

Maths Questions By Topic:

Algebra

Mark Scheme

Edexcel GCSE (Foundation)

\# www.expert-tuition.co.uk
\square online.expert-tuition.co.uk
®enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 .. Page 1
Paper 2 ... Page 17
Paper 3
Page 36

Old Spec A (Linear)
Paper 1 ... Page 52
Paper 2
Page 74

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	Explanation	C1 M1 A1	for explanation Acceptable examples the sequence is going $+1,+2$ so the next term is +3 $1+1=2,2+2=4,4+3=7$ add the current term position to the term to get the next term add the two previous terms and add 1 Not acceptable examples you add 1 each time the number goes up by 3 7 is wrong it should be 8 because you double each time for finding the next term of $10+5(=15)$ or for 䦽 $8 \times(8+1)$ oe cao	The pattern may be just seen on the sequence given
]ll (a) (b) (c)	$\begin{aligned} & 2 a+2 d \\ & y(6 y-5) \end{aligned}$	B1 B1 M1 A1	cao cao for isolating x terms, eg $4 x=37+7$ or $4 x=44$ or for $x-\frac{7}{4}=\frac{37}{4}$ or for $37+7=44$ followed by " 44 " $\div 4$ (= 11) cao \square	Accept $2 \times a+2 \times d$ Accept $y \times(6 y-5)$

Question	Answer	Mark	Mark scheme	Additional guidance
ㅁ⿴囗⿰丨丨丁口 $\begin{aligned} & \text {（a）} \\ & \\ & \text {（b）}\end{aligned}$	Explanation	C1	for explanation，eg $A B$ cannot be zero（cm） or shows $A B$ to be zero，eg $4 \times 0.5-2=0$	Accept say＇$A B$ would then be 0 ＇
	2.5	P1	for a correct expression for $A D$ ，eg 3（4x－2）or $12 x-6$	May be seen on diagram
			OR $2(3 A B+A B)=64$ oe or $3 A B+A B=32$ oe or $A B=8$	
			OR for an equation with mixed variables， eg． $6 A B+2(4 x-2)=64$	
		P1	for forming a correct equation in x ， eg $4 x-2+4 x-2+3(4 x-2)+3(4 x-2)=64$ or $4 x-2=8$ or $4 x-2+3(4 x-2)=32$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b) (c)	$\begin{gathered} (2,3) \\ (0,-1) \\ C \text { at }(-2,1) \end{gathered}$	B1 B1 B1	cao cao cao	If more than one point marked accept if labelled, otherwise not, unless clear
$\square \quad$ (a \square (b)	$\begin{aligned} & \hline 11 \\ & 22 \end{aligned}$	B1 M1 A1	cao Starts to find input using inverse operations, $41+3(=44)$ or sight of +3 and $\div 2$ or derivation of equation eg $2 n-3=41$ cao	+3 and $\div 2$ could be seen in a flow diagra Evidence could be provided by algebraic statement, numerical statements or by diagrams
(a) (b) (c)	$\begin{gathered} x^{2}-4 x \\ 5(3 y-2) \end{gathered}$ 9	B1 B1 M1 A1	cao cao for a correct first stage, eg. expanding brackets, $7 \times f-7 \times 5(=28)$ oe or for division of both sides by 7 , eg. $\frac{7(f-5)}{7}=\frac{28}{7}$ cao	

Question	Answer	Mark	Mark scheme	Additional guidance
\square	$3 n-2$	$\begin{aligned} & \mathrm{B} 2 \\ & \text { (B1 } \end{aligned}$	for $3 n-2$ oe for $3 n+k$ where $k \neq-2$ or is absent unambiguously shown)	Accept a different variable, eg. $3 x-2$ $n=3 n-2$ gets B 1 only $n+3$ gets NO marks
\square	B C D A	$\begin{aligned} & \hline \text { B2 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { cao } \\ & \text { for two or three correct) } \end{aligned}$	
(a) (b)	$q=\frac{p-7}{6}$ m^{6}	M1 A1 B1	for a correct first step, showing a method of subtraction of 7 from both sides or division of all terms by 6 eg $p-7=6 q+7-7$ or $\frac{p}{6}=\frac{6 q}{6}+\frac{7}{6}$ oe for $q=\frac{p-7}{6}$ or $q=\frac{p}{6}-\frac{7}{6}$ cao	Allow $1 \frac{1}{6}$ for $\frac{7}{6}$ Award for answer without " $q=$ "

Question	Answer	Mark	Mark scheme	Additional guidance
[1] (a) (b)	A plotted at $(3,2)$ $(-1,0)$	B1 B1	cao cao	Accept a cross or dot or A written at $(3,2)$ with or without labelling provided not ambiguous Could be shown on the diagram
13 (a) (b)	$\begin{gathered} 10 a b \\ 8 x+y \end{gathered}$	B1 M1 A1	cao for $8 x$ or y for $8 x+y$	Accept $1 y$ for 1 or 2 marks
$\begin{array}{ll} \hline \square & \text { (a) } \\ & \text { (b) } \end{array}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	B1 M1 A1	cao for an attempt to find the gradient eg " 25 " \div " 0.5 " ft their readings from the travel graph; use of speed-time formula eg $25 \div 30$ (ignore units if shown) cao	could be shown in working or on the graph using any acceptable triangle; could be shown by multiples of $25,0.5$ or multiples of ft figures
■	18	P1 P1 A1	for process to solve $x-1=2$, eg. $x=2+1(=3)$ or for $2 x=6$ for 2×9 cao	Can award mark for 3-1=2
■	$3 \leq p<1$	$\begin{aligned} & \mathrm{C} 2 \\ & \text { (C1 } \end{aligned}$	for $-3 \leq p<1$ or $p \geq-3, p<1$ oe for $-3 \leq p$ or for $p<1$ or for $-3<p \leq 1$ oe)	Accept use of a letter other than p.
■ (a) (b)	$\begin{gathered} p^{10} \\ 2 x^{4} y^{2} \end{gathered}$	B1 M1 A1	cao for any two of $12 \div 6(=2), x^{7-3}\left(=x^{4}\right), y^{3-1}\left(=y^{2}\right)$ in a product or written as a fraction with complete and correct cancelling of at least two terms cao	

Question	Answer	Mark	Mark scheme	Additional guidance
■ (a) (b) (c)	4 8 3	B1 B1 M1 A1	```cao cao for a correct first step eg subtracting 2 from both sides or dividing all terms by } cao```	Division by 6 must be ALL terms
T (a) (b)	$\begin{aligned} & 10 m-15 \\ & 3(n+4) \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	for $10 m-15$ oe for $3(n+4)$ oe	Accept any reversing of order in the expression Accept any answer in reverse order
T	8.5	P1 P1 P1 A1	for process to use the area of $P Q R S$ to find the length of $P Q$, eg $10 y=45$ or $45 \div 10(=4.5)$ for process to use the perimeter of $A B C D$, eg $2 x+2 \times " 4.5 "=26$ or $26-2 \times " 4.5 "(=17)$ or $26 \div 2(=13)$ for process to use length of $B C$ to find length of $A B$, eg solves $2 x+2 \times$ " 4.5 " $=26$ or $(26-2 \times$ " 4.5 ") $\div 2$ or " 13 " - " 4.5 " for 8.5 or $8 \frac{1}{2}$	Sets up equation for area Uses perimeter of $A B C D$ Accept $\frac{17}{2}$
■ (a) (b)	$\begin{gathered} 1,-4 \\ -1 \text { and } 3 \end{gathered}$	B1 B2 (B1	cao for both correct answers for one correct solution or $(x+1)(x-3)$ or $(-1,3)$)	Brackets are given on the answer line, ignore any extra brackets seen

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b) (c)	$-2,-1$ Point at $(2,3)$ Line drawn	B1 B1 B1	cao cao cao	Allow without label provided unambiguous; allow if the cross is nearer to $(2,3)$ than other points. Label not required; allow hand-drawn line. Allow any length provided intention is clear.
\square	30	M1 A1	$2 \times 9+3 \times 4$ cao	May be shown in stages but an intention to add 2×9 and 3×4 must be clear
■	10	B1	cao	
(a) (b)	$6 \text { or }-6$ $s=\frac{v^{2}-u^{2}}{2 a}$	M1 A1 M1 A1	for $12^{2}+2 \times-3 \times 18(=36)$ for 6 or -6 , accept ± 6 for subtracting u^{2} from both sides or dividing all terms by $2 a$ as the first step $s=\frac{v^{2}-u^{2}}{2 a} \mathrm{oe}$	Terms may be partially evaluated. Only one value is required for full marks Must see this step carried out, not just the intention shown
\square	$x=4.5, y=-1.5$	M1 M1 A1	correct process to eliminate one variable (condone one arithmetic error) (dep) for substituting found value in one of the equations OR correct process after starting again (condone one arithmetic error) for $x=4.5, y=-1.5 \mathrm{oe}$	Fractions do not need to be in simpleast form

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	$\begin{gathered} 12 t \\ 7 a \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 12 t \\ & 7 a \end{aligned}$	Accept $t 12$ but not $12 \times t$ or $t \times 12$ Accept $a 7$ or $7 \times a$ or $a \times 7$ Partial simplification of $5 a+2 a$ or $8 a-a$ does NOT get the mark
(a) (b) (c)	14 $4 e^{2}+8 e$	M1 A1 B2 (B1 M1 A1	for 4×5 and 3×-2, the substitution may be seen in two separate calculations, eg $4 \times 5(=20)$ and $3 \times-2(=-6)$ cao for $4 e^{2}+8 e$ for $4 e^{2}$ or $8 e$) for a correct first step eg $3 \times m-3 \times 4=21$ oe or $m-4=21 \div 3(=7)$ oe cao	Note: $4 e^{2}+8 e=12 e^{3}$ for example gets B1 only Showing $\div 3$ by each side of equation is sufficient

Question	Working	Answer	Mark	Notes
■		42	B1	cao
T		47	B1	cao
T		$L=5 a+3$	M1 M1 A1	for expression $a-1+a+a+a+a+4$ or $L=$ an expression in a for $5 a+3$ or $L=a+a+a-1+a+a+4$ oe for $L=5 a+3$
(a) (b) i (b) ii (c)		$(6,-2)$ Correct point Yes with reasoning Correct line	B1 B1 B1 B1	cao cao for point marked at $(2,9)$ Yes with correct substitution $4 \times 2+1=9$ or by drawing correct line on diagram for drawing line $x=-2$ cao
D		14:21:42	P1 P1 P1 A1	for 2 out of 3 expressions in one letter eg from $x, x+72 x+14$ or see a set of numbers to show interpretation of the relationships, eg $10,17,34$ (dep) for sum of their 3 expressions $=77$ eg $x+x+7+2 x+14=77$ oe or 2 systematic correct trials including addition for a correct process to isolate their term in x or $x=14$ for ratio 14:21:42 oe

Question	Working		Mark	Notes		
■		Shows reasoning to reach $y=3$	M1	forms equation eg $2 x+6=5 x-9$	$48 \div 3(=16)$	$3(2 x+6)=48 \text { or }$ $3(5 x-9)=48, \text { condone }$ missing bracket
			M1	isolates x and number terms $3 x=15$	forms equation $2 x+6=" 16$ " or $5 x-9=" 16$ "	Isolates x and number terms $6 \mathrm{x}=" 30$ " or $15 x=" 75$ "
			M1	substitutes " 5 " into side length eg $2 \times 5+6(=16)$	isolates x and number terms $2 x=" 10 " \text { or } 5 x=" 25 "$	forms the second equation
			A1	$48 \div 16=3$ or $16 \times 3=48$	shows $x=5$ for both solutions	$x=5$ from 2 different equations.
D		Comment	B1	for correct mathematical comment eg line segments not a curve or should draw freehand or should not use a ruler, or should be a curve		

「 EXPERT
 TUITION

Question	Working	Answer	Mark	Notes	
3 $\square \\| \square 1(1)$ (b)		$\begin{aligned} & \hline 56 e f \\ & 12.5 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { cao } \\ & \text { oe } \end{aligned}$	
(a) (b)		36 80	M1 A1 M1 A1	demonstrates the start of a method that could lead to the answer, eg recognition of square numbers, or use of differences, or diagrams cao demonstrates the start of a method that could lead to the answer, eg repeated addition of 4 , or $20 \times$ 4 ca	
■		$-\frac{1}{2}$	M1 A1	for substitution with operations shown e.g. $1+-3 \times \frac{1}{2}$ or $1-\frac{3}{2}$ or $1 \frac{1}{2}$ or $-1 \frac{1}{2}$ oe	
(b)		$-2,-\frac{1}{2}, 0,1$	M1 A1 B2 (B1)	expands brackets or divides by 4 as a first step oe ca (for the numbers $-2,-1,0,1$ (accept with -3 and/or 2 only), or 4 correct with no incorrect)	
\square		$x^{2}+6 x=1$	M1 M1 A1	writes the area using algebraic terms e.g. $(x+3) \times(x+3)$ or at least two correct area expressions, may be written on the diagram or x given as $\sqrt{10}-3$ expands and includes the given 10 e.g. $x^{2}+3 x+3 x+9=10$; condone one error in the four terms when expanding or $10-3 \sqrt{10}-3 \sqrt{10}+9+6 \sqrt{10}-18(=1)$ condone 1 error in the 6 terms rearranges to give the given equation or shows surd expression simplifies to 1	
■		comparison	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	starts to manipulate expression e.g. $3 y=9 x-6$ or $3 y=9 x-5$ gives equation(s) which can be used to show that the gradients of the two lines are the same e.g. y $=3 x-5 / 3$	

Question	Working	Answer	Notes
T (a) (b)		18 No with reason	M1 Evidence of interpretation of pattern, eg. further diagrams drawn or numerical sequence for numbers of triangles $6,8,10$ etc A1 C1 No with reason eg. No , pattern number 6 will have 7 squares; always one more square than pattern number
■		7	M1 Correct method to isolate terms in x A1
■		$m^{2}+10 m+21$	M1 for at least 3 terms out of a maximum of 4 correct from expansion A1
T		$x=21, y=50$	P1 process to start solving problem eg. form an appropriate equation P1 complete process to isolate terms in x A1 for $x=21$ P1 complete process to find second variable A1 $y=50$

Question	Working	Answer	Notes		
48 (a) (b) (c)		drawing 42 $n+2$	C1 C1 C1 C1 C1	drawing of pattern number 4 shows a process of working towards pattern number 20 cao begins process of stating algebraic expression eg n $n+2$ oe	
49		explanation	M M M C 1	works with volume eg 240000 uses conversion 1 litre $=1000 \mathrm{~cm}^{3}$ uses $8000 \mathrm{eg} \mathrm{vol} \div 8000(=30)$ uses " 30 " eg " 30 " $\times 2.50$ for explanation and 75 stated	begins working back eg $70 \div 2.50(=28)$ uses conversion 11 litre $=1000 \mathrm{~cm}^{3}$ uses 8000 eg " 28 " $\times 8000(=224000)$ works with vol. eg 224000 for explanation with 240000 and 224000
50		$x^{2}+2 x-3$	A1	starts expansion: at least 3 terms correct with signs, or four terms correct ignoring signs for $x^{2}+2 x-3$	
51		$(x+4)(x-4)$	B1	for ($x+4$)(x-4)	
52		$x=7, y=-3$	M A1	for correct process to eliminate one variable (condone one arithmetic error) (dep) for substituting found value in one of the equations or appropriate method after starting again (condone one arithmetic error) for both correct solutions	

Question	Working	Answer	Notes
$53 \quad \text { a }$ b c		$\begin{aligned} & (4,5) \\ & (1,4) \end{aligned}$ Correct line	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$
$54 \quad \text { a }$ b		-2 8	M1 For subtraction of 7 from both sides or division of all terms by 3 as first step of solution cao A1 M1 For substitution $3 \times 6-2 \times 5$ cao
55		$\begin{aligned} & \text { D: } 15-x \\ & \text { P: } \frac{20+x}{2} \end{aligned}$	M1 For writing a correct expression for D or P before sweets are eaten $20-x$ or $20+x$ A1 One correct expression A1 Both correct expressions
$\begin{array}{\|cc\|} \hline 56 & \mathrm{a} \\ & \mathrm{~b} \\ & \mathrm{c} \end{array}$		$y(y+27)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$
$\begin{array}{rr} \hline 57 & \text { (a) } \\ & \text { (b) } \end{array}$		$\begin{aligned} & 72 \\ & 65 \end{aligned}$	B1 cao B1 cao

Question	Answer	Mark	Mark scheme	Additional guidance
58 (a) (b)	$\begin{aligned} & 4 m \\ & 3 p \end{aligned}$	B1 B1	$\begin{aligned} & \text { cao } \\ & \text { cao } \end{aligned}$	
59	15	B1	14 to 16	
$60 \quad \text { (a) }$ (b)	$\begin{aligned} & c^{3} \\ & d^{12} \end{aligned}$	B1 B1	ca ca	
$61 \quad \text { (a) }$ (b)	12 120	M1 A1 M1 A1	for a correct factor tree for either 60 or 84 with no more than one arithmetic error or for listing factors of 60 or 84 , at least 4 correct for either (with no more than 1 incorrect in either list), could be in factor pairs or for the prime factors of $60(2,2,3,5)$ or $84(2,2,3,7)$ for 12 or $2 \times 2 \times 3$ oe SC B1 for answer of 4 or 6 , if M0 scored for a correct factor tree for either 24 or 40 with no more than one arithmetic error or for at least 3 multiples of both 24 and 40 (can include 24 and 40) or for the prime factors of either $24(2,2,2,3)$ or $40(2,2,2,5)$ or for a common multiple from their lists $(\neq 120)$ for 120 or $2 \times 2 \times 2 \times 3 \times 5$ oe	Condone the use of 1 in any factor tree 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 84: $1,2,3,4,6,7,12,14,21,28,42,84$ $2,2,3$ is not enough, it must be a product Condone the use of 1 in any factor tree 24: $24,48,72,96,120, \ldots$ 40: 40, 80, 120, ... For the list not containing 120, accept the first 3 correct multiples or one error in the first 4 multiples
62	80	M1 A1	for a complete method eg $\frac{20}{15} \times 60$ or 20×4 or $20 \div \frac{1}{4}$ cao	

Question	Answer	Mark	Mark scheme	Additional guidance
65	$6 e$	B1		
$66 \quad \text { (a) }$ (b)	12 4	B1 B1	$\begin{aligned} & \text { cao } \\ & \text { cao } \end{aligned}$	
67 (a) (b)	-13 5	M1 A1 M1 A1	for substitution eg 3×5 and 4×-7 or 15 and -28 cao for $38=3 \times 6+4 y$ or $38-18(=20)$ or for a complete method to make y the subject eg $y=\frac{T-3 x}{4}$ cao	$3 \times 5(=15)$ and $4 \times-7(=-28)$ may be seen separately but both must be seen for the award of M1 35 and 4-7 do not get the mark unless multiplication is shown eg $35=15$ is evidence of multiplication and should not be seen as choice $\text { eg } y=(T-3 x) \div 4$
(a) (b)	$\text { 13, (6), } 5,4,-3$ Correct graph	B2 (B1 M1 A1	for all 4 values correct for 2 or 3 correct values) ft (dep on B 1) for plotting at least 4 of the points from their table correctly for a fully correct curve drawn	Accept a freehand curve drawn that is not made of line segments Line sections outside the required range can be ignored.
69	2	B1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
$70 \quad \text { (a) }$ (b)	$-20 \text { or } \div 3$	B1 B1	cao $\text { for } \div 3 \text { or }-20 \text { or } \times \frac{1}{3} \text { or }+-20$	
71 (a) (b)	19 12.4 to 12.8	B1 M1 A1	cao for a complete method, eg attempts to read from the graph at a factor of 80 and scales up to 80 or attempts to read from the graph at two numbers that sum to 80 and finds the sum of their readings or 1 stone $=" 6 " \mathrm{~kg}$ and $80 \div " 6 "$ for an answer in the range 12.4 to 12.8 or ft correct reading from graph	
72 (a) (b)	$T=4 n-5$ $5 m-3 m=2 m$	M1 M1 A1 B1	for $2 n$ or $n-5$ or $T=$ a linear expression in n for $n+2 n+n-5$ oe OR for $T=$ an expression in n with 2 of 3 ages correct eg $T=n+n^{2}+n-5$ for $T=4 n-5$ oe eg $T=n+2 n+n-5$ for $5 m-3 m=2 m$ indicated	Allow variables other than n Each age must be an expression in n

Question	Answer	Mark	Mark scheme	Additional guidance
73	Shown (supported)	M1 A1 M1 C1	for substitution eg $4 \times 110+12$ for 452 (dep M1) for method to find value(s) needed for comparison eg $\frac{" 452 "-442}{442} \times 100$ OR $\frac{5}{100} \times 442$ oe $(=22.1)$ and " 452 " - $442(=10)$ OR $\frac{5}{100} \times 442+442$ oe $(=464.1)$ and " 452 " shown with correct comparable values eg 2.2(6...)(\%) OR 22.1 and 10 OR 452 and 464.1	
$74 \square$ (a) (b)	F D	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	$\begin{aligned} & \text { cao } \\ & \text { cao } \end{aligned}$	
$75 \square$	Shown (supported)	M1 M1 A1	for method to find at least two terms, eg $2 \times 4^{2}-1(=31)$ and $40-3^{2}(=31)$ for generating at least three correct terms of each sequence for generating at least the terms $1,7,17,31,49$ of the first sequence and at least the terms $39,36,31,24,15,4$ of the second sequence	$\begin{array}{llllllllll} 1 & 7 & 17 & 31 & 49 & 71 & 97 & 127 & 161 & 199 \\ 39 & 36 & 31 & 24 & 15 & 4 & -9 & & & \end{array}$

Question	Answer	Mark	Mark scheme	Additional guidance
76	$7 y$	B1	for $7 y$ oe	Accept $7 \times y$ oe Accept a formula, eg. $P=7 y$ but not $y=7 y$
$77 \quad \text { (a) }$ (b) (c)	$\begin{gathered} \hline 7 a b \\ y^{3} \\ \frac{e}{f} \end{gathered}$	B1 B1 M1 A1	for $7 a b$ cao for a correct first step, eg. numerator of $e^{3} \times f$ or denominator of $e^{2} \times f^{2}$ OR $e \div f$ or $e \times f^{-1}$ OR relevant crossings out for all the e 's and all the f 's $\text { for } \frac{e}{f} \text { or } e f^{-1}$	
78	23	M1 A1	for substitution eg. 7×5 and 3×-4 or $7(5)+3(-4)$ cao	$7 \times 5(=35)$ and $3 \times-4(=-12)$ may be seen separately but both must be seen for the award of M1
$79 \quad \text { (a) }$ (b)	$n>2$ $\begin{array}{ll} \mathrm{O} \\ -5 & 1 \end{array}$	M1 A1 M1 M1 A1	for a method to isolate terms in n in any inequality or equation eg. $14 n-11 n>6$ or $n=2$ cao for $-2-3<x \leq 4-3 \quad(-5<x \leq 1)$ for drawing a line from -5 to 1 or (indep) for an open circle at either -2 or -5 or (indep) for a closed circle at 4 or 1 cao	Ignore incorrect inequality sign and accept "=" sign A circle around -5 and 1 implies M1 A line from -5 to 1 implies M2 if no working shown

「 EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
82 (a) (b)	$4 m$ $8 n p$	B1 B1	$\begin{aligned} & \text { cao } \\ & \text { cao } \end{aligned}$	
83 (a)	Explanation	C2 (C1	full explanation eg explains that both 19 and 22 are terms in the sequence or solves $3 n+4=21$ to find $n=17 / 3$ oe Acceptable examples 19 is in the sequence and $19+3$ is more than 21 The 5th term is 19 and the 6th term is 22 $7,10,13,16,19,22$ 17 is not in the 3 times table Because 21 is in the 3 times table and the sequence is plus 4 for substituting to find a term in the sequence or forming an equation eg $3 n+4=21$ or for a partial explanation or an explanation with some ambiguity) Acceptable examples The closest number is 22 $3 \times 6=18,18+4$ is higher than 21 19 is in the sequence so 21 can't be in the sequence. Starting at 7 and adding 3 each time won't lead to 21 It's the 3 times table plus 4 21 is in the 3 times table Not acceptable examples Adding 4 each time won't lead to 21 It doesn't end up at 21, it goes past it	$7,10,13,16,19,22, \ldots$

Question	Answer	Mark	Mark scheme	Additional guidance
83 (b)	terms given explanation	$\begin{aligned} & \text { B1 } \\ & \text { C1 } \end{aligned}$	states two terms eg 7,11 or 8,16 or 5,7 explanation eg add one more each time, doubling Acceptable examples Add 3 and add 4 The difference goes up by one each time It doubles $+1,+2,+1,+2$ or indicates $+1,+2$ repeats itself Not acceptable examples It goes up by 1 each time It doubles so $2 n$ $+1,+2,+3,+4 \text { so } 2 n+1$	May be indicated on the sequence with no contradictory statement made
84 (a) (b)	$\begin{gathered} 38 \\ 6 \end{gathered}$	B1 M1 A1	cao starts process to find input using inverse operations eg $28+2$ or sight of $+2 \div 5$ or by forming an equation eg $x \times 5-2=28$ cao	$+2 \div 5$ could be seen in a flow diagram
85 (a) (b)	8 $3 b(3-b)$	M1 A1 M1 A1	for a correct first step eg $3 x-12=12$ or $3(x-4) \div 3=12 \div 3$ cao for $3\left(3 b-b^{2}\right)$ or $b(9-3 b)$ or $3 b$ (two term linear expression) cao	

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance

\hline 86 \& 7 \& P1

P1

A1 \& \begin{tabular}{l}
process to use gradient eg $y=3 x+\mathrm{c}$ or $\mathrm{c}=-6$ or $\frac{15-9}{d-5}$ or $(15-9) \div 3$ or $(6,12)$

(dep) full process to rearrange equation formed to isolate d eg rearrangement of $15=3 d-6$ or $3=\frac{15-9}{d-5}$ or for $5+\frac{15-9}{3}$ cao

 \&

Condone use of a letter other than d, for d

Must show processes to get as far as $d=$ Award P2 for an answer of $(7,15)$
\end{tabular}

\hline (b) \& $$
10 x^{2}-11 x-6
$$

\[
(x+1)(x+3)

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 | \& | for 3 out of no more than 4 terms correct with correct signs or 4 correct terms ignoring signs |
| :--- |
| cao |
| for $(x \pm 1)(x \pm 3)$ or for $(x+a)(x+b)$ where either $a b=3$ or $a+b=4$ cao | \& | $10 x^{2}-15 x+4 x-6$ |
| :--- |
| NB: $10 x^{2}-11 x$ and $-11 x-6$ are indicative of 3 correct terms. |

\hline
\end{tabular}

「 EXPERT

Question		Answer	Mark	Mark scheme	Additional guidance
88	(a) (b) (c)	$\begin{aligned} & 17 \\ & 12 \\ & 5.5 \end{aligned}$	B1 B1 B1	cao cao Accept $\frac{11}{2}, 5 \frac{1}{2}$ oe	
89	(a (b) (c)	$\begin{gathered} m^{7} \\ 125 n^{3} p^{9} \\ \\ 8 q^{6} r^{3} \end{gathered}$	B1 B2 (B1 B2 (B1	cao cao for 2 of 3 terms correct in a single product) cao for 2 of 3 terms correct in a single product)	Allow multiplication signs $125 n^{3} p^{x}$ or $125 n^{x} p^{9}$ where $x \neq 0$ or $a n^{3} p^{9}$ where a is a number Allow multiplication signs $8 q^{6} r^{x}$ or $8 q^{x} r^{3}$ where $x \neq 0$ or $a q^{6} r^{3}$ where a is a number
90		$y=3 x-6$	M1 M1 A1	for a correct method to find the gradient of the line, or $m=3$ OR identifies -6 as the intercept in words or in a partial equation OR $y-b=m(x-a)$ where $m \neq 3$ and (a, b) is a correct coordinate for $y=3 x+c$ or $(\mathrm{L}=) 3 x-6$ or $y=" 3 " x-6$ OR $y-y_{1}=3\left(x-x_{1}\right)$ or $y-b=" 3 "(x-a)$ where (a, b) is a correct coordinate accept $y=3 x+-6$ oe	Just ringing -6 is insufficient Award of this mark implies the first M1 c must be seen either as a letter or a number

Question		Answer	Mark	Mark scheme	Additional guidance
91	(a)	0, -4, -6, -4, 0	$\begin{aligned} & \mathrm{B} 2 \\ & \text { (B1 } \end{aligned}$	fully correct figures At least 2 correct figures)	
	(b)	Graph	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	(dep B1) for at least 5 points correctly plotted ft from (a) fully correct graph	Must be a curve
	(c)	2.6 and -1.6	M1	for $y=-2$ drawn or intersections with $y=-2$ or $\mathrm{y}=x^{2}-x-4$ drawn or 1 correct value	If answers stated as coordinates, award M1 for both coordinates and M0 for one coordinate
			A1	ft a quadratic graph or for answers in the range 2.5 to 2.7 and -1.5 to -1.7	

Question	Working	Answer	Mark	Notes
92 (a) (b) (c)		$\begin{gathered} 15 f g \\ t^{2} \\ 4 n \end{gathered}$	B1 B1 B1	cao cao cao
93 (a) (b)		Example Reasoning	M1 C1 C1 C1	Chooses two odd numbers and substitutes into $2(a+b)$ oe Calculates $2(a+b)$ correctly to arrive at a number that is a multiple of 4 States $a+b$ is even or $2 a$ is even or $2 b$ is even Completes argument.
94		$1 \frac{1}{2}$	M1 M1 A1	for correct expansion of the bracket or dividing all terms by 3 as a first step eg $3 x-3$ or $(5 x-6) / 3=3(x-1) / 3$ for isolating terms in x on one side of an equation eg $5 x-6-3 x=-3$ or both constants on one side of an equation, eg $5 x=3 x-3+6$, ft $5 x-6=3 x-1$ for $1 \frac{1}{2}$ oe
95 (a) (b) (c)		6 5 Shown	B1 B1 M1 $\mathrm{C} 1$	cao cao for writing 100^{a} or 1000^{b} as a power of $10\left(=10^{2 a}\right.$ or $\left.10^{3 b}\right)$ or $10^{2 a+3 b}$ or $100=10^{2}$ and $1000=10^{3}$ for complete chain of reasoning leading to conclusion

Question	Working	Answer	Mark	Notes
■ (a)	$6 x^{2}-4 x+3 x-2$	± 6	M1	for one value (6 or -6) or $\sqrt{ } 36$ or an embedded answer eg $2 \times 6^{2}=72$
			A1	± 6
(b)		$6 x^{2}-x-2$	M1	for at least 3 terms correct out of a maximum of 4 from expansion, or 4 terms correct ignoring signs.
			A1	cao
(c)		$(x+3)^{2}$	B1	for $(x+3)^{2}$ or $(x+3)(x+3)$

T EXPERT

Question	Working	Answer	Mark	Notes
97 (a) (b) (c)		$\begin{gathered} 3 p \\ 2 m^{3} \\ 10-4 c+6 d \end{gathered}$	B1 B1 M1 A1	cao cao for $-4 c$ or $6 d$ (accept $+-4 c$) for $10-4 c+6 d$
98 (a) (b)		29 186 to 195	B1 M1 M1 A1	answer in the range 29 to 30 for changing 6 ft 3 inches to inches e.g. $6 \times 12+3(=75)$ or changing 1 ft to 30 cm for a method to convert to cm , e.g. $25 \rightarrow 63$ then $\times 3,6 \times 30+\frac{1}{4} \times 30$ for answer in the range 186 to 195 or ft from correct use of graph
99		0.0733(03...)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for correct numerator (3.4496...........) or correct denominator (47.0596) or 0.073 for 0.0733(03.....)
100 (a) (b)		$\begin{gathered} \hline \hline 5(1-2 m) \\ 2 a b(a+3 b) \end{gathered}$	B1 M1 A1	cao for $2 a\left(a b+3 b^{2}\right)$ or $2 b\left(a^{2}+3 a b\right)$ or $a b(2 a+6 b)$ or $2 a b$ (2 term expression with terms in a or b or $a b$, can include constants), eg $2 a b(1 a+3 a b), 2 a b(1+3 b)$ for $2 a b(a+3 b)$

T EXPERT

Question	Working	Answer	Mark	Notes
101		$x=-8, x=3$	M1 M1 A1	for factorisation or for substitution into quadratic formula $(x \pm a)(x \pm b)$ where product of a and $b=24$, eg $(x \pm 4)(x \pm 6)$ or difference of a and $b=5$, eg $(x \pm 2)(x \pm 7)$ $\frac{-5 \pm \sqrt{5^{2}-4 \times 1 \times-24}}{2}$ oe (condone one sign error) for $(x+8)(x-3)$ or for $\frac{-5 \pm \sqrt{121}}{2}$ oe cao
$102 \quad \text { (a) }$ (b)		$5 n-2$ No (supported)	$\begin{gathered} \mathrm{B} 2 \\ {[\mathrm{~B} 1} \\ \mathrm{C} 1 \end{gathered}$	```for \(5 n-2\) oe for \(5 n+k, k\) may be 0] for No with evidence, e.g. \(3 \times 4^{2}=48, \sqrt{48}\) is not an integer, he has multiplied by 3 first but should have squared first```

Γ EXPERT

Question	Working	Answer	Notes
103 (a) (b)		$\begin{array}{r} p+c \\ \frac{14}{3} \end{array}$	B1 M1 adds 5 to both sides of equation A1 oe
104		11	M1 process of substitution demonstrated eg $5 \times 3+2 \times-2$ A1 \quad cao
105 (a) (b)		$\begin{gathered} 3(f+3) \\ (x-5)(x+3) \end{gathered}$	B1 cao M1 for $(x \pm 5)(x \pm 3)$ A1 cao
106		$p=q r-s r$	M1 for multiplying all 3 terms by r or isolating p / r term A1 oe
(a) (b)		$4 n+2$ No (supported)	M1 start to deduce nth term from information given eg $4 n+k$ where $k \neq 2$ A1 cao M1 start to method that could lead to a deduction eg uses inverse operations C1 for a convincing argument eg 34 is 107 so NO; (108-5) an integer

\begin{tabular}{|c|c|c|c|c|c|}
\hline Question \& Working \& Answer \& \multicolumn{3}{|c|}{Notes} \\
\hline \begin{tabular}{l}
108 (a) \\
(b) \\
(c)
\end{tabular} \& \& \[
\begin{gathered}
6 f \\
16 m n \\
2 t^{2}
\end{gathered}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
B1
\end{tabular} \& cao \& \\
\hline \begin{tabular}{l}
109 (a) \\
(b) \\
(c)
\end{tabular} \& \& \[
\begin{gathered}
(0,-1) \\
\times \begin{array}{c}
\text { marked at } \\
(3,0) \\
(-0.5,0.5)
\end{array} \\
\hline
\end{gathered}
\] \& B1
B1
B1 \& \& \\
\hline \begin{tabular}{l}
\(110 \square\) (a) \\
(b) \\
(c)
\end{tabular} \& \& \begin{tabular}{l}
1.5 \\
-3 \\
\(m^{6}\)
\end{tabular} \& M1
A1
M1

A1
A1

B1 \& | for rearranging, eg $11-5=4 c$ |
| :--- |
| 1.5 oe |
| for a first step of either dividing both sides by 5 , eg the bracket, |
| eg $5 \times e+5 \times 7=20$ |
| cao |
| cao | \& $\frac{5(e+7)}{5}=\frac{20}{5}$ or for expanding

\hline 111 \& \& $t=\frac{w-11}{3}$ \& M1
A1 \& for $3 t=w-11$ or $\frac{w}{3}=\frac{3 t}{3}+\frac{11}{3}$ for $t=\frac{w-11}{3}$ oe \&

\hline
\end{tabular}

「 EXPERT

Question	Working	Answer	Notes	
112] (a)		6.4-6.6	B1	for 6.4-6.6
(b)		9.8	B1	for 9.75-9.85
(c)		5, 9	B1	cao
113] (a)		rule stated	C1	for rule stated, eg number doubles
(b)		32	B1	cao
(c)		22, 29	B1	cao
114】 (a)		$4 x+6 y$	$\begin{array}{\|l\|} \hline \mathrm{M} 1 \\ \mathrm{~A} 1 \end{array}$	for $4 x$ or $6 y$ for $4 x+6 y$ or $2(2 x+3 y)$
(b)		$5(2 x-3)$	B1	cao
(c)		4	M1 A1	for method to isolate terms in p on one side and constants on the other side cao
115 \square (a)		$13 y-1$	$\begin{array}{\|l} \hline \mathrm{M} 1 \\ \mathrm{~A} 1 \end{array}$	for expansion of one bracket for full simplification
(b)		$35 u^{3} w^{7}$	$\begin{array}{\|l\|} \hline \mathrm{B} 1 \\ \mathrm{D} 1 \end{array}$	for 2 of $35, u^{3}$ and w^{7} correct cao

T EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
116 (a) (b)	$\begin{gathered} 4 a b \\ 3 x+8 \end{gathered}$	B1 M1 A1	for method to collect terms eg $3 x$ or 8 for $3 x+8$	May be seen in working. Accept if no ambiguity.
117 (a) (b) (c) (d)	$\begin{gathered} y^{2}+5 y \\ 2(2 a-3) \\ 2.9 \end{gathered}$ $20 e^{3} f^{4}$	B1 B1 M1 M1 A1 M1 A1	cao cao for a correct first stage eg. expanding the brackets, $2 \times 5 x-2 \times 4(=10 x-8)$ or division of both sides by 2 , eg $\frac{2(5 x-4)}{2}=\frac{21}{2}$ for isolating terms in x eg $10 x=21+8$ oe for any two of $4 \times 5(=20), e^{2+1}\left(=e^{3}\right), f^{1+3}\left(=f^{4}\right)$ in a product or written as individual terms cao	Do not award if there is contradiction
118	12	P1 P1 A1	for a process to find the fifth term eg $3 a+5 a(=8 a)$ for setting up the equation eg $a+2 a+3 a+5 a+[8 a]=228$ cao	[8a] allow use of what is clearly indicated as the missing term $\begin{aligned} & \frac{228}{19} \text { or } \frac{228}{1+2+3+5+8} \text { scores P1 P1 } \\ & \frac{228}{1+2+3+5+[8]} \text { scores P0 P1 } \end{aligned}$
119	Sketch	M1 A1	correct shape in one of the required quadrants or correct graph where the lines touch the axes fully correct shape	Lines do not need to extend to the ends of the axes if the intention is clear

Qu DExample

Question	Answer	Mark	Mark scheme	Additional guidance
$120 \square$ (a)(i) (ii) (b)	$\begin{gathered} 20,15 \\ 11 \\ 39 \end{gathered}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	cao cao cao	Working may be seen near the sequence Working may be seen near the sequence
(a) (b)	$5 x+y$	M1 A1 M1 A1	for method to collect terms, eg $5 x$ or y cao for subtracting 7 from both sides or dividing each term by 5 as a first step, eg $5 p$ $\begin{aligned} & =15 \text { or } 5 p=22-7 \text { or } \frac{5 p}{5}+\frac{7}{5}=\frac{22}{5} \\ & \text { cao } \end{aligned}$	May be seen in working. Accept if no ambiguity. Accept $1 y$. Must be carried out, not just intention. Division by 5 must be all terms.
(b) (c)	n^{8} $c d^{3}$ $x>\frac{14}{5}$	B1 M1 A1 M1 A1	cao for partial simplification, eg c or d^{3} for $c d^{3}$ for $5 x>14$ or $5 x=14$ or critical value, $\frac{14}{5}$ oe $x>\frac{14}{5}$ or $x>2 \frac{4}{5}$ or $x>2.8$	May be seen as simplification in original fraction Accept $c^{1} d^{3}$ Must see carried out correctly, ie at least $5 x>7 \times 2$ not just intention seen. Allow other signs for this mark.
$123 \square \text { (a) }$ (b)	$\begin{gathered} -2,4 \\ 0.55 \text { to } 0.65, \\ 3.35 \text { to } 3.45 \end{gathered}$	B1 M1 A1	cao for correct method, eg marking intercepts with x-axis or one correct answer or both solutions given as a coordinate eg $(0.6,3.4)$ or $(0.6,0)(3.4,0)$ for answers in the ranges 0.55 to 0.65 and 3.35 to 3.45	If answers are stated as coordinates, award M1 for both coordinates and M0 for one coordinate. With no extras

Question	Answer	Mark	Mark scheme	Additional guidance
124	35	M1 A1	for $4 \times 8(=32)$ cao	Award this mark if used ambiguously eg $4 \times 8+3=4 \times 11$ as long as 4×8 is stated
125	21, 28	B2 (B1	both correct one correct in the correct position or for $15+6(=a)$ or $a+7(=b)$ where $a \neq 21$ and $b \neq 28$)	May be written alongside the given sequence but if contradiction accept the answer line. If both correct, accept in either order. May be seen as " +6 " next to the sequence
126 (a) (b)	$-10,-6,2,6$ Graph drawn	B2 (B1 M1 A1	for 4 values correct $-10,-6,(-2), 2,6,(10)$ for 2 or 3 values correct) (ft from (a) if B1 awarded) for at least 5 points correctly plotted. correct graph drawn from $x=-1$ to 4	
127	17	M1 A1	for correctly expanding the bracket, as part of an equation to get $4 x-24=44$ or for dividing both sides of the equation by 4 as a first step, eg $\frac{4(x-6)}{4}=\frac{44}{4}$ oe cao	Award M1 for an embedded value of 17 if not identified as the answer
	$x^{2}-4 x-45$ $3 x(3 x+2)$	M1 A1 B2 (B1	for 3 of 4 terms correct or 4 terms correct ignoring signs cao for $3 x(3 x+2)$ for $3\left(3 x^{2}+2 x\right)$ or $x(9 x+6)$ or $3 x(a x+b)$ where a and b are integers or $(3 x+2)$ as a factor)	3 terms correct can be implied, eg $x^{2}-4 x+c$

Question	Answer	Mark	Mark scheme	Additional guidance
129	$11 e+5 f$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	for either $11 e$ or $5 f$ for $11 e+5 f$	
$130 \quad \text { (a) }$ (b)	example No with reason	C1 C1	example given eg 40, 80, etc. for No with reason Acceptable examples 80 and 88 are both in the sequence 80 is in the sequence and 85 is 5 more $24,32, \ldots . .80,88, \ldots$. 85 is not in the 8 times table 85 is an odd number $8 n+16=85$ so n is not a whole number. Not acceptable examples adding 8 each time will not lead to 85 (insufficient) it goes past 85 Yes	No can be implied from their statement
131 (a) (b)	330 9	M1 A1 M1 A1	for $4 \times 70+50$ oe cao for use of inverse operations eg (680-50) $\div 70$ OR rearranges an equation to solve eg $70 x+50=680$ rearranged to isolate x term. OR ft (a) eg $((680-$ " 330 ") $\div 70)+4$ cao or ft their (a)	May be seen as sum of four 70s and a 50 $n \times(70+50)$ or ambiguous working gets 0 marks Need not have brackets; can be written in an incorrect order if the intention is clear A correct but embedded answer gets 1 mark

Question	Answer	Mark	Mark scheme	Additional guidance	
$\mathbf{1 3 2}$	$x=\frac{y-4}{2}$	M1	for correct first step to rearrange eg $y-4=2 x+4-4$ or $\frac{y}{2}=\frac{2 x+4}{2}$ or ambiguously shown eg $x=y-4 \div 2$ or answer given as $\frac{y-4}{2}$ oe	A1	May be seen in different equivalent forms but must be carried out, not just intention seen. Could be shown as a flow diagram but must have correct inverse operations
$\mathbf{1 3 3}$	$x=1, y=-2$	M1	for a correct method to eliminate either x or y or method leading to substitution (condone one arithmetic error)		
M1	(dep M1) for substituting found value in one of the equations OR correct method after starting again (condone one arithmetic error)				
A1					

Question	Answer	Mark	Mark scheme	Additional guidance
134 (a)	Full working seen	M1	for an initial step with the expressions eg doubling $2 x+1$ or $x+2$ or halving $4 x$ or for identifying $C D$ as $x+2$ or for identifying $D E$ as $2 x+1$	May be seen in working or on diagram
		M1	for an expression for the total perimeter, eg $4 x+2 \times(2 x+1)+2 \times(x+2)$	
		C1	for full simplification and equating to 18	
(b)	1.2	M1	for isolating terms in x can ft an equation stated in (a) provided in form $a x+b=c$	$10 x=18-6$
		A1	for 1.2 oe	Accept $\frac{12}{10}$ or $\frac{6}{5}$

Question	Answer	Mark	Mark scheme	Additional guidance
135	Inequality shown	B2	for fully correct solution with all three aspects with no ambiguity Aspect 1: circle at 4 Aspect 2: circle not shaded Aspect 3: arrow pointing left or line extending beyond -5 , starting from their circle	Circling the number 4 alone scores B0 Aspect 1 and Aspect 2 must relate to the same circle.
		(B1	for any two aspects)	
	4,5,6,7	B2	for all four numbers in any order	
		(B1	for 2 or 3 correct values with no errors or 4 correct values with one extra)	
	$x \geq 6$	M1	for a correct intention to subtract 5 from both sides or a correct intention to subtract x from both sides	Can work with an equation for both M marks
		M1	for a full method to solve the inequality or showing a critical value of 6	Award 2 marks for an answer of x ? 6 where ? is an = or any incorrect inequality symbol, or for an answer shown as just 6.
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b) (c)	$2,-4,2,8$ Graph $-2.6 \text { or } 1.6$	B2 (B1 M1 A1 B1	all 4 values correct for 2 or 3 correct values) (dep B1) for at least 5 points plotted correctly ft from part a for a fully correct curve drawn for 1 correct value, ft a non linear graph	Accept freehand curves drawn that are not line segments; there must be some attempt to draw the minimum point below $y=-4$. Award for -2.6 or 1.6 or both values but do not award the mark if a correct value is given with an incorrect value. Accept 1.56 or -2.56 Note for ft to be applied the graph may be joined by line segments.
137	$6 n-1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for $6 n+k$, where $k \neq-1$ or missing oe	Accept a different variable for M1 only Note $n=6 n-1$ gets M1 only

「 EXPERT
 TUITION

Question	Answer	Mark	Mark scheme	Additional guidance
(a)(i) (ii) (b)	30 Explanation 65	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{C} 1 \\ & \\ & \mathrm{~B} 1 \end{aligned}$	cao for explanation, eg increase by 7 , add 7 , states $7 n-5$ cao	
ШШ	D, F, A	$\begin{aligned} & \mathrm{C} 2 \\ & (\mathrm{C} 1 \end{aligned}$	for all 3 correct for 1 or 2 correct)	
\square	6	P1 P1 A1	for a process to set up an equation in x, eg $\frac{1}{2} \times 3 x \times 3 x=162$ for a process to simplify to x^{2} eg $x^{2}=162 \times 2 \div 9$ or $x^{2}=36$ cao	Must be a complete equation Can ft their equation if a quadratic
\square	$9 p+13$	M1 A1	for method to expand one bracket, eg $5 \times p+5 \times 3(=5 p+15)$ or $2 \times 1-2 \times 2 p(=2-4 p)$ or $-2 \times 1-2 \times-2 p(=-2+4 p)$ cao	If an attempt is made to multiply by -2 in the second brackets then it must be done consistently.
Ш1]	3.8	M1 M1 A1	for a correct first step, eg $5-x=2(2 x-7)$ or $5-x=4 x-14$ or $\frac{5}{2}-\frac{x}{2}=2 x-7$ (dep) for isolating terms in x $\operatorname{eg} 4 x+x=14+5 \text { or }-\frac{x}{2}-2 x=-7-\frac{5}{2}$ oe	Method must show LHS $\times 2$ and both terms on RHS $\times 2$ or $5-x$ and both terms on RHS $\times 2$ eg $-4 x$ both sides with -5 both sides or $+x$ both sides with +14 both sides Accept $\frac{19}{5}, 3 \frac{4}{5}$ oe but not $\frac{-19}{-5}$ oe

Question	Answer	Mark	Mark scheme	Additional guidance
\square	$g=2 T^{2}-6$	M1	for $T^{2}=\frac{g+6}{2}$ or $\sqrt{2} \times T=\sqrt{g+6}$	
		M1	(dep) for $T^{2} \times 2=g+6$ or $(\sqrt{2} \times T)^{2}=g+6$ oe	Can only award this mark if the first M mark has been awarded.
		A1	for $g=2 T^{2}-6$ oe	

Question	Working	Answer	Mark	Notes
W		$2 y$	B1	for $2 y$
W (a) (b) (c)		$\begin{array}{cc} (-2) & -\mathbf{1 . 5}-\mathbf{1} \\ -\mathbf{0 . 5} & (0) 0.5 \end{array}$ Correct line 2.6	B2 [B1 M1 A1 B1	for a fully correct table for 2 or 3 correct entries] for correctly plotting at least 5 of their points (provided B1 scored in part (a)) or for a straight line with gradient 0.5 or for a straight line through $(0,-1)$ with a positive gradient for a correct line between $x=-2$ and $x=3$ for answer in the range 2.5 to 2.7 or ft a single straight line with positive gradient
$\begin{array}{ll} \hline \mathrm{W} & \text { (a) } \\ & \text { (b) } \end{array}$		$4(m+3)$ term, expression	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	for $4(m+3)$ or $2(2 m+6)$ for 'term' in the $1^{\text {st }}$ space for 'expression' in the $2^{\text {nd }}$ space
W (a) (b)		$3 n+1$ No (supported)	M1 A1 C1 C1	for a method to deduce the nth term, eg. $3 n+k$, where k is an integer or k is omitted or for $n=3 n+1$ for $3 n+1$ oe (accept n replaced by another letter) for using (their expression in (a)) $=90$ or shows that 88 or 91 is in the sequence for an answer of "No" and a convincing argument eg. pattern number 30 has 91 counters or $(90-1) \div 3(=29.66 \ldots)$ or shows that the next term after 88 is 91 Note: no ft from (a)
W		$x=1.5, y=3.5$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	for correct method to eliminate one variable (condone one arithmetic error) (dep) for substituting found value in one of the equations or correct method after starting again (condone one arithmetic error) for both $x=1.5$ and $y=3.5$

Question	Working	Answer	Mark	Notes
[1]		$12 p+18 b$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 12 p \text { or } 18 b \text { or } p+b \\ & 12 p+18 b \end{aligned}$
[1] (a) (b)		$v=\frac{T-3}{4}$	M1 A1 M1 A1	substitutes $v=2$ eg $4 \times 2+3$ or $8+3$ cao correct first step to rearrange by isolating $4 v$ or dividing each term by 4 , eg $T-3=4 v$ fully correct answer
TI		$\begin{aligned} & x=-\frac{2}{3} \\ & y=-2 \end{aligned}$	M1 M1 A1	for a method to eliminate one variable (condone one arithmetic error) (dep) for substituting found value in one of the equations or appropriate method after starting again (condone one arithmetic error) $x=-\frac{2}{3} \text { oe and } y=-2$
W (a) (b)		$12,4,2,1.2,1$ Correct curve	B2 (B1) M1 A1	for fully correct table (allow fractions or decimals) for 3 or 4 of 12, 4, 2, 1.2, 1 ft (dep on B1 in (a)) for plotting at least 6 points from their table correctly for a fully correct curve

Question	Working	Answer	Notes
\square (a) (b)		$\begin{gathered} 7 x \\ 8 y^{2} \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
(a) (b) (c)	$\begin{aligned} & 11+4=15 \\ & 15 \div 3=5 \end{aligned}$in 0 1 2 3 4 out -4 -1 2 5 8	8 5 2	B1 M1 Start of method A1 M1 For complete method that leads to answer e.g table of values or x $=3 x-4$ C1 For 2 or for statement that the equation has a unique solution
(a) (b) (c)	$\begin{aligned} & 8,13,21, \\ & a, b, a+b, a+2 b, 2 a+3 b \\ & 3 a+5 b=29 \\ & a+b=7 \\ & 3 a+3 b=21 \\ & b=4, a=3 \end{aligned}$	$\begin{aligned} a & =3 \\ b & =4 \end{aligned}$	B1 cao M1 Method to show by adding pairs of successive terms C1 P1 Process to set up two equations P1 Process to solve equations A1

Question	Working	Answer	Notes
(a) (b) (c)		5 12 d^{5}	B1 cao B1 cao B1
प]		$\begin{aligned} & \hline 38 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { B1 cao } \\ & \text { P1 }(47-2) \div 3 \\ & \text { A1 cao } \end{aligned}$
Ш-1		-4 and -10	M1 for repeated subtraction of 6 oe A1-4 A1 - 10
D]		$y=2 x+1$	M1 for a complete method to find the gradient M1 for a method to find the c in $y=\mathrm{m} x+\mathrm{c}$ A1
-		$(x-1)(x+4)$	M1 $(x \pm 1)(x \pm 4)$ A1 $(x-1)(x+4)$ oe
Ш10		A and D	C 1 in any order

T EXPERT

167a

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
171 (a) \\
(b) \\
(c) \\
(c)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
15 \\
Response
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
2
\end{tabular} \& \begin{tabular}{l}
B1 cao \\
B1 cao \\
B1 cao \\
B1 for "divide 45 by 3 " or "divide 30 by 2 " or "a third of the squares are grey" oe
\end{tabular} \\
\hline \begin{tabular}{l}
172 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \& \[
\begin{gathered}
3 h \\
3 p r \\
2 x+7 y \\
22
\end{gathered}
\] \& \begin{tabular}{l}
1 \\
1 \\
2 \\
2
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 for \(2 x\) or \(7 y\) \\
A1 for \(2 x+7 y\) \\
M1 for correct substitution e.g. \(2 \times 5+4 \times 3\) \\
A1 cao
\end{tabular} \\
\hline \begin{tabular}{l}
173 (a) \\
(b) \\
(c)
\end{tabular} \& \& 30 minutes or \(1 / 2\) hour 4 530 pm \& \begin{tabular}{l}
1 \\
1 \\
1
\end{tabular} \& \begin{tabular}{l}
B1 for 30 minutes or \(1 / 2\) hour \\
B1 cao \\
B1 for \(530(\mathrm{pm})\) or 1730
\end{tabular} \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& Diagram
\[
x \geqslant 5
\] \& 2

2 \& | B2 for fully correct solution with all three aspects with no ambiguity |
| :--- |
| Aspect 1: circle at 3 |
| Aspect 2: circle not shaded |
| Aspect 3: arrow pointing left indicating extension beyond -4 or line extending beyond -4 |
| (B1 for any two aspects) |
| M1 for intention to add 7 to both sides (of inequality or equation) or to divide all 3 terms by 4 as a first step, or $(x=) 5$ |
| A1 for $x \geqslant 5$ oe |

\hline
\end{tabular}

Question		Working	Answer	Mark	Notes
175	(a) (b) (c)		15 6 3	1 2	B1 cao B1 cao M1 for intention to subtract 7 from both sides or divide all terms by 2 as a first step A1 cao
*176	(a) (b)		4.5 Comparison (supported)	3	B1 cao M1 for correct use of graph to convert $0^{\circ} \mathrm{F}$ into ${ }^{\circ} \mathrm{C}$ A1 for -17.5 to -18 C1 (dep M1) for correct comparison of relative temperatures with units correct. eg freezer is warmer with $-18^{\circ} \mathrm{C}$ or ft using their converted temperature with correct units. OR M1 for correct use of graph to convert $-10^{\circ} \mathrm{C}$ into ${ }^{\circ} \mathrm{F}$ A1 for 14 C1 (dep M1) for correct comparison of relative temperatures with units correct. eg freezer is warmer with $14^{\circ} \mathrm{F}$ or ft using their converted temperature with correct units.
177	(a) (b)		$\begin{gathered} 3(5) 7(9) \\ 11,13 \end{gathered}$ Graph drawn	2	B2 for 3, 7, 11, 13 (B1 for 2 or 3 correct values) M1 (may ft from (a) if B1 awarded) for at least 5 points correctly plotted A1 for correct graph from $x=0$ to $x=5$

Question		Working	Answer	Mark	Notes
$\mathbf{1 7 8}$	(a)		p^{7}	1	B1 cao
	(b)		$-5 m+10$	2	M1 for $3 m+12$ or $-8 m-2$ or $8 m+2$
(c)			1	A1 for $-5 m+10$ or $10-5 \mathrm{~m}$ or $-5(\mathrm{~m}-2)$ or $5(2-\mathrm{m})$	
			B1 cao		

Question		Working	Answer	Mark	Notes
179	(a) (b) (c)		$\begin{gathered} 3 t \\ 5 e f \\ 4 x+6 y \end{gathered}$	1 1 2	B1 for $3 \times t$ or $3 t$ B1 cao M1 for $4 x$ or $6 y$ A1 cao
180	(a) (b) (c)		$\begin{gathered} 28-29 \\ 8-8.5 \\ 250-259 \end{gathered}$	1 1 3	B1 answer in range 28-29 B1 answer in range $8-8.5$ M1 for use of conversion graph to change 250 km to miles (eg 140 160 miles) or 100 miles to km (eg $150-170 \mathrm{~km}$) M1 (dep) for addition of 100 miles or 250 km in consistent units A1 for answer in the range $250-259$ (miles)
181	(a) (b)		$6 n+5$ no with explanation	2 2	B2 for $6 n+5$ (B1 for $6 n+k$, where k is an integer or absent) M1 for " $6 n+5$ " $=121$ or any other valid method, eg counting on 6 s to get to 119 (or more) A1 for no with complete explanation, eg $6 n=116$ will not give a whole number

Question		Working	Answer	Mark	Notes
182	(a) (b)		11 $+8 \text { or } \times 3$	1 1	B1 cao B1 for +8 or $\times 3$
183	(a *(b)		5.8 to 6 No (supported)	1	B1 for an answer in the range 5.8 to 6 M1 for a correct conversion of any amount (lb to kg or kg to lb) excepting that in (a) M1 (dep M1) for a complete method to convert 100 kg (from 25×4) to lb (to compare with 200 lb) or to convert 50 lb (from $200 \div 4$) to kg (to compare with 25 kg) C1 for "no" and a comparison with a converted weight of 212-228 pounds or $88-94 \mathrm{~kg}$
184	(a (b) (c) (d)		$\begin{gathered} 2,1 \\ -2,3 \end{gathered}$ Point marked Line $x=3$ drawn	1 1 1 1	B1 cao B1 cao B1 for point marked at $(-3,-1)$ B1 for line $x=3$ drawn
185	(a (b)		$\begin{gathered} 9 \\ 50 \end{gathered}$	1 1	$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$
186	(a (b)		-7 36	2 1	M1 for $2 \times 4+3 \times-5$ or $8-15$ oe A1 cao B1 cao

Question		Working	Answer	Mark	Notes
187	(a)		$2(4 x+3)$	1	B1 cao
	(b)		$y(y-2)$	1	B1 cao
	(c)		p^{5}	2	M1 for $\frac{p^{3+4}}{p^{2}}\left(=\frac{p^{7}}{p^{2}}\right)$ or $p^{3-2} \times p^{4}\left(=p^{1} \times p^{4}\right)$
					or $p^{3} \times p^{4-2}\left(=p^{3} \times p^{2}\right)$ A1 cao

Question		Working	Answer	Mark	Notes
188	(a) (b) (c)		$\begin{gathered} 3 m \\ 7 e \\ 15 g \end{gathered}$	1 1 1	B1 cao B1 cao B1 cao
189	(a) (b)		31 $6 x+8 y$	2 2	M1 for $3 \times 5+2 \times 8$ or 15 and 16 A1 cao M1 for $6 x$ or $8 y$ A1 for $6 x+8 y$ oe as final answer
*190			Amsterdam with figures	3	B1 for a correct conversion from miles to km or km to miles eg $8 \mathrm{~km}=5$ miles eg 28 miles $=44 \mathrm{~km}$ M1 for a correct method to convert 280 miles to km or 500 km to miles or $420-460(\mathrm{~km})$ or $300-320$ (miles) C1 (dep on M1) for statement with correct conclusion and correct conversions ($420-460 \mathrm{~km}$ or $300-320$ miles)
*191			No with reason	3	M1 for 17,20 .or +3 or $3 n+2$ M1 for method to show that 34 is not in the sequence eg continue sequence to at least 32 eg attempt to solve $3 n+2=34$ C1 (dep on M2) for statement with conclusion eg No with 32,35 shown eg $n=32 \div 3$ which is not a whole number

Question		Working	Answer	Mark	Notes
$\mathbf{1 9 2}$	(a)		$e(3 e+5)$	1	B1 for $e(3 e+5)$
(b)		4	3	M1 for intention to expand brackets eg $7 k-21$ or division of all terms on RHS by 7 as a first step M1 for correct method to isolate terms in k in an equation A1 cao	
(c)		$a=2 f-1$	2	M1 for a correct first step eg intention to multiply both sides by 2 A1 cao	

Question		Working	Answer	Mark	Notes
193	(a) (b) (c)		19 203 Explanation	1 1 1	B1 cao B1cao B1 for any correct reason, e.g. terms are all odd but 372 is even or use of nth term $4 n-1$ or not 1 less than a multiple of 4
194	(a) (b) (c)		$\begin{gathered} 3 a c \\ p^{3} \\ 8 x-7 y \end{gathered}$	$\begin{aligned} & \hline \hline 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao B1 cao M1 for $8 x$ or $\pm 7 y$ A1 cao
195	(a) (b)(i) (b)(ii)		$\begin{gathered} \hline-7 \\ 10 p \\ 10 p-7 \end{gathered}$	$\overline{2}$ 2	M1 for $3 \times-5(=-15)$ and $4 \times 2(=8)$ A1 cao B1 for $10 p$ oe B1 ft for " $10 p$ " -7 Note " $10 p$ " MUST be an algebraic expression
196	(a) (b)		$\begin{aligned} & 2 m^{2}+6 m \\ & 3 x y(y-2) \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao B2 for $3 x y(y-2)$ (B1 for $3 x\left(y^{2}-2 y\right)$ or $3 y(x y-2 x)$ or $x y(3 y-6)$ or $3 x y$ (a two term algebraic expression))

Question		Working	Answer	Mark	Notes
197			26	2	M1 for correct substitution into expression $4 \times 5+2 \times 3$ A1 cao
198	(a) (b) (c) (d)		$\begin{gathered} \hline 4 b \\ 5 n \\ 3 c d \\ 5 x+6 y \end{gathered}$	1 1 1 2	B1 for $4 b$ oe B1 for $5 n$ cao B1 for $3 c d$ oe algebraic simplified form M1 $5 x$ or $6 y$ A1 cao
199			4	2	M1 for correct order of operations +7 then $\div 3$ A1 cao OR M1 for forming the equation $3 x-7=5$ and showing intention to add 7 to both sides or divide each term by 3 as a first step A1 cao NB Embedded solutions get M1 mark provided the equation or working is complete.
200	(a) (b)		14 5	1 2	B1 cao M1 for intention to subtract 4 from each side or divide each term by 3 as a first step or embedded answer. A1 cao

Question		Working	Answer	Mark	Notes
202	(a)(i) (a)(ii) (b)		$\begin{gathered} (-2,-3) \\ \text { Cross at } \\ (5,2) \\ y=3 \end{gathered}$	2 1	B1 cao B1 professional judgement B1 for correct line (at least 2 cm spanning the y axis) with professional judgement
203	(a)(i (a)(ii) (b)			2 1	B1 cao B1 add 5 or states rule is $5 n-3$ (may be exemplified on diagram) B1 for correct reason Eg all numbers in sequence end in 2 or 7 or continuation of sequence to beyond 45 with statement or 42,47 with statement
204	(a) (b) (c)		6 21 5	1 1 1	$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$
205	(a) (b) (c) (d)	$\begin{array}{r} 9+4 \times 5 \\ =9+20 \end{array}$	10 29 125 4	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	B1 cao M1 for evidence of correct start to order of evaluation, 3×3 or 9 or 20 Al cao B1 cao B1 accept -4 or ± 4
206	(a) (b) (c)		$\begin{gathered} 3 \\ 5 \\ 18 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao B1 cao M1 for " 30 " - " 12 " seen with at least one correct A1 cao (SC : B1 for 25 and 12 seen with an answer of 13)

Question		Working	Answer	Mark	B1 cao Notes
207	(a)		10	1	
	(b)		8.5	1	$\text { B1 accept } \frac{17}{2} \text { or } 8 \frac{1}{2}$
	(c)		32	1	B1 cao
	(d)		$6+3 t$	1	B1 for $6+3 t$

	tion	Working	Answer	Mark	Notes
208		$\begin{array}{\|rrrrrrrr\|} \hline x-2 & -1 & 0 & 1 & 2 & 3 & 4 \\ y & 4 & 4.5 & 5 & 5.5 & 6 & 6.5 & 7 \end{array}$	$\begin{gathered} y=1 / 2 x+5 \\ \text { drawn } \end{gathered}$	3	(Table of values / calculation of values) M1 for at least 2 correct attempts to find points by substituting values of x. M1 ft for plotting at least 2 of their points (any points plotted from their table must be plotted correctly) A1 for correct line between $x=-2$ and $x=4$ (No table of values) M1 for at least 2 correct points with no more than 2 incorrect points M1 for at least 2 correct points (and no incorrect points) plotted OR line segment of $y=1 / 2 x+5$ drawn A1 for correct line between $x=-2$ and $x=4$ (Use of $y=m x+c$) M1 for line drawn with gradient of 0.5 OR line drawn with a y intercept of 5 M1 for line drawn with gradient of 0.5 AND with a y intercept of 5 A1 for correct line between $x=-2$ and $x=4$ $\mathrm{SC}: \mathrm{B} 2$ for the correct line from $x=0$ to $x=4$

Question		Working	Answer	Mark	Notes
209	(a) (b) (c)	$\begin{aligned} & (0.2,0.25,0.4,0.5,0.75) \\ & \left(\frac{4}{20}, \frac{5}{20}, \frac{8}{20}, \frac{10}{20}, \frac{15}{20}\right) \\ & (20 \%, 25 \%, 40 \%, 50 \% \\ & 75 \%) \end{aligned}$	$\begin{array}{lllll} 98 & 145 & 358 & 709 & \\ 835 & & & & \\ -8 & -5 & -1 & 4 & 7 \\ 0.2 & \frac{1}{4} & 40 \% & 0.5 & \frac{3}{4} \end{array}$	1 1 2	B1 cao B1 cao M1 for two correct conversions into the same form A1 cao If no method seen SCB 1 for correct numbers in the reverse order
210	(a) (b) (c) (d) (e)		$4 a$ $3 c d$ $7 e f$ 3 2	1 1 1 1 2	B1 for $4 a$ oe as a single term B1 for $3 c d$ oe as a single term B1 for 7ef oe as a single term B1 cao M1 for intention to subtract 7 from each side or divide each term by 5 or embedded method A1 cao
211	(a)(i) (ii) (b)		$\begin{gathered} (4,3) \\ (-4,-1) \\ (0,1) \end{gathered}$	$\overline{2}$ 2	B1 cao B1 cao M1 for $(0,1)$ marked on the graph or $(0, y)$ or $(x, 1)$ A1 cao

Question		Working	Answer	Mark	Notes
212	(a)(i) (ii) (b)	$\begin{aligned} & 15-10=5 \\ & 5 \times 4=20 \end{aligned}$	19 Add 4 20	2 2	B1 cao B1 for add $4(+4)$ oe or $4 n-1($ or $\times 4-1)$ M1 for $(15-10) \times 4$ or $4+4+4+4+4$ or 59,39 or $(4 \times 15-1)-(4 \times 10-1)$ or ' 59 ' -339 ' from a list A1 cao
213	(a) (b) (c)		$3 f$ $6 m$ $4 a+5 h$	1 1 2	B1 for $3 f$ or $f 3$ or $3 \times f$ or $f \times 3$ B1 for $6 m$ or $m 6$ B2 for $4 a+5 h$ or $5 h+4 a$ (B1 for $4 a$ or $5 h$ or $4 a+5 h=9 a h$)
214	(a) (b) (c)	$\begin{aligned} & 5 w=10+6 \\ & w=16 \div 5 \end{aligned}$ or $w-\frac{\dot{5}}{5}=\frac{10}{5}$ oe	$\begin{gathered} \hline 7 \\ 12 \\ 16 / 5 \mathrm{oe} \end{gathered}$	1 1 2	B1 ca B1 cao M1 for $5 w-6+6=10+6$ oe or $w-\frac{6}{5}=\frac{10}{5}$ oe A1 for $\frac{16}{5}, 3 \frac{1}{5}, 3.2$, oe

$\Gamma \underset{\text { EXIITION }}{\text { EXPER }}$

	tion	Working	Answer	Mark	Notes
215	(a)(i) (ii) (b)		$(2,3)$ $(-3,1)$ Point plotted at $(3,-4)$	2 1	B1 cao B1 cao B1 cao
216*	(a) (b)	Miles $\mathbf{0}$ $\mathbf{1 0}$ $\mathbf{2 0}$ $\mathbf{3 0}$ $\mathbf{4 0}$ $\mathbf{5 0}$ Ed 0 15 30 45 60 75 Bill 10 20 30 40 50 60	10 Ed is cheaper up to 20 miles, Bill is cheaper for more than 20 miles	1 3	B1 cao M1 for correct line for Ed intersecting at $(20,30) \pm 1 \mathrm{sq}$ tolerance or $10+x=1.5 x$ oe C2 (dep on M1) for a correct full statement ft from graph eg. Ed cheaper up to 20 miles and Bill cheaper for more than 20 miles (C 1 (dep on M1) for a correct conclusion ft from graph eg. cheaper at 10 miles with Ed ; eg. cheaper at 50 miles with Bill eg. same cost at 20 miles; eg for $£ 5$ go further with Bill or A general statement covering short and long distances Ed is cheaper for shorter distances and Bill is cheaper for long distances) OR (continued on next page)

Question		Working	Answer	Mark	Additional Guidance
$\mathbf{2 1 9}$	(a)		$(3,7)$	1	B1 cao
	(b)				

| $\mathbf{2 2 0}$ | (a) | | Correct diagram | 1 | B1 4 identical shapes to the previous patterns |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | (b) | | 60 | 2 | M1 continues pattern 6, 12, 18, as far as the 10th
 A1 cao
 OR |

Question		Working	Answer	Mark	Additional Guidance
221	(a)		$6 x$	1	B1 cao
	(b)		$y \geq-2$	2	M1 attempt to isolate y A1 cao
(Total for Question: 3 marks					
222	(a)	$5 p=20$	4	2	M1 add 16 to both sides A1 cao
	(b)	$-4-5=5 q-2 q$	-3	2	$\begin{aligned} & \text { M1 for correct method isolate } \pm 3 \mathrm{q} \\ & \text { A1 cao } \end{aligned}$
	(c)	$6 x-3-10-6 x=$	-13	2	M1 at least one expansion correct A1 cao
Total for Question: 6 marks					
223	(a)		$5(x-2 y)$	1	B1 cao
	(b)		$3 p(q-4 p)$	2	B2 $3 p(q-4 p)$ (B1 correct partial factorisation, for example, $p(3 q-12 p)$, $12 p\left(\frac{1}{4} q-p\right), p(a q+b p)$ where a and b are numbers

Question	Working	Answer	Mark	Notes
(b) (c) (d)		$\begin{align*} & (2,1) \tag{a}\\ & (0,5) \\ & (1,3) \\ & \text { Point } \end{align*}$	1 1 1	B1 cao B1 cao B1 cao B1 for point marked, eg at $(4,5)$ or $(4,3)$ or $(5,5)$ or $(7,6)$ or $(3,4)$ or $(4,7)$
$225 \quad \text { (a) }$ (b) (c)		12 45 16	1 1 2	B1 cao B1 cao M1 for correct order of inverse operations -12 then $\div 3$ or for forming the equation $3 x+$ $12=60$ and showing intention to subtract 12 from both sides or divide each term by 3 as a first step A1 cao
(b) (c)		10 7 12	1 2 1	B1 cao M1 for $1120-1100(=20)$ or $1157-1130(=27)$ or $57-20(=37)$ or $57-27(=30)$ A1 cao B1 cao
(b)		$\begin{equation*} 5,4,(3), 2,1, \tag{a} \end{equation*}$ (0) Line drawn	2 2	M1 for 1 or 2 or 3 correct entries A1 cao M1 plots 5 of their points correctly or a straight line with gradient -1 or a straight line through $(0,4)$ A1 correct line between $x=-1$ and $x=4$
228		72	4	M1 for " x " +24 or " x " -24 or for " g " and $5 " ~ g "$ M1 for forming an appropriate equation eg $x+24=5(x-24)$ or for $(5 g-g) \div 2=24$ or $g=12$ M1 for correct operations to isolate x terms and non- x terms in an equation of the form $a x+b=c x+d$ or $a x+b=c(x+d)$ or $x=36$ or for $6 \times " 12$ " oe A1 cao

Question	Working	Answer	Mark	Notes
229 (a)		6	1	B1 cao
(b)		8	1	B1 cao
230 (a) (b)		$10,8,(6), 4,2,$ (0) line drawn	2 2	B2 for fully correct table (B1 for 2 or 3 entries correct) B2 for correct straight line between $x=-1$ and $x=4$ (B1 for a single straight line which passes through $(0,8)$ or for a single straight line with negative gradient -2 or for at least 5 points from their table plotted correctly)
231 (a) (b)		$\overline{n^{4}}$ $5(y-3)$	2	M1 for $\frac{n^{10}}{n^{6}}$ oe or $n^{3} \times n$ oe or $\frac{n^{7}}{n^{3}}$ oe A1 cao B1 cao

Question	Working	Answer	Mark	Notes
(a) (b) (c)		$\begin{aligned} & 35 \\ & 30 \\ & 50 \end{aligned}$	1 1 2	B1 cao B1 cao M1 for $35-10(=25)$ or $40-15(=25)$ or $35+" 30 "-15$ oe A1 for 50 or f.t. from (b) +20
233 (a) (b) (c) (d)		drawing 9 Yes (supported) 38	1 1 1 1	B1 cao B1 cao C 1 for Yes with reason eg "the number of squares is always even (and 50 is even)" oe B1 cao
(b) (c)		$\begin{gathered} 5 m \\ 4 p r \\ 7 x+3 y \end{gathered}$	1 1 2	B1 cao B1 cao B2 for $7 x+3 y$ oe (B1 for $7 x$ or $3 y$ seen)
(b) (c)		$\begin{gathered} 20.3 \\ 68.04 \\ 2.61 \end{gathered}$	2 2 3	M1 for $\frac{50}{1.57^{2}}$ oe A1 for answer in range 20.2 to 20.3 M1 for $(m=) 1.8^{2} \times 21$ oe A1 cao M2 for a complete method to find 145% of 1.8 , eg. $\frac{145}{100} \times 1.80$ oe (M1 for a method to find 45% of 1.8 , eg. $\frac{45}{100} \times 1.80(=0.81)$ or for a multiplication factor of 1.45) A1 cao

Question		Working	Answer	Mark	Notes
236	(a) (b)		$\begin{gathered} 32 \\ 9 \\ +7 \text { or } \times \frac{10}{3} \end{gathered}$	2 1	B1 cao B1 cao $\text { B1 for }+7 \text { or } \times \frac{10}{3}$
237	(a) (b) (c)		$\begin{gathered} 5 \\ 2.8 \\ 1.5 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao B1 oe M1 for the intention to subtract 3 from both sides or divide each term by 4 as a first step A1 1.5 oe
238	(a) (b) (c)		Diagram 15 Explanation	1 2 1	B1 cao M1 sequence written out and continued or diagram drawn or $2 n+1$ given as the nth term A1 cao B1 explanation eg answer must be odd or use of $2 n+1$ or pattern 17 has 35 circles
239	(a) (b) (c)		$\begin{gathered} \hline \text { Odd } \\ 5 n \\ \frac{t}{4} \end{gathered}$	1 1 1	B1 cao B1 cao B1 oe
240			19	2	M1 for $2 \times 6.5+3 \times 2$ or 13 and 6 A1 cao

Question		Working	Answer	Mark	Notes
$\mathbf{2 4 1}$			32	M1 for 2 y or $y-3$ M1 for adding their three expressions and setting equal to 125 M1 for correct method to solve $a y+b=125$ A1 Ali 32, Bhavara 64 and Ceris 29	
$\mathbf{2 4 2}$	(a)		29		
	(b)		n^{2}	1	B1 cao

Question		Working	Answer	Mark	Notes
243	(a) (b) (c)		$\begin{gathered} 5 e \\ 7 g h \\ a+6 d \end{gathered}$	1 1 2	B1 cao B1 cao M1 for a or $6 d$ Al cao
244	(a)(i) (ii) (b) (c)		19 Reason 43 Yes with reason	2 1 1	B1 cao B1 explanation, e.g. add 4 each time B1 cao B1 reason eg 1 less than 80 and 80 is a multiple of 4 , or generate series to 79 , or 79 is the $20^{\text {th }}$ term, oe
245			$T=6 d+15 f$	3	M1 for $6 d$ or $15 f$ or $T=$ a linear expression in d and/or f M1 for $6 d+15 f$ oe or $T=6 d(+k f)$ oe or $T=15 f(+k d)$ A1 $T=6 d+15 f$ oe
246	(a) (b)		-0.5 3	2 2	M1 for intention to subtract 19 from both sides or divide all terms by 8 as a first step A1 for -0.5 oe M1 for a correct operation to collect the c terms or the number terms on one side of the equation e.g. $2 c-c+5=8,2 c+5-5=c+8-5$ A1 cao

Que	Working	Answer	Mark	Notes
*247	$\begin{aligned} & 1155 \div 15=77 \\ & x+2 x+x-7=77 \\ & 4 x-7=77 \\ & 4 x=84 \\ & x=21 \\ & \\ & \text { OR } \\ & 15 x+(15 \times 2 x)+15(x-7) \\ & =1155 \\ & \\ & 60 x-105=1155 \\ & 60 x=1260 \\ & x=21 \end{aligned}$	Redlands 21 St Samuels 42 Francis Long 14	5	M1 for $2 x$ or $x-7$ M1 for $1155 \div 15(=77)$ M1 (dep M2) for equation summing their three expressions to ' 77 ' A1 for 21,42 and 14 C 1 for fully correct answer with correct labels OR M1 an expression for the cost of the pupils from Redlands M1 for expression for the cost of the pupils from either St Samuels or Francis Long M1 (dep M2) for equation summing their three expressions to 1155 A1 for 21,42 and 14 C1 for fully correct answer with correct labels

Question		Working	Answer	Mark	Notes
248	(a) (b) (c)		22 18 3.4	1 2	B1 cao B1 cao M1 for intention to subtract 7 from both sides or divide all terms by 5 as a first step. A1 for 3.4 oe
249	(a) (b) (c) (d)		$\begin{gathered} \bullet \bullet \bullet \bullet \bullet \bullet \\ 17,21 \\ 4 n+1 \end{gathered}$	1 1 2 2	B1 cao B1 for 17, 21 cao B2 for $4 n+1$ oe (B1 for $4 n+k, k \neq 1$, or k is absent or $n=4 n+1$) M1 for $(50-1) \div 4$ or evidence of using their formula from part (c) if in the form $\mathrm{a} n+\mathrm{b}$ or repeated addition of 4 (at least 3) ft table in part (b) or 49 seen A1 cao
250	(a) (b)		$\begin{aligned} & 3(x+2) \\ & 7 y-16 \end{aligned}$	2	B1 cao M1 for any intention to expand a bracket eg $5 y-10$ or $2 y-6$ A1 cao

Question		Working	Answer	Mark	Notes
252	(a) (b) (c)		$\begin{gathered} (1,4) \\ \text { cross at }(-3,2) \\ x=3 \end{gathered}$	1 1 1	B1 cao B1 for cross at $(-3,2)$ B1 cao
253			Graph completed	2	B1 for line from $(2.5,45)$ to $(3.5,45)$ B1 ft line of correct gradient to axis (after $11 / 2$ hour)
254	(a) (b) (c) (d)		92.3521 p^{6} t^{5} 6	1 1 1 1	B1 cao B1 cao B1 cao B1 cao
255	(a) (b)		$-4,-3,-2,-1,0$	2 2	M1 for intention to subtract 4 from both sides or divide each term by 3 or $3 p=2$ written in the workspace A1 for $2 / 3$ accept answer to two decimal places rounded or truncated B2 for all 5 correct values; ignore repeats, any order (B1 for 4 correct (and no incorrect) values or all five correct values and -5)
256			2.064(285714...)	2	M1 for substitution of 0.7 into expression or 2.89 or 2.06 seen A1 for 2.064(285714...) or $\frac{289}{140}$

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
257 (a)(i) \\
(ii) \\
(b)
\end{tabular} \& \& \begin{tabular}{l}
\[
25,22
\] \\
Subtract 3
\[
23
\]
\end{tabular} \& 2

2 \& | B1 cao |
| :--- |
| B1 for correct description |
| Eg. 'subtract 3 ' or 'goes down by 3 ' oe or 'take-away 3 ' or -3 or $43-3 n$ seen |
| M1 for +5 seen or for continuing sequence for at least 2 terms (condone one arithmetic error) or $5 n-17$ |
| A1 cao |

\hline 258 \& \& $$
\begin{array}{ll}
\hline(12) & 10 \\
80 & (27)
\end{array}
$$ \& \[

1

\] \& \[

$$
\begin{aligned}
& \text { B1 cao } \\
& \text { B1 cao }
\end{aligned}
$$
\]

\hline 259 \& \& eg. 18, 4, 5 \& 3 \& M1 for two different factors of 40 M1 for 3 numbers where the sum lies between 20 and 30 AND (where one is 9 or 18 or two are different factors of 40 A1

\hline | $260 \quad \text { (i) }$ |
| :--- |
| (ii) | \& \& \[

$$
\begin{gathered}
x+4 \\
2 x
\end{gathered}
$$

\] \& 1 \& | B1 for $x+4$ oe |
| :--- |
| B1 for $2 x$ oe |

\hline | 261 (a) |
| :--- |
| (b) |
| (c) |
| (d) | \& \& \& 1

\[
2

\] \& | B1 cao |
| :--- |
| B1 cao |
| M1 for clear intention to expand bracket or divide both sides by 2 as the first step eg. $2 y-2 \times 5=24$ or $y-5=24 \div 2$ |
| A1 for 17 |
| B1 cao |

\hline
\end{tabular}

Question		Working	Answer	Mark	Notes
262	(a) (b) (c)		$5 m$ $9 p$ $4 t w$	1 1	B1 for $5 m$ or $5 \times m$ or $m \times 5$ or $m 5$ B1 for $9 p$ or $p 9$ B1 for $4 t w$ or $4 w t$ or $t w 4$ or $w t 4$ (condone $4 \times t w$ and $4 \times w t$)
263	(a) (b)	4×3	12 5	1 2	B1 cao M1 for $4 \times 2-3$ A1 cao
264		$\begin{aligned} & 3 x-6=x+7 \\ & 2 x=13 \end{aligned}$	6.5	3	M1 for $3 \times x-3 \times 2(=3 x-6)$ or $\frac{[}{3}+\frac{7}{3}$ seen M1 for correct method to isolate the terms in x or the number terms on opposite sides of an equation A1 for 6.5 oe

Question		Working	Answer	Mark	Notes
265	(a) (b) (c)		$\begin{gathered} 8,10 \\ 24 \\ \text { reason } \end{gathered}$	1 1 1	B1 cao B1 cao B1 for a valid reason that demonstrates the understanding that the number of triangles is twice the pattern number
266	(a) (b)	$\begin{aligned} & 2 \times 8=16 \\ & 16+7 \\ & 3 \times-2+5 \times 4 \end{aligned}$	23 14	2 2	M1 for correct substitution of 8 into the expression $2 f$ A1 cao M1 for correct substitution into the formula Al cao
267	(a) (b) (c)		30 20 graph completed	1 1 2	B1 for 30 minutes oe B1 cao B1 for horizontal line from $(5,20)$ to (5.30, 20) B1 for a single straight line with the correct gradient from '(5.30, 20)' to the time axis
268	(a) (b) (c)	$\text { Gradient }=\frac{3-0}{0--2}$	$x=3 \text { drawn }$ $y=x \text { drawn }$	1 1 2	B1 for $x=3$ drawn [Note: each line drawn must be a single line segment satisfying $x=3$] B1 for $y=x$ drawn [Note: each line drawn must be a single line segment satisfying $y=x$] M1 for a method to find the gradient of the given line A1 for 1.5 oe
269	(a (b)		$\begin{aligned} & n^{8} \\ & n^{5} \end{aligned}$	1 1	B1 for $n^{8}\left(\right.$ accept $\left.\mathrm{n}^{5+3}\right)$ B1 for $n^{5}\left(\right.$ accept $\left.\mathrm{n}^{7-2}\right)$

Question		Working	Answer	Mark	Notes
270	(a)		$3 x+12$	1	B1 for $3 x+12$ or $12+3 x$
	(b)		$x^{3}+2 x$	2	M1 for the intention to multiply both terms in the bracket by x A1 for $x^{3}+2 x$ OR B2 for $x^{3}+2 x$ [B1 for x^{3} or $2 x$ seen]
	(c)		$x(x-6)$	1	B1 for $x(x-6)$ or $(x-6) x$

Question		Working	Answer	Mark	Notes
271	(a) (b)	$\begin{aligned} & 10 \times 3 \times 2=60 \text { or } \\ & 10 \times 3+30=60 \end{aligned}$	$32 \text { and } 10$ $\times 2 \text { or }+30$	2 1	B1 for 32 in the correct place B1 for 10 in the correct place B1 for $\times 2$ or +30
272	(a) (b)	$\begin{aligned} & y=4 \times 7.5+5.4 \\ & 18.8=4 x-2.4 \\ & x=\frac{18.8+2.4}{4} \end{aligned}$	35.4 5.3	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1 for $4 \times 7.5+5.4$ A1 cao M1 for intention to add 2.4 to 18.8 or to subtract - 2.4 from 18.8 or to divide 18.8 and (-)2.4 by 4 A1 cao
273	(a) (b)	Barry’s Bricks $£ 50$ Bricks ArUs £65 $65-50$	$\begin{aligned} & 56 \\ & 15 \end{aligned}$	1 3	B1 for 56 (accept answer in the range 55 to 57) M1 for 50 or 65 (accept $64-66$) M1 for $65-50$ (accept 64-66 for 65) A1 for 15 (accept answer in range 14 to 16)

Question		Working	Answer	Mark	Notes
274	(a)		$-1,0,1,2,3$	2	B2 for all 5 correct values; ignore repeats, any order (B1 for 4 correct (and no incorrect values) eg. $0,1,2,3$ or one additional value, eg $-1,0,1,2,3,4$)
	(b)		$-4<x \leq 3$	2	B2 for $-4<x \leq 3$ or >-4 and ≤ 3 (B1 for $-4<x$ or $x>-4$ or $x \leq 3$ or $3 \geq x$ or >-4 or ≤ 3 or $-4 \leq x<3$) (NB Accept the use of any letter)
	(c)	$\begin{aligned} & 3 y-2>5 \\ & 3 y>7 \end{aligned}$	$y>\frac{7}{3}$	2	M1 for clear intention to add 2 to both sides (of inequality or equation) or clear intention to divide all terms by 3 or $3 y>7$ or $3 y<7$ or $3 y=7$ A1 $y>\frac{7}{3}$ or $y>2 \frac{1}{3}$ or $y>2 . \dot{3}$ NB. final answer must be an inequality (SC B1 for $\frac{7}{3}$ oe seen if M0 scored)
275	(a)		$2(2 x+5 y)$	1	B1 cao
	(b)		$x(x+7)$	1	B1 cao

「 EXPERT

Question		Working	Answer	Mark	Notes
276	(a)		3c	1	B1 3c oe
	(b)		$6 e f$	1	B16ef oe
	(c)		$7 p+5 t$	2	B2 for $7 p+5 t$ (B1 for either $7 p$ or $5 t$)
277		$3.5 \times 12-5$	37	2	M1 for $3.5 \times 12-5$ or 42-5 A1 cao
	(b)	$3.5 \times-9--6$	-25.5	2	M1 for $3.5 \times-9-6$ or $3.5 \times-9+6$ or sight of -31.5 A1 for -25.5 or $-\frac{51}{2}$ or $-25 \frac{1}{2}$

Question		Working	Answer	Mark	Notes
278	(a)			1	B1 for correct pattern
	(b)		31	2	M1 for correct diagram of pattern number 10 with or without shading A1 cao OR M1 for any 4 consecutive terms in the sequence 4, 7, $10, \ldots$. A1 cao OR M1 for use of $3 n+1$ with $n=10$ A1 cao
	(c)		No with appropriate reason	2	M1 for attempt to divide 45 by 3 A1 for 'No' and comment that this is the number needed for pattern number 15 OR M1 for starts at 4 and builds up correctly to 46 or 55 A1 for 'No' and comments that 55 are needed for pattern 18 or 46 are needed for pattern 15 oe OR M1 for use of $3 n+1$ with $n=18$ A1 for 'No' and comments that 55 are needed for pattern 18 oe OR M1 for $3 n+1=46$ A1 for 'No' and comments 46 are needed for pattern 15 oe

