GCE AS MARKING SCHEME

SUMMER 2019

AS (NEW)
MATHEMATICS
UNIT 1 PURE MATHEMATICS A 2300U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS

AS UNIT 1 PURE MATHEMATICS A

SUMMER 2019 MARK SCHEME

Q Solution
$13 \frac{\sin \theta}{\cos \theta}+2 \cos \theta=0$
$3 \sin \theta+2 \cos ^{2} \theta=0$
$3 \sin \theta+2\left(1-\sin ^{2} \theta\right)=0$
$2 \sin ^{2} \theta-3 \sin \theta-2=0$
$(2 \sin \theta+1)(\sin \theta-2)=0$

Note No working shown m0
$\sin \theta=2$ (no solution)
$\sin \theta=-\frac{1}{2}$
$\theta=210^{\circ}, 330^{\circ}$

Mark Notes

M1 use of $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$

M1 use of $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$
m1 oe coeff sin multiply to give coeff $\sin ^{2}$; constant terms multiply to give constant term

A1 cao

B1B1 $\mathrm{ft} \sin +\mathrm{ve}$ for B 1
$\mathrm{ft} \sin -\mathrm{ve}$ for B1B1
-1 each additional incorrect answer in range up to -2 .

Ignore answers outside range.

Notes

If both branches give valid solutions:
$+v e,+v e \quad$ mark the correct branch for B1
-ve, -ve mark the branch that give most marks for B1 B1
+ve, -ve mark + ve for B1; mark -ve for B1 B1 and award the marks for the branch that gives the most marks.

If both branches do not give solutions B0 B0.

Q
Solution

2
2 $x^{2}+(2 k+4) x+9 k=0$

Discriminant $=(2 k+4)^{2}-4 \times 1 \times 9 k$

Discriminant $=4 k^{2}-20 k+16$ If distinct real roots, discriminant> 0
$k^{2}-5 k+4>0$
$(k-1)(k-4)>0$
Critical values, $k=1,4$
$k<1$ or $k>4$

B1 terms grouped, brackets not required, si

B1 An expression for $b^{2}-4 a c$ with at least two of a, b
or c correct
B1 cao
M1 \quad allow \geq
May be implied by later work

B1 ft if quadratic has 3 terms
A2 ft their critical values
if quadratic has 3 terms
(A1) non strict inequalities.
(A1) 'and' not 'or' used.
(A1) $1>k>4$.

Q Solution

3 Let $\mathrm{f}(x)=12 x^{3}-29 x^{2}+7 x+6$
$\mathrm{f}(1)=12-29+7+6 \neq 0$
$f(2)=96-116+14+6=0$
so $(x-2)$ is a factor.
$\mathrm{f}(x)=(x-2)\left(12 x^{2}+a x+b\right)$
$\mathrm{f}(x)=(x-2)\left(12 x^{2}-5 x-3\right)$
$\mathrm{f}(x)=(x-2)(3 x+1)(4 x-3)$

When $\mathrm{f}(x)=0, x=2,-\frac{1}{3}, \frac{3}{4}$

M1 correct use of factor theorem constant terms multiply to their -3 or formula with correct $\mathrm{a}, \mathrm{b}, \mathrm{c}$.

A1 cao

Note
Answers only with no working 0 marks.

Q Solution

4

4(a) \quad Gradient $L_{1}=\operatorname{grad} A B=\frac{9-3}{2-(-1)}=\frac{6}{3}=2$
correct method for finding eq^{n} of line
$E q^{\mathrm{n}}$ of L_{1} is $y-3=2(x+1)$

$$
y=2 x+5
$$

4(b)(i) $2 y+x=25$
When $y=0, x=25$
D has coordinates $D(25,0)$
4(b)(ii) Gradient of $L_{2}=-\frac{1}{2}$
$\operatorname{grad} L_{1} \times \operatorname{grad} L_{2}=2 \times-\frac{1}{2}=-1$
Therefore L_{1} and L_{2} are perpendicular
4(b)(iii) $2 y=4 x+10$
$2 y=-x+25$
Solving simultaneously
$x=3, y=11$

B1 isw
B1

M1
A1 $y-9=2(x-2)$ convincing
is

B1

B1 Statement required

M1 one variable eliminated. Some working required

A1 cao

Q Solution

4(c) length $C D=\sqrt{(3-25)^{2}+(11-0)^{2}}$

$$
=\sqrt{605}=(11 \sqrt{5})=(24.6)
$$

4(d) length $A C=\sqrt{4^{2}+8^{2}}(=4 \sqrt{5})$
length $B C=\sqrt{2^{2}+1^{2}}(=\sqrt{5})$
$\tan \angle A D C=\frac{A C}{D C}$ or $\tan \angle B D C=\frac{B C}{D C} \mathrm{M} 1$
$\angle A D C=\tan ^{-1}\left(\frac{4 \sqrt{5}}{11 \sqrt{5}}\right)\left(=19.983^{\circ}\right)$
$\angle B D C=\tan ^{-1}\left(\frac{\sqrt{5}}{11 \sqrt{5}}\right)\left(=5.194^{\circ}\right)$
$\angle A D B=19.983^{\circ}-5.194^{\circ}=14.8^{\circ}$

M1 \quad FT their C and D

A1 cao

B1 $\mathrm{ft} C$

B1 $\mathrm{ft} C$
method for relevant angle

A1 a correct angle ft lengths

A1 cao

OR
Length $A B=\sqrt{45}=3 \sqrt{5}$
Length $D B=\sqrt{610}$
Length $A D=\sqrt{685}$
(B1) any correct length $\mathrm{ft} D$
(B1) all 3 correct $\mathrm{ft} D$
$\cos A D B=\frac{610+685-45}{2(\sqrt{610})(\sqrt{685})}$

Angle $A D B=14.8^{\circ}$
(M1) attempt at cosine rule, 1 slip only.
(A1) correct cosine rule, ft lengths
(A1) cao

Q Solution

5 Using proof by exhaustion
$n \quad 2 n^{2}+5$
17
213
323
437
7, 13, 23 and 37 are prime numbers.
Therefore the statement is true.

M1 attempt to find $2 n^{2}+5$ for $n=1,2,3,4$

B1 at least 3 correct
A1

Q Solution
Mark Notes

6(a)(i) $\mathbf{A C}=-\mathbf{a}+\mathbf{c}$

6(a)(ii) $\mathbf{O D}=\mathbf{a}+\frac{1}{2} \mathbf{c}$

6(a)(iii) $\mathbf{O E}=\mathbf{c}+\frac{2}{3} \mathbf{a}$

6(b) Valid reason
Eg. $\mathbf{D E} \neq k \mathbf{A C}, \mathbf{D E}=\frac{1}{2} \mathbf{c}-\frac{1}{3} \mathbf{a}$;
or E is not the midpoint of $C B$.
Hence $A C$ is not parallel to $D E$.

B1
B1

B1 any correct form

M1 $\mathrm{ft}(\mathrm{a})$

A1 $\mathrm{ft}(\mathrm{a})$

Q Solution
Mark Notes

7(a) $\frac{(2 \sqrt{3}+a)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}$
$=\frac{1}{(3-1)}(2 \times 3+2 \sqrt{3}+a \sqrt{3}+a \times 1)$
$=\frac{1}{2}(6+2 \sqrt{3}+a \sqrt{3}+a)$
$\left(=\frac{1}{2}(6+a)+\frac{1}{2}(2+a) \sqrt{3}\right)$

7(b) $\quad \frac{2 b \sqrt{2} \sqrt{3}}{\sqrt{2}}-3 \sqrt{3}+8 \sqrt{3}$
B1 for $\frac{2 b \sqrt{2} \sqrt{3}}{\sqrt{2}}$ or $\frac{2 b \sqrt{6}}{\sqrt{2}}$ or $\sqrt{12 b^{2}}$
or $2 b \sqrt{3}$ or $2 \sqrt{3 b^{2}}$
B1 for $\pm 3 \sqrt{3}$ and $\pm 8 \sqrt{3}$ or $5 \sqrt{3}$
$=2 b \sqrt{3}+5 \sqrt{3}=(2 b+5) \sqrt{3}$
B1 cao

Note

Mark final answer

Q Solution

8(a) $y+\delta y=2(x+\delta x)^{2}-5(x+\delta x)$
$y+\delta y=2 x^{2}+4 x \delta x+2(\delta x)^{2}-5 x-5 \delta x$
Subtract $y=2 x^{2}-5 x$ from $y+\delta y$
$\delta y=4 x \delta x-5 \delta x+2(\delta x)^{2}$
$\frac{\delta y}{\delta x}=4 x-5+2(\delta x)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{Lim}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x-5$

OR
$\mathrm{f}(x+h)=2(x+h)^{2}-5(x+h)$
$\mathrm{f}(x+h)=2 x^{2}+4 x h+2 h^{2}-5 x-5 h$
$\mathrm{f}(x+h)-\mathrm{f}(x)=4 x h-5 h+2 h^{2}$
$\frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h}=4 x-5+2 h$
$\mathrm{f}^{\prime}(x)=\operatorname{Lim}_{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h}$
$\mathrm{f}^{\prime}(x)=4 x-5$

B1

M1
A1

M1

A1 All correct
(A1) All correct

8(b) $y=\frac{16}{5} x^{\frac{1}{4}}+48 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{16}{5} \times \frac{1}{4} x^{-\frac{3}{4}}-48 x^{-2}$
B1 one correct term

B1 second correct term
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{5} x^{-\frac{3}{4}}-48 x^{-2}$
When $x=16$,
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{5}(16)^{-\frac{3}{4}}-48(16)^{-2}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{7}{80}=(-0.0875)$
B1 cao

Q Solution
$9(\mathrm{a})$ Centre of circle is $\left(\frac{6+(-2)}{2}, \frac{4+10}{2}\right)$

$$
=(2,7)
$$

9(b) Radius $=\sqrt{3^{2}+4^{2}}=5$
Eq^{n} of circle is $(x-2)^{2}+(y-7)^{2}=5^{2}$
$E q^{\mathrm{n}}$ of circle is $x^{2}+y^{2}-4 x-14 y+28=0$

OR \quad Radius $=r=\sqrt{3^{2}+4^{2}}=5$
Eq^{n} of circle is $x^{2}+y^{2}-4 x-14 y+c=0$
$c=f^{2}+g^{2}-r^{2}=2^{2}+7^{2}-5^{2}=28$

OR $\quad \mathrm{Eq}^{\mathrm{n}}$ of circle is $(x-2)^{2}+(y-7)^{2}=k$
Eq^{n} of circle is $x^{2}+y^{2}-4 x-14 y+c=0$
At $(-2,4) 2^{2}+4^{2}-4 \times(-2)-14 \times 4+c=0$
$c=28$

9(c) Solve eq ${ }^{\text {ns }}$ simultaneously
$x^{2}-3 x-10=0$
$(x+2)(x-5)=0$
$x=5$
$y=11$
$C(5,11)$

B1 convincing

B1 accept radius ${ }^{2}$
M1 ft radius
A1 cao
(B1) accept radius ${ }^{2}$
(M1) implied by $a=-4, b=-14$.
(M1) implied by $a=-4, b=-14$.

A1 ft equation of circle, oe
m 1 correct method for solving quadratic

A1 cao
A1 $\mathrm{ft} x$

Q Solution

9(d) Area $A B C=\frac{1}{2} \times A C \times B C$ $A C=7 \sqrt{2}, B C=\sqrt{2}$

Area $A B C=7$

Mark Notes

M1 oe
m1 correct method for a distance
$\mathrm{ft} C$
A1 cao

Q Solution

$$
\begin{array}{ll}
10(\mathrm{a}) & 3^{3 x} \cdot 3^{2 y}=3^{3} \\
3 x+2 y=3 \\
& 2^{-3 x} \cdot 2^{-3 y}=2^{-6} \\
3 x+3 y=6 \\
& x=-1 \\
& y=3 \\
\text { 10(b) } \quad 2 \log _{a} x=\log _{a} x^{2} \\
& \log _{a}(5 x+2)+\log _{a}(x-1)=\log _{a}(5 x+2)(x-1)
\end{array}
$$

correct elimination of logs
$3 x^{2}=(5 x+2)(x-1)$
$3 x^{2}=5 x^{2}-3 x-2$
$2 x^{2}-3 x-2=0$
$(2 x+1)(x-2)=0$

M1 oe
A1
M1 oe
A1
A1 cao
A1 cao

B1 use of power law
B1 use of add/subtraction law on any two log terms

M1
A1 oe cao
m1 coeffs x multiply to their 2 and constant terms multiply to their -2 .

Or formula
Note No method shown m0
$x=-\frac{1}{2}$ or $x=2$
$\left(x \neq-\frac{1}{2}\right.$ since $\left.\log _{a} x=\log _{a\left(-\frac{1}{2}\right.}\right)$ is undefined)
therefore $x=2$

A1 cao

B1 ft solutions if one +ve , one -ve

11 Attempt to take logs M1
$\log _{10} Q=3 \log _{10} P+\log _{10} 1.25 \quad \mathrm{~A} 1$
This is the equation of a straight line of the form $y=m x+c$.
gradient $=3 \quad \mathrm{~B} 1$
intercept $=\log _{10} 1.25(=0.09691)$
B1

Q Solution

12(a) 9

12(b) $4^{\text {th }}$ term $={ }^{8} \mathrm{C}_{3}(2)^{5}(-5 x)^{3}$

$$
=-224000 x^{3}
$$

12(c) The greatest coefficient is in the $7^{\text {th }}$ term
Attempt to find $3^{\text {rd }}$ or $5^{\text {th }}$ or $7^{\text {th }}$ or $9^{\text {th }}$ term
Greatest coefficient $={ }^{8} \mathrm{C} 6(2)^{2}(-5)^{6}$
Greatest coefficient $=1750000$

Mark Notes

B1

M1 si condone 5
A1

B1 si, oe
M1

A1 condone x^{6}

Q Solution

13(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3} x^{2}-k$
When $x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-9$
$\frac{1}{3} \times 3^{2}-k=-9$
$k=12$
A1
convincing, allow verification

13(b) At stationary points $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
M1 used
$\frac{1}{3} x^{2}-12=0, \quad x^{2}=36$
$x=-6,6$
$y=53,-43$

A1 one correct pair
A1 second correct pair

Note: Allow y values shown in (c) but do not ft for incorrect x values.
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{2}{3} x$
M1 oe

When $x=-6, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-4<0$
$(-6,(53))$ is a maximum point
When $x=6, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=4>0$
$(6,(-43))$ is a minimum point

A1 $\mathrm{ft} x$

A1 $\mathrm{ft} x$ provided different conclusion

Q Solution

13(c)

M1 +ve cubic curve
A1 points, ft if possible

Q Solution
$14 \quad$ Area of triangle $=\frac{1}{2} b c \sin A$
$14=\frac{1}{2} \times 5 \times x \sin 120^{\circ}$
$x=\frac{56 \sqrt{3}}{15}=6.47$
use cosine rule
$y^{2}=5^{2}+x^{2}-2 \times 5 \times x \cos 120^{\circ}$
$y^{2}=5^{2}+6.47^{2}-2 \times 5 \times 6.47 \times \cos 120^{\circ}$
$y=9.96$

M1 used

A1

A1 either form, accept [6.4, 6.5]

M1 allow 1 slip

A1 $\mathrm{ft} x$
A1 cao, 2 dp required

Q Solution

15
$f^{\prime}(x)=3 x^{2}-12 x+13$
$f^{\prime}(x)=3(x-2)^{2}-12+13$
$f^{\prime}(x)=3(x-2)^{2}+1$
Hence $f^{\prime}(x)>0$ for all values of x, and $f(x)$ is an increasing function.

OR
$f^{\prime}(x)=3 x^{2}-12 x+13$
Discriminant $=(-12)^{2}-4 \times 3 \times 13=-12<0$
So $f^{\prime}(x)$ does not cross the x-axis
$f^{\prime}(1)=3-12+13=4>0$
Hence $f^{\prime}(x)>0$ for all values of x, and $f(x)$ is an increasing function.

M1 attempt to differentiate
m1
A1
E1 depends on previous A1 Accept \geq
(A1) oe
(E1) depends on previous A1.
Accept \geq
$y=x^{3}+x^{2}-4 x-4$
$\mathrm{I}_{1}=\int_{-2}^{-1}\left(x^{3}+x^{2}-4 x-4\right) \mathrm{d} x$

$$
=\left[\frac{x^{4}}{4}+\frac{x^{3}}{3}-2 x^{2}-4 x\right]_{-2}^{-1}
$$

$$
=\left[\frac{23}{12}-\frac{4}{3}\right]
$$

$$
=\frac{7}{12}
$$

Note Must be supported by workings.

$$
\begin{aligned}
\mathrm{I}_{2} & =\int_{-1}^{2}\left(x^{3}+x^{2}-4 x-4\right) \mathrm{d} x \\
& =\left[\frac{x^{4}}{4}+\frac{x^{3}}{3}-2 x^{2}-4 x\right]_{-1}^{2} \\
& =\left[-\frac{28}{3}-\frac{23}{12}\right] \\
& =-\frac{45}{4}
\end{aligned}
$$

Total area $=\frac{7}{12}+\frac{45}{4}$
Total area $=\frac{71}{6}(=11.833)$

B1

M1 attempt to integrate y wrt x Limits not required.

At least one power of x increased

A1 correct integration,
ft provided cubic
m1 correct use of limits,
implied by 7/12

A1 cao
(M1 if not previously awarded)
(A1 if not previously awarded)
(m 1 if not previously awarded)
(A1 cao if not previously awarded)
$\mathrm{m} 1 \quad \mathrm{ft}$ areas

A1 cso

