GCE AS MARKING SCHEME

SUMMER 2018

AS (NEW)
 MATHEMATICS - UNIT 2 APPLIED MATHEMATICS A 2300U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Solutions and Mark Scheme Summer 2018

SECTION A - Statistics

Qu. No.	Solution	Mark	Notes
5(a)	Strong linear relationship The higher the hydration the lower the pH. (b)(i)	E1 Each additional ml of water per 100g of flour decreases the pH by 0.02 on average. The intercept would imply that at zero hydration the pH would be 5.4. $y=5.4-0.02 \times 20$ (ii)	E1

$\underline{\text { Section B-Mechanics }}$

Q
Solution
$7 x=\int 6 t^{2}-8 t-5 \mathrm{~d} t$
$x=\frac{6}{3} t^{3}-\frac{8}{2} t^{2}-5 t+(C)$
$x=2 t^{3}-4 t^{2}-5 t+(\mathrm{C})$
when $t=1, x=-4$
$C=-4-2+4+5=3$
$x=2 t^{3}-4 t^{2}-5 t+3$

Mark Notes

M1 at least 1 term with increased power

A1

A1 cao

Q

Solution

8(a) Apply N2L to both particles.
$T=3 a$
$5 g-T=5 a$
$5 g=8 a$
$a=6.125\left(\mathrm{~ms}^{-2}\right)$
$T=18.375(\mathrm{~N})$

8(b) If the pulley is rough, the tension in the string on either side of the pulley would not be the same.

Mark Notes

M1 dim correct for at least 1

Allow $\mathrm{T} \pm 3 \mathrm{~g}=3 \mathrm{a}$, T and 5 g opposing

B1 first correct equation

A1 second correct equation
m1

A1 cao

A1 cao E1

Q

Solution

9. $\boldsymbol{R}=(2+3+4) \mathbf{i}+(5-22-23) \mathbf{j}$ $\boldsymbol{R}=9 \mathbf{i}-40 \mathbf{j}$

$$
|R|=\sqrt{9^{2}+40^{2}}
$$

$$
|R|=41(\mathrm{~N})
$$

$\theta=\tan ^{-1}\left(-\frac{40}{9}\right)$
$\theta=-77.32^{\circ}$ or 282.68°

Mark Notes

M1
A1 cao si

M1 \quad ft \boldsymbol{R}

A1 ft \boldsymbol{R} only if 2 non-zero
components

M1

A1 cao direction clearly indicated
eg angle in fourth quadrant,
diagram with resultant marked.

Q

Solution

10(a) Apply N2L to lift and man
$8000-(770+68) g=(770+68) a$
$a=-0.25\left(\mathrm{~ms}^{-2}\right)$ (correct to 2 d.p.)
SC
(a) Apply N2L to lift only
$8000-770 g=770 a$
$a=0.59\left(\mathrm{~ms}^{-2}\right)$ (correct to 2 d.p.)

10(b) As the acceleration is negative, the lift is slowing down. B0 if SC in (a)

10(c)

Apply N2L to man
$R-68 g=68 \mathrm{a}$
$R-68 g=68 \times(-0.25)$
$R=649(.16)(\mathrm{N})$

Mark Notes

Dim correct equation.
Tension and wt opposing.

A1 cao

B1 depends on M1 in (a)

Dim correct equation.
Reaction and weight opposing.
A1

A1
cao Accept answers rounding to
649.

11(a) Distance moved during constant speed

$$
\begin{equation*}
=15 \times 120=1800 \tag{B1}
\end{equation*}
$$

Distance moved during deceleration
$=0.5(u+v) \times t, \quad u=15, v=0, t=12$
$=0.5(15+0) \times 12=90$
$A B=1890(\mathrm{~m})$

11(b) During acceleration
Use $v=u+a t$ with $u=0, a=(\pm) 2, t=8$ M1
$v=(\pm) 16$
During deceleration
Use $v=u+a t$ with $u=16, v=0, a=(\pm) 1.6$
M1
$0=16-1.6 t, \quad t=10$
Time from B to $C=18 \mathrm{~s}$
A1

11(c)

B1 $\quad v-t$ graph + ve portion with $15,120,132$
Labelled
B1
negative portion
B1 all correct, units, labels

11(d) Distance $A B=1890$
Distance $=$ area under graph

Distance $B C=0.5 \times 18 \times 16$
M1
used. oe

Distance $C B=144$
Distance $A C=1890-144$

Distance $A C=1746$ (m)
A1 ft answer from (a)

