GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL (NEW) MATHEMATICS UNIT 3 PURE MATHEMATICS B 1300U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS

A2 UNIT 3 PURE MATHEMATICS B

SUMMER 2019 MARK SCHEME

Q Solution
Mark Notes

1(a) $\frac{9}{(x-1)(x+2)^{2}} \equiv \frac{A}{(x-1)}+\frac{B}{(x+2)}+\frac{C}{(x+2)^{2}}$ M1
$9 \equiv A(x+2)^{2}+B(x-1)(x+2)+C(x-1) \quad$ m1 $\quad \begin{aligned} & \text { correct method to remove } \\ & \text { denominator }\end{aligned}$
Put $x=1, A=1$
$\mathrm{m} 1 \quad$ correct method for finding A, B or C

Coef. $x^{2}, 0=A+B, B=-1$
Put $x=-2, C=-3$
A1 all 3 values correct, cao

1(b) $\quad \int \frac{9}{(x-1)(x+2)^{2}} \mathrm{~d} x$
$=\int \frac{1}{(x-1)} \mathrm{d} x-\int \frac{1}{(x+2)} \mathrm{d} x-\int \frac{3}{(x+2)^{2}} \mathrm{~d} x \quad$ M1 attempt to integrate PF
$=\ln |x-1|-\ln |x+2|+\frac{3}{(x+2)}+$ Const \quad A1 \quad one correct term, ft (a)
A1 all correct, -1 if no Const.
$\mathrm{ft}(\mathrm{a})$, isw

Note: ft incorrect constants or $\frac{A}{(x-1)}+\frac{B x+C}{(x+2)^{2}}$.

Q Solution
Mark Notes
$2(4-x)(1+2 x)^{-\frac{1}{2}}$
$=(4-x)\left[1+\left(-\frac{1}{2}\right)(2 x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(2 x)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3 \times 2}(2 x)^{3}\right]$
B2 -1 each error term
$(4-x)$ not required.
$=(4-x)\left[1-x+\frac{3}{2} x^{2}-\frac{5}{2} x^{3}+\ldots ..\right]$
$=\left(4-4 x+6 x^{2}-10 x^{3}\right)-\left(x-x^{2}+\frac{3}{2} x^{3}\right)+\ldots$ M1 correct method
$=4-5 x+7 x^{2}-\frac{23}{2} x^{3}+\ldots \ldots .$.
A2 terms all correct
-1 each incorrect term.
Ignore further terms., isw
Expansion is valid for $|x|<\frac{1}{2}$.
B1 oe, mark final answer

Note $(1+2 x)^{\frac{1}{2}}=1+\left(\frac{1}{2}\right)(2 x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2}(2 x)^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3 \times 2}(2 x)^{3}+\ldots .$.

$$
\begin{equation*}
=1+x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\ldots . \tag{B0}
\end{equation*}
$$

$(4-x)(1+2 x)^{\frac{1}{2}}=4+3 x-3 x^{2}+\frac{5}{2} x^{3}+$ \qquad (M1) correct method
(A2) terms all correct
-1 each incorrect term.
Ignore further terms.
Expansion is valid for $|x|<\frac{1}{2}$.

Q Solution

3(a) $x_{2}=29$
$x_{1}=8$

3(b) Not an AP because 113-29 $\neq 29-8$

$$
x_{3}-x_{2} \neq x_{2}-x_{1} .
$$

B1 either GP or AP statement, reason required, ft (a)

Not a GP because $\frac{113}{29} \neq \frac{29}{8}$

$$
\frac{x_{3}}{x_{2}} \neq \frac{x_{2}}{x_{1}} .
$$

B1 for the other statement,

Reason required, ft (a)

Note : Accept equivalent statement if clear.

Q Solution

4(a) $5 \sin x-12 \cos x=R \sin x \cos \alpha-R \cos x \sin \alpha$
$R \cos \alpha=5$
$R \sin \alpha=12$
$R=\sqrt{5^{2}+12^{2}}=13$
$\alpha=\tan ^{-1}\left(\frac{12}{5}\right)=67.380^{\circ}$

4(b) $y=\frac{4}{13 \sin (x-67 \cdot 380)+15}$

Min y when denominator is max,
ie when $\sin (x-67.380)=1$
$\operatorname{Min} y=\frac{4}{28}\left(=\frac{1}{7}=0.1429\right)$

4(c) $\quad \sin (x-67.380)=-\frac{3}{13}$
$x-67.380=-13.342,193.342$
$x=54.04^{\circ}$
$x=260.72^{\circ}$

Mark Notes

M1

B1

A1 accept 1.176 rad not 1.176 .

M1 implied by correct min
$\mathrm{A} 1 \quad \mathrm{ft} R$

M1

A1 either value
A1 0.943 rad
A1 $\quad 4.550 \mathrm{rad}$
Ignore answers outside the range.
-1 for any extra answers within range
Accept answers rounding correctly
to $54,261$.

Note: full follow through their R and α provided of equivalent difficulty, eg not $\alpha=0, R=1$.

Q Solution

5(a) either $1-3 x>7$, or $1-3 x<-7$
either $x<-2$, or $x>\frac{8}{3}$

OR

$$
\begin{aligned}
& (1-3 x)^{2}>7^{2} \\
& 9 x^{2}-6 x-48>0 \\
& 3 x^{2}-2 x-16>0 \\
& (3 x-8)(x+2)>0
\end{aligned}
$$

$$
\text { either } x<-2 \text {, or } x>\frac{8}{3}
$$

5(b)

Mark Notes

M1 one correct inequality
A1 both correct

A1 cao oe, mark final answer
(A1) cao oe

G1 Shape, min below x-axis
G1 $(-2,0),(8 / 3,0), \mathrm{ft}(\mathrm{a})$
B2 $(1 / 3,-7)$ and drawn in correct quadrant.

B1 for either coordinate.

Q Solution

6(a) $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\cos \theta$
$\frac{\mathrm{d} y}{\mathrm{~d} \theta}=-2 \sin 2 \theta$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2 \sin 2 \theta}{\cos \theta}$
When $\theta=\frac{\pi}{4}, x=\frac{1}{\sqrt{2}}, y=0$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2 \sin \frac{\pi}{2}}{\cos \frac{\pi}{4}}=-2 \sqrt{2}$
Eq^{n} of tgt is $y-0=-2 \sqrt{2}\left(x-\frac{1}{\sqrt{2}}\right)$
Eq^{n} of tgt is $y=-2 \sqrt{2} x+2$

OR $y=\cos 2 \theta=1-2 \sin ^{2} \theta$
$y=1-2 x^{2}$
$\frac{d y}{d x}=-4 x$
When $\theta=\frac{\pi}{4}, x=\frac{1}{\sqrt{2}}, y=0$
$\frac{d y}{d x}=-4 \times \frac{1}{\sqrt{2}}=-2 \sqrt{2}$
Eq^{n} of tgt is $y-0=-2 \sqrt{2}\left(x-\frac{1}{\sqrt{2}}\right)$
Eq^{n} of tgt is $y=-2 \sqrt{2} x+2$

A1 $\quad m=-2 \sqrt{2}$, oe
$\mathrm{ft} \mathrm{dy} / \mathrm{d} \theta=2 \sin 2 \theta$ or $-\sin 2 \theta$
(B1) $\mathrm{ft} 2 \sin ^{2} \theta-1$
B1 si

B1 si

M1

B1 si

A1 $c=2$ cao
(B1) ft $2 \sin ^{2} \theta-1$
(B1) si
(A1) $c=2$, cao

Q Solution

6(b) $x+y=1$
$\cos 2 \theta+\sin \theta-1=0$
$1-2 \sin ^{2} \theta+\sin \theta-1=0$
$2 \sin ^{2} \theta-\sin \theta=0$
$\sin \theta(2 \sin \theta-1)=0$
$x=\sin \theta=0, \frac{1}{2}$
$y=1-x=1, \frac{1}{2}$
required coordinates are $(0,1),\left(\frac{1}{2}, \frac{1}{2}\right)$

OR
required coordinates are $(0,1),\left(\frac{1}{2}, \frac{1}{2}\right)$

M1 $\quad \cos 2 \theta=1-2 \sin ^{2} \theta$
m1 si, ft for correct factorisation

A1 one correct pair cao

A1 all correct cao
$y=\cos 2 \theta=1-2 \sin ^{2} \theta$
$y=1-2 x^{2}$
$y=1-x$
Solving simultaneously
$x(2 x-1)=0$
$x=0, x=\frac{1}{2}$
$y=0, y=\frac{1}{2}$
(M1) $\cos 2 \theta=1-2 \sin ^{2} \theta$
(m1) $x=\sin \theta$
(m1)
(A1) one correct pair
(A1) all correct

Q Solution

7(a)

7(b)

Mark Notes

G1 shape of graph
B1 $(5,0)$
B1 $\quad(-3,8)$

G1 shape, intersecting y-axis at a positive value of y.

B1 $(4,3)$
$(0,1)$ not required.

Q Solution

$$
\text { 8(a) } \begin{aligned}
& \mathrm{T}_{3}=3+2 d \\
& \mathrm{~T}_{19}=3+18 d \\
& \mathrm{~T}_{67}=3+66 d \\
& \frac{3+66 d}{3+18 d}=\frac{3+18 d}{3+2 d}(=r) \\
& (3+66 \mathrm{~d})(3+2 \mathrm{~d})=(3+18 \mathrm{~d})(3+18 \mathrm{~d}) \\
& 9+204 d+132 d^{2}=9+108 d+324 d^{2} \\
& 192 d^{2}=96 d \\
& d=\frac{1}{2}
\end{aligned}
$$

8(b)(i) AP $a=100, d=12$
8 weeks $=40$ working days.
Total no. employees $=100+39 \times 12$
Total no. employees $=568$

Mark Notes

B1 $\mathrm{T}_{3}, \mathrm{~T}_{19}$ or T_{67} correct

B1 all correct
M1 method for d or r
$\mathrm{m} 1 \quad$ method for d

A1 cao, condone presence of $d=0$

M1 si
m1
A1

8(b)(ii) Wage bill $=$

$$
\begin{aligned}
55[100+112+124+\ldots(40 \text { terms })] \text { M1 } & 55 \text { not required, } \\
& \text { implied by } 13360
\end{aligned}
$$

Wage bill $=55\left[\frac{40}{2}(2 \times 100+39 \times 12)\right] \quad \mathrm{m} 1$
Wage bill $=55\left[\frac{40}{2}(100+568)\right]$
(m1) $\mathrm{ft}(\mathrm{b})(\mathrm{i})$
Wage bill $=(£) 734800$
A1 cao

Q Solution

9(a) $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-2 \cot \beta \tan \beta}$
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-2}$
$\tan (\alpha+\beta)=-(\tan \alpha+\tan \beta)$

9(b) $4 \tan \theta=3\left(1+\tan ^{2} \theta\right)-7$
$3 \tan ^{2} \theta-4 \tan \theta-4=0$
$(3 \tan \theta+2)(\tan \theta-2)=0$
$\tan \theta=-\frac{2}{3}, 2$
Note : No working shown m0 A0
$\theta=63.4^{\circ}, 243.4^{\circ}$
$\theta=146.3^{\circ}, 326.3^{\circ}$

A1 convincing

M1 $\sec ^{2} \theta=1+\tan ^{2} \theta$
A1
m1 allow $(3 \tan \theta-2)(\tan \theta+2)$

A1 cao

B1 $\mathrm{ft} \tan$ value, -1 each extra value in range

B1 $\mathrm{ft} \tan$ value if different sign.
-1 each extra value in range

Note : Do not ft for other trig functions.

Q Solution

10a(i) Use of product rule

$$
x^{5} \times \frac{1}{x}+5 x^{4} \ln x
$$

10a(ii) Use of quotient rule

$$
\frac{\left(x^{3}-1\right) 3 e^{3 x}-e^{3 x}\left(3 x^{2}\right)}{\left(x^{3}-1\right)^{2}}
$$

$10 \mathrm{a}(\mathrm{iii})$ Use of chain rule

$$
\frac{1}{2}(\tan x+7 x)^{-1 / 2}\left(\sec ^{2} x+7\right)
$$

Note: $\mathrm{f}(x), \mathrm{g}(x) \neq 0$ or 1.

$$
\begin{array}{ll}
10 \text { (b) } 3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y^{2}+8 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}-15 x^{2}=0 & \text { B1 } 3 \frac{\mathrm{~d} y}{\mathrm{~d} x}-15 x^{2}, 0 \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{15 x^{2}-4 y^{2}}{3+8 x y} & \text { B1 } 4 y^{2}+8 x y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\text { B1 } & \text { correct } \frac{\mathrm{d} y}{\mathrm{~d} x}
\end{array}
$$

Mark Notes

M1 $\quad x^{5} \mathrm{f}(x)+\mathrm{g}(x) \ln x$
A1 $\mathrm{f}(x)=\frac{1}{x}$
A1 $\mathrm{g}(x)=5 x^{4} \quad$ isw

M1 $\quad \frac{\left(x^{3}-1\right) \mathrm{f}(x)-e^{3 x} \mathrm{~g}(x)}{\left(x^{3}-1\right)^{2}}$

A1 $\mathrm{f}(x)=3 e^{3 x}$

A1 $\mathrm{g}(x)=3 x^{2} \quad$ isw

M1 $\quad \frac{1}{2}(\tan x+7 x)^{-1 / 2} \mathrm{f}(x)$

A1 $\mathrm{f}(x)=\left(\sec ^{2} x+7\right) \quad$ isw

Q Solution

11(a) $y=\frac{\sqrt{x^{2}-1}}{x}$

$$
\begin{aligned}
& x^{2} y^{2}=x^{2}-1 \\
& x^{2}\left(1-y^{2}\right)=1 \\
& x= \pm \frac{1}{\sqrt{1-y^{2}}}, \\
& f^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}},+ \text { ve since } x \geq 1
\end{aligned}
$$

Domain [0, 1)

G1 for $f(x)$ starting at $(1,0)$ with horizontal asymptote $y=1$

Or for $f^{1}(x)$ starting at $(0,1)$ with vertical asymptote $x=1$
(does not need to be shown)
G1 reflection in $y=x$, provided curve passes through $(1,0)$ or $(0,1)$

11(b) $f f(x)$ cannot be formed because
the range of $f(x)$ is not in the domain of $f(x)$.
E1 oe eg consideration of a single point.

Q Solution
12(a) Area of sector $O A B=\frac{1}{2} r^{2} \theta$
Area triangle $O A B=\frac{1}{2} r^{2} \sin \theta$
Area of segment $=\frac{1}{2} r^{2} \theta-\frac{1}{2} r^{2} \sin \theta$
$3\left(\frac{1}{2} r^{2} \theta-\frac{1}{2} r^{2} \sin \theta\right)=\pi r^{2}$
$\sin \theta=\theta-\frac{2 \pi}{3}$

12(b)(i) $\mathrm{f}(\theta)=\theta-\sin \theta-\frac{2 \pi}{3}$
$f(2.6)=-0.00989647 \ldots<0$
$\mathrm{f}(2.7)=0.178225 \ldots>0$
Change of sign, therefore $2.6<\theta<2.7$
A1

12(b)(ii) $f^{\prime}(\theta)=1-\cos \theta$
$\theta_{\mathrm{n}+1}=\theta_{\mathrm{n}}-\frac{\theta_{\mathrm{n}}-\sin \theta_{\mathrm{n}}-\frac{2 \pi}{3}}{1-\cos \theta_{\mathrm{n}}}$
$\theta_{0}=2.6$
$\theta_{1}=2.6053296$
$\theta_{2}=2.605325675$
$\theta=2.605$ (correct to 3 d.p.)

B1 either si

B1 si
Mark Notes
sit

M1 oe

A1 convincing

A1 cao

Note: No marks for unsupported answer of 2.605.
$1+\cos \theta$ in denominator, series is divergent.

Q Solution

13(a) $\frac{\mathrm{d} A}{\mathrm{~d} t}=k A$

13(b) $\int \frac{d A}{A}=\int k d t$
$\ln A=k t+(\mathrm{C})$
$t=0, A=0.2$
$\mathrm{C}=\ln 0.2$
$\ln \frac{A}{0 \cdot 2}=k t$
$t=1, A=1.48$
$k=\ln (7.4)=2.00148$
$e^{k}=7.4$
($A=$) $0.2 e^{k t}$
$(A=) 0.2(7.4)^{t}$

B1
Mark Notes

M1 separate variables
A1
m1 use of initial conditions
m1 used

A1 either k or e^{k}
A1 $\quad k=2,2.00148, \ln (7.4)$
A1 cao

Q Solution

14(a) $\frac{1}{2} e^{2 x}-2 \cos 3 x+\mathrm{C}$

14(b) $\left(x^{2}+\sin x\right)^{7}+C$

14(c) $\mathrm{I}=\int x^{-2} \ln x \mathrm{~d} x=\left[\frac{x^{-1}}{-1} \ln x\right]-\int-x^{-1} \times \frac{1}{x} \mathrm{~d} x \quad \mathrm{M}$

$$
\begin{aligned}
& \mathrm{I}=-\frac{1}{x} \ln x+\int x^{-2} \mathrm{~d} x \\
& \mathrm{I}=-\frac{1}{x} \ln x-\frac{1}{x}+\mathrm{C}
\end{aligned}
$$

14(d) $\quad u=2 \cos x+1 ; \quad \mathrm{d} u=-2 \sin x \mathrm{~d} x$
$x=0, u=3 ; \quad x=\frac{\pi}{3}, u=2$
$\mathrm{I}=\int_{3}^{2}-\frac{1}{2 u^{2}} \mathrm{~d} u=\frac{1}{2} \int_{2}^{3} u^{-2} \mathrm{~d} u$
$\mathrm{I}=\frac{1}{2}\left[-\frac{1}{u}\right]_{2}^{3}$
$\mathrm{I}=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{3}\right]$
$I=\frac{1}{12}$

B1 one correct term

B1 second correct term
-1 if no $+C$.

A1 $1^{\text {st }}$ term
A1 $\quad 2^{\text {nd }}$ term
Mark Notes

B1 $\quad-1$ if no $+C$ (only once).

M1 $\mathrm{f}(x) \ln x-\int \mathrm{f}(x) \frac{1}{x} \mathrm{~d} x$

A1 -1 if no $+C$ (only once)

M1 integrand $a u^{-2}$

A1 correct integration of u^{-2}
m1 correct use of correct limits

A1 cao

Note: No marks for unsupported answer of $1 / 12$.

Q Solution

15 Assume that $\sqrt{6}$ is rational.
M1
Then there are (integers) a and b, with no common factor (except 1)
such that $\sqrt{6}=\frac{a}{b}$
m1
OR
Assume $\sqrt{6}=\frac{a}{b}$, where a and b, are integers.
a and b have no common factor (except 1).
(m1)

THEN

Square both sides, $6=\frac{a^{2}}{b^{2}}$
$6 b^{2}=a^{2}$
So (a^{2} and thus) a is an even number,
($a=2 k$,
$6 b^{2}=a^{2}=(2 k)^{2}=4 k^{2}$
$3 b^{2}=2 k^{2}$
So (b^{2} and thus $) b$ is an even number. ($b=2 h$)
So, a and b have a common factor 2 .
This is a contradiction.
Hence $\sqrt{6}$ is irrational.

OR
$6 b^{2}=a^{2}$
So (a^{2} and thus) a has a factor of $6, a=6 k$
$6 b^{2}=a^{2}=(6 k)^{2}=36 k^{2}$
$b^{2}=6 k^{2}$
So (b^{2} and thus $) b$ has a factor of $6, b=6 h$
(A1) Dep on M1
So, a and b have a common factor 6 .
This is a contradiction.
Hence $\sqrt{6}$ is irrational.

A1 Dep on M1

A1 Dep on M1

A1 cso
(A1) cso

Note: Also accept factor of 3.

