「 EXPERT TUITION

Maths Questions By Topic:

Vectors
Mark Scheme

A-Level Edexcel

\# www.expert-tuition.co.uk
\square online.expert-tuition.co.uk
®enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 ... Page 1
Paper 2 Page 16

Old Spec
Core 4 ... Page 24

Question	Scheme	Marks	AOs
1(a)	Attempts both $\|\overrightarrow{P Q}\|=\sqrt{2^{2}+3^{2}+(-4)^{2}}$ and $\|\overrightarrow{Q R}\|=\sqrt{5^{2}+(-2)^{2}}$	M1	3.1a
	States that $\|\overrightarrow{P Q}\|=\|\overrightarrow{Q R}\|=\sqrt{29}$ so $P Q R S$ is a rhombus	A1	2.4
		(2)	
(b)	Attempts BOTH $\overrightarrow{P R}=\overrightarrow{P Q}+\overrightarrow{Q R}=7 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k}$ AND $\quad \overrightarrow{Q S}=-\overrightarrow{P Q}+\overrightarrow{P S}=3 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$	M1	3.1a
	Correct $\overrightarrow{P R}=7 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k}$ and $\overrightarrow{Q S}=3 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$	A1	1.1b
	Correct method for area PQRS. E.g. $\frac{1}{2} \times\|\overrightarrow{P R}\| \times\|\overrightarrow{Q S}\|$	dM1	2.1
	$=\sqrt{517}$	A1	1.1b
		(4)	
(6 marks)			
Alt (b) Example using the cosine rule	Attempts $\|\overrightarrow{Q S}\|=\sqrt{3^{2}+(-3)^{2}+2^{2}}=\sqrt{22}$ and so $22=29+29-2 \sqrt{29} \sqrt{29} \cos S P Q$	M1	3.1a
	$\begin{aligned} & \quad \cos P Q R=-\frac{18}{29} \text { or } \cos S P Q=\frac{18}{29} \\ & \text { Condone angles in degrees 51.6, } 128.4(1 \mathrm{dp}) \text { or radians } 2.24,0.901 \\ & \text { (3sf) here } \end{aligned}$	A1	1.1b
	Correct method for area PQRS. E.g. $P Q \times Q R \sin P Q R=\sqrt{2^{2}+3^{2}+(-4)^{2}} \times \sqrt{5^{2}+(-2)^{2}} \times \frac{\sqrt{517}}{29}$	dM1	2.1
	$=\sqrt{517}$	A1	1.1b
		(4)	

FYI

$$
\overrightarrow{Q R}=5 \mathbf{i}+0 \mathbf{j}-2 \mathbf{k}
$$

$$
\overrightarrow{P Q}=2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}
$$

$$
\overrightarrow{P R}=7 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k}
$$

(a) Do not award marks in part (a) from work in part (b).

M1: Attempts both $|\overrightarrow{P Q}|=\sqrt{2^{2}+3^{2}+(\pm 4)^{2}}$ and $|\overrightarrow{Q R}|=\sqrt{5^{2}+(\pm 2)^{2}}$ or $P Q^{2}$ and $Q R^{2}$. For this mark only, condone just the correct answers $|\overrightarrow{P Q}|=\sqrt{29}$ and $|\overrightarrow{Q R}|=\sqrt{29}$. Alternatively attempts $\overrightarrow{P R} \bullet \overrightarrow{Q S}$ or $P M^{2}, M Q^{2}$ and $P Q^{2}$ where M is the mid point of $P R$
A1: Shows that $|\overrightarrow{P Q}|=|\overrightarrow{Q R}|=\sqrt{29}$ (with calculations) and states $P Q R S$ is a rhombus.

Condone poor notation such as $\overrightarrow{P Q}=\sqrt{29}$ here, So $\overrightarrow{P Q}=\overrightarrow{Q R}=\sqrt{29}$ hence rhombus.
Requires both a reason and a conclusion. The reason may be given at the start of their solution.
In the alternatives $\overrightarrow{P R} \bullet \overrightarrow{Q S}=(7 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k}) \bullet(3 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k})=21-9-12=0$ so diagonals cross at
90° so $P Q R S$ is a rhombus or $P M^{2}+M Q^{2}=P Q^{2}=23.5+5.5=29 \Rightarrow \angle P M Q=90^{\circ} \Rightarrow$ Rhombus
(b)

Candidates can transfer answers from (a) to use in part (b) to find the area
Look through their complete solution first. The first two marks are for finding the elements that are required to calculate the area. The second set of two marks is for combining these elements correctly. If the method is NOT shown on how to find vector it can be implied by two correct components. Allow as column vectors.
M1: For a key step in solving the problem. It is scored for attempting to find both key vectors.
Attempts both $\overrightarrow{P R}=\overrightarrow{P Q}+\overrightarrow{Q R}=(7 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k})$ AND $\quad \overrightarrow{Q S}=-\overrightarrow{P Q}+\overrightarrow{P S}=(3 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k})$
You may see $\overrightarrow{P M}=\frac{1}{2} \overrightarrow{P Q}+\frac{1}{2} \overrightarrow{Q R}=\left(\frac{7}{2} \mathbf{i}+\frac{3}{2} \mathbf{j}-3 \mathbf{k}\right)$ AND $\quad \overrightarrow{Q M}=-\frac{1}{2} \overrightarrow{P Q}+\frac{1}{2} \overrightarrow{P S}=\left(\frac{3}{2} \mathbf{i}-\frac{3}{2} \mathbf{j}+1 \mathbf{k}\right)$
A1: Accurately finds both key vectors whose lengths are required to solve the problem.
Score for both $\overrightarrow{P R}=7 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k}$ and $\overrightarrow{Q S}=3 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ (Allow either way around.)
or both $\overrightarrow{P M}=\frac{7}{2} \mathbf{i}+\frac{3}{2} \mathbf{j}-3 \mathbf{k}$ and $\overrightarrow{Q M}=\frac{3}{2} \mathbf{i}-\frac{3}{2} \mathbf{j}+1 \mathbf{k}$ (Allow either way around.)
dM1: Constructs a rigorous method leading to the area $P Q R S$. Dependent upon previous M.
E.g. See scheme. Alt: the sum of the area of four right angled triangles e.g. $4 \times \frac{1}{2} \times|\overrightarrow{P M}| \times|\overrightarrow{Q M}|$,

A1: $\sqrt{517}$
Alternatives for (b). Two such ways are set out below
Alt 1-Examples via cosine rule but you may see use of scalar product via a Further Maths method.
M1: For a key step in solving the problem. In this case it for an attempt at $\cos P Q R$ or $\cos S P Q$.
Don't be too concerned with the labelling of the angle which may appear as θ.
Attempts $\pm\left(\begin{array}{c}2 \\ 3 \\ -4\end{array}\right) \bullet \pm\left(\begin{array}{c}5 \\ 0 \\ -2\end{array}\right)=\sqrt{2^{2}+3^{2}+(-4)^{2}} \times \sqrt{5^{2}+(-2)^{2}} \cos P Q R$
A1: Finds the cosine of one of the angles in the Figure.
Look for $\cos \ldots=-\frac{18}{29}$ or $\cos \ldots=\frac{18}{29}$ which may have been achieved via the cosine rule.
Accept rounded answers and the angles in degrees 51.6, 128.4 (1dp) or radians 2.24, 0.901 (3sf) here. dM1: Constructs a rigorous method leading to the area PQRS. Implied by awrt 22.7

$$
\text { E.g. } P Q \times Q R \sin P Q R=\sqrt{2^{2}+3^{2}+(-4)^{2}} \times \sqrt{5^{2}+(-2)^{2}} \times \frac{\sqrt{517}}{29}
$$

A1: $\sqrt{517}$

Alt 2-Example via vector product via a Further Maths method.

M1: For a key step in solving the problem. In this case it for an attempt at $\pm \overrightarrow{P Q} \times \overrightarrow{Q R}$

$$
\text { E.g. } \quad \overrightarrow{P Q} \times \overrightarrow{Q R}=\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 3 & -4 \\
5 & 0 & -2
\end{array}\right)=(3 \times-2-0 \times-4) \mathbf{i}-(2 \times-2-5 \times-4) \mathbf{j}+(2 \times 0-3 \times 5) \mathbf{k}
$$

A1: E.g. $\overrightarrow{P Q} \times \overrightarrow{Q R}=-6 \mathbf{i}-16 \mathbf{j}-15 \mathbf{k}$
dM 1 : Constructs a rigorous method leading to the area $P Q R S$. In this case $|\overrightarrow{P Q} \times \overrightarrow{Q R}|$
A1: $=\sqrt{(-6)^{2}+(-16)^{2}+(-15)^{2}}=\sqrt{517}$

Question	n Scheme	Marks	AOs
2(a)	$\overrightarrow{Q R}=\overrightarrow{P R}-\overrightarrow{P Q}=13 \mathbf{i}-15 \mathbf{j}-(3 \mathbf{i}+5 \mathbf{j})$	M1	1.1a
	$=10 \mathbf{i}-20 \mathbf{j}$	A1	1.1b
		(2)	
(b)	$\overrightarrow{Q R} \mid=\sqrt{110^{\prime 2}+"(-20) " 2}$	M1	2.5
	$=10 \sqrt{5}$	A1ft	1.1b
		(2)	
(c)	$\begin{aligned} \overrightarrow{P S} & =\overrightarrow{P Q}+\frac{3}{5} \overrightarrow{Q R}=3 \mathbf{i}+5 \mathbf{j}+\frac{3}{5}(" 10 \mathbf{i}-20 \mathbf{j} ")=\ldots \\ \overrightarrow{P S} & =\overrightarrow{P R}+\frac{2}{5} \overrightarrow{R Q}=13 \mathbf{i}-15 \mathbf{j}+\frac{2}{5}("-10 \mathbf{i}+20 \mathbf{j} ")=\ldots \end{aligned}$	M1	3.1a
	$=9 \mathbf{i}-7 \mathbf{j}$	A1	1.1b
		(2)	
(6 marks)			
Notes			
(a) M1: Attempts subtraction either way round. This cannot be awarded for adding the two vectors. If no method shown it may be implied by one correct component. eg $10 \mathbf{i}-10 \mathbf{j}$ on its own can score M1. A1: Correct answer. Allow $10 \mathbf{i}-20 \mathbf{j}$ and $\binom{10}{-20}$ but not $\binom{10 \mathbf{i}}{-20 \mathbf{j}}$ (b) M1: Correct use of Pythagoras. Attempts to "square and add" before square rooting. The embedded values are sufficient. Follow through on their $\overrightarrow{Q R}$ A1ft: $\quad 10 \sqrt{5}$ following (a) of the form $\pm 10 \mathbf{i} \pm 20 \mathbf{j}$ (c) M1: Full attempt at finding a $\overrightarrow{P S}$. They must be attempting $\overrightarrow{P Q} \pm \frac{3}{5} \overrightarrow{Q R}$ or $\overrightarrow{P S}=\overrightarrow{P R} \pm \frac{2}{5} \overrightarrow{R Q}$ but condone arithmetical slips after that. Cannot be scored for just stating eg $\overrightarrow{P Q} \pm \frac{3}{5} \overrightarrow{Q R}$ Follow through on their $\overrightarrow{Q R}$. Terms do not need to be collected for this mark. If no method shown it may be implied by one correct component following through on their $\overrightarrow{Q R}$			

A1: Correct vector as shown. Allow $9 \mathbf{i}-7 \mathbf{j}$ and $\binom{9}{-7}$.
Only withhold the mark for $\binom{9 \mathbf{i}}{-7 \mathbf{j}}$ if the mark has not already been withheld in (a) for $\binom{10 \mathbf{i}}{-20 \mathbf{j}}$

Alt (c) (Expressing $\overrightarrow{P S}$ in terms of the given vectors) They must be attempting $\frac{2}{5} \overrightarrow{P Q}+\frac{3}{5} \overrightarrow{P R}$ M1: $\quad\left(\overrightarrow{P S}=\overrightarrow{P Q}+\frac{3}{5} \overrightarrow{Q R}=\overrightarrow{P Q}+\frac{3}{5}(\overrightarrow{P R}-\overrightarrow{P Q})\right)$
$\Rightarrow \frac{2}{5} \overrightarrow{P Q}+\frac{3}{5} \overrightarrow{P R}=\frac{2}{5}(3 \mathbf{i}+5 \mathbf{j})+\frac{3}{5}(13 \mathbf{i}-15 \mathbf{j})=\ldots$
A1: Correct vector as shown. Allow $9 \mathbf{i}-7 \mathbf{j}$ and $\binom{9}{-7}$.
Only withhold the mark for $\binom{9 \mathbf{i}}{-7 \mathbf{j}}$ if the mark has not already been withheld in (a) for $\binom{10 \mathbf{i}}{-20 \mathbf{j}}$

Question	Scheme	Marks	AOs
3(a)	$\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}=-3 \mathbf{i}-4 \mathbf{j}-5 \mathbf{k}+\mathbf{i}+\mathbf{j}+4 \mathbf{k}=\ldots$	M1	1.1b
	$=-2 \mathbf{i}-3 \mathbf{j}-\mathbf{k}$	A1	1.1b
		(2)	
(b)	At least 2 of $\left(A C^{2}\right)=" 2^{2}+3^{2}+1^{2} ",\left(A B^{2}\right)=3^{2}+4^{2}+5^{2},\left(B C^{2}\right)=1^{2}+1^{2}+4^{2}$	M1	1.1b
	$2^{2}+3^{2}+1^{2}=3^{2}+4^{2}+5^{2}+1^{2}+1^{2}+4^{2}-2 \sqrt{3^{2}+4^{2}+5^{2}} \sqrt{1^{2}+1^{2}+4^{2}} \cos A B C$	M1	3.1a
	$\begin{aligned} 14 & =50+18-2 \sqrt{50} \sqrt{18} \cos A B C \\ \Rightarrow & \cos A B C=\frac{50+18-14}{2 \sqrt{50} \sqrt{18}}=\frac{9}{10} * \end{aligned}$	A1*	2.1
		(3)	
	(b) Alternative		
	$A B^{2}=3^{2}+4^{2}+5^{2}, B C^{2}=1^{2}+1^{2}+4^{2}$	M1	1.1b
	$\overrightarrow{B A} \cdot \overrightarrow{B C}=(3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}) \cdot(\mathbf{i}+\mathbf{j}+4 \mathbf{k})=27=\sqrt{3^{2}+4^{2}+5^{2}} \sqrt{1^{2}+1^{2}+4^{2}} \cos A B C$	M1	3.1a
	$27=\sqrt{50} \sqrt{18} \cos A B C \Rightarrow \cos A B C=\frac{27}{\sqrt{50} \sqrt{18}}=\frac{9}{10} *$	A1*	2.1
(5 marks)			
Notes			

(a)

M1: Attempts $\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}$
There must be attempt to add not subtract.
If no method shown it may be implied by two correct components
A1: Correct vector. Allow $-2 \mathbf{i}-3 \mathbf{j}-\mathbf{k}$ and $\left(\begin{array}{c}-2 \\ -3 \\ -1\end{array}\right)$ but not $\left(\begin{array}{c}-2 \mathbf{i} \\ -3 \mathbf{j} \\ -1 \mathbf{k}\end{array}\right)$
(b)

M1: Attempts to "square and add" for at least 2 of the 3 sides. Follow through on their $\overrightarrow{A C}$ Look for an attempt at either $a^{2}+b^{2}+c^{2}$ or $\sqrt{a^{2}+b^{2}+c^{2}}$
M1: A correct attempt to apply a correct cosine rule to the given problem; Condone slips on the lengths of the sides but the sides must be in the correct position to find angle $A B C$
A1*: Correct completion with sufficient intermediate work to establish the printed result.
Condone different labelling, e.g. $A B C \leftrightarrow \theta$ as long as it is clear what is meant
It is OK to move from a correct cosine rule $14=50+18-2 \sqrt{50} \sqrt{18} \cos A B C$
via $\cos A B C=\frac{54}{2 \sqrt{50} \sqrt{18}}$ o.e. such as $\cos A B C=\frac{(5 \sqrt{2})^{2}+(3 \sqrt{2})^{2}-(\sqrt{14})^{2}}{2 \times 5 \sqrt{2} \times 3 \sqrt{2}}$ to $\cos A B C=\frac{9}{10}$

Alternative:

M1: Correct application of Pythagoras for sides $A B$ and $B C$ or their squares
M1: Recognises the requirement for and applies the scalar product
A1*: Correct completion with sufficient intermediate work to establish the printed result

Question	Scheme	Marks	AOs
4(a)	Attempts to compare the two position vectors. Allow an attempt using two of $\overrightarrow{A O}, \overrightarrow{O B}$ or $\overrightarrow{A B}$ $\text { E.g. } \quad(-24 \mathbf{i}-10 \mathbf{j})=-2 \times(12 \mathbf{i}+5 \mathbf{j})$	M1	1.1b
	Explains that as $\overrightarrow{A O}$ is parallel to $\overrightarrow{O B}$ (and the stone is travelling in a straight line) the stone passes through the point O.	A1	2.4
		(2)	
(b)	Attempts distance $A B=\sqrt{(12+24)^{2}+(10+5)^{2}}$	M1	1.1b
	$\text { Attempts speed }=\frac{\sqrt{(12+24)^{2}+(10+5)^{2}}}{4}$	dM1	3.1a
	Speed $=9.75 \mathrm{~ms}^{-1}$	A1	3.2a
		(3)	
(5 marks)			
Alt(a)	Attempts to find the equation of the line which passes through A and B E.g. $y-5=\frac{5+10}{12+24}(x-12) \quad\left(y=\frac{5}{12} x\right)$	M1	1.1b
	Shows that when $x=0, y=0$ and concludes the stone passes through the point O.	A1	2.4

Notes

(a)

M1: Attempts to compare the two position vectors. Allow an attempt using two of $\overrightarrow{A O}, \overrightarrow{O B}$ or $\overrightarrow{A B}$ either way around.
E.g. States that $(-24 \mathbf{i}-10 \mathbf{j})=-2 \times(12 \mathbf{i}+5 \mathbf{j})$

Alternatively, allow an attempt finding the gradient using any two of $A O, O B$ or $A B$
Alternatively attempts to find the equation of the line through A and B proceeding as far as $y=\ldots x$ Condone sign slips.

A1: States that as $\overrightarrow{A O}$ is parallel to $\overrightarrow{O B}$ or as $A O$ is parallel to $O B$ (and the stone is travelling in a straight line) the stone passes through the point O. Alternatively, shows that the point $(0,0)$ is on the line and concludes (the stone) passes through the point O.
(b)

M1: Attempts to find the distance $A B$ using a correct method.
Condone slips but expect to see an attempt at $\sqrt{a^{2}+b^{2}}$ where a or b is correct
dM1: Dependent upon the previous mark. Look for an attempt at $\frac{\text { distance } A B}{4}$
A1: $9.75 \mathrm{~ms}^{-1} \quad$ Requires units

Question	Scheme	Marks	AOs
5 (a)	$\overrightarrow{A B}=(3 \mathbf{i}-3 \mathbf{j}-4 \mathbf{k})-(2 \mathbf{i}+5 \mathbf{j}-6 \mathbf{k})$	M1	1.1b
	$=\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$	A1	1.1b
		(2)	
(b)	States $\overrightarrow{O C}=2 \times \overrightarrow{A B}$	M1	1.1b
	Explains that as $O C$ is parallel to $A B$, so $O A B C$ is a trapezium.	A1	2.4
		(2)	
(4 marks)			
Notes:			

(a)

M1: Attempts to subtract either way around. If no method is seen it is implied by two of $\pm \mathbf{i} \pm 8 \mathbf{j} \pm 2 \mathbf{k}$.
A1: $\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$ or $\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right)$ but not $(1,-8,2)$
(b)

M1: Compares their $\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$ with $2 \mathbf{i}-16 \mathbf{j}+4 \mathbf{k}$ by stating any one of

- $\overrightarrow{O C}=2 \times \overrightarrow{A B}$
- $\left(\begin{array}{r}2 \\ -16 \\ 4\end{array}\right)=2 \times\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right)$
- $\overrightarrow{O C}=\lambda \times \overrightarrow{A B}$ or vice versa

This may be awarded if $A B$ was subtracted "the wrong way around" or if there was one numerical slip
A1: A full explanation as to why $O A B C$ is a trapezium.
Requires fully correct calculations, so part (a) must be $\overrightarrow{A B}=(\mathbf{i}-8 \mathbf{j}+2 \mathbf{k})$
It requires a reason and minimal conclusion.
Example 1:
$\overrightarrow{O C}=2 \times \overrightarrow{A B}$, therefore $O C$ is parallel to $A B$ so $O A B C$ is a trapezium
Example 2:
A trapezium has one pair of parallel sides. As $\overrightarrow{O C}=2 \times \overrightarrow{A B}$, they are parallel, so \checkmark.
Example 3
As $\left(\begin{array}{r}2 \\ -16 \\ 4\end{array}\right)=2 \times\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right), O C$ and $A B$ are parallel, so proven

Example 4

Accept as $\overrightarrow{O C}=\lambda \times \overrightarrow{A B}$, they are parallel so true
Note: There are two definitions for a trapezium. One stating that it is a shape with one pair of parallel sides, the other with only one pair of parallel sides. Any calculations to do with sides $O A$ and $C B$ in this question may be ignored, even if incorrect.

Notes: Score these two parts together.

(a)

M1: Attempts an allowable angle. (Either the "66.8", "23.2" or ("49.8" and "63.4")) $\tan \theta= \pm \frac{7}{3}, \tan \theta= \pm \frac{3}{7}, \tan \theta= \pm \frac{-2--5}{4--3}$ etc
There must be an attempt to subtract the coordinates (seen or applied at least once)
If part (b) is attempted first, look for example for $\sin \theta= \pm \frac{7}{" \sqrt{58} "}, \cos \theta= \pm \frac{7}{7 \sqrt{58}}$ " , etc They may use the cosine rule and trigonometry to find the two angles in the scheme. See above. Eg award for $\cos \theta=\frac{" 58 "+" 20 "-" 34 "}{2 \times " \sqrt{58} " \times " \sqrt{20} "}$ and $\tan \theta= \pm \frac{4}{2}$ or equivalent.
dM1: A full attempt to find the bearing. $180^{\circ}+\arctan \frac{7}{3}, 270^{\circ}-\arctan \frac{3}{7}$, $360^{\circ}-49.8^{\circ}-$ " 63.4°. It is dependent on the previous method mark.

A1: \quad Bearing $=$ awrt 246.8° oe. Allow S $66.8^{\circ} \mathrm{W}$
(b)

M1: Attempts to find the distance travelled. Allow for $d^{2}=(4--3)^{2}+(-2+5)^{2}$
You may see this on a diagram and allow if they attempt to find the magnitude from their "resultant vector" found in part (a).
dM1: Attempts to find the speed. There must have been an attempt to find the distance using the coordinates and then divide it by 2.75 . Alternatively they could find the speed in $\mathrm{km} \mathrm{min}{ }^{-1}$ and then multiply by 60

A1: \quad awrt $2.77 \mathrm{~km} \mathrm{~h}^{-1}$

Question	Scheme	Marks	AOs
7(i)	Explains that \mathbf{a} and \mathbf{b} lie in the same direction oe	B1	2.4
(ii)	(1)		

Question	Scheme	Marks	AOs
8(a)	Attempts $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$ or similar	M1	1.1b
	$\overrightarrow{A B}=-9 \mathbf{i}+3 \mathbf{j}$	A1	1.1b
		(2)	
(b)	Finds length using 'Pythagoras' $\|A B\|=\sqrt{(-9)^{2}+(3)^{2}}$	M1	1.1b
	$\|A B\|=3 \sqrt{10}$	A1ft	1.1b
		(2)	
(4 marks)			
Notes			
(a)			
M1: Attempts subtraction either way around.			
This may be implied by one correct component $\overrightarrow{A B}= \pm 9 \mathbf{i} \pm 3 \mathbf{j}$ There must be some attempt to write in vector form. A1: cao (allow column vector notation but not the coordinate)			
Correct notation should be used. Accept $-9 \mathrm{i}+3 \mathrm{j}$ or $\binom{-9}{3}$ but not $\binom{-9 \mathrm{i}}{3 \mathrm{j}}$			
(b)			
M1: Correct use of Pythagoras theorem or modulus formula using their answer to (a)			
Condone missing brackets in the expression $\|A B\|=\sqrt{-9^{2}+(3)^{2}}$			
Also allow a restart usually accompanied by a diagram.			
A1ft: $\|A B\|=3 \sqrt{10} \quad \mathrm{ft}$ from their answer to (a) as long as it has both an \mathbf{i} and \mathbf{j} component.			
Note that, in cases where there is no working, the correct answer implies M1A1 in each part of this question			

Question	Scheme	Marks	AOs
9 (a)	$\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=6 \mathbf{i}-3 \mathbf{j}-(4 \mathbf{i}+2 \mathbf{j})$	M1	1.1b
	$=2 \mathbf{i}-5 \mathbf{j}$	A1	1.1b
		(2)	
9(b)	Explains that $\overrightarrow{O C}$ is parallel to $\overrightarrow{A B}$ as $8 \mathbf{i}-20 \mathbf{j}=4 \times(2 \mathbf{i}-5 \mathbf{j})$	M1	1.1b
	As $\overrightarrow{O C}=4 \times \overrightarrow{A B}$ it is parallel to it and not the same length Hence $O A B C$ is a trapezium.	A1	2.4
		(2)	
(4 marks)			
Notes:			
(a) M1: Attempts $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$ or equivalent. This may be implied by one correct component A1: $2 \mathbf{i}-5 \mathbf{j}$ (b) M1: Attempts to compare vectors $\overrightarrow{O C}$ and $\overrightarrow{A B}$ by considering their directions A1: Fully explains why $O A B C$ is a trapezium. (The candidate is required to state that $O C$ is parallel to $A B$ but not the same length as it.)			

Question	Scheme	Marks	AOs
11(a)	Attempts $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$ or similar	M1	1.1b
	$\overrightarrow{A B}=5 \mathbf{i}+10 \mathbf{j}$	A1	1.1b
		(2)	
(b)	Finds length using 'Pythagoras' $\|A B\|=\sqrt{(5)^{2}+(10)^{2}}$	M1	1.1b
	$\|A B\|=5 \sqrt{5}$	A1ft	1.1b
		(2)	
(4 marks)			
Notes:			
(a) M1: Attempts subtraction but may omit brackets A1: cao (allow column vector notation)			
M1: Correct use of Pythagoras theorem or modulus formula using their answer to (a) A1ft: $\|A B\|=5 \sqrt{5} \mathrm{ft}$ from their answer to (a)			

Questio	Scheme	Marks	AOs
12	Attempts $\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}+\mathbf{i}-9 \mathbf{j}+3 \mathbf{k}=3 \mathbf{i}-6 \mathbf{j}+4 \mathbf{k}$	M1	3.1a
	Attempts to find any one length using 3-d Pythagoras	M1	2.1
	Finds all of $\|A B\|=\sqrt{14},\|A C\|=\sqrt{61},\|B C\|=\sqrt{91}$	A1ft	1.1b
	$\cos B A C=\frac{14+61-91}{2 \sqrt{14} \sqrt{61}}$	M1	2.1
	angle $B A C=105.9^{\circ}$ *	A1*	1.1b
		(5)	
(5 marks)			
Notes:			
M1: Attempts to find $\overrightarrow{A C}$ by using $\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}$ M1: Attempts to find any one length by use of Pythagoras' Theorem A1ft: Finds all three lengths in the triangle. Follow through on their $\|A C\|$ M1: Attempts to find $B A C$ using $\cos B A C=\frac{\|A B\|^{2}+\|A C\|^{2}-\|B C\|^{2}}{2\|A B\|\|A C\|}$ Allow this to be scored for other methods such as $\cos B A C=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{\|A B\|\|A C\|}$ A1*: This is a show that and all aspects must be correct. Angle $B A C=105.9^{\circ}$			

Question	Scheme	Marks	AOs
13(a)	Attempts two of the relevant vectors $\begin{gathered} \pm \overrightarrow{A B}= \pm(-4 \mathbf{i}+7 \mathbf{j}+\mathbf{k}) \\ \pm \overrightarrow{A C}= \pm(-20 \mathbf{i}+(p+3) \mathbf{j}+5 \mathbf{k}) \\ \pm \overrightarrow{B C}= \pm(-16 \mathbf{i}+(p-4) \mathbf{j}+4 \mathbf{k}) \end{gathered}$	M1	3.1a
	Uses two of the three vectors in such a way as to find the value of p. E.g. $p+3=5 \times 7$	dM1	2.1
	$p=32$	A1	1.1b
		(3)	
	(a) Alternative:		
	$r_{A B}=4 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}+\lambda(-4 \mathbf{i}+7 \mathbf{j}+\mathbf{k})$	M1	3.1a
	$\begin{gathered} 4 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}+\lambda(-4 \mathbf{i}+7 \mathbf{j}+\mathbf{k})=-16 \mathbf{i}+p \mathbf{j}+10 \mathbf{k} \Rightarrow \lambda=5 \\ 4 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}+\lambda(-4 \mathbf{i}+7 \mathbf{j}+\mathbf{k})=-16 \mathbf{i}+p \mathbf{j}+10 \mathbf{k} \Rightarrow p=35-3 \end{gathered}$	dM1	2.1
	$p=32$	A1	1.1b
(b)	Deduces that $\overrightarrow{O D}=\lambda \overrightarrow{O B}=4 \lambda \mathbf{j}+6 \lambda \mathbf{k}$ and attempts $\overrightarrow{C D}=16 \mathbf{i}+(4 \lambda-" 32 ") \mathbf{j}+(6 \lambda-10) \mathbf{k}$	M1	3.1a
	Correct attempt at λ using the fact that $\overrightarrow{C D}$ is parallel to $\overrightarrow{O A}$ $\begin{aligned} \bar{C} D & =16 \mathbf{i}+(4 \lambda-" 32 ") \mathbf{j}+(6 \lambda-10) \mathbf{k} \\ & \rightarrow \\ & \overrightarrow{O A}=4 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k} \end{aligned}$ $4 \lambda-32=-12 \Rightarrow \lambda=\ldots \quad$ OR $6 \lambda-10=20 \Rightarrow \lambda=\ldots$	dM1	1.1b
	$\|\overrightarrow{O D}\|=5 \times \sqrt{4^{2}+6^{2}}=10 \sqrt{13}$	A1	1.1 b
		(3)	
	(b) Alternative:		
	Deduces that $\overrightarrow{O D}=\lambda \overrightarrow{O B}=4 \lambda \mathbf{j}+6 \lambda \mathbf{k}$ and attempts $\overrightarrow{O D}=\overrightarrow{O C}+\mu \overrightarrow{O A}=-16 \mathbf{i}+32 \mathbf{j}+10 \mathbf{k}+\mu(4 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k})$	M1	3.1a
	Correct attempt at λ or μ using the fact that $\begin{gathered} \lambda \overrightarrow{O B}=\overrightarrow{O C}+\mu \overrightarrow{O A} \\ \text { E.g. }-16+4 \mu=0 \Rightarrow \mu=4 \end{gathered}$	dM1	1.1b
	$\|\overrightarrow{O D}\|=5 \times \sqrt{4^{2}+6^{2}}=10 \sqrt{13}$	A1	1.1b
		(3)	
(6 marks)			
Notes:			

(a)

M1: Attempts two of the three relevant vectors by subtracting either way around. See scheme.
Allow equivalent work e.g. $\pm \overrightarrow{A B}= \pm(\overrightarrow{O B}+\overrightarrow{A O})$
If no working is shown, method can be implied by 2 correct components.
dM1: For the key step in using the fact that if the vectors are parallel, they will be multiples of each other (where the multiple is something other than 1) to find p.
E.g. $p+3=5 \times 7, p-4=\frac{4}{5}(p+3), p-4=4 \times 7$

A1: $p=32$ (Condone 32j)
For reference, $\overrightarrow{B C}=4 \overrightarrow{A B}, \overrightarrow{A C}=5 \overrightarrow{A B}, \overrightarrow{B C}=\frac{4}{5} \overrightarrow{A C}, \overrightarrow{A C}=\frac{5}{4} \overrightarrow{B C}$
Note that candidates generally only need to use 2 components to find \boldsymbol{p} and if the $3^{\text {rd }}$ component has errors but is not used, full marks can be awarded.
Alternative:
M1: Forms the vector equation using A or B as position and $\pm \overrightarrow{A B}$ as the direction
dM1: For the key step in using the fact that C lies on the line to find p
A1: $p=32$ (Condone 32j)
For reference, $\overrightarrow{B C}=4 \overrightarrow{A B}, \overrightarrow{A C}=5 \overrightarrow{A B}, \overrightarrow{B C}=\frac{4}{5} \overrightarrow{A C}, \overrightarrow{A C}=\frac{5}{4} \overrightarrow{B C}$

Note that candidates generally only need to use 2 components to find \boldsymbol{p} and if the $\mathbf{3}^{\text {rd }}$ component has errors but is not used, full marks can be awarded.

There will be other approaches e.g. using "gradients" and "ratios" and the method marks can be implied - if you are unsure if such attempts deserve credit use Review
(b) Vector approach

M1: Deduces that $\overrightarrow{O D}=\lambda \overrightarrow{O B}=4 \lambda \mathbf{j}+6 \lambda \mathbf{k}$ and attempts $\overrightarrow{C D}=16 \mathbf{i}+(4 \lambda-" 32 ") \mathbf{j}+(6 \lambda-10) \mathbf{k}$
dM1: Correct attempt at finding λ using the fact that $\overrightarrow{C D}$ is parallel to $\overrightarrow{O A}$
E.g. $16 \mathbf{i}+(4 \lambda-" 32 ") \mathbf{j}+(6 \lambda-10) \mathbf{k}=4 \alpha \mathbf{i}-3 \alpha \mathbf{j}+5 \alpha \mathbf{k} \Rightarrow \alpha=4 \Rightarrow 4 \lambda-" 32 "=-3 \times 4 " \Rightarrow \lambda=\ldots$

A1: $|\overrightarrow{O D}|=10 \sqrt{13}$

Alternative:

M1: Deduces that $\overrightarrow{O D}=\lambda \overrightarrow{O B}=4 \lambda \mathbf{j}+6 \lambda \mathbf{k}$ and attempts

$$
\overrightarrow{O D}=\overrightarrow{O C}+\mu \overrightarrow{O A}=-16 \mathbf{i}+32 \mathbf{j}+10 \mathbf{k}+\mu(4 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k})
$$

dM1: Correct attempt at finding λ or μ using the fact that $\lambda \overrightarrow{O B}=\overrightarrow{O C}+\mu \overrightarrow{O A}$
E.g. $(-16+4 \mu) \mathbf{i}+(" 32 "-3 \mu) \mathbf{j}+(10+5 \mu) \mathbf{k}=4 \lambda \mathbf{j}+6 \lambda \mathbf{k} \Rightarrow-16+4 \mu=0 \Rightarrow \mu=\ldots$

May also solve simultaneously using y and z components to find λ or μ
A1: $|\overrightarrow{O D}|=10 \sqrt{13}$
Note that the correct vector is $20 \mathbf{j}+30 \mathbf{k}$
(b) Similar triangle approach

M1: For the key step in recognising that triangle $B C D$ and triangle $B A O$ are similar with a ratio of lengths of $4: 1$
dM1: States or uses the fact that $|\overrightarrow{O D}|=5 \times|\overrightarrow{O B}|$
Stating this will score M1 dM1 provided there is no evidence of incorrect work
Note that they may establish this result using the work from (a) but must be used here to score.

A1: $|\overrightarrow{O D}|=10 \sqrt{13}$

Question Number	Scheme	Marks	AO's
14	Attempts any one of $\begin{gathered} (\pm \overrightarrow{P Q}=) \pm(\mathbf{q}-\mathbf{p}),(\pm \overrightarrow{P R}=) \pm(\mathbf{r}-\mathbf{p}),(\pm \overrightarrow{Q R}=) \pm(\mathbf{r}-\mathbf{q}) \\ \text { Or e.g. } \\ (\pm \overrightarrow{P Q}=) \pm(\overrightarrow{O Q}-\overrightarrow{O P}),(\pm \overrightarrow{P R}=) \pm(\overrightarrow{O R}-\overrightarrow{O P}),(\pm \overrightarrow{Q R}=) \pm(\overrightarrow{O R}-\overrightarrow{O Q}) \end{gathered}$	M1	1.1b
	Attempts e.g. $\begin{gathered} \mathbf{r}-\mathbf{q}=2(\mathbf{q}-\mathbf{p}) \\ \mathbf{r}-\mathbf{p}=3(\mathbf{q}-\mathbf{p}) \\ \frac{2}{3}(\mathbf{q}-\mathbf{p})=\frac{1}{3}(\mathbf{r}-\mathbf{q}) \\ \mathbf{q}=\mathbf{p}+\frac{1}{3}(\mathbf{r}-\mathbf{p}) \\ \mathbf{q}=\mathbf{r}+\frac{2}{3}(\mathbf{p}-\mathbf{r}) \end{gathered}$	dM1	3.1a
	$\Rightarrow \mathbf{r}-\mathbf{q}=2 \mathbf{q}-2 \mathbf{p} \Rightarrow 2 \mathbf{p}+\mathbf{r}=3 \mathbf{q} \Rightarrow \mathbf{q}=\frac{1}{3}(\mathbf{r}+2 \mathbf{p})^{*}$	A1*	2.1
		(3)	
(3 marks)			

Notes:

M1: Attempts any of the relevant vectors by subtracting either way around. This may be implied by sight of any one of $\pm(\mathbf{q}-\mathbf{p}), \pm(\mathbf{r}-\mathbf{p}), \pm(\mathbf{r}-\mathbf{q})$ ignoring how they are labelled
dM1: Uses the given information and writes it correctly in vector form that if rearranged would give the printed answer
A1*: Fully correct work leading to the given answer. Allow $\mathrm{OQ}=\ldots$ as long as OQ has been defined as \mathbf{q} earlier.

In the working allow use of P instead of \mathbf{p} and Q instead of \mathbf{q} as long as the intention is clear.

Question	Scheme	Marks	AOs
15			
	$\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$		
(a)	$\left\{\overrightarrow{C M}=\overrightarrow{C A}+\overrightarrow{A M}=\overrightarrow{C A}+\frac{1}{2} \overrightarrow{A B} \Rightarrow\right\} \overrightarrow{C M}=-\mathbf{a}+\frac{1}{2}(\mathbf{b}-\mathbf{a})$	M1	3.1a
	$\left\{\overrightarrow{C M}=\overrightarrow{C B}+\overrightarrow{B M}=\overrightarrow{C B}+\frac{1}{2} \overrightarrow{B A} \Rightarrow\right\} \overrightarrow{C M}=(-2 \mathbf{a}+\mathbf{b})+\frac{1}{2}(\mathbf{a}-\mathbf{b})$		
	$\Rightarrow \overrightarrow{C M}=-\frac{3}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}$ (needs to be simplified and seen in (a) only)	A1	1.1b
		(2)	
(b)	$\overrightarrow{O N}=\overrightarrow{O C}+\overrightarrow{C N} \Rightarrow \overrightarrow{O N}=\overrightarrow{O C}+\lambda \overrightarrow{C M}$	M1	1.1b
	$\overrightarrow{O N}=2 \mathbf{a}+\lambda\left(-\frac{3}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right) \Rightarrow \overrightarrow{O N}=\left(2-\frac{3}{2} \lambda\right) \mathbf{a}+\frac{1}{2} \lambda \mathbf{b}$ *	A1*	2.1
		(2)	
(c) Way 1	$\left(2-\frac{3}{2} \lambda\right)=0 \Rightarrow \lambda=\ldots$	M1	2.2a
	$\lambda=\frac{4}{3} \Rightarrow \overrightarrow{O N}=\frac{2}{3} \mathbf{b}\left\{\Rightarrow \overrightarrow{N B}=\frac{1}{3} \mathbf{b}\right\} \Rightarrow O N: N B=2: 1^{*}$	A1*	2.1
		(2)	
(c) Way 2	$\overrightarrow{O N}=\mu \mathbf{b} \Rightarrow\left(2-\frac{3}{2} \lambda\right) \mathbf{a}+\frac{1}{2} \lambda \mathbf{b}=\mu \mathbf{b}$		
	$\mathbf{a}:\left(2-\frac{3}{2} \lambda\right)=0 \Rightarrow \lambda=\ldots \quad\left\{\mathbf{b}: \frac{1}{2} \lambda=\mu \& \lambda=\frac{4}{3} \Rightarrow \mu=\frac{2}{3}\right\}$	M1	2.2a
	$\lambda=\frac{4}{3}$ or $\mu=\frac{2}{3} \Rightarrow \overrightarrow{O N}=\frac{2}{3} \mathbf{b}\left\{\Rightarrow \overrightarrow{N B}=\frac{1}{3} \mathbf{b}\right\} \Rightarrow O N: N B=2: 1 *$	A1*	2.1
		(2)	
(6 marks)			

Notes for Question 15 Continued

Note:	Part (b) and part (c) can be marked together.
(a) Special Case	Special Case where the point C is believed to be below the origin O
	Give Special Case M1 A0 in part (a) for $\{\overrightarrow{C M}=\overrightarrow{C A}+\overrightarrow{A M} \Rightarrow\} \overrightarrow{C M}=3 \mathbf{a}+\frac{1}{2}(\mathbf{b}-\mathbf{a})$
	$\left\{\right.$ which leads to $\left.\overrightarrow{C M}=\frac{5}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right\}$

Question Number	Scheme	Notes		Marks
17.	$\overrightarrow{O A}=\left(\begin{array}{r}-3 \\ 7 \\ 2\end{array}\right), \overrightarrow{A B}=\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right), \overrightarrow{O P}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right) ; \overrightarrow{O Q}=\left(\begin{array}{c}9+4 \mu \\ 1-6 \mu \\ 8+2 \mu\end{array}\right)$	or $\overrightarrow{O Q}=\left(\begin{array}{c}9+2 \mu \\ 1-3 \mu \\ 8+\mu\end{array}\right)$	Let $\theta=$ size of angle $P A B$. A, B lie on l_{1} and P lies on l_{2}	
(a)	$\begin{aligned} & \{\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B} \Rightarrow\} \\ & \overrightarrow{O B}=\left(\begin{array}{r} -3 \\ 7 \\ 2 \end{array}\right)+\left(\begin{array}{r} 4 \\ -6 \\ 2 \end{array}\right)=\left(\begin{array}{l} 1 \\ 1 \\ 4 \end{array}\right) \Rightarrow B(1,1,4) \end{aligned}$	Attempts to add $\overrightarrow{O A}$ to $\overrightarrow{A B}$		M1
		$(1,1,4)$ or $\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right)$ or $\mathbf{i}+\mathbf{j}+4 \mathbf{k}$		A1
	Note: M1 can be implied by at least 2 correct components for B			[2]
(b)	$\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{O A}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)-\left(\begin{array}{r}-3 \\ 7 \\ 2\end{array}\right)=\left(\begin{array}{r}12 \\ -6 \\ 6\end{array}\right)$ or $\overrightarrow{P A}=\left(\begin{array}{r}-12 \\ 6 \\ -6\end{array}\right)$		An attempt to find $\overrightarrow{A P}$ or $\overrightarrow{P A}$	M1
	$\left\{\cos \theta=\frac{\overrightarrow{A P} \cdot \overrightarrow{A B}}{\|\overrightarrow{A P}\|\|\overrightarrow{A B}\|}\right\}=\frac{\left(\begin{array}{r} 12 \\ -6 \\ 6 \end{array}\right) \cdot\left(\begin{array}{r} 4 \\ -6 \\ 2 \end{array}\right)}{\sqrt{(12)^{2}+(-6)^{2}+(6)^{2}} \cdot \sqrt{(4)^{2}+(-6)^{2}+(2)^{2}}}$		Applies dot product formula between their $(\overrightarrow{A P}$ or $\overrightarrow{P A})$ and $(\overrightarrow{A B}$ or $\overrightarrow{B A})$ or a multiple of these vectors	dM1
	$\left\{\cos \theta=\frac{96}{\sqrt{216} \cdot \sqrt{56}} \Rightarrow \cos \theta\right\}=\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$		$\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$	A1
				[3]
(c)	$\left\{\cos \theta=\frac{4}{\sqrt{21}}\right\} \Rightarrow \sin \theta=\frac{\sqrt{21-16}}{\sqrt{21}}=\frac{\sqrt{5}}{\sqrt{21}}=\frac{\sqrt{105}}{21} \quad \begin{aligned} & \text { A correct method for converting an exact } \\ & \text { value for } \cos \text { to an exact value for } \sin \end{aligned}$			M1
	Area $P A B=\frac{1}{2}(\sqrt{216})(\sqrt{56})\left(\frac{\sqrt{5}}{\sqrt{21}}\right)\left\{=12 \sqrt{21}\left(\frac{\sqrt{5}}{\sqrt{21}}\right)\right\}=12 \sqrt{5}$		see notes	M1
			$12 \sqrt{5}$	A1 cao
				[3]
(d)	$\left\{l_{2}:\right\} \mathbf{r}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)$ or $\mathbf{r}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right)$	$\mathbf{p}+\lambda \mathbf{d}$ or $\mathbf{p}+\mu \mathbf{d}, \mathbf{p} \neq 0, \mathbf{d} \neq 0$ with either $\mathbf{p}=9 \mathbf{i}+\mathbf{j}+8 \mathbf{k}$ or $\mathbf{d}=4 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k}$ or $\mathbf{d}=$ multiple of $2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$		M1
		Correct vector equation		A1
				[2]
(e)	$\overrightarrow{B Q}=\left(\begin{array}{l}9+4 \mu \\ 1-6 \mu \\ 8+2 \mu\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right)\left\{=\left(\begin{array}{c}8+4 \mu \\ -6 \mu \\ 4+2 \mu\end{array}\right)\right\}\left\{\overrightarrow{Q B}=\left(\begin{array}{c}-8-4 \mu \\ 6 \mu \\ -4-2 \mu\end{array}\right)\right\}$		Applies their $\overrightarrow{O Q}$ - their $\overrightarrow{O B}$ or their $\overrightarrow{O B}$ - their $\overrightarrow{O Q}$	M1
	$\overrightarrow{B Q} \cdot \overrightarrow{A P}=0 \Rightarrow\left(\begin{array}{c}8+4 \mu \\ -6 \mu \\ 4+2 \mu\end{array}\right) \cdot\left(\begin{array}{r}12 \\ -6 \\ 6\end{array}\right)=0 \Rightarrow \mu=\ldots \quad \begin{gathered}\text { Applies } \overrightarrow{B Q} \cdot \overrightarrow{A P}=0, \text { o.e. and solves the } \\ \text { resulting equation to find a value for } \mu\end{gathered}$			dM1
	$\Rightarrow 96+48 \mu+36 \mu+24+12 \mu=0 \Rightarrow 96 \mu+120=0 \Rightarrow \mu=-\frac{5}{4}$		$\mu=-\frac{120}{96}$ or $\mu=-\frac{5}{4}$	A1 o.e.
	$\overrightarrow{O Q}=\left(\begin{array}{c}9+4(-1.25) \\ 1-6(-1.25) \\ 8+2(-1.25)\end{array}\right)=\left(\begin{array}{r}4 \\ 8.5 \\ 5.5\end{array}\right) \Rightarrow Q(4,8.5,5.5)$	Substitutes their value of μ into $\overrightarrow{O Q}$		ddM1
		$(4,8.5,5.5) \text { or }\left(\begin{array}{c} 4 \\ 8.5 \\ 5.5 \end{array}\right) \text { or } 4 \mathbf{i}+8.5 \mathbf{j}+5.5 \mathbf{k}$		A1 o.e.
				[5]
				15

Question Number	Scheme	Notes		Marks
17.	$\overrightarrow{O A}=\left(\begin{array}{r}-3 \\ 7 \\ 2\end{array}\right), \overrightarrow{A B}=\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right), \overrightarrow{O P}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right) ; \overrightarrow{O Q}=\left(\begin{array}{l}9+4 \mu \\ 1-6 \mu \\ 8+2 \mu\end{array}\right)$ or $\overrightarrow{O Q}=\left(\begin{array}{c}9+2 \mu \\ 1-3 \mu \\ 8+\mu\end{array}\right)$		Let $\theta=$ size of angle $P A B$. A, B lie on l_{1} and P lies on l_{2}	
(e) Alt 1	$\overrightarrow{B Q}=\left(\begin{array}{c}9+2 \mu \\ 1-3 \mu \\ 8+\mu\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right)\left\{=\left(\begin{array}{c}8+2 \mu \\ -3 \mu \\ 4+\mu\end{array}\right)\right\}\left\{\overrightarrow{Q B}=\left(\begin{array}{c}-8-2 \mu \\ 3 \mu \\ -4-\mu\end{array}\right)\right\}$	Applies their $\overrightarrow{O Q}$ - their $\overrightarrow{O B}$ or their $\overrightarrow{O B}$ - their $\overrightarrow{O Q}$		M1
	$\overrightarrow{B Q} \cdot \overrightarrow{A P}=0 \Rightarrow\left(\begin{array}{c} 8+2 \mu \\ -3 \mu \\ 4+\mu \end{array}\right) \cdot\left(\begin{array}{r} 12 \\ -6 \\ 6 \end{array}\right)=0 \Rightarrow \mu=\ldots$ Applies $\overrightarrow{B Q} \cdot \overrightarrow{A P}=0$, o.e. and solves the resulting equation to find a value for μ			dM1
	$\Rightarrow 96+24 \mu+18 \mu+24+6 \mu=0 \Rightarrow 48 \mu+120=0 \Rightarrow \mu=-\frac{5}{2}$		$\mu=-\frac{5}{2}$	A1 o.e.
	$\overrightarrow{O Q}=\left(\begin{array}{l} 9+2(-2.5) \\ 1-3(-2.5) \\ 8+1(-2.5) \end{array}\right)=\left(\begin{array}{c} 4 \\ 8.5 \\ 5.5 \end{array}\right) \Rightarrow Q(4,8.5,5.5)$	Substitutes their value of μ into $\overrightarrow{O Q}$		ddM1
		$(4,8.5,5.5)$ or $\binom{8.5}{5.5}$ or $4 \mathbf{i}+8.5 \mathbf{j}+5.5 \mathbf{k}$		A1 o.e.
				[5]
(b) Alt 1	Vector Cross Product: Use this scheme if a vector cross product method is being applied			
	$\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{O A}=\left(\begin{array}{l} 9 \\ 1 \\ 8 \end{array}\right)-\left(\begin{array}{r} -3 \\ 7 \\ 2 \end{array}\right)=\left(\begin{array}{r} 12 \\ -6 \\ 6 \end{array}\right) \text { or } \overrightarrow{P A}=\left(\begin{array}{r} -12 \\ 6 \\ -6 \end{array}\right)$		An attempt to find $\begin{aligned} & \overrightarrow{A P} \\ & \text { or } \overrightarrow{P A}\end{aligned}$.	M1
	$\mathbf{d}_{1} \times \mathbf{d}_{2}=\left(\begin{array}{r} 12 \\ -6 \\ 6 \end{array}\right) \times\left(\begin{array}{r} 4 \\ -6 \\ 2 \end{array}\right)=\left\{\left.\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 12 & -6 & 6 \\ 4 & -6 & 2 \end{array} \right\rvert\,=24 \mathbf{i}+0 \mathbf{j}-48 \mathbf{k}\right\}$			
	$\sin \theta=\frac{\sqrt{(24)^{2}+(0)^{2}+(-48)^{2}}}{\sqrt{(12)^{2}+(-6)^{2}+(6)^{2}} \cdot \sqrt{(4)^{2}+(-6)^{2}+(2)^{2}}} \quad$Applies vector cross product formula between their $(\overrightarrow{A P}$ or $\overrightarrow{P A})$ and $(\overrightarrow{A B}$ or $\overrightarrow{B A})$			dM1
	$\left\{\sin \theta=\frac{\sqrt{2880}}{\sqrt{216} \cdot \sqrt{56}}=\sqrt{\frac{5}{21}}\right\}\{\Rightarrow \cos \theta\}=\sqrt{\frac{16}{21}}=\underline{\underline{\underline{\frac{4}{21}}}}$ or $\underline{\underline{\frac{4}{21}} \sqrt{21}}$		$\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$	A1
				[3]
(b) Alt 2	Cosine Rule			
	$\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{O A}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)-\left(\begin{array}{r}-3 \\ 7 \\ 2\end{array}\right)=\left(\begin{array}{r}12 \\ -6 \\ 6\end{array}\right)$ or $\overrightarrow{P A}=\left(\begin{array}{r}-12 \\ 6 \\ -6\end{array}\right)$	An attempt to find $\overrightarrow{A P}$ or $\overrightarrow{P A}$		M1
	Note: $\|\overrightarrow{P A}\|=\sqrt{216},\|\overrightarrow{A B}\|=\sqrt{56}$ and $\|\overrightarrow{P B}\|=\sqrt{80}$			
	$(\sqrt{80})^{2}=(\sqrt{216})^{2}+(\sqrt{56})^{2}-2(\sqrt{216})(\sqrt{56}) \cos \theta$	Applies the cosine rule the correct way round		dM1
	$\cos \theta=\frac{216+56-80}{2 \sqrt{216} \sqrt{56}}=\frac{192}{2 \sqrt{216} \sqrt{56}}$			
	$\{\Rightarrow \cos \theta\}=\frac{\frac{4}{\sqrt{21}}}{\underline{y}} \text { or } \underline{\underline{\frac{4}{21}} \sqrt{21}}$		$\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$	A1
				[3]

	Question 17 Notes	
17. (b)	Note	If no "subtraction" seen, you can award ${ }^{\text {st }} \mathrm{M} 1$ for 2 out of 3 correct components of the difference
	Note	For dM1 the dot product formula can be applied as $\sqrt{(12)^{2}+(-6)^{2}+(6)^{2}} \cdot \sqrt{(4)^{2}+(-6)^{2}+(2)^{2}} \cos \theta=\left(\begin{array}{r} 12 \\ -6 \\ 6 \end{array}\right) \cdot\left(\begin{array}{r} 4 \\ -6 \\ 2 \end{array}\right)$
	Note	Evaluation of the dot product for $12 \mathbf{i}-6 \mathbf{j}+6 \mathbf{k}$ \& $2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ is not required for the dM1 mark
	A1	For either $\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$ or $\cos \theta=\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$
	Note	Using $12 \mathbf{i}-6 \mathbf{j}+6 \mathbf{k}$ \& $2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ gives $\cos \theta=\frac{24+18+6}{\sqrt{216} \cdot \sqrt{14}}=\frac{48}{12 \sqrt{21}}=\frac{4}{\underline{\sqrt{21}}}$ or $\frac{4}{\underline{21} \sqrt{21}}$
	Note	Using $2 \mathbf{i}-\mathbf{j}+\mathbf{k} \& 2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ gives $\cos \theta=\frac{4+3+1}{\sqrt{6} \cdot \sqrt{14}}=\frac{8}{2 \sqrt{21}}=\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$
	Note	Give M1M1A0 for finding $\theta=$ awrt 29.2 without reference to $\cos \theta=\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$
	Note	Condone taking the dot product between vectors the wrong way round for the M1 dM1 marks
	Note	Vectors the wrong way round
		- E.g. taking the dot product between $\overrightarrow{P A}$ and $\overrightarrow{A B}$ to give $\cos \theta=-\frac{4}{\sqrt{21}}$ or $-\frac{4}{21} \sqrt{21}$ with no other working is final A0 - E.g. taking the dot product between $\overrightarrow{P A}$ and $\overrightarrow{A B}$ to give $\cos \theta=-\frac{4}{\sqrt{21}}$ or $-\frac{4}{21} \sqrt{21}$ followed by $\cos \theta=\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$ or just simply writing $\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$ is final A1
	Note	In part (b), give M0dM0 for finding and using $\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{A B}=(5 \mathbf{i}+7 \mathbf{j}+6 \mathbf{k})$
(c)	Note	Give $1^{\text {st }} \mathrm{M} 0$ for $\sin \theta=\sin \left(\cos ^{-1}\left(\frac{4 \sqrt{21}}{21}\right)\right)$ or $\sin \theta=1-\left(\frac{4}{21} \sqrt{21}\right)^{2}$ unless recovered
	M1	Give $2^{\text {nd }}$ M1 for either - $\frac{1}{2}$ (their length $A P$)(their length $A B$)(their attempt at $\sin \theta$) - $\frac{1}{2}$ (their length $\left.A P\right)$ (their length $\left.A B\right) \sin \left(\right.$ their 29.2° from part (b)) - $\frac{1}{2}$ (their length $\left.A P\right)($ their length $A B) \sin \theta$; where $\cos \theta=\ldots$ in part (b)
	Note	$\frac{1}{2}(\sqrt{216})(\sqrt{56}) \sin \left(\right.$ awrt 29.2° or awrt $\left.150.8^{\circ}\right)\{=$ awrt 26.8$\}$ without reference to finding $\sin \theta$ as an exact value if M0 M1 A0
	Note	Anything that rounds to 26.8 without reference to finding $\sin \theta$ as an exact value is M0 M1 A0
	Note	Anything that rounds to 26.8 without reference to $12 \sqrt{5}$ is A0
	Note	If they use $\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{A B}=(5 \mathbf{i}+7 \mathbf{j}+6 \mathbf{k})$ in part (b), then this can be followed through in part (c) for the $2^{\text {nd }} \mathrm{M}$ mark as e.g. $\frac{1}{2}(\sqrt{110})(\sqrt{56}) \sin \theta$
	Note	Finding $12 \sqrt{5}$ in part (c) is M1 dM1 A1, even if there is little or no evidence of finding an exact value for $\sin \theta$. So $\frac{1}{2}(\sqrt{216})(\sqrt{56}) \sin \left(29.2^{\circ}\right)=12 \sqrt{5}$ is M1 dM1 A1

	Question 17 Notes Continued			
17. (d)	Note	Writing $\mathbf{r}=\ldots$ or $l_{2}=\ldots$ or $l=\ldots$ or Line $2=\ldots$ is not required for the M mark		
	A1 Note Note	Writing $\mathbf{r}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)$ or $\mathbf{r}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right)$ or $\mathbf{r}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu \mathbf{d}$, where $\mathbf{d}=$ a multiple of $2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ Writing $\mathbf{r}=\ldots$ or $l_{2}=\ldots$ or $l=\ldots$ or Line $2=\ldots$ is required for the A mark Other valid $\mathbf{p}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)$ are e.g. $\mathbf{p}=\left(\begin{array}{c}13 \\ -5 \\ 10\end{array}\right)$ or $\mathbf{p}=\left(\begin{array}{l}5 \\ 7 \\ 6\end{array}\right)$. So $\mathbf{r}=\left(\begin{array}{c}13 \\ -5 \\ 10\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)$ is M1 A1		
	Note	Give A0 for writing $l_{2}:\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)$ or ans $=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)$ unless recovered		
	Note	Using scalar parameter λ or other scalar parameters (e.g. μ or s or t) is fine for M1 and/or A1		
(e)	ddM1	Substitutes their value of μ into $\overrightarrow{O Q}$, where $\overrightarrow{O Q}=$ their equation for l_{2}		
	Note	If they use $\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{A B}=(5 \mathbf{i}+7 \mathbf{j}+6 \mathbf{k})$ in part (b), then this can be followed through in part (e) for the $2^{\text {nd }} \mathrm{M}$ mark and the $3^{\text {rd }} \mathrm{M}$ mark		
	Note	You imply the final M mark in part (e) for at least 2 correctly followed through components for Q from their μ		
Question Number	Scheme Notes			Marks
17. (c) Alt 1	Vector Cross Product: Use this scheme if a vector cross product method is being applied			
	$\overrightarrow{A P} \times \overrightarrow{A B}=\underline{\left(\begin{array}{r}12 \\ -6 \\ 6\end{array}\right) \times\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)}=\left\{\left.\begin{array}{\|ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 12 & -6 & 6 \\ 4 & -6 & 2\end{array} \right\rvert\,=24 \mathbf{i}+0 \mathbf{j}-48 \mathbf{k}\right\}$			
	$\text { Area } P A B=\frac{1}{2} \sqrt{(24)^{2}+(-48)^{2}}$		Uses a vector product and $\sqrt{\left.(" 24 "))^{2}+(" 0 ")^{2}+("-48 ")\right)^{2}}$	M1
			Uses a vector product and $\frac{1}{2} \sqrt{(" 24 ")^{2}+(" 0 ")^{2}+("-48 ")^{2}}$	M1
	$=12$		$12 \sqrt{5}$	A1 cao
				[3]
17. (c)$\text { Alt } 2$	Note: $\cos A P B=\frac{5}{\sqrt{30}}$ or $\frac{1}{6} \sqrt{30} \quad$ Note: $\|\overrightarrow{P A}\|=\sqrt{216}$ and $\|\overrightarrow{P B}\|=\sqrt{80}$			
	$\sin \theta=\frac{\sqrt{30}}{\sqrt{30}}=\frac{v}{6}$	$\frac{\sqrt{30-25}}{\sqrt{30}}=\frac{\sqrt{5}}{\sqrt{30}}=\frac{\sqrt{6}}{6} \quad$A correct value for	A correct method for converting an exact value for \cos to an exact value for sin	M1
	$\text { Area } P A B=\frac{1}{2}(\sqrt{216})(\sqrt{80})\left(\frac{\sqrt{5}}{\sqrt{30}}\right)\left\{=12 \sqrt{30}\left(\frac{\sqrt{5}}{\sqrt{30}}\right)\right\}=12 \sqrt{5}$		$\frac{1}{2}(\text { their } P A)(\text { their } P B) \sin \theta$	M1
			$12 \sqrt{5}$	A1 cao
				[3]

Question Number	Scheme	Notes	Marks
18. (e) Way 2	$\left\{A X=2 A B \Rightarrow A B=\frac{1}{2} A X\right.$. So, $\left.\overrightarrow{O B}=\overrightarrow{O A} \pm \overrightarrow{A B} \Rightarrow \overrightarrow{O B}=\overrightarrow{O A} \pm \frac{1}{2} \overrightarrow{A X}\right\}$		
	$\begin{aligned} & \overrightarrow{O B}=\left(\begin{array}{r} 2 \\ 18 \\ 6 \end{array}\right)+0.5\left(\begin{array}{r} -3 \\ -15 \\ 3 \end{array}\right) ;=\left(\begin{array}{r} 0.5 \\ 10.5 \\ 7.5 \end{array}\right) \\ & \overrightarrow{O B}=\left(\begin{array}{r} 2 \\ 18 \\ 6 \end{array}\right)-0.5\left(\begin{array}{r} -3 \\ -15 \\ 3 \end{array}\right) ;=\left(\begin{array}{r} 3.5 \\ 25.5 \\ 4.5 \end{array}\right) \end{aligned}$	Applies either $\overrightarrow{O A}+0.5 \overrightarrow{A X}$ or $\overrightarrow{O A}-0.5 \overrightarrow{A X}$ where (their $\overrightarrow{A X}$) $= \pm[($ their $\overrightarrow{O X})-\overrightarrow{O A}]$	M1;
		At least one position vector is correct (Also allow coordinates)	A1
		Both position vectors are correct (Also allow coordinates)	A1
			3]
18. (e) Way 3	$\begin{aligned} & \left.\overrightarrow{A B}=\left(\begin{array}{c} 4-\lambda \\ 28-5 \lambda \\ 4+\lambda \end{array}\right)-\left(\begin{array}{c} 2 \\ 18 \\ 6 \end{array}\right)=\left(\begin{array}{c} 2-\lambda \\ 10-5 \lambda \\ -2+\lambda \end{array}\right)=\left(\begin{array}{c} 1(2-\lambda) \\ 5(2-\lambda) \\ -1(2-\lambda) \end{array}\right) ; \overrightarrow{A X}=\left(\begin{array}{c} -3 \\ -15 \\ 3 \end{array}\right) \quad \begin{array}{c} A X^{2}=243 \\ A B^{2}=27(2 \end{array}\right)^{2} \\ & A X=2 A B \quad A X^{2}=4 A B^{2} \quad 243=4(27)(2 \quad)^{2} \quad(2 \quad)^{2}=\frac{9}{4} \text { or } 27^{2} 108+\frac{189}{4}=0 \\ & \text { or } 108^{2} \quad 432+189=0 \text { or } 4^{2} \quad 16+7=0 \quad=3.5 \text { or }=0.5 \end{aligned}$		
	$\begin{aligned} & \overrightarrow{O B}=\left(\begin{array}{r} 4 \\ 28 \\ 4 \end{array}\right)+3.5\left(\begin{array}{r} -1 \\ -5 \\ 1 \end{array}\right) ;=\left(\begin{array}{r} 0.5 \\ 10.5 \\ 7.5 \end{array}\right) \\ & \overrightarrow{O B}=\left(\begin{array}{r} 4 \\ 28 \\ 4 \end{array}\right)+0.5\left(\begin{array}{r} -1 \\ -5 \\ 1 \end{array}\right) ;=\left(\begin{array}{c} 3.5 \\ 25.5 \\ 4.5 \end{array}\right) \end{aligned}$	Full method of solving for the equation $A X^{2}=4 A B^{2}$ using (their $\overrightarrow{A X}$) and $\overrightarrow{A B}$ and substitutes at least one of their values for into l_{1}	M1;
		At least one position vector is correct (Also allow coordinates)	A1
		Both position vectors are correct (Also allow coordinates)	A1
	Note: $A X=2 A B \Rightarrow \overrightarrow{A X}= \pm 2 \overrightarrow{A B}$. Hence, $=3.5$ or $=0.5$ can be found from solving either $x: \quad 3= \pm 2(2)$ or $y: \quad 15= \pm 2(105)$ or $z: \quad 3= \pm 2(2+)$		[3]
18. (e) Way 4	$\begin{aligned} & \overrightarrow{O B}=\left(\begin{array}{r} -1 \\ 3 \\ 9 \end{array}\right)+0.5\left(\begin{array}{r} 3 \\ 15 \\ -3 \end{array}\right) ;=\left(\begin{array}{r} 0.5 \\ 10.5 \\ 7.5 \end{array}\right) \\ & \overrightarrow{O B}=\left(\begin{array}{r} -1 \\ 3 \\ 9 \end{array}\right)+1.5\left(\begin{array}{r} 3 \\ 15 \\ -3 \end{array}\right) ;=\left(\begin{array}{r} 3.5 \\ 25.5 \\ 4.5 \end{array}\right) \end{aligned}$	$\begin{aligned} & \text { Applies either (their } \overrightarrow{O X})+0.5 \overrightarrow{X A} \\ & \text { or (their } \overrightarrow{O X})+1.5 \overrightarrow{X A} \\ & \text { where (their } \overrightarrow{X A} \text {) }=\overrightarrow{O A}-(\text { their } \overrightarrow{O X}) \end{aligned}$	M1;
		At least one position vector is correct (Also allow coordinates)	A1
		Both position vectors are correct (Also allow coordinates)	A1
			[3]
18. (e) Way 5	$\begin{aligned} & \overrightarrow{O B}=0.5\left(\left(\begin{array}{r} -1 \\ 3 \\ 9 \end{array}\right)+\left(\begin{array}{r} 2 \\ 18 \\ 6 \end{array}\right)\right) ;=\left(\begin{array}{r} 0.5 \\ 10.5 \\ 7.5 \end{array}\right) \\ & \overrightarrow{O B}=\left(\begin{array}{r} 2 \\ 18 \\ 6 \end{array}\right)-0.5\left(\begin{array}{r} -3 \\ -15 \\ 3 \end{array}\right) ;=\left(\begin{array}{r} 3.5 \\ 25.5 \\ 4.5 \end{array}\right) \end{aligned}$	Applies $\frac{1}{2}[($ their $\overrightarrow{O X})+\overrightarrow{O A}]$	M1;
		At least one position vector is correct (Also allow coordinates)	A1
		Both position vectors are correct (Also allow coordinates)	A1
			[3]

19. (f)	Question 19 Notes continued		
	Note	Allow the first M1A1 for deducing $\lambda=\frac{2}{5}$ or $\lambda=-\frac{2}{5}$ from no incorrect working	
	SC	Allow special case $1^{\text {st }} \mathrm{M} 1$ for $\lambda=2.5$ from comparing lengths or from no working	
	Note	Give ${ }^{\text {st }} \mathrm{M} 1$ for $\sqrt{(-5 \lambda)^{2}+(4 \lambda)^{2}+(3 \lambda)^{2}}=($ their $2 \sqrt{2}$)	
	Note	Give $1^{\text {st }} \mathrm{M} 0$ for $(-5 \lambda)^{2}+(4 \lambda)^{2}+(3 \lambda)^{2}=($ their $2 \sqrt{2})$ or equivalent	
	Note	Give $1^{\text {st }} \mathrm{M} 1$ for $\lambda=\frac{\text { their } A P=" 2 \sqrt{2} "}{\sqrt{(-5)^{2}+(4)^{2}+(3)^{2}}}$ and $1^{\text {st }}$ A1 for $\lambda=\frac{2 \sqrt{2}}{5 \sqrt{2}}$	
	Note	So $\left\{\hat{\mathbf{d}}_{1}=\frac{1}{5 \sqrt{2}}\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right) \Rightarrow\left\{\right.\right.$ "vector" $=\frac{2 \sqrt{2}}{5 \sqrt{2}}\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right)$ is M1A1	
	Note	The $2^{\text {nd }} \mathrm{dM} 1$ in part (f) can be implied for at least 2 (out of 6) correct x, y, z ordinates from their values of λ.	
	Note	Giving their "coordinates" as a column vector or position vector is fine for the final A1A1.	
	CAREFUL	Putting l_{2} equal to A gives $\left(\begin{array}{l} 1 \\ 5 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{r} -5 \\ 4 \\ 3 \end{array}\right)=\left(\begin{array}{l} 3 \\ 5 \\ 0 \end{array}\right) \rightarrow\left(\begin{array}{c} \lambda=\frac{2}{5} \\ \lambda=0 \\ \lambda=-\frac{2}{3} \end{array}\right)$	using $\lambda=\frac{2}{\text { Give M0 }}$ 施0 for finding and ${ }^{5}$ from this incorrect method.
	CAREFUL	$\begin{aligned} & \text { Putting } \lambda \mathbf{d}_{2}=\overrightarrow{A P} \text { gives } \\ & \lambda\left(\begin{array}{r} -5 \\ 4 \\ 3 \end{array}\right)=\left(\begin{array}{c} 2 \\ 0 \\ -2 \end{array}\right) \rightarrow\left(\begin{array}{c} \lambda=-\frac{2}{5} \\ \lambda=0 \\ \lambda=-\frac{2}{3} \end{array}\right) \end{aligned}$	using $\lambda=-\frac{\text { Give M0 dM0 for finding and }}{}{ }^{\text {f }}$ from this incorrect method.
	General	You can follow through the part (c) answer of their $A P=2 \sqrt{2}$ for (d) M1dM1, (e) M1, (f) M1dM1	
	General	You can follow through their \mathbf{d}_{2} in part (b) for (d) M1dM1, (f) M1dM1.	

Question Number	Scheme	Marks
20.	$l_{1}: \mathbf{r}=\left(\begin{array}{r}5 \\ -3 \\ p\end{array}\right)+\lambda\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right), \quad l_{2}: \mathbf{r}=\left(\begin{array}{r}8 \\ 5 \\ -2\end{array}\right)+\mu\left(\begin{array}{r}3 \\ 4 \\ -5\end{array}\right)$. Let $\theta=$ acute angle between l_{1} and l_{2}. Note: You can mark parts (a) and (b) together.	
(a)	$\left\{l_{1}=l_{2} \Rightarrow \mathbf{i}\right\} 5=8+3 \mu \Rightarrow \mu=-1 \quad \text { Finds } \mu \text { and substitutes their } \mu \text { into } l_{2}$	M1
	$\text { So, }\{\overrightarrow{O A}\}=\left(\begin{array}{r} 8 \\ 5 \\ -2 \end{array}\right)-1\left(\begin{array}{r} 3 \\ 4 \\ -5 \end{array}\right)=\left(\begin{array}{c} 5 \\ 1 \\ 3 \end{array}\right) \quad 5 \mathbf{i}+\mathbf{j}+3 \mathbf{k} \text { or }\left(\begin{array}{l} 5 \\ 1 \\ 3 \end{array}\right) \text { or }(5,1,3)$	A1
		[2]
(b)	$\{\mathbf{j}:-3+\lambda=5+4 \mu \Rightarrow\}-3+\lambda=5+4(-1) \Rightarrow \lambda=4 \quad \begin{aligned} & \text { Equates } \mathbf{j} \text { components, substitutes } \\ & \text { their } \mu \text { and solves to give } \lambda=\ldots\end{aligned}$	M1
	$\begin{aligned} & \mathbf{k}: p-3 \lambda=-2-5 \mu \Rightarrow \\ & p-3(4)=-2-5(-1) \Rightarrow p=15 \end{aligned}$ or $\mathbf{k}: p-3 \lambda=3 \Rightarrow$ $p-3(4)=3 \Rightarrow p=15$ Equates \mathbf{k} components, substitutes their λ and their μ and solves to give $p=\ldots$ or equates \mathbf{k} components to give their " $p-3 \lambda=$ the \mathbf{k} value of A found in part (a)", substitutes their λ and solves to give $p=$..	M1
		A1
		[3]
(c)	$\mathbf{d}_{1}=\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right), \mathbf{d}_{2}=\left(\begin{array}{r}3 \\ 4 \\ -5\end{array}\right) \Rightarrow\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right) \bullet\left(\begin{array}{r}3 \\ 4 \\ -5\end{array}\right) \quad \begin{array}{r}\text { Realisation that the dot product is } \\ \text { required between } \\ \pm A d_{1} \text { and } \pm B \mathbf{d}_{2} .\end{array}$	M1
	$\cos \theta= \pm K\left(\frac{0(3)+(1)(4)+(-3)(-5)}{\sqrt{(0)^{2}+(1)^{2}+(-3)^{2}} \cdot \sqrt{(3)^{2}+(4)^{2}+(-5)^{2}}}\right) \quad \begin{array}{r}\text { An atempt to apply the dot } \\ \text { product formula between } \pm A \mathbf{d}_{1} \\ \text { and } \pm B \mathbf{d}_{2} .\end{array}$	$\begin{gathered} \text { dM1 } \\ \substack{\text { (A1 on } \\ \text { ePEN }} \end{gathered}$
	$\cos \theta=\frac{19}{\sqrt{10} \cdot \sqrt{50}} \Rightarrow \theta=31.8203116 \ldots=31.82(2 \mathrm{dp})$ anything that rounds to 31.82	A1
		[3]
(d)	$\begin{aligned} & \overrightarrow{O B}=\left(\begin{array}{r} 11 \\ 9 \\ -7 \end{array}\right) ; \overrightarrow{A B}=\left(\begin{array}{r} 11 \\ 9 \\ -7 \end{array}\right)-\left(\begin{array}{r} 5 \\ 1 \\ 3 \end{array}\right)=\left(\begin{array}{r} 6 \\ 8 \\ -10 \end{array}\right) \text { or } \overrightarrow{A B}=2\left(\begin{array}{r} 3 \\ 4 \\ -5 \end{array}\right)=\left(\begin{array}{r} 6 \\ 8 \\ -10 \end{array}\right) \quad \begin{array}{r} \text { See } \\ \text { notes } \end{array} \\ & \|\overrightarrow{A B}\|=\sqrt{6^{2}+8^{2}+(-10)^{2}}\{=10 \sqrt{2}\} \end{aligned}$	M1
	$\frac{d}{10 \sqrt{2}}=\sin \theta \quad \text { Writes down a correct trigonometric equation involving }$	dM1
	$\{d=10 \sqrt{2} \sin 31.82 . . . \Rightarrow\} d=7.456540753 \ldots=7.46$ (3sf) \quad anything that rounds to 7.46	A1
		[3] 11

20. (b) Alternative method for part (b)

$$
\begin{aligned}
& \left\{\begin{array}{r}
3 \times \mathbf{j}:-9+3 \lambda=15+12 \mu \\
\mathbf{k}: p-3 \lambda=-2+5 \mu
\end{array}\right\} \quad p-9=13+7 \mu \\
& p-9=13+7(-1) \Rightarrow p=15
\end{aligned}
$$

Eliminates λ to write down an equation in p and μ Substitutes their μ and solves to give

$$
\begin{gathered}
p=\ldots \\
p=15
\end{gathered}
$$

20. (d) Alternative Methods for part (d) Let X be the foot of the perpendicular from B onto l_{1}
$\mathbf{d}_{1}=\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right), \overrightarrow{O X}=\left(\begin{array}{r}5 \\ -3 \\ 15\end{array}\right)+\lambda\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right)=\left(\begin{array}{c}5 \\ -3+\lambda \\ 15-3 \lambda\end{array}\right)$
$\overrightarrow{B X}=\left(\begin{array}{c}5 \\ -3+\lambda \\ 15-3 \lambda\end{array}\right)-\left(\begin{array}{c}11 \\ 9 \\ -7\end{array}\right)=\left(\begin{array}{l}-6 \\ -12+\lambda \\ 22-3 \lambda\end{array}\right)$
Method 1
$\overrightarrow{B X} \bullet \mathbf{d}_{1}=0 \Rightarrow\left(\begin{array}{l}-6 \\ -12+\lambda \\ 22-3 \lambda\end{array}\right) \cdot\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right)=-12+\lambda-66+9 \lambda=0$
leading to $10 \lambda-78=0 \Rightarrow \lambda=\frac{39}{5}$
$\overrightarrow{B X}=\left(\begin{array}{c}-6 \\ -12+\frac{39}{5} \\ 22-3\left(\frac{39}{5}\right)\end{array}\right)=\left(\begin{array}{c}-6 \\ -\frac{21}{5} \\ -\frac{7}{5}\end{array}\right)$
$d=B X=\sqrt{(-6)^{2}+\left(-\frac{21}{5}\right)^{2}+\left(-\frac{7}{5}\right)^{2}}=7.456540753 \ldots$

(Allow a sign slip in copying \mathbf{d}_{1}) Applies $\overrightarrow{B X} \bullet \mathbf{d}_{1}=0$ and solves the resulting equation to find a value for λ.	M1
Substitutes their value of λ into their $\overrightarrow{B X}$. Note: This mark is dependent upon the previous M1 mark.	dM1
awrt 7.46	A1

Method 2

$\begin{gathered} \text { Let } \beta=\|\overrightarrow{B X}\|^{2}=36+144-24 \lambda+\lambda^{2}+484-132 \lambda+9 \lambda^{2} \\ =10 \lambda^{2}-156 \lambda+664 \\ \text { So } \frac{\mathrm{d} \beta}{\mathrm{~d} \lambda}=20 \lambda-156=0 \Rightarrow \lambda=\frac{39}{5} \end{gathered}$		Finds $\beta=\|\overrightarrow{B X}\|^{2}$ in terms of λ, finds $\frac{\mathrm{d} \beta}{\mathrm{d} \lambda}$ and sets this result equal to 0 and finds a value for	M1
$\left.\overrightarrow{B X}\right\|^{2}=10\left(\frac{39}{5}\right)^{2}-156\left(\frac{39}{5}\right)+664=\frac{278}{5}$	Subs	eir value of λ into their $\|\overrightarrow{B X}\|^{2}$. his mark is dependent upon the previous M1 mark.	dM1
$d=B X=\sqrt{\frac{278}{5}}=7.456540753 \ldots$		awrt 7.46	A1

\begin{tabular}{|c|c|c|}
\hline \& \multicolumn{2}{|l|}{Question 22: Alternative Methods for Part (c)} \\
\hline 22. (c) \& \begin{tabular}{l}
Alternative Method 1: Using the direction vectors of Line 1 and Line 2
\[
\begin{aligned}
\& \mathbf{d}_{1}=\left(\begin{array}{r}
0 \\
2 \\
-1
\end{array}\right), \quad \mathbf{d}_{2}=\left(\begin{array}{r}
3 \\
-5 \\
4
\end{array}\right) \\
\& \cos \theta=\frac{\mathbf{d}_{1} \bullet \mathbf{d}_{1}}{\left|\mathbf{d}_{1}\right| \cdot\left|\mathbf{d}_{2}\right|}=\frac{\left(\begin{array}{r}
0 \\
2 \\
-1
\end{array}\right) \bullet\left(\begin{array}{r}
3 \\
-5 \\
4
\end{array}\right)}{\sqrt{(0)^{2}+(2)^{2}+(-1)^{2}} \cdot \sqrt{(3)^{2}+(-5)^{2}+(4)^{2}}} \\
\& \left\{\cos \theta=\frac{0-10-4}{\sqrt{5} \cdot \sqrt{50}}=\frac{-7 \sqrt{10}}{25} \Rightarrow\right\} \theta=152.3054385 \ldots
\end{aligned}
\] \\
Applies dot product formula between their \(\mathbf{d}_{1}\) and \(\mathbf{d}_{2}\) \\
Angle \(A C B=180-152.3054385 \ldots=27.69446145 \ldots=27.7(3 \mathrm{sf})\) \\
Anything that rounds to 27.7
\end{tabular} \& M2 \\
\hline \& \begin{tabular}{l}
Alternative Method 2: The Cosine Rule \\
\(\overrightarrow{A C}=\left(\begin{array}{c}1 \\ 10 \\ -1\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{r}0 \\ 8 \\ -4\end{array}\right)\) and \(\overrightarrow{B C}=\left(\begin{array}{c}1 \\ 10 \\ -1\end{array}\right)-\left(\begin{array}{l}4 \\ 5 \\ 3\end{array}\right)=\left(\begin{array}{r}-3 \\ 5 \\ -4\end{array}\right)\) \\
An attempt to find both the vectors \((\overrightarrow{A C}\) or \(\overrightarrow{C A})\) and \((\overrightarrow{B C}\) or \(\overrightarrow{C B})\). \\
Also \(\overrightarrow{A B}=\left(\begin{array}{l}4 \\ 5 \\ 3\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{l}3 \\ 3 \\ 0\end{array}\right)\) \\
Note \(|\overrightarrow{A C}|=\sqrt{80},|\overrightarrow{B C}|=\sqrt{50}\) and \(|\overrightarrow{A B}|=\sqrt{18}\)
\[
\begin{aligned}
\& (\sqrt{18})^{2}=(\sqrt{80})^{2}+(\sqrt{50})^{2}-2(\sqrt{80})(\sqrt{50}) \cos \theta \\
\& \left\{\cos \theta=\frac{7 \sqrt{10}}{25}\right\} \Rightarrow \theta=27.69446145 \ldots=27.7(3 \mathrm{sf})
\end{aligned}
\] \\
Applies the cosine rule the correct way round. \\
Anything that rounds to 27.7
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 oe \\
A1 \\
[3]
\end{tabular} \\
\hline \& \begin{tabular}{l}
Alternative Method 3: Vector Cross Product \\
Only apply this scheme if it is clear that a candidate is applying a vector cross product method.
\[
\begin{aligned}
\& \overrightarrow{A C}=\left(\begin{array}{c}
1 \\
10 \\
-1
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{r}
0 \\
8 \\
-4
\end{array}\right) \text { and } \overrightarrow{B C}=\left(\begin{array}{c}
1 \\
10 \\
-1
\end{array}\right)-\left(\begin{array}{l}
4 \\
5 \\
3
\end{array}\right)=\left(\begin{array}{r}
-3 \\
5 \\
-4
\end{array}\right) \\
\& \overrightarrow{A C} \times \overrightarrow{B C}=\left(\begin{array}{r}
0 \\
8 \\
-4
\end{array}\right) \times\left(\begin{array}{r}
-3 \\
5 \\
-4
\end{array}\right)=\left\{\left.\begin{array}{rrr}
\mathbf{i} \& \mathbf{j} \& \mathbf{k} \\
0 \& 8 \& -4 \\
-3 \& 5 \& -4
\end{array} \right\rvert\,=24 \mathbf{i}+12 \mathbf{j}+24 \mathbf{k}\right\} \\
\& \sin A C B=\frac{\sqrt{(24)^{2}+(12)^{2}+(12)^{2}}}{\sqrt{(0)^{2}+(8)^{2}+(-4)^{2}} \cdot \sqrt{(-3)^{2}+(5)^{2}+(-4)^{2}}} \\
\& \left\{\sin A C B=\frac{\sqrt{864}}{\sqrt{80} \cdot \sqrt{50}}=\frac{3 \sqrt{15}}{25} \Rightarrow\right\} \theta=27.69446145 \ldots=27.7(3 \mathrm{sf})
\end{aligned}
\] \\
An attempt to find both the vectors \((\overrightarrow{A C}\) or \(\overrightarrow{C A})\) and \((\overrightarrow{B C}\) or \(\overrightarrow{C B})\). \\
Full method for applying the vector cross product formula between their \((\overrightarrow{A C}\) or \(\overrightarrow{C A})\) and their \((\overrightarrow{B C}\) or \(\overrightarrow{C B})\). \\
Anything that rounds to 27.7
\end{tabular} \& M1
M1

A1

[3]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \multicolumn{2}{|r|}{Question 22 Notes} \\
\hline 22. (a) \& B1 \& \(p=5\) (Ignore working.) \\
\hline (b) \& M1
A1
B1
B1 \& \begin{tabular}{l}
Method 1 \\
Writes down an equation involving only one parameter. \\
This equation will usually be \(7+3 \mu=1\) which is found from equating the \(\mathbf{i}\) components of \(l_{1}\) and \(l_{2}\). \\
Finds \(\mu=-2\) \\
Point of intersection of \(\mathbf{i}+10 \mathbf{j}-\mathbf{k}\). Allow \((1,10,-1)\) or \(\left(\begin{array}{c}1 \\ 10 \\ -1\end{array}\right)\). \\
Finds \(\lambda=4\) and either \\
- checks \(\lambda=4\) and \(\mu=-2\) is true for the third component. \\
- substitutes \(\mu=-2\) into \(l_{1}\) to give \(\mathbf{i}+10 \mathbf{j}-\mathbf{k}\) and substitutes \(\lambda=4\) into \(l_{2}\) to give \(\mathbf{i}+10 \mathbf{j}-\mathbf{k}\)
\end{tabular} \\
\hline (b) \& M1
A1
B1

B1 \& | Alternative Method |
| :--- |
| Writes down an equation involving only one parameter. |
| Solving the \mathbf{j} and \mathbf{k} components simultaneously will usually give either $8=14+3 \mu$ or $23+3 \lambda=35$ Finds either $\mu=-2$ or $\lambda=4$ |
| Point of intersection of $\mathbf{i}+10 \mathbf{j}-\mathbf{k}$. Allow $(1,10,-1)$ or $\left(\begin{array}{r}1 \\ 10 \\ -1\end{array}\right)$. |
| Finds $\lambda=4$ and either |
| - checks $\mu=-2$ is true for the \mathbf{i} component. |
| - substitutes $\mu=-2$ into l_{1} to give $\mathbf{i}+10 \mathbf{j}-\mathbf{k}$ |
| and substitutes $\lambda=4$ into l_{2} to give $\mathbf{i}+10 \mathbf{j}-\mathbf{k}$ |

\hline (c)

(d) \& \begin{tabular}{l}
M1

M1

A1

Note

Note

M1

A1

Note

 \&

An attempt to find both the vectors $(\overrightarrow{A C}$ or $\overrightarrow{C A})$ and $(\overrightarrow{B C}$ or $\overrightarrow{C B})$ by subtracting. Applies dot product formula between their $(\overrightarrow{A C}$ or $\overrightarrow{C A})$ and their $(\overrightarrow{B C}$ or $\overrightarrow{C B})$. anything that rounds to 27.7

An answer of $0.48336 \ldots$ in radians without the correct answer in degrees is A0. Some candidates will apply the dot product formula between vectors which are the wrong way round and achieve $152.3054385 . .{ }^{\circ}$. If they give the acute equivalent of awrt 27.7 then award A1.

$$
\frac{1}{2}(\text { their length } A C)(\text { their length } B C) \sin \left(\text { their } 27.7^{\circ}\right. \text { frompart (c)) }
$$

anything that rounds to 14.7. Also allow $6 \sqrt{6}$.

Area $A C B=\frac{1}{2}(\sqrt{80})(\sqrt{50}) \sin \left(152.3054385 . . .{ }^{\circ}\right)=$ awrt 14.7 is M1A1.
\end{tabular}

\hline
\end{tabular}

Notes for Question 23 Continued

23.

Helpful Diagram!

$$
|\overrightarrow{A B}|^{2}=9 \lambda^{2}+90 \lambda+225
$$

$$
\overrightarrow{A B}=\left(\begin{array}{c}
10+2 \lambda \\
10+2 \lambda \\
-5-\lambda
\end{array}\right)
$$

$B\left(\begin{array}{c}13+2 \lambda \\ 8+2 \lambda \\ 1-\lambda\end{array}\right)$

Notes for Question 23 Continued

23. (b) $\left\lvert\, \begin{aligned} & \text { (You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for }\end{aligned}\right.$ Way 4).
Way 4: Using the dot product formula between $\overrightarrow{P A}$ and $\overrightarrow{P B}$, ie: $\cos 45^{\circ}=\frac{\overrightarrow{P A} \bullet \overrightarrow{P B}}{|\overrightarrow{P A}| \cdot|\overrightarrow{P B}|}$.
$\overrightarrow{P A} \bullet \overrightarrow{P B}=\left(\begin{array}{r}4 \\ -2 \\ 4\end{array}\right) \cdot\left(\begin{array}{c}14+2 \lambda \\ 8+2 \lambda \\ -1-\lambda\end{array}\right)=56+8 \lambda-16-4 \lambda-4-4 \lambda=36$

$\left\{\cos 45^{\circ}=\right\} \frac{1}{\sqrt{2}}=\frac{36}{6 \sqrt{9 \lambda^{2}+90 \lambda+261}}$ | For finding $\|\overrightarrow{P A}\|$ as before. | M1 |
| ---: | :--- |
| $\sqrt{36}$ or 6 | A1 cao |
| $\|\overrightarrow{P B}\|=\sqrt{9 \lambda^{2}+90 \lambda+261}$ | B1 oe | $\frac{1}{2}=\frac{36}{9 \lambda^{2}+90 \lambda+261}$

$9 \lambda^{2}+90 \lambda+261=72 \Rightarrow 9 \lambda^{2}+90 \lambda+189=0$
$\lambda^{2}+10 \lambda+21=0 \Rightarrow(\lambda+3)(\lambda+7)=0$ $\lambda=-3,-7$

Then apply final M1 A1 as in the original scheme. \qquad
23. (b)
(You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for Way 5).
Way 5: Using the dot product formula between $\overrightarrow{A B}$ and $\overrightarrow{P B}$, ie: $\cos 45^{\circ}=\frac{\overrightarrow{A B} \bullet \overrightarrow{P B}}{|\overrightarrow{A B}| \cdot|\overrightarrow{P B}|}$
Attempts the dot product formula

$$
\cos 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\left(\begin{array}{c}
10+2 \lambda \\
10+2 \lambda \\
-5-\lambda
\end{array}\right) \cdot\left(\begin{array}{c}
14+2 \lambda \\
8+2 \lambda \\
-1-\lambda
\end{array}\right)}{\sqrt{9 \lambda^{2}+90 \lambda+225} \sqrt{9 \lambda^{2}+90 \lambda+261}} \quad \text { Either }|\overrightarrow{A B}|=\sqrt{\text { between } \overrightarrow{A B} \text { and } \overrightarrow{P B} .} \begin{array}{r}
\text { Correct statement with }|\overrightarrow{A B}| \text { and }|\overrightarrow{P B}| \\
\text { simplified as shown. }
\end{array}
$$

Then apply final M1 A1 as in the original scheme. |... M1 A1

$$
\begin{aligned}
& \left\{\cos 45^{\circ}=\right\} \frac{1}{\sqrt{2}}=\frac{140+20 \lambda+28 \lambda+4 \lambda^{2}+80+20 \lambda+16 \lambda+4 \lambda^{2}+5+5 \lambda+\lambda+\lambda^{2}}{\sqrt{9 \lambda^{2}+90 \lambda+225} \sqrt{9 \lambda^{2}+90 \lambda+261}} \\
& \left\{\cos 45^{\circ}=\right\} \frac{1}{\sqrt{2}}=\frac{9 \lambda^{2}+90 \lambda+225}{\sqrt{9 \lambda^{2}+90 \lambda+225} \sqrt{9 \lambda^{2}+90 \lambda+261}} \\
& \frac{1}{2}=\frac{\left(9 \lambda^{2}+90 \lambda+225\right)^{2}}{\left(9 \lambda^{2}+90 \lambda+225\right)\left(9 \lambda^{2}+90 \lambda+261\right)} \\
& \frac{1}{2}=\frac{\left(9 \lambda^{2}+90 \lambda+225\right)}{\left(9 \lambda^{2}+90 \lambda+261\right)} \\
& 9 \lambda^{2}+90 \lambda+261=2\left(9 \lambda^{2}+90 \lambda+225\right) \Rightarrow 9 \lambda^{2}+90 \lambda+189=0 \\
& \lambda^{2}+10 \lambda+21=0 \Rightarrow(\lambda+3)(\lambda+7)=0 \\
& \lambda=-3,-7
\end{aligned}
$$

Notes for Question 23 Continued

23. (b) Way 6:
$\overrightarrow{P A}=\left(\begin{array}{r}4 \\ -2 \\ 4\end{array}\right)=2\left(\begin{array}{r}2 \\ -1 \\ 2\end{array}\right)$ and direction vector of l is $\mathbf{d}=\left(\begin{array}{r}2 \\ 2 \\ -1\end{array}\right)$
So, $|\overrightarrow{P A}|=2|\mathbf{d}| \quad$ or $\quad P A=2|\mathbf{d}|$

| A correct statement relating these |
| ---: | ---: |
| distances (and not vectors) |$|$ M1 A1 B1

Apply final M1 A1 as in the original scheme. | ... M1 A1
Note: $\overrightarrow{P A}=2 d$ with no other creditable working is M0A0B0...
Note: $\overrightarrow{P A}=2$, followed by $\overrightarrow{O B}=\left(\begin{array}{r}3 \\ -2 \\ 6\end{array}\right) \pm 2\left(\begin{array}{r}2 \\ 2 \\ -1\end{array}\right)$ is M1A1B1M1 and the final A1 mark is for both sets of correct coordinates.

Notes for Question 24 Continued

24.

(b)
ctd
M1: Finds the difference between $\overrightarrow{O A}$ and $\overrightarrow{O B}$. Ignore labelling.
If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference.
M1: Applies the formula $\overrightarrow{A B} \bullet\left(\begin{array}{r}6 \\ c \\ -1\end{array}\right)$ or $\overrightarrow{B A} \bullet\left(\begin{array}{r}6 \\ c \\ -1\end{array}\right)$ correctly to give a linear equation in c which is set equal to zero. Note: The dot product can also be with $\pm k\left(\begin{array}{r}6 \\ c \\ -1\end{array}\right)$.
A1ft: $c=-4$ or for finding a correct follow through c.
ddM1: Substitutes their value of λ and their value of c into $b+c \lambda=-17$
Note that this mark is dependent on the two previous method marks being awarded.
A1: $b=-1$
(c)

M1: An attempt to apply a three term Pythagoras in order to find $|A B|$,
so taking the square root is required here.
A1: 13 cao
Note: Don't recover work for part (b) in part (c).
(d)

M1: For a full applied method of finding the coordinates of B^{\prime}.
Note: You can give M1 for 2 out of 3 correct components of B^{\prime}.
A1: For either $\left(\begin{array}{c}17 \\ -20 \\ -6\end{array}\right)$ or $17 \mathbf{i}-20 \mathbf{j}-6 \mathbf{k} \quad$ or $(17,-20,-6)$ cao.

Helpful diagram!

Notes for Question 24 Continued

Acceptable Methods for the Method mark in part (d)

	Acceptable Methods for the Method mark in part (d)
Way 1	$\overrightarrow{O B^{\prime}}\{=\overrightarrow{O A}+\overrightarrow{B A}\}=\left(\begin{array}{r}21 \\ -17 \\ 6\end{array}\right)+\left(\begin{array}{c}-4 \\ -3 \\ -12\end{array}\right) \quad$ (using their $\overrightarrow{B A}$)
Way 2	$\overrightarrow{O B^{\prime}}\{=\overrightarrow{O A}-\overrightarrow{A B}\}=\left(\begin{array}{r}21 \\ -17 \\ 6\end{array}\right)-\left(\begin{array}{r}4 \\ 3 \\ 12\end{array}\right) \quad$ (using their $\overrightarrow{A B}$)
Way 3	$\overrightarrow{O B^{\prime}}\{=\overrightarrow{O B}+2 \overrightarrow{B A}\}=\left(\begin{array}{r}25 \\ -14 \\ 18\end{array}\right)+2\left(\begin{array}{l}-4 \\ -3 \\ -12\end{array}\right)$ (using their $\overrightarrow{B A}$)
Way 4	$\overrightarrow{O B^{\prime}}\{=\overrightarrow{O B}-2 \overrightarrow{A B}\}=\left(\begin{array}{r}25 \\ -14 \\ 18\end{array}\right)-2\left(\begin{array}{r}4 \\ 3 \\ 12\end{array}\right)$ (using their $\overrightarrow{A B}$)
Way 5	$\left(\begin{array}{r}25 \\ -14 \\ 18\end{array}\right) \rightarrow\left(\begin{array}{c}\text { Minus 4 } \\ \text { Minus 3 } \\ \text { Minus 12 }\end{array}\right) \rightarrow\left(\begin{array}{r}21 \\ -17 \\ 6\end{array}\right) \rightarrow\left(\begin{array}{c}\text { Minus 4 } \\ \text { Minus 3 } \\ \text { Minus 12 }\end{array}\right)\left\{\rightarrow\left(\begin{array}{c}17 \\ -20 \\ -6\end{array}\right)\right\}$, so $\overrightarrow{O A}+$ their $\overrightarrow{B A}$
Way 6	$\overrightarrow{O B^{\prime}}\{=2 \overrightarrow{O A}-\overrightarrow{O B}\}=2\left(\begin{array}{r}21 \\ -17 \\ 6\end{array}\right)-\left(\begin{array}{r}25 \\ -14 \\ 18\end{array}\right)$
Way 7	$\begin{array}{l\|l} \hline \overrightarrow{O B}=25 \mathbf{i}-14 \mathbf{j}+18 \mathbf{k}, \overrightarrow{O A}=21 \mathbf{i}-17 \mathbf{j}+6 \mathbf{k} \text { and } \overrightarrow{O B^{\prime}}=p \mathbf{i}+q \mathbf{j}+r \mathbf{k}, \\ (21,-17,6)=\left(\frac{25+p}{2}, \frac{-14+q}{2}, \frac{18+r}{2}\right) & \\ p=21(2)-25=17 & \text { M1: Writing down any two equations correctly and } \\ q=-17(2)+14=-20 & \text { an attempt to find at least two of } p, q \text { or } r . \\ r=6(2)-18=-6 & \end{array}$

26. (a) M1: Writes down any two equations. Allow one slip.
dM1: Attempts to eliminate either λ or μ to form an equation in one parameter only.
A1: For either $\lambda=-3$ or $\mu=2$. Note: candidates only need to find one of the parameters.
ddM1: For either substituting their value of λ into l_{1} or their μ into l_{2}.
$\mathbf{2}^{\text {nd }}$ A1: For either $\left(\begin{array}{l}6 \\ 1 \\ 3\end{array}\right)$ or $6 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$ or $\left(\begin{array}{lll}6 & 1 & 3\end{array}\right)$.
Note: Each of the method marks in this part are dependent upon the previous method marks.
(b)

M1: Realisation that the dot product is required between $\pm A \mathbf{d}_{1}$ and $\pm B \mathbf{d}_{2}$. Allow one slip in $\mathbf{d}_{1}=\mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$.
A1: Correct application of the dot product formula $\mathbf{d}_{1} \bullet \mathbf{d}_{2}= \pm\left|\mathbf{d}_{1}\right|\left|\mathbf{d}_{2}\right| \cos \theta$ or $\cos \theta= \pm\left(\frac{\mathbf{d}_{1} \bullet \mathbf{d}_{2}}{\left|\mathbf{d}_{1}\right|\left|\mathbf{d}_{2}\right|}\right)$
The dot product must be correctly applied and the square roots although they can be un-simplified must be correctly applied.
A1: awrt 69.1. This can be also be achieved by $180-110.876=$ awrt $69.1 . \quad \theta=1.2064 . .{ }^{\text {c }}$ is A0.
Common response: $\cos \theta=\left(\frac{-12-24+12}{\sqrt{(-3)^{2}+(-12)^{2}+(6)^{2}} \cdot \sqrt{(4)^{2}+(2)^{2}+(2)^{2}}}\right)=\frac{-24}{\sqrt{189} \cdot \sqrt{24}}$ is M1A1...

Alternative Method: Vector Cross Product

Only apply this scheme if it is clear that a candidate is applying a vector cross product method.

$$
\begin{aligned}
\mathbf{d}_{1} \times \mathbf{d}_{2}=\left(\begin{array}{r}
1 \\
4 \\
-2
\end{array}\right) \times\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) & =\left\{\left.\begin{array}{|cc|}
\mathbf{i} & \mathbf{j} \\
1 & \mathbf{k} \\
1 & 4 \\
2 & 1
\end{array} \right\rvert\,=6 \mathbf{1}-5 \mathbf{j}-7 \mathbf{k}\right\} \\
\sin \theta & =\frac{\sqrt{(6)^{2}+(5)^{2}+(-7)^{2}}}{\sqrt{(1)^{2}+(4)^{2}+(-2)^{2}} \cdot \sqrt{(2)^{2}+(1)^{2}+(1)^{2}}}
\end{aligned}
$$

$$
\sin \theta=\frac{\sqrt{110}}{\sqrt{21} \cdot \sqrt{6}} \Rightarrow \theta=69.1238974 \ldots=69.1(1 \mathrm{dp})
$$

M1: Realisation that the vector cross
product is required between $\pm A \mathbf{d}_{1}$ and
$\pm B \mathbf{d}_{2}$. Allow one slip in $\mathbf{d}_{1}=\mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$.

A1: Correct applied equation.

A1: awrt 69.1

M1: Attempts to find $\overrightarrow{A P}$ in terms of the parameter by subtracting the components of $\overrightarrow{O P}$ from l_{1} and $\overrightarrow{O A}$. Ignore the direction of subtraction and ignore any confusion between $\overrightarrow{O P}$ and $\overrightarrow{P O}$ or between $\overrightarrow{O A}$ and $\overrightarrow{A O}$. The correct subtraction of two components is enough to establish that subtraction is intended. The coordinates or position vector of P must be given in terms of a parameter. Taking $P:(x, y, z)$ gains no marks although this can be recovered later. See Additional Solutions.
A1: (M1 on epen) A correct expression for $\overrightarrow{A P}$. Again accept the reverse direction.
dM1: Depends on the previous M. Taking the scalar product of their expression for $\overrightarrow{A P}$ with \mathbf{d}_{1} or a multiple of \mathbf{d}_{1} and equating to 0 and obtaining an equation for λ. The equation must derive from an expression of the form $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}=0$. Differentiation can be used. See Additional Solutions. A1: Solving to find $\lambda=\frac{1}{3}$.
ddM1: Depends on both previous Ms. Substitutes their value of the parameter into their expression for $\overrightarrow{O P}$. Substituting into $\overrightarrow{A P}$ is a common error which loses the mark.
Note: Needs 2 correct co-ordinates if $\lambda=\frac{1}{3}$ found and then P stated without method to gain ddM1.

A1: $9 \frac{1}{3} \mathbf{i}+14 \frac{1}{3} \mathbf{j}-3 \frac{2}{3} \mathbf{k}$. Accept vector notation or coordinates. Must be exact.

28. (a) M1: Finding the difference between $\overrightarrow{O B}$ and $\overrightarrow{O A}$.

Can be implied by two out of three components correct in $3 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$ or $-3 \mathbf{i}-3 \mathbf{j}-5 \mathbf{k}$
A1: $3 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$
(b) M1: An expression of the form (3 component vector) $\pm \lambda$ (3 component vector)

A1ft: $\mathbf{r}=\overrightarrow{O A}+\lambda($ their $\pm \overrightarrow{A B})$ or $\mathbf{r}=\overrightarrow{O B}+\lambda($ their $\pm \overrightarrow{A B})$.
Note: Candidate must begin writing their line as $\mathbf{r}=$ or $\quad l=\ldots$ or $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\ldots \quad$ So, Line $=\ldots$ would be A 0 .
(c) M1: An attempt to find either the vector $\overrightarrow{A D}$ or $\overrightarrow{D A}$.

Can be implied by two out of three components correct in $-3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ or $3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$, respectively.
M1: Applies dot product formula between their $(\overrightarrow{A B}$ or $\overrightarrow{B A})$ and their $(\overrightarrow{A D}$ or $\overrightarrow{D A})$.
A1ft: Correct followed through expression or equation. The dot product must be correctly followed through correctly and the square roots although they can be un-simplified must be followed through correctly.
A1: Obtains an angle of awrt 109 by correct solution only.
Award the final A1 mark if candidate achieves awrt 109 by either taking the dot product between:
(i) $\left(\begin{array}{l}3 \\ 3 \\ 5\end{array}\right)$ and $\left(\begin{array}{r}-3 \\ 2 \\ -1\end{array}\right)$ or (ii) $\left(\begin{array}{l}-3 \\ -3 \\ -5\end{array}\right)$ and $\left(\begin{array}{r}3 \\ -2 \\ 1\end{array}\right)$. Ignore if any of these vectors are labelled incorrectly.

Award A0, cso for those candidates who take the dot product between:
(iii) $\left(\begin{array}{l}-3 \\ -3 \\ -5\end{array}\right)$ and $\left(\begin{array}{r}-3 \\ 2 \\ -1\end{array}\right)$ or (iv) $\left(\begin{array}{l}3 \\ 3 \\ 5\end{array}\right)$ and $\left(\begin{array}{r}3 \\ -2 \\ 1\end{array}\right)$.

They will usually find awrt 71 and apply 180 - awrt 71 to give awrt 109. If these candidates give a convincing detailed explanation which must include reference to the direction of their vectors then this can be given A 1 cso. If still in doubt, here, send to review.
(d) M1: Applies either $\overrightarrow{O D}+$ their $\overrightarrow{A B}$ or $\overrightarrow{O B}+$ their $\overrightarrow{A D}$.

This mark can be implied by two out of three correctly followed through components in their $\overrightarrow{O D}$.
(e) M1: $\frac{1}{2}($ their $A B)($ their $C B) \sin \left(\right.$ their 109° or 71° from (b)). Awrt 11.6 will usually imply this mark.
dM1: Multiplies this by 2 for the parallelogram. Can be implied.
Note: $\frac{1}{2}(($ their $A B+$ their $A B))($ their $C B) \sin \left(\right.$ their 109° or 71° from (b))
A1: awrt 23.2
(f)

M1: $\frac{d}{\text { their } A D}=\sin \left(\right.$ their 109° or 71° from (b)) or (their $A B$) $d=$ (their Area $A B C D$)
Award M0 for (their $A B$) in part (f), if the area of their parallelogram in part (e) is (their $A B)$ (their $C B$).

$$
\text { Award M0 for } \frac{d}{\text { their } \sqrt{43}}=\sin 71 \quad \text { or }(\text { their } \sqrt{14}) d=23.19894905 \ldots
$$

A1: awrt 3.54
Note: Some candidates will use their answer to part (f) in order to answer part (e).
28. \quad Alternative method for part (c): Applying the cosine rule:

$$
\begin{aligned}
& \overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}=\left(\begin{array}{r}
-1 \\
1 \\
4
\end{array}\right)-\left(\begin{array}{r}
2 \\
-1 \\
5
\end{array}\right)=\left(\begin{array}{r}
-3 \\
2 \\
-1
\end{array}\right) \text { or } \overrightarrow{D A}=\left(\begin{array}{r}
3 \\
-2 \\
1
\end{array}\right) \\
& \overrightarrow{D B}=\overrightarrow{O D}-\overrightarrow{O A}=\left(\begin{array}{r}
5 \\
2 \\
10
\end{array}\right)-\left(\begin{array}{r}
-1 \\
1 \\
4
\end{array}\right)=\left(\begin{array}{l}
6 \\
1 \\
6
\end{array}\right) \text { or } \overrightarrow{B D}=\left(\begin{array}{c}
-6 \\
-1 \\
-6
\end{array}\right)
\end{aligned}
$$

M1: as above.

So $|\overrightarrow{A B}|=\sqrt{43},|\overrightarrow{A D}|=\sqrt{14}$ and $|\overrightarrow{D B}|=\sqrt{73}$
$\cos \theta=\frac{(\sqrt{43})^{2}+(\sqrt{14})^{2}-(\sqrt{73})^{2}}{2 \sqrt{43} \cdot \sqrt{14}}$
M1: Cosine rule structure of $\cos \theta=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$ assigned each of $|\overrightarrow{A B}|,|\overrightarrow{A D}|$ and $|\overrightarrow{D B}|$ in any order as their a, b and c.

A1: Correct application of cosine rule.
$\left\{\cos \theta=\frac{-16}{2 \sqrt{43} \cdot \sqrt{14}} \Rightarrow \theta=109.029544 \ldots\right\}=109$ (nearest $^{\circ}$) A1: awrt 109 (no errors seen). AG

Alternative method for part (d):

$$
\begin{aligned}
& \overrightarrow{O E}=\left(\begin{array}{r}
2 \\
-1 \\
5
\end{array}\right)+\lambda\left(\begin{array}{l}
3 \\
3 \\
5
\end{array}\right) \\
& \overrightarrow{D E}=\left(\begin{array}{r}
2+3 \lambda \\
-1+3 \lambda \\
5+5 \lambda
\end{array}\right)-\left(\begin{array}{r}
-1 \\
1 \\
4
\end{array}\right)=\left(\begin{array}{r}
3+3 \lambda \\
-2+3 \lambda \\
1+5 \lambda
\end{array}\right) \\
& \overrightarrow{D E} \bullet \overrightarrow{A B}=0 \Rightarrow\left(\begin{array}{r}
3+3 \lambda \\
-2+3 \lambda \\
1+5 \lambda
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
3 \\
5
\end{array}\right)=0 \\
& 9+9 \lambda-6+9 \lambda+5+3 \lambda=0 \Rightarrow \lambda=-\frac{8}{43} \\
& \overrightarrow{D E}=\left(\begin{array}{r}
2+3 \lambda \\
-1+3 \lambda \\
5+5 \lambda
\end{array}\right)-\left(\begin{array}{r}
-1 \\
1 \\
4
\end{array}\right)=\left(\begin{array}{r}
\frac{103}{43} \\
-\frac{110}{43} \\
\frac{3}{43}
\end{array}\right)
\end{aligned}
$$

Length $\mathrm{DE}=3.537806563 \ldots$

M1: Takes the dot product between $\overrightarrow{D E}$ and $\overrightarrow{A B}$ and progresses to find a value of λ

Question Number	Scheme	Marks
$30 .$ (a)	$\overrightarrow{A B}=-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}-(\mathbf{i}-3 \mathbf{j}+2 \mathbf{k})=-3 \mathbf{i}+5 \mathbf{j}-3 \mathbf{k}$	M1 A1 (2)
(b)	$\begin{aligned} & \mathbf{r}=\mathbf{i}-3 \mathbf{j}+2 \mathbf{k}+\lambda(-3 \mathbf{i}+5 \mathbf{j}-3 \mathbf{k}) \\ & \quad \text { or } \quad \mathbf{r}=-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}+\lambda(-3 \mathbf{i}+5 \mathbf{j}-3 \mathbf{k}) \end{aligned}$	M1 A1ft (2)
(c)	$\left.\begin{array}{rl} \overrightarrow{A C}=2 \mathbf{i}+p \mathbf{j}-4 \mathbf{k}-(\mathbf{i}-3 \mathbf{j}+2 \mathbf{k}) \\ & =\mathbf{i}+(p+3) \mathbf{j}-6 \mathbf{k} \\ \overrightarrow{A C} \cdot \overrightarrow{A B} & =\left(\begin{array}{c} 1 \\ p+3 \\ -6 \end{array}\right) \cdot\left(\begin{array}{c} -3 \\ 5 \\ -3 \end{array}\right) \\ =0 \\ & \quad-3+5 p+15+18 \end{array}\right) \quad \text { or } \overrightarrow{C A}$	B1 M1 M1 A1 (4)
(d)	$\begin{gathered} A C^{2}=(2-1)^{2}+(-6+3)^{2}+(-4-2)^{2} \quad(=46) \\ A C=\sqrt{ } 46 \end{gathered}$ accept awrt 6.8	M1 A1 (2) [10]

(b) Lines meet where:

$$
\left(\begin{array}{c}
11 \\
2 \\
17
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
1 \\
-4
\end{array}\right)=\left(\begin{array}{c}
-5 \\
11 \\
p
\end{array}\right)+\mu\left(\begin{array}{l}
q \\
2 \\
2
\end{array}\right)
$$

$$
\begin{align*}
\mathbf{i}: 11-2 \lambda & =-5+q \mu \tag{1}\\
\text { First two of } & \mathbf{j}: 2+\lambda=11+2 \mu \tag{2}\\
\mathbf{k}: 17-4 \lambda & =p+2 \mu
\end{align*}
$$

(1) + 2(2) gives: $15=17+\mu \quad \Rightarrow \mu=-2$
(2) gives: $2+\lambda=11-4 \Rightarrow \lambda=5$
(3) $\Rightarrow 17-4(5)=p+2(-2)$

$$
\Rightarrow p=17-20+4 \Rightarrow \underline{p=1}
$$

(c)

$$
\begin{aligned}
& \mathbf{r}=\left(\begin{array}{c}
11 \\
2 \\
17
\end{array}\right)+5\left(\begin{array}{c}
-2 \\
1 \\
-4
\end{array}\right) \text { or } \mathbf{r}=\left(\begin{array}{c}
-5 \\
11 \\
1
\end{array}\right)-2\left(\begin{array}{c}
-3 \\
2 \\
2
\end{array}\right) \\
& \text { Intersect at } \mathbf{r}=\left(\begin{array}{c}
1 \\
7 \\
-3
\end{array}\right) \text { or } \underline{(1,7,-3)}
\end{aligned}
$$

Apply dot product calculation between two direction vectors, ie. $\underline{(-2 \times q)+(1 \times 2)+(-4 \times 2)}$

Sets $\mathbf{d}_{1} \bullet \mathbf{d}_{2}=0$ and solves to find $\underline{q=-3}$
(1) and (2).

Condone one slip. (Note that $q=-3$.)

Substitutes their value of λ or μ into the correct line l_{1} or l_{2}.

$$
\underline{\left(\begin{array}{c}
1 \\
7 \\
-3
\end{array}\right) \text { or } \underline{(1,7,-3)} .}
$$

Attempts to solve (1) and (2) to find one of either λ or μ Any one of $\underline{\lambda=5}$ or $\mu=-2$ Both $\underline{\lambda=5}$ and $\mu=-2$

Attempt to substitute their λ and μ into their \mathbf{k} component to give an equation in p alone.

$$
p=1
$$

Question Number	Scheme		Marks
35. (a)	$\left(\begin{array}{c} -9 \\ 0 \\ 10 \end{array}\right)+\lambda\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right)=\left(\begin{array}{c} 3 \\ 1 \\ 17 \end{array}\right)+\mu\left(\begin{array}{c} 3 \\ -1 \\ 5 \end{array}\right)$		
	Any two of $\begin{aligned} & \mathbf{i}:-9+2 \lambda=3+3 \mu \\ & \mathbf{j}: \quad \lambda=1-\mu\end{aligned}$ $\mathbf{k}: 10-\lambda=17+5 \mu$	Need any two of these correct equations seen anywhere in part (a).	M1
	(1)-2(2) gives: $\quad-9=1+5 \mu \quad \Rightarrow \mu=-2$	Attempts to solve simultaneous equations to find one of either λ or μ	dM1
	(2) gives: $\lambda=1--2=3$	Both $\underline{\lambda=3}$ \& $\underline{\mu=-2}$	A1
	$\mathbf{r}=\left(\begin{array}{c} -9 \\ 0 \\ 10 \end{array}\right)+3\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right) \quad \text { or } \quad \mathbf{r}=\left(\begin{array}{c} 3 \\ 1 \\ 17 \end{array}\right)-2\left(\begin{array}{c} 3 \\ -1 \\ 5 \end{array}\right)$	Substitutes their value of either λ or μ into the line I_{1} or I_{2} respectively. This mark can be implied by any two correct components of $(-3,3,7)$.	ddM1
	Intersect at $\mathbf{r}=\left(\begin{array}{c}-3 \\ 3 \\ 7\end{array}\right)$ or $\mathbf{r}=\underline{-3 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}}$	$\begin{aligned} & \underline{\left(\begin{array}{c} -3 \\ 3 \\ 7 \end{array}\right)} \text { or } \underline{-3 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}} \\ & \text { or }(-3,3,7) \end{aligned}$	A1
	Either check k: $\begin{aligned} & \lambda=3: \text { LHS }=10-\lambda=10-3=7 \\ & \mu=-2: \text { RHS }=17+5 \mu=17-10=7 \end{aligned}$ (As LHS = RHS then the lines intersect.)	Either check that $\lambda=3, \mu=-2$ in a third equation or check that $\lambda=3$, $\mu=-2$ give the same coordinates on the other line. Conclusion not needed.	$\begin{array}{rrr}\text { B1 } \\ \\ & \\ & {[6]}\end{array}$
(b)	$\mathbf{d}_{1}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}, \quad \mathbf{d}_{2}=3 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$		
	$A s \mathbf{d}_{1} \cdot \mathbf{d}_{2}=\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right) \cdot\left(\begin{array}{c} 3 \\ -1 \\ 5 \end{array}\right)=\underline{(2 \times 3)+(1 \times-1)+(-1 \times 5)}=0$	Dot product calculation between the two direction vectors: $\frac{(2 \times 3)+(1 \times-1)+(-1 \times 5)}{\text { or } 6-1-5}$	M1
	Then I_{1} is perpendicular to I_{2}.	Result ' $=0$ ' and appropriate conclusion	A1
			[2]

Question Number	Scheme		Marks
35. (c)	Equating i ; $\quad-9+2 \lambda=5 \quad \Rightarrow \lambda=7$		
	$\begin{aligned} & \mathbf{r}=\left(\begin{array}{c} -9 \\ 0 \\ 10 \end{array}\right)+7\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right)=\left(\begin{array}{l} 5 \\ 7 \\ 3 \end{array}\right) \\ & \left(=\overrightarrow{O A} . \text { Hence the point A lies on } \mathrm{I}_{1} .\right) \end{aligned}$	Substitutes candidate's $\lambda=7$ into the line I_{1} and finds $5 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}$. The conclusion on this occasion is not needed.	B1
			[1]
	Let $\overrightarrow{O X}=-3 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}$ be point of intersection		
	$\overrightarrow{A X}=\overrightarrow{O X}-\overrightarrow{O A}=\underline{\left(\begin{array}{c}-3 \\ 3 \\ 7\end{array}\right)-\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right)}=\left(\begin{array}{c}-8 \\ -4 \\ 4\end{array}\right)$	Finding the difference between their $\overrightarrow{O X}$ (can be implied) and $\overrightarrow{O A}$. $\overrightarrow{A X}= \pm\left(\left(\begin{array}{c} -3 \\ 3 \\ 7 \end{array}\right)-\left(\begin{array}{l} 5 \\ 7 \\ 3 \end{array}\right)\right)$	M1 $\sqrt{ } \pm$
	$\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O A}+2 \overrightarrow{A X}$		
	$\overrightarrow{O B}=\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right)+2\left(\begin{array}{c}-8 \\ -4 \\ 4\end{array}\right)$	$\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right)+2($ their $\overrightarrow{A X})$	$\mathrm{dM1} \sqrt{ }$
	Hence, $\overrightarrow{O B}=\underline{\left(\begin{array}{c}-11 \\ -1 \\ 11\end{array}\right)}$ or $\overrightarrow{O B}=\underline{-11 \mathbf{i}-\mathbf{j}+11 \mathbf{k}}$	$\underline{\left(\begin{array}{c}-11 \\ -1 \\ 11\end{array}\right)}$ or $\frac{-11 \mathbf{i}-\mathbf{j}+11 \mathbf{k}}{}$ or (-11,-1,11)	A1

Question Number	Scheme		Marks
36. (a)	$\overrightarrow{O A}=\left(\begin{array}{c}2 \\ 6 \\ -1\end{array}\right) \& \overrightarrow{O B}=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)$		
	$\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)-\left(\begin{array}{c}2 \\ 6 \\ -1\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$	Finding the difference between $\overrightarrow{O B}$ and $\overrightarrow{O A}$. Correct answer.	$\begin{aligned} & \mathrm{M} 1 \pm \\ & \text { A1 } \end{aligned}$
	$l_{1}: \mathbf{r}=\left(\begin{array}{c}2 \\ 6 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right) \quad$ or $\quad \mathbf{r}=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$	An expression of the form (vector) $\pm \lambda$ (vector) $\mathbf{r}=\overrightarrow{O A} \pm \lambda(\text { their } \overrightarrow{A B}) \text { or }$	M1
(b)	$l_{1}: \mathbf{r}=\left(\begin{array}{c} 2 \\ 6 \\ -1 \end{array}\right)+\lambda\left(\begin{array}{c} -1 \\ 2 \\ -2 \end{array}\right) \quad \text { or } \quad \mathbf{r}=\left(\begin{array}{l} 3 \\ 4 \\ 1 \end{array}\right)+\lambda\left(\begin{array}{c} -1 \\ 2 \\ -2 \end{array}\right)$	$\begin{array}{r} \mathbf{r}=\overrightarrow{O B} \pm \lambda(\text { their } \overrightarrow{A B}) \text { or } \\ \mathbf{r}=\overrightarrow{O A} \pm \lambda(\text { their } \overrightarrow{B A}) \text { or } \\ \mathbf{r}=\overrightarrow{O B} \pm \lambda(\text { their } \overrightarrow{B A}) \\ \quad(\mathbf{r} \text { is needed.) } \end{array}$	$\begin{aligned} & \text { A1 } \sqrt{ } \\ & \text { aef } \end{aligned}$
(c)	$I_{2}: \mathbf{r}=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right)+\mu\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right) \Rightarrow \mathbf{r}=\mu\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right)$		[
	$\overrightarrow{A B}=\mathbf{d}_{1}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}, \mathbf{d}_{2}=\mathbf{i}+0 \mathbf{j}+\mathbf{k} \& \theta$ is angle		
	$\cos \theta=\frac{\overrightarrow{A B} \bullet \mathbf{d}_{2}}{\left(\|\overrightarrow{A B}\| \cdot\left\|\mathbf{d}_{2}\right\|\right)}=\frac{\left.\left(\begin{array}{c} 1 \\ -2 \\ 2 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right) \longleftarrow \sqrt{(1)^{2}+(-2)^{2}+(2)^{2}} \cdot \sqrt{(1)^{2}+(0)^{2}+(1)^{2}}\right)}{(\sqrt{2})}$	between \mathbf{d}_{2} and their $\overrightarrow{A B}$.	M1 $\sqrt{ }$
	$\cos \theta=\frac{1+0+2}{\sqrt{(1)^{2}+(-2)^{2}+(2)^{2}} \cdot \sqrt{(1)^{2}+(0)^{2}+(1)^{2}}}$	Correct followed through expression or equation.	A1 $\sqrt{ }$
	$\cos \theta=\frac{3}{3 \cdot \sqrt{2}} \Rightarrow \theta=45^{\circ}$ or $\frac{\pi}{4}$ or awrt 0.79.	$\theta=45^{\circ} \text { or } \frac{\pi}{4} \text { or awrt } 0.79$	A1 cao
			[3]

This means that $\cos \theta$ does not necessarily have to be the subject of the equation. It could be of the form $3 \sqrt{2} \cos \theta=3$.

Question Number	Scheme		Marks
36. (d)	If l_{1} and l_{2} intersect then: $\left(\begin{array}{c}2 \\ 6 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)=\mu\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$		
	$\begin{array}{lc} \mathbf{i}: \quad 2+\lambda=\mu \\ \mathbf{j}: \quad 6-2 \lambda=0 \\ \mathbf{k}: & -1+2 \lambda=\mu \tag{3} \end{array}$	Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly.	M1 $\sqrt{ }$
	(2) yields $\lambda=3$ Anytwo yields $\lambda=3, \quad \mu=5$	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find ... either one of λ or μ correct.	dM1 A1
Aliter 36. (d) Way 2	$l_{1}: \mathbf{r}=\left(\begin{array}{c}2 \\ 6 \\ -1\end{array}\right)+3\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)=\underline{\left(\begin{array}{l}5 \\ 0 \\ 5\end{array}\right)}$ or $\mathbf{r}=5\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\underline{\left(\begin{array}{l}5 \\ 0 \\ 5\end{array}\right)}$	$\underline{\left(\begin{array}{l} 5 \\ 0 \\ 5 \end{array}\right)} \text { or } 5 \mathbf{i}+5 \mathbf{k}$ Fully correct solution \& no incorrect values of λ or μ seen earlier.	A1 cso
	If l_{1} and l_{2} intersect then: $\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)=\mu\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$		
	$\begin{array}{ll} \mathbf{i}: & 3+\lambda=\mu \\ \mathbf{j}: & 4-2 \lambda=0 \\ \mathbf{k}: & 1+2 \lambda=\mu \tag{3} \end{array}$	Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly.	M1 $\sqrt{ }$
	(2) yields $\lambda=2$ Any two yields $\lambda=2, \quad \mu=5$	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find ... either one of λ or μ correct.	dM1
	$l_{1}: \mathbf{r}=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)+2\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)=\underline{\left(\begin{array}{l}5 \\ 0 \\ 5\end{array}\right)}$ or $\mathbf{r}=5\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}5 \\ 0 \\ 5\end{array}\right)$	$\left(\begin{array}{l} 5 \\ 0 \\ 5 \end{array}\right) \text { or } 5 \mathbf{i}+5 \mathbf{k}$ Fully correct solution \& no incorrect values of λ or μ seen earlier.	A1 cso
			[4]
			11 marks

Note: Be careful! λ and μ are not defined in the question, so a candidate could interchange these or use different scalar parameters.

Question Number	Scheme		Marks
Aliter 36. (d) Way 3	If l_{1} and l_{2} intersect then: $\left(\begin{array}{c}2 \\ 6 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right)=\mu\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$		
	$\begin{align*} & \mathbf{i}: \quad 2-\lambda=\mu \tag{1}\\ & \mathbf{j}: \quad 6+2 \lambda=0 \tag{2}\\ & \mathbf{k}:-1-2 \lambda=\mu \tag{3} \end{align*}$	Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly.	M1 $\sqrt{ }$
	(2) yields $\lambda=-3$ Anytwo yields $\lambda=-3, \mu=5$	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find ... either one of λ or μ correct.	dM1 A1
	$l_{1}: \mathbf{r}=\left(\begin{array}{c}2 \\ 6 \\ -1\end{array}\right)-3\left(\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right)=\underline{\left(\begin{array}{l}5 \\ 0 \\ 5\end{array}\right)}$ or $\mathbf{r}=5\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\underline{\left(\begin{array}{l}5 \\ 0 \\ 5\end{array}\right)}$	$\underline{\left(\begin{array}{l} 5 \\ 0 \\ 5 \end{array}\right)} \text { or } 5 \mathbf{i}+5 \mathbf{k}$ Fully correct solution \& no incorrect values of λ or μ seen earlier.	A1 cso
Aliter 36. (d) Way 4	If l_{1} and l_{2} intersect then: $\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right)=\mu\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$		
	$\begin{array}{ll} \mathbf{i}: & 3-\lambda=\mu \\ \mathbf{j}: & 4+2 \lambda=0 \\ \mathbf{k}: & 1-2 \lambda=\mu \tag{3} \end{array}$	Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly.	M1 $\sqrt{ }$
	(2) yields $\lambda=-2$ Anytwo yields $\lambda=-2, \mu=5$	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find ... either one of λ or μ correct.	dM1 A1
	$l_{1}: \mathbf{r}=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)-2\left(\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right)=\underline{\left(\begin{array}{l}5 \\ 0 \\ 5\end{array}\right) \text { or } \mathbf{r}=5\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\underline{\left(\begin{array}{l}5 \\ 0 \\ 5\end{array}\right)} \text {) }{ }^{\text {a }} \text { (}{ }^{\text {a }} \text { (}}$	$\underline{\left(\begin{array}{l} 5 \\ 0 \\ 5 \end{array}\right)} \text { or } 5 \mathbf{i}+5 \mathbf{k}$ Fully correct solution \& no incorrect values of λ or μ seen earlier.	A1 cso
			11 marks

