GCE AS MARKING SCHEME

SUMMER 2019

AS (NEW)
MATHEMATICS
UNIT 2 APPLIED MATHEMATICS A 2300U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS

AS UNIT 2 APPLIED MATHEMATICS A

SUMMER 2019 MARK SCHEME

SECTION A - STATISTICS

Qu. No.	Solution	Mark	Notes
1(a)	Correct use of $\begin{aligned} P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\ \frac{3}{4} & =P(A)+\frac{1}{5}-\frac{1}{5} P(A) \\ P(A) & =\frac{11}{16}(0.6875) \end{aligned}$	M1 A1 A1	Use of addition formula with at least $P(A \cup B)$ and $P(B)$ correct.
(b)	$\begin{aligned} P(A \cap C) & =\frac{11}{16}+\frac{1}{6}-\frac{5}{6} \\ & =\frac{1}{48}(0.0208333 \ldots) \end{aligned}$	B1	FT 'their $\mathrm{P}(\mathrm{A})$ ' provided $0 \leq P(A) \leq 1$ and leads to $P(A \cap C)$ being between 0 and 1.
	$P(A) \times P(C)=\frac{11}{16} \times \frac{1}{6}=\frac{11}{96}(0.11458333 \ldots)$	B1	FT 'their $P(A)$ '
	Since $\frac{1}{48} \neq \frac{11}{96}$, A and C are not independent.	E1	Award only from appropriate working, provided B1B1 awarded.
	OR		
	If A and C are independent, then $\begin{aligned} P(A \cap C) & =P(A) \times P(C) \\ & =\frac{11}{16} \times \frac{1}{6}=\frac{11}{96}(0.11458333 \ldots) \end{aligned}$	(B1)	si FT 'their $\mathrm{P}(\mathrm{A})$ ' provided $0 \leq P(A) \leq 1$ and leads to $P(A \cap C)$ being between 0 and 1.
	$P(A \cup C)=P(A)+P(C)-P(A \cap C)=\frac{71}{96}$	(B1)	FT 'their $P(A)$ '
	Since $\frac{71}{96} \neq \frac{5}{6}, A$ and C are not independent.	(E1)	Award only from appropriate working, provided B1B1 awarded.

(c)	B and C are mutually exclusive, or equivalent.	B1	
		$[7]$	

$\begin{aligned} & \text { Qu. } \\ & \text { No. } \end{aligned}$	Solution	Mark	Notes
3 (a)	(Let the random variable Y represent the number of patients arriving at A\&E in one hour) $\begin{aligned} P(Y=7) & =\frac{e^{-5.3} \times 5.3^{7}}{7!} \\ & =0.1163 \end{aligned}$	M1 A1	Or from calculator.
(b)	(Let the random variable X represent the number of patients arriving at A\&E in 90 minutes)		
	Number of arrivals X follows $\operatorname{Po}(7.95)$ Use calculator to find	B1	si
	$P(X \geq 12)=0.1084(\text { OR } P(X \leq 11)=0.8916)$	M1	M1 for either 0.1084 or 0.0614 .
	$P(X \geq 13)=0.0614 \quad(\mathrm{OR} P(X \leq 12)=0.9386)$	A1	Both values required SC2 (M1 A1 A0) for
	$n=13$	A1	approximating to $\mathrm{Po}(8)$ to use tables. $\begin{aligned} & P(X \geq 12)=0.1119 \\ & P(X \geq 13)=0.0638 \end{aligned}$
(c)	Valid reason. eg. There may be times that are busier than others. Patients arriving at A\&E may not be independent of each other, eg car accident	E1	
		[7]	

Qu.	Solution	Mark	Notes
$4 \text { (i) }$	Two appropriate statements. eg. She has plotted the year / she has drawn a horizontal line for the number of accidents in Wales. She has mixed up Gwent and North Wales	B2	B1 for each valid statement. Allow one reason per region
(ii)	Valid statement. eg. The population of each region. The length of road of each region.	B1	
(b)	$\begin{aligned} \bar{x} & =\frac{\Sigma f x}{\Sigma f}=\frac{2058}{22} \\ & =93.5(4545 \ldots) \end{aligned}$	M1 A1	
	$\sigma=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\bar{x}^{2}}$		
	$=\sqrt{\frac{285654}{22}-\left(\frac{2058}{22}\right)^{2}}$	M1	ft their mean
	$=65 .(06551 \ldots)$	A1	ft their mean provided positive term within square root for M1 and A1
(c)(i)	The y -axis should be labelled frequency density.	B1	
(ii)	Valid comment specific to the given histogram. eg. It is not possible to tell because it is possible that all 5 response times in the 8 to 10 interval all happened between 9 and 10 minutes.	B1	
(iii)	Positive skew. (There is a long right-hand tail.)	B1	
		[10]	

Qu. No.	Solution	Mark	Notes
5(a)	Opportunity sampling. (b)	Valid comment. eg. Go to different areas, as this is a biased sample. Many of his responders will be from the same community.	B1

SECTION B - MECHANICS

Q6	Solution	Mark	Notes
(a)	Resultant, $\begin{aligned} & =\mathbf{F}_{\mathbf{1}}+\mathbf{F}_{\mathbf{2}}+\mathbf{F}_{3} \\ & =(6 \mathbf{i}-7 \mathbf{j})+(a \mathbf{i}+2 \mathbf{j})+(5 \mathbf{i}+b \mathbf{j}) \\ & =(11+a) \mathbf{i}+(b-5) \mathbf{j} \end{aligned}$ Using N2L, F = ma $(11+a) \mathbf{i}+(b-5) \mathbf{j}=2(7 \mathbf{i}-3 \mathbf{j})$ $11+a=2 \times 7 \quad$ or $\quad b-5=2 \times-3$ $a=3 \quad \text { and } \quad b=-1$	B1 M1 m1 A1 [4]	Simplification not necessary, must be a sum of forces Comparison of at least one coefficient cao, both values
(b)	Constant velocity \Rightarrow Resultant $=0$ $\begin{gathered} \mathbf{F}_{4}=-\left(\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}\right)=-(14 \mathbf{i}-6 \mathbf{j}) \\ \mathbf{F}_{4}=-14 \mathbf{i}+6 \mathbf{j} \end{gathered}$	M1 A1 [2]	Resultant $=0$ used FT candidate's a and b from (a) with their resultant; $\mathbf{F}_{4}=-(11+a) \mathbf{i}-(b-5) \mathbf{j}$
	Total for Question 6	6	

Q7	Solution	Mark	Notes
(a)	$\begin{aligned} \text { Distance travelled } & =16+16+9+9 \\ & (=50 \mathrm{~m}) \end{aligned} \begin{aligned} \text { Average speed }= & \frac{\text { total distance travelled }}{8} \\ & =\frac{50}{8}=6 \cdot 25\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	B1 M1 A1 [3]	cao Used with candidate's distance cao
(b)	$t=4(\mathrm{~s})$ and $t=7$ (s) $\quad(t=0(\mathrm{~s}))$	B1 [1]	Both non-zero times required.
(c)	(i) $4<t<7$ oe (ii) $6<t<7$	B1 B1 [2]	Statement (mathematical or otherwise) to the effect that interval is between the given boundaries. Condone equality. Cao for each B1
	Total for Question 7	6	

Q8	Solution	Mark	Notes
(a)	$\begin{aligned} & v^{2}=u^{2}+2 a s, v=0, a= \pm g, s= \pm 10 \\ & 0=u^{2}+2(\pm 9 \cdot 8)(\mp 10) \\ & u=(\mp) 14 \quad\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	M1 A1 A1 [3]	g opposing s Convincing
(b)	$\begin{aligned} & s=u t+\frac{1}{2} a t^{2}, s= \pm 0 \cdot 9, u= \pm 14, a= \pm g \\ & \pm 0 \cdot 9=(\mp 14) t+\frac{1}{2}(\pm 9 \cdot 8) t^{2} \\ & 4 \cdot 9 t^{2}-14 t-0 \cdot 9=0 \text { (oe) } \\ & \text { Solving their quadratic } \\ & \left(t=\frac{14 \pm \sqrt{196-4(4 \cdot 9)(-0 \cdot 9)}}{9 \cdot 8}\right) \\ & t=2 \cdot 9 \mathrm{~s} \quad \text { (must be } 1 \text { d. p.) } \end{aligned}$	M1 A1 m1 A1 [4]	g and s opposing u Calculator gives $t=\frac{10+\sqrt{109}}{7}$ cao
(c)	Any sensible assumption. e.g. Ball modelled as a particle. Acceleration due to gravity is constant.	B1 [1]	
(d)	(The ball would not reach the ceiling.) Calculations are independent of the mass/weight of the ball.	B1 [1]	
	Total for Question 8	9	

Q9	Solution	Mark	Notes
(a)	$\begin{aligned} & v=\int(2 t-8) \mathrm{d} t \\ & v=t^{2}-8 t(+C) \end{aligned}$ When $t=0, v=12$ $C=12$ $v=t^{2}-8 t+12$	M1 A1 A1 [3]	Attempt to integrate a with sight of at least one increase in power cao
(b)	At $t=5, \quad v=(5)^{2}-8(5)+12$ $v=-3$ Use of $a=2$ for $t>5$ (uniform acceleration) $\begin{aligned} & v=u+a t, u=-3, a=2, t=14-5 \\ & v=-3+(2)(9) \\ & v=15\left(\mathrm{~ms}^{-1}\right) \end{aligned}$ Alternative solution $\begin{aligned} & \text { For } t>5, \\ & v=\int 2 \mathrm{~d} t=2 t(+C) \end{aligned}$ When $t=5, v=-3$ $\begin{aligned} & C=-13 \\ & v=2 t-13 \end{aligned}$ At $t=14, \quad v=2(14)-13$ $v=15\left(\mathrm{~ms}^{-1}\right)$	B1 M1 A1 [3] (B1) (M1) (A1) ([3])	FT candidate's quadratic expression for v from (a) for $t=5$ only. Either 'their u ' or t correct FT incorrect v from (a) provided B1 awarded and $t=9$ Integration with an attempt to find C with $t \neq 0, v \neq 12$
	Total for Question 9	6	

Q10		Mark	Notes

(b)	No longer able to assume that tension is the same (throughout the string) OR No longer able to assume that tension is equal on both sides	B1 [1]	
	Total for Question 10	8	

