шјес
cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2018

A LEVEL (NEW)
MATHEMATICS - UNIT 3 PURE MATHEMATICS B 1300U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Mathematics - A2 Unit 3 Pure Mathematics B

SUMMER 2018 MARK SCHEME

Q Solution

1 Either $2 x+1=3(x-2)$

$$
2 x+1=3 x-6
$$

$$
x=7
$$

OR $2 x+1=-3(x-2)$
$2 x+1=-3 x+6$
$x=1$
A1

Or

$$
\begin{align*}
& (2 x+1)^{2}=9(x-2)^{2} \tag{M1}\\
& 5 x^{2}-40 x+35=0 \\
& x^{2}-8 x+7=0 \\
& (x-7)(x-1)=0 \\
& x=1,7
\end{align*}
$$

(A1) any correct equation
(m1) oe
(A1) both solutions

If considering:
$x<-1 / 2$ (both sides negative),
$-1 / 2 \leq x<2$ (LHS negative, RHS positive),
$x \geq 2$ (both sides positive),
give M 1 , then m 1 if all values considered, A 1 for 1 and A 1 for 7, extra solution/s -1 however many.

Q Solution

2(a) $s=r \theta$
$5=4 \theta$
$\theta=1.25^{\text {c }}$

2(b) Area of sector $O A B=\frac{1}{2} \times r^{2} \theta$
Area of sector $O A B=\frac{1}{2} \times 4^{2} \times 1.25$
Area of sector $O A B=10\left(\mathrm{~cm}^{2}\right)$

A1 condone $71.62^{\circ}, 5.033$
Mark Notes

M1 used

M1 used

A1 $\mathrm{ft} \theta$, accept 40.27

Q Solution

3(a)

B1 correct shape (hill) axes required
B1 $(-2,18)$ as max
B1 $(-5,0),(1,0)$

3(b)

B1 correct shape(cup) axes required
B1 $(1,-4)$ as min
B1 $(0,-3)$

Q Solution
$4 \quad 2 \tan ^{2} \theta+2 \tan \theta-\left(1+\tan ^{2} \theta\right)=2$
$\tan ^{2} \theta+2 \tan \theta-3=0$
$(\tan \theta-1)(\tan \theta+3)=0 \quad \mathrm{~m} 1 \quad(\tan \theta+1)(\tan \theta-3)$
$\tan \theta=1,-3$
$\theta=45^{\circ}, 225^{\circ}$
$\theta=108.43^{\circ}, 288.43^{\circ}$

Mark Notes

M1 oe si

A1 cao
B1 $\mathrm{ft} \tan \theta$
B1

Ignore all roots outside range. For each branch, award B0 if extra root/s present.
2+ve roots ft for B1
2-ve roots ft for B1

5(a) $\frac{3 x}{(x-1)(x-4)^{2}}=\frac{A}{(x-1)}+\frac{B}{(x-4)}+\frac{C}{(x-4)^{2}}$
$3 x=A(x-4)^{2}+B(x-1)(x-4)+C(x-1) \quad$ M1
$x=4,12=3 C, C=4$
compare coefficients or substitute values.
$x=1,3=9 A, A=\frac{1}{3}$
coefficient $x^{2}, 0=A+B, B=-\frac{1}{3}$
A1 all 3 values correct

5(b) $\quad \mathrm{I}=\int_{5}^{7} \frac{1}{3(x-1)}-\frac{1}{3(x-4)}+\frac{4}{(x-4)^{2}} \mathrm{~d} x$
M1 attempt to integrate partial

Fractions
$\mathrm{I}=\left[\frac{1}{3} \ln |x-1|-\frac{1}{3} \ln |x-4|-\frac{4}{(x-4)}\right]_{5}^{7} \quad$ A1 \quad ft any one term correct
A1 ft all correct integration
$I=\left(\frac{1}{3} \ln 6-\frac{1}{3} \ln 3-\frac{4}{3}\right)-\left(\frac{1}{3} \ln 4-4\right)$
m 1 correct use of correct limits
$\mathrm{I}=\frac{1}{3}(8-\ln 2)=2.436(3 \mathrm{~d}$. p. required $)$

Mark Notes

Mark Notes

$6 \quad(1-4 x)^{-\frac{1}{2}}=1+\left(-\frac{1}{2}\right)(-4)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(-4 x)^{2}$ B1 $\quad 2$ correct unsimplified terms

$$
=1+2 x+6 x^{2}+\ldots
$$

B1 all simplified terms correct

Expansion is valid when $|4 x|<1$
Expansion is valid when $|x|<\frac{1}{4}$
B1 oe

When $x=\frac{1}{13}$,
$\frac{1}{\sqrt{1-\frac{4}{13}}} \cong 1+2 \times \frac{1}{13}+6 \times\left(\frac{1}{13}\right)^{2}$
M1 attempt to substitute both sides.
$\frac{\sqrt{13}}{3} \cong \frac{201}{169}$
$\sqrt{13} \cong \frac{603}{169} \quad$ or $\quad \frac{2197}{603}$
A1

Q Solution
$7 \quad \sin x \cong x, \cos x \cong 1-\frac{1}{2} x^{2}$
$x+1-\frac{1}{2} x^{2}=\frac{1}{2}$
$x^{2}-2 x-1=0$
$x=\frac{2 \pm \sqrt{2^{2}+4}}{2}$
$x=1-\sqrt{2}(=-0.4142)$

Mark Notes

M1 used

A1 oe

A1 cao

Q \quad Solution

Mark Notes

$8 \quad a+6 d=71$
$\frac{7}{2}(2 a+6 d)=329$
$a+3 d=47$
$a+6 d=71$
$3 d=24$
$d=8$
B1
$a=23$
B1
The numbers are $23,31,39,47,55,63,71$. B1

Q Solution

Mark Notes

9(a) The sum to n terms of a series is $\mathrm{S}_{\mathrm{n}}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
The sum to infinity is $\lim _{n \rightarrow \infty} S_{n}$.
This only converges if $\lim _{n \rightarrow \infty} r^{n}$ converges.
Hence the sum to infinity of a GP
only converges if $|r|<1$
oe eg. terms increasing

9(b) For W, the $k^{\text {th }}$ term T_{k} is $\left(2 r^{k-1}\right)^{2}=4 r^{2 k-2}$.
The $(k+1)^{\text {th }}$ term is $\left(2 r^{k}\right)^{2}=4 r^{2 k}$.
$\frac{T_{k+1}}{T_{k}}=\frac{4 r^{2 k}}{4 r^{2 k-2}}=r^{2}$ for all values of k.
Therefore W is a GP.
For $V, 1^{\text {st }}$ term is 2 , common ratio r
For $W, 1^{\text {st }}$ term is 4 , common ratio r^{2}
$\mathrm{S}_{V}=\frac{2}{1-r}, \mathrm{~S}_{W}=\frac{4}{\left(1-r^{2}\right)}$
$S_{W}=3 S_{V}$
$\frac{4}{\left(1-r^{2}\right)}=3\left(\frac{2}{1-r}\right)$
$\frac{4}{(1+r)(1-r)}=3\left(\frac{2}{1-r}\right)$
$\frac{2}{(1+r)}=3(r \neq 1)$
$2=3+3 r$
$r=-\frac{1}{3}$

B1 common ratio r^{2}

B1 si

B1 either correct

M1 used

A1 oe. ft W eg quadratic equation

A1 cao

Q Solution

9(c) Total savings $T=5000\left[(1.03)+(1.03)^{2}\right.$

$$
\left.+(1.03)^{3}+\ldots . .+(1.03)^{20}\right] \quad \text { M1 } \quad \text { si }
$$

$$
\mathrm{T}=\frac{5000(1 \cdot 03)\left(1-1 \cdot 03^{20}\right)}{1-1.03}
$$

$$
\mathrm{T}=138382(\mathfrak{£})
$$

Q Solution

$$
\begin{aligned}
& \text { 10(a) } \quad x=2 \cos ^{2} \theta-1 \\
& x=2 y^{2}-1 \\
& 2 y^{2}=x+1
\end{aligned}
$$

Mark Notes

$$
\text { M1 } \quad \cos 2 \theta=2 \cos ^{2} \theta-1
$$

A1 isw

10(b) $\cos 2 \theta-\cos \theta+1=0$
M1
$2 \cos ^{2} \theta-1-\cos \theta+1=0$
$\cos \theta(2 \cos \theta-1)=0$
$\cos \theta=\frac{1}{2}, 0$
$\theta=\frac{\pi}{3}, \frac{\pi}{2}$
m1

A1 si

A1
answer given

Co-ordinates are $P\left(-\frac{1}{2}, \frac{1}{2}\right)$ and $Q(-1,0)$
B1

Alternative solution

Using $x-y+1=0$ and $2 y^{2}=x+1$
$2(x+1)^{2}=x+1,2 x^{2}+3 x+1=0$
$(2 x+1)(x+1)=0, \quad x=-\frac{1}{2},-1$
$y=\frac{1}{2}, y=0$,
$\cos \theta=\frac{1}{2}, \cos \theta=0$
$\theta=\frac{\pi}{3}, \theta=\frac{\pi}{2}$,
(A1) si both
answer given

Accept $P\left(-\frac{1}{2}, \frac{1}{2}\right), Q(-1,0)(\mathrm{B} 1)$, verification for $P \mathrm{M} 1 \mathrm{~A} 1$, verification for $Q \mathrm{~m} 1 \mathrm{~A} 1$.

Q Solution

10(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} / \frac{\mathrm{d} x}{\mathrm{~d} \theta}$
$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-2 \sin 2 \theta$
$\frac{\mathrm{d} y}{\mathrm{~d} \theta}=-\sin \theta$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-\sin \theta}{-2 \sin 2 \theta}=\left(\frac{1}{4 \cos \theta}\right)$
Grad of tgt at $P=\frac{1}{2}$
Equ of tgt at P is $y-\frac{1}{2}=\frac{1}{2}\left(x+\frac{1}{2}\right)$
Equ of tgt at P is $4 y=2 x+3$

Grad of tgt at Q is undefined.
Equ of tgt at Q is $x=-1$
Point of intersection is $\left(-1, \frac{1}{4}\right)$

OR (first 3 marks)

$$
2 \times 2 y \frac{d y}{d x}=1
$$

A1
(M1) attempt implicit differentiation
(A1) $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
(A1) all correct.

11 Suppose that $\sin x+\cos x \geq 1$ is not true.
Then there exists an x in the given domain
for which $\sin x+\cos x<1$
M1
$(\sin x+\cos x)^{2}<1^{2}$
A1
$\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x<1^{2}$
$1+2 \sin x \cos x<1$
$\sin x \cos x<0$
A1 or $\sin 2 x<0$
As $\sin x \geq 0$ and $\cos x \geq 0$, this is impossible.
Hence $\sin x+\cos x<1$ cannot be true,
hence $\sin x+\cos x \geq 1$ for $0 \leq x \leq \frac{\pi}{2}$. A1 cso

Q Solution

12(a)(i) f has an inverse function if and only if f is both one-to-one (and onto).

12(a)(ii) $f f^{-1}(x)=x$
$12(\mathrm{~b})(\mathrm{i}) g^{-1}$ exists if the domain of g is $[0, \infty)$

12(b)(ii)Let $y=\mathrm{e}^{x}+1$
$\mathrm{e}^{x}=y-1$
$x=\ln (y-1)$
$h^{-1}(x)=\ln (x-1)$
or

$$
\begin{aligned}
& h(x)=\mathrm{e}^{x}+1 \\
& x=\mathrm{e}^{\wedge} h^{-1}(x)+1 \\
& \mathrm{e}^{\wedge} h^{-1}(x)=x-1 \\
& h^{-1}(x)=\ln (x-1)
\end{aligned}
$$

B1
B1
or $(-\infty, 0]$ or subset of one of these

G1 $\quad h(x)$ with $y=1$ as asymptote
G1 $\quad h^{-1}(x)$ with $x=1$ as asymptote
G1 $\quad(0,2),(2,0)$

Q Solution

12(b)(iii) $g h(x)=g\left(\mathrm{e}^{x}+1\right)$
$g h(x)=\left(\mathrm{e}^{x}+1\right)^{2}-1$
$g h(x)=\mathrm{e}^{2 x}+2 \mathrm{e}^{x}$ or $\mathrm{e}^{x}\left(\mathrm{e}^{x}+2\right)$

Q Solution

Mark Notes

13(a) $R \sin (\theta-\alpha) \equiv 8 \sin \theta-15 \cos \theta$
$R \sin \theta \cos \alpha-R \cos \theta \sin \alpha \equiv 8 \sin \theta-15 \cos \theta \quad$ M1 oe si
$R \cos \alpha=8$
$R \sin \alpha=15$
$R=\sqrt{8^{2}+15^{2}}=17$
B1
$\alpha=\tan ^{-1}\left(\frac{15}{8}\right)=61.93^{\circ}$
A1

13(b) $17 \sin \left(\theta-61.93^{\circ}\right)=7$
$\theta-61.93^{\circ}=\sin ^{-1}\left(\frac{7}{17}\right)$
M1
$\theta-61.93^{\circ}=24.32^{\circ}, 155.68^{\circ}$
$\theta=86.24^{\circ}$
A1 cao accept 86.25
$\theta=217.61^{\circ}$
A1 cao

13(c) $\frac{1}{8 \sin \theta-15 \cos \theta+23}=\frac{1}{17 \sin \left(\theta-61 \cdot 93^{\circ}\right)+23}$

Greatest value $=\frac{1}{6}$
B1

Least value $=\frac{1}{40}$
B1

Q Solution

14(a) Use integration by parts
$\mathrm{I}=\left[\frac{x^{4}}{4} \ln x\right]_{1}^{2}-\int_{1}^{2} \frac{x^{4}}{4} \times \frac{1}{x} \mathrm{~d} x$
$\mathrm{I}=\left[\frac{x^{4}}{4} \ln x\right]_{1}^{2}-\left[\frac{x^{4}}{16}\right]_{1}^{2}$
$I=(4 \ln 2)-\left(1-\frac{1}{16}\right)$
$I=4 \ln 2-\frac{15}{16}=1.835$

14(b) Let $x=2 \sin \theta$
$\mathrm{d} x=2 \cos \theta \mathrm{~d} \theta$
$\sqrt{4-x^{2}}=\sqrt{4-4 \sin ^{2} \theta}=2 \cos \theta$
$x=0, \theta=0 ; x=1, \theta=\frac{\pi}{6}$
$\mathrm{I}=\int_{0}^{\frac{\pi}{6}} \frac{2+2 \sin \theta}{2 \cos \theta} 2 \cos \theta \mathrm{~d} x$
$\mathrm{I}=2 \int_{0}^{\frac{\pi}{6}} 1+\sin \theta \mathrm{d} \theta$
$\mathrm{I}=2[\theta-\cos \theta]_{0}^{\frac{\pi}{6}}$
$I=2\left(\frac{\pi}{6}-\frac{\sqrt{3}}{2}+1\right)$
$\mathrm{I}=\frac{\pi}{3}+2-\sqrt{3}=1.315$

Mark Notes

M1

A1 $1^{\text {st }}$ term

A1 $\quad 2^{\text {nd }}$ term

A1 $\quad 2^{\text {nd }}$ bracket
m1 correct use of limits

A1 cao

M1

A1 or 0,1 if x used.

A1 correct integrand

A1 correct integration
m1 correct use of limits

A1 cao

Q Solution

Mark Notes

14(b)
Alternative solution
Let $x=2 \cos \theta$

$$
\begin{aligned}
& \mathrm{d} x=-2 \sin \theta \mathrm{~d} \theta \\
& \sqrt{4-x^{2}}=\sqrt{4-4 \cos ^{2} \theta} \\
& =2 \sqrt{1-\cos ^{2} \theta}=2 \sin \theta \\
& x=0, \theta=\frac{\pi}{2} ; x=1, \theta=\frac{\pi}{3}
\end{aligned}
$$

$$
I=\int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \frac{2+2 \cos \theta}{2 \sin \theta}(-2 \sin \theta) d \theta
$$

$$
\mathrm{I}=-2 \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 1+\cos \theta d \theta
$$

$$
\mathrm{I}=-2[\theta+\sin \theta]_{\frac{\pi}{2}}^{\frac{\pi}{3}}
$$

$$
I=-2\left[\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right)-\left(\frac{\pi}{2}+1\right)\right]
$$

$$
I=-2\left(-\frac{\pi}{6}+\frac{\sqrt{3}}{2}-1\right)
$$

$$
\mathrm{I}=\frac{\pi}{3}+2-\sqrt{3}=1.315
$$

(A1) or 0,1 if x used.
(A1) correct integrand
(A1) correct integration
(m1) correct use of limits
(A1) cao

Q Solution
$15 \quad \int \frac{2 \mathrm{~d} y}{5-2 y}=\int \mathrm{d} x$
$-\ln |5-2 y|=x(+\mathrm{C})$
When $x=0, y=1$
$-\ln |3|=C$
$\ln |5-2 y|-\ln 3=-x$
$\frac{5-2 y}{3}=\mathrm{e}^{-x}$
$y=\frac{1}{2}\left(5-3 \mathrm{e}^{-x}\right)$

Mark Notes

M1 separate variable

5-2y not separated.
A1 correct integration
m 1 use of boundary conditions
m1 inversion

A1 cao any correct expression

Q Solution

16(a)(i)

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{3 \tan x} \times 3 \sec ^{2} x \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \sec ^{2} x \mathrm{e}^{3 \tan x}
\end{aligned}
$$

16(a)(ii)

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}(\cos 2 x \times 2)-\sin 2 x(2 x)}{x^{4}}
$$

M1 use of quotient rule oe $\frac{x^{2} \mathrm{f}(x)-\sin 2 x \mathrm{~g}(\mathrm{x})}{x^{4}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x \cos 2 x-2 \sin 2 x}{x^{3}}$
A1 $\mathrm{f}(x)=2 \cos 2 x$ or $g(x)=2 x$

A1 cao

Alternative solution

$$
\begin{aligned}
& y=x^{-2} \sin 2 x \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2 x^{-3} \sin 2 x+2 x^{-2} \cos 2 x
\end{aligned}
$$

(M1) use of product rule
$\mathrm{f}(x) \sin 2 x+x^{-2} \mathrm{~g}(x)$
(A1) $\mathrm{f}(x)=-2 x^{-3}$ or $\mathrm{g}(x)=2 \cos 2 x$
(A1) cao

Q Solution

16(b) $3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 x y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-5=0$

$$
\left(3 x^{2}+2 y\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=5-6 x y
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5-12}{3+4}=-1
$$

Use of gradient $=-1 / \frac{\mathrm{d} y}{\mathrm{~d} x}$
Equation of normal is $y-2=1(x-1)$
Equation of normal is $y=x+1$

Mark Notes

B1 $3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 x y$
B1 $\quad 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
B1 -5

B1 cao

M1

A1 correct equation any form

17

The two graphs intersect only once.
(Root is between 0 and $\pi / 2$.)

Using Newton-Raphson Method
$f(x)=x-1-\cos x$
$f^{\prime}(x)=1+\sin x$
$x_{n+1}=x_{n}-\frac{x_{n}-1-\cos x_{n}}{1+\sin x_{n}}$
$x_{0}=1$
$x_{1}=1.293408$
$x_{2}=1.283436$
$x_{3}=1.283429$
$x_{4}=1.283429$
Root is 1.28 (correct to 2 d. p.)

Mark Notes

G1 both graphs
B1

B1 or $-1-\sin x$

M1

A1 si

A1

