10th 101 Vacadon 15 is / marks)	

Given that θ is small and is	measured in radians, use the small angle	approximations to find an
approximate value of	measured in radians, use the small angle	approximations to find an
	$1-\cos 4\theta$	
	$2\theta \sin 3\theta$	
		(3)

Question 16 continued		
(Total for Question 16 is 3 marks)		

17. $ \begin{array}{c} rcm \\ O \\ \hline P \\ R \end{array} $	
Figure 1	
Figure 1 shows a sector AOB of a circle with centre O and radius r cm.	
The angle AOB is θ radians. The area of the sector AOB is 11 cm^2	
Given that the perimeter of the sector is 4 times the length of the arc AB , find the exact	
value of r .	(4)

Question 17 continued		
(Total for Question 17 is 4 marks)		

18.	The depth of water, D metres, in a harbour on a particular day is modelled by the form	nula
	$D = 5 + 2\sin(30t)^{\circ} \qquad 0 \leqslant t < 24$	
	where t is the number of hours after midnight.	
	A boat enters the harbour at 6:30 am and it takes 2 hours to load its cargo. The boat requires the depth of water to be at least 3.8 metres before it can leave the harbour.	
	(a) Find the depth of the water in the harbour when the boat enters the harbour.	(1)
	(b) Find, to the nearest minute, the earliest time the boat can leave the harbour.	
	(Solutions based entirely on graphical or numerical methods are not acceptable.)	(4)

Question 18 continued		
(Total for Question 18 is 5 marks)		

19.	In a triangle ABC, side AB has length 10 cm, side AC has length 5 cm, and angle BAC = θ where θ is measured in degrees. The area of triangle ABC is 15 cm^2		
	(a) Find the two possible values of $\cos \theta$		
		(4)	
	Given that BC is the longest side of the triangle,		
	(b) find the exact length of BC.		
		(2)	

Question 19 continued	
	4-1 for Orandor 10 ' ()
(10	tal for Question 19 is 6 marks)

20. (a) Show t	that the equation	
	$4\cos\theta - 1 = 2\sin\theta\tan\theta$	
can be	written in the form	
	$6\cos^2\theta - \cos\theta - 2 = 0$	
		(4)
(b) Hence	solve, for $0 \le x < 90^{\circ}$	
	$4\cos 3x - 1 = 2\sin 3x \tan 3x$	
	your answers, where appropriate, to one decimal place. ons based entirely on graphical or numerical methods are not acceptable.)	(4)

Question 20 continued

Question 20 continued	

Question 20 continued	
	(Total for Question 20 is 8 marks)

21. (i) Solve, for $-90^{\circ} \le \theta < 270^{\circ}$, the equation,

$$\sin(2\theta + 10^{\circ}) = -0.6$$

giving your answers to one decimal place.

(5)

(ii) (a) A student's attempt at the question

"Solve, for
$$-90^{\circ} < x < 90^{\circ}$$
, the equation $7 \tan x = 8 \sin x$ "

is set out below.

$$7 \tan x = 8 \sin x$$

$$7 \times \frac{\sin x}{\cos x} = 8\sin x$$

$$7\sin x = 8\sin x \cos x$$

$$7 = 8 \cos x$$

$$\cos x = \frac{7}{8}$$

$$x = 29.0^{\circ}$$
 (to 3 sf)

Identify two mistakes made by this student, giving a brief explanation of each mistake.

(2)

(b) Find the smallest positive solution to the equation

$$7\tan(4\alpha + 199^\circ) = 8\sin(4\alpha + 199^\circ)$$

(2)

Question 21 continued	
	(Total for Question 21 is 9 marks)

22. (a) Express $2 \sin \theta - 1.5 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$

State the value of R and give the value of α to 4 decimal places.

(3)

Tom models the depth of water, D metres, at Southview harbour on 18th October 2017 by the formula

$$D = 6 + 2\sin\left(\frac{4\pi t}{25}\right) - 1.5\cos\left(\frac{4\pi t}{25}\right), \quad 0 \leqslant t \leqslant 24$$

where *t* is the time, in hours, after 00:00 hours on 18th October 2017.

Use Tom's model to

(b) find the depth of water at 00:00 hours on 18th October 2017,

(1)

(c) find the maximum depth of water,

(1)

(d) find the time, in the afternoon, when the maximum depth of water occurs. Give your answer to the nearest minute.

(3)

Tom's model is supported by measurements of *D* taken at regular intervals on 18th October 2017. Jolene attempts to use a similar model in order to model the depth of water at Southview harbour on 19th October 2017.

Jolene models the depth of water, H metres, at Southview harbour on 19th October 2017 by the formula

$$H = 6 + 2\sin\left(\frac{4\pi x}{25}\right) - 1.5\cos\left(\frac{4\pi x}{25}\right), \quad 0 \leqslant x \leqslant 24$$

where x is the time, in hours, after 00:00 hours on 19th October 2017.

By considering the depth of water at 00:00 hours on 19th October 2017 for both models,

- (e) (i) explain why Jolene's model is not correct,
 - (ii) hence find a suitable model for H in terms of x.

(3)

Question 22 continued	

Question 22 continued

Question 22 continued	
(Tot	al for Question 22 is 11 marks)

23.

Figure 1

A triangular lawn is modelled by the triangle ABC, shown in Figure 1. The length AB is to be 30 m long.

Given that angle $BAC = 70^{\circ}$ and angle $ABC = 60^{\circ}$,

(a) calculate the area of the lawn to 3 significant figures.

(4)

(b) Why is your answer unlikely to be accurate to the nearest square metre?

(1)

Question 23 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total for Question 23 is 5 marks)	_

	$12\sin^2 x$	$+7\cos x - 13 = 0$		
Give your answers to one	e decimal place.			
(Solutions based entirely		merical methods are	not acceptable.)	
(Sommons based chin ely	on gruphical or ha	menteur memous une	nor acceptances,	(5)
				(5)

Question 24 continued	
	(Total for Question 24 is 5 marks)
	• • • • • • • • • • • • • • • • • • • •

Figure 1

The shape ABCDOA, as shown in Figure 1, consists of a sector COD of a circle centre O joined to a sector AOB of a different circle, also centre O.

Given that arc length CD = 3 cm, $\angle COD = 0.4$ radians and AOD is a straight line of length 12 cm,

(a) find the length of OD,

(2)

(b) find the area of the shaded sector AOB.

(3)

(Total for Question 25 is 5 marks)
,

Figure 4

Figure 5

Figure 4 shows a sketch of a Ferris wheel.

The height above the ground, Hm, of a passenger on the Ferris wheel, t seconds after the wheel starts turning, is modelled by the equation

$$H = |A\sin(bt + \alpha)^{\circ}|$$

where A, b and α are constants.

Figure 5 shows a sketch of the graph of *H* against *t*, for one revolution of the wheel.

Given that

- the maximum height of the passenger above the ground is 50 m
- the passenger is 1 m above the ground when the wheel starts turning
- the wheel takes 720 seconds to complete one revolution
- (a) find a complete equation for the model, giving the exact value of A, the exact value of b and the value of a to 3 significant figures.

(4)

(b) Explain why an equation of the form

$$H = \left| A \sin(bt + \alpha)^{\circ} \right| + d$$

where d is a positive constant, would be a more appropriate model.

(1)

Question 26 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total for Question 26 is 5 marks)	_

27.	In this question ye	ou must show a	all stages of	f your working.	
	Solutions relying on calculator technology are not acceptable.				
	Given that the first three terms of a geometric series are				
	$12\cos\theta$	$5 + 2\sin\theta$	and	$6 \tan \theta$	
	(a) show that				
	2	$4\sin^2\theta - 52\sin\theta$	0 + 25 = 0		
					(3)
	Given that θ is an obtuse angle meas	ured in radians,			
	(b) solve the equation in part (a) to f	ind the exact va	lue of θ		(2)
	(c) show that the sum to infinity of t	ha sarias con ha	avnracead	in the form	(2)
	(c) show that the sum to minity of t			in the form	
		$k(1-\sqrt{3})$)		
	where k is a constant to be found				(5)
					(0)

Question 27 continued

Question 27 continued

Question 27 continued	
	(Total for Question 27 is 10 marks)

28. Given that θ is small and measured in radians, use the small angle approximations to show that			
	$4\sin\frac{\theta}{2} + 3\cos^2\theta \approx a + b\theta + c\theta^2$		
where a , b and c are integers t	to be found.	(3)	

Question 28 continued
(Total for Question 28 is 3 marks)

Figure 1

The shape *OABCDEFO* shown in Figure 1 is a design for a logo.

In the design

- OAB is a sector of a circle centre O and radius r
- sector *OFE* is congruent to sector *OAB*
- ODC is a sector of a circle centre O and radius 2r
- *AOF* is a straight line

Given that the size of angle COD is θ radians,

(a) write down, in terms of θ , the size of angle AOB

(1)

(b) Show that the area of the logo is

$$\frac{1}{2}r^2(3\theta+\pi)\tag{2}$$

(c) Find the perimeter of the logo, giving your answer in simplest form in terms of r, θ and π .

(2)

Question 29 continued	

Question 29 continued

Question 29 continued
(Total for Question 29 is 5 marks)

30. (a) Express $2\cos\theta - \sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$ Give the exact value of R and the value of α in radians to 3 decimal places.

(3)

Figure 6

Figure 6 shows the cross-section of a water wheel.

The wheel is free to rotate about a fixed axis through the point C.

The point *P* is at the end of one of the paddles of the wheel, as shown in Figure 6.

The water level is assumed to be horizontal and of constant height.

The vertical height, H metres, of P above the water level is modelled by the equation

$$H = 3 + 4\cos(0.5t) - 2\sin(0.5t)$$

where *t* is the time in seconds after the wheel starts rotating.

Using the model, find

- (b) (i) the maximum height of *P* above the water level,
 - (ii) the value of t when this maximum height first occurs, giving your answer to one decimal place.

(3)

In a single revolution of the wheel, P is below the water level for a total of T seconds.

According to the model,

(c) find the value of *T* giving your answer to 3 significant figures.

(Solutions based entirely on calculator technology are not acceptable.)

(4)

In reality, the water level may not be of constant height.

(d) Explain how the equation of the model should be refined to take this into account.

(1)

Question 30 continued	

Question 30 continued

Question 30 continued

Question 30 continued	
	(Total for Question 30 is 11 marks)

31	. In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	(a) Show that	
	$\cos 3A \equiv 4\cos^3 A - 3\cos A$	
		(4)
	(b) Hence solve, for $-90^{\circ} \leqslant x \leqslant 180^{\circ}$, the equation	
	$1 - \cos 3x = \sin^2 x$	
		(4)

Question 31 continued

Question 31 continued

Question 31 continued	
	(Total for Question 31 is 8 marks)

Figure 1

Figure 1 shows a sector AOB of a circle with centre O, radius 5 cm and angle $AOB = 40^{\circ}$ The attempt of a student to find the area of the sector is shown below.

Area of sector =
$$\frac{1}{2}r^2\theta$$

= $\frac{1}{2} \times 5^2 \times 40$
= $500 \,\text{cm}^2$

(a) Explain the error made by this student.

(1)

(b) Write out a correct solution.

(2)

Question 32 continued	
	Total for Question 32 is 3 marks)
	Total for Question 32 is 3 marks)

33. (a) Prove

$$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} \equiv 2\cot 2\theta \qquad \theta \neq (90n)^{\circ}, n \in \mathbb{Z}$$
(4)

(b) Hence solve, for $90^{\circ} < \theta < 180^{\circ}$, the equation

$$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4$$

giving any solutions to one decimal place.

(3)

Question 33 continued	

Question 33 continued	

Question 33 continued	
	(Total for Question 33 is 7 marks)
	(Total for Question 33 is / marks)

34. (i) Solve, for $0 \le x < \frac{\pi}{2}$, the equation	
$4\sin x = \sec x$	(4)
(") C 1	
(ii) Solve, for $0 \le \theta < 360^{\circ}$, the equation	
$5\sin\theta - 5\cos\theta = 2$	
giving your answers to one decimal place.	
(Solutions based entirely on graphical or numerical methods are not acceptable.)	
	(5)

Question 34 continued	

Question 34 continued

Question 34 continued
(Total for Question 34 is 9 marks)

35. (a) Prove that

$$1 - \cos 2\theta \equiv \tan \theta \sin 2\theta, \quad \theta \neq \frac{(2n+1)}{2}, \quad n \in \mathbb{Z}$$

(3)

(b) Hence solve, for $-\frac{\pi}{2} < x < \frac{\pi}{2}$, the equation

$$(\sec^2 x - 5)(1 - \cos 2x) = 3\tan^2 x \sin 2x$$

Give any non-exact answer to 3 decimal places where appropriate.

(6)

Question 35 continued		

Question 35 continued		

Question 35 continued	
(Total f	or Question 35 is 9 marks)

36.

Figure 1

Figure 1 shows a circle with centre O. The points A and B lie on the circumference of the circle.

The area of the major sector, shown shaded in Figure 1, is $135\,\text{cm}^2$.

The reflex angle *AOB* is 4.8 radians.

Find the exact length, in cm, of the minor arc AB, giving your answer in the form $a\pi + b$,	
where a and b are integers to be found.	
	(4)

Question 36 continued	
(Total for	Question 36 is 4 marks)

37. (a) Given that θ is small, use the small angle approximation for $\cos\theta$ to show that

$$1 + 4\cos\theta + 3\cos^2\theta \approx 8 - 5\theta^2 \tag{3}$$

(2)

Adele uses $\theta = 5^{\circ}$ to test the approximation in part (a).

Adele's working is shown below.

Using my calculator, $1 + 4\cos(5^\circ) + 3\cos^2(5^\circ) = 7.962$, to 3 decimal places.

Using the approximation $8 - 5\theta^2$ gives $8 - 5(5)^2 = -117$

Therefore, $1 + 4\cos\theta + 3\cos^2\theta \approx 8 - 5\theta^2$ is not true for $\theta = 5^\circ$

- (b) (i) Identify the mistake made by Adele in her working.
 - (ii) Show that $8-5\theta^2$ can be used to give a good approximation to $1+4\cos\theta+3\cos^2\theta$ for an angle of size 5°

Question 37 continued
(Total for Question 37 is 5 marks)
(1000 100 (1000 1000 100 100 1000 100

38. (a) Show that			
$\csc 2x + \cot 2x \equiv \cot x, x \neq 90n^{\circ}, n \in \mathbb{Z}$	(5)		
(b) Hence, or otherwise, solve, for $0 \le \theta < 180^{\circ}$,			
$\csc(4\theta + 10^\circ) + \cot(4\theta + 10^\circ) = \sqrt{3}$			
You must show your working. (Solutions based entirely on graphical or numerical methods are not	acceptable.) (5)		

Question 38 continued	
(m	f O
(Total	for Question 38 is 10 marks)

39. Some A level students were given the following question.

Solve, for $-90^{\circ} < \theta < 90^{\circ}$, the equation

$$\cos \theta = 2 \sin \theta$$

The attempts of two of the students are shown below.

$$\cos \theta = 2 \sin \theta$$
$$\tan \theta = 2$$

 $\theta = 63.4^{\circ}$

Student B

$$\cos \theta = 2 \sin \theta$$

$$\cos^2 \theta = 4 \sin^2 \theta$$

$$1 - \sin^2 \theta = 4 \sin^2 \theta$$

$$\sin^2 \theta = \frac{1}{5}$$

$$\sin \theta = \pm \frac{1}{\sqrt{5}}$$

$$\theta = \pm 26.6^{\circ}$$

(a) Identify an error made by student A.

(1)

Student B gives $\theta = -26.6^{\circ}$ as one of the answers to $\cos \theta = 2 \sin \theta$.

- (b) (i) Explain why this answer is incorrect.
 - (ii) Explain how this incorrect answer arose.

(2)

(Total for Question 39 is 3 marks)

40	. (a)	Solve, for $-180^{\circ} \leqslant x < 180^{\circ}$, the equation	
		$3\sin^2 x + \sin x + 8 = 9\cos^2 x$	
		giving your answers to 2 decimal places.	
			(6)
	(b)	Hence find the smallest positive solution of the equation	
	()		
		$3\sin^2(2\theta - 30^\circ) + \sin(2\theta - 30^\circ) + 8 = 9\cos^2(2\theta - 30^\circ)$	
		giving your answer to 2 decimal places.	(2)
			(2)

Question 40 continued	
	(Total for Question 40 is 8 marks)

41. (a) Express $10\cos\theta - 3\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < 90^{\circ}$ Give the exact value of R and give the value of α , in degrees, to 2 decimal places.

(3)

Figure 3

The height above the ground, H metres, of a passenger on a Ferris wheel t minutes after the wheel starts turning, is modelled by the equation

$$H = a - 10\cos(80t)^{\circ} + 3\sin(80t)^{\circ}$$

where a is a constant.

Figure 3 shows the graph of *H* against *t* for two complete cycles of the wheel.

Given that the initial height of the passenger above the ground is 1 metre,

- (b) (i) find a complete equation for the model,
 - (ii) hence find the maximum height of the passenger above the ground.

(2)

(c) Find the time taken, to the nearest second, for the passenger to reach the maximum height on the second cycle.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(3)

It is decided that, to increase profits, the speed of the wheel is to be increased.

(d) How would you adapt the equation of the model to reflect this increase in speed?

(1)

Question 41 continued	
ſΊ	otal for Question 41 is 9 marks)
	· · · · · · · · · · · · · · · · · · ·

42.

Figure 2 shows a flag XYWZX.

The flag consists of a triangle XYZ joined to a sector ZYW of a circle with radius 5 cm and centre Y.

The angle of the sector, angle ZYW, is 0.7 radians.

The points X, Y and W lie on a straight line with $XY = 7 \,\mathrm{cm}$ and $YW = 5 \,\mathrm{cm}$.

Find

- (a) the area of the sector ZYW in cm², (2)
- (b) the area of the flag, in cm², to 2 decimal places,

 (3)
- (4)

(c) the length of the perimeter, XYWZX, of the flag, in cm to 2 decimal places.

estion 42 continued	

estion 42 continued	

Question 42 continued	bl

43.	In this question solutions based entirely on graphical or numerical methods are not acceptable.	
	(i) Solve for $0 \leqslant x < 360^{\circ}$,	
	$4\cos(x+70^\circ)=3$	
	giving your answers in degrees to one decimal place.	(4)
	(ii) Find, for $0 \le \theta < 2\pi$, all the solutions of	
	$6\cos^2\theta - 5 = 6\sin^2\theta + \sin\theta$	
	giving your answers in radians to 3 significant figures.	(5)

estion 43 continued	

uestion 43 continued	

uestion 43 continued	

Find the two possible values for x , giving your answers to one dec	
	(4)

	Leave
	blank
Question 44 continued	
(Total 4 marks)	

(2)

(4)

45.

Figure 1

Figure 1 is a sketch representing the cross-section of a large tent *ABCDEF*. *AB* and *DE* are line segments of equal length.

Angle FAB and angle DEF are equal.

F is the midpoint of the straight line AE and FC is perpendicular to AE. BCD is an arc of a circle of radius 3.5 m with centre at F. It is given that

$$AF = FE = 3.7 \text{m}$$

 $BF = FD = 3.5 \text{m}$
angle $BFD = 1.77 \text{ radians}$

Find

(a) the length of the arc *BCD* in metres to 2 decimal places,

(b) the area of the sector FBCD in m^2 to 2 decimal places, (2)

(c) the total area of the cross-section of the tent in m² to 2 decimal places.

	Lea	ave
	bla	ank
Question 45 continued		
	.	
	.	
	.	

Question 45 continued	Leave blank
Question 43 continued	

46.	(a)	Show	that the	equation

$$\cos^2 x = 8\sin^2 x - 6\sin x$$

can be written in the form

$$(3\sin x - 1)^2 = 2$$

(3)

(b) Hence solve, for
$$0 \le x < 360^{\circ}$$
,

$$\cos^2 x = 8\sin^2 x - 6\sin x$$

giving your answers to 2 decimal places.

(5)

uestion 46 continued	

47. (i) Solve, for $-\pi < \theta \leqslant \pi$,

$$1 - 2\cos\left(\theta - \frac{\pi}{5}\right) = 0$$

giving your answers in terms of π .

(3)

(ii) Solve, for $0 \le x < 360^\circ$,

$$4\cos^2 x + 7\sin x - 2 = 0$$

giving your answers to one decimal place. (Solutions based entirely on graphical or numerical methods are not acceptable.)

1	6 \	
•	U)	

uestion 47 continued	b

48.

Figure 1

Figure 1 shows a sketch of a design for a scraper blade. The blade *AOBCDA* consists of an isosceles triangle *COD* joined along its equal sides to sectors *OBC* and *ODA* of a circle with centre *O* and radius 8 cm. Angles *AOD* and *BOC* are equal. *AOB* is a straight line and is parallel to the line *DC*. *DC* has length 7 cm.

(a) Show that the angle *COD* is 0.906 radians, correct to 3 significant figures.

(2)

(b) Find the perimeter of AOBCDA, giving your answer to 3 significant figures.

(3)

(c) Find the area of AOBCDA, giving your answer to 3 significant figures.

 (2)
 71

	Le
	bla
Question 48 continued	
	otal 8 marks)
(1)	OLAL O IIIAEKS)

49. (i) Solve, for $0 \le \theta < \pi$, the equation

$$\sin 3\theta - \sqrt{3}\cos 3\theta = 0$$

giving your answers in terms of π .

(3)

(ii) Given that

$$4\sin^2 x + \cos x = 4 - k, \qquad 0 \leqslant k \leqslant 3$$

(a) find $\cos x$ in terms of k.

(3)

(b) When k = 3, find the values of x in the range $0 \le x < 360^{\circ}$

(3)

Question 49 continued		Le bla
question 15 continued		
	(Total 9 marks)	

The shape ABCDEA, as shown in Figure 2, consists of a right-angled triangle EAB and a triangle DBC joined to a sector BDE of a circle with radius 5 cm and centre B.

The points A, B and C lie on a straight line with BC = 7.5 cm.

Angle $EAB = \frac{\pi}{2}$ radians, angle EBD = 1.4 radians and CD = 6.1 cm.

(a) Find, in cm², the area of the sector *BDE*.

(2)

- (b) Find the size of the angle DBC, giving your answer in radians to 3 decimal places. (2
- (c) Find, in cm², the area of the shape *ABCDEA*, giving your answer to 3 significant figures.

(5)

Question 50 continued		bla
	(Total 9 marks)	

51.	(i)	Solve, for $0 \le \theta < 360^{\circ}$, the equation

$$9\sin(\theta + 60^{\circ}) = 4$$

giving your answers to 1 decimal place. You must show each step of your working.

(4)

(5)

(ii) Solve, for $-\pi \le x < \pi$, the equation

$$2\tan x - 3\sin x = 0$$

giving your answers to 2 decimal places where appropriate. [Solutions based entirely on graphical or numerical methods are not acceptable.]

Question 51 continued	bla

Figure 2

Figure 2 shows the shape *ABCDEA* which consists of a right-angled triangle *BCD* joined to a sector *ABDEA* of a circle with radius 7 cm and centre *B*.

A, B and C lie on a straight line with AB = 7 cm.

Given that the size of angle ABD is exactly 2.1 radians,

(a) find, in cm, the length of the arc DEA,

(2)

(b) find, in cm, the perimeter of the shape *ABCDEA*, giving your answer to 1 decimal place.

(4)

(Total 6 marks)

53. (i) Solve, for $0 \le \theta \le 180^\circ$, the equation

$$\frac{\sin 2\theta}{(4\sin 2\theta - 1)} = 1$$

giving your answers to 1 decimal place.

(3)

(5)

(ii) Solve, for $0 \le x \le 2\pi$, the equation

$$5\sin^2 x - 2\cos x - 5 = 0$$

giving your answers to 2 decimal places. (Solutions based entirely on graphical or numerical methods are not acceptable.)

		Leave
Overtion 52 continued		blank
Question 53 continued		
	//D / 10 2 2	
	(Total 8 marks)	

Leave blank

54.

Figure 2

Figure 2 shows a plan view of a garden.

The plan of the garden *ABCDEA* consists of a triangle *ABE* joined to a sector *BCDE* of a circle with radius 12m and centre *B*.

The points A, B and C lie on a straight line with $AB = 23 \,\mathrm{m}$ and $BC = 12 \,\mathrm{m}$.

Given that the size of angle ABE is exactly 0.64 radians, find

- (a) the area of the garden, giving your answer in m², to 1 decimal place,

 (4)
- (b) the perimeter of the garden, giving your answer in metres, to 1 decimal place. (5)

Question 54 continued	1

55. (i) Solve, for $-180^{\circ} \le x < 180^{\circ}$,

$$\tan(x - 40^{\circ}) = 1.5$$

giving your answers to 1 decimal place.

(3)

(ii) (a) Show that the equation

$$\sin\theta\tan\theta = 3\cos\theta + 2$$

can be written in the form

$$4\cos^2\theta + 2\cos\theta - 1 = 0$$

(3)

(b) Hence solve, for $0 \le \theta \le 360^{\circ}$,

$$\sin\theta \tan\theta = 3\cos\theta + 2$$

showing each stage of your working.

(5)

Question 55 continued	

Figure 2

Figure 2 shows the design for a triangular garden ABC where AB = 7 m, AC = 13 m and BC = 10 m.

Given that angle $BAC = \theta$ radians,

(a) show that, to 3 decimal places, $\theta = 0.865$

(3)

The point D lies on AC such that BD is an arc of the circle centre A, radius 7 m.

The shaded region S is bounded by the arc BD and the lines BC and DC. The shaded region S will be sown with grass seed, to make a lawned area.

Given that 50 g of grass seed are needed for each square metre of lawn,

(D)	and the amount of grass seed needed, giving your answer to the nearest 10 g.	
		(7)

Question 56 continued	b

57.	(i)	Solve	for	$0 \leqslant \theta < 18$	no
57.	(1)	SULVE,	101	$0 \leqslant 0 \leqslant 10$	v

$$\sin(2\theta - 30^{\circ}) + 1 = 0.4$$

giving your answers to 1 decimal place.

(5)

(ii) Find all the values of x, in the interval $0 \le x < 360^{\circ}$, for which

$$9\cos^2 x - 11\cos x + 3\sin^2 x = 0$$

giving your answers to 1 decimal place.

(7)

You must show clearly how you obtained your answers.

	Leave blank
Question 57 continued	Diank
Question 57 continued	
(Total 12 manula)	
(Total 12 marks)	
	1

	$\cos(3x - 10^{\circ}) = -0.4$	
	giving your answers to 1 decimal place. You should show each step in your working.	(7)
_		

Figure 1

The triangle XYZ in Figure 1 has XY = 6 cm, YZ = 9 cm, ZX = 4 cm and angle $ZXY = \alpha$. The point W lies on the line XY.

The circular arc ZW, in Figure 1 is a major arc of the circle with centre X and radius 4 cm.

(a) Show that, to 3 significant figures, $\alpha = 2.22$ radians.

(2)

(b) Find the area, in cm^2 , of the major sector XZWX.

(3)

The region enclosed by the major arc ZW of the circle and the lines WY and YZ is shown shaded in Figure 1.

Calculate

	· \		1		C	.1 .	1	1 1			
- (C) t	he	area	α t	thic	cha	ded	rec	1101	١.
١	•	<i>)</i> (110	arca	$\mathbf{o}_{\mathbf{I}}$	ums	SHu	ucu	102	,ıoı	1

(3)

(\mathbf{d}) the	perimeter	ZWYZ	of this	shaded	region.

(4)

	Leave blank
Question 59 continued	
	_
(Total 12 mar	'KS)

60.	(a)	Show that the equation

$$\tan 2x = 5 \sin 2x$$

can be written in the form

$$(1-5\cos 2x)\sin 2x=0$$

(2)

(b) Hence solve, for $0 \le x \le 180^{\circ}$,

$$\tan 2x = 5 \sin 2x$$

giving your answers to 1 decimal place where appropriate. You must show clearly how you obtained your answers.

(5)

(Total 7 marks)

Figure 2

Figure 2 shows ABC, a sector of a circle of radius 6 cm with centre A. Given that the size of angle BAC is 0.95 radians, find

(a) the length of the arc BC,

(2)

(b) the area of the sector ABC.

(2)

The point D lies on the line AC and is such that AD = BD. The region R, shown shaded in Figure 2, is bounded by the lines CD, DB and the arc BC.

(c) Show that the length of AD is 5.16 cm to 3 significant figures.

(2)

Find

(d) the perimeter of R,

(2)

(e) the area of R, giving your answer to 2 significant figures.

(4)

	Leave blank
Question 61 continued	biank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total 12 mark	(S)

62. (i) Find the solutions of the equation $\sin(3x-15^\circ) = \frac{1}{2}$, for which $0 \le x \le 180^\circ$

(6)

(ii)

Figure 4

Figure 4 shows part of the curve with equation

$$y = \sin(ax - b)$$
, where $a > 0$, $0 < b < \pi$

The curve cuts the x-axis at the points P, Q and R as shown.

Given that the coordinates of P, Q and R are $\left(\frac{\pi}{10}, 0\right)$, $\left(\frac{3\pi}{5}, 0\right)$ and $\left(\frac{11\pi}{10}, 0\right)$ respectively, find the values of a and b.

(4)

Question 62 continued		Leav blank
	(Total 10 marks)	

Figure 1

The shape shown in Figure 1 is a pattern for a pendant. It consists of a sector OAB of a circle centre O, of radius 6 cm, and angle $AOB = \frac{\pi}{3}$. The circle C, inside the sector, touches the two straight edges, OA and OB, and the arc AB as shown.

Find

(a) the area of the sector OAB,

(2)

(b) the radius of the circle C.

(3)

The region outside the circle C and inside the sector OAB is shown shaded in Figure 1.

(c) Find the area of the shaded region.

(2)

	Leave blank
Question 63 continued	Dialik
Question of community	
(Total 7 marks)	
(10tal / marks)	

64. (a) Solve for $0 \le x < 360^{\circ}$, giving your answers in degrees to 1 decimal place,	
$3\sin(x+45^\circ)=2$	(4)
(b) Find for $0 < x < 2\pi$ all the solutions of	, ,
(b) Find, for $0 \le x < 2\pi$, all the solutions of	
$2\sin^2 x + 2 = 7\cos x$	
giving your answers in radians.	
You must show clearly how you obtained your answers.	(6)

	Leave
Question 64 continued	blank
Question of continued	
(Total 10 marks)) [

(a)	Find the size of angle <i>C</i> , giving your answer in radians to 3 significant figures.	(3)
(b)	Find the area of triangle ABC, giving your answer in cm ² to 3 significant figures.	(3)

66	(a)	Show	that the	equation
oo.	(a)	SHOW	mai me	equation

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

can be written in the form

$$4\sin^2 x + 7\sin x + 3 = 0$$

(2)

(b) Hence solve, for
$$0 \le x < 360^{\circ}$$
,

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

giving your answers to 1 decimal place where appropriate.

(5)

	Leave
Question 66 continued	blank
Question do continueu	
(Total 7 marks)	

	(a)	Given that $5\sin\theta = 2\cos\theta$, find the value of $\tan\theta$.	(1)
	(b)	Solve, for $0 \le x < 360^{\circ}$,	, ,
	(0)	Solve, for $0 \leqslant x < 500$,	
		$5\sin 2x = 2\cos 2x,$	
		giving your answers to 1 decimal place.	
			(5)
_			
_			

(Total 6 marks)

Leave blank

68.

Figure 1

Figure 1 shows the sector *OAB* of a circle with centre *O*, radius 9 cm and angle 0.7 radians.

(a) Find the length of the arc AB. (2)

(b) Find the area of the sector OAB. (2)

The line AC shown in Figure 1 is perpendicular to OA, and OBC is a straight line.

(c) Find the length of AC, giving your answer to 2 decimal places. (2)

The region H is bounded by the arc AB and the lines AC and CB.

(d) Find the area of H, giving your answer to 2 decimal places. (3)

	Lea blaı
Question 68 continued	Olui
(Total 9 marks)	

	$5\sin x = 1 + 2\cos^2 x$	
can be written in the fo	rm	
	$2\sin^2 x + 5\sin x - 3 = 0$	(2)
(b) Solve, for $0 \leqslant x < 360^{\circ}$,	
	$2\sin^2 x + 5\sin x - 3 = 0$	(4)

(Total 6 marks)

Figure 1

An emblem, as shown in Figure 1, consists of a triangle ABC joined to a sector CBD of a circle with radius 4 cm and centre B. The points A, B and D lie on a straight line with AB = 5 cm and BD = 4 cm. Angle BAC = 0.6 radians and AC is the longest side of the triangle ABC.

(a) Show that angle ABC = 1.76 radians, correct to 3 significant figures. (4)

		(4)

(b) Find the area of the emblem.	
	(3)

(Total 7 marks)

$(1+\tan\theta)(5\sin\theta-2)=0.$	
$(1+\tan\theta)(3\sin\theta-2)=0.$,
	(4

(ii) Solve, for $0 \leqslant x < 36$	$4\sin x = 3\tan x.$	
		(6)

Leave blank

72.

Figure 3

The shape *BCD* shown in Figure 3 is a design for a logo.

The straight lines DB and DC are equal in length. The curve BC is an arc of a circle with centre A and radius 6 cm. The size of $\angle BAC$ is 2.2 radians and AD = 4 cm.

Find

(a) the area of the sector BAC, in cm²,

(2)

(b) the size of $\angle DAC$, in radians to 3 significant figures,

(2)

(c) the complete area of the logo design, to the nearest cm².

	Leave blank
Question 72 continued	
(Total 8 marks))

73.	(a)	Show	that	the	equation
-----	-----	------	------	-----	----------

$$4\sin^2 x + 9\cos x - 6 = 0$$

can be written as

$$4\cos^2 x - 9\cos x + 2 = 0.$$

(2)

(b) Hence solve, for
$$0 \le x < 720^{\circ}$$
,

$$4\sin^2 x + 9\cos x - 6 = 0,$$

giving your answers to 1 decimal place.

(6)

Question 73 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total 8 marks	s)

74.

Figure 1

Figure 1 shows ABC, a sector of a circle with centre A and radius 7 cm.

Given that the size of $\angle BAC$ is exactly 0.8 radians, find

(a) the length of the arc BC,

(2)

(b) the area of the sector *ABC*.

(2)

The point D is the mid-point of AC. The region R, shown shaded in Figure 1, is bounded by CD, DB and the arc BC.

Find

(c) the perimeter of R, giving your answer to 3 significant figures,

(4)

(d) the area of R, giving your answer to 3 significant figures.

	Leave
Question 74 continued	blank
Question 74 continued	
(Total 12 marks))

- **75.** Solve, for $0 \le x < 360^{\circ}$,
 - (a) $\sin(x 20^\circ) = \frac{1}{\sqrt{2}}$

(4)

(b) $\cos 3x = -\frac{1}{2}$

(6)

Question 75 continued	Leave blank
(Total 10 marks)	

76.	(a)	Show	that	the	equation
, 0.	(u)	D110 **	unu	uic	equation

$$3\sin^2\theta - 2\cos^2\theta = 1$$

can be written as

$$5\sin^2\theta=3.$$

(2)

(b) Hence solve, for
$$0^{\circ} \leqslant \theta < 360^{\circ}$$
, the equation

$$3\sin^2\theta - 2\cos^2\theta = 1,$$

giving your answers to 1 decimal place.

(7)

	Leave blank
Question 76 continued	Ulalik
(Total 9 marks)	

77.

Figure 1

Figure 1 shows 3 yachts A, B and C which are assumed to be in the same horizontal plane. Yacht B is 500 m due north of yacht A and yacht C is 700 m from A. The bearing of C from A is 0.15° .

(a) Calculate the distance between yacht B and yacht C, in metres to 3 significant figures.

(3)

The bearing of yacht C from yacht B is θ° , as shown in Figure 1.

(b) Calculate the value of θ .

	Lea blaı
Question 77 continued	

78. (i) Using the identity for tan $(A \pm B)$, solve, for $-90^{\circ} < x < 90^{\circ}$,

$$\frac{\tan 2x + \tan 32^{\circ}}{1 - \tan 2x \tan 32^{\circ}} = 5$$

Give your answers, in degrees, to 2 decimal places.

(4)

(ii) (a) Using the identity for $tan(A \pm B)$, show that

$$\tan(3\theta - 45^{\circ}) \equiv \frac{\tan 3\theta - 1}{1 + \tan 3\theta}, \qquad \theta \neq (60n + 45)^{\circ}, \, n \in \mathbb{Z}$$
(2)

(b) Hence solve, for $0 < \theta < 180^{\circ}$,

$$(1 + \tan 3\theta) \tan(\theta + 28^\circ) = \tan 3\theta - 1$$
(5)

uestion 78 continued	

estion 78 continued	

	Leav blanl
Question 78 continued	
(Total 11 marks)	

79. (a) Express $\sin \theta - 2\cos \theta$ in the form $R\sin(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the exact value of R and the value of α , in radians, to 3 decimal places.

(3)

$$M(\theta) = 40 + (3\sin\theta - 6\cos\theta)^2$$

- (b) Find
 - (i) the maximum value of $M(\theta)$,
 - (ii) the smallest value of θ , in the range $0 < \theta \leqslant 2\pi$, at which the maximum value of M(θ) occurs.

$$N(\theta) = \frac{30}{5 + 2(\sin 2\theta - 2\cos 2\theta)^2}$$

- (c) Find
 - (i) the maximum value of $N(\theta)$,
 - (ii) the largest value of θ , in the range $0 < \theta \le 2\pi$, at which the maximum value of $N(\theta)$ occurs.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

_
_
-
-
_
_
-
_
_
_
_
_
_
_
_
_
_
_
_
_
-
-
_

Question 79 continued	Leav blan

_
_
-
-
_
_
-
_
_
_
_
_
_
_
_
_
_
_
_
_
-
-
_

Question 79 continued		Lea bla
	(Total 9 marks)	

80. (a) Write $5\cos\theta - 2\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R and α are constants,

$$R > 0$$
 and $0 \leqslant \alpha < \frac{\pi}{2}$

Give the exact value of R and give the value of α in radians to 3 decimal places.

(3)

(b) Show that the equation

$$5 \cot 2x - 3 \csc 2x = 2$$

can be rewritten in the form

$$5\cos 2x - 2\sin 2x = c$$

where c is a positive constant to be determined.

(2)

(c) Hence or otherwise, solve, for $0 \le x \le \pi$,

$$5 \cot 2x - 3 \csc 2x = 2$$

giving your answers to 2 decimal places.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

Question 80 continued	Leave blank
Question of continued	

uestion 80 continued	

81.	(a)	Prove	that
U = .	(/		

$$\sin 2x - \tan x \equiv \tan x \cos 2x, \qquad x \neq (2n+1)90^{\circ}, \qquad n \in \mathbb{Z}$$

(4)

(b) Given that
$$x \neq 90^{\circ}$$
 and $x \neq 270^{\circ}$, solve, for $0 \le x < 360^{\circ}$,

$$\sin 2x - \tan x = 3\tan x \sin x$$

Give your answers in degrees to one decimal place where appropriate.

(5)

Question 81 continued		Leav blan
	(Total 9 marks)	

82.	(a) Express $2\cos\theta - \sin\theta$ in the form $R\cos(\theta + \alpha)$, where R and α are constants, $R > 0$
	and $0 < \alpha < 90^{\circ}$. Give the exact value of R and give the value of α to 2 decimal
	places.

(3)

(b) Hence solve, for $0 \le \theta < 360^{\circ}$,

$$\frac{2}{2\cos\theta - \sin\theta - 1} = 15$$

Give your answers to one decimal place.

(5)

(c) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which

$$\frac{2}{2\cos\theta + \sin\theta - 1} = 15$$

Give your answer to one decimal place.

(2)

Question 82 continued	

83. (a) Prove that

$$2 \cot 2x + \tan x \equiv \cot x$$
 $x \neq \frac{n\pi}{2}, n \in \mathbb{Z}$

(4)

(b) Hence, or otherwise, solve, for $-\pi \leqslant x < \pi$,

$$6\cot 2x + 3\tan x = \csc^2 x - 2$$

Give your answers to 3 decimal places.

(Solutions based entirely or	ı graphical or numerical	' methods are not acceptable.)
------------------------------	--------------------------	--------------------------------

(6)

estion 83 continued	

84. Given that	
$\tan \theta^{\circ} = p$, where p is a constant, $p \neq \pm 1$	
use standard trigonometric identities, to find in terms of p ,	
(a) $\tan 2\theta^{\circ}$	
	(2)
(b) $\cos \theta^{\circ}$	(2)
(c) $\cot(\theta - 45)^{\circ}$	
	(2)
Write each answer in its simplest form.	

(Total 6 marks)

85.	$g(\theta) = 4\cos 2\theta + 2\sin 2\theta$	
	Given that $g(\theta) = R \cos(2\theta - \alpha)$, where $R > 0$ and $0 < \alpha < 90^{\circ}$,	
	(a) find the exact value of R and the value of α to 2 decimal places.	(3)
	(b) Hence solve, for $-90^{\circ} < \theta < 90^{\circ}$,	
	$4\cos 2\theta + 2\sin 2\theta = 1$	
	giving your answers to one decimal place.	(5)
	Given that k is a constant and the equation $g(\theta) = k$ has no solutions,	
	(c) state the range of possible values of k .	(2)

nestion 95 continued	I
uestion 85 continued	

86. (a) Prove that

$$\sec 2A + \tan 2A \equiv \frac{\cos A + \sin A}{\cos A - \sin A}, \qquad A \neq \frac{(2n+1)\pi}{4}, \quad n \in \mathbb{Z}$$

(5)

(4)

(b) Hence solve, for $0 \le \theta \le 2\pi$,

$$\sec 2\theta + \tan 2\theta = \frac{1}{2}$$

Give your answers to 3 decimal places.

	Lea
	bla
Question 86 continued	
(Total 9 m	arks)
(10tal 2 iii	

87.	(a)	Show	tha
07.	(4)	2110 11	un

$$\csc 2x + \cot 2x = \cot x, \quad x \neq 90n^{\circ}, \quad n \in \mathbb{Z}$$

(5)

(b) Hence, or otherwise, solve, for $0 \leqslant \theta < 180^{\circ}$,

$$\csc (4\theta + 10^{\circ}) + \cot (4\theta + 10^{\circ}) = \sqrt{3}$$

You must show your working.

(Solutions based entirely on graphical or numeri	ical methods are not acceptable.)
--	-----------------------------------

(5)

		Leave blank
Question 87 continued		
	(Total 10 marks)

88. (a) Express $2 \sin \theta - 4 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < \frac{\pi}{2}$

Give the value of α to 3 decimal places.

(3)

$$H(\theta) = 4 + 5(2\sin 3\theta - 4\cos 3\theta)^2$$

Find

- (b) (i) the maximum value of $H(\theta)$,
 - (ii) the smallest value of θ , for $0 \leqslant \theta < \pi$, at which this maximum value occurs.

(3)

Find

(c) (i) the minimum value of $H(\theta)$,

(ii) the largest value of θ , for $0 \le \theta < \pi$, at which this minimum value occurs.

(3)

estion 88 continued	
	(Total 9 marks)

89. (i) (a) Show that $2 \tan x - \cot x = 5 \csc x$ may be written in the form

$$a\cos^2 x + b\cos x + c = 0$$

stating the values of the constants a, b and c.

(4)

(b) Hence solve, for $0 \le x < 2\pi$, the equation

$$2 \tan x - \cot x = 5 \csc x$$

giving your answers to 3 significant figures.

(4)

(ii) Show that

$$\tan \theta + \cot \theta \equiv \lambda \csc 2\theta, \quad \theta \neq \frac{n\pi}{2}, \quad n \in \mathbb{Z}$$

stating the value of the constant λ .

(4)

estion 89 continued		

90.

Figure 1

Figure 1 shows the curve C, with equation $y = 6 \cos x + 2.5 \sin x$ for $0 \le x \le 2\pi$

- (a) Express $6 \cos x + 2.5 \sin x$ in the form $R \cos(x \alpha)$, where R and α are constants with R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give your value of α to 3 decimal places.
- (b) Find the coordinates of the points on the graph where the curve C crosses the coordinate axes.

A student records the number of hours of daylight each Sunday throughout the year. She starts on the last Sunday in May with a recording of 18 hours, and continues until her final recording 52 weeks later.

She models her results with the continuous function given by

$$H = 12 + 6\cos\left(\frac{2\pi t}{52}\right) + 2.5\sin\left(\frac{2\pi t}{52}\right), \quad 0 \leqslant t \leqslant 52$$

where H is the number of hours of daylight and t is the number of weeks since her first recording.

Use this function to find

- (c) the maximum and minimum values of H predicted by the model, (3)
- (d) the values for t when H = 16, giving your answers to the nearest whole number.

[You must show your working. Answers based entirely on graphical or numerical methods are not acceptable.]

(6)

(3)

nestion 90 continued	
	(Total 15 marks)

(4)

91. Given that

$$2\cos(x+50)^\circ = \sin(x+40)^\circ$$

(a) Show, without using a calculator, that

$$\tan x^{\circ} = \frac{1}{3} \tan 40^{\circ} \tag{4}$$

(b) Hence solve, for $0 \le \theta \le 360$,

$$2\cos(2\theta + 50)^{\circ} = \sin(2\theta + 40)^{\circ}$$

giving your answers to 1 decimal place.

(Total 8 marks)

92.

Figure 2

Kate crosses a road, of constant width 7 m, in order to take a photograph of a marathon runner, John, approaching at 3 m s^{-1} .

Kate is 24 m ahead of John when she starts to cross the road from the fixed point A. John passes her as she reaches the other side of the road at a variable point B, as shown in Figure 2.

Kate's speed is $V \, \mathrm{m \, s^{-1}}$ and she moves in a straight line, which makes an angle θ , $0 < \theta < 150^{\circ}$, with the edge of the road, as shown in Figure 2.

You may assume that V is given by the formula

$$V = \frac{21}{24\sin\theta + 7\cos\theta}, \qquad 0 < \theta < 150^{\circ}$$

(a) Express $24\sin\theta + 7\cos\theta$ in the form $R\cos(\theta - \alpha)$, where R and α are constants and where R > 0 and $0 < \alpha < 90^{\circ}$, giving the value of α to 2 decimal places.

(3)

Given that θ varies,

(b) find the minimum value of V.

(2)

Given that Kate's speed has the value found in part (b),

(c) find the distance AB.

(3)

Given instead that Kate's speed is 1.68 m s⁻¹,

(d) find the two possible values of the angle θ , given that $0 < \theta < 150^{\circ}$.

(6)

	Leave blank
Question 92 continued	Diank
(Total 14 marks)	

]
93.	Given that $\tan 40^{\circ} = p$, find in terms of p	
	(a) cot 40°	
	(a) COL 40	(1)
	4.)	, ,
	(b) sec 40°	(2)
		(-)
	(c) tan 85°	(2)
		(2)

94. (a) Prove that

$$\frac{\cos x}{1-\sin x} + \frac{1-\sin x}{\cos x} = 2\sec x, \qquad x \neq (2n+1)\frac{\pi}{2}, \quad n \in \mathbb{Z}$$

(4)

(b) Hence find, for $0 < x < \frac{\pi}{4}$, the exact solution of

$$\frac{\cos x}{1 - \sin x} + \frac{1 - \sin x}{\cos x} = 8\sin x$$

(4)

estion 94 continued	

95. (a) Express $9\cos\theta - 2\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

Give the exact value of R and give the value of α to 4 decimal places.

(3)

- (b) (i) State the maximum value of $9\cos\theta 2\sin\theta$
 - (ii) Find the value of θ , for $0 < \theta < 2\pi$, at which this maximum occurs.

(3)

Ruth models the height *H* above the ground of a passenger on a Ferris wheel by the equation

$$H = 10 - 9\cos\left(\frac{\pi t}{5}\right) + 2\sin\left(\frac{\pi t}{5}\right)$$

where H is measured in metres and t is the time in minutes after the wheel starts turning.

(c) Calculate the maximum value of *H* predicted by this model, and the value of *t*, when this maximum first occurs. Give your answers to 2 decimal places.

(4)

(d) Determine the time for the Ferris wheel to complete two revolutions.

(2)

estion 95 continued	

96.	$f(x) = 7\cos x + \sin x$	
	Given that $f(x) = R\cos(x - \alpha)$, where $R > 0$ and $0 < \alpha < 90^{\circ}$,	
	(a) find the exact value of R and the value of α to one decimal place.	(3)
	(b) Hence solve the equation	
	$7\cos x + \sin x = 5$	
	for $0 \le x < 360^\circ$, giving your answers to one decimal place.	(5)
	(c) State the values of k for which the equation	
	$7\cos x + \sin x = k$	
	has only one solution in the interval $0 \le x < 360^{\circ}$	(2)

	Leave
Question 96 continued	blank
Arreston to comment	
(Total 10 mark	, a)
(10tal 10 mark	72)

97. (a)	Express $6\cos\theta + 8\sin\theta$ in the form $R\cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$.	
	Give the value of α to 3 decimal places.	
	4	(4)
(b)	$p(\theta) = \frac{4}{12 + 6\cos\theta + 8\sin\theta}, 0 \leqslant \theta \leqslant 2\pi$	
	Calculate	
	(i) the maximum value of $p(\theta)$,	
	(ii) the value of θ at which the maximum occurs.	
		(4)

(Total 8 marks)

98. (i) Without using a calculator, find the exact value of

$$(\sin 22.5^{\circ} + \cos 22.5^{\circ})^{2}$$

You must show each stage of your working.

(5)

(ii) (a) Show that $\cos 2\theta + \sin \theta = 1$ may be written in the form

$$k \sin^2 \theta - \sin \theta = 0$$
, stating the value of k.

(2)

(b) Hence solve, for $0 \le \theta \le 360^{\circ}$, the equation

$$\cos 2\theta + \sin \theta = 1$$

(4)

		Leave blank
Question 98 continued		
	(Total 11 marks)	

99.	(a)	Express $4\csc^2 2\theta - \csc^2 \theta$ in terms of $\sin \theta$ and $\cos \theta$.	(2)	
			(2)	
	(b)	Hence show that		
		$4\csc^2 2\theta - \csc^2 \theta = \sec^2 \theta$		
			(4)	
	()		()	
	(c)	Hence or otherwise solve, for $0 < \theta < \pi$,		
		$4\csc^2 2\theta - \csc^2 \theta = 4$		
		giving your answers in terms of π .		
			(3)	

(Total 9 marks)

100.	$f(x) = 7\cos 2x - 24\sin 2x$	
	Given that $f(x) = R\cos(2x + \alpha)$, where $R > 0$ and $0 < \alpha < 90^{\circ}$,	
	(a) find the value of R and the value of α .	(3)
	(b) Hence solve the equation	
	$7\cos 2x - 24\sin 2x = 12.5$	
	for $0 \le x < 180^{\circ}$, giving your answers to 1 decimal place.	(5)
	(c) Express $14\cos^2 x - 48\sin x \cos x$ in the form $a\cos 2x + b\sin 2x + c$, where a , b , and c are constants to be found.	(2)
	(d) Hence, using your answers to parts (a) and (c), deduce the maximum value of	
	$14\cos^2 x - 48\sin x \cos x$	(2)

Question 100 continued		Leave blank
	(Total 12 marks)	

$2\cot^2 3\theta = 7\csc 3\theta - 5$		
Give your answers in degrees to 1 decimal place.		
Give your unswells in degrees to 1 decimal place.	(10)	

(6)

102. (a) Starting from the formulae for $\sin(A+B)$ and $\cos(A+B)$, prove that

$$\tan\left(A+B\right) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \tag{4}$$

(b) Deduce that

$$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{1 + \sqrt{3}\tan\theta}{\sqrt{3 - \tan\theta}}$$
(3)

(c) Hence, or otherwise, solve, for $0 \le \theta \le \pi$,

$$1 + \sqrt{3} \tan \theta = (\sqrt{3} - \tan \theta) \tan (\pi - \theta)$$

Give your answers as multiples of π .

Question 102 continued		Leav blan
	(Total 13 marks)	

103.	(a)	Express $7\cos x - 24\sin x$ in the form $R\cos(x+\alpha)$ where $R>0$ and $0<\alpha<\frac{\pi}{2}$.	Olan
		Give the value of α to 3 decimal places.	(2)
			(3)
	(b)	Hence write down the minimum value of $7\cos x - 24\sin x$.	(1)
			(1)
	(c)	Solve, for $0 \le x < 2\pi$, the equation	
		$7\cos x - 24\sin x = 10$	
		giving your answers to 2 decimal places.	
			(5)
			_
			_
			_
			_
			_
			_
			_
			_
		(Total 9 ma	rks)

in the interval $0 \leqslant \theta < 360^{\circ}$.	
	(6

(Total 6 marks)

105. (a) Show that

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$

(2)

(b) Hence find, for $-180^{\circ} \le \theta < 180^{\circ}$, all the solutions of

$$\frac{2\sin 2\theta}{1+\cos 2\theta}=1$$

Give your answers to 1 decimal place. **(3)**

(Total 5 marks)

106.	(a)	Express	$2\sin\theta - 1.5\cos\theta$	in the form	$R\sin(\theta - \alpha)$, where	R > 0	and $0 < \alpha <$	$\frac{\pi}{2}$.
		Give the	value of α to 4 de	cimal places				

(3)

- (b) (i) Find the maximum value of $2\sin\theta 1.5\cos\theta$.
 - (ii) Find the value of θ , for $0 \le \theta < \pi$, at which this maximum occurs.

(3)

Tom models the height of sea water, H metres, on a particular day by the equation

$$H = 6 + 2\sin\left(\frac{4\pi t}{25}\right) - 1.5\cos\left(\frac{4\pi t}{25}\right), \quad 0 \le t < 12,$$

where *t* hours is the number of hours after midday.

(c) Calculate the maximum value of H predicted by this model and the value of t, to 2 decimal places, when this maximum occurs.

(3)

(d) Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres.

(6)

Question 106 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total 15 marl	lra)

(b) Hence, or otherwise, solve the equation	(4)
$5\cos x - 3\sin x = 4$	
for $0 \le x < 2\pi$, giving your answers to 2 decimal places.	(5)
	_
	_
	_
	_
	_
	_
	_

$\csc^2 2x - \cot 2x = 1$	
for $0 \le x \le 180^{\circ}$.	(7)

9. (a) Use the identity $\cos^2 \theta + \sin^2 \theta = 1$ to prove that $\tan^2 \theta = \sec^2 \theta - 1$.	(2)
(b) Solve, for $0 \le \theta < 360^{\circ}$, the equation	
$2\tan^2\theta + 4\sec\theta + \sec^2\theta = 2$	(6)
(Total	l 8 marks)

110. (a) Use the identity cos(A+B) = cos A cos B - sin A sin B, to show that

$$\cos 2A = 1 - 2\sin^2 A$$

(2)

The curves C_1 and C_2 have equations

$$C_1$$
: $y = 3\sin 2x$

$$C_2: \quad y = 4\sin^2 x - 2\cos 2x$$

(b) Show that the x-coordinates of the points where C_1 and C_2 intersect satisfy the equation

$$4\cos 2x + 3\sin 2x = 2$$

(3)

(c) Express $4\cos 2x + 3\sin 2x$ in the form $R\cos(2x - \alpha)$, where R > 0 and $0 < \alpha < 90^{\circ}$, giving the value of α to 2 decimal places.

(3)

(d) Hence find, for $0 \le x < 180^{\circ}$, all the solutions of

$$4\cos 2x + 3\sin 2x = 2$$

giving your answers to 1 decimal place.

(4)

	Leave blank
Question 110 continued	
(Total 12 mark	(2)

			b L
111.	(a)	Write down $\sin 2x$ in terms of $\sin x$ and $\cos x$. (1)	
	(b)	Find, for $0 < x < \pi$, all the solutions of the equation	
		$\csc x - 8\cos x = 0$	
		giving your answers to 2 decimal places.	
		(5)	
		(Total 6 marks)	

112	(a)	(i)	Bv	writing	$3\theta =$	$(2\theta +$	θ).	show	that
114.	(a)	(1)	Ъу	wiiting	<i>50</i> –	(20 1	v_{j}	SHOW	mai

$$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$

(4)

(ii) Hence, or otherwise, for
$$0 < \theta < \frac{\pi}{3}$$
, solve

$$8\sin^3\theta - 6\sin\theta + 1 = 0.$$

Give your answers in terms of π .

(5)

(b) Using
$$\sin(\theta - \alpha) = \sin \theta \cos \alpha - \cos \theta \sin \alpha$$
, or otherwise, show that

$$\sin 15^\circ = \frac{1}{4}(\sqrt{6} - \sqrt{2}).$$

(4)

	Leave
Question 112 continued	blank
Question 11 2 00110111100	
(Total 13 marks	s)

113.	(a)	Express $3 \cos \theta + 4 \sin \theta$ in the form $R \cos(\theta - \alpha)$, where R and α are constants, R and $0 < \alpha < 90^{\circ}$.	> 0
			(4)
	(b)	Hence find the maximum value of $3\cos\theta + 4\sin\theta$ and the smallest positive value θ for which this maximum occurs.	
			(3)
	The	e temperature, $f(t)$, of a warehouse is modelled using the equation	
		$f(t) = 10 + 3\cos(15t)^{\circ} + 4\sin(15t)^{\circ},$	
	who	ere t is the time in hours from midday and $0 \le t < 24$.	
	(c)	Calculate the minimum temperature of the warehouse as given by this model.	(2)
	(d)	Find the value of t when this minimum temperature occurs.	(3)

Question 113 continued	Leave blank
(Total 12 marks)	

1	1	4

$$f(x) = 5\cos x + 12\sin x$$

Given that $f(x) = R\cos(x - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$,

(a) find the value of R and the value of α to 3 decimal places.

(4)

(b) Hence solve the equation

$$5\cos x + 12\sin x = 6$$

for $0 \leqslant x < 2\pi$.

(5)

(c) (i) Write down the maximum value of $5\cos x + 12\sin x$.

(1)

(ii) Find the smallest positive value of x for which this maximum value occurs.

(2)

	Leave
	blank
Question 114 continued	
(Total 12 marks)	

(Total 8 marks)

116. (a) Use the double angle formulae and the identity

$$cos(A+B) \equiv cos A cos B - sin A sin B$$

to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only.

(4)

(b) (i) Prove that

$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} \equiv 2\sec x, \qquad x \neq (2n+1)\frac{\pi}{2}.$$

(4)

(ii) Hence find, for $0 < x < 2\pi$, all the solutions of

$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = 4.$$

(3)

	L	Leave
	b	olank
Question 116 continued		
(Total 11 marks)		

117. A curve *C* has equation

$$y = 3\sin 2x + 4\cos 2x, -\pi \leqslant x \leqslant \pi.$$

The point A(0, 4) lies on C.

(a) Find an equation of the normal to the curve C at A.

(5)

(b) Express y in the form $R\sin(2x+\alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

(4)

Give the value of α to 3 significant figures.

(4)

(c) Find the coordinates of the points of intersection of the curve *C* with the *x*-axis. Give your answers to 2 decimal places.

(4)

	Leave
Question 117 continued	blank
Question 117 continued	
(Total 13 marks)	

