GCE AS MARKING SCHEME

SUMMER 2018

AS (NEW)
MATHEMATICS - UNIT 1 PURE MATHEMATICS A 2300U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

AS Unit 1 Pure Mathematics A
 SUMMER 2018 MARK SCHEME

Q Solution

1(a) $\frac{24 \sqrt{a}}{(\sqrt{a}+3)^{2}-(\sqrt{a}-3)^{2}}$
$=\frac{24 \sqrt{a}}{[(\sqrt{a}+3)+(\sqrt{a}-3)](\sqrt{a}+3)-(\sqrt{a}-3)]}$
Or $\frac{24 \sqrt{a}}{(a+6 \sqrt{a}+9)-(a-6 \sqrt{a}+9)}$
$=\frac{24 \sqrt{a}}{(2 \sqrt{a})(6)}$
$=2$

1(b) $\frac{(3 \sqrt{7}+5 \sqrt{3})(\sqrt{7}-\sqrt{3})}{(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})}$
$=\frac{3 \times 7-3 \sqrt{7} \sqrt{3}+5 \sqrt{7} \sqrt{3}-5 \times 3}{7-\sqrt{7} \sqrt{3}+\sqrt{7} \sqrt{3}-3}$
$=\frac{21-3 \sqrt{21}+5 \sqrt{21}-15}{7-3}$
$=\frac{1}{2}(3+\sqrt{21})$

Mark Notes

M1 factorisation $x^{2}-y^{2}$
(M1) one correct expansion

A1 si correct simplified denominator.

A1 cao

M1

A1 numerator correct

A1 denominator correct

A1 oe. cao

2(a)

$\operatorname{Grad} A B=\frac{1-10}{5+1}=\frac{-9}{6}=-\frac{3}{2}$
Correct method for finding the equ $A B$
Equ $A B$ is $y-1=-\frac{3}{2}(x-5)$
OR Equ $A B$ is $y-10=-\frac{3}{2}(x-(-1))$

$$
\begin{aligned}
& 2 y-2=-3 x+15 \\
& 2 y+3 x=17
\end{aligned}
$$

L and $A B$ meet when:

$$
\begin{aligned}
& 4 x-6 y=-12 \\
& 9 x+6 y=51 \\
& 13 x=39 \\
& x=3, y=4
\end{aligned}
$$

2(b) $A C: C B=3-(-1): 5-3$
$A C: C B=4: 2=2: 1$
M1 oe (10-4):(4-1)
A1 ft coordinates C

Accept unsimplified values

2(c) D is the point $(-3,0)$
B1

Q Solution

2(d)(i) $A B$ is perpendicular to $D C$, because
$\operatorname{grad} C A \times \operatorname{grad} D C=-\frac{3}{2} \times \frac{2}{3}=-1$
Hence L is perpendicular to $A B$.

2(d)(ii) Correct method for finding distance
$C A=\sqrt{(10-4)^{2}+(3+1)^{2}}=\sqrt{52}$
$D C=\sqrt{(4-0)^{2}+(3+3)^{2}}=\sqrt{52}$
Area of triangle $A C D=\frac{1}{2} \times C A \times D C$
Area $=\frac{1}{2} \times \sqrt{52} \times \sqrt{52}$

Area $=26$

Mark Notes

B1 needs some evidence,
not just $-\frac{3}{2} \times \frac{2}{3}=-1$

M1

A1 may be seen in (b)
ft coordinates C

A1 $\quad \mathrm{ft}$ coordinates C but not D

M1 used

A1 cao

Q Solution

3

$$
\begin{array}{lll}
2-3\left(1-\sin ^{2} \theta\right)=2 \sin \theta & \text { M1 } & \text { subt for } \cos ^{2} \\
3 \sin ^{2} \theta-2 \sin \theta-1=0 & \mathrm{~m} 1 & \text { allow }(3 \sin \theta-1)(\sin \theta+1) \\
(3 \sin \theta+1)(\sin \theta-1)=0 & \text { A1 } & \text { cao } \\
\sin \theta=1,-\frac{1}{3} & \text { B1 } \\
\sin \theta=1, \theta=90^{\circ} & \text { B1 } & \text { one correct angle } \\
\sin \theta=-\frac{1}{3}, \theta=199.47^{\circ}, 340.53^{\circ} & \text { B1 } & \text { second correct angle }
\end{array}
$$

Use of quadratic formula only earns m 1 if correct substitution seen to have been made, or implied by the right answers being obtained.

Ignore all solutions outside required range.
Full follow through for one positive and one negative value for $\sin \theta>0$ for B 1 and $\sin \theta<0$ for B 1 for one correct value and B1 for a second correct value.

Two negative values for $\sin \theta$, award B1 B1 for one pair of correct solutions, ignore other pair even if incorrect. Award B1 for only one correct solution.

Two positive values for $\sin \theta$, award B1 for one pair of correct solutions, ignore other pair even if incorrect.

Q Solution

4(a) $y=5 x^{-1}+6 x^{\frac{1}{3}}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-5 x^{-2}+6 \times \frac{1}{3} x^{-\frac{2}{3}}=-\frac{5}{x^{2}}+2 x^{-\frac{2}{3}}
$$

When $x=8$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{5}{64}+2 \times \frac{1}{4}=\frac{27}{64}(=0.42(1875))
$$

4(b) $\quad \int 5 x^{\frac{3}{2}}+12 x^{-5}+7 \mathrm{~d} x$

$$
=5 \times \frac{x^{\frac{5}{2}}}{\frac{5}{2}}+12 \times \frac{1}{-4} x^{-4}+7 x+\mathrm{C}
$$

$$
\int 5 x^{\frac{3}{2}}+12 x^{-5}+7 \mathrm{~d} x \text { 回 }=2 x^{\frac{5}{2}}-3 x^{-4}+7 x+\mathrm{C}
$$

B1 one correct differentiation

B1 2nd correct differentiation

B1 cao

B1 one correct integration

B1 a second correct integration
B1 all correct including C
Mark Notes

B1
one correct integration

Q Solution

5(a)

5(b)

B1 correct curve (moved up)
B1 $y=4$ and $x=0$ as asymptotes
Mark Notes

B1 correct curve (moved to right)

B1 $x=3$ and $y=0$ as asymptotes

Q Solution

6(a) $x+2=14+5 x-x^{2}$
$x^{2}-4 x-12=0$
$(x+2)(x-6)=0$
$x=-2, y=0$
$A(-2,0)$
$x=6, y=8$
$B(6,8)$

Mark Notes

M1
m1 si $(x+a)(x+b)=0$ if $a b=$ their constant

A1 or $x=-2,6$

A1 \quad or $y=0,8$

SC $14+5 x-x^{2}=0 \mathrm{M} 1, x=-2, y=0 \mathrm{~A} 1$
$\mathrm{SC} x+2=0, \mathrm{M} 1,, x=-2, y=0 \mathrm{~A} 1$

6(b) $\quad A=\int_{-2}^{6} 14+5 x-x^{2} \mathrm{~d} x$
$A=\left[14 x+\frac{5}{2} x^{2}-\frac{x^{3}}{3}\right]_{-2}^{6}$
$A=\left[102-\left(-\frac{46}{3}\right)\right]=\frac{352}{3}\left(=117 \frac{1}{3}\right)$
Area of triangle $=0.5 \times 8 \times 8=32$
Required area $=\frac{352}{3}-32$

Required area $=\frac{256}{3}=85 \frac{1}{3}$
B1 correct integration of
quadratic expression
m1 correct use of limits

B1 si ft coordinate of $B, \operatorname{not}(7,0)$
m1

A1 cso supported by working

Q Solution
$7 \quad \frac{\sin ^{3} \theta+\sin \theta \cos ^{2} \theta}{\cos \theta}$

$$
\equiv \frac{\sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{\cos \theta}
$$

$$
\frac{\sin \theta}{\cos \theta}
$$

$$
\equiv \tan \theta
$$

Mark Notes

B1 or substitute for $\cos ^{2} \theta / \sin ^{2} \theta$
$\frac{\sin \theta\left(\sin ^{2} \theta\right)+\sin \theta \cos ^{2} \theta}{\cos \theta}$

B1 simplifying numerator

B1 $\sin / \cos =\tan$
Withhold last mark if proof not mathematical.

Q Solution

8(a) Use factor th ${ }^{\mathrm{m}}$ with $\mathrm{f}(x)=2 x^{3}+p x^{2}+q x-12$
$2(2)^{3}+p(2)^{2}+q(2)-12=16+4 p+2 q-12=0$
$2(-2)^{3}+p(-2)^{2}+q(-2)-12=-16+4 p-2 q-12=0$
$2 p+q=-2$
$2 p-q=14$
Adding $4 p=12$
$p=3$
$q=-8$

8(b) Other factor is $(2 x+3)$
B1 sight of $(2 x+3)$

OR
8(a) $2 x^{3}+p x^{2}+q x-12=(x+2)(x-2)(a x+b)$
$2 x^{3}+p x^{2}+q x-12=\left(x^{2}-4\right)(2 x+3)$
$2 x^{3}+p x^{2}+q x-12=2 x^{3}+3 x^{2}-8 x-12$
Compare coefficients
(m1)
$p=3$
$q=-8$
(A1) cao both values

8(b) Other factor is $(2 x+3)$
(B1) may be seen in (a)

Q

Solution

9
sine rule: $\frac{16}{\sin 32^{\circ}}=\frac{25}{\sin \theta}$
$\theta=55.8937^{\circ}$ or 124.1063°
$\alpha=92.1063^{\circ}$ or 23.8937°

Required area $=\frac{1}{2} \times 25 \times 16\left(\sin 92.1063^{\circ}\right)$
$=199.86\left(\mathrm{~cm}^{2}\right)$
or Required area $=\frac{1}{2} \times 25 \times 16\left(\sin 23.8937^{\circ}\right)$
$=81.01\left(\mathrm{~cm}^{2}\right)$

Mark Notes

OR
$16^{2}=25^{2}+x^{2}-2 \times 25 x x \times \cos 32^{\circ}$
$x^{2}-42.4024 x+369=0$
$x=\frac{1}{2}\left(42.4024 \pm \sqrt{42.4024^{2}-4 \times 369}\right) \quad(\mathrm{m} 1)$
$x=30.1729,12.2295$

Area $=\frac{1}{2} a c \sin B$

Area $=199.86,81.01$

A1 both, accept 56, 124
m1 either value
m1 use of $\frac{1}{2} b c \sin A$

A1 both areas correct
accept answers rounding to 200, 81
M1
$\begin{array}{ll}\text { (A1) } & \begin{array}{l}\text { both values, accept } \\ \text { answers rounding to } 30,12\end{array}\end{array}$
$\begin{array}{ll}\text { (A1) } & \begin{array}{l}\text { both values, accept } \\ \text { answers rounding to } 30,12\end{array}\end{array}$
(m1) used
(A1) accept answers rounding to 200,81

Q Solution

10(a) $(a+\sqrt{b})^{4}=a^{4}+4 a^{3}(\sqrt{ } b)+6 a^{2}(\sqrt{ } b)^{2}$

$$
+4 a(\sqrt{ } b)^{3}+(\sqrt{ } b)^{4}
$$

$$
(a+\sqrt{b})^{4}=a^{4}+4 a^{3} \sqrt{ } b+6 a^{2} b+4 a b \sqrt{ } b+b^{2}
$$

10(b) $(a-\sqrt{b})^{4}=a^{4}-4 a^{3}(\sqrt{ } b)+6 a^{2}(\sqrt{ } b)^{2}$

$$
\begin{array}{cll}
-4 a(\sqrt{ } b)^{3}+(\sqrt{ } b)^{4} & \text { M1 } & \text { change of sign } \\
(a+\sqrt{b})^{4}+(a-\sqrt{b})^{4}=2 a^{4}+12 a^{2} b+2 b^{2} & \text { A1 } & \text { cao, b's simplified }
\end{array}
$$

B1 at least 3 correct terms
B1 all terms correct.

Mark Notes

Q Solution

11(a) $|\mathbf{u}|=\sqrt{9^{2}+(-40)^{2}}$
$|\mathbf{u}|=41$
$|\mathbf{v}|=\sqrt{3^{2}+(-4)^{2}}$
$|\mathbf{v}|=5$
$\mu|\mathbf{v}|>|\mathbf{u}|$ if $5 \mu>41$
$\mu>8.2$

11(b) $A C: C B=2: 3$
$3 \mathrm{AC}=2 \mathrm{CB}$
$3(\mathbf{c}-\mathbf{a})=2(\mathbf{b}-\mathbf{c})$
C has position vector $\mathbf{c}=\frac{3}{5} \mathbf{a}+\frac{2}{5} \mathbf{b}$
$\mathbf{c}=\frac{3}{5}(11 \mathbf{i}-4 \mathbf{j})+\frac{2}{5}(21 \mathbf{i}+\mathbf{j})$
$\mathbf{c}=\frac{1}{5}[(33+42) \mathbf{i}+(-12+2) \mathbf{j}]$
$\mathbf{c}=15 \mathbf{i}-2 \mathbf{j}$

OR
$\mathbf{A B}=10 \mathbf{i}+5 \mathbf{j} / \mathbf{B A}=-10 \mathbf{i}-5 \mathbf{j}$
$\mathbf{c}=(11 \mathbf{i}-4 \mathbf{j})+\frac{2}{5}(10 \mathbf{i}+5 \mathbf{j})$
or
$\mathbf{c}=(21 \mathbf{i}+\mathbf{j})-\frac{3}{5}(10 \mathbf{i}+5 \mathbf{j})$
$\mathbf{c}=15 \mathbf{i}-2 \mathbf{j}$

Mark Notes

M1 method for length

A1 either correct

A1 A 0 for $=$

M1 si any correct method

A1

A1 cao
(A1) cao

Q Solution

12

$$
\begin{aligned}
& 4 x^{2}+8 x-8=m(4 x-3) \\
& 4 x^{2}+(8-4 m) x+(3 m-8)=0
\end{aligned}
$$

Discriminant $=(8-4 m)^{2}-4 \times 4(3 m-8)$
If real roots, then discriminant ≥ 0
$(2-m)^{2}-(3 m-8) \geq 0$
$m^{2}-7 m+12 \geq 0$
$(m-3)(m-4) \geq 0$
$m \leq 3$ or $m \geq 4$

Mark Notes

M1 terms grouped, brackets not required
m1 ft equivalent difficulty
m1 accept >

A1 cao write as quadratic inequality

A1 cao, or, union
A0 for and, strict inequality

Q Solution

13(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-6 x$
At stationary points $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
$3 x(x-2)=0$
$x=0, x=2$
$y=0, y=-4$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x-6$
$x=0, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-6<0$.
$(0,0)$ is a maximum point
$x=2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6>0$.
$(2,-4)$ is a minimum point

13(b)

13(c) The integral is negative since $\mathrm{y} \leq 0$ in the relevant interval.

Mark Notes

B1

M1 si

A1 any pair of correct values
A1 all 4 values correct

M1 oe ft quadratic $\mathrm{d} y / \mathrm{d} x$

A1 ft their x value

A1 ft their x value provided different conclusion

A1 $(3,0)$
A1 $(0,0) \max ,(2,-4) \mathrm{ft} \min \mathrm{pt}$

M1 shape for + ve cubic

B1

Q Solution

14(a) Statement A is false.
Let $c=2, d=1$
LHS $=(2 \times 2-1)^{2}=9$
RHS $=4 \times 2^{2}-1=15$
Therefore LHS \neq RHS
A1 correct verification

14(b) Statement B is true

$$
\text { RHS }=(2 c-d)\left(4 c^{2}+2 c d+d^{2}\right)
$$

$$
=8 c^{3}+4 c^{2} d+2 c d^{2}-4 c^{2} d-2 c d^{2}-d^{3} \quad \text { M1 } \quad \text { correct removal of }
$$ brackets attempted

A1 algebra all correct answer given

Q Solution

15
$V=A \mathrm{e}^{k t}$
When $t=0, V=30000$
$A=30000$
When $t=2, V=20000$
$\mathrm{e}^{2 k}=\frac{2}{3}$
When $t=6, V=30000 \mathrm{e}^{6 k}$
$V=30000\left(\mathrm{e}^{2 k}\right)^{3}$
$V=8889$
$V=8900$

OR
$2 k=\ln \left(\frac{2}{3}\right)(=-0.405 \ldots$.
$k=-0.203 \ldots$.
$V=30000 \mathrm{e}^{-0.203 \ldots \times 6}$
$V=8900$

Mark Notes

Given

M1 use of either condition

A1 si

A1
m1
A1 oe,

A1 cao
(A1) cao

Q Solution

$16 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=13-4 x$
$13-4 x=1$
$x=3$
$y=7+13 \times 3-2 \times 3^{2}=28$
Equation of tangent is $y=x+c$
$28=3+c$
$c=25$

Equation of tangent is $y=x+25$

OR
Curve and line meets when
$7+13 x-2 x^{2}=x+c$
$2 x^{2}-12 x+(c-7)=0$
Line is a tangent if discriminant $=0$
$(-12)^{2}-4 \times 2(c-7)=0$
$c=25$
$7+13 x-2 x^{2}=x+25$
$x^{2}-6 x+9=0$
$x=3$
$y=28$

Mark Notes

M1
m1
A1 cao

A1 cao

A1 $\quad \mathrm{ft}$ derived x and y

Q Solution

17(a) $\log _{10} x^{2}-\log _{10} 5+\log _{10} 2=1$
$\log _{10}\left(\frac{2 x^{2}}{5}\right)=1$
$\frac{2 x^{2}}{5}=10$
$x^{2}=25$
$x=5$
OR
$2 \log _{10} x=1.39794 \ldots$
$\log _{10} x=0.69897 \ldots$
$x=10^{0.69897 \ldots}$
$x=5$

17(b) $\mathrm{e}^{0.5 x}=1.5$
$0.5 x=\ln (1.5)$
$x=2 \ln (1.5)=0.81(093)$

17(c) $2^{2 x}-10 \times 2^{x}=y^{2}-10 y$
$y^{2}-10 y+16=0$
$(y-2)(y-8)=0$
$y=2,8$
$2^{x}=2,8$
$x=1,3$

B1 one use of laws of logs

B1 one use of different law of logs

B1 logs removed

B1 cao (B0 for $x= \pm 5$)
(B1) B 0 if there is evidence premature approximation

M1
A1

B1
M1

A1
m1
A1

Q Solution

18(a) Grad of $A B=\frac{6-5}{4-(-3)}=\frac{1}{7}$
Grad of $A C=\frac{6-(-1)}{4-5}=-7$
Hence Grad of $A B \times$ Grad of $A C=-1$
$A B$ is perpendicular to $A C$
Hence $B \hat{A} C$ is a right angle

OR
$A B^{2}=1^{2}+7^{2}=50$
$B C^{2}=8^{2}+6^{2}=100$
$A C^{2}=1^{2}+7^{2}=50$
$B C^{2}=A B^{2}+B C^{2}$
Hence $B \hat{A} C$ is a right angle
OR
$\cos A=\frac{50+50-100}{2 \sqrt{50} \sqrt{50}}=0$, hence $A=90^{\circ}$
(A1)
Mark Notes

M1 method for gradient

A1 either correct

A1
(M1) At least one correct
(A1) all three correct
(A1)

Q Solution

18(b) Centre of circle is midpoint of $B C$
Centre of circle $=\left(\frac{-3+5}{2}, \frac{5-1}{2}\right)$

Centre of circle $=(1,2)$
Radius $=\frac{1}{2} \sqrt{(5-(-3))^{2}+(-1-5)^{2}}$

Radius $=5$
Equ of circle is $(x-1)^{2}+(y-2)^{2}=5^{2}$
$x^{2}+y^{2}-2 x-4 y-20=0$

OR
Equ of circle is $x^{2}+y^{2}+a x+b y+c=0$
At $A(4,6) 4 a+6 b+c=-52$
At $B(-3,5)-3 a+5 b+c=-34$
At $C(5,-1) 5 a-b+c=-26$
Solving simultaneously
$7 a+b=-18$
$-a+7 b=-26$
$7 a+b=-18$
$-7 a+49 b=-182$
$50 b=-200$
$b=-4, a=-2, c=-20$
Equ of circle is:
$x^{2}+y^{2}-2 x-4 y-20=0$

Mark Notes

M1

M1 may be seen in (a)

A1 ft centre and radius, isw
One must be correct
(A1) one correct equation
(A1) All 3 equations correct
(m1) any correct method

