EXPERT TUITION

Maths Questions By Topic:

Vectors Mark Scheme

A-Level Edexcel

الارم 0207 060 4494 رام ⁰

www.expert-tuition.co.uk

💻 online.expert-tuition.co.uk

🖂 enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents	
New Spec	
Paper 1	Page 1
Paper 2	Page 16
<u>Old Spec</u>	
Core 4	. Page 24

Question	Scheme	Marks	AOs
1(a)	Attempts both $\left \overline{PQ} \right = \sqrt{2^2 + 3^2 + (-4)^2}$ and $\left \overline{QR} \right = \sqrt{5^2 + (-2)^2}$	M1	3.1a
	States that $\left \overrightarrow{PQ} \right = \left \overrightarrow{QR} \right = \sqrt{29}$ so <i>PQRS</i> is a rhombus	A1	2.4
		(2)	
(b)	Attempts BOTH $\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{QR} = 7\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$ AND $\overrightarrow{OS} = -\overrightarrow{PQ} + \overrightarrow{PS} = 3\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$	M1	3.1a
	Correct $\overrightarrow{PR} = 7\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$ and $\overrightarrow{QS} = 3\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$	A1	1.1b
	Correct method for area <i>PQRS</i> . E.g. $\frac{1}{2} \times \overrightarrow{PR} \times \overrightarrow{QS} $	dM1	2.1
	$=\sqrt{517}$	A1	1.1b
		(4)	
	· · · · · · · · · · · · · · · · · · ·		(6 marks)
Alt (b) Example using the	Attempts $ \overrightarrow{QS} = \sqrt{3^2 + (-3)^2 + 2^2} = \sqrt{22}$ and so $22 = 29 + 29 - 2\sqrt{29}\sqrt{29}\cos SPQ$	M1	3.1a
cosine rule	$\cos PQR = -\frac{18}{29} \text{ or } \cos SPQ = \frac{18}{29}$ Condone angles in degrees 51.6, 128.4 (1dp) or radians 2.24, 0.90 (3sf) here	A1	1.1b
	Correct method for area <i>PQRS</i> . E.g. $PQ \times QR \sin PQR = \sqrt{2^2 + 3^2 + (-4)^2} \times \sqrt{5^2 + (-2)^2} \times \frac{\sqrt{517}}{29}$	dM	1 2.1
	$=\sqrt{517}$	A1	1.1b
		(4)	

FYI

 $\overrightarrow{QR} = 5\mathbf{i} + 0\mathbf{j} - 2\mathbf{k}$

 $\overrightarrow{PM} = 3.5\mathbf{i} + 1.5\mathbf{j} - 3\mathbf{k}$

1

(a) Do not award marks in part (a) from work in part (b). M1: Attempts both $|\overrightarrow{PQ}| = \sqrt{2^2 + 3^2 + (\pm 4)^2}$ and $|\overrightarrow{QR}| = \sqrt{5^2 + (\pm 2)^2}$ or PQ^2 and QR^2 . For this mark only, condone just the correct answers $|\overrightarrow{PQ}| = \sqrt{29}$ and $|\overrightarrow{QR}| = \sqrt{29}$. Alternatively attempts $\overrightarrow{PR} \cdot \overrightarrow{QS}$ or PM^2, MQ^2 and PQ^2 where *M* is the mid point of *PR* A1: Shows that $|\overrightarrow{PQ}| = |\overrightarrow{QR}| = \sqrt{29}$ (with calculations) and states *PQRS* is a rhombus. $\prod_{r=1}^{n} |\underbrace{\text{EXPERT}}_{\text{TUITION}}|$ Condone poor notation such as $\overrightarrow{PQ} = \sqrt{29}$ here, So $\overrightarrow{PQ} = \overrightarrow{QR} = \sqrt{29}$ hence rhombus. Requires both a reason and a conclusion. The reason may be given at the start of their solution. In the alternatives $\overrightarrow{PR} \cdot \overrightarrow{QS} = (7\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) \cdot (3\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) = 21 - 9 - 12 = 0$ so diagonals cross at

90° so PQRS is a rhombus or $PM^2 + MQ^2 = PQ^2 = 23.5 + 5.5 = 29 \Rightarrow \angle PMQ = 90^\circ \Rightarrow$ Rhombus

(b) Candidates can transfer answers from (a) to use in part (b) to find the area Look through their complete solution first. The first two marks are for finding the elements that are required to calculate the area. The second set of two marks is for combining these elements correctly. If the method is NOT shown on how to find vector it can be implied by two correct components. Allow as column vectors.

M1: For a key step in solving the problem. It is scored for attempting to find both key vectors. Attempts both $\overrightarrow{PR} = \overrightarrow{PO} + \overrightarrow{OR} = (7\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$ AND $\overrightarrow{OS} = -\overrightarrow{PO} + \overrightarrow{PS} = (3\mathbf{i} - 3\mathbf{j} + 2\mathbf{k})$

You may see
$$\overrightarrow{PM} = \frac{1}{2}\overrightarrow{PQ} + \frac{1}{2}\overrightarrow{QR} = \left(\frac{7}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - 3\mathbf{k}\right)$$
 AND $\overrightarrow{QM} = -\frac{1}{2}\overrightarrow{PQ} + \frac{1}{2}\overrightarrow{PS} = \left(\frac{3}{2}\mathbf{i} - \frac{3}{2}\mathbf{j} + 1\mathbf{k}\right)$

A1: Accurately finds both key vectors whose lengths are required to solve the problem. Score for both $\overrightarrow{PR} = 7\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$ and $\overrightarrow{QS} = 3\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ (Allow either way around.)

or both
$$\overrightarrow{PM} = \frac{7}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - 3\mathbf{k}$$
 and $\overrightarrow{QM} = \frac{3}{2}\mathbf{i} - \frac{3}{2}\mathbf{j} + 1\mathbf{k}$ (Allow either way around.)

dM1: Constructs a rigorous method leading to the area PQRS. Dependent upon previous M.

E.g. See scheme. Alt: the sum of the area of four right angled triangles e.g. $4 \times \frac{1}{2} \times |\overrightarrow{PM}| \times |\overrightarrow{QM}|$, A1: $\sqrt{517}$

Alternatives for (b). Two such ways are set out below

Alt 1-Examples via cosine rule but you may see use of scalar product via a Further Maths method.

M1: For a key step in solving the problem. In this case it for an attempt at cos PQR or cos SPQ.

Don't be too concerned with the labelling of the angle which may appear as θ .

Attempts
$$\pm \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \bullet \pm \begin{pmatrix} 5 \\ 0 \\ -2 \end{pmatrix} = \sqrt{2^2 + 3^2 + (-4)^2} \times \sqrt{5^2 + (-2)^2} \cos PQR$$

A1: Finds the cosine of one of the angles in the Figure.

Look for $\cos ... = -\frac{18}{29}$ or $\cos ... = \frac{18}{29}$ which may have been achieved via the cosine rule. Accept rounded answers and the angles in degrees 51.6, 128.4 (1dp) or radians 2.24, 0.901 (3sf) here. dM1: Constructs a rigorous method leading to the area *PQRS*. Implied by awrt 22.7

E.g.
$$PQ \times QR \sin PQR = \sqrt{2^2 + 3^2 + (-4)^2} \times \sqrt{5^2 + (-2)^2} \times \frac{\sqrt{517}}{29}$$

A1: $\sqrt{517}$

2

Alt 2-Example via vector product via a Further Maths method.

M1: For a key step in solving the problem. In this case it for an attempt at $\pm \overrightarrow{PQ} \times \overrightarrow{QR}$

E.g.
$$\overrightarrow{PQ} \times \overrightarrow{QR} = \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & -4 \\ 5 & 0 & -2 \end{pmatrix} = (3 \times -2 - 0 \times -4)\mathbf{i} - (2 \times -2 - 5 \times -4)\mathbf{j} + (2 \times 0 - 3 \times 5)\mathbf{k}$$

A1: E.g. $\overrightarrow{PQ} \times \overrightarrow{QR} = -6\mathbf{i} - 16\mathbf{j} - 15\mathbf{k}$

dM1: Constructs a rigorous method leading to the area *PQRS*. In this case $\left| \overrightarrow{PQ} \times \overrightarrow{QR} \right|$

A1:
$$=\sqrt{(-6)^{2} + (-16)^{2} + (-15)^{2}} = \sqrt{517}$$

T EXPERT

	on Scheme	Marks	AOs
2 (a)	$\overrightarrow{QR} = \overrightarrow{PR} - \overrightarrow{PQ} = 13\mathbf{i} - 15\mathbf{j} - (3\mathbf{i} + 5\mathbf{j})$	M1	1.1a
	$=10\mathbf{i}-20\mathbf{j}$	A1	1.1b
		(2)	
(b)	$\left \overline{QR} \right = \sqrt{"10"^2 + "(-20)"^2}$	M1	2.5
	$=10\sqrt{5}$	A1ft	1.1b
		(2)	
(c)	$\overrightarrow{PS} = \overrightarrow{PQ} + \frac{3}{5}\overrightarrow{QR} = 3\mathbf{i} + 5\mathbf{j} + \frac{3}{5}("10\mathbf{i} - 20\mathbf{j''}) = \dots$		
	or $\overrightarrow{PS} = \overrightarrow{PR} + \frac{2}{5}\overrightarrow{RQ} = 13\mathbf{i} - 15\mathbf{j} + \frac{2}{5}("-10\mathbf{i} + 20\mathbf{j}") = \dots$	M1	3.1a
	$=9\mathbf{i}-7\mathbf{j}$	A1	1.1b
		(2)	
	Notes	(6	marks
A1:	Correct answer Allow 10: 20; and $\begin{pmatrix} 10 \\ 10 \end{pmatrix}$ but not $\begin{pmatrix} 10i \\ 10i \end{pmatrix}$		
(b) M1:	Correct answer. Allow $10\mathbf{i} - 20\mathbf{j}$ and $\begin{pmatrix} 10\\ -20 \end{pmatrix}$ but not $\begin{pmatrix} 10\mathbf{i}\\ -20\mathbf{j} \end{pmatrix}$ Correct use of Pythagoras. Attempts to "square and add" before square embedded values are sufficient. Follow through on their \overline{QR}	rooting. Th	e
		rooting. Th	e
M1: A1ft:	Correct use of Pythagoras. Attempts to "square and add" before square embedded values are sufficient. Follow through on their \overline{QR} $10\sqrt{5}$ following (a) of the form $\pm 10\mathbf{i} \pm 20\mathbf{j}$	rooting. Th	e
M1: A1ft: (c)	Correct use of Pythagoras. Attempts to "square and add" before square embedded values are sufficient. Follow through on their \overrightarrow{QR}	rooting. Th	e
M1: A1ft: (c)	Correct use of Pythagoras. Attempts to "square and add" before square embedded values are sufficient. Follow through on their \overline{QR} $10\sqrt{5}$ following (a) of the form $\pm 10\mathbf{i} \pm 20\mathbf{j}$ Full attempt at finding a \overline{PS} . They must be attempting $\overline{PQ} \pm \frac{3}{5} \overline{QR}$ or	rooting. Th	e

A1: Correct vector as shown. Allow 9i - 7j and $\begin{pmatrix} 9\\ -7 \end{pmatrix}$. Only withhold the mark for $\begin{pmatrix} 9i\\ -7j \end{pmatrix}$ if the mark has not already been withheld in (a) for $\begin{pmatrix} 10i\\ -20j \end{pmatrix}$ Alt (c) (Expressing \overline{PS} in terms of the given vectors) They must be attempting $\frac{2}{5}\overline{PQ} + \frac{3}{5}\overline{PR}$ M1: $(\overline{PS} = \overline{PQ} + \frac{3}{5}\overline{QR} = \overline{PQ} + \frac{3}{5}(\overline{PR} - \overline{PQ}))$ $\Rightarrow \frac{2}{5}\overline{PQ} + \frac{3}{5}\overline{PR} = \frac{2}{5}(3i + 5j) + \frac{3}{5}(13i - 15j) = ...$ A1: Correct vector as shown. Allow 9i - 7j and $\begin{pmatrix} 9\\ -7 \end{pmatrix}$. Only withhold the mark for $\begin{pmatrix} 9i\\ -7j \end{pmatrix}$ if the mark has not already been withheld in (a) for $\begin{pmatrix} 10i\\ -20j \end{pmatrix}$

Question	Scheme	Marks	AOs
3(a)	$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = -3\mathbf{i} - 4\mathbf{j} - 5\mathbf{k} + \mathbf{i} + \mathbf{j} + 4\mathbf{k} = \dots$	M1	1.1b
	$=-2\mathbf{i}-3\mathbf{j}-\mathbf{k}$	A1	1.1b
_		(2)	
(b)	At least 2 of $(AC^2) = "2^2 + 3^2 + 1^2 ", (AB^2) = 3^2 + 4^2 + 5^2, (BC^2) = 1^2 + 1^2 + 4^2$	M1	1.1b
	$2^{2} + 3^{2} + 1^{2} = 3^{2} + 4^{2} + 5^{2} + 1^{2} + 1^{2} + 4^{2} - 2\sqrt{3^{2} + 4^{2} + 5^{2}}\sqrt{1^{2} + 1^{2} + 4^{2}} \cos ABC$	M1	3.1a
	$14 = 50 + 18 - 2\sqrt{50}\sqrt{18}\cos ABC$ $\Rightarrow \cos ABC = \frac{50 + 18 - 14}{2\sqrt{50}\sqrt{18}} = \frac{9}{10}*$	A1*	2.1
		(3)	
	(b) Alternative		
	$AB^{2} = 3^{2} + 4^{2} + 5^{2}, BC^{2} = 1^{2} + 1^{2} + 4^{2}$	M1	1.1b
	$\overrightarrow{BA}.\overrightarrow{BC} = (3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} + 4\mathbf{k}) = 27 = \sqrt{3^2 + 4^2 + 5^2} \sqrt{1^2 + 1^2 + 4^2} \cos ABC$	M1	3.1a
	$27 = \sqrt{50}\sqrt{18}\cos ABC \Longrightarrow \cos ABC = \frac{27}{\sqrt{50}\sqrt{18}} = \frac{9}{10}*$	A1*	2.1
		(5	marks)
	Notes		

M1: Attempts $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

There must be attempt to add not subtract.

If no method shown it may be implied by two correct components

A1: Correct vector. Allow $-2\mathbf{i} - 3\mathbf{j} - \mathbf{k}$ and $\begin{pmatrix} -2\\ -3\\ -1 \end{pmatrix}$ but not $\begin{pmatrix} -2\mathbf{i}\\ -3\mathbf{j}\\ -1\mathbf{k} \end{pmatrix}$

- (b)
- M1: Attempts to "square and add" for at least 2 of the 3 sides. Follow through on their \overrightarrow{AC}

Look for an attempt at either $a^2 + b^2 + c^2$ or $\sqrt{a^2 + b^2 + c^2}$

- M1: A correct attempt to apply a correct cosine rule to the given problem; Condone **slips** on the lengths of the sides but the sides must be in the correct position to find angle ABC
- A1*: Correct completion with sufficient intermediate work to establish the printed result.

Condone different labelling, e.g. $ABC \leftrightarrow \theta$ as long as it is clear what is meant

It is OK to move from a correct cosine rule $14 = 50 + 18 - 2\sqrt{50}\sqrt{18}\cos ABC$

via
$$\cos ABC = \frac{54}{2\sqrt{50}\sqrt{18}}$$
 o.e. such as $\cos ABC = \frac{(5\sqrt{2})^2 + (3\sqrt{2})^2 - (\sqrt{14})^2}{2 \times 5\sqrt{2} \times 3\sqrt{2}}$ to $\cos ABC = \frac{9}{10}$

Alternative:

M1: Correct application of Pythagoras for sides AB and BC or their squares

M1: Recognises the requirement for and applies the scalar product

A1*: Correct completion with sufficient intermediate work to establish the printed result

Question	Scheme	Marks	AOs	
4(a)	Attempts to compare the two position vectors. Allow an attempt using two of \overrightarrow{AO} , \overrightarrow{OB} or \overrightarrow{AB} E.g. $(-24\mathbf{i}-10\mathbf{j}) = -2 \times (12\mathbf{i}+5\mathbf{j})$	M1	1.1b	
	Explains that as \overrightarrow{AO} is parallel to \overrightarrow{OB} (and the stone is travelling in a straight line) the stone passes through the point O .	A1	2.4	
		(2)		
(b)	Attempts distance $AB = \sqrt{(12+24)^2 + (10+5)^2}$	M1	1.1b	
	Attempts speed = $\frac{\sqrt{(12+24)^2 + (10+5)^2}}{4}$	dM1	3.1a	
	Speed = 9.75 ms^{-1}	A1	3.2a	
		(3)		
		(5 marks)	
Alt(a)	Attempts to find the equation of the line which passes through <i>A</i> and <i>B</i> E.g. $y-5 = \frac{5+10}{12+24}(x-12)$ ($y = \frac{5}{12}x$)	M1	1.1b	
	Shows that when $x = 0$, $y = 0$ and concludes the stone passes through the point <i>O</i> .	A1	2.4	
	Notes			
either E.g. S Altern Altern	 (a) M1: Attempts to compare the two position vectors. Allow an attempt using two of AO, OB or AB either way around. E.g. States that (-24i-10j) = -2×(12i+5j) Alternatively, allow an attempt finding the gradient using any two of AO, OB or AB Alternatively attempts to find the equation of the line through A and B proceeding as far as y =x Condone sign slips. 			
A1: States that as \overrightarrow{AO} is parallel to \overrightarrow{OB} or as AO is parallel to OB (and the stone is travelling in a straight line) the stone passes through the point O . Alternatively, shows that the point $(0,0)$ is on the line and concludes (the stone) passes through the point O .				
(b) M1. Attom	nts to find the distance AD values a servest wether 1			
	apts to find the distance AB using a correct method. one slips but expect to see an attempt at $\sqrt{a^2 + b^2}$ where a or b is constant.	orrect		
dM1: Depe	dM1: Dependent upon the previous mark. Look for an attempt at $\frac{\text{distance } AB}{4}$			
A1: 9.75	ms^{-1} Requires units			

Question	Scheme	Marks	AOs
5 (a)	$\overrightarrow{AB} = (3\mathbf{i} - 3\mathbf{j} - 4\mathbf{k}) - (2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k})$	M1	1.1b
	= i -8 j $+2$ k	A1	1.1b
		(2)	
(b)	States $\overrightarrow{OC} = 2 \times \overrightarrow{AB}$	M1	1.1b
	Explains that as <i>OC</i> is parallel to <i>AB</i> , so <i>OABC</i> is a trapezium.	A1	2.4
		(2)	
			(4 marks)
Notes:			

(a)

M1: Attempts to subtract either way around. If no method is seen it is implied by two of $\pm 1i \pm 8j \pm 2k$.

A1:
$$\mathbf{i} - 8\mathbf{j} + 2\mathbf{k}$$
 or $\begin{pmatrix} 1\\ -8\\ 2 \end{pmatrix}$ but not $(1, -8, 2)$

(b)

M1: Compares their i-8j+2k with 2i-16j+4k by stating any one of

•
$$\overrightarrow{OC} = 2 \times \overrightarrow{AB}$$

• $\begin{pmatrix} 2 \\ -16 \\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$
• $\overrightarrow{OC} = \lambda \times \overrightarrow{AB}$ or vice versa

This may be awarded if AB was subtracted "the wrong way around" or if there was one numerical slip

A1: A full explanation as to why *OABC* is a trapezium.

Requires fully correct calculations, so part (a) must be $\overrightarrow{AB} = (\mathbf{i} - 8\mathbf{j} + 2\mathbf{k})$

It requires a reason and minimal conclusion.

Example 1:

 $\overrightarrow{OC} = 2 \times \overrightarrow{AB}$, therefore *OC* is parallel to *AB* so *OABC* is a trapezium

Example 2:

A trapezium has one pair of parallel sides. As $\overrightarrow{OC} = 2 \times \overrightarrow{AB}$, they are parallel, so \checkmark . Example 3

As
$$\begin{pmatrix} 2 \\ -16 \\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$$
, *OC* and *AB* are parallel, so proven

Example 4 Accept as $\overrightarrow{OC} = \lambda \times \overrightarrow{AB}$, they are parallel so true

Note: There are two definitions for a trapezium. One stating that it is a shape with one pair of parallel sides, the other with **only one** pair of parallel sides. Any calculations to do with sides *OA* and *CB* in this question may be ignored, even if incorrect.

Question	Scheme	Marks	AOs
6(a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Attempts to find an "allowable" angle Eg tan $\theta = \frac{7}{3}$	M1	1.1b
	A full attempt to find the bearing Eg $180^{\circ} + "67^{\circ}"$	dM1	3.1b
	Bearing = awrt 246.8°	A1	1.1b
		(3)	
(b)	Attempts to find the distance travelled = $\sqrt{(4-3)^2 + (-2+5)^2} = (\sqrt{58})$	M1	1.1b
	Attempts to find the speed = $\frac{\sqrt{58}}{2.75}$	dM1	3.1b
	= awrt 2.77 km h ⁻¹	A1	1.1b
		(3)	
		(6 marks)

Notes: Score these two parts together.

(a) **M1:** Attempts an allowable angle. (Either the "66.8", "23.2" or ("49.8" and "63.4")) $\tan \theta = \pm \frac{7}{3}, \tan \theta = \pm \frac{3}{7}, \tan \theta = \pm \frac{-2 - -5}{4 - -3}$ etc There must be an attempt to subtract the coordinates (seen or applied at least once) If part (b) is attempted first, look for example for $\sin \theta = \pm \frac{7}{\sqrt{58}}, \cos \theta = \pm \frac{7}{\sqrt{58}}$, etc They may use the cosine rule and trigonometry to find the two angles in the scheme. See above. Eg award for $\cos \theta = \frac{"58" + "20" - "34"}{2 \times "\sqrt{58}" \times "\sqrt{20}"}$ and $\tan \theta = \pm \frac{4}{2}$ or equivalent. **dM1:** A full attempt to find the bearing. $180^\circ + \arctan \frac{7}{3}, 270^\circ - \arctan \frac{3}{7},$

 $360^\circ-"49.8^\circ"-"63.4^\circ"$. It is dependent on the previous method mark.

A1: Bearing = awrt 246.8° oe. Allow S 66.8° W

- M1: Attempts to find the distance travelled. Allow for $d^2 = (4--3)^2 + (-2+5)^2$ You may see this on a diagram and allow if they attempt to find the magnitude from their "resultant vector" found in part (a).
- **dM1:** Attempts to find the speed. There must have been an attempt to find the distance using the coordinates and then divide it by 2.75. Alternatively they could find the speed in km min⁻¹ and then multiply by 60
- **A1:** awrt 2.77 km h^{-1}

(b)

Question	Scheme	Marks	AOs
7(i)	Explains that a and b lie in the same direction oe	B1	2.4
		(1)	
(ii)	$ \mathbf{m} = 3$ $30^{\circ} \mathbf{m}$ $ \mathbf{m} - \mathbf{n} = 6$	M1	1.1b
	Attempts $\frac{\sin 30^\circ}{6} = \frac{\sin \theta}{3}$	M1	3.1a
	$\theta = $ awrt 14.5°	A1	1.1b
	Angle between vector \mathbf{m} and vector $\mathbf{m} - \mathbf{n}$ is awrt 135.5°	A1	3.2a
		(4)	
		(,	5 marks)
	Notes		
 (i) B1: Accept any valid response E.g The lines are collinear. Condone "They are parallel" Mark positively. ISW after a correct answer Do not accept "the length of line a +b is the same as the length of line a + the length of line b Do not accept a and b are parallel. (ii) M1: A triangle showing 3, 6 and 30° in the correct positions. Look for 6' opposite 30° with another side of 3. Condone the triangle not being obtuse angled and not being to scale. Do not condone negative lengths in the tringle. This would automatically be M0 M1: Correct sine rule statement with the sides and angles in the correct positions. If a triangle is drawn then the angles and sides must be in the correct positions. This is not dependent so allow recovery from negative lengths in the triangle. If the candidate has not drawn a diagram then correct sine rule would be M1 M1 Do not accept calculations where the sides have a negative length. Eg sin 30°/6 = sin θ/-3 is M0 A1: θ = awrt 14.5° A1: CSO awrt 135.5° 			

Question	Scheme	Marks	AOs
8(a)	Attempts $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or similar	M1	1.1b
	$\overrightarrow{AB} = -9\mathbf{i} + 3\mathbf{j}$	A1	1.1b
		(2)	
(b)	Finds length using 'Pythagoras' $ AB = \sqrt{(-9)^2 + (3)^2}$	M1	1.1b
	$ AB = 3\sqrt{10}$	A1ft	1.1b
		(2)	
		(4	marks
(a)	Notes		
	tempts subtraction either way around.		
Tl	his may be implied by one correct component $\overrightarrow{AB} = \pm 9\mathbf{i} \pm 3\mathbf{j}$		
	here must be some attempt to write in vector form.		
	o (allow column vector notation but not the coordinate)		
Co	prect notation should be used. Accept $-9i+3j$ or $\begin{pmatrix} -9\\ 3 \end{pmatrix}$ but not $\begin{pmatrix} -9\\ 3 \end{pmatrix}$	$\begin{pmatrix} -9i \\ 3j \end{pmatrix}$	
(b)			
	prrect use of Pythagoras theorem or modulus formula using their ans one that $ AB = \sqrt{(9)^2 + (3)^2}$ is also correct.	wer to (a)	
Cor	ndone missing brackets in the expression $ AB = \sqrt{-9^2 + (3)^2}$		
	lso allow a restart usually accompanied by a diagram.		
A1ft:	$4B = 3\sqrt{10}$ ft from their answer to (a) as long as it has both an i a	nd j compo	nent.
Ι	t must be simplified, if appropriate. Note that $\pm 3\sqrt{10}$ would be M1	A0	
	in cases where there is no working, the correct answer implies M1A question	11 in each p	oart of

Question	Scheme	Marks	AOs
9 (a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = 6\mathbf{i} - 3\mathbf{j} - (4\mathbf{i} + 2\mathbf{j})$	M1	1.1b
	$=2\mathbf{i}-5\mathbf{j}$	A1	1.1b
		(2)	
9(b)	Explains that \overrightarrow{OC} is parallel to \overrightarrow{AB} as $8\mathbf{i} - 20\mathbf{j} = 4 \times (2\mathbf{i} - 5\mathbf{j})$	M1	1.1b
	As $\overrightarrow{OC} = 4 \times \overrightarrow{AB}$ it is parallel to it and not the same length Hence $OABC$ is a trapezium.	A1	2.4
		(2)	
		(4 n	narks)
Notes:			
A1: 2i – 5j (b) M1: Attemp A1: Fully ez	ots $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or equivalent. This may be implied by one correct con ots to compare vectors \overrightarrow{OC} and \overrightarrow{AB} by considering their directions explains why <i>OABC</i> is a trapezium. (The candidate is required to state that of the same length as it.)	-	rallel

Quest	on Scheme	Marks	AOs
10 (a) $\overrightarrow{OA} = \mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$, $\overrightarrow{OB} = 4\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$, $\overrightarrow{OC} = 2\mathbf{i} + 10\mathbf{j} + 9\mathbf{k}$		
	$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{BA} = (2\mathbf{i} + 10\mathbf{j} + 9\mathbf{k}) + (-3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k})$ or $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BC} = (\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}) + (-2\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$	M1	3.1a
	So $\overrightarrow{OD} = -\mathbf{i} + 14\mathbf{j} + 4\mathbf{k}$	A1	1.1b
		(2)	
(b)	$\left\{ \overrightarrow{AB} = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k} \implies \right\} \left \overrightarrow{AB} \right = \sqrt{(3)^2 + (-4)^2 + (5)^2} \left\{ = \sqrt{50} = 5\sqrt{2} \right\}$	M1	1.1b
	As $\left \overrightarrow{AX} \right = 10\sqrt{2}$ then $\left \overrightarrow{AX} \right = 2 \left \overrightarrow{AB} \right \Rightarrow \overrightarrow{AX} = 2 \overrightarrow{AB}$		
	$\overrightarrow{OX} = \overrightarrow{OA} + 2\overrightarrow{AB} = (\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}) + 2(3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})$ or $\overrightarrow{OX} = \overrightarrow{OB} + \overrightarrow{AB} = (4 + 3\mathbf{j} + 3\mathbf{k}) + (3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})$	M1	3.1a
	So $\overrightarrow{OX} = 7\mathbf{i} - \mathbf{j} + 8\mathbf{k}$ only	A1	1.1b
		(3)	
		(5 n	narks)
Questi	on 10 Notes:		
(a)			
M1:	A complete method for finding the position vector of D		
A1:	$-\mathbf{i} + 14\mathbf{j} + 4\mathbf{k}$ or $\begin{pmatrix} -1\\ 14\\ 4 \end{pmatrix}$		
(b)			
M1:	A complete attempt to find $\left \overrightarrow{AB} \right $ or $\left \overrightarrow{BA} \right $		
M1:	M1: A complete process for finding the position vector of <i>X</i>		
A1:	$7\mathbf{i} - \mathbf{j} + 8\mathbf{k}$ or $\begin{pmatrix} 7\\ -1\\ 8 \end{pmatrix}$		

Question	Scheme	Marks	AOs	
11(a)	Attempts $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or similar	M1	1.1b	
	$\overline{AB} = 5\mathbf{i} + 10\mathbf{j}$	Al	1.1b	
		(2)		
(b)	Finds length using 'Pythagoras' $ AB = \sqrt{(5)^2 + (10)^2}$	M1	1.1b	
	$ AB = 5\sqrt{5}$	A1ft	1.1b	
		(2)		
		(4 n	narks)	
Notes:				
	npts subtraction but may omit brackets llow column vector notation)			
(b) M1: Correct use of Pythagoras theorem or modulus formula using their answer to (a) A1ft: $ AB = 5\sqrt{5}$ ft from their answer to (a)				
Note that the correct answer implies M1A1 in each part of this question				

3.1a 2.1 1.1b 2.1 1.1b					
1.1b 2.1					
2.1					
1.1b					
marks)					
Allow this to be scored for other methods such as $\cos BAC = \frac{\overline{AB}.\overline{AC}}{ AB AC }$					
Notes: M1: Attempts to find \overline{AC} by using $\overline{AC} = \overline{AB} + \overline{BC}$ M1: Attempts to find any one length by use of Pythagoras' Theorem A1ft: Finds all three lengths in the triangle. Follow through on their $ AC $ M1: Attempts to find BAC using $\cos BAC = \frac{ AB ^2 + AC ^2 - BC ^2}{2 AB AC }$					

Question	Scheme	Marks	AOs
13(a)	Attempts two of the relevant vectors		
	$\pm \overrightarrow{AB} = \pm \left(-4\mathbf{i} + 7\mathbf{j} + \mathbf{k}\right)$		
	$\pm \overrightarrow{AC} = \pm \left(-20\mathbf{i} + (p+3)\mathbf{j} + 5\mathbf{k}\right)$	M1	3.1a
	$\pm \overrightarrow{BC} = \pm \left(-16\mathbf{i} + (p-4)\mathbf{j} + 4\mathbf{k}\right)$		
	Uses two of the three vectors in such a way as to find the value of p. E.g. $p+3=5\times7$	dM1	2.1
	<i>p</i> = 32	A1	1.1b
		(3)	
	(a) Alternative:		
	$r_{AB} = 4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k} + \lambda \left(-4\mathbf{i} + 7\mathbf{j} + \mathbf{k}\right)$	M1	3.1a
	$4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k} + \lambda (-4\mathbf{i} + 7\mathbf{j} + \mathbf{k}) = -16\mathbf{i} + p\mathbf{j} + 10\mathbf{k} \Longrightarrow \lambda = 5$ $4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k} + \lambda (-4\mathbf{i} + 7\mathbf{j} + \mathbf{k}) = -16\mathbf{i} + p\mathbf{j} + 10\mathbf{k} \Longrightarrow p = 35 - 3$	dM1	2.1
	p = 32	Al	1.1b
(b)	Deduces that $\overrightarrow{OD} = \lambda \overrightarrow{OB} = 4\lambda \mathbf{j} + 6\lambda \mathbf{k}$ and attempts		
	$\overrightarrow{CD} = 16\mathbf{i} + (4\lambda - "32")\mathbf{j} + (6\lambda - 10)\mathbf{k}$	M1	3.1a
	Correct attempt at λ using the fact that \overrightarrow{CD} is parallel to \overrightarrow{OA}		
	$\overline{CD} = 16\mathbf{i} + (4\lambda - "32")\mathbf{j} + (6\lambda - 10)\mathbf{k}$	13 (1	1 11
	$\overrightarrow{OA} = 4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$	dM1	1.1b
	$4\lambda - 32 = -12 \Longrightarrow \lambda = \dots$ OR $6\lambda - 10 = 20 \Longrightarrow \lambda = \dots$		
	$\left \overrightarrow{OD}\right = 5 \times \sqrt{4^2 + 6^2} = 10\sqrt{13}$	A1	1.1b
		(3)	
	(b) Alternative:		
	Deduces that $\overrightarrow{OD} = \lambda \overrightarrow{OB} = 4\lambda \mathbf{j} + 6\lambda \mathbf{k}$ and attempts $\overrightarrow{OD} = \overrightarrow{OC} + \mu \overrightarrow{OA} = -16\mathbf{i} + 32\mathbf{j} + 10\mathbf{k} + \mu (4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k})$	M1	3.1a
	Correct attempt at λ or μ using the fact that		
		dM1	1.1b
	$\lambda \overrightarrow{OB} = \overrightarrow{OC} + \mu \overrightarrow{OA}$ E.g. $-16 + 4\mu = 0 \Longrightarrow \mu = 4$		1.10
	$\left \overrightarrow{OD} \right = 5 \times \sqrt{4^2 + 6^2} = 10\sqrt{13}$	A1	1.1b
		(3)	
			(6 marks)

(a)

M1: Attempts two of the three relevant vectors by **subtracting** either way around. See scheme.

Allow equivalent work e.g. $\pm \overrightarrow{AB} = \pm \left(\overrightarrow{OB} + \overrightarrow{AO}\right)$

If no working is shown, method can be implied by 2 correct components. $\begin{array}{c|c} EXPERT \\ TUITION \end{array}$

dM1: For the key step in using the fact that if the vectors are parallel, they will be multiples of each other (where the multiple is something other than 1) to find *p*.

E.g.
$$p+3=5\times7$$
, $p-4=\frac{4}{5}(p+3)$, $p-4=4\times7$

A1: p = 32 (Condone 32j)

For reference, $\overrightarrow{BC} = 4\overrightarrow{AB}$, $\overrightarrow{AC} = 5\overrightarrow{AB}$, $\overrightarrow{BC} = \frac{4}{5}\overrightarrow{AC}$, $\overrightarrow{AC} = \frac{5}{4}\overrightarrow{BC}$

Note that candidates generally only need to use 2 components to find p and if the 3rd component has errors but is not used, full marks can be awarded. Alternative:

M1: Forms the vector equation using A or B as position and $\pm \overrightarrow{AB}$ as the direction dM1: For the key step in using the fact that C lies on the line to find p A1: p = 32 (Condone 32j)

For reference, $\overrightarrow{BC} = 4\overrightarrow{AB}$, $\overrightarrow{AC} = 5\overrightarrow{AB}$, $\overrightarrow{BC} = \frac{4}{5}\overrightarrow{AC}$, $\overrightarrow{AC} = \frac{5}{4}\overrightarrow{BC}$

Note that candidates generally only need to use 2 components to find p and if the 3rd component has errors but is not used, full marks can be awarded.

There will be other approaches e.g. using "gradients" and "ratios" and the method marks can be implied – if you are unsure if such attempts deserve credit use Review

(b) Vector approach

M1: Deduces that $\overrightarrow{OD} = \lambda \overrightarrow{OB} = 4\lambda \mathbf{j} + 6\lambda \mathbf{k}$ and attempts $\overrightarrow{CD} = 16\mathbf{i} + (4\lambda - "32")\mathbf{j} + (6\lambda - 10)\mathbf{k}$

dM1: Correct attempt at finding λ using the fact that \overrightarrow{CD} is parallel to \overrightarrow{OA}

E.g. $16\mathbf{i} + (4\lambda - 32")\mathbf{j} + (6\lambda - 10)\mathbf{k} = 4\alpha\mathbf{i} - 3\alpha\mathbf{j} + 5\alpha\mathbf{k} \Rightarrow \alpha = 4 \Rightarrow 4\lambda - 32" = -3 \times 4" \Rightarrow \lambda = \dots$

A1: $\left| \overrightarrow{OD} \right| = 10\sqrt{13}$

Alternative:

M1: Deduces that $\overrightarrow{OD} = \lambda \overrightarrow{OB} = 4\lambda \mathbf{j} + 6\lambda \mathbf{k}$ and attempts

 $\overrightarrow{OD} = \overrightarrow{OC} + \mu \overrightarrow{OA} = -16\mathbf{i} + 32\mathbf{j} + 10\mathbf{k} + \mu (4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k})$

dM1: Correct attempt at finding λ or μ using the fact that $\lambda \overrightarrow{OB} = \overrightarrow{OC} + \mu \overrightarrow{OA}$

E.g. $(-16+4\mu)\mathbf{i} + ("32"-3\mu)\mathbf{j} + (10+5\mu)\mathbf{k} = 4\lambda\mathbf{j} + 6\lambda\mathbf{k} \Rightarrow -16+4\mu = 0 \Rightarrow \mu = \dots$

May also solve simultaneously using y and z components to find λ or μ

A1: $|\overrightarrow{OD}| = 10\sqrt{13}$

Note that the correct vector is $20\mathbf{j} + 30\mathbf{k}$

PTO for similar triangle approach

(b) Similar triangle approach

M1: For the key step in recognising that triangle *BCD* and triangle *BAO* are similar with a ratio of lengths of 4:1

dM1: States or uses the fact that $\left| \overrightarrow{OD} \right| = 5 \times \left| \overrightarrow{OB} \right|$

Stating this will score M1 dM1 provided there is no evidence of incorrect work

Note that they may establish this result using the work from (a) but must be used here to score.

A1: $\left| \overrightarrow{OD} \right| = 10\sqrt{13}$

Question Number	Scheme	Marks	AO's
14	Attempts any one of $(\pm \overrightarrow{PQ} =) \pm (\mathbf{q} - \mathbf{p}), \ (\pm \overrightarrow{PR} =) \pm (\mathbf{r} - \mathbf{p}), \ (\pm \overrightarrow{QR} =) \pm (\mathbf{r} - \mathbf{q})$		
	Or e.g.	M1	1.1b
	$\left(\pm \overrightarrow{PQ} = \right) \pm \left(\overrightarrow{OQ} - \overrightarrow{OP}\right), \ \left(\pm \overrightarrow{PR} = \right) \pm \left(\overrightarrow{OR} - \overrightarrow{OP}\right), \ \left(\pm \overrightarrow{QR} = \right) \pm \left(\overrightarrow{OR} - \overrightarrow{OQ}\right)$		
	Attempts e.g. $\mathbf{r} - \mathbf{q} = 2(\mathbf{q} - \mathbf{p})$		
	$\mathbf{r} - \mathbf{p} = 3(\mathbf{q} - \mathbf{p})$		
	$\frac{2}{3}(\mathbf{q}-\mathbf{p}) = \frac{1}{3}(\mathbf{r}-\mathbf{q})$	dM1	3.1a
	$\mathbf{q} = \mathbf{p} + \frac{1}{3} (\mathbf{r} - \mathbf{p})$		
	$\mathbf{q} = \mathbf{r} + \frac{2}{3} (\mathbf{p} - \mathbf{r})$		
	E.g.	A 1 *	2.1
	$\Rightarrow \mathbf{r} - \mathbf{q} = 2\mathbf{q} - 2\mathbf{p} \Rightarrow 2\mathbf{p} + \mathbf{r} = 3\mathbf{q} \Rightarrow \mathbf{q} = \frac{1}{3}(\mathbf{r} + 2\mathbf{p})^*$	A1*	2.1
		(3)	
			(3 marks)

Notes:

M1: Attempts any of the relevant vectors by subtracting either way around. This may be implied by sight of any one of $\pm(\mathbf{q}-\mathbf{p}), \pm(\mathbf{r}-\mathbf{p}), \pm(\mathbf{r}-\mathbf{q})$ ignoring how they are labelled

dM1: Uses the given information and writes it correctly in vector form that if rearranged would give the printed answer

A1*: Fully correct work leading to the given answer. Allow OQ = ... as long as OQ has been defined as q earlier.

In the working allow use of P instead of **p** and Q instead of **q** as long as the intention is clear.

Question	Scheme	Marks	AOs
15			
	A		
	M		
	$O \xrightarrow{N} B$		
	$\overrightarrow{OA} = \mathbf{a}, \overrightarrow{OB} = \mathbf{b}$		
(a)	$\left\{\overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{AM} = \overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB} \Rightarrow\right\} \overrightarrow{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$		
		M1	3.1a
	$\left\{\overrightarrow{CM} = \overrightarrow{CB} + \overrightarrow{BM} = \overrightarrow{CB} + \frac{1}{2}\overrightarrow{BA} \Longrightarrow\right\}\overrightarrow{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$		
	$\Rightarrow \overrightarrow{CM} = -\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} (needs \ to \ be \ simplified \ and \ seen \ in \ (a) \ only)$	A1	1.1b
		(2)	
(b)	$\overrightarrow{ON} = \overrightarrow{OC} + \overrightarrow{CN} \Longrightarrow \overrightarrow{ON} = \overrightarrow{OC} + \lambda \overrightarrow{CM}$	M1	1.1b
	$\overrightarrow{ON} = 2\mathbf{a} + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) \Longrightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda \right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b} *$	A1*	2.1
		(2)	
(c) Way 1	$\left(2 - \frac{3}{2}\lambda\right) = 0 \implies \lambda = \dots$	M1	2.2a
	$\lambda = \frac{4}{3} \Longrightarrow \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \left\{ \Longrightarrow \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \right\} \Longrightarrow ON : NB = 2:1 *$	A1*	2.1
		(2)	
(c) Way 2	$\overrightarrow{ON} = \mu \mathbf{b} \implies \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b} = \mu\mathbf{b}$		
	$\mathbf{a}: \left(2-\frac{3}{2}\lambda\right) = 0 \implies \lambda = \dots \left\{ \mathbf{b}: \frac{1}{2}\lambda = \mu \& \lambda = \frac{4}{3} \implies \mu = \frac{2}{3} \right\}$	M1	2.2a
	$\lambda = \frac{4}{3} \text{ or } \mu = \frac{2}{3} \Rightarrow \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \left\{ \Rightarrow \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \right\} \Rightarrow ON : NB = 2:1 *$	A1*	2.1
		(2)	
		(6 marks)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Quest	ion Scheme	Marks	AOs				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		3 $OB = ON + NB \Rightarrow \mathbf{D} = \left(\frac{2-\pi}{2}\right)\mathbf{a} + \frac{\pi}{2}\mathbf{b} + \mathbf{K}\mathbf{b}$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		a : $\left(2-\frac{3}{2}\lambda\right)=0 \Rightarrow \lambda = \dots \left\{$ b : $1=\frac{1}{2}\lambda+K \& \lambda=\frac{4}{3} \Rightarrow K=\frac{1}{3} \right\}$	M1	2.2a				
$\begin{array}{ c c c c } \hline \text{Way 4} & \hline ON = \mu \mathbf{b} & \& \ CN = k \ CM \Rightarrow CO + ON = k \ CM & \\ \hline ON = \mu \mathbf{b} & \& \ CN = k \ CM \Rightarrow CO + ON = k \ CM & \\ \hline -2\mathbf{a} + \mu \mathbf{b} = k \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) & \\ \hline \mathbf{a} : -2 = -\frac{3}{2}k \Rightarrow k = \frac{4}{3}, \ \mathbf{b} : \ \mu = \frac{1}{2}k \Rightarrow \mu = \frac{1}{2}\left(\frac{4}{3}\right) = \dots & \text{M1} & 2.2a \\ \hline \mu = \frac{2}{3} \Rightarrow \overline{ON} = \frac{2}{3}\mathbf{b} \left\{ \Rightarrow \overline{NB} = \frac{1}{3}\mathbf{b} \right\} \Rightarrow ON : NB = 2:1 * & \text{A1} & 2.1 \\ \hline \mathbf{M1} & 2.2a & \\ \hline \mathbf{M2} & \mathbf{M1} & 2.2a & \\ \hline \mathbf{M2} & \mathbf{M2} & \mathbf{M2} & \mathbf{M2} & \\ \hline \mathbf{M1} & 2.2a & \\ \hline $		$\lambda = \frac{4}{3} \text{ or } K = \frac{1}{3} \Longrightarrow \overrightarrow{ON} = \frac{2}{3} \mathbf{b} \text{ or } \overrightarrow{NB} = \frac{1}{3} \mathbf{b} \Longrightarrow ON : NB = 2 : 1 *$	A1	2.1				
Way 4 $ON = \mu D \otimes CN = kCM \Rightarrow CO+ON = kCM$ $-2a + \mu b = k\left(-\frac{3}{2}a + \frac{1}{2}b\right)$ $a: -2 = -\frac{3}{2}k \Rightarrow k = \frac{4}{3}, b: \mu = \frac{1}{2}k \Rightarrow \mu = \frac{1}{2}\left(\frac{4}{3}\right) =$ M12.2a $\mu = \frac{2}{3} \Rightarrow \overline{ON} = \frac{2}{3}b \left\{\Rightarrow \overline{NB} = \frac{1}{3}b\right\} \Rightarrow ON: NB = 2:1 *A12.1\mu = \frac{2}{3} \Rightarrow \overline{ON} = \frac{2}{3}b \left\{\Rightarrow \overline{NB} = \frac{1}{3}b\right\} \Rightarrow ON: NB = 2:1 *A12.1M1:Valid attempt to find \overline{CM} using a combination of known vectors a and bA1A1:A simplified correct answer for \overline{CM}\overline{CM} = (-2a+b) + \frac{1}{2}(a-b)or for \{\overline{CM} = \overline{OM} - \overline{OC} \Rightarrow\}\overline{CM} = (-2a+b) + \frac{1}{2}(a-b)or for \{\overline{CM} = \overline{OM} - \overline{OC} \Rightarrow\}\overline{CM} = \frac{1}{2}(a+b) - 2a only o.e.(b)\overline{ON} = a + \frac{1}{2}(b-a) + a\left(-\frac{3}{2}a + \frac{1}{2}b\right)\left\{= \left(\frac{1}{2} - \frac{3}{2}\lambda\right)a + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)b\right\}Note:Special CaseGive SC M1 A0 for the solution \overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \lambda CM\overline{ON} = a + \frac{1}{2}(b-a) + \lambda\left(-\frac{3}{2}a + \frac{1}{2}b\right) = \left(\frac{1}{2} - \frac{3}{2}\lambda\right)a + \left(\frac{1}{2} + \frac{1}{2}\mu\right)bNote:Alternative I:\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \mu \overline{CM}\overline{ON} = a + \frac{1}{2}(b-a) + \mu\left(-\frac{3}{2}a + \frac{1}{2}b\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)a + \left(\frac{1}{2} + \frac{1}{2}\mu\right)b\mu = \lambda - 1 \Rightarrow \overline{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda-1)\right)a + \left(\frac{1}{2} + \frac{1}{2}(\lambda-1)\right)b \Rightarrow \overline{ON} = \left(2 - \frac{3}{2}\lambda\right)a + \frac{1}{2}\lambda b(c)Way 1, Way 2 and Way 3M1:Deduces that \left(2 - \frac{3}{2}\lambda\right) = 0 and attempts to find the value of \lambdaA1*:Complete attempt to find the value of \mu$			(2)					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$(N - N) = V (N - V (N) \rightarrow (N + N) = V (N)$						
$\mu = \frac{2}{3} \Rightarrow \overline{ON} = \frac{2}{3} \mathbf{b} \left\{ \Rightarrow \overline{NB} = \frac{1}{3} \mathbf{b} \right\} \Rightarrow ON : NB = 2:1 * $ A1 2.1 Notes for Question 15 (a) Notes for Question 15 (a) Notes for Question 15 (a) Note: Valid attempt to find \overline{CM} using a combination of known vectors a and b A1: A simplified correct answer for \overline{CM} Note: Give M1 for $\overline{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\overline{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ or for $\{\overline{CM} = \overline{OM} - \overline{OC} \Rightarrow\}$ $\overline{CM} = \frac{1}{2}(\mathbf{a} + \mathbf{b}) - 2\mathbf{a}$ only o.e. (b) M1: Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ A1*: Correct proof Note: Special Case Give SC M1 A0 for the solution $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \lambda \overline{CM}$ $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) \left\{ = \left(\frac{1}{2} - \frac{3}{2} \lambda \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2} \lambda \right) \mathbf{b} \right\}$ Note: Alternative 1: Give M1 A1 for the following alternative solution: $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \mu CM$ $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) = \left(\frac{1}{2} - \frac{3}{2} \mu \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2} \mu \right) \mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overline{ON} = \left(\frac{1}{2} - \frac{3}{2} (\lambda - 1) \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2} (\lambda - 1) \right) \mathbf{b} \Rightarrow \overline{ON} = \left(2 - \frac{3}{2} \lambda \right) \mathbf{a} + \frac{1}{2} \lambda \mathbf{b}$ (c) Way 1, Way 2 and Way 3 M1: Deduces that $\left(2 - \frac{3}{2} \lambda \right) = 0$ and attempts to find the value of λ A1*: Correct proof (c) Way 4 M1: Complete attempt to find the value of μ		$-2\mathbf{a} + \mu \mathbf{b} = k \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right)$						
Image: Section 1		$\mathbf{a}:-2=-\frac{3}{2}k \Rightarrow k=\frac{4}{3}, \mathbf{b}: \ \mu=\frac{1}{2}k \Rightarrow \mu=\frac{1}{2}\left(\frac{4}{3}\right)=\dots$	M1	2.2a				
Notes for Question 15(a)M1:Valid attempt to find \overline{CM} using a combination of known vectors a and b A1:A simplified correct answer for \overline{CM} Note:Give M1 for $\overline{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\overline{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ or for $\{\overline{CM} = \overline{OM} - \overline{OC} \Rightarrow\}$ $\overline{CM} = (-2\mathbf{a} + \mathbf{b}) - 2\mathbf{a}$ only o.e.(b)M1:Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ M1:Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ M1:Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ Mix:Correct proofNote:Special CaseGive SC M1 A0 for the solution $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \lambda \overline{CM}$ $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left\{= \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b}\right\}$ Note:Alternative 1:Give M1 A1 for the following alternative solution: $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \mu \overline{CM}$ $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overline{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overline{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4		$\mu = \frac{2}{3} \Longrightarrow \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \left\{ \Longrightarrow \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \right\} \Longrightarrow ON : NB = 2:1 *$	A1	2.1				
(a)M1:Valid attempt to find \overline{CM} using a combination of known vectors a and bA1: A simplified correct answer for \overline{CM} Note:Give M1 for $\overline{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\overline{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ or for $\{\overline{CM} = \overline{OM} - \overline{OC} \Rightarrow\}$ $\overline{CM} = \frac{1}{2}(\mathbf{a} + \mathbf{b}) - 2\mathbf{a}$ only o.e.(b)M1:Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ M1: Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ M1: Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ M1: Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ M1: $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left\{= \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b}\right\}$ Note: Alternative 1: Give M1 A1 for the following alternative solution: $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \mu \overline{CM}$ $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overline{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overline{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ (c) Way 1, Way 2 and Way 3M1: Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*: Correct proof(c) Way 4M1: Complete attempt to find the value of μ			(2)					
M1:Valid attempt to find \overline{CM} using a combination of known vectors \mathbf{a} and \mathbf{b} A1:A simplified correct answer for \overline{CM} Note:Give M1 for $\overline{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\overline{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ or for $\{\overline{CM} = \overline{OM} - \overline{OC} \Rightarrow\}$ $\overline{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ Note:Give M1 for $\overline{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\overline{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ or for $\{\overline{CM} = \overline{OM} - \overline{OC} \Rightarrow\}$ $\overline{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ M1:Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ A1*:A1*:Correct proofNote:Special Case Give SC M1 A0 for the solution $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \lambda \overline{CM}$ $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left\{= \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b}\right\}$ Note:Alternative 1: Give M1 A1 for the following alternative solution: $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \mu \overline{CM}$ $\overline{ON} = \overline{OA} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overline{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overline{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ		Notes for Question 15						
A1:A simplified correct answer for \overline{CM} Note:Give M1 for $\overline{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\overline{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ or for $\{\overline{CM} = \overline{OM} - \overline{OC} \Rightarrow\}$ $\overline{CM} = \frac{1}{2}(\mathbf{a} + \mathbf{b}) - 2\mathbf{a}$ only o.e.(b) $\overline{M1:}$ Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ A1*:Correct proofNote:Special Case Give SC M1 A0 for the solution $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \lambda \overline{CM}$ $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left\{= \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b}\right\}$ Note:Alternative 1: Give M1 A1 for the following alternative solution: $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \mu \overline{CM}$ $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overline{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overline{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ	(a)							
A1:A simplified correct answer for \overline{CM} Note:Give M1 for $\overline{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\overline{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ or for $\{\overline{CM} = \overline{OM} - \overline{OC} \Rightarrow\}$ $\overline{CM} = \frac{1}{2}(\mathbf{a} + \mathbf{b}) - 2\mathbf{a}$ only o.e.(b) $\overline{M1:}$ Uses $\overline{ON} = \overline{OC} + \lambda \overline{CM}$ A1*:Correct proofNote:Special Case Give SC M1 A0 for the solution $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \lambda \overline{CM}$ $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left\{= \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b}\right\}$ Note:Alternative 1: Give M1 A1 for the following alternative solution: $\overline{ON} = \overline{OA} + \overline{AM} + \overline{MN} \Rightarrow \overline{ON} = \overline{OA} + \overline{AM} + \mu \overline{CM}$ $\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overline{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overline{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ	M1:	Valid attempt to find \overrightarrow{CM} using a combination of known vectors a and b						
Note:Give M1 for $\overrightarrow{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\overrightarrow{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ or for $\{\overrightarrow{CM} = \overrightarrow{OM} - \overrightarrow{OC} \Rightarrow\}$ $\overrightarrow{CM} = \frac{1}{2}(\mathbf{a} + \mathbf{b}) - 2\mathbf{a}$ only o.e.(b)M1:Uses $\overrightarrow{ON} = \overrightarrow{OC} + \lambda \overrightarrow{CM}$ A1*:Correct proofNote:Special Case Give SC M1 A0 for the solution $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \lambda \overrightarrow{CM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) \left\{ = \left(\frac{1}{2} - \frac{3}{2}\lambda \right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda \right)\mathbf{b} \right\}$ Note:Alternative 1: Give M1 A1 for the following alternative solution: $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{\muCM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) = \left(\frac{1}{2} - \frac{3}{2}\mu \right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu \right)\mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1) \right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1) \right)\mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda \right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2}\lambda \right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ	A1:	\rightarrow						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Note:							
M1:Uses $\overrightarrow{ON} = \overrightarrow{OC} + \lambda \overrightarrow{CM}$ A1*:Correct proofNote:Special Case $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left\{ = \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b} \right\}$ Note:Alternative 1:Give M1 A1 for the following alternative solution: $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$ $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$ $\overrightarrow{ON} = a + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ		or for $\left\{ \overrightarrow{CM} = \overrightarrow{OM} - \overrightarrow{OC} \Rightarrow \right\} \overrightarrow{CM} = \frac{1}{2}(\mathbf{a} + \mathbf{b}) - 2\mathbf{a}$ only o.e.						
A1*:Correct proofNote:Special CaseGive SC M1 A0 for the solution $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \lambda \overrightarrow{CM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left\{ = \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b} \right\}$ Note:Alternative 1:Give M1 A1 for the following alternative solution: $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ	(b)							
Note:Special Case Give SC M1 A0 for the solution $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \lambda \overrightarrow{CM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left\{ = \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b} \right\}$ Note:Alternative 1: Give M1 A1 for the following alternative solution: $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$ $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ	M1:	Uses $\overrightarrow{ON} = \overrightarrow{OC} + \lambda \overrightarrow{CM}$						
Give SC M1 A0 for the solution $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \lambda \overrightarrow{CM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) \left\{ = \left(\frac{1}{2} - \frac{3}{2}\lambda \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda \right) \mathbf{b} \right\}$ Note:Alternative 1: Give M1 A1 for the following alternative solution: $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$ $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) = \left(\frac{1}{2} - \frac{3}{2}\mu \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu \right) \mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1) \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1) \right) \mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda \right) \mathbf{a} + \frac{1}{2}\lambda \mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2}\lambda \right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ	A1*:	Correct proof						
$\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \left\{ = \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b} \right\}$ Note: $\underbrace{\mathbf{Alternative 1:}}_{\text{Give M1 A1 for the following alternative solution:}}_{\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu\overrightarrow{CM}$ $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu\overrightarrow{CM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ								
Note: $ \frac{Alternative 1:}{ON = OA + AM + MN \Rightarrow ON = OA + AM + \mu CM} $ $ \overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b} $ $ \mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b} $ (c) Way 1, Way 2 and Way 3 M1: Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*: Correct proof (c) Way 4 M1: Complete attempt to find the value of μ		Give SC M1 A0 for the solution $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN}$	$\lambda \overrightarrow{CM}$					
Give M1 A1 for the following alternative solution: $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$ $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) = \left(\frac{1}{2} - \frac{3}{2} \mu \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2} \mu \right) \mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2} (\lambda - 1) \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2} (\lambda - 1) \right) \mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2} \lambda \right) \mathbf{a} + \frac{1}{2} \lambda \mathbf{b}$ (c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2 - \frac{3}{2} \lambda \right) = 0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ		$\overrightarrow{ON} = \mathbf{a} + \frac{1}{2} (\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2} \mathbf{a} + \frac{1}{2} \mathbf{b} \right) \left\{ = \left(\frac{1}{2} - \frac{3}{2} \lambda \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2} \lambda \right) \mathbf{b} \right\}$						
$\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) = \left(\frac{1}{2} - \frac{3}{2}\mu \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu \right) \mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1) \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1) \right) \mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda \right) \mathbf{a} + \frac{1}{2}\lambda \mathbf{b}$ (c) Way 1, Way 2 and Way 3 M1: Deduces that $\left(2 - \frac{3}{2}\lambda \right) = 0$ and attempts to find the value of λ A1*: Correct proof (c) Way 4 M1: Complete attempt to find the value of μ	Note:							
$\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) = \left(\frac{1}{2} - \frac{3}{2}\mu \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu \right) \mathbf{b}$ $\mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1) \right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1) \right) \mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda \right) \mathbf{a} + \frac{1}{2}\lambda \mathbf{b}$ (c) Way 1, Way 2 and Way 3 M1: Deduces that $\left(2 - \frac{3}{2}\lambda \right) = 0$ and attempts to find the value of λ A1*: Correct proof (c) Way 4 M1: Complete attempt to find the value of μ								
$\mu = \lambda - 1 \Rightarrow \overline{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right) \mathbf{b} \Rightarrow \overline{ON} = \left(2 - \frac{3}{2}\lambda\right) \mathbf{a} + \frac{1}{2}\lambda \mathbf{b}$ (c) Way 1, Way 2 and Way 3 M1: Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ A1*: Correct proof (c) Way 4 M1: Complete attempt to find the value of μ		$\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Longrightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$						
(c)Way 1, Way 2 and Way 3M1:Deduces that $\left(2-\frac{3}{2}\lambda\right)=0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ		$\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$						
M1:Deduces that $\left(2-\frac{3}{2}\lambda\right)=0$ and attempts to find the value of λ A1*:Correct proof(c)Way 4M1:Complete attempt to find the value of μ		$\mu = \lambda - 1 \Rightarrow \overrightarrow{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right) \mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right) \mathbf{b} \Rightarrow \overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda\right) \mathbf{a} + \frac{1}{2}\lambda \mathbf{b}$						
A1*: Correct proof (c) Way 4 M1: Complete attempt to find the value of μ	(c)	Way 1, Way 2 and Way 3						
(c) Way 4 M1: Complete attempt to find the value of μ	M1:	Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ						
(c) Way 4 M1: Complete attempt to find the value of μ	A1*:	Correct proof						
M1: Complete attempt to find the value of μ	(c)							
		Correct proof						

16 $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}, \ \overrightarrow{OB} = 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}, \ \overrightarrow{OC} = a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}, \ a < 0$		AOs					
AB = BD, AB = 4							
(a) $E.g. \ \overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB}$							
or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OB} - \overrightarrow{OA} = 2\overrightarrow{OB} - \overrightarrow{OA}$							
or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AB}$							
$= \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \left\{ = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$ $\mathbf{Or} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ -2 \\ 3 \\ -4 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \left\{ = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$	M1	3.1a					
$= \begin{pmatrix} 6\\ -7\\ 10 \end{pmatrix} \text{ or } 6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k} $	A1	1.1b					
	(2)						
	M1	1.1b					
$\left\{ \left \overrightarrow{AC} \right = 4 \implies \right\} (a-2)^2 + (5-3)^2 + (-2-4)^2 = (4)^2$							
$\Rightarrow (a-2)^2 = 8 \Rightarrow a = \dots \text{ or } \Rightarrow a^2 - 4a - 4 = 0 \Rightarrow a = \dots$	IM1	2.1					
	A1	1 11					
		1.1b					
	(3) (5	marks)					
Notes for Question 16	(0						
(a)							
M1: Complete <i>applied</i> strategy to find a vector expression for \overline{OD}							
A1: See scheme							
Note: Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})=(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+5\mathbf{j}-7\mathbf{k})=(2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+5\mathbf{j}-7\mathbf{k})=(2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})+(-2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(-2\mathbf{i}+3\mathbf{k})+(-2i$	(2 i +3 j -	-4 k)					
Note: Writing e.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{AB}$ or $\overrightarrow{OD} = 2\overrightarrow{OB} - \overrightarrow{OA}$ with no other work is M0							
Note: Finding <i>coordinates</i> , i.e. $(6, -7, 10)$ without reference to the correct position vector	ors is A	0					
Note: Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working							
	M1 can be implied for at least two correct components in their position vector of <i>D</i>						
(b) M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OC} , then squares and adds each of the 3 co	omnone	nts					
Note: Ignore labelling	Finds the difference between \overrightarrow{OA} and \overrightarrow{OC} , then squares and adds each of the 3 components Note: Ignore labelling						
Complete method of <i>correctly</i> applying Pythagoras' Theorem on $ \overrightarrow{AC} = 4$ and using a correct							
method of solving their resulting quadratic equation to find at least one of $a =$							
Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark							
A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$							
Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0							
Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied	ed						
Note: Writing $a = -0.828$, without reference to a correct exact value is A0							

Question Number	Scheme			Note		Marks
17.	$\overrightarrow{OA} = \begin{pmatrix} -3\\7\\2 \end{pmatrix}, \overrightarrow{AB} = \begin{pmatrix} 4\\-6\\2 \end{pmatrix}, \overrightarrow{OP} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}; \overrightarrow{OQ} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}$	$ + 4\mu \\ -6\mu \\ + 2\mu $	or $\overrightarrow{OQ} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 9+2\mu\\ 1-3\mu\\ 8+\mu \end{pmatrix}$	Let θ = size of angle <i>PAB</i> . <i>A</i> , <i>B</i> lie on l_1 and <i>P</i> lies on l_2	
(a)	$\left\{\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} \Longrightarrow\right\}$			Atten	npts to add \overrightarrow{OA} to \overrightarrow{AB}	M1
	$\overrightarrow{OB} = \begin{pmatrix} -3\\7\\2 \end{pmatrix} + \begin{pmatrix} 4\\-6\\2 \end{pmatrix} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \Rightarrow B(1,1,4)$			(1, 1, 4)) or $\begin{pmatrix} 1\\1\\4 \end{pmatrix}$ or $\mathbf{i} + \mathbf{j} + 4\mathbf{k}$	A1
	Note: M1 can be implied by a	1	- \	omponent	s for <i>B</i>	[2]
(b)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} - \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix} \text{ or } \overrightarrow{PA}$	$= \begin{pmatrix} -12\\ -6\\ -6 \end{pmatrix}$	2 5 5		An attempt to find \overrightarrow{AP} or \overrightarrow{PA}	M1
	$\left\{\cos\theta = \frac{\overrightarrow{AP} \cdot \overrightarrow{AB}}{ \overrightarrow{AP} \overrightarrow{AB} }\right\} = \frac{\begin{pmatrix} 12\\ -6\\ 6 \end{pmatrix}}{\sqrt{(12)^2 + (-6)^2 + (6)^2}}.$	$\begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$ $\sqrt{(4)^2 + 1}$	$(-6)^2 + (2)^2$	$\overline{)^2}$ m	Applies dot product formula between their $\left(\overrightarrow{AP} \text{ or } \overrightarrow{PA}\right)$ and $\left(\overrightarrow{AB} \text{ or } \overrightarrow{BA}\right)$ or a ultiple of these vectors	dM1
	$\left\{\cos\theta = \frac{96}{\sqrt{216}.\sqrt{56}} \Rightarrow \cos\theta\right\} = \frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{56}$	/21			$\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$	A1
	$\left(\begin{array}{c} 4\end{array}\right)$	105	A	t math a d t	for converting on event	[3]
(c)	$\left\{\cos\theta = \frac{4}{\sqrt{21}}\right\} \Rightarrow \sin\theta = \frac{\sqrt{21-16}}{\sqrt{21}} = \frac{\sqrt{5}}{\sqrt{21}} = \frac{\sqrt{5}$	21	value for	$\cos q$ to a	for converting an exact in exact value for $\sin q$	M1
	Area $PAB = \frac{1}{2} \left(\sqrt{216} \right) \left(\sqrt{56} \right) \left(\frac{\sqrt{5}}{\sqrt{21}} \right) = 12\sqrt{2}$	$\overline{21}\left(\frac{\sqrt{5}}{\sqrt{21}}\right)$	$\left. \right\} = 12\sqrt{3}$	5	see notes $12\sqrt{5}$	M1 A1 cao
			/)			[3]
(d)	$\{l_2:\} \mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 4\\-6\\2 \end{pmatrix} \text{ or } \mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 2\\-3\\1 \end{pmatrix}$			$=9\mathbf{i}+\mathbf{j}+\mathbf{j}+\mathbf{j}$	+ $\mu \mathbf{d}$, $\mathbf{p} \neq 0$, $\mathbf{d} \neq 0$ with 8k or $\mathbf{d} = 4\mathbf{i} - 6\mathbf{j} + 2\mathbf{k}$ multiple of $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$	M1
)		(Correct vector equation	Al
	$(9+4\mu)$ (1) ($(8+4\mu)$) ((-8-	4µ)]			[2]
(e)	$\overrightarrow{BQ} = \begin{pmatrix} 9+4\mu\\ 1-6\mu\\ 8+2\mu \end{pmatrix} - \begin{pmatrix} 1\\ 1\\ 4 \end{pmatrix} \left\{ = \begin{pmatrix} 8+4\mu\\ -6\mu\\ 4+2\mu \end{pmatrix} \right\} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\ 1\\ 1\\ 4 \end{pmatrix} \right\}$	$= \begin{pmatrix} 6 \\ 6 \\ -4 - \end{pmatrix}$	$\left \begin{array}{c} \mu \\ \mu \\ 2 \mu \end{array} \right \right\}$	Applies 0	s their \overrightarrow{OQ} – their \overrightarrow{OB} r their \overrightarrow{OB} – their \overrightarrow{OQ}	M1
	$\overrightarrow{BQ} \cdot \overrightarrow{AP} = 0 \Longrightarrow \begin{pmatrix} 8+4\mu \\ -6\mu \\ 4+2\mu \end{pmatrix} \cdot \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} = 0 \Longrightarrow \mu =$				= 0, o.e. and <i>solves</i> the n to find a value for μ	dM1
	$\Rightarrow 96 + 48\mu + 36\mu + 24 + 12\mu = 0 \Rightarrow 96\mu + 120$	$0 = 0 \Longrightarrow$	$\mu = -\frac{5}{4}$		$\mu = -\frac{120}{96}$ or $\mu = -\frac{5}{4}$	A1 o.e.
	(9+4(-1,25)) (4)		Subst	titutes thei	r value of μ into \overrightarrow{OQ}	ddM1
	$\overrightarrow{OQ} = \begin{pmatrix} 9+4(-1.25)\\ 1-6(-1.25)\\ 8+2(-1.25) \end{pmatrix} = \begin{pmatrix} 4\\ 8.5\\ 5.5 \end{pmatrix} \Rightarrow Q(4, 8.5, 5.5)$	j)	(4, 8.5, 5	$(5.5) \text{ or } \begin{pmatrix} 4\\ 8\\ 5\\ 5 \end{pmatrix}$	$ \begin{pmatrix} 4 \\ .5 \\ .5 \end{pmatrix} \text{ or } 4\mathbf{i} + 8.5\mathbf{j} + 5.5\mathbf{k} $	A1 o.e.
						[5] 15
24	_ <u> </u>	EXPE	RT			15
	\mathbf{T} 1	Γυιτι	NC			

Question Number	Scheme		Not	es	Marks
17.	$\overrightarrow{OA} = \begin{pmatrix} -3\\7\\2 \end{pmatrix}, \overrightarrow{AB} = \begin{pmatrix} 4\\-6\\2 \end{pmatrix}, \overrightarrow{OP} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}; \overrightarrow{OQ} = \begin{pmatrix} 9+1\\-6\\8+1 \end{pmatrix}$, ,	-		
(e) Alt 1	$\overrightarrow{BQ} = \begin{pmatrix} 9+2\mu\\ 1-3\mu\\ 8+\mu \end{pmatrix} - \begin{pmatrix} 1\\ 1\\ 4 \end{pmatrix} \left\{ = \begin{pmatrix} 8+2\mu\\ -3\mu\\ 4+\mu \end{pmatrix} \right\} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	· /)	Applie (es their \overrightarrow{OQ} – their \overrightarrow{OB} or their \overrightarrow{OB} – their \overrightarrow{OQ}	M1
	$\overrightarrow{BQ} \cdot \overrightarrow{AP} = 0 \Rightarrow \begin{pmatrix} 8+2\mu \\ -3\mu \\ 4+\mu \end{pmatrix} \cdot \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} = 0 \Rightarrow \mu = \dots$	Applies resulting		= 0, o.e. and <i>solves</i> the on to find a value for μ	dM1
	$\Rightarrow 96 + 24\mu + 18\mu + 24 + 6\mu = 0 \Rightarrow 48\mu + 120 =$	$0 \Longrightarrow \mu = -\frac{5}{2}$		$\mu = -\frac{5}{2}$	A1 o.e.
	(9+2(-2.5)) (4)	Substi	itutes the	eir value of μ into \overrightarrow{OQ}	ddM1
	$\overrightarrow{OQ} = \begin{pmatrix} 9+2(-2.5)\\ 1-3(-2.5)\\ 8+1(-2.5) \end{pmatrix} = \begin{pmatrix} 4\\ 8.5\\ 5.5 \end{pmatrix} \Rightarrow Q(4, 8.5, 5.5)$	(4, 8.5, 5.	.5) or $\begin{pmatrix} 8\\5 \end{pmatrix}$	$ \begin{array}{c} 4 \\ 3.5 \\ 5.5 \end{array} $ or $4i + 8.5j + 5.5k$	A1 o.e.
					[5]
(b)	<u>Vector Cross Product</u> : Use this scheme if a ve		ct metho	d is being applied	
Alt 1	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} - \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix} \text{ or } \overrightarrow{PA} =$	$\begin{pmatrix} -12\\6\\-6 \end{pmatrix}$		An attempt to find \overrightarrow{AP} or \overrightarrow{PA}	M1
	$\mathbf{d}_{1} \times \mathbf{d}_{2} = \underbrace{\begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix}}_{\times} \underbrace{\begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}}_{=} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 12 & -6 & 6 \\ 4 & -6 & 2 \end{cases} = 24\mathbf{i} + \mathbf{i}$	$0\mathbf{j}-48\mathbf{k}$			
	$\sin\theta = \frac{\sqrt{(24)^2 + (0)^2 + (-48)^2}}{\sqrt{(12)^2 + (-6)^2 + (6)^2} \cdot \sqrt{(4)^2 + (-6)^2 + (2)^2}}$		betwee	or cross product formula en their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ multiple of these vectors	dM1
	$\left\{\sin\theta = \frac{\sqrt{2880}}{\sqrt{216}\sqrt{56}} = \sqrt{\frac{5}{21}}\right\} \left\{\Rightarrow\cos\theta\right\} = \sqrt{\frac{16}{21}}$	$=\frac{4}{\sqrt{21}}$ or $\frac{4}{21}$		$\frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{21}$	
(b)	Cocino Pulo				[3]
(b) Alt 2	<u>Cosine Rule</u> $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} - \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix} \text{ or } \overrightarrow{PA} = \begin{pmatrix} -3\\-6\\6 \end{pmatrix}$	$\begin{pmatrix} -12\\ 6\\ -6 \end{pmatrix}$	An att	tempt to find \overrightarrow{AP} or \overrightarrow{PA}	M1
	Note: $ \overrightarrow{PA} = \sqrt{216}$, $ \overrightarrow{AB} = \sqrt{56}$ and $ \overrightarrow{PB} = \sqrt{80}$			Applies the cosine rule	
	$\frac{\left(\sqrt{80}\right)^2 = \left(\sqrt{216}\right)^2 + \left(\sqrt{56}\right)^2 - 2\left(\sqrt{216}\right)\left(\sqrt{56}\right)c}{216 + 56 - 80}$ 192	osθ		the correct way round	dM1
	$\cos\theta = \frac{216 + 56 - 80}{2\sqrt{216}\sqrt{56}} = \frac{192}{2\sqrt{216}\sqrt{56}}$				
	$\{\Rightarrow\cos\theta\} = \frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{21}$			$\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$	A1
					[3]

		Question 17 Notes
17. (b)	Note	If no "subtraction" seen, you can award 1st M1 for 2 out of 3 correct components of the difference
	Note	For dM1 the dot product formula can be applied as
		$\sqrt{(12)^{2} + (-6)^{2} + (6)^{2}} \cdot \sqrt{(4)^{2} + (-6)^{2} + (2)^{2}} \cos \theta = \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$
		$\sqrt{(12)^2 + (-6)^2 + (6)^2} \cdot \sqrt{(4)^2 + (-6)^2 + (2)^2} \cos \theta = \begin{vmatrix} -6 \\ -6 \end{vmatrix} - 6$
	Note	<i>Evaluation</i> of the dot product for $12\mathbf{i} - 6\mathbf{j} + 6\mathbf{k} \& 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ is not required for the dM1 mark
	A1	For either $\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ or $\cos\theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$
	Note	$\frac{\sqrt{21}}{21} = \frac{\sqrt{21}}{\sqrt{21}} = \frac{\sqrt{21}}{21$
	Note	Using $2\mathbf{i} - \mathbf{j} + \mathbf{k} \& 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ gives $\cos \theta = \frac{4+3+1}{\sqrt{6}\sqrt{14}} = \frac{8}{2\sqrt{21}} = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$
	Note	Give M1M1A0 for finding $\theta = \text{awrt } 29.2$ without reference to $\cos \theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$
	Note	Condone taking the dot product between vectors the wrong way round for the M1 dM1 marks
	Note	Vectors the wrong way round
		• E.g. taking the dot product between \overrightarrow{PA} and \overrightarrow{AB} to give $\cos\theta = -\frac{4}{\sqrt{21}}$ or $-\frac{4}{21}\sqrt{21}$
		with no other working is final A0
		• E.g. taking the dot product between \overrightarrow{PA} and \overrightarrow{AB} to give $\cos\theta = -\frac{4}{\sqrt{21}}$ or $-\frac{4}{21}\sqrt{21}$
		followed by $\cos \theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ or just simply writing $\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ is final A1
	Note	In part (b), give M0dM0 for finding and using $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} = (5\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$
(c)	Note	Give 1 st M0 for $\sin\theta = \sin\left(\cos^{-1}\left(\frac{4\sqrt{21}}{21}\right)\right)$ or $\sin\theta = 1 - \left(\frac{4}{21}\sqrt{21}\right)^2$ unless recovered
	M1	Give 2 nd M1 for either
		• $\frac{1}{2}$ (their length AP)(their length AB)(their attempt at $\sin \theta$)
		• $\frac{1}{2}$ (their length <i>AP</i>)(their length <i>AB</i>)sin(their 29.2° from part (b))
		• $\frac{1}{2}$ (their length <i>AP</i>)(their length <i>AB</i>)sin θ ; where cos θ = in part (b)
	Note	$\frac{1}{2}(\sqrt{216})(\sqrt{56})\sin(\operatorname{awrt} 29.2^{\circ} \text{ or awrt } 150.8^{\circ}) \{= \operatorname{awrt} 26.8\} \text{ without reference to finding } \sin\theta$
	Nata	as an exact value if M0 M1 A0
	Note Note	Anything that rounds to 26.8 without reference to finding $\sin \theta$ as an exact value is M0 M1 A0 Anything that rounds to 26.8 without reference to $12\sqrt{5}$ is A0
	Note	
	Note	If they use $\overline{AP} = \overline{OP} - \overline{AB} = (5\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$ in part (b), then this can be followed through in part (c)
		for the 2 nd M mark as e.g. $\frac{1}{2}(\sqrt{110})(\sqrt{56})\sin\theta$
	Note	Finding $12\sqrt{5}$ in part (c) is M1 dM1 A1, even if there is little or no evidence of finding an exact
		value for $\sin \theta$. So $\frac{1}{2} (\sqrt{216}) (\sqrt{56}) \sin(29.2^\circ) = 12\sqrt{5}$ is M1 dM1 A1

	Question 17 Notes Continued						
17. (d)	Note	Writing $\mathbf{r} = \dots$ or $l_2 = \dots$ or $l = \dots$ or Line $2 = \dots$ is not required for the M mark					
	A1	Writing $\mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 4\\-6\\2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 2\\-3\\1 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \mathbf{d}$, where $\mathbf{d} = a$ multiple of $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$					
	Note	Writing $\mathbf{r} = \dots$ or $l_2 = \dots$ or $l = \dots$		2 = is requi	red for the A ma	ark	
	Note	Other valid $\mathbf{p} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}$ are e.g. \mathbf{p}	$\mathbf{p} = \begin{pmatrix} 13\\ -5\\ 10 \end{pmatrix} \mathbf{o}$	$\mathbf{r} \mathbf{p} = \begin{pmatrix} 5\\7\\6 \end{pmatrix}. \mathbf{So}$	$\mathbf{r} = \begin{pmatrix} 13\\ -5\\ 10 \end{pmatrix} + \mu$	$\begin{pmatrix} 4\\-6\\2 \end{pmatrix}$ is M1 A1	
	Note	Give A0 for writing $l_2 : \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} +$					
	Note	Using scalar parameter λ or other	her scalar p	erameters (e.g	μ or s or t) is t	fine for M1 and/	or A1
(e)	ddM1	Substitutes their value of μ into					
	Note	If they use $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} = (52)^{-1}$ for the 2 nd M mark and the 3 rd M		in part (b), th	en this can be fo	ollowed through	in part (e)
	Note	You imply the final M mark in		at least 2 corre	ectly followed the	hrough compone	ents for Q
		from their μ					_
Question			1				
Number		Scheme			Notes		Marks
17. (c)		Cross Product: Use this scheme			t method is bein	g applied	
Alt 1	$\overrightarrow{AP} \times \overrightarrow{AP}$	$\vec{B} = \underbrace{\begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix}}_{\times} \times \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} = \begin{cases} \mathbf{i} \mathbf{j} \mathbf{k} \\ 12 -6 6 \\ 4 -6 2 \end{cases}$	$= 24\mathbf{i} + 0$	j -48 k			
		1 1	Uses a vect	or product and	$\sqrt{("24")^2 + ("0)^2}$	$(-48'')^2 + (-48'')^2$	M1
	Area PA	$AB = \frac{1}{2}\sqrt{(24)^2 + (-48)^2}$ Uses a vector product and $\frac{1}{2}\sqrt{("24")^2 + ("0")^2 + ("-48")^2}$ M1				M1	
	$=12\sqrt{5}$	$\overline{5}$ $12\sqrt{5}$ A1 cao				A1 cao	
		[3]				[3]	
17. (c) Alt 2	Note: c	$\cos APB = \frac{5}{\sqrt{30}}$ or $\frac{1}{6}\sqrt{30}$ Note: $\left \overrightarrow{PA}\right = \sqrt{216}$ and $\left \overrightarrow{PB}\right = \sqrt{80}$					
	$\sin\theta = -$	$= \frac{\sqrt{30-25}}{\sqrt{30}} = \frac{\sqrt{5}}{\sqrt{30}} = \frac{\sqrt{6}}{6}$ A correct method for converting an exact value for sin <i>q</i> M1				M1	
	Area PA	$AB = \frac{1}{2} \left(\sqrt{216} \right) \left(\sqrt{80} \right) \left(\frac{\sqrt{5}}{\sqrt{30}} \right) \bigg = 1$	$12\sqrt{30}\left(\frac{\sqrt{3}}{\sqrt{5}}\right)$	$\left \frac{5}{5} \right = 12\sqrt{5}$	$\frac{1}{2}$ (their <i>PA</i>)	(their PB)sin θ	M1
		2 $(\sqrt{30})$	(√3	v)j		$12\sqrt{5}$	A1 cao
							[3]

Question Number	Scheme				Notes	Marks	
	$l_1: \mathbf{r} = \begin{pmatrix} 4\\28\\4 \end{pmatrix} + \lambda \begin{pmatrix} -1\\-5\\1 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 5\\3\\1 \end{pmatrix} + \lambda \begin{pmatrix} -1\\-5\\1 \end{pmatrix}$	$\mathbf{r} = \begin{pmatrix} 4\\28\\4 \end{pmatrix} + \lambda \begin{pmatrix} -1\\-5\\1 \end{pmatrix}, l_2 : \mathbf{r} = \begin{pmatrix} 5\\3\\1 \end{pmatrix} + \mu \begin{pmatrix} 3\\0\\-4 \end{pmatrix}; \overrightarrow{OA} = \begin{pmatrix} 2\\18\\6 \end{pmatrix} \text{ lies on } l_1 \qquad \text{Let } q_{\text{Acute}} \text{ be the acute angle between } l_1 \text{ and } l_2$					
(a)	$\{l_1 = l_2 \Longrightarrow\} 28 - 5\lambda = 3 \{\Rightarrow \lambda = 5\}$ or $4 - \lambda = 5 + 3\mu$ and $4 + \lambda = 1 - 4\mu \{\Rightarrow$	$\mu = -2$			$28 - 5\lambda = 3$ or <i>n</i> and $4 + 1 = 1 - 4m$ 2 (Can be implied).	B1	
	$\left\{ \overrightarrow{OX} = \right\} \begin{pmatrix} 4\\28\\4 \end{pmatrix} + 5 \begin{pmatrix} -1\\-5\\1 \end{pmatrix} \text{ or } \begin{pmatrix} 5\\3\\1 \end{pmatrix} - 2 \begin{pmatrix} -1\\-5\\1 \end{pmatrix} = 2 \begin{pmatrix} -1\\-5\\1 \end{pmatrix} =$	$\begin{pmatrix} 3\\0\\-4 \end{pmatrix}$	1 2	utes their	to find / and/or <i>m</i> value for λ into l_1 value for μ into l_2	M1	
	So, X(-1, 3, 9) (-	-1, 3, 9) or	$ r \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} \text{ or } -i $	i + 3 j + 9	- 1 k or condone 3 9	A1 cao	
			1			[:	3]
(b) Way 1	$\mathbf{d}_{1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \mathbf{d}_{2} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$			required	that the dot product between \mathbf{d}_1 and \mathbf{d}_2 ultiple of \mathbf{d}_1 and \mathbf{d}_2	M1	
	$\cos \theta = \frac{\begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2}}$	$(-4)^2$	$\left\{=\frac{-7}{\sqrt{27}.\sqrt{25}}\right\}$	1 st betv	dependent on the M mark. Applies dot product formula ween \mathbf{d}_1 and \mathbf{d}_2 or a ultiple of \mathbf{d}_1 and \mathbf{d}_2	dM1	
	$\{q = 105.6303588 \triangleright\} \theta_{Acute} = 74.3696$.37 seen in (b) only	A1	
	(7) Actie		× 17				3]
(c)	$\overrightarrow{AX} = "\overrightarrow{OX}" - \overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} - \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} =$	$=\left(\begin{array}{c} -3\\ -15\\ 3\end{array}\right)$	or $A_{I=2}, X_{I=5}$	<i>Þ AX</i> =	$3 \mathbf{d}_1 , \left\{ \mathbf{d}_1 = \sqrt{27} \right\}$	t	
	$AX = \sqrt{(-3)^2 + (-15)^2 + (3)^2}$ or $3\sqrt{27} \left\{ = \frac{1}{2} \right\}$	$-\sqrt{243} = 0$	Full n		finding AX or XA	M1	
	(,			$\sqrt{3}$ seen in (c) only	A1 cao	
	Note: You cannot recover w	ork for part	t (c) in either pa	rt (d) or p	part (e).	[2	2]
(d) Way 1	$\frac{YA}{"9\sqrt{3}"} = \tan("74.36964")$	1 1			$\left \frac{\partial \theta}{\partial t} \right $ tan θ , where θ is	M1	
	<i>YA</i> = 55.71758 = 55.7 (1 dp)	L.	nen acute of OD	-	e between l_1 and l_2 g that rounds to 55.7	Al	
				anytimg	, mai rounus to 55.7		2]
(e)	$\{A_{\lambda=2}, X_{\lambda=5} \Rightarrow \text{So } AX = 2AB \Rightarrow \text{So at}$	$B, \ \lambda = 3.5$	or $\lambda = 0.5$			L4	1
Way 1			,	(their /	$\frac{1}{2}$ found in (a)) + 2		
	$\overrightarrow{OB} = \begin{pmatrix} 4\\28\\4 \end{pmatrix} + 3.5 \begin{pmatrix} -1\\-5\\1 \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$				$\frac{2}{2}$ (a) $\frac{1}{2}$ into l_1	M1;	
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$			(Also	on vector is correct. allow coordinates).	A1	
			DOU	-	vectors are correct. allow coordinates).	A1	
							3]
						1	13

Question Number	Scheme	Notes	Marks			
18. (e)	$\begin{cases} AX = 2AB \implies AB = \frac{1}{2}AX. \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \overrightarrow{A}. \end{cases}$	$\overrightarrow{AB} \Rightarrow \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2}\overrightarrow{AX}$				
Way 2	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies either $\overrightarrow{OA} + 0.5\overrightarrow{AX}$ or $\overrightarrow{OA} - 0.5\overrightarrow{AX}$ where (their \overrightarrow{AX}) = ±[(their \overrightarrow{OX}) – \overrightarrow{OA}]	M1;			
	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$ At least one position vector is correct (Also allow coordinates) (Also al					
	$\begin{array}{c} 0D = \left(\begin{array}{c} 13 \\ 6 \end{array}\right)^{-0.5} \left(\begin{array}{c} -15 \\ 3 \end{array}\right)^{-1} \left(\begin{array}{c} 25.5 \\ 4.5 \end{array}\right)$	Both position vectors are correct (Also allow coordinates)	A1			
			[3]			
18. (e) Way 3	$\overrightarrow{AB} = \begin{pmatrix} 4-\lambda\\ 28-5\lambda\\ 4+\lambda \end{pmatrix} - \begin{pmatrix} 2\\ 18\\ 6 \end{pmatrix} = \begin{pmatrix} 2-\lambda\\ 10-5\lambda\\ -2+\lambda \end{pmatrix} = \begin{pmatrix} 1\\ 5\\ -2+\lambda \end{pmatrix} = \begin{pmatrix} 1\\$	$ \begin{array}{l} (2-\lambda) \\ 5(2-\lambda) \\ 1(2-\lambda) \end{array} \right); \overrightarrow{AX} = \left(\begin{array}{c} -3 \\ -15 \\ 3 \end{array} \right) \qquad AX^2 = 243 \vartriangleright \\ AB^2 = 27(2-1)^2 \end{array} $				
		$(2 - 1)^2 \Rightarrow (2 - 1)^2 = \frac{9}{4}$ or $(27)^2 - 1081 + \frac{189}{4} = 0$				
	or $108/^2 - 432/ + 189 = 0$ or $4/^2 - 16/ + 7$					
	$\overline{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Full method of solving for / the equation $AX^2 = 4AB^2$ using (their \overline{AX}) and \overline{AB} and substitutes at least one of their values for / into l_1	M1;			
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1			
	$\left(\begin{array}{c} 1\\ 4\end{array}\right) + \left(\begin{array}{c} 1\\ 1\end{array}\right), \left(\begin{array}{c} 1\\ 4.5\end{array}\right)$	Both position vectors are correct (Also allow coordinates)	A1			
		= 3.5 or / = 0.5 can be found from solving either $\pm 2(10 - 5/)$ or z: -3 = $\pm 2(-2 + 7/)$	[3]			
18. (e) Way 4	$\overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + 0.5 \begin{pmatrix} 3 \\ 15 \\ -3 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies either (their \overrightarrow{OX})+0.5 \overrightarrow{XA} or (their \overrightarrow{OX})+1.5 \overrightarrow{XA} where (their \overrightarrow{XA})= \overrightarrow{OA} – (their \overrightarrow{OX})	M1;			
	$\overline{OB} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + 1.5 \begin{pmatrix} 3 \\ 15 \\ -3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1			
	$\begin{array}{c} 0 \\ 9 \end{array} \right) \begin{array}{c} 1 \\ -3 \end{array} \right) \begin{array}{c} 2 \\ -3 \end{array} \right) \begin{array}{c} 2 \\ -4.5 \end{array} \right)$	Both position vectors are correct (Also allow coordinates)	A1			
10 (-)			[3]			
18. (e) Way 5	$\overline{OB} = 0.5 \left(\left(\begin{array}{c} -1\\ 3\\ 9 \end{array} \right) + \left(\begin{array}{c} 2\\ 18\\ 6 \end{array} \right) \right); = \left(\begin{array}{c} 0.5\\ 10.5\\ 7.5 \end{array} \right)$	Applies $\frac{1}{2} \left[(\text{their } \overrightarrow{OX}) + \overrightarrow{OA} \right]$	M1;			
	$\overline{(2)}$ $\begin{pmatrix} 2 \\ 10 \end{pmatrix}$ (3.5)	At least one position vector is correct (Also allow coordinates)	A1			
	$\overline{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1			
			[3]			

Question Number		Scheme		Notes	Marks
18. (e) Way 6	$\left\{ \left \overrightarrow{AX} \right \right\}$	$\overline{AX} = 9\sqrt{3}, d_1 = 3\sqrt{3} \implies K = \frac{9\sqrt{3}}{3\sqrt{3}} = 3 \implies \overline{AX} = 3\mathbf{d}_1; \text{ So, } \overline{OB} = \overline{OA} \pm \frac{1}{2}\overline{AX} = \overline{OA} \pm \frac{1}{2}(3\mathbf{d}_1) $			
	$\overrightarrow{OB} =$	$ \begin{pmatrix} 2\\18\\6 \end{pmatrix} + 0.5 \begin{pmatrix} 3 \begin{pmatrix} -1\\-5\\1 \end{pmatrix} \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix} $	$\overrightarrow{OA} + 0$	Applies either $0.5(K\mathbf{d}_1)$ or $\overrightarrow{OA} - 0.5(K\mathbf{d}_1)$, where $K = \frac{\text{their } \overrightarrow{AX} }{3\sqrt{3}}$	M1;
	$\overrightarrow{OB} =$	$ \begin{vmatrix} 2 \\ 18 \\ 6 \end{vmatrix} - 0.5 \begin{vmatrix} 3 \\ -5 \\ 1 \end{vmatrix} ; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{vmatrix} $		one position vector is correct (Also allow coordinates) a position vectors are correct	A1
				(Also allow coordinates)	A1 [3]
		Ουρ	tion 18 Notes		[3]
18. (a)	Note	M1 can be implied by at least two correc		coordinates from their / or fr	om their <i>m</i>
(b)	Note	Evaluating the dot product (i.e. (-1)(3)			
(0)	Note	for the M1, dM1 marks.	(-3)(0) + (1)(-3)	+)) is not required	
	Note		down their direc	tion vectors d and d	
	Note	For M1 dM1: Allow one slip in writing	, down then direc	tion vectors, \mathbf{u}_1 and \mathbf{u}_2	
	Note	Allow M1 dM1 for			
		$\left(\sqrt{(-1)^{2} + (-5)^{2} + (1)^{2}} \cdot \sqrt{(3)^{2} + (0)^{2} + (-4)^{2}}\right) \cos q = \pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$			
	Note	$q = 1.297995^{\circ}$, (without evidence of awrt 74.37) is A0			
18. (b)		ernative Method: Vector Cross Product			
Way 2		pply this scheme if it is clear that a vecto	r cross product	method is being applied.	
		$= \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -5 & 1 \\ 3 & 0 & -4 \end{vmatrix} =$	•		M1
	$\sin q = \frac{\sqrt{(20)^2 + (-1)^2 + (15)^2}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}}$		-	Applies the vector product formula between \mathbf{d}_1 and \mathbf{d}_2 or a multiple of \mathbf{d}_1 and \mathbf{d}_2	dM1
	sin q =	$= \frac{\sqrt{626}}{\sqrt{27} \cdot \sqrt{25}} \bowtie q = 74.36964117 = 74.37$	7 (2 dp)	awrt 74.37 seen in (b) only	A1
					[3]
18. (c)	M1 Finds the difference between their \overrightarrow{OX} and \overrightarrow{OA} and applies Pythagoras to the result to find AX or XA			d AX or XA	
		OR applies $ (\text{their } /_X \text{ found in } (a)) - 2 \sqrt{(-1)^2 + (-5)^2 + (1)^2}$			
	Note	Note For M1: Allow one slip in writing down their \overrightarrow{OX} and \overrightarrow{OA}			
	Note Allow M1A1 for $\begin{pmatrix} 3\\15\\3 \end{pmatrix}$ leading to $AX = \sqrt{(3)^2 + (15)^2 + (3)^2} = \sqrt{243} = 9\sqrt{3}$				
(e)	Note	Imply M1 for no working leading to any tw	wo components o	f one of the \overline{OB} which are co	rrect.

Question Number	Scheme		Notes	Ma	rks
18. (d) Way 2	YA		$\frac{\operatorname{ir} \overline{AX} }{YA} = \tan(90 - \theta) \text{ or } AY = \frac{\operatorname{their} \overline{AX} }{\tan(90 - \theta)},$ the acute or obtuse angle between l_1 and l_2		
	<i>YA</i> = 55.71758 = 55.7 (1 dp)		anything that rounds to 55.7	A1	
					[2]
18. (d) Way 3	SIII(74.30904) $SIII(90 - 74.30904)$		$\frac{YA}{\sin\theta} = \frac{\text{their } AX }{\sin(90-\theta)} \text{ o.e., where } \theta \text{ is the}$ acute or obtuse angle between l_1 and l_2	M1	
	$YA = \frac{9\sqrt{3}\sin(74.36964)}{\sin(15.63036)} = 55.71758 = 55.7 (1 \text{ dp})$		anything that rounds to 55.7	A1	[0]
					[2]
18. (d) Way 4	$\mathbf{d}_{1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \overrightarrow{OY} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 5+3\mu \\ 3 \\ 1-4\mu \end{pmatrix}$				
	$\overrightarrow{YA} = \begin{pmatrix} 2\\18\\6 \end{pmatrix} - \begin{pmatrix} 5+3\mu\\3\\1-4\mu \end{pmatrix} = \begin{pmatrix} -3-3\mu\\15\\5+4\mu \end{pmatrix}$				
	$\overrightarrow{YA} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -3 - 3\mu \\ 15 \\ 5 + 4\mu \end{pmatrix} \bullet \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} =$	= 0	(Allow a sign slip in copying \mathbf{d}_1) Applies $\overrightarrow{YA} \bullet \mathbf{d}_1 = 0$ or $\overrightarrow{AY} \bullet \mathbf{d}_1 = 0$	M1	
	$\Rightarrow 3 + 3m - 75 + 5 + 4m = 0 \Rightarrow m = \frac{67}{7}$	to	or $\overrightarrow{YA} \bullet (K \mathbf{d}_1) = 0$ or $\overrightarrow{AY} \bullet (K \mathbf{d}_1) = 0$ find <i>m</i> and applies Pythagoras to find a		
	$YA^{2} = \left(-3 - 3\left(\frac{67}{7}\right)\right)^{2} + \left(15\right)^{2} + \left(5 + 4\left(\frac{67}{7}\right)^{2}\right)^{2} + \left(15\right)^{2} $	-	numerical expression for AY^2 or for the distance AY		
	So, $YA = \sqrt{\left(-\frac{222}{7}\right)^2 + \left(15\right)^2 + \left(\frac{303}{7}\right)^2}$				
	= 55.71758 = 55.7 (1 dp)		anything that rounds to 55.7	A1	
	Note: $\overline{OY} = \frac{236}{7}\mathbf{i} + 3\mathbf{j} - \frac{261}{7}\mathbf{k}$, $\overline{AY} = -\frac{222}{7}\mathbf{i} + 15\mathbf{j} + \frac{303}{7}\mathbf{k}$			[2]	

Question Number	Scheme		Notes	Marks	s
	$l_1: \mathbf{r} = \begin{pmatrix} 8\\1\\-3 \end{pmatrix} + \mu \begin{pmatrix} -5\\4\\3 \end{pmatrix} \text{So } \mathbf{d}_1 = \begin{pmatrix} -5\\4\\3 \end{pmatrix}, \qquad \overrightarrow{OA} \text{ occurs when } \mu = 1, \overrightarrow{OP} = \begin{pmatrix} 1\\5\\2 \end{pmatrix}$				
(a)	A(3, 5, 0)				
	2 + 2	dora	$b \neq b$ $0 \neq b$ $b \neq b$		[1]
(b)	$\{l_2:\} \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $(l_2:) \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\$			M1	
	Correct vector equ	ation usir	$\log \mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 =$	A1	
	\mathbf{d}_2 is the direction vector of l_2 Do not allow l_2 :	or $l_2 \rightarrow$	or $l_1 = $ for the A1 mark.		[2]
(c)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} - \begin{pmatrix} 3\\5\\0 \end{pmatrix} = \begin{pmatrix} -2\\0\\2 \end{pmatrix}$				
	$AB = \sqrt{(-2)^2 + (0)^2 + (2)^2} = \sqrt{2} = \sqrt{2}$	Fu	all method for finding AP	M1	
	$AP = \sqrt{(-2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$		$2\sqrt{2}$	A1	
		5 11			[2]
(d)	So $\overline{AP} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$ and $\mathbf{d}_2 = \begin{pmatrix} -5 \\ 4 \\ -3 \end{pmatrix} \Rightarrow \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$		ation that the dot product is ired between $(\overline{AP} \text{ or } \overline{PA})$	M1	
			and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$		
	$\left\{\cos \theta = \right\} \frac{\overline{AP} \bullet \mathbf{d}_2}{\left \overline{AP}\right \cdot \left \mathbf{d}_2\right } = \frac{\pm \left(\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \right)}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}}$	Abetw	dependent on the previous M mark. Applies dot product formula veen their $(\overline{AP} \text{ or } \overline{PA})$ and $\pm K\mathbf{d}_2 \text{ or } \pm K\mathbf{d}_1$	dM1	
	$\left\{\cos\theta\right\} = \frac{\pm(10+0+6)}{\sqrt{8}\sqrt{50}} = \frac{4}{5}$		$s\theta$ = $\frac{4}{5}$ or 0.8 or $\frac{8}{10}$ or $\frac{16}{20}$	A1 cso	
					[3]
(e)	{Area $APE =$ } $\frac{1}{2}$ (their $2\sqrt{2}$) ² sin θ $\frac{1}{2}$ (their $2\sqrt{2}$) ² sin θ or $\frac{1}{2}$ (their $2\sqrt{2}$) ² sin(their θ)		M1		
	= 2.4			A1	
			I		[2]
(f)	$\overline{PE} = (-5\lambda)\mathbf{i} + (4\lambda)\mathbf{j} + (3\lambda)\mathbf{k}$ and $PE = \text{their } 2\sqrt{2} \text{ from } \mathbf{j}$	part (c)			
	$\left\{PE^2 = \right\} \ (-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})^2$		This mark can be implied.	M1	
	$\left\{ \Rightarrow 50\lambda^2 = 8 \Rightarrow \lambda^2 = \frac{4}{25} \Rightarrow \right\} \lambda = \pm \frac{2}{5}$		Either $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$	A1	
	$l_2: \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} \pm \frac{2}{5} \begin{pmatrix} -5\\4\\3 \end{pmatrix} $ d	-	t on the previous M mark Substitutes at least one of their values of λ into l_2 .	dM1	
	$\left\{\overline{OE}\right\} = \left(\begin{array}{c}3\\\frac{17}{5}\\\frac{4}{4}\end{array}\right) \text{ or } \left(\begin{array}{c}3\\3.4\\0.8\end{array}\right), \ \left\{\overline{OE}\right\} = \left(\begin{array}{c}-1\\\frac{33}{5}\\\frac{16}{5}\end{array}\right) \text{ or } \left(\begin{array}{c}-1\\6.6\\3.2\end{array}\right)$	At leas	t one set of coordinates are correct.	A1	
	$\left[\begin{array}{c} 3\\ \frac{4}{5} \end{array}\right] \left[\begin{array}{c} 0.8 \end{array}\right] \left[\begin{array}{c} 1\\ \frac{16}{5} \end{array}\right] \left[\begin{array}{c} 3.2 \end{array}\right]$	Both sets	of coordinates are correct.	A1	
					[5] 15
	<u> </u>			<u> </u>	13

		Question 19 Notes		
		(3) 3		
19. (a)	B1	B1 Allow $A(3, 5, 0)$ or $3\mathbf{i} + 5\mathbf{j}$ or $3\mathbf{i} + 5\mathbf{j} + 0\mathbf{k}$ or $\begin{bmatrix} 5\\0 \end{bmatrix}$ or benefit of the doubt $\begin{bmatrix} 5\\0 \end{bmatrix}$ 0		
(b)	A1	Correct vector equation using $\mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 = \mathbf{or} \ \text{Line } 2 =$		
		i.e. Writing $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \mathbf{d}$, where d is a multiple of $\begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$.		
	Note	Allow the use of parameters μ or t instead of λ .		
(c)	M1	Finds the difference between \overrightarrow{OP} and their \overrightarrow{OA} and approximately approximately and the difference between \overrightarrow{OP} and \overrightarrow{OP} and the difference between \overrightarrow{OP} and the difference be	blies Pythagoras to the result to find AP	
	Note	Allow M1A1 for $\begin{pmatrix} 2\\0\\2 \end{pmatrix}$ leading to $AP = \sqrt{(2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$.		
(d)	Note	For both the M1 and dM1 marks \overline{AP} (or \overline{PA}) must be the vector used in part (c) or the difference \overline{OP} and their \overline{OA} from part (a).		
	Note	Applying the dot product formula correctly without $\cos\theta$	as the subject is fine for M1dM1	
	Note	<i>Evaluating</i> the dot product (i.e. $(-2)(-5) + (0)(4) + (2)(4)$		
	Note	Note In part (d) allow one slip in writing \overline{AP} and \mathbf{d}_2		
	Note			
	Note	Give M1dM1A1 for $\{\cos \theta =\} = \frac{\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -10 \\ 8 \\ 6 \end{pmatrix}}{\sqrt{8} \cdot 10\sqrt{2}} = \frac{20 + 12}{40} = \frac{4}{5}$		
	Note	Allow final A1 (ignore subsequent working) for $\cos \theta = 0.8$ followed by 36.869°		
	Alternativ	ve Method: Vector Cross Product		
	Only app	ly this scheme if it is clear that a candidate is applying a		
	$\overline{AP} \times \mathbf{d}_2$	$= \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \times \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 2 \\ -5 & 4 & 3 \end{vmatrix} = -8\mathbf{i} - 4\mathbf{j} - 8\mathbf{k}$	Realisation that the vector cross product is required between their $\left(\overline{AP} \text{ or } \overline{PA}\right)$ and $\pm K\mathbf{d}_2 \text{ or } \pm K\mathbf{d}_1$ M1	
	sin	$\theta = \frac{\sqrt{(-8)^2 + (-4)^2 + (-8)^2}}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}}$	Applies the vector product formula between their $(\overline{AP} \text{ or } \overline{PA})$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$ dM1	
		$\sin \theta = \frac{12}{\sqrt{8}.\sqrt{50}} = \frac{3}{5} \Longrightarrow \frac{\cos \theta = \frac{4}{5}}{5}$	$\cos\theta = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20}$ A1	
(e)	Note	Allow M1;A1 for $\frac{1}{2}(2\sqrt{2})^2 \sin(36.869^\circ)$ or $\frac{1}{2}(2\sqrt{2})^2 \sin(180^\circ - 36.869^\circ)$; = awrt 2.40		
	Note	Candidates must use their θ from part (d) or apply a correct method of finding		
		their $\sin \theta = \frac{3}{5}$ from their $\cos \theta = \frac{4}{5}$		

		Question 19 Notes continued		
19. (f)	19. (f) Note Allow the first M1A1 for deducing $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$ from no incorrect work			
	SC	Allow special case 1 st M1 for $\lambda = 2.5$ from comparing lengths or from no working		
	Note	Give 1 st M1 for $\sqrt{(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2} = (\text{their } 2\sqrt{2})$		
	Note Give 1 st M0 for $(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})$ or equivalent Note Give 1 st M1 for $\lambda = \frac{\text{their } AP = \sqrt[n]{2}\sqrt{2}}{\sqrt{(-5)^2 + (4)^2 + (3)^2}}$ and 1 st A1 for $\lambda = \frac{2\sqrt{2}}{5\sqrt{2}}$			
	Note	So $\left\{ \hat{\mathbf{d}}_1 = \frac{1}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix} \Rightarrow \right\}$ "vector" $= \frac{2\sqrt{2}}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ is M1A1		
	Note	The 2^{nd} dM1 in part (f) can be implied for at least 2 (out of 6) correct <i>x</i> , <i>y</i> , <i>z</i> ordinates from their values of λ .		
	Note	Giving their "coordinates" as a column vector or position vector is fine for the final A1A1.		
	CAREFUL			
		$\begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix} = \begin{pmatrix} 3\\5\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = \frac{2}{5}\\\lambda = 0\\\lambda = -\frac{2}{3} \end{pmatrix}$	Give M0 dM0 for finding and using $\lambda = \frac{2}{5}$ from this incorrect method.	
	CAREFUL	Putting $\lambda \mathbf{d}_2 = \overrightarrow{AP}$ gives		
		$ \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = -\frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{pmatrix} $	Give M0 dM0 for finding and using $\lambda = -\frac{2}{5}$ from this incorrect method.	
	General	You can follow through the part (c) answer of their $AP = 2\sqrt{2}$ for (d) M1dM1, (e) M1, (f) M1dM1		
	General	You can follow through their \mathbf{d}_2 in part (b) for (d) M1dM1, (f) M1dM1.		

Question Number	Scheme	Marks
20.	$l_1: \mathbf{r} = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}.$ Let θ = acute angle between l_1 and l_2 . Note: You can mark parts (a) and (b) together.	
(a)	$\{l_1 = l_2 \Rightarrow \mathbf{i}:\} 5 = 8 + 3\mu \Rightarrow \mu = -1$ Finds μ and substitutes their μ into l_2	M1
	So, $\left\{\overline{OA}\right\} = \begin{pmatrix} 8\\5\\-2 \end{pmatrix} - 1 \begin{pmatrix} 3\\4\\-5 \end{pmatrix} = \begin{pmatrix} 5\\1\\3 \end{pmatrix}$ $5\mathbf{i} + \mathbf{j} + 3\mathbf{k} \text{ or } \begin{pmatrix} 5\\1\\3 \end{pmatrix} \text{ or } (5, 1, 3)$	A1
(b)	$\{\mathbf{j}: -3 + \lambda = 5 + 4\mu \implies \} -3 + \lambda = 5 + 4(-1) \implies \lambda = 4$ Equates \mathbf{j} components, substitutes their μ and solves to give $\lambda =$	[2] M1
	k : $p - 3\lambda = -2 - 5\mu \Rightarrow$ $p - 3(4) = -2 - 5(-1) \Rightarrow \underline{p} = 15$ Equates k components, substitutes their λ and their μ and solves to give $p =$ or equates k components to give their " $p - 3\lambda$ = the k value of A found in part (a)",	M1
	or $\mathbf{k}: p - 3\lambda = 3 \Rightarrow$ $p - 3(4) = 3 \Rightarrow \underline{p = 15}$ substitutes their λ and solves to give $p =$ p = 15	A1
(c)	$\mathbf{d}_{1} = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, \mathbf{d}_{2} = \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}$ Realisation that the dot product is required between $\pm A\mathbf{d}_{1}$ and $\pm B\mathbf{d}_{2}$.	[3] M1
	$\cos \theta = \pm K \left(\frac{0(3) + (1)(4) + (-3)(-5)}{\sqrt{(0)^2 + (1)^2 + (-3)^2} \cdot \sqrt{(3)^2 + (4)^2 + (-5)^2}} \right) $ An attempt to apply the dot product formula between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.	dM1 (A1 on ePEN)
	$\cos \theta = \frac{19}{\sqrt{10}.\sqrt{50}} \Rightarrow \theta = 31.8203116 = 31.82 \ (2 \text{ dp}) \qquad \text{anything that rounds to } 31.82$	A1
(d)	$\overline{OB} = \begin{pmatrix} 11\\9\\-7 \end{pmatrix}; \ \overline{AB} = \begin{pmatrix} 11\\9\\-7 \end{pmatrix} - \begin{pmatrix} 5\\1\\3 \end{pmatrix} = \begin{pmatrix} 6\\8\\-10 \end{pmatrix} \text{ or } \overline{AB} = 2 \begin{pmatrix} 3\\4\\-5 \end{pmatrix} = \begin{pmatrix} 6\\8\\-10 \end{pmatrix} \text{ See notes}$ $ \overline{AB} = \sqrt{6^2 + 8^2 + (-10)^2} \left\{ = 10\sqrt{2} \right\}$	[3] M1
	$\frac{d}{10\sqrt{2}} = \sin\theta$ Writes down a correct trigonometric equation involving the shortest distance, d. Eg: $\frac{d}{\text{their } AB} = \sin\theta$, oe.	dM1
	$\left\{ d = 10\sqrt{2}\sin 31.82 \Rightarrow \right\} d = 7.456540753 = 7.46 (3sf)$ anything that rounds to 7.46	A1
		[3] 11

20. (b)	Alternative method for part (b)				
	$\begin{cases} 3 \times \mathbf{j} : -9 + 3\lambda = 15 + 12\mu \\ \mathbf{k} : p - 3\lambda = -2 + 5\mu \end{cases} p - 9 = 13 + 7\mu$		Eliı	minates λ to write down an equation in <i>p</i> and μ	M1
	$p-9=13+7(-1) \implies p=15$	Su	ıbstitute	s their μ and solves to give $p = \dots$	M1
				<i>p</i> = 15	A1
20. (d)	<u>Alternative Methods for part (d)</u> Let <i>X</i> be the foot of	the pe	erpendic	ular from <i>B</i> onto l_1	
	$\mathbf{d}_{1} = \begin{pmatrix} 0\\1\\-3 \end{pmatrix}, \overrightarrow{OX} = \begin{pmatrix} 5\\-3\\15 \end{pmatrix} + \lambda \begin{pmatrix} 0\\1\\-3 \end{pmatrix} = \begin{pmatrix} 5\\-3+\lambda\\15-3\lambda \end{pmatrix}$				
	$\overline{BX} = \begin{pmatrix} 5 \\ -3+\lambda \\ 15-3\lambda \end{pmatrix} - \begin{pmatrix} 11 \\ 9 \\ -7 \end{pmatrix} = \begin{pmatrix} -6 \\ -12+\lambda \\ 22-3\lambda \end{pmatrix}$				
	Method 1				
	$\begin{pmatrix} -6 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$			(Allow a sign slip in	
	$\overline{BX} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -6 \\ -12 + \lambda \\ 22 - 3\lambda \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} = -12 + \lambda - 6$	56 + 9	$\lambda = 0$	copying \mathbf{d}_1)	
	$\left(\begin{array}{c}22-3\lambda\end{array}\right)\left(\begin{array}{c}-3\end{array}\right)$			Applies $BX \bullet \mathbf{d}_1 = 0$ and solves the resulting	M1
	leading to $10\lambda - 78 = 0 \implies \lambda = \frac{39}{5}$			equation to find a value for λ .	IVII
	$\overline{BX} = \begin{pmatrix} -6 \\ -12 + \frac{39}{5} \\ 22 - 3\left(\frac{39}{5}\right) \end{pmatrix} = \begin{pmatrix} -6 \\ -\frac{21}{5} \\ -\frac{7}{5} \end{pmatrix}$			Substitutes their value of λ into their \overline{BX} . Note: This mark is dependent upon the	dM1
				previous M1 mark .	
	$d = BX = \sqrt{\left(-6\right)^2 + \left(-\frac{21}{5}\right)^2 + \left(-\frac{7}{5}\right)^2} = 7.456540753.$			awrt 7.46	A1
	Method 2	ſ			
	Let $\beta = \left \overline{BX} \right ^2 = 36 + 144 - 24\lambda + \lambda^2 + 484 - 132\lambda + 9$	λ^2	Fir	nds $\beta = \left \overline{BX} \right ^2$ in terms of λ ,	
	$= 10\lambda^2 - 156\lambda + 664$		f	inds $\frac{d\beta}{d^2}$ and sets this result	M1
	So $\frac{\mathrm{d}\beta}{\mathrm{d}\lambda} = 20\lambda - 156 = 0 \implies \lambda = \frac{39}{5}$			$d\lambda$ to 0 and finds a value for λ .	
	$ BX = 10\left(\frac{35}{5}\right) - 156\left(\frac{35}{5}\right) + 664 = \frac{276}{5}$			value of λ into their $\left \overline{BX} \right ^2$. mark is dependent upon the previous M1 mark.	dM1
	$d = BX = \sqrt{\frac{278}{5}} = 7.456540753$			awrt 7.46	A1

		Question 20 Notes		
20. (a)	M1	Finds μ and substitutes their μ into l_2		
		(5)		
	A1	Point of intersection of $5\mathbf{i} + \mathbf{j} + 3\mathbf{k}$. Allow $\begin{pmatrix} 5\\1\\3 \end{pmatrix}$ or (5,	1, 3).	
	Note	You cannot recover the answer for part (a) in part (c) or	part (d).	
(b)	M1	Equates j components, substitutes their μ and solves to	give $\lambda = \dots$	
	M1	Equates k components, substitutes their λ and their μ a	and solves to give $p = \dots$	
		or equates k components to give their " $p - 3\lambda$ = the k v	value of A" found in part (b).	
	A1	<i>p</i> = 15		
(c)	NOTE	Part (c) appears as M1A1A1 on ePEN, but now is ma		
	M1	Realisation that the dot product is required between $\pm A$	\mathbf{d}_1 and $\pm B\mathbf{d}_2$.	
	Note	Allow one slip in candidates copying down their direction		
	dM1	dependent on the FIRST method mark being awarde		
		An attempt to apply the dot product formula between $\pm A$	\mathbf{Ad}_1 and $\pm B\mathbf{d}_2$.	
	A1	anything that rounds to 31.82. This can also be achieved	1 by 180 - 148.1796 = a wrt 31.	.82
	Note	$\theta = 0.5553^{\circ}$ is A0.		
		0-16-60	-76	
	Note	M1A1 for $\cos \theta = \left(\frac{0 - 16 - 60}{\sqrt{(0)^2 + (4)^2 + (-12)^2}}, \sqrt{(-3)^2 + (-4)^2}\right)$	$\frac{1}{(1)^2 + (5)^2} = \frac{1}{\sqrt{160}}$	
	Alternat	tive Method: Vector Cross Product	(5) (1001000	
	Only apply this scheme if it is clear that a candidate is applying a vector cross product method.			
		$\begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{bmatrix} \mathbf{i} & \mathbf{i} & \mathbf{k} \end{bmatrix}$	Dealization that the master	
	b× b	$= \begin{pmatrix} 0\\1\\-3 \end{pmatrix} \times \begin{pmatrix} 3\\4\\-5 \end{pmatrix} = \left\{ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & -3 \\ 3 & 4 & -5 \end{vmatrix} = 7\mathbf{i} - 9\mathbf{j} - 3\mathbf{k} \right\}$	cross product is required	M1
	$\mathbf{u}_1 \wedge \mathbf{u}_2$		between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.	<u>IVI I</u>
		$\sqrt{(7)^2 + (-9)^2 + (3)^2}$	An attempt to apply the	dM1
		$\sin \theta = \frac{\sqrt{(7)^2 + (-9)^2 + (3)^2}}{\sqrt{(0)^2 + (1)^2 + (-3)^2} \cdot \sqrt{(3)^2 + (4)^2 + (-5)^2}}$	vector cross product formula	(A1 on ePEN)
		$\sqrt{130}$		
	$\sin \theta =$	$\frac{\sqrt{139}}{\sqrt{10}.\sqrt{50}} \Rightarrow \theta = 31.8203116 = 31.82 \ (2 \text{ dp})$	anything that rounds to 31.82	A1
(d)		Full method for finding <i>B</i> and for finding the magnitude of	<i>AB</i> or the magnitude of <i>BA</i> .	
		lependent on the first method mark being awarded. Writes down correct trigonometric equation involving the sl	hortest distance d	
	I	Eg: $\frac{d}{\text{their } AB} = \sin\theta$ or $\frac{d}{\text{their } AB} = \cos(90 - \theta)$, o.e., wh	here "their AB" is a value.	
		and $\theta =$ "their θ " or stated as θ		
		anything that rounds to 7.46		

Question Number	Scheme		Mark	s
21.	$\overrightarrow{OA} = -2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$, $\overrightarrow{OB} = -\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ & $\overrightarrow{OP} = 0\mathbf{i} + 2\mathbf{j} + 2\mathbf{j}$	- 3 k		
(a)	$\overrightarrow{AB} = = \pm \left((-\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}) - (-2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) \right); = \mathbf{i} - \mathbf{j} + \mathbf{k}$		M1; A1	
				[2]
	$\begin{pmatrix} -2 \\ -2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$			
(b)	$\{l_1: \mathbf{r}\} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \text{ or } \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$		B1ft	
	$\begin{pmatrix} 7 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} 8 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$			[4]
	(-1) (0) (-1) (1)			[1]
(c)	$\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} - \begin{pmatrix} 0\\2\\3 \end{pmatrix} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$		M1	
	$\begin{pmatrix} 8 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 5 \end{pmatrix} \begin{pmatrix} -5 \end{pmatrix}$			
	(1)(-1)	Applies dot product		
	$\{\cos \theta = \} \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\left \overrightarrow{AB} \right \cdot \left \overrightarrow{PB} \right } = \frac{\begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}}{\sqrt{(1)^2 + (-1)^2 + (1)^2}} \cdot \sqrt{(-1)^2 + (1)^2 + (1)^2} \cdot \sqrt{(-1)^2 + (1)^2 + (1)^2} \cdot \sqrt{(-1)^2 + (1)^2 + (1)^2} \cdot \sqrt{(-1)^2 + (1)^2 + (1)^2 + (1)^2} \cdot \sqrt{(-1)^2 + (1)^2 + (1)^2 + (1)^2 + (1)^2} \cdot (-1)^2 + (1)$	formula between $()$		
	$\{\cos \theta = \} \overrightarrow{AB} \bullet \overrightarrow{PB} = (1) (5)$	their $(AB \text{ or } BA)$	M1	
	$\left\ \overline{AB} \right\ \cdot \left\ \overline{PB} \right\ ^{-1} = \frac{1}{\sqrt{(1)^2 + (-1)^2 + (1)^2}} \cdot \sqrt{(-1)^2 + (1)^2 + (1)^2} \cdot (-1)^2 + (1$	$\overline{(5)^2}$ and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$.		
	$\{\cos \theta\} = \frac{-1-1+5}{2} = \frac{3}{2} = \frac{1}{2}$	Competence	A 1	
	$\{\cos 0\} = \frac{1}{\sqrt{3}.\sqrt{27}} = \frac{1}{9} = \frac{1}{3}$	Correct proof	A1 cso	
				[3]
		$\lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$, $\mathbf{p} \neq 0$, $\mathbf{d} \neq 0$ with + 2 \mathbf{j} + 3 \mathbf{k} or \mathbf{d} = their \overrightarrow{AB} , or a	MI	
(d)	$\{l_2: \mathbf{r} = \} \begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix} $ either $\mathbf{p} = 0\mathbf{i}$	$+2\mathbf{j}+3\mathbf{k}$ of \mathbf{u} – men AB , of a multiple of their \overrightarrow{AB} .	M1	
	$\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$	-	A 1 £	
		Correct vector equation.	A1 ft	[2]
	(0) (1) (1) (0) (1)	Either \overrightarrow{OP} + their \overrightarrow{AB}		[4]
	$\overrightarrow{OC} = \begin{vmatrix} 0 \\ 2 \end{vmatrix} + \begin{vmatrix} -1 \\ -1 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ or $\overrightarrow{OD} = \begin{vmatrix} 0 \\ 2 \end{vmatrix} - \begin{vmatrix} -1 \\ -1 \end{vmatrix}$	or \overrightarrow{OP} – their \overrightarrow{AB}	M1	
(e)	$\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$	At least one set of coordinates are	A1 ft	
	$\{C(1, 1, 4), D(-1, 3, 2)\}$	correct.		
	Во	th sets of coordinates are correct.	A1 ft	[3]
(f)	$\overline{OC} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \text{or} \overline{OD} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} :$ $\{C(1, 1, 4), D(-1, 3, 2)\}$ Bo $\frac{h}{\sqrt{(-1)^2 + (1)^2 + (5)^2}} = \sin \theta$	$h_{$		[~]
Way 1	$\frac{1}{\sqrt{(-1)^2 + (1)^2 + (5)^2}} - \sin \theta$	$\frac{1}{ \overrightarrow{PB} } = \sin\theta$	M1	
		$\sqrt{27} \sin(70.5)$ or $\sqrt{27} \cdot \frac{\sqrt{8}}{3}$		
	$h = \sqrt{27} \sin(70.5) \left\{ = \sqrt{27} \frac{\sqrt{8}}{3} = 2\sqrt{6} = \text{awrt } 4.9 \right\}$	_ 5	A1 oe	
		or $2\sqrt{6}$ or awrt 4.9 or equivalent		
	Area $ABCD = \frac{1}{2} 2\sqrt{6} \left(\sqrt{3} + 2\sqrt{3}\right)$ $\frac{1}{2} \left(\frac{1}{2}\right)$	their h)(their AB + their CD)	dM1	
	$\left\{ = \frac{1}{2} 2\sqrt{6} \left(3\sqrt{3} \right) = 3 \sqrt{18} \right\} = 9\sqrt{2}$	$9\sqrt{2}$	A1 cao	
				[4]
				15

21. (f)	Helpful Diagram!	
	Area $\triangle APB = 4.2426$ $A \begin{bmatrix} -2\\4\\7 \end{bmatrix}$ $A \begin{bmatrix} -2\\4\\7 \end{bmatrix}$ $h = 2\sqrt{6} = 3\sqrt{3}. \left(\frac{\sqrt{8}}{3}\right)$	-)= 4.8989
	$\overline{DA} = \overline{PB} = \begin{pmatrix} -1\\1\\5 \end{pmatrix}$ $\sqrt{3} C \begin{pmatrix} 1\\1\\4 \end{pmatrix}$	
	$\overrightarrow{PA} = \overrightarrow{CB} = \begin{pmatrix} -2\\2\\4 \end{pmatrix} \qquad $	
	$\overrightarrow{PA} = \overrightarrow{CB} = \begin{pmatrix} -2\\2\\4 \end{pmatrix}$ and $\overrightarrow{AB} = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$, so $BC \perp AB$ Candidates do not need to prove this result for part (f)	
21. (f) Way 2	$h = \overrightarrow{CB} = \sqrt{(-2)^2 + (2)^2 + (4)^2} = \sqrt{24} = 2\sqrt{6} = 4.8989$ Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $ $ \overrightarrow{PA} = \overrightarrow{CB} = \sqrt{24}$	M1 A1 oe
	Area $ABCD = \frac{1}{2}\sqrt{24}(\sqrt{3} + 2\sqrt{3})$ or $\frac{1}{2}\sqrt{24}\sqrt{3} + \sqrt{24}\sqrt{3}$ $\frac{1}{2}h(\text{their } AB + \text{their } CD)$	dM1 oe
	$= 9\sqrt{2} \qquad \qquad 9\sqrt{2}$	A1 cso [4]
Way3	Finds the area of either triangle APB or APD or BCP and triples the result.	
21. (f)	Area $\Delta APB = \frac{1}{2}\sqrt{3}(3\sqrt{3})\sin\theta$ Attempts $\frac{1}{2}$ (their <i>AB</i>)(their <i>PB</i>)sin θ	M1
	$= \frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5) \qquad \qquad \frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5) \text{ or } 3\sqrt{2}$ or awrt 4.24 or equivalent	A1
	Area $ABCD = 3(3\sqrt{2})$ $3 \times \text{Area of } \Delta APB$	dM1
	$= 9\sqrt{2} \qquad \qquad 9\sqrt{2}$	A1 cso [4]

21. (a)	M1		
	IVII	Finding the difference (either way) between <i>OB</i> and <i>OA</i> .	
		If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the differ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	rence.
	A 1	$\mathbf{i} - \mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ or $(1, -1, 1)$ or benefit of the doubt -1	
	A1	1 $\mathbf{j} + \mathbf{k}$ of 1 of $(1, 1, 1)$ of bencht of the doubt 1	
(b)	B1ft	$\{\mathbf{r}\} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \text{or} \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \text{ with } \overrightarrow{AB} \text{ or } \overrightarrow{BA} \text{ correctly followed thr}$	ough from (a).
]	Note	$\mathbf{r} = \mathbf{is}$ not needed.	
(c)	M1	An attempt to find either the vector \overrightarrow{PB} or \overrightarrow{BP} .	
		If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the differ	ence.
	M1	Applies dot product formula between their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$.	
	A1	Obtains $\{\cos\theta\} = \frac{1}{3}$ by correct solution only.	
]	Note	If candidate starts by applying $\frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\left \overrightarrow{AB}\right \cdot \left \overrightarrow{PB}\right }$ correctly (without reference to $\cos \theta =$)	
		they can gain both 2 nd M1 and A1 mark.	
]	Note	Award the final A1 mark if candidate achieves $\{\cos \theta\} = \frac{1}{3}$ by either taking the dot produce	ct between
]	Note	(i) $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ and $\begin{pmatrix} -1\\1\\5 \end{pmatrix}$ or (ii) $\begin{pmatrix} -1\\1\\-1 \end{pmatrix}$ and $\begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$. Ignore if any of these vectors are labelled Award final A0, cso for those candidates who take the dot product between (iii) $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$ or (iv) $\begin{pmatrix} -1\\1\\1 \end{pmatrix}$ and $\begin{pmatrix} -1\\1\\5 \end{pmatrix}$	
		$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} -5 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 5 \end{pmatrix}$	
		They will usually find $\{\cos\theta\} = -\frac{1}{3}$ or may fudge $\{\cos\theta\} = \frac{1}{3}$.	
		If these candidates give a convincing detailed explanation which must include reference to of their vectors then this can be given A1 cso	the direction
(c) <u>A</u>	Altorn	ative Method 1. The Cosine Rule	
	Alternative Method 1: The Cosine Rule $\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ Mark in the same way as the main scheme. M1		M1
		$ \overrightarrow{B} = \sqrt{27}$, $ \overrightarrow{AB} = \sqrt{3}$ and $ \overrightarrow{PA} = \sqrt{24}$	
	$\left(\sqrt{24}\right)^2$	$^{2} = \left(\sqrt{27}\right)^{2} + \left(\sqrt{3}\right)^{2} - 2\left(\sqrt{27}\right)\left(\sqrt{3}\right)\cos\theta$ Applies the cosine rule the correct way round	M1 oe
	$\cos\theta = \frac{27+3-24}{18} = \frac{1}{3}$ Correct proof A1 cso		A1 cso
		18 3	[3]

21. (c)	Alterna	tive Method 2: Right-Angled Trigonometry		
		$\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\ 3\\ 8 \end{pmatrix} - \begin{pmatrix} 0\\ 2\\ 3 \end{pmatrix} = \begin{pmatrix} -1\\ 1\\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\ -1\\ -5 \end{pmatrix} $ Mark in the same way as the main scheme. M1		
	Either $(\sqrt{24})^2 + (\sqrt{3})^2 = (\sqrt{27})^2$ or $\overrightarrow{AB} \cdot \overrightarrow{PA} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix} = -2 - 2 + 4 = 0$ Confirms $\triangle PAB$ is right-angled M1			
	So, $\left\{ cc \right\}$	$\cos\theta = \frac{AB}{PB} \Rightarrow \left\{ \cos\theta = \frac{\sqrt{3}}{\sqrt{27}} = \frac{1}{3} \right\}$ Correct proof	A1 cso	
(d)	M1	Writing down a line in the form $\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$ with either $\mathbf{a} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$ or $\mathbf{d} =$ their \overrightarrow{AB}		
		or a multiple of their \overrightarrow{AB} found in part (a).		
	A1ft	Writing $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ or $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \mathbf{d}$, where \mathbf{d} = their \overrightarrow{AB} or a multiple of their \overrightarrow{AB}	found in part (a).	
	Note Note	\mathbf{r} = is not needed. Using the same scalar parameter as in part (b) is fine for A1.		
(e)	M1 Note A1ft A1ft Note	Either \overrightarrow{OP} + their \overrightarrow{AB} or \overrightarrow{OP} - their \overrightarrow{AB} . This can be implied at least two out of three correct components for either their <i>C</i> or their At least one set of coordinates are correct. Ignore labelling of <i>C</i> , <i>D</i> Both sets of coordinates are correct. Ignore labelling of <i>C</i> , <i>D</i> You can follow through either or both accuracy marks in this part using their \overrightarrow{AB} from p		
(f)	M1	Way 1: $\frac{h}{\text{their } \overline{PB} } = \sin \theta$		
		Way 2: Attempts $\left \overrightarrow{PA} \right $ or $\left \overrightarrow{CB} \right $ Way 3: Attempts $\frac{1}{2}$ (their <i>PB</i>)(their <i>AB</i>)sin θ		
	Note	Finding AD by itself is M0.		
	A1	Either • $h = \sqrt{27} \sin(70.5)$ or $ \overrightarrow{PA} = \overrightarrow{CB} = \sqrt{24}$ or equivalent. (See Way 1 and Way or • the area of either triangle <i>APB</i> or <i>APD</i> or <i>BDP</i> = $\frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5)$ o.e. (
	dM1	which is dependent on the 1 st M1 mark. A full method to find the area of trapezium <i>ABCD</i> . (See Way 1, Way 2 and Way 3).		
	A1 Note	$9\sqrt{2}$ from a correct solution only. A decimal answer of 12.7279 (without a correct exact answer) is A0.		

Question Number	Scheme	Ma	rks
22.	$l_1 : \mathbf{r} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \lambda \begin{pmatrix} 0\\2\\-1 \end{pmatrix}, l_2 : \mathbf{r} = \begin{pmatrix} 7\\0\\7 \end{pmatrix} + \mu \begin{pmatrix} 3\\-5\\4 \end{pmatrix}, \overrightarrow{OA} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 4\\p\\3 \end{pmatrix} A \text{ lies on } l_1 \text{ and}$ $B \text{ lies on } l_2$		
(a)	{ <i>B</i> lies on $l_2 \Rightarrow \mu = -1 \Rightarrow$ } $p = 5$ $p = 5$	B1	
(b)	$ \{l_1 = l_2 \implies \} \begin{cases} \mathbf{i}: 1 = 7 + 3\mu \\ \mathbf{j}: 2 + 2\lambda = -5\mu \\ \mathbf{k}: 3 - \lambda = 7 + 4\mu \end{cases} $		[1]
	e.g. i: $7+3\mu=1$ So, $\mu = -2$ Writes down an equation involving only one parameter. $\mu = -2$	M1 A1	
	Point of intersection is $\overrightarrow{OC} = \mathbf{i} + 10\mathbf{j} - \mathbf{k}$ $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$	B1	
	Finds $\lambda = 4$ and either		
	 checks λ = 4 and μ = -2 is true for the third component. substitutes μ = -2 into l₁ to give i + 10j - k 	B1	
	and substitutes $\lambda = 4$ into l_2 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$		[4]
(b)	Alternative Method: Solving j and k simultaneously gives		
	$8 = 14 + 3\mu$ or $23 + 3\lambda = 35$ Writes down an equation involving only one parameter.	M1	
	So, $\mu = -2$ or $\lambda = 4$ Either $\mu = -2$ or $\lambda = 4$	A1	
	Point of intersection is $\overrightarrow{OC} = \mathbf{i} + 10\mathbf{j} - \mathbf{k}$ $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$	B1	
	Finds $\lambda = 4$ and either		
	 checks μ = -2 is true for the i component. substitutes μ = -2 into l₁ to give i + 10j - k 	B1	
	and substitutes $\lambda = 4$ into l_2 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$		
			[4]
(c)	$\overrightarrow{AC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 0\\8\\-4 \end{pmatrix} \text{ and } \overrightarrow{BC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 4\\5\\3 \end{pmatrix} = \begin{pmatrix} -3\\5\\-4 \end{pmatrix} $ An attempt to find both the vectors $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$	M1	
	$\begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} -4 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} -4 \end{pmatrix}$ and $\begin{pmatrix} \overline{BC} & \text{or } \overline{CB} \end{pmatrix}$.		
	$\cos ACB = \frac{\overrightarrow{AC} \bullet \overrightarrow{BC}}{\left \overrightarrow{AC}\right \cdot \left \overrightarrow{BC}\right } = \frac{\pm \left(\begin{pmatrix} 0\\8\\-4 \end{pmatrix} \bullet \begin{pmatrix} -3\\5\\-4 \end{pmatrix}\right)}{\sqrt{(0)^2 + (8)^2 + (-4)^2} \cdot \sqrt{(-3)^2 + (5)^2 + (-4)^2}}$ Applies dot product formula between their $\left(\overrightarrow{AC} \text{ or } \overrightarrow{CA}\right)$ and their $\left(\overrightarrow{AC} \text{ or } \overrightarrow{CA}\right)$		
	$\overrightarrow{ACP} \overrightarrow{AC} \bullet \overrightarrow{BC} \qquad \qquad \left(\left\lfloor -4 \right\rfloor \right\rfloor \qquad \qquad \text{their} \left(\overrightarrow{AC} \text{ or } \overrightarrow{CA} \right)$	M1	
	$\cos ACB = \frac{ \overrightarrow{AC} \overrightarrow{BC} }{ \overrightarrow{AC} \overrightarrow{BC} } = \frac{1}{\sqrt{(0)^2 + (8)^2 + (-4)^2}} \cdot \sqrt{(-3)^2 + (5)^2 + (-4)^2} $ and their $(\overrightarrow{BC} \text{ or } \overrightarrow{CB}).$		
	$\left\{\cos ACB = \frac{0+40+16}{\sqrt{80}.\sqrt{50}} = \frac{56}{\sqrt{4000}} \Longrightarrow\right\} ACB = 27.69446 = 27.7 (3 \text{ sf})$ Anything that rounds to 27.7	A1	
	1	141	[3]
(d)	Area $ACB = \frac{1}{2} (\sqrt{80}) (\sqrt{50}) \sin 27.69446^{\circ} = 14.696888$ See notes Anything that rounds to 14.7	M1 A1	
			[2] 10

	Question 22: Alternative Methods for	or Part (c)		
22. (c)		<u>e 2</u>	Ì	
	$\mathbf{d}_1 = \begin{pmatrix} 0\\2\\-1 \end{pmatrix}, \mathbf{d}_2 = \begin{pmatrix} 3\\-5\\4 \end{pmatrix}$			
	$\cos \theta = \frac{\mathbf{d}_1 \cdot \mathbf{d}_1}{ \mathbf{d}_1 \cdot \mathbf{d}_2 } = \frac{\begin{pmatrix} 0\\ 2\\ -1 \end{pmatrix} \cdot \begin{pmatrix} 3\\ -5\\ 4 \end{pmatrix}}{\sqrt{(0)^2 + (2)^2 + (-1)^2} \cdot \sqrt{(3)^2 + (-5)^2 + (4)^2}}$	Applies dot product formula between their \mathbf{d}_1 and \mathbf{d}_2	M2	
	$\left\{\cos \theta = \frac{0 - 10 - 4}{\sqrt{5} \cdot \sqrt{50}} = \frac{-7\sqrt{10}}{25} \Rightarrow \right\} \theta = 152.3054385$ Angle $ACB = 180 - 152.3054385 = 27.69446145 = 27.7 (3 sf)$	A puthing that sounds to 27.7	A1	
	Angle $ACD = 180 = 132.3034383 = 27.09440143 = 27.7 (3.81)$	Anything that rounds to 27.7		[3]
	Alternative Method 2: The Cosine Rule		J	<u>191</u>
	$\overrightarrow{AC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 0\\8\\-4 \end{pmatrix} \text{ and } \overrightarrow{BC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 4\\5\\3 \end{pmatrix} = \begin{pmatrix} -3\\5\\-4 \end{pmatrix}$	An attempt to find both the vectors $\left(\overrightarrow{AC} \text{ or } \overrightarrow{CA}\right)$ and $\left(\overrightarrow{BC} \text{ or } \overrightarrow{CB}\right)$.	M1	
	Also $\overrightarrow{AB} = \begin{pmatrix} 4\\5\\3 \end{pmatrix} - \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 3\\3\\0 \end{pmatrix}$			
	Note $ \overrightarrow{AC} = \sqrt{80}$, $ \overrightarrow{BC} = \sqrt{50}$ and $ \overrightarrow{AB} = \sqrt{18}$			
	$\left(\sqrt{18}\right)^2 = \left(\sqrt{80}\right)^2 + \left(\sqrt{50}\right)^2 - 2\left(\sqrt{80}\right)\left(\sqrt{50}\right)\cos\theta$	Applies the cosine rule the correct way round.	M1 oe	e
	$\left\{\cos\theta = \frac{7\sqrt{10}}{25}\right\} \Rightarrow \theta = 27.69446145 = 27.7 \ (3 \text{ sf})$	Anything that rounds to 27.7	A1	
				[3]
	Alternative Method 3: Vector Cross Product			
	Only apply this scheme if it is clear that a candidate is applying a ver		l	
	$ = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} \begin{pmatrix} 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \begin{pmatrix} 4 \\ -3 \end{pmatrix} $	An attempt to find both the vectors $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$		
	$\overrightarrow{AC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 0\\8\\-4 \end{pmatrix} \text{ and } \overrightarrow{BC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 4\\5\\3 \end{pmatrix} = \begin{pmatrix} -3\\5\\-4 \end{pmatrix}$	vectors $\left(\overrightarrow{AC} \text{ or } \overrightarrow{CA}\right)$ and $\left(\overrightarrow{BC} \text{ or } \overrightarrow{CB}\right)$.	M1	
	$\overrightarrow{AC} \times \overrightarrow{BC} = \begin{pmatrix} 0\\ 8\\ -4 \end{pmatrix} \times \begin{pmatrix} -3\\ 5\\ -4 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 8 & -4 \\ -3 & 5 & -4 \end{vmatrix} = 24\mathbf{i} + 12\mathbf{j} + 24\mathbf{k} \end{cases}$	Full method for applying the vector cross product formula between $their (\overrightarrow{AC} = \overrightarrow{CA})$	M1	
	$\sin ACB = \frac{\sqrt{(24)^2 + (12)^2 + (12)^2}}{\sqrt{(0)^2 + (8)^2 + (-4)^2}} \sqrt{(-3)^2 + (5)^2 + (-4)^2}}$	their $\left(\overrightarrow{AC} \text{ or } \overrightarrow{CA}\right)$ and their $\left(\overrightarrow{BC} \text{ or } \overrightarrow{CB}\right)$.		
	$\left\{ \sin ACB = \frac{\sqrt{864}}{\sqrt{80}.\sqrt{50}} = \frac{3\sqrt{15}}{25} \Rightarrow \right\} \theta = 27.69446145 = 27.7 \ (3 \text{ sf})$	Anything that rounds to 27.7	A1	
				[3]

		Question 22 Notes
22. (a)	B1	p = 5 (Ignore working.)
(b)		Method 1
	M1	Writes down an equation involving only one parameter.
		This equation will usually be $7 + 3\mu = 1$ which is found from equating the i components of l_1 and l_2 .
	A1	Finds $\mu = -2$
		$\begin{pmatrix} 1 \end{pmatrix}$
	B1	Point of intersection of $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$. Allow $(1, 10, -1)$ or $\begin{pmatrix} 1\\ 10\\ -1 \end{pmatrix}$.
		(-1)
	B1	Finds $\lambda = 4$ and either
		• checks $\lambda = 4$ and $\mu = -2$ is true for the third component.
		• substitutes $\mu = -2$ into l_1 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$ and substitutes $\lambda = 4$ into l_2 to give
		$\mathbf{i} + 10\mathbf{j} - \mathbf{k}$
(b)		Alternative Method
	M1	Writes down an equation involving only one parameter.
		Solving the j and k components simultaneously will usually give either $8 = 14 + 3\mu$ or $23 + 3\lambda = 35$
	A1	Finds either $\mu = -2$ or $\lambda = 4$
		$\begin{pmatrix} 1 \end{pmatrix}$
	B1	Point of intersection of $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$. Allow $(1, 10, -1)$ or $\begin{pmatrix} 1\\ 10\\ -1 \end{pmatrix}$.
		$\left(-1\right)$
		Finds $\lambda = 4$ and either
		• checks $\mu = -2$ is true for the i component.
	B 1	• substitutes $\mu = -2$ into l_1 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$
		and substitutes $\lambda = 4$ into l_2 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$
(c)	M1	An attempt to find both the vectors $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$ and $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$ by subtracting.
	M1	Applies dot product formula between their $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$ and their $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$.
	A1	anything that rounds to 27.7
	Note	An answer of 0.48336 in radians without the correct answer in degrees is A0.
	Note	Some candidates will apply the dot product formula between vectors which are the wrong way
		round and achieve 152.3054385°. If they give the acute equivalent of awrt 27.7 then award A1.
(d)	M1	$\frac{1}{2} (\text{their length } AC) (\text{their length } BC) \sin(\text{their } 27.7^{\circ} \text{ from part (c)})$
	4.1	
	A1	anything that rounds to 14.7. Also allow $6\sqrt{6}$.
	Note	Area $ACB = \frac{1}{2} (\sqrt{80}) (\sqrt{50}) \sin(152.3054385^{\circ}) = \text{awrt } 14.7 \text{ is } M1A1.$

Question Number	Scheme	Marks	
	$l: \mathbf{r} = \begin{pmatrix} 13\\8\\1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\2\\-1 \end{pmatrix}, A(3, -2, 6), \overrightarrow{OP} = \begin{pmatrix} -p\\0\\2p \end{pmatrix}$		
	$\left\{ \overrightarrow{PA} \right\} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} - \begin{pmatrix} -p \\ 0 \\ 2p \end{pmatrix} \qquad \left\{ \overrightarrow{AP} \right\} = \begin{pmatrix} -p \\ 0 \\ 2p \end{pmatrix} - \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \qquad \begin{array}{c} \text{Finds the difference} \\ \text{between } \overrightarrow{OA} \text{ and } \overrightarrow{OP} \\ \text{Ignore labelling.} \end{array}$	M1	
	$= \begin{pmatrix} 3+p\\-2\\6-2p \end{pmatrix} = \begin{pmatrix} -3-p\\2\\2p-6 \end{pmatrix}$ Correct difference.	A1	
	$\begin{pmatrix} 3+p \\ -2 \\ 6-2p \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = 6+2p-4-6+2p=0$ See notes.	M1	
	p = 1	A1 cso [[4]
(b)	$ AP = \sqrt{4^2 + (-2)^2 + 4^2}$ or $ AP = \sqrt{(-4)^2 + 2^2 + (-4)^2}$ See notes.	M1	
	So, PA or $AP = \sqrt{36}$ or 6 cao	A1 cao	
	It follows that, $AB = "6" \{= PA \}$ or $PB = "6\sqrt{2}" \{=\sqrt{2}PA \}$ See notes.	B1 ft	
	{Note that $AB = "6" = 2$ (the modulus of the direction vector of l) }		
	$\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \text{ or }$ Uses a correct method in order to find both possible sets of coordinates of <i>B</i> . $\overrightarrow{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \text{ and } \overrightarrow{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 7 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$	M1	
	$= \begin{pmatrix} 7\\2\\4 \end{pmatrix} \text{ and } \begin{pmatrix} -1\\-6\\8 \end{pmatrix}$ Both coordinates are correct.	A1 cao	
		[[5] 9
	Notes for Question 23		
23. (a)	M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OP} . Ignore labelling.		
	If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference.		
	A1: Accept any of $\begin{pmatrix} 3+p\\-2\\6-2p \end{pmatrix}$ or $(3+p)\mathbf{i}-2\mathbf{j}+(6-2p)\mathbf{k}$ or $\begin{pmatrix} -3-p\\2\\2p-6 \end{pmatrix}$ or $(-3-p)\mathbf{i}+2\mathbf{j}$	+ (2 <i>p</i> – 6) k	

	Notes for Question 23 Continued
23. (a)	M1: Applies the formula $\overrightarrow{PA} \bullet \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ or $\overrightarrow{AP} \bullet \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ correctly to give a linear equation in p which is set equal to
	zero. Note: The dot product can also be with $\pm k \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$. Eg: Some candidates may find
	$ \begin{pmatrix} 13\\8\\1 \end{pmatrix} - \begin{pmatrix} 3\\-2\\6 \end{pmatrix} = \begin{pmatrix} 10\\10\\-5 \end{pmatrix}, \text{ for instance, and use this in their dot product which is fine for M1. } $
	A1: Finds $p = 1$ from <i>a correct solution only</i> .
	Note: The direction of subtraction is not important in part (a).
(b)	M1: Uses their value of p and Pythagoras to obtain a numerical expression for either AP or PA or AP^2 or
	<i>PA</i> ² . Eg: <i>PA</i> or <i>AP</i> = $\sqrt{4^2 + (-2)^2 + 4^2}$ or $\sqrt{(-4)^2 + 2^2 + (-4)^2}$ or $\sqrt{4^2 + 2^2 + 4^2}$
	or PA^2 or $AP^2 = 4^2 + (-2)^2 + 4^2$ or $(-4)^2 + 2^2 + (-4)^2$ or $4^2 + 2^2 + 4^2$
	A1: AP or $PA = \sqrt{36}$ or 6 cao or $AP^2 = 36$ cao
	B1ft: States or it is clear from their working that $AB = "6" \{= \text{their evaluated } PA \}$ or
	$PB = "6" \sqrt{2} \left\{ = \sqrt{2} \text{ (their evaluated } PA) \right\}.$
	Note: So a correct follow length is required here for either <i>AB</i> or <i>PB</i> using their evaluated <i>PA</i> . Note: This mark may be found on a diagram.
	Note: If a candidate states that $ \overrightarrow{AP} = \overrightarrow{AB} $ and then goes on to find $ \overrightarrow{AP} = 6$ then the B1 mark can be implied.
	IMPORTANT: This mark may be implied as part of expressions such as:
	$\{AB = \} \sqrt{(10+2\lambda)^2 + (10+2\lambda)^2 + (-5-\lambda)^2} = 6 \text{ or } \{AB^2 = \} (10+2\lambda)^2 + (10+2\lambda)^2 + (-5-\lambda)^2 = 36$
	or $\{PB = \} \sqrt{(14+2\lambda)^2 + (8+2\lambda)^2 + (-1-\lambda)^2} = 6\sqrt{2}$ or $\{PB^2 = \} (14+2\lambda)^2 + (8+2\lambda)^2 + (-1-\lambda)^2 = 72$
	M1: Uses a full method in order to find both possible sets of coordinates of <i>B</i> :
	Eg 1: $\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ Eg 2: $\overrightarrow{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} - 7 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$
	Note: If a candidate achieves at least one of the correct $(7, 2, 4)$ or $(-1, -6, 8)$ then award SC M1 here.
	Note: $\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} - 7 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ is M0.
	A1: For both $(7, 2, 4)$ and $(-1, -6, 8)$. Accept vector notation or \mathbf{i} , \mathbf{j} , \mathbf{k} notation.
	Note: All the marks are accessible in part (b) if $p = 1$ is found from incorrect working in part (a).
	(3) (2)
	Note: Imply M1A1B1 and award M1 for candidates who write: $\overrightarrow{OB} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \pm 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$, with little or no
	earlier working.

	Notes for Question 23 Continued		
23. (b)	(You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for Way 4).		
	Way 4: Using the dot product formula between \overrightarrow{PA} and \overrightarrow{PB} , ie: $\cos 45^{\circ} = \frac{\overrightarrow{PA} \bullet \overrightarrow{PB}}{ \overrightarrow{PA} \cdot \overrightarrow{PB} }$.		
	$\overrightarrow{PA} \bullet \overrightarrow{PB} = \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 14+2\lambda \\ 8+2\lambda \\ -1-\lambda \end{pmatrix} = 56+8\lambda-16-4\lambda-4-4\lambda = 36$		
	$\left\{\cos 45^{\circ}=\right\} \frac{1}{\sqrt{2}} = \frac{36}{6\sqrt{9\lambda^{2}+90\lambda+261}}$ For finding $\left \overrightarrow{PA}\right $ as before. M1 A1 cao $\left \overrightarrow{PB}\right = \sqrt{9\lambda^{2}+90\lambda+261}$ B1 oe		
	$\frac{1}{2} = \frac{36}{9\lambda^2 + 90\lambda + 261}$ $9\lambda^2 + 90\lambda + 261 = 72 \implies 9\lambda^2 + 90\lambda + 189 = 0$		
	$\lambda^{2} + 10\lambda + 21 = 0 \implies (\lambda + 3)(\lambda + 7) = 0$ $\lambda = -3, -7$		
	Then apply final M1 A1 as in the original scheme M1 A1		
23. (b)	(You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for Way 5). Way 5: Using the dot product formula between \overrightarrow{AB} and \overrightarrow{PB} , ie: $\cos 45^{\circ} = \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{ \overrightarrow{AB} . \overrightarrow{PB} }$		
	$\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\begin{pmatrix} 10+2\lambda\\10+2\lambda\\-5-\lambda \end{pmatrix}}{\sqrt{9\lambda^{2}+90\lambda+225}} \sqrt{9\lambda^{2}+90\lambda+261} \qquad \begin{array}{c} \text{Attempts the dot product formula}\\ \text{between } \overline{AB} \text{ and } \overline{PB}\\ \text{Simplified as shown.}\\ \text{Either} \left \overline{AB}\right = \sqrt{9\lambda^{2}+90\lambda+225} \text{ or}\\ \left \overline{PB}\right = \sqrt{9\lambda^{2}+90\lambda+261} \end{array} \qquad \begin{array}{c} \text{M1}\\ \text{A1}\\ \text{B1}\\ \text{B1}\\ \end{array}$		
	$ \left\{ \cos 45^{\circ} = \right\} \frac{1}{\sqrt{2}} = \frac{140 + 20\lambda + 28\lambda + 4\lambda^{2} + 80 + 20\lambda + 16\lambda + 4\lambda^{2} + 5 + 5\lambda + \lambda + \lambda^{2}}{\sqrt{9\lambda^{2} + 90\lambda + 225} \sqrt{9\lambda^{2} + 90\lambda + 261}} \\ \left\{ \cos 45^{\circ} = \right\} \frac{1}{\sqrt{2}} = \frac{9\lambda^{2} + 90\lambda + 225}{\sqrt{9\lambda^{2} + 90\lambda + 225} \sqrt{9\lambda^{2} + 90\lambda + 261}} $		
	$\left\{\cos 45^{\circ} = \right\} \frac{1}{\sqrt{2}} = \frac{9\lambda^2 + 90\lambda + 225}{\sqrt{9\lambda^2 + 90\lambda + 225}} \frac{\sqrt{9\lambda^2 + 90\lambda + 225}}{\sqrt{9\lambda^2 + 90\lambda + 261}}$		
	$\frac{1}{2} = \frac{(9\lambda^2 + 90\lambda + 225)^2}{(9\lambda^2 + 90\lambda + 225)(9\lambda^2 + 90\lambda + 261)}$		
	$\frac{1}{2} = \frac{(9\lambda^2 + 90\lambda + 225)}{(9\lambda^2 + 90\lambda + 261)}$		
	$9\lambda^{2} + 90\lambda + 261 = 2(9\lambda^{2} + 90\lambda + 225) \Rightarrow 9\lambda^{2} + 90\lambda + 189 = 0$		
	$\lambda^{2} + 10\lambda + 21 = 0 \implies (\lambda + 3)(\lambda + 7) = 0$ $\lambda = -3, -7$		
	Then apply final M1 A1 as in the original scheme M1 A1		

Question Number	Scheme	Marks
24.	$l: \mathbf{r} = \begin{pmatrix} a \\ b \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}, \overrightarrow{OA} = \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix}$	
(a)	A is on l, so $\begin{pmatrix} 21\\-17\\6 \end{pmatrix} = \begin{pmatrix} a\\b\\10 \end{pmatrix} + \lambda \begin{pmatrix} 6\\c\\-1 \end{pmatrix}$	
	$\{\mathbf{k}: 10 - \lambda = 6 \Rightarrow\} \ \lambda = 4 \qquad \qquad \lambda = 4$ $\{\mathbf{i}: a + 6\lambda = 21 \Rightarrow\} \ a + 6(4) = 21 \qquad \qquad \lambda = 4$ Substitutes their value of $\lambda \text{ into } a + 6\lambda = 21$	B1 M1
	$a = -3 \qquad \qquad a = -3$	A1 cao [3]
(b)	$\left\{ \overrightarrow{AB} \right\} = \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix} - \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix} \qquad \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix} - \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix} \qquad Finds the difference between \overrightarrow{OA} and \overrightarrow{OB}. Ignore labelling.$	M1
	$\left\{ \overrightarrow{AB} \right\} = \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix} \qquad \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4\\ -3\\ -12 \end{pmatrix}$	
	$\left\{ \overline{AB} \perp l \Rightarrow \overline{AB} \bullet \mathbf{d} = 0 \right\} \Rightarrow \begin{pmatrix} 4 \\ 3 \\ 12 \end{pmatrix} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix} = 24 + 3c - 12 = 0; \Rightarrow c = -4 $ See notes.	M1; A1 ft
	$\{\mathbf{j}: b + c\lambda = -17 \Rightarrow\} b + (-4)(4) = -17; \Rightarrow b = -1$ See notes.	ddM1; A1 cso cao [5]
(c)	$ AB = \sqrt{4^2 + 3^2 + 12^2}$ or $ AB = \sqrt{(-4)^2 + (-3)^2 + (-12)^2}$ See notes.	M1
	So, $ AB = 13$	A1 cao [2]
(d)	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} + \overrightarrow{BA} \right\} = \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix} + \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix}; = \begin{pmatrix} 17 \\ -20 \\ -6 \end{pmatrix}$ See notes for alternative methods.	M1;A1 cao
		[2] 12
	Notes for Question 24	
(a)	B1: $\lambda = 4$ seen or implied.	
	M1: Substitutes their value of λ into $a + 6\lambda = 21$	
	A1: $a = -3$. Note: Award B1M1A1 if the candidate states $a = -3$ from no working.	
	Alternative Method Using Simultaneous equations for part (a).	
	B1: For $60 - 6\lambda = 36$	
	M1: $60 - 6\lambda = 36$ and $a + 6\lambda = 21$ solved simultaneously to give $a =$	
	A1: $a = -3$, cao.	

	Notes for Question 24 Continued		
24.			
(b) ctd	M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OB} . Ignore labelling.		
eta	If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference.		
	$\begin{pmatrix} 6 \end{pmatrix}$ $\begin{pmatrix} 6 \end{pmatrix}$		
	M1: Applies the formula $\overrightarrow{AB} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$ or $\overrightarrow{BA} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$ correctly to give a linear equation in c which is set equal		
	to zero. Note: The dot product can also be with $\pm k \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$.		
	A1ft: $c = -4$ or for finding a correct follow through <i>c</i> .		
	ddM1: Substitutes their value of λ and their value of c into $b + c\lambda = -17$		
	Note that this mark is dependent on the two previous method marks being awarded.		
	A1: $b = -1$		
(c)	M1: An attempt to apply a three term Pythagoras in order to find $ AB $,		
(0)	so taking the square root is required here.		
	A1: 13 cao		
(4)	Note: Don't recover work for part (b) in part (c).		
(d)	M1: For a full <i>applied</i> method of finding the coordinates of <i>B</i>'.Note: You can give M1 for 2 out of 3 correct components of <i>B</i>'.		
	A1: For either $\begin{pmatrix} 17 \\ -20 \\ -6 \end{pmatrix}$ or $17\mathbf{i} - 20\mathbf{j} - 6\mathbf{k}$ or $(17, -20, -6)$ cao.		
	Helpful diagram!		
	$B \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix}$		
	$A\begin{bmatrix}21\\-17\end{bmatrix} \qquad \qquad \overline{BA} = \begin{pmatrix}-4\\-3\\-12\end{bmatrix}$		
	$ \begin{array}{c c} A & -17 \\ \hline 6 \\ \end{array} $		
	$\overline{BA} = \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix}$		
	(r)		

	Notes for Question 24 Continued			
	Acceptable Methods for the Method mark in part (d			
Way 1	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} + \overrightarrow{BA} \right\} = \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} + \begin{pmatrix} -4\\ -3\\ -12 \end{pmatrix} $ (using their	\overline{BA})		
	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} - \overrightarrow{AB} \right\} = \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} - \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix} $ (using their			
Way 3	$\overrightarrow{OB'} \left\{ = \overrightarrow{OB} + 2\overrightarrow{BA} \right\} = \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} + 2\begin{pmatrix} -4\\ -3\\ -12 \end{pmatrix} $ (using their	\overline{BA})		
Way 4	$\overrightarrow{OB'} \left\{ = \overrightarrow{OB} - 2\overrightarrow{AB} \right\} = \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} - 2 \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix} (\text{using their } \overrightarrow{AB})$			
Way 5	$\begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} \rightarrow \begin{pmatrix} \text{Minus } 4\\ \text{Minus } 3\\ \text{Minus } 12 \end{pmatrix} \rightarrow \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} \rightarrow \begin{pmatrix} \text{Minus } 4\\ \text{Minus } 3\\ \text{Minus } 12 \end{pmatrix} \begin{cases} \rightarrow \begin{pmatrix} 17\\ -20\\ -6 \end{pmatrix} \end{cases} \text{, so } \overrightarrow{OA} + \text{their } \overrightarrow{BA}$			
Way 6	$\overrightarrow{OB'} \left\{ = 2\overrightarrow{OA} - \overrightarrow{OB} \right\} = 2 \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix} - \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix}$			
Way 7	$\overrightarrow{OB} = 25\mathbf{i} - 14\mathbf{j} + 18\mathbf{k}, \ \overrightarrow{OA} = 21\mathbf{i} - 17\mathbf{j} + 6\mathbf{k} \text{ and } \overrightarrow{OB'}$	$= p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$,		
	$(21, -17, 6) = \left(\frac{25+p}{2}, \frac{-14+q}{2}, \frac{18+r}{2}\right)$			
	p = 21(2) - 25 = 17 q = -17(2) + 14 = -20 r = 6(2) - 18 = -6	M1: Writing down any two equations correctly and an attempt to find at least two of p , q or r .		

Question Number	Scheme	Marks
25.	$l_1: \mathbf{r} = \begin{pmatrix} -9\\8\\5 \end{pmatrix} + \mu \begin{pmatrix} 5\\-4\\-3 \end{pmatrix}$	
(a)	A(1, 0, -1) correct coordinates	B1
(b)	$\overrightarrow{OA} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \ \mathbf{d}_1 = \begin{pmatrix} 5\\-4\\-3 \end{pmatrix} \text{ and } \theta \text{ is angle}$	[1]
	$\cos \theta = \frac{\overrightarrow{OA} \bullet \mathbf{d}_1}{\left \overrightarrow{OA}\right \cdot \left \mathbf{d}_1\right } = \frac{\begin{pmatrix} 1\\0\\-1 \end{pmatrix} \bullet \begin{pmatrix} 5\\-4\\-3 \end{pmatrix}}{\sqrt{(1)^2 + (0)^2 + (-1)^2} \cdot \sqrt{(5)^2 + (-4)^2 + (-3)^2}} $ Applies dot product formula between \overrightarrow{OA} and \mathbf{d}_1 .	M1
	$\cos \theta = \frac{5+0+3}{\sqrt{(1)^2 + (0)^2 + (-1)^2} \cdot \sqrt{(5)^2 + (-4)^2 + (-3)^2}} \begin{cases} = \frac{8}{(\sqrt{2})(5\sqrt{2})} & \text{Correct ft expression or equation.} \end{cases}$	A1 ft
	$\cos \theta = \frac{8}{\underline{10}} \text{ or } \frac{4}{\underline{5}} \text{ or } \underline{0.8}$ $\frac{8}{\underline{10}} \text{ or } \frac{4}{\underline{5}} \text{ or } \underline{0.8} \text{ isw}$	A1 cao [3]
(c)	$\overrightarrow{OB} = 3\overrightarrow{OA} = 3 \begin{pmatrix} 1\\0\\-1 \end{pmatrix} = \begin{pmatrix} 3\\0\\-3 \end{pmatrix}$	
	In the form of their $\overrightarrow{OB} + \lambda \mathbf{d}$	
	$l_2: \mathbf{r} = \begin{pmatrix} 3\\0\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 5\\-4\\-3 \end{pmatrix}$ with any one of either \mathbf{d}_1 or their ft \overrightarrow{OB} correct.	M1
	$\begin{pmatrix} -3 \end{pmatrix}$ $\begin{pmatrix} -3 \end{pmatrix}$ Correct equation and $\mathbf{r} =$	A1ft
		oe [2]
(d)	$OB = \sqrt{(3)^2 + (0)^2 + (-3)^2}$ = $\sqrt{18} = 3\sqrt{2}$ $3\sqrt{2}$	B1 ft
(e)	So, $\frac{OX}{3\sqrt{2}} = \sin \theta$ $\frac{OX}{\text{their } OB} = \sin \theta$	[1] M1
	$\left\{\cos\theta = \frac{4}{5} \Rightarrow\right\}\sin\theta = \frac{3}{5}$ Converts $\cos\theta$ into an expression for $\sin\theta$	M1 oe
	$OX = 3\sqrt{2}\left(\frac{3}{5}\right) = \frac{9}{5}\sqrt{2} = 2.5455844$	A1
		[3] 10

	Notes on Question 25			
(b)	Note: Obtaining $\cos \theta = -\frac{4}{5}$ is M1A1A0.	Note: Obtaining $\cos \theta = -\frac{4}{5}$ is M1A1A0.		
(e)	Note: 2 nd M1 mark can be awarded instead for candidate using sin(awrt 37)			
(e)	$ \frac{\text{Alternative Method 1 for part (e)}}{\mathbf{d}_2 = \begin{pmatrix} 5 \\ -4 \\ -3 \end{pmatrix}, \overrightarrow{OX} = \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ -4 \\ -3 \end{pmatrix} = \begin{pmatrix} 3+5\lambda \\ -4\lambda \\ -3-3\lambda \end{pmatrix} $ $ \overrightarrow{OX} \bullet \mathbf{d}_2 = 0 \implies \begin{pmatrix} 3+5\lambda \\ -4\lambda \\ -3-3\lambda \end{pmatrix} \bullet \begin{pmatrix} 5 \\ -4 \\ -3 \end{pmatrix} = 15 + 25\lambda + 16\lambda + 9 + 9\lambda = 0 $	M1: Applies $\overrightarrow{OX} \bullet \mathbf{d}_2 = 0$ and solves the resulting equation to find a value for λ .		
	leading to $50\lambda + 24 = 0 \implies \lambda = -\frac{12}{25}$	JM1. Calesitates the inscribes of 1		
	Position vector $\overline{OX} = \begin{pmatrix} 3\\0\\-3 \end{pmatrix} - \frac{12}{25} \begin{pmatrix} 5\\-4\\-3 \end{pmatrix} = \begin{pmatrix} \frac{3}{5}\\\frac{48}{25}\\-\frac{39}{25} \end{pmatrix}$	dM1: Substitutes their value of λ into $\begin{pmatrix} 3\\0\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 5\\-4\\-3 \end{pmatrix}$. Note: This mark is dependent upon the previous M1 mark if a candidate uses this alternative method.		
	$OX = \sqrt{\left(\frac{3}{5}\right)^2 + \left(\frac{48}{25}\right)^2 + \left(-\frac{39}{25}\right)^2} = 2.5455844$	A1: For $OX = awrt 2.55$		
(e)	Alternative Method 2 for part (e) $\frac{BX}{3\sqrt{2}} = \cos \theta \left\{ \Rightarrow BX = 3\sqrt{2} \left(\frac{4}{5}\right) = \frac{12\sqrt{2}}{5} \right\}$ So, $OX = \sqrt{\left(3\sqrt{2}\right)^2 - \left(2.4\sqrt{2}\right)^2}$ OX = 2.5455844	M1: $\frac{BX}{\text{their }OB} = \cos \theta$ M1: Subtracts using Pythagoras to find OX . A1: For $OX = \text{awrt } 2.55$		

Questio n Number	Scheme		Marks
26. (a)	i: $9 + \lambda = 2 + 2\mu$ (1) j: $13 + 4\lambda = -1 + \mu$ (2) k: $-3 - 2\lambda = 1 + \mu$ (3)	Any two equations. (Allow one slip).	M1
	Eg: (2) – (3): $16 + 6\lambda = -2$ or (2) – 4(1): $-23 = -9 - 7\mu$	An attempt to eliminate one of the parameters.	dM1
	Leading to $\lambda = -3$ or $\mu = 2$	Either $\lambda = -3$ or $\mu = 2$	A1
	$l_{1}: \mathbf{r} = \begin{pmatrix} 9\\13\\-3 \end{pmatrix} - 3 \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 6\\1\\3 \end{pmatrix} \text{or} l_{2}: \mathbf{r} = \begin{pmatrix} 2\\-1\\1 \end{pmatrix} + 2 \begin{pmatrix} 2\\1\\1 \end{pmatrix} = \begin{pmatrix} 6\\1\\3 \end{pmatrix}$	See notes	ddM1 A1
(b)	$\mathbf{d}_{1} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}, \mathbf{d}_{2} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \implies \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$	Realisation that the dot product is required between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.	[5] M1
	$\cos \theta = \pm \left(\frac{2 + 4 - 2}{\sqrt{(1)^2 + (4)^2 + (-2)^2} \cdot \sqrt{(2)^2 + (1)^2 + (1)^2}} \right)$	Correct equation.	A1
	$\cos \theta = \frac{4}{\sqrt{21}.\sqrt{6}} \implies \theta = 69.1238974 = 69.1 \ (1 \text{ dp})$	awrt 69.1	A1
	$\overrightarrow{OA} = \begin{pmatrix} 4\\16\\-3 \end{pmatrix}, \overrightarrow{OP} = \begin{pmatrix} 9\\13\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 9+\lambda\\13+4\lambda\\-3-2\lambda \end{pmatrix}$ $\overrightarrow{AP} = \begin{pmatrix} 9+\lambda\\13+4\lambda\\-3-2\lambda \end{pmatrix} - \begin{pmatrix} 4\\16\\-3 \end{pmatrix} = \begin{pmatrix} \lambda+5\\4\lambda-3\\-2\lambda \end{pmatrix}$		[3] M1 A1
	$\overrightarrow{AP} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} \lambda + 5 \\ 4\lambda - 3 \\ -2\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = \lambda + 5 + 16\lambda - 12 + 4\lambda = 0$		dM1
	leading to $\{21\lambda - 7 = 0 \implies\} \lambda = \frac{1}{3}$	$\lambda = \frac{1}{3}$	A1
	Position vector $\overrightarrow{OP} = \begin{pmatrix} 9\\13\\-3 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 9\frac{1}{3}\\14\frac{1}{3}\\-3\frac{2}{3} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{28}{3}\\\frac{43}{3}\\-\frac{11}{3}\\-\frac{11}{3} \end{pmatrix}$		ddM1 A1
			[6] 14

an expression of the form $x_1x_2 + y_1y_2 + z_1z_2 = 0$. Differentiation can be used. See Additional Solutions. A1: Solving to find $\lambda = \frac{1}{3}$.

ddM1: Depends on both previous Ms. Substitutes their value of the parameter into their expression for \overrightarrow{OP} . Substituting into \overrightarrow{AP} is a common error which loses the mark.

Note: Needs 2 correct co-ordinates if $\lambda = \frac{1}{3}$ found and then *P* stated without method to gain ddM1.

A1: $9\frac{1}{3}\mathbf{i} + 14\frac{1}{3}\mathbf{j} - 3\frac{2}{3}\mathbf{k}$. Accept vector notation or coordinates. *Must be exact.*

Question Number	Scheme	Marks
27.	(a) $AB = \begin{pmatrix} 8 \\ 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 10 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$	M1 A1 (2)
	(b) $\mathbf{r} = \begin{pmatrix} 10\\2\\3 \end{pmatrix} + t \begin{pmatrix} -2\\1\\1 \end{pmatrix}$ $\mathbf{r} = \begin{pmatrix} 8\\3\\4 \end{pmatrix} + t \begin{pmatrix} -2\\1\\1 \end{pmatrix}$	M1 A1ft (2)
	(c) $UP = \begin{pmatrix} 10-2t \\ 2+t \\ 3+t \end{pmatrix} - \begin{pmatrix} 3 \\ 12 \\ 3 \end{pmatrix} = \begin{pmatrix} 7-2t \\ t-10 \\ t \end{pmatrix}$	• M1 A1
	$\begin{pmatrix} 7-2t\\t-10\\t \end{pmatrix} \begin{pmatrix} -2\\1\\1 \end{pmatrix} = -14 + 4t + t - 10 + t = 0$ Leading to $t = 4$ Position vector of P is $\begin{pmatrix} 10-8\\2+4\\2+4 \end{pmatrix} = \begin{pmatrix} 2\\6\\7 \end{pmatrix}$	M1 A1 M1 A1 (6)
	(3+4) (7) Alternative working for (c)	[10]
	$\operatorname{uur}_{CP} = \begin{pmatrix} 8-2t\\ 3+t\\ 4+t \end{pmatrix} - \begin{pmatrix} 3\\ 12\\ 3 \end{pmatrix} = \begin{pmatrix} 5-2t\\ t-9\\ t+1 \end{pmatrix}$	• M1 A1
	$\begin{pmatrix} 5-2t \\ t-9 \\ t+1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = -10 + 4t + t - 9 + t + 1 = 0$	- M1
	Leading to $t = 3$ Position vector of P is $\begin{pmatrix} 8-6\\3+3\\4+3 \end{pmatrix} = \begin{pmatrix} 2\\6\\7 \end{pmatrix}$	A1 • M1 A1 (6)

Question Number	Scheme		Marks	
28.	$\overrightarrow{OA} = 2\mathbf{i} - \mathbf{j} + 5\mathbf{k}$, $\overrightarrow{OB} = 5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}$, $\left\{\overrightarrow{OC} = 2\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}\right\}$ &	$\overrightarrow{OD} = -\mathbf{i} + \mathbf{j} + 4\mathbf{k}$		
(a)	$\overline{AB} = \pm \left((5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}) - (2\mathbf{i} - \mathbf{j} + 5\mathbf{k}) \right); = 3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$		M1; A1	
(b)	$l: \mathbf{r} = \begin{pmatrix} 2\\-1\\5 \end{pmatrix} + \lambda \begin{pmatrix} 3\\3\\5 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 5\\2\\10 \end{pmatrix} + \lambda \begin{pmatrix} 3\\3\\5 \end{pmatrix}$	See notes	M1 A1ft	[2]
	$D_{\mathbf{x}}$			[2]
	d d d d d d d d d d	Let <i>d</i> be the shortest distance from <i>C</i> to <i>l</i> .		
(c)	$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \begin{pmatrix} -1\\1\\4 \end{pmatrix} - \begin{pmatrix} 2\\-1\\5 \end{pmatrix} = \begin{pmatrix} -3\\2\\-1 \end{pmatrix} \text{ or } \overrightarrow{DA} = \begin{pmatrix} 3\\-2\\1 \end{pmatrix}$		M1	
	$\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AD}}{\left \overrightarrow{AB} \right \cdot \left \overrightarrow{AD} \right } = \frac{\begin{pmatrix} 3\\ 3\\ 5 \end{pmatrix} \cdot \begin{pmatrix} -3\\ 2\\ -1 \end{pmatrix}}{\sqrt{(3)^2 + (3)^2 + (5)^2} \cdot \sqrt{(-3)^2 + (2)^2 + (-1)^2}}$	Applies dot product formula between their $(\overline{AB} \text{ or } \overline{BA})$	M1	
	$\cos \theta = \frac{AB \bullet AD}{\left \overline{AB} \right \cdot \left \overline{AD} \right } = \frac{(5) (-1)}{\sqrt{(3)^2 + (3)^2 + (5)^2} \cdot \sqrt{(-3)^2 + (2)^2 + (-1)^2}}$	and their $(\overrightarrow{AD} \text{ or } \overrightarrow{DA})$.		
	$\cos \theta = \pm \left(\frac{-9 + 6 - 5}{\sqrt{(3)^2 + (3)^2 + (5)^2} \cdot \sqrt{(-3)^2 + (2)^2 + (-1)^2}} \right)$	Correct followed through expression or equation .	A1√	
	$\cos \theta = \frac{-8}{\sqrt{43}.\sqrt{14}} \Rightarrow \theta = 109.029544 = 109 \text{ (nearest °)}$	awrt 109	A1 cso A	G
	• • • •			[4]
(d)	$\overrightarrow{OC} = \overrightarrow{OD} + \overrightarrow{DC} = \overrightarrow{OD} + \overrightarrow{AB} = (-\mathbf{i} + \mathbf{j} + 4\mathbf{k}) + (3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k})$ $\overrightarrow{OC} = \overrightarrow{OP} + \overrightarrow{PC} = \overrightarrow{OP} + \overrightarrow{AD} = (5\mathbf{i} + 2\mathbf{i} + 10\mathbf{k}) + (-2\mathbf{i} + 2\mathbf{j} - 1\mathbf{k})$		M1	
	$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{OB} + \overrightarrow{AD} = (5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}) + (-3\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ So, $\overrightarrow{OC} = 2\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}$		A1	
				[2]
(e)	Area $ABCD = \left(\frac{1}{2}(\sqrt{43})(\sqrt{14})\sin 109^\circ\right); \times 2 = 23.19894905$	awrt 23.2	M1; dM1 A	
(f)	$\frac{d}{\sqrt{43}} = \sin 71$ or $\sqrt{43} d = 23.19894905$		M1	[3]
(1)	$\frac{d}{\sqrt{14}} = \sin 71$ or $\sqrt{43} d = 23.19894905$			
	$\therefore \ d = \sqrt{14} \sin 71^{\circ} = 3.537806563$	awrt 3.54	A1	[2] 15

28. (a) **M1:** Finding the difference between \overline{OB} and \overline{OA} . Can be implied by two out of three components correct in $3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ or $-3\mathbf{i} - 3\mathbf{j} - 5\mathbf{k}$ A1: 3i + 3j + 5kM1: An expression of the form (3 component vector) $\pm \lambda$ (3 component vector) (b) A1ft: $\mathbf{r} = \overrightarrow{OA} + \lambda (\text{their } \pm \overrightarrow{AB}) \text{ or } \mathbf{r} = \overrightarrow{OB} + \lambda (\text{their } \pm \overrightarrow{AB}).$ Note: Candidate must begin writing their line as $\mathbf{r} = \text{ or } l = \dots \text{ or } \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots$ So, Line = ... would be A0. (c) M1: An attempt to find either the vector \overrightarrow{AD} or \overrightarrow{DA} . Can be implied by two out of three components correct in $-3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ or $3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, respectively. M1: Applies dot product formula between their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ and their $(\overrightarrow{AD} \text{ or } \overrightarrow{DA})$. A1ft: Correct followed through expression or equation. The dot product must be correctly followed through correctly and the square roots although they can be un-simplified must be followed through correctly. A1: Obtains an angle of awrt 109 by correct solution only. Award the final A1 mark if candidate achieves awrt 109 by either taking the dot product between: $\begin{pmatrix} 3\\3\\5 \end{pmatrix} \text{ and } \begin{pmatrix} -3\\2\\-1 \end{pmatrix} \text{ or (ii) } \begin{pmatrix} -3\\-3\\-5 \end{pmatrix} \text{ and } \begin{pmatrix} 3\\-2\\1 \end{pmatrix}. \text{ Ignore if any of these vectors are labelled incorrectly.}$ (i) Award A0, cso for those candidates who take the dot product between: (iii) $\begin{pmatrix} -3 \\ -3 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}$ or (iv) $\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$. They will usually find awrt 71 and apply 180 - awrt 71 to give awrt 109. If these candidates give a convincing detailed explanation which must include reference to the direction of their vectors then this can be given A1 cso. If still in doubt, here, send to review. (d) M1: Applies either \overline{OD} + their \overline{AB} or \overline{OB} + their \overline{AD} . This mark can be implied by two out of three correctly followed through components in their OD. **A1:** For 2i + 4j + 9k. M1: $\frac{1}{2}$ (their AB) (their CB) sin (their 109° or 71° from (b)). Awrt 11.6 will usually imply this mark. (e) **dM1:** Multiplies this by 2 for the parallelogram. Can be implied. Note: $\frac{1}{2}((\text{their } AB + \text{their } AB))(\text{their } CB)\sin(\text{their } 109^{\circ} \text{ or } 71^{\circ} \text{ from (b)})$ A1: awrt 23.2 (f) M1: $\frac{d}{\text{their } AD} = \sin(\text{their } 109^{\circ} \text{ or } 71^{\circ} \text{ from (b)}) \text{ or (their } AB) d = (\text{their } \text{Area } ABCD)$ Award M0 for (their AB) in part (f), if the area of their parallelogram in part (e) is (their AB)(their CB). Award M0 for $\frac{d}{\text{their } \sqrt{43}} = \sin 71$ or $(\text{their } \sqrt{14})d = 23.19894905...$ A1: awrt 3.54 Note: Some candidates will use their answer to part (f) in order to answer part (e).

28.
$$\frac{Ahternative method for part (c): Applying the cosine rule:}{A\overline{D} = \overline{OD} - \overline{OA} = \begin{bmatrix} -1\\1\\4 \end{bmatrix} - \begin{bmatrix} 2\\-1\\5 \end{bmatrix} = \begin{bmatrix} 2\\2\\-1 \end{bmatrix} \text{ or } \overline{DA} = \begin{bmatrix} 3\\-2\\1\\1 \end{bmatrix}$$

$$\overline{DB} = \overline{OD} - \overline{OA} = \begin{bmatrix} 5\\2\\1\\0 \end{bmatrix} - \begin{bmatrix} -1\\1\\4 \end{bmatrix} = \begin{bmatrix} 6\\1\\6 \end{bmatrix} \text{ or } \overline{BD} = \begin{bmatrix} -6\\-1\\-6 \end{bmatrix}$$

$$So |\overline{AB}| = \sqrt{43}, |\overline{AD}| = \sqrt{14} \text{ and } |\overline{DB}| = \sqrt{73}$$

$$So |\overline{AB}| = \sqrt{43}, |\overline{AD}| = \sqrt{14} \text{ and } |\overline{DB}| = \sqrt{73}$$

$$Cos \theta = \frac{(\sqrt{43})^2 + (\sqrt{14})^2 - (\sqrt{73})^2}{2\sqrt{43}\sqrt{14}}$$

$$MI: \text{ Cosine rule structure of } \cos \theta = \frac{a^2 + b^2 - c^2}{2ab} \text{ assigned}$$

$$cos \theta = \frac{(\sqrt{43})^2 + (\sqrt{14})^2 - (\sqrt{73})^2}{2\sqrt{43}\sqrt{14}}$$

$$MI: \text{ Cosine rule structure of } \cos \theta = \frac{a^2 + b^2 - c^2}{2ab} \text{ assigned}$$

$$cos \theta = \frac{(\sqrt{43})^2 + (\sqrt{14})^2 - (\sqrt{73})^2}{2\sqrt{43}\sqrt{14}}$$

$$MI: \text{ Cosine rule structure of } \cos \theta = \frac{a^2 + b^2 - c^2}{2ab} \text{ assigned}$$

$$cos \theta = \frac{(\sqrt{43})^2 + (\sqrt{14})^2 - (\sqrt{73})^2}{2\sqrt{43}\sqrt{14}}$$

$$HI: \text{ Correct application of cosine rule.}$$

$$\left\{ \cos \theta = \frac{-16}{2\sqrt{43}\sqrt{14}} \Rightarrow \theta = 109.029544... \right\} = 109 \text{ (nearest }^\circ) \text{ A1: awrt 109 (no errors seen). AG}$$

$$\frac{Ahternative method for part (d):}{\overline{OE}} = \begin{pmatrix} 2 + 3\lambda \\ -1 + 3\lambda \\ 5 + 5\lambda \end{pmatrix} - \begin{pmatrix} -1\\1\\4 \end{pmatrix} = \begin{pmatrix} 3 + 3\lambda \\ -2 + 3\lambda \\ 1 + 5\lambda \end{pmatrix}$$

$$\overline{DE} = \begin{pmatrix} 2 + 3\lambda \\ -1 + 3\lambda \\ 5 + 5\lambda \end{pmatrix} - \begin{pmatrix} -1\\1\\4 \end{pmatrix} = \begin{pmatrix} \frac{3}{-1} \\ -\frac{1}{14} \\ -\frac$$

Question Number	Scheme		
29.	(a) i : $6-\lambda = -5+2\mu$ j : $-3+2\lambda = 15-3\mu$ Any two equations leading to $\lambda = 3$, $\mu = 4$ $\mathbf{r} = \begin{pmatrix} 6\\ -3\\ -2 \end{pmatrix} + 3 \begin{pmatrix} -1\\ 2\\ 3 \end{pmatrix} = \begin{pmatrix} 3\\ 3\\ 7 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} -5\\ 15\\ 3 \end{pmatrix} + 4 \begin{pmatrix} 2\\ -3\\ 1 \end{pmatrix} = \begin{pmatrix} 3\\ 3\\ 7 \end{pmatrix}$ k : LHS = -2+3(3) = 7, RHS = 3+4(1) = 7 (As LHS = RHS, lines intersect) Alternatively for B1, showing that $\lambda = 3$ and $\mu = 4$ both give $\begin{pmatrix} 3\\ 3 \end{pmatrix}$	M1 M1 A1 M1 A1 B1	(6)
	(b) $\begin{pmatrix} -1\\ 2\\ -3\\ 1 \end{pmatrix} = -2 - 6 + 3 = \sqrt{14}\sqrt{14}\cos\theta$ $(\theta \approx 110.92^{\circ})$ Acute angle is 69.1° awrt 69.1 (c) $\mathbf{r} = \begin{pmatrix} 6\\ -3\\ -2 \end{pmatrix} + 1 \begin{pmatrix} -1\\ 2\\ -3 \end{pmatrix} = \begin{pmatrix} 5\\ -1\\ 1 \end{pmatrix}$ $(\Rightarrow B \text{ lies on } l_1)$	M1 A1 A1	(3)
	(d) Let <i>d</i> be shortest distance from <i>B</i> to l_2 $AB = \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \\ 7 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -6 \end{pmatrix}$ $A = \begin{pmatrix} A \\ -6 \end{pmatrix}$ I_2	B1	(1)
	$\begin{vmatrix} u \\ AB \\ AB \end{vmatrix} = \sqrt{2^2 + (-4)^2 + (-6)^2} = \sqrt{56} & \text{awrt 7.5} \\ \frac{d}{\sqrt{56}} = \sin \theta \\ d = \sqrt{56} \sin 69.1^\circ \approx 6.99 & \text{awrt 6.99} \end{vmatrix}$	A1 M1 A1	(4) [14]

Question Number	Scheme		Marks	5
30 . (a)	$\overrightarrow{AB} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k} - (\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) = -3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$		M1 A1	(2)
(b)			M1 A1ft	(2)
	or $\mathbf{r} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda(-3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k})$			
(C)	$\overrightarrow{AC} = 2\mathbf{i} + p\mathbf{j} - 4\mathbf{k} - (\mathbf{i} - 3\mathbf{j} + 2\mathbf{k})$			
	$=\mathbf{i}+(p+3)\mathbf{j}-6\mathbf{k}$	or \overrightarrow{CA}	B1	
	$\overrightarrow{AC}.\overrightarrow{AB} = \begin{pmatrix} 1\\ p+3\\ -6 \end{pmatrix} . \begin{pmatrix} -3\\ 5\\ -3 \end{pmatrix} = 0$ $-3+5p+15+18 = 0$		M1	
	Leading to $p = -6$		M1 A1	(4)
(d)	$AC^{2} = (2-1)^{2} + (-6+3)^{2} + (-4-2)^{2} (=46)$ $AC = \sqrt{46}$ acce	ept awrt 6.8	M1 A1	(2)
				(2) [10]

Question Number	Scheme	Marks	
31.	(a) j components $3+2\lambda=9 \Rightarrow \lambda=3$ ($\mu=1$) Leading to $C:(5,9,-1)$ accept vector forms	M1 A1 A1 (3))
	(b) Choosing correct directions or finding \overrightarrow{AC} and \overrightarrow{BC}	M1	
	$\begin{pmatrix} 1\\2\\1 \end{pmatrix} \begin{pmatrix} 5\\0\\2 \end{pmatrix} = 5 + 2 = \sqrt{6}\sqrt{29} \cos \angle ACB \qquad \text{use of scalar product}$	M1 A1	
	$\angle ACB = 57.95^{\circ} \qquad \text{awrt } 57.95^{\circ}$	A1 (4))
	(c) $A:(2,3,-4) B:(-5,9,-5)$ $\overrightarrow{AC} = \begin{pmatrix} 3\\6\\3 \end{pmatrix}, \overrightarrow{BC} = \begin{pmatrix} 10\\0\\4 \end{pmatrix}$		
	$AC^2 = 3^2 + 6^2 + 3^2 \implies AC = 3\sqrt{6}$	M1 A1	
	$BC^{2} = 10^{2} + 4^{2} \implies BC = 2\sqrt{29}$ $\triangle ABC = \frac{1}{2}AC \times BC \sin \angle ACB$	A1	
	$=\frac{1}{2}3\sqrt{6\times 2\sqrt{29}\sin\angle ACB}\approx 33.5 \qquad 15\sqrt{5}, \text{ awrt } 34$	M1 A1 (5) [12]	
	Alternative method for (b) and (c) (b) $A:(2,3,-4) B:(-5,9,-5) C:(5,9,-1)$ $AB^{2} = 7^{2} + 6^{2} + 1^{2} = 86$ $AC^{2} = 3^{2} + 6^{2} + 3^{2} = 54$		
	$BC^2 = 10^2 + 0^2 + 4^2 = 116$ Finding all three sides	M1	
	$\cos \angle ACB = \frac{116 + 54 - 86}{2\sqrt{116}\sqrt{54}} (= 0.53066 \dots)$	M1 A1	
	$\angle ACB = 57.95^{\circ}$ awrt 57.95° If this method is used some of the working may gain credit in part (c) and appropriate marks may be awarded if there is an attempt at part (c).	A1 (4))

Question Number	Scheme		
32	(a) $A: (-6, 4, -1)$ Accept vector forms	B1	(1)
	(b) $\begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} = 12 + 4 + 3 = \sqrt{4^2 + (-1)^2 + 3^2} \sqrt{3^2 + (-4)^2 + 1^2} \cos \theta$	M1 A1	
	$\cos\theta = \frac{19}{26} \qquad \text{awrt } 0.73$	A1	(3)
	(c) <i>X</i> : (10, 0, 11) Accept vector forms	B1	(1)
	(d) $\overrightarrow{AX} = \begin{pmatrix} 10\\0\\11 \end{pmatrix} - \begin{pmatrix} -6\\4\\-1 \end{pmatrix}$ Either order	M1	
	$= \begin{pmatrix} 16\\ -4\\ 12 \end{pmatrix} $ cao	A1	(2)
	(e) $ \overrightarrow{AX} = \sqrt{16^2 + (-4)^2 + 12^2}$ = $\sqrt{416} = \sqrt{16 \times 26} = 4\sqrt{26}$ * Do not penalise if consistent incorrect signs in (d)	M1 A1	(2)
	$A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	M1 M1 A1	(3) [12]

Question Number	Scheme	Marks
33 (a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 10\\14\\-4 \end{pmatrix} - \begin{pmatrix} 8\\13\\-2 \end{pmatrix} = \begin{pmatrix} 2\\1\\-2 \end{pmatrix} \qquad \text{or } \overrightarrow{BA} = \begin{pmatrix} -2\\-1\\2 \end{pmatrix}$	M1
	$\mathbf{r} = \begin{pmatrix} 8\\13\\-2 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\-2 \end{pmatrix} \text{ or } \mathbf{r} = \begin{pmatrix} 10\\14\\-4 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\-2 \end{pmatrix} \text{ accept equivalents}$	M1 A1ft (3)
(b)	$\overrightarrow{CB} = \overrightarrow{OB} - \overrightarrow{OC} = \begin{pmatrix} 10\\14\\-4 \end{pmatrix} - \begin{pmatrix} 9\\9\\6 \end{pmatrix} = \begin{pmatrix} 1\\5\\-10 \end{pmatrix} \qquad \text{or } \overrightarrow{BC} = \begin{pmatrix} -1\\-5\\10 \end{pmatrix}$	
	$CB = \sqrt{(1^2 + 5^2 + (-10)^2)} = \sqrt{(126)} (= 3\sqrt{14} \approx 11.2)$ awrt 11.2	M1 A1 (2)
(c)	$\overline{CB}.\overline{AB} = \left \overline{CB}\right \left \overline{AB}\right \cos \theta$ $(\pm)(2+5+20) = \sqrt{126}\sqrt{9}\cos \theta$	M1 A1
	$\cos\theta = \frac{3}{\sqrt{14}} \implies \theta \approx 36.7^{\circ} \qquad \text{awrt } 36.7^{\circ}$	A1 (3)
(d)	$\frac{X}{\sqrt{126}} = \sin \theta$	M1 A1ft
	$d = 3\sqrt{5} (\approx 6.7) \qquad \text{awrt } 6.7$	A1 (3)
(e)	$BX^2 = BC^2 - d^2 = 126 - 45 = 81$	M1
	! $CBX = \frac{1}{2} \times BX \times d = \frac{1}{2} \times 9 \times 3\sqrt{5} = \frac{27\sqrt{5}}{2} (\approx 30.2)$ awrt 30.1 or 30.2	M1 A1 (3)
		[14]
	Alternative for (e)	
	$! CBX = \frac{1}{2} \times d \times BC \sin \angle XCB$	M1
	$=\frac{1}{2} \times 3\sqrt{5} \times \sqrt{126} \sin(90-36.7)^{\circ} \qquad \text{sine of correct angle}$	M1
	≈ 30.2 $\frac{27\sqrt{5}}{2}$, awrt 30.1 or 30.2	A1 (3)

Question Number	Scheme		Marks
34. (a)	$d_1 = -2i + j - 4k$, $d_2 = qi + 2j + 2k$		
	As $\begin{cases} \mathbf{d}_1 \bullet \mathbf{d}_2 = \begin{pmatrix} -2 \\ 1 \\ -4 \end{pmatrix} \bullet \begin{pmatrix} q \\ 2 \\ 2 \end{pmatrix} \\ = \underline{(-2 \times q) + (1 \times 2) + (-4 \times 2)} \end{cases}$	Apply dot product calculation between two direction vectors, ie. $\underline{(-2 \times q) + (1 \times 2) + (-4 \times 2)}$	M1
	$\mathbf{d}_1 \bullet \mathbf{d}_2 = 0 \implies -2q + 2 - 8 = 0$ $-2q = 6 \implies \underline{q = -3}$ AG	Sets $\mathbf{d}_1 \bullet \mathbf{d}_2 = 0$ and solves to find $\underline{q = -3}$	A1 cso [2]
(b)	Lines meet where:		
	$ \begin{pmatrix} 11\\2\\17 \end{pmatrix} + \lambda \begin{pmatrix} -2\\1\\-4 \end{pmatrix} = \begin{pmatrix} -5\\11\\p \end{pmatrix} + \mu \begin{pmatrix} q\\2\\2 \end{pmatrix} $		
	i: $11 - 2\lambda = -5 + q\mu$ (1) First two of j: $2 + \lambda = 11 + 2\mu$ (2) k: $17 - 4\lambda = p + 2\mu$ (3)	Need to see equations (1) and (2). Condone one slip. (Note that $q = -3$.)	M1
	(1) + 2(2) gives: $15 = 17 + \mu \implies \mu = -2$	Attempts to solve (1) and (2) to find one of either λ or μ	dM1
	(2) gives: $2 + \lambda = 11 - 4 \implies \lambda = 5$	Any one of $\frac{\lambda = 5}{\lambda = 5}$ or $\frac{\mu = -2}{\mu = -2}$ Both $\frac{\lambda = 5}{\mu = -2}$ and $\mu = -2$	A1 A1
	(3) $\Rightarrow 17 - 4(5) = p + 2(-2)$	Attempt to substitute their λ and μ into their k component to give an equation in <i>p</i> alone.	ddM1
	$\Rightarrow p = 17 - 20 + 4 \Rightarrow \underline{p = 1}$	$\underline{p=1}$	A1 cso [6]
(c)	$\mathbf{r} = \begin{pmatrix} 11\\2\\17 \end{pmatrix} + 5 \begin{pmatrix} -2\\1\\-4 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} -5\\11\\1 \end{pmatrix} - 2 \begin{pmatrix} -3\\2\\2 \end{pmatrix}$	Substitutes their value of λ or μ into the correct line l_1 or l_2 .	[0] M1
	Intersect at $\mathbf{r} = \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix}$ or $(1, 7, -3)$	$\begin{pmatrix} 1\\7\\-3 \end{pmatrix} \text{ or } (1,7,-3)$	A1
			[2]

Question Number	Scheme		Marks
(d)	Let $\overrightarrow{OX} = \mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$ be point of intersection $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} 1\\ 7\\ -3 \end{pmatrix} - \begin{pmatrix} 9\\ 3\\ 13 \end{pmatrix} = \begin{pmatrix} -8\\ 4\\ -16 \end{pmatrix}$	Finding vector \overrightarrow{AX} by finding the difference between \overrightarrow{OX} and \overrightarrow{OA} . Can be ft using candidate's \overrightarrow{OX} .	$M1\sqrt{\pm}$
	$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AX}$		
	$\overrightarrow{OB} = \begin{pmatrix} 9\\3\\13 \end{pmatrix} + 2 \begin{pmatrix} -8\\4\\-16 \end{pmatrix}$	$\begin{pmatrix} 9\\3\\13 \end{pmatrix} + 2 \left(\text{their } \overrightarrow{AX} \right)$	dM1
	Hence, $\overrightarrow{OB} = \begin{pmatrix} -7\\11\\-19 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}$	$\begin{pmatrix} -7\\11\\-19 \end{pmatrix} \text{ or } \underline{-7\mathbf{i}+11\mathbf{j}-19\mathbf{k}}$ or $\underline{(-7,11,-19)}$	A1
		<u> </u>	[3]
			13 marks

Question Number	Scheme		Marks
35 . (a)	Lines meet where: $\begin{pmatrix} -9\\0\\10 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\-1 \end{pmatrix} = \begin{pmatrix} 3\\1\\17 \end{pmatrix} + \mu \begin{pmatrix} 3\\-1\\5 \end{pmatrix}$		
	i: $-9 + 2\lambda = 3 + 3\mu$ (1) Any two of j: $\lambda = 1 - \mu$ (2) k: $10 - \lambda = 17 + 5\mu$ (3)	Need any two of these correct equations seen anywhere in part (a).	M1
	(1) - 2(2) gives: $-9 = 1 + 5\mu \implies \mu = -2$	Attempts to solve simultaneous equations to find one of either λ or μ	dM1
	(2) gives: $\lambda = 1 - 2 = 3$	Both $\lambda = 3 \& \mu = -2$	A1
	$\mathbf{r} = \begin{pmatrix} -9\\0\\10 \end{pmatrix} + 3 \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3\\1\\17 \end{pmatrix} - 2 \begin{pmatrix} 3\\-1\\5 \end{pmatrix}$	Substitutes their value of either λ or μ into the line I_1 or I_2 respectively. This mark can be implied by any two correct components of $(-3, 3, 7)$.	ddM1
	Intersect at $\mathbf{r} = \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix}$ or $\mathbf{r} = \underline{-3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}}$	$ \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} \text{ or } \underline{-3\mathbf{i}+3\mathbf{j}+7\mathbf{k}} $ or $(-3, 3, 7)$	A1
	Either check k: $\lambda = 3$: LHS = 10 - $\lambda = 10 - 3 = 7$ $\mu = -2$: RHS = 17 + 5 $\mu = 17 - 10 = 7$ (As LHS = RHS then the lines intersect.)	Either check that $\lambda = 3$, $\mu = -2$ in a third equation or check that $\lambda = 3$, $\mu = -2$ give the same coordinates on the other line. Conclusion not needed.	B1 [6]
(b)	$\mathbf{d}_1 = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{d}_2 = 3\mathbf{i} - \mathbf{j} + 5\mathbf{k}$		[-]
	As $\mathbf{d}_1 \bullet \mathbf{d}_2 = \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \bullet \begin{pmatrix} 3\\-1\\5 \end{pmatrix} = \underline{(2 \times 3) + (1 \times -1) + (-1 \times 5)} = 0$ Then I_1 is perpendicular to I_2 .	Dot product calculation between the <i>two direction vectors</i> : $\frac{(2\times3) + (1\times-1) + (-1\times5)}{\text{or } 6 - 1 - 5}$ Result '=0' and	M1 A1
		appropriate conclusion	[2]

Question Number	Scheme	Marks
35 . (C)	Equating i : $-9 + 2\lambda = 5 \implies \lambda = 7$ $\mathbf{r} = \begin{pmatrix} -9\\0\\10 \end{pmatrix} + 7 \begin{pmatrix} 2\\1\\-1 \end{pmatrix} = \begin{pmatrix} 5\\7\\3 \end{pmatrix}$ Substitutes candidate's $\lambda = 7$ into the line I_1 and finds $5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$. The conclusion on this occasion is not needed.	B1 [1]
(d)	Let $\overrightarrow{OX} = -3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$ be point of intersection $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} -3\\ 3\\ 7 \end{pmatrix} - \begin{pmatrix} 5\\ 7\\ 3 \end{pmatrix} = \begin{pmatrix} -8\\ -4\\ 4 \end{pmatrix}$ Finding the difference between their \overrightarrow{OX} (can be implied) and \overrightarrow{OA} . $\overrightarrow{AX} = \pm \begin{pmatrix} \begin{pmatrix} -3\\ 3\\ 7 \end{pmatrix} - \begin{pmatrix} 5\\ 7\\ 3 \end{pmatrix} \\ \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AX}$	M1√ ±
	$\overrightarrow{OB} = \begin{pmatrix} 5\\7\\3 \end{pmatrix} + 2 \begin{pmatrix} -8\\-4\\4 \end{pmatrix} \qquad $	dM1 √
	Hence, $\overrightarrow{OB} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-11i - j + 11k}$ or $\underbrace{\begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}}$ or $\underline{-11i - j + 11k}$ or $\underbrace{(-11, -1, 11)}$	A1 [3] 12 marks

Question Number	Scheme		Marks
36. (a)	$\overrightarrow{OA} = \begin{pmatrix} 2\\6\\-1 \end{pmatrix} & \overrightarrow{OB} = \begin{pmatrix} 3\\4\\1 \end{pmatrix}$		
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 3\\4\\1 \end{pmatrix} - \begin{pmatrix} 2\\6\\-1 \end{pmatrix} = \begin{pmatrix} 1\\-2\\2 \end{pmatrix}$	Finding the difference between \overrightarrow{OB} and \overrightarrow{OA} . Correct answer.	M1 ± A1
(b)	$l_{1}: \mathbf{r} = \begin{pmatrix} 2\\6\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-2\\2 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3\\4\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-2\\2 \end{pmatrix}$ $l_{1}: \mathbf{r} = \begin{pmatrix} 2\\6\\1 \end{pmatrix} + \lambda \begin{pmatrix} -1\\2\\2 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3\\4\\1 \end{pmatrix} + \lambda \begin{pmatrix} -1\\2\\2 \end{pmatrix}$	An expression of the form $(\text{vector}) \pm \lambda(\text{vector})$ $\mathbf{r} = \overrightarrow{OA} \pm \lambda(\text{their } \overrightarrow{AB}) \text{ or}$ $\mathbf{r} = \overrightarrow{OB} \pm \lambda(\text{their } \overrightarrow{AB}) \text{ or}$ $\mathbf{r} = \overrightarrow{OA} \pm \lambda(\text{their } \overrightarrow{BA}) \text{ or}$	[2] M1 A1 $$ aef
	$l_{1}: \mathbf{r} = \begin{bmatrix} 6\\-1 \end{bmatrix} + \lambda \begin{bmatrix} 2\\-2 \end{bmatrix} \text{or} \mathbf{r} = \begin{bmatrix} 4\\1 \end{bmatrix} + \lambda \begin{bmatrix} 2\\-2 \end{bmatrix}$ $l_{2}: \mathbf{r} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} + \mu \begin{bmatrix} 1\\0\\1 \end{bmatrix} \implies \mathbf{r} = \mu \begin{bmatrix} 1\\0\\1 \end{bmatrix}$	$\mathbf{r} = \overrightarrow{OB} \pm \lambda \left(\text{their } \overrightarrow{BA} \right)$ (r is needed.)	[2]
	$\overrightarrow{AB} = \mathbf{d}_1 = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$, $\mathbf{d}_2 = \mathbf{i} + 0\mathbf{j} + \mathbf{k}$ & θ is angle		
	$\cos \theta = \frac{\overrightarrow{AB} \cdot \mathbf{d}_2}{\left(\left \overrightarrow{AB} \cdot \left \mathbf{d}_2 \right \right)\right)} = \frac{\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}}{\left(\sqrt{(1)^2 + (-2)^2 + (2)^2} \cdot \sqrt{(1)^2 + (0)^2 + (1)^2}\right)}$	Considers dot product between \mathbf{d}_2 and their \overline{AB} .	M1√
	$\cos \theta = \frac{1+0+2}{\sqrt{(1)^2 + (-2)^2 + (2)^2} \cdot \sqrt{(1)^2 + (0)^2 + (1)^2}}$	Correct followed through expression or equation .	A1√
	$\cos \theta = \frac{3}{3.\sqrt{2}} \Rightarrow \frac{\theta = 45^{\circ} \text{ or } \frac{\pi}{4} \text{ or awrt } 0.79.$	$\theta = 45^{\circ} \text{ or } \frac{\pi}{4} \text{ or awrt } 0.79$	A1 cao [3]
L	This means that $\cos\theta$ does not necessarily have to be the subject of the equation. It could be of the form		L

the equation. It could be of the form $3\sqrt{2}\cos\theta = 3$.

Question Number	Scheme		Marks
36. (d)	If l_1 and l_2 intersect then: $\begin{pmatrix} 2\\6\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \mu \begin{pmatrix} 1\\0\\1 \end{pmatrix}$		
	i: $2 + \lambda = \mu$ (1) j: $6 - 2\lambda = 0$ (2) k: $-1 + 2\lambda = \mu$ (3)	Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly.	M1√
	(2) yields $\lambda = 3$ Any two yields $\lambda = 3$, $\mu = 5$	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of λ or μ correct.	dM1 A1
	$l_1: \mathbf{r} = \begin{pmatrix} 2\\6\\-1 \end{pmatrix} + 3 \begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix} or \mathbf{r} = 5 \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix}$	Fully correct solution & no incorrect values of λ or μ seen earlier.	
Aliter 36. (d) Way 2	If l_1 and l_2 intersect then: $\begin{pmatrix} 3\\4\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \mu \begin{pmatrix} 1\\0\\1 \end{pmatrix}$		
	i : $3 + \lambda = \mu$ (1) j : $4 - 2\lambda = 0$ (2) k : $1 + 2\lambda = \mu$ (3)	Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly.	M1√
	(2) yields $\lambda = 2$ Any two yields $\lambda = 2$, $\mu = 5$	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of λ or μ correct.	dM1 A1
	$l_1: \mathbf{r} = \begin{pmatrix} 3\\4\\1 \end{pmatrix} + 2 \begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix} or \mathbf{r} = 5 \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix}$	$\begin{pmatrix} 5\\0\\5 \end{pmatrix} \text{ or } 5\mathbf{i} + 5\mathbf{k}$ Fully correct solution & no incorrect values of λ or μ seen earlier.	
			[4]
L			11 marks

Note: Be careful! λ and μ are not defined in the question, so a candidate could interchange these or use different scalar parameters.

Question Number	Scheme		Marks
<i>Aliter</i> 36. (d) Way 3	If l_1 and l_2 intersect then: $\begin{pmatrix} 2\\6\\-1 \end{pmatrix} + \lambda \begin{pmatrix} -1\\2\\-2 \end{pmatrix} = \mu \begin{pmatrix} 1\\0\\1 \end{pmatrix}$		
	i : $2 - \lambda = \mu$ (1) j : $6 + 2\lambda = 0$ (2) k : $-1 - 2\lambda = \mu$ (3)	Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly.	M1√
	(2) yields $\lambda = -3$ Any two yields $\lambda = -3$, $\mu = 5$	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find	dM1
		either one of λ or μ correct.	A1
	$l_{1}: \mathbf{r} = \begin{pmatrix} 2\\6\\-1 \end{pmatrix} - 3 \begin{pmatrix} -1\\2\\-2 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix} or \mathbf{r} = 5 \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix}$	$\begin{pmatrix} 5\\0\\5 \end{pmatrix} \text{ or } 5\mathbf{i} + 5\mathbf{k}$ Fully correct solution & no incorrect values of λ or μ seen earlier.	A1 cso [4]
Aliter 36. (d) Way 4	If l_1 and l_2 intersect then: $\begin{pmatrix} 3\\4\\1 \end{pmatrix} + \lambda \begin{pmatrix} -1\\2\\-2 \end{pmatrix} = \mu \begin{pmatrix} 1\\0\\1 \end{pmatrix}$		
	i : $3 - \lambda = \mu$ (1) j : $4 + 2\lambda = 0$ (2) k : $1 - 2\lambda = \mu$ (3)	Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly.	M1√
	(2) yields $\lambda = -2$ Any two yields $\lambda = -2$, $\mu = 5$	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of λ or μ correct.	dM1 A1
	$l_{1}: \mathbf{r} = \begin{pmatrix} 3\\4\\1 \end{pmatrix} - 2 \begin{pmatrix} -1\\2\\-2 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix} or \mathbf{r} = 5 \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix}$	$\begin{pmatrix} 5\\0\\5 \end{pmatrix} \text{ or } 5\mathbf{i} + 5\mathbf{k}$ Fully correct solution & no incorrect values of λ or μ seen earlier.	
			[4] 11 marks
			11 marks

