Γ EXPERT TUITION

Maths Questions By Topic:

Algebra

Mark Scheme

Edexcel GCSE (Higher)

\#www.expert-tuition.co.uk
\square online.expert-tuition.co.uk
《enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 ... Page 1
Paper 2 ... Page 31
Paper 3 Page 65

Old Spec A (Linear)
Paper 1 Page 96Paper 2Page 142

Question	Answer	Mark	Mark scheme	Additional guidance
1	8 and -3	M1 M1 A1	for rearranging to get $x^{2}-5 x-24(=0)$ or $-x^{2}+5 x+24(=0)$ for $(x \pm 8)(x \pm 3)$ or $(x+a)(x+b)$ where $a b=-24$ or $a+b=-5$ or substitution into formula, condoning one sign error eg $(x=) \frac{--5 \pm \sqrt{(-5)^{2}-4 \times 1 \times-24}}{2 \times 1}$ for 8 and -3	Can be implied by $(x-8)(x+3)$ or $(-x+8)(x+3)$
2	$\frac{30 w}{6-21 w}$	P1 P1 P1 A1	for forming an equation, eg $6(2 w+y)=7 w(3 y+6)$ or $12 w+6 y=21 w y+42 w$ oe for expanding brackets correctly and gathering w terms or isolating y terms in a correct equation, eg $6 y=21 w y+30 w$ or $6 y-21 w y=42 w-12 w$ or $6 y-21 w y=30 w$ (dep on two terms in y) for factorising out the y, eg $y(6-21 w)=42 w-12 w$ or $y(6-21 w)=30 w$ or $3 y(2-7 w)=30 w$ fo $\quad(y=) \frac{30 w}{6-21 w}$ oe	Condone missing brackets for this mark

Question	Answer	Mark	Mark scheme	Additional guidance
3	Shown	M1 M1 A1	for a start to the method, eg finds one correct area $4(x+1)$ or $(x+7)(2 x+6)$ or $(x+1)(x+11)$ or $(x+7)(x+5)$ or $4(x+5)$ or $(x+11)(2 x+6)$ for a complete expression for the total area, eg $4(x+1)+(x+7)(2 x+6)$ or $4 x+4+2 x^{2}+14 x+6 x+42$ OR $(x+1)(x+11)+(x+7)(x+5) \text { or } x^{2}+x+11 x+11+x^{2}+7 x+5 x+35$ OR $(x+11)(2 x+6)-4(x+5) \text { or } 2 x^{2}+22 x+6 x+66-4 x-20$ for a complete chain of reasoning with fully correct algebra leading to $2 x^{2}+24 x+46$	$2 x^{2}+24 x+46$ is given so need to see brackets expanded correctly
4	$\frac{26 x+15}{10 x}$	M1 M1 A1	for method to write at least one of the fractions with a suitable denominator, eg $\frac{4 x+3}{2 x} \times \frac{5}{5}\left(=\frac{20 x+15}{10 x}\right)$ or $\frac{3}{5} \times \frac{2 x}{2 x}\left(=\frac{6 x}{10 x}\right)$ for method to combine the fractions, eg $\frac{5(4 x+3)}{5 \times 2 x}+\frac{3 \times 2 x}{5 \times 2 x}$ or $\frac{5(4 x+3)+3 \times 2 x}{5 \times 2 x}$ or $\frac{20 x+15}{10 x}+\frac{6 x}{10 x}$ for correct algebra leading to $\frac{26 x+15}{10 x}$ oe in form $\frac{a x+b}{c x}$	

Question	Answer	Mark	Mark scheme	Additional guidance
5	Region shaded	M1 M1 A1	for two of the lines $2 y+4=x, x=3, y=6-3 x$ correctly drawn for all three correct lines correctly drawn for a fully correct region indicated with all lines correct	Accept full or broken lines for all marks Award for clear intention, shading not needed Diagram at end of mark scheme
6	$\begin{gathered} x=2.1, y=5.1 \\ x=-2.9, y=-4.7 \end{gathered}$	M1 A1 A1	for drawing the graph of $y-2 x=1$ for one correct pair of values or for both correct x values, or for both correct y values for both correct pairs, correctly matched	For both A marks accept answers in the ranges $\begin{aligned} & x=2.0 \text { to } 2.2, y=5.0 \text { to } 5.2 \\ & x=-2.8 \text { to }-3.0, y=-4.6 \text { to }-4.8 \end{aligned}$ Accept values given as coordinates

(

Question 5

Question	Answer	Mark	Mark scheme	Additional guidance
7 (a) (b)	$\frac{1}{4}$ $\sqrt[4]{\frac{48}{x-1}}$	M1 A1 M1 M1 M1 A1	for $f(1)=3 \times 1^{2}+1(=4)$ and a clear intention to find $g(" 4 ")$ or for $\frac{4}{\left(3 \times 1^{2}+1\right)^{2}}$ or for stating $\operatorname{gf}(x)$, eg $\frac{4}{\left(3 x^{2}+1\right)^{2}}$ oe oe for finding $\operatorname{fg}(x)$, eg $3 \times\left(\frac{4}{x^{2}}\right)^{2}+1$ or $\frac{48}{x^{4}}+1$ for start of method to find the inverse of $\operatorname{fg}(x)$, eg $y-1=3 \times\left(\frac{4}{x^{2}}\right)^{2}$ or $y-1=\frac{48}{x^{4}}$ or $x-1=\frac{48}{y^{4}}$ or $x-1=3 \times\left(\frac{4}{y^{2}}\right)^{2}$ for $y^{4}=\frac{48}{x-1}$ or $x^{4}=\frac{48}{y-1}$ or for a final answer of $\sqrt[4]{\frac{48}{y-1}}$ oe	
8	$(3,36)$	P1 P1 P1 A1	for factorising -3 from the expression, eg $-3\left(x^{2}-6 x-3\right)$ or $-3\left(x^{2}-6 x\right)+9$ for starting the process to complete the square, eg $(x-3)^{2}-9$ for completing the process of completing the square, eg $-3\left[\left[(x-3)^{2}-12\right]\right]$ or $-3(x-3)^{2}+36$ cao	ft from their factorising if only one error An answer only and no working is 0 marks

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :--- | :--- | :--- |
| 9 | $3 n-2$ | B2 | for $3 n-2$ oe | Accept a different variable, eg. $3 x-2$
 $n=3 n-2$ gets B1 only
 $n+3$ gets NO marks |
| 10 | (B1 | for $3 n+k$ where $k \neq-2$ or is absent unambiguously shown) | | |

Question	Answer	Mark	Mark scheme	Additional guidance
11	$y=-\frac{1}{3} x+8$	M1 M1 A1	for a method for finding the gradient of L_{2} eg use of $-\frac{1}{m}$ or $-\frac{1}{3}$ (dep) for substitution of $(9,5)$ into $y="-\frac{1}{3} " x+c$ for $y=-\frac{1}{3} x+8$ oe	$y-5=-\frac{1}{3}(x-9) \text { gets M2A1 }$
12	$f=\frac{4 d+3}{d+3}$	M1 M1 M1 A1	for clearing the fraction eg $d(f-4)=3(1-f)$ or $d f-4 d=3-3 f$ (dep M1) for isolating f terms in a correct equation eg $d f+3 f=3+4 d$ $($ dep on two terms in f) for factorising $\operatorname{eg} f(d+3)=3+4 d$ oe	Condone error in expansion of RHS for this mark
13 (a) (b) (c)	33 27 $\frac{1}{2}$	B1 M1 A1 M1 A1	cao for $f(9)=12 \div \sqrt{ } 9(=4)$ and a clear intention to find $g(" 4$ " $)$ or for $3 \times\left(2 \times \frac{12}{\sqrt{9}}+1\right)$ or for stating gf eg $3\left(2 \times \frac{12}{\sqrt{x}}+1\right)$ oe cao for g^{-1} as $\frac{x-3}{6}$ oe or for starting to solve $3(2 x+1)=6$ for $\frac{1}{2}$ oe	Accept $\frac{y-3}{6}$

Question	Answer	Mark	Mark scheme	Additional guidance
$14 \quad \text { (a) }$ (b)	p^{10} $2 x^{4} y^{2}$	B1 M1 A1	cao for any two of $12 \div 6(=2), x^{7-3}\left(=x^{4}\right), y^{3-1}\left(=y^{2}\right)$ in a single product or written as a fraction with complete and correct cancelling of at least two terms cao	
15	Mistake identified	C1	for a correct mistake identified Acceptable examples all three terms should be multiplied by 2 and not just two of them the 5 should be multiplied by 2 it should be $2 \times T=q+2 \times 5$ should subtract 5 first (before multiplying by 2) Not acceptable examples Should remove the 5 first $2 \times T$ should be $2 T$ should have got rid of the denominator	Accept answers showing a correct first step
16 (a) (b)	$\frac{17 x+2}{3 x(x+1)}$ $(x+y)(x+y+3)$	M1 A1 B1	for a correct common denominator with at least one correct numerator $\text { eg. } \frac{5 \times 3 x}{3 x(x+1)}+\frac{2(x+1)}{3 x(x+1)}$ for a single simplified fraction, eg. $\frac{17 x+2}{3 x(x+1)}$ or equivalent eg. $\frac{17 x+2}{3 x^{2}+3 x}$ cao	$\frac{15 x+2(x+1)}{3 x(x+1)}$ gets M1 only

Question	Answer	Mark	Mark scheme	Additional guidance
17	5	P1	for process to find the area of the triangle, eg. $0.5 \times(x+4)(x-2)$ oe OR for process to find the area of rectangle and 27.5×2, eg. $(x+4)(x-2)$ and 55	Trial and improvement methods must be fully correct identifying the value of x as 7 (3 marks) or the shortest side as 5 (4 marks)
		P1	(dep P1) for process to expand the brackets and derive a quadratic equation, eg. $x^{2}+4 x-2 x-8=55$ or $0.5\left(x^{2}+4 x-2 x-8\right)=27.5$ oe	
		P1	(dep P2) for complete process to solve the quadratic equation $x^{2}+2 x-63=0$ $\operatorname{eg}(x-7)(x+9)(=0)$ or $\frac{-2 \pm \sqrt{2^{2}-4 \times 1 \times-63}}{2 \times 1}$ or $(x+1)^{2}-1-63(=0)$	
		A1	cao SC: B1 for $x^{2}+4 x-2 x-8=27.5$	An answer of 5 with no supportive working gets no marks

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance

\hline \multirow[t]{6}{*}{18 (a)} \& \multirow[t]{6}{*}{Shown

$x=-1$ and $x=2.5$} \& C1 \& | for $\mathrm{f}^{-1}(x)=\sqrt[3]{\frac{x+4}{2}}$ |
| :--- |
| OR for $2 x^{3}-4=50$ OR for substituting $x=3$ to find $\mathrm{f}(3)$ | \& \multirow[t]{6}{*}{($\left.{ }^{\text {a }}+2\right)^{2}$ must be correctly expanded ${ }^{\text {a }}$}

\hline \& \& C1 \& | for substituting $x=50$ to show the result giving $\mathrm{f}^{-1}(50)=3$ |
| :--- |
| OR solving for x to give $x=3$ |
| OR for showing that $\mathrm{f}(3)=50$ | \&

\hline \& \& P1 \& for $\operatorname{hg}(x)=(x+2)^{2}$ \&

\hline \& \& P1 \& (dep) for start to a process to derive a quadratic equation eg. $x^{2}+4 x+4=3 x^{2}+x-1$ \&

\hline \& \& P1 \& for a process to solve the quadratic equation $2 x^{2}-3 x-5=0$ $\operatorname{eg}(2 x-5)(x+1)(=0)$ or $\frac{-3 \pm \sqrt{(-3)^{2}-4 \times 2 \times-5}}{2 \times 2}$ or $2\left[\left(x-\frac{3}{4}\right)^{2}-\frac{9}{16}-\frac{5}{2}\right](=0)$ \&

\hline \& \& A1 \& for $x=-1$ and $x=2.5$ \&

\hline \multirow[t]{3}{*}{19} \& \multirow[t]{3}{*}{$$
\frac{3}{4} \text { oe }
$$} \& P1 \& for a first step to converting to a common base with one correct conversion, eg. $9^{-\frac{1}{2}}=3^{-1}$ or $\frac{1}{3}$ or $27^{\frac{1}{4}}=3^{\frac{3}{4}}$ oe \& \multirow[t]{3}{*}{$9^{-\frac{1}{2}}=3^{-1}$ (or $\frac{1}{3}$) oe or $27^{\frac{1}{4}}=3^{\frac{3}{4}}$ oe seen alone gets the P 1}

\hline \& \& P1 \& (dep) for $3^{-1}=3^{\frac{3}{4}} \div 3^{x+1}$ oe \&

\hline \& \& A1 \& cao \&

\hline
\end{tabular}

Γ EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
20	graph	C2	for a translation of the graph by the vector $\binom{-1}{-3}$	Condone graph of $y=\mathrm{f}(-x)$ also being drawn on the grid
		(C1	for a translation of the graph by the vector $\binom{-1}{b}$ where $b \neq-3$ or $\binom{a}{-3}$ where $a \neq-1$	Correct vector gets 1 mark
			or for a translation by the vector $\binom{-1}{-3}$ of 3 or 4 critical points)	
	2, 1	B1		
21	Sketch graph with TP at ($2,-13$) and intercepts at$\begin{gathered} (0,-5),\left(2+\sqrt{\frac{13}{2}}, 0\right) \\ \text { and }\left(2-\sqrt{\frac{13}{2}}, 0\right) \end{gathered}$	B1	for a parabola drawn with intercept at the point $(0,-5)$	Turning point may be just seen and labelled on the sketch
		M1	for the start of a method to find the roots of $y=0$, eg. $2(x-2)^{2}-13(=0)$ oe or $(x=) \frac{-8 \pm \sqrt{(-8)^{2}-4 \times 2 \times-5}}{2 \times 2}$	
		M1	(dep) for method to find the roots, eg. $2 \pm \sqrt{\frac{13}{2}}$ oe	
		B1	for turning point at $(2,-13)$	
		C1	for a fully correct parabola drawn with turning point at $(2,-13)$ and intercepts at $(0,-5),\left(2+\sqrt{\frac{13}{2}}, 0\right)$ oe and $\left(2-\sqrt{\frac{13}{2}}, 0\right)$ oe clearly shown	

Question	Answer	Mark	Mark scheme	Additional guidance
22	$\begin{gathered} x=2.2 \text { to } 2.3 \\ y=-1.3 \text { to }-1.4 \end{gathered}$	M1 A1	for recognition of use of intersection point, one of the solutions given, solutions reversed or solutions given as a coordinate. x given in the range 2.2 to $2.3, y$ given in the range -1.3 to -1.4	
23	Proof shown	C2 (C1	for complete argument, eg $n(n-1)$ is the product of two consecutive integers and must be even as either n or $n-1$ must be even or gives correct reasoning for n odd and n even n odd: odd \times odd $=$ odd and odd - odd $=$ even n even: even \times even $=$ even and even - even $=$ even or n odd: $(2 n+1)^{2}-(2 n+1)=4 n^{2}+2 n=2\left(2 n^{2}+n\right)$ n even: $(2 n)^{2}-(2 n)=4 n^{2}-2 n=2\left(2 n^{2}-n\right)$ for factorising, eg $n(n-1)$ OR gives correct reasoning for n odd or n even OR gives a partial explanation using n odd and n even, eg odd ${ }^{2}-$ odd $=$ even and even ${ }^{2}-$ even $=$ even $)$	

Question	Answer	Mark	Mark scheme	Additional guidance
24	-1, 2.5	P1 P1 P1 A1	for process to form an equation, eg $\frac{x^{2}}{3 x+5}=\frac{1}{2}$ or $2 x^{2}=3 x+5$ for writing in a suitable form ready for solution, eg $2 x^{2}-3 x-5(=0)$ or $-2 x^{2}+3 x+5(=0)$ (dep 1st P1) for process to solve quadratic equation of form $a x^{2}+b x+c(=0)$ $\operatorname{eg}(2 x-5)(x+1) \quad(=0)$ or $\frac{--3 \pm \sqrt{(-3)^{2}-4 \times 2 \times-5}}{2 \times 2}$ for $-1,2.5$ oe	
25 (i) (ii)	$3,8$ $3,-8$	M1 A1 B1	for $a=3$, may be seen in working or as part of an expression, eg $(x-3)^{2}-9$ for $a=3, b=8$ for $3,-8$ or ft (i)	9 does not have to be seen for this mark

Question	Answer	Mark	Mark scheme	Additional guidance
26 (a)	$\frac{x+1}{3}$	M1	first step to change the subject of $y=3 x-1$ or $x=3 y-1$, eg $y+1=3 x$	
		A1	oe	
(b)	Shown	M1	for method to find $\operatorname{fg}(x)$, eg $\operatorname{fg}(x)=3\left(x^{2}+4\right)-1$	
		M1	for method to find $\operatorname{gf}(x)$, eg gf $(x)=(3 x-1)^{2}+4$	
		M1	(dep on previous two M marks) for setting up equation, eg $3\left(x^{2}+4\right)-1=2\left[(3 x-1)^{2}+4\right]$	
		M1	(dep 2nd M1) for correct expansion of $(3 x-1)^{2}$ eg $9 x^{2}-3 x-3 x+1$	
		C1	for $15 x^{2}-12 x-1=0$ from correct working	

Question	Answer	Mark	Mark scheme	Additional guidance
$27 \quad \text { (a) }$ (b)	$6 \text { or }-6$ $s=\frac{v^{2}-u^{2}}{2 a}$	M1 A1 M1 A1	for $12^{2}+2 \times-3 \times 18(=36)$ for 6 or -6 , accept ± 6 for subtracting u^{2} from both sides or dividing all terms by $2 a$ as the first step $s=\frac{v^{2}-u^{2}}{2 a} \mathrm{oe}$	Terms may be partially evaluated. Only one value is required for full marks Must see this step carried out, not just the intention shown
28	$x=4.5, y=-1.5$	M1 M1 A1	correct process to eliminate one variable (condone one arithmetic error) (dep) for substituting found value in one of the equations OR correct process after starting again (condone one arithmetic error) for $x=4.5, y=-1.5$ oe	Fractions do not need to be in simplest form
29 (a) (b)	$\begin{gathered} \frac{1}{5(x-1)} \\ 2(5+y)(5-y) \end{gathered}$	B1 M1 A1	$\text { for } \frac{1}{5(x-1)} \text { or } \frac{1}{5 x-5}$ for partial factorisation, eg $2\left(25-y^{2}\right)$ oe or $(10+2 y)(5-y)$ oe or $(5+y)(10-2 y)$ oe or $-2\left(y^{2}-25\right)$ oe for $2(5+y)(5-y)$ or $-2(5+y)(y-5)$	

Question	Answer	Mark	Mark scheme	Additional guidance
30	$(2,-9)$	P1 P1 P1 A1	substitutes $x=0, y=-5$ into $y=x^{2}+a x+b \quad(b=-5)$ or substitutes $x=5, y=0$ into $y=x^{2}+a x+b \quad(0=25+5 a+b)$ or starts process to find other intercept, eg writes $y=(x-5)(x-k)$ for complete process to find two intercepts, eg. substitutes the second point into $y=x^{2}+a x+b$ and solves to find a $(=-4)$ and $b(=-5)$ or substitutes $x=0, y=-5$ into $y=(x-5)(x-k)$ and solves to find $k(=-1)$ (dep on P2) for factorising or completing the square of $x^{2}+"-4 " x+$ " -5 " and identifying the x-coordinate of the turning point or for a complete process to find the x-coordinate of the turning point, eg $(5+"-1 ") / 2$ cao	x-coordinate of 2 with no or incorrect working gets NO marks
(a) (b)	sketch $y=\mathrm{g}(-x)$	B1 B1	for appropriate sketch which crosses the x axis at $(2,0)$ and $(4,0)$, minimum point at $(3,-1)$ and end points at $(1,3)$ and $(5,3)$ cao	Allow some tolerance on the points if the intention is clear.
(a) (b)	shown 4.5	C1 C1 M1 A1	for first step, eg $2\left((x+1)^{2}-1\right)$ or $2\left(x^{2}+2 x+1-1\right)$ oe for fully correct chain of reasoning process to find inverse of g , eg $g^{-1}(x)=\frac{1}{2} x+1$ or for $2(x-1)=7$ for 4.5 oe	It is insufficient to state $\operatorname{gf}(x)=2 x(x+2)$ without showing the first step, and the following sequence of algebraic steps leading to it. Could be shown in the form of a flowchart, which must show inverse operations.

Question	Answer	Mark	Mark scheme	Additional guidance
33	Statement supported by algebra	B1 M1 A1 C1	writing a general expression for an odd number eg $2 n+1$ (dep) for expanding ("odd number") ${ }^{2}$ with at least 3 out of 4 correct terms for correct simplified expansion, eg $4 n^{2}+4 n+1$ (dep A1) for a concluding statement eg $4\left(n^{2}+n\right)+1$ (is one more than a multiple of 4)	Could be $2 n-1,2 n+3$, etc Note that $4 n^{2}+4 n+2$ or $2 n^{2}+4 n+1$ in expansion of $(2 n+1)^{2}$ is to be regarded as 3 correct terms
$34 \quad \text { (a) }$ (b)	$\begin{gathered} (a-b)(a+b) \\ 12\left(x^{2}+1\right) \end{gathered}$	B1 M1 M1 A1	cao for using ' a ' $=x^{2}+4$ and ' b ' $=x^{2}-2$ OR multiplying out both brackets, at least one fully correct (dep) for a correct expression for (' $\left.a^{\prime}+{ }^{\prime} b^{\prime}\right)\left({ }^{\prime} a^{\prime}-b^{\prime}\right)$ with no additional brackets, simplified or unsimplified eg $\left(x^{2}+4+x^{2}-2\right)\left(x^{2}+4-x^{2}+2\right)$ or $\left(2 x^{2}+2\right) \times 6$ OR ft for a correct expression without brackets, simplified or unsimplified eg $x^{4}+8 x^{2}+16-x^{4}+4 x^{2}-4$ for $12\left(x^{2}+1\right)$ or $12 x^{2}+12$ oe	Accept reversed brackets Correct 4 terms if not simplified or 3 terms if simplified

Question	Answer	Mark	Mark scheme	Additional guidance
35	$\frac{3 x+1}{2 x}$	M1 A1 A1	for $(3 x+1)(x-3)$ or $2 x(x-3)$ for $(3 x+1)(x-3)$ and $2 x(x-3)$ $\frac{3 x+1}{2 x}$ oe	Accept $(2 x+0)$ for the first two marks but not for the final answer
36	Graph drawn	C2 (C1	for graph translated by -2 in the y direction for a graph translated in the y direction OR for a correct graph through four of the five key points)	Key points: $(-180,-2),(-90,-3),(0,-$ 2), $(90,-1),(180,-2)$
37	$b=\frac{2}{3} a+2$	P1 P1 P1 P1 A1	for process to rearrange the equation to give y in terms of x eg $y=\frac{7-3 x}{2}$ or $y=-\frac{3}{2} x+\left(\frac{7}{2}\right)$ or $m=-\frac{3}{2}$ for using their gradient in $m n=-1$ for showing a process to find the gradient of $P Q$ eg $\frac{b-4}{a-3}$ OR for substituting $x=3$ and $y=4$ in $y=" \frac{2}{3} " x+c$ (dep P 3) for forming an equation in a and b eg $\frac{b-4}{a-3}=" \frac{2}{3} "$ or $b=" \frac{2}{3} " a+" 2 "$ OR correct equation in terms of x and y eg $y=\frac{2}{3} x+2$ for $b=\frac{2}{3} a+2$ oe	$y-4=\frac{2}{3}(x-3)$ gets P4 Accept 0.66 or 0.67 oe for $2 / 3$

\mp

Question	Working	Answer	Mark	Notes
43		$y=2 x+36$	P1 P1 P1 A1	starts process, eg by rearranging to find gradient, eg $y=6-\frac{x}{2}$ or $\frac{-1}{2}$ or positions of B and E complete process to find position of A or uses $\frac{-1}{m}$ to find the gradient of \mathbf{M} complete process to find equation of \mathbf{M} $y=2 x+36 \text { oe }$
44		$x>2$	P1 M1 M1 M1 A1	for process to derive algebraic expressions for area of both rectangle and triangle eg $(x-1)(3 x-2)$ and $(2 x \times x) \div 2$ (condone missing brackets) for method to rearrange inequality to $2 x^{2}-5 x+2>0$ oe providing in the form $a x^{2}+b x$ $+c>0$ for a correct method to solve $2 x^{2}-5 x+2>0$ for establishing critical values 2 and $\frac{1}{2}$ $x>2$

Question	Working	Answer	Mark	Notes
45		$x^{2}+6 x=1$	M1	writes the area using algebraic terms e.g. $(x+3) \times(x+3)$ or at least two correct area expressions which may be written on the diagram or x given as $\sqrt{10}-3$
46			M1	expands and includes the given 10 e.g. $x^{2}+3 x+3 x+9=10$; condone one error in the four terms when expanding or $10-3 \sqrt{10}-3 \sqrt{10}+9+6 \sqrt{10}-18(=1)$ condone 1 error in the 6 terms rearranges to give the given equation or shows surd expression simplifies to 1
47			A1	

Question	Working	Answer	Mark	Notes
49		$\begin{gathered} 2(2 n-3) \\ \text { even } \end{gathered}$	C1 C1 C1 C1	correct expansion of brackets to give at least 3 terms from $n^{2}-2 n-2 n+4$ arrives at $n^{2}-2-n^{2}+4 n-4$ oe reduces to $2(2 n-3)$ or $4 n-6$ for conclusion e.g. $2(2 n-3)$ always even, $4 n-6$ is always even since both are even numbers, they are multiples of 2 .
50		$y=-2 x+21$	P1 P1 P1 A1	shows evidence of understanding that $A C$ is perpendicular to $D B$, or states the gradient of $D B$ as 0.5 oe shows a process to find the gradient of a perp. line e.g. use of $-\frac{1}{m}$ or states $y=-2 x+\mathrm{c}$ or states the gradient of AC as -2 (dep on P2) for sub. of $x=5, y=11$ into $y=m x+c$ where m is their found gradient for AC. oe
51		$\begin{gathered} x=-\frac{24}{5} \\ y=-\frac{7}{5} \\ x=-3, \\ y=4 \end{gathered}$	M1 M1 M1 M1 A1	for substitution of a rearrangement of $y-3 x=13$ e.g. $(3 x+13)^{2}+x^{2}=25$ (dep M1) for expansion of bracket after substitution (at least 3 terms correct out of the 4 terms) e.g. $9 x^{2}+39 x+39 x+169$ for forming quadratic ready for solving e.g. $10 x^{2}+78 x+144(=0)$ for factorising e.g. $(5 x+24)(x+3)(=0)$ oe $x=-\frac{24}{5}, y=-\frac{7}{5} \text { and } x=-3, y=4$ SC: B1 (if M0) for all 4 values mis-associated or one correct pair of values or values given as coordinates.

Question	Working	Answer	Notes
52		$m^{2}+10 m+21$	M1 for at least 3 terms out of a maximum of 4 correct from expansion A1
53		$5(2 x+1)(2 x-1)$	$\begin{array}{\|ll} \hline \text { M1 } & \text { for } 5\left(4 x^{2}-1\right) \\ \text { A1 } \end{array}$
54		$a=\frac{7-3 r}{r-2}$	M1 Remove fraction and expand brackets M1 Isolate terms in a A1
55		$x>4, x<-1$	M1 rearrange quadratic and factorise M1 critical values of 4 and -1 found A1
(a) (b)		25 Description	C1 For interpretation eg.. area equated to 1750 m P1 Process to solve equation A1 Start to interpret graph eg. describe or give acceleration for one stage of the journey or state that acceleration is constant in all 3 parts C1 Describe acceleration for all stages of the journey or give acceleration for all 3 stages $\left(1.25 \mathrm{~m} / \mathrm{s}^{2} ; 0 \mathrm{~m} / \mathrm{s}^{2} ;-0.625 \mathrm{~m} / \mathrm{s}^{2}\right)$

Question	Working	Answer		Notes
57		$3 y-4 x=11$		process to start to solve problem eg. draw a diagram, find gradient of $A B$ (0.5)
			P1	process to use gradients eg. find gradient of $B C(-2)$
			P1	Process to find y coordinate of C (9)
			P1	Process to find equation of $A C$
			A1	

Question	Working	Answer	Notes
58		$\begin{gathered} \sqrt[3]{4 m^{2}-1} \\ \text { or } \\ \sqrt[3]{(2 m+1)(2 m-1)} \end{gathered}$	M1 clear fractions or remove sq rt sign as first step M1 (dep) clear fractions and remove sq rt sign A1 $\quad(k=) \sqrt[3]{4 m^{2}-1}$ or $\sqrt[3]{(2 m+1)(2 m-1)}$
59		$\frac{-2}{13}$	M1 multiplies all terms by 2 or 3 to reconcile fractions as first step M1 complete process of expanding brackets and isolating x term A1 cao

「 EXPERT

Question	Working	Answer	Notes
60		$\frac{2 x-5}{x+5}$	M1 factorising to give $(2 x-5)(x+1)$ M1 factorising to give $(x+5)(x+1)$ A1 cao
61		proof (supported)	
62		$y=-\frac{1}{2} x+\frac{3}{2}$	P1 for a process to find the gradient of the line $A B$ P1 (dep) for a process to find the gradient of a perpendicular line eg use of $-1 / m$ P1 (dep on P2) for substitution of $x=5, y=-1$ A1 equation stated oe

Question	Working	Answer	Notes
63 a		$y(y+27)$	B1
b		t^{6}	B1
c		w^{5}	B1
64		$3 \pm \sqrt{17}$	M1 For $(x-3)^{2}-9-8(=0)$ or $(x=) \frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(-8)}}{2(1)}$ allow sign error for b M1 For $x-3= \pm \sqrt{17}$ or $x=\frac{6 \pm \sqrt{68}}{2}$ A1 cao

Question	Working	Answer	Notes
65		$3 x$	M1 Factorising numerator and denominator of first fraction $\frac{3(x+2)}{(x-5)(x+2)} \quad\left(=\frac{3}{(x-5)}\right)$ M1 Factorising denominator of second fraction $\frac{x+5}{x(x+5)(x-5)}\left(=\frac{1}{x(x-5)}\right)$ M1 Multiplication by reciprocal $\frac{3(x+2)}{(x-5)(x+2)} \times \frac{x(x+5)(x-5)}{(x+5)}$ A1 Completing algebra to reach $3 x$
66		$x<-3, x>6$	M1 Rearrange to $x^{2}-3 x-18>0$ M1 Correct method to solve $x^{2}-3 x-18=0$ M1 Establish critical values -3 and 6 A1 $x<-3, x>6$
67		60	P1 process to start problem eg draw diagram and find gradient of $\boldsymbol{O A}(=3)$ P1 process to find equation of tangent with $m=-1 /{ }^{\prime} 3$ ' P1 process to find x-axis intercept of tangent P1 process to find area of triangle A1 cao

Question	Answer	Mark	Mark scheme	Additional guidance
$68 \quad \text { (a) }$ (b)	$x>-1$ Diagram drawn	B1 C2 (C1	cao for a fully correct diagram, for drawing a line from -3 to 4 or (indep) for an open circle at 4 or (indep) for a closed circle at -3)	Condone arrow heads or line ending to denote the 'end' of the line
(a) (b) (c)	$\begin{gathered} (10), 5,(2), 1,2, \\ (5), 10 \\ \text { Graph } \\ \\ \\ -0.65 \text { to }-0.8 \\ \text { and } \\ 2.65 \text { to } 2.8 \end{gathered}$	B2 (B1 M1 A1 M1 A1	for all 4 values correct for 2 or 3 correct values) ft (dep on B1) for plotting at least 5 of their points correctly for a fully correct curve drawn for $y=4$ drawn or intersection with $y=4$ or $y=x^{2}-2 x-2$ drawn or 1 correct value ft a quadratic graph ft a quadratic graph or for answers in the range 2.65 to 2.8 and -0.65 to -0.8	Accept a freehand curve drawn that is not made of line segments If answers stated as coordinates, award M1 for both coordinates and M0 for one coordinate

Question	Answer	Mark	Mark scheme	Additional guidance
70 (a) (b)	$(9,7.5)$ $y=-2 x+3$	M1 A1 P1 P1 A1	$\begin{aligned} & \text { for } x \text { coordinate }=P O(6) \times \frac{3}{2}(=9) \text { or } y \text { coordinate }=O Q(3) \times \frac{5}{2}(=7.5) \\ & \text { or } P O(6) \times \frac{5}{2}(=15) \text { or } O Q(3) \times \frac{3}{2}(=4.5) \\ & \text { cao } \end{aligned}$ for process to find the gradient of the line, eg $3 \div 6(=0.5)$ or $y=m x+3$ for process to find gradient of perpendicular eg $-1 \div[$ gradient of $P Q](=-2)$ fo $y=-2 x+3$ oe	Could use P and R or Q and R as ft from (a)
71	$6 x^{3}+x^{2}-20 x-12$	M1 M1 A1	for method to find the product of any two linear expressions (3 out of no more than 4 terms correct with correct signs or 4 correct terms ignoring signs), eg. $6 x^{2}+9 x+4 x+6$ or $3 x^{2}+2 x-6 x-4$ or $2 x^{2}+3 x-4 x-6$ for method of multiplying out remaining products, half of which are correct (ft their first product), eg. $6 x^{3}+13 x^{2}-12 x^{2}+6 x-26 x-12$ cao	Note that, for example, $6 x^{2}+13 x$ or $13 x+6$ are regarded as three terms in the expansion of $(x-2)(3 x+2)$ First product must be quadratic but need not be simplified or may be simplified incorrectly.

Question	Answer	Mark	Mark scheme	Additional guidance
72 (a) (b)	$\begin{aligned} & x_{1}=1.817 \\ & x_{2}=1.853 \\ & x_{3}=1.846 \\ & \\ & \\ & a=2, b=-10 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { C1 } \end{aligned}$	for a correct method to find x_{1} eg $\sqrt[3]{10-2 \times 2}(=1.8171 \ldots \ldots)$ (dep on M1) for substitution of x_{1} to give x_{2} and x_{2} to give x_{3} for $x_{1}=1.81(71 \ldots), x_{2}=1.85(33 \ldots)$ and $x_{3}=1.84(62 \ldots$. cao	Accept an accuracy of 2 dp or more rounded or truncated
(b) (c)	37, 143, 397, 503 $y=-\sin x^{\circ}$ graph	M1 A1 B1 C1	for any two correct angles within the ranges below or for a correct method to find a solution beyond 360 , eg. "angle read from 0 to 360 " +360 for all 4 angles in the range, 35 to 40,140 to 145,395 to 400 and 500 to 505 for any acceptable equations, eg. $y=-\sin x^{0}$ or $y=\sin \left(-x^{0}\right)$ or $-y=\sin x^{0}$ or $y=\cos \left(x^{0}+360 n+90\right)$ or for any positive integer $n, y=\sin \left(x^{0}-(2 n-1) 180\right)$ or $y=\cos \left(x^{0}+360 n\right)$ for correct graph shown translated 2 in the positive x-direction	Accept given as coordinates for M1 only Quoted are just the more likely solutions but check all attempts Condone missing degrees sign

Question	Answer	Mark	Mark scheme	Additional guidance
74 (a) (b)	$13,(6), 5,4,-3$ Correct graph	B2 (B1 M1 A1	for all 4 values correct for 2 or 3 correct values) ft (dep on B1) for plotting at least 4 of the points from their table correctly for a fully correct curve drawn	Accept a freehand curve drawn that is not made of line segments Line sections outside the required range can be ignored.
$75 \quad$ (a) (b) (c)	$\frac{8}{x-4}$ $27 n^{12} w^{6}$	B1 B1 B2 (B1	cao cao cao for two of $27, n^{12}, w^{6}$ in a product)	

Question	Answer	Mark	Mark scheme	Additional guidance		
76	$3 n^{2}+2 n+5$	M1	$\begin{array}{l}\text { for a correct start to a method to find the } n \text {th term, eg equal 2nd } \\ \text { differences imply a term in } n^{2} \\ \text { for working with } 3 n^{2}, \text { eg } 3 n^{2} \text { and sequence } 7,9,11, \ldots \\ \text { for } 3 n^{2}+2 n+5\end{array}$	$\begin{array}{l}\text { Need to see constant second difference found } \\ \text { and } n^{2}\end{array}$		
		A1	$3 n^{2}+2 n$ implies M2		$]$	
:---						
77						

Question	Answer	Mark	Mark scheme	Additional guidance
79 (a)	Graph drawn	$\mathrm{C} 2$	for graph reflected in the y-axis	Key points: $(0,0),(1,2),(2,1),(3,0),(4,2)$ Award C1 if line segments but goes through all key points
(b)	$\begin{gathered} y=5+2(x-3)- \\ (x-3)^{2} \end{gathered}$	(C1 C2 (C1	for a graph reflected in the x-axis or for a correct graph through four of the five key points) for $y=5+2(x-3)-(x-3)^{2}$ oe eg $y=-x^{2}+8 x-10, y=-\left[(x-4)^{2}-6\right]$ for $y=5+2(x+3)-(x+3)^{2}$ or $\left.y=5+2(x-a)-(x-a)^{2}, a \neq 3, a \neq 0\right)$ or $y=\mathrm{f}(x-3)$ or $y=(x-4)^{2}+6$ or correct expression missing " $y=$ "	For either C mark accept equivalent expressions If a correct answer for C 2 is given and is then incorrectly simplified, award C1 a need not be positive

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance

\hline \multirow[t]{4}{*}{80} \& $x^{2}+y^{2}=80$ \& P1 \& for process to find gradient of tangent eg $\frac{10-0}{0--20}\left(=\frac{1}{2}\right)$ or for $20^{2}+10^{2}(=500)$ or start to method to find angle between tangent and x axis, eg $\tan \theta=\frac{10}{20}$ \&

\hline \& \& P1 \& for process to find gradient of normal/radius eg $\frac{-1}{" 0.5 "}(=-2)$ or for $\sqrt{20^{2}+10^{2}}$ or $\sqrt{500}$ or $22.36 \ldots$ or 22.4 or completes process to find angle between tangent and x axis. $\operatorname{eg} \theta=\tan ^{-1}\left(\frac{10}{20}\right)(=26.565 \ldots)$ \&

\hline \& \& P1

P1 \& for equation of tangent eg $y=" 0.5 " x+10$ oe or for equation of radius eg $y="-2 " x$ oe or for using similar triangles eg $\frac{r}{10}=\frac{20}{" \sqrt{500} "}$ or for $\sin (" 26.565 \ldots)=\frac{r}{20}$ for process to find the x coordinate eg " $0.5 " x+10="-2 " x(x=-4)$ or for $r=\frac{20}{" \sqrt{500} "} \times 10$ or $r=20 \times \sin (" 26.565 \ldots$..") \&

\hline \& \& A1 \& oe \& Accept $(4 \sqrt{5})^{2}$ for 80

\hline
\end{tabular}

Question	Answer	Mark	Mark scheme	Additional guidance
$81 \quad \text { (a) }$	F D	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	cao cao	
82	Shown (supported)	M1 M1 A1	for method to find at least two terms, eg $2 \times 4^{2}-1(=31)$ and $40-3^{2}(=31)$ for generating at least three correct terms of each sequence for generating at least the terms $1,7,17,31,49$ of the first sequence and at least the terms $39,36,31,24,15,4$ of the second sequence	$\begin{array}{\|llllllllll} \hline 1 & 7 & 17 & 31 & 49 & 71 & 97 & 127 & 161 & 199 \\ 39 & 36 & 31 & 24 & 15 & 4 & -9 & & & \\ \hline \end{array}$
83	$k=2 m-y^{2}$	M1 A1	correct first step of showing an intention to square both sides with no algebraic ambiguity in any resulting statements, $\text { eg } y^{2}=2 m-k$ for $k=2 m-y^{2}$	

Question	Answer	Mark	Mark scheme	Additional guidance
84	$6 x^{3}-23 x^{2}-33 x-10$	M1 M1 A1	for method to find the product of any two linear expressions (3 out of no more than 4 terms correct with correct signs or 4 correct terms ignoring signs) for method of multiplying out remaining products, half of which are correct (ft their first product) cao	Note that, for example, $6 x^{2}+7 x$ or $7 x+2$ are regarded as three terms in the expansion of $(3 x+2)(2 x+1)$ First product must be quadratic but need not be simplified or may be simplified incorrectly
85 (a) (b)	52.5 Comparison	P1 P1 P1 A1 C1	starts to find area under graph, $\text { eg } \frac{30 \times 12}{2}(=180) \text { or } 50 \times 12(=600) \text { or } \frac{20 \times 12}{2}(=120)$ complete process to find area under graph, $\mathrm{eg} \frac{30 \times 12}{2}+50 \times 12+\frac{20 \times 12}{2}(=900)$ starts process to find half way time, eg (("900" $\div 2)-180) \div 12(=22.5)$ 52.5 oe acceptable comparison Acceptable (acceleration) during first part is positive but (acceleration) during last part is negative / deceleration (acceleration is) greater during the last part than during the first part gradient is steeper in the last part / longer to speed up than slow down speed / (acceleration) is increasing at start and decreasing at end (acceleration) is slower in the first part (acceleration) is ascending in the first part and descending in the last part 0.4 is the first part and -0.6 in the last part Not acceptable goes down in the last part speed is greater in last part than first part	

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	$n>2$	M1 A1 M1 M1 A1	for a method to isolate terms in n in any inequality or equation eg $14 n-11 n>6$ or $n=2$ cao for $-2-3<x \leq 4-3(-5<x \leq 1)$ for drawing a line from -5 to 1 or (indep) for an open circle at either -2 or -5 or (indep) for a closed circle at 4 or 1 cao	Ignore incorrect inequality sign and accept " $=$ " sign A circle around -5 and 1 implies M1 A line from -5 to 1 implies M2 if no working shown
89	Graph	B3 (B2 (B1	for a correct line between $x=-2$ and $x=4$ for a correct straight line segment through at least 3 of $(-2,-7),(-1,-5),(0,-3),(1,-1),(2,1),(3,3),(4,5)$ or for all of these points plotted but not joined OR for a line drawn with a positive gradient through $(0,-3)$ and clear intention to use a gradient of 2 , eg line through $(0,-3)$ going across 2 squares and up 4 squares) for at least 2 correct points stated or plotted OR for a line drawn with a positive gradient through $(0,-3)$ OR a line with gradient 2)	Ignore any incorrect points. Points need not be plotted for a correct line (segment) drawn Table of values Ignore any incorrect points Coordinates may be in a table or in working

Question	Answer	Mark	Mark scheme	Additional guidance
90	$\frac{7 x-13}{x-2}$	B1	for factorising eg $(x+5)(x-2)$	
		M1	for a method to divide $(x+5)$ by the algebraic fraction eg $(x+5) \times \frac{(x-1)}{x^{2}+3 x-10}$	Condone incorrect factorising
		M1	for finding 2 fractions with a common denominator or a single fraction eg $\frac{6(x-2)}{x-2}+\frac{(x-1)}{x-2}$ or $\frac{6(x-2)+(x-1)}{x-2}$ or $\frac{6\left(x^{2}+3 x-10\right)}{x^{2}+3 x-10}+\frac{(x+5)(x-1)}{x^{2}+3 x-10}$ or $\frac{6\left(x^{2}+3 x-10\right)+(x+5)(x-1)}{x^{2}+3 x-10}$	Condone incorrect factorising
		A1	$\frac{7 x-13}{x-2}$	

T EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
91 (a)(i)	0.83	B1	for a tangent drawn at $t=15$	Working: $7.5 \div 9=0.83 \ldots$... No tangent scores 0 marks
		M1	full method to use the tangent to find the gradient (eg 7.5 $\div 9$)	This mark can be awarded if the tangent is drawn at $t \neq 15$ Working may be seen on the diagram
		A1	for answer in the range 0.6 to 1.0	
(ii)	Statement	C1	statement Acceptable examples acceleration rate of change of speed increase in speed over time Not acceptable examples rate of change $\mathrm{m} / \mathrm{s} / \mathrm{s}$ increase in speed	
(b)	220	P1	for splitting the area into strips and correct process to find the area of one strip, eg $\frac{5 \times 4}{2}(=10)$ or $\frac{(4+12)}{2} \times 5(=40)$ or $\frac{(12+18)}{2} \times 5(=75)$ or $\frac{(18+20)}{2} \times 5(=95)$	Working $4,12,18,20$
		P1 A1	for a complete process using at least 4 strips to find the area under the curve eg, " $10 "+$ " $40 "+$ " $75 "+$ " 95 " for answer in the range 215 to 225 from correct working using at least 4 strips	Allow one error in the reading of speeds

Question	Answer	Mark	Mark scheme	Additional guidance
92	$m=\frac{f+4}{f-3}$	M1 M1 A1	for multiplying both sides by $m-1$, eg. $f(m-1)=3 m+4$ (dep) for a method to rearrange the formula to isolate terms in m in a correct equation, eg. $f m-3 m=f+4$ or $-f m+3 m=-f-4$ for $m=\frac{f+4}{f-3}$ oe, eg $m=\frac{-f-4}{-f+3}$	Condone missing brackets for this mark only
93	$y=-\frac{3}{4} x-\frac{11}{4}$	M1 M1 A1	for identifying gradient of $\frac{4}{3}$ for beginning a method to find the gradient of the perpendicular line eg $\frac{4}{3} \times m=-1$ or identifies gradient of perpendicular line as $-\frac{3}{4}$ for $y=-\frac{3}{4} x-\frac{11}{4}$ or any equivalent equation	Ignore constant term Can ft providing gradient is clearly stated $\begin{aligned} & 4 y+3 x=-11 \\ & y+5=-\frac{3}{4}(x-3) \end{aligned}$

Question	Answer	Mark	Mark scheme	Additional guidance
96	curve	C1	sketch of graph which starts above x-axis for negative x, and makes an increasing exponential rise into positive x	Condone graph "touching" the x axis. Do not award from a graph for positive x only.
	$(0,1)$ labelled	C 1	for showing a label of $(0,1)$ on the y axis	
Do not award if a point is given for crossing the				
x-axis. Accept the coordinates shown as a label				
of " 1 " written on the y axis at the intersection.				

T EXPERT
 TUITION

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance

\hline 98 \& $\left(\frac{-16}{5}, \frac{48}{5}\right)$ \& P1

P1

P1

A1 \& \begin{tabular}{l}
for a method to find gradient of \mathbf{L}_{1} eg $\frac{6-2}{4-12}(=-1 / 2)$ or states \mathbf{L}_{2} as $y=-3 x$

(dep on P1) for a method to find equation of \mathbf{L}_{1}

eg subs into $y="-1 / 2 " x+c$

OR states \mathbf{L}_{1} as $y="-1 / 2 " x+8$

(dep on P2) complete method to equate both lines eg " $-1 / 2 " x+8=-3 x$ oe

 \&

Ignore sketches.

Accept equivalents eg ($-3.2,9.6$)
\end{tabular}

\hline \multirow[t]{5}{*}{99} \& \multirow[t]{5}{*}{$$
\begin{gathered}
9<m<11 \\
-11<m<-9
\end{gathered}
$$} \& M1 \& for a correct method to begin rearranging to solve for m^{2} eg $88<m^{2}+7$ or $m^{2}+7<128$ or $81<m^{2}<121$ \& It is insufficient to just multiply all three elements by 4 ; some rearrangement must occur such as showing as two separate inequalities or isolating m^{2}

\hline \& \& M1 \& for a complete method to $m^{2}=81$ or $m^{2}=121$ or better \& Accept an inequality used in place of " $=$ ". m^{2} must be isolated at this stage.

\hline \& \& M1 \& for a set of critical values: at least two out of $9,11,-9,-11$ \& Do not award if other values are also given eg 10

\hline \& \& M1 \& for selecting a correct inequality for one set of critical values eg $9<m$ and $m<-9$ or $m<11$ and $-11<m$ or $9<m$ and $m<11$ or a set of inequalities with some error eg $9<m<11$ and $-11<m<-9$ where ? is an incorrect inequality symbol like $9<m \leq 11$ or $9 \geq m \geq 11$ or answer given as $\pm 9<m< \pm 11$ \& Could be shown as $9<m<11$ or $-11<m<-9$ or $-11<m<11$

\hline \& \& A1 \& $9<m<11$ and $-11<m<-9$ given as boundaries of m \& Accept with an "and" or an "or" or neither

\hline
\end{tabular}

Question	Answer	Mark	Mark scheme	Additional guidance
100	m^{7}	B1	cao	
	$125 n^{3} p^{9}$	B2		Allow multiplication signs
		(B1	for 2 of 3 terms correct in a single product)	$125 n^{3} p^{x}$ or $125 n^{x} p^{9}$ where $x \neq 0$ or $a n^{3} p^{9}$ where a is a number
	$8 q^{6} r^{3}$	B2		Allow multiplication signs
		(B1	for 2 of 3 terms correct in a single product)	$8 q^{6} r^{x}$ or $8 q^{x} r^{3}$ where $x \neq 0$ or $a q^{6} r^{3}$ where a is a number
101	$y=3 x-6$	M1	for a correct method to find the gradient of the line, or $m=3$ OR identifies -6 as the intercept in words or in a partial equation OR $y-b=m(x-a)$ where $m \neq 3$ and (a, b) is a correct coordinate	Just ringing -6 is insufficient
		M1	for $y=3 x+c$ or $(\mathrm{L}=) 3 x-6$ or $y=" 3 " x-6$ OR $y-y^{1}=3(x-x 1)$ or $y-b=" 3 "(x-a)$ where (a, b) is a correct coordinate	Award of this mark implies the first M1 c must be seen either as a letter or a number
		A1	accept $y=3 x+-6$ oe	

Question	Answer	Mark	Mark scheme	Additional guidance
102 (a) (b) (c)	$0,-4,-6,-4,0$ Graph $2.6 \text { and }-1.6$	B2 (B1 M1 A1 M1 A1	fully correct figures at least 2 correct figures) (dep B1) for at least 5 points correctly plotted ft from (a) fully correct graph for $y=-2$ drawn or intersections with $y=-2$ or $\mathrm{y}=x^{2}-x-4$ drawn or 1 correct value ft a quadratic graph or for answers in the range 2.5 to 2.7 and -1.5 to -1.7	Must be a curve If answers stated as coordinates, award M1 for both coordinates and M0 for one coordinate
103 (a) (b)	$\begin{gathered} \frac{2}{25} \\ \frac{1}{8} \end{gathered}$	B1 M1 A1	accept 0.08 $\operatorname{fg}(x)=\frac{2}{\left(4 x^{3}\right)^{2}}$ oe or $g(1)=4$ or $\frac{2}{\left(4 \times 1^{3}\right)^{2}}$ oe oe	All powers and products must be evaluated
104	$11-19$	P1 P1 A1	for drawing a tangent to the curve at time $=5$ for process to find the gradient, eg $70 \div 5$ (dep on $1^{\text {st }} \mathrm{P} 1$) for answer in the range $11-19 \mathrm{~m} / \mathrm{s}$	Using their drawn tangent, eg change in $y \div$ change in x Must come from gradient of a tangent.

Question	Working	Answer	Mark	Notes
106		$1 \frac{1}{2}$	M1 M1 A1	for correct expansion of the bracket or dividing all terms by 3 as a first step eg $3 x-3$ or $(5 x-6) / 3=3(x-1) / 3$ for isolating terms in x on one side of an equation eg $5 x-6-3 x=-3$ or both constants on one side of an equation, eg $5 x=3 x-3+6$, ft $5 x-6=3 x-1$ for $1 \frac{1}{2}$ oe
107 (a) (b) (c)		6 5 Shown	B1 B1 M1 C1	cao cao for writing 100^{a} or 1000^{b} as a power of $10\left(=10^{2 a}\right.$ or $\left.10^{3 b}\right)$ or $10^{2 a+3 b}$ or $100=10^{2}$ and $1000=10^{3}$ for complete chain of reasoning leading to conclusion
108 (a) (b)		0 to 20 seconds with reason	B1 C1 B1	for between 0 seconds and 20 seconds for reason given eg gradient is greatest oe ft from (a)

Question	Working	Answer	Mark	Notes
109		Region R shaded	M1 M1 A1	for two of the lines $y=1, x+y=5, y=2 x$ correctly drawn for three lines correctly drawn for fully correct region indicated with all lines correct
110	$\frac{--4 \pm \sqrt{(-4)^{2}-4 \times 1 \times 1}}{2 \times 1}$	0.268, 3.73	M1 A1	for $x-2= \pm \sqrt{ } 3$ oe or one solution or use of $x^{2}-4 x+1=0$ to substitute into formula (allow one error in substitution) $0.267-0.27,3.7-3.74$
111		7, -1	P1 P1 P1 P1 A1	for strategy to use $\mathrm{g}(3)=20$, e.g. $3 a+b=20$ for $g(1)=a+b$ for a process to find inverse of f. e.g. $\mathrm{f}^{-1}(x)=\frac{x-3}{5}$ or $\mathrm{f}^{-1}(33)=6$ for using $\mathrm{f}^{-1}(33)=\mathrm{g}(1)$ to find an equation e.g. $\frac{33-3}{5}=a+b$ for $a=7, b=-1$

T EXPERT
 TUITION

Question	Working	Answer	Mark	Notes
112 (a)		2	M1	for start to express the common ratio algebraically, eg $1 /(\sqrt{x}-1)$ or $(\sqrt{x}+1) / 1$ or $\sqrt{x}+1=k \times 1$ or $1=k \times(\sqrt{x}-1)$
			M1	for setting up an appropriate equation in x, eg $1 /(\sqrt{x}-1)=(\sqrt{x}+1) / 1$
			C1	for convincing argument to show $x=2$
(b)		Shown	M1	for expressing the relationship between the common ratio, one of the first three terms of the sequence and the fifth term, eg $5^{\text {th }}$ term $=3^{\text {rd }}$ term $\times(\text { common ratio })^{2}$
			C1	for a complete explanation to include eg, $(\sqrt{2}+1)(\sqrt{2}+1)^{2}=7+5 \sqrt{2}$

Question	Working	Answer	Mark	Notes
113		$9 \frac{1}{3}$	M1 M1 M1 A1	for writing at least 2 fractions with a common denominator eg. $\frac{3(3 x-2)}{12}, \frac{4(2 x+5)}{12}, \frac{2(1-x)}{12}$ with at least one correct numerator or for $\frac{3 x}{4}-\frac{2}{4}-\frac{2 x}{3}-\frac{5}{3}=\frac{1}{6}-\frac{x}{6} \quad\left(\right.$ accept $+\frac{5}{3}$ instead of $\left.-\frac{5}{3}\right)$ (dep) for a method to eliminate all fractions in an equation, ignore errors in any expanded terms eg. $3(3 x-2)-4(2 x+5)=2(1-x)$ or $6 \times[3(3 x-2)-4(2 x+5)]=12 \times[1-x]$ or $3 \times 3 x-3 \times 2-4 \times 2 x-4 \times 5=2 \times 1-2 \times x$ OR for the correct expansion of brackets leading to $\frac{9 x-6-8 x-20}{12}=\frac{2-2 x}{12}$ (dep on M2) for correctly isolating terms in x and number terms of their linear equation e.g. $9 x-8 x+2 x=2+6+20$ for $9 \frac{1}{3}$ oe
114		C, F, A, H	$\begin{gathered} \text { B3 } \\ \text { [B2 } \\ \text { [B1 } \end{gathered}$	for a fully correct table for 2 or 3 correct] for 1 correct]

Question	Working	Answer	Mark	Notes
115		1.45	P1 P1 A1 P1 A2	for converting to a common base with at least one correct conversion, eg. $(16=) 2^{4}$ or $(8=) 2^{3}$ (dep) for correct use of index laws to derive an equation, eg. $4 \times \frac{1}{5}+x=3 \times \frac{3}{4}$ oe for 1.45 oe (accept $2^{1.45}$) OR for a process to find the value of 2^{x}, eg. $8^{\frac{3}{4}} \div 16^{\frac{1}{5}}=2.73 \ldots$ for 1.45 oe (accept $2^{1.45}$)
116		$a=4, b=-42$	M1 M1 M1 A1	for at least two terms from $2(x-3)(x+3),(x+2)(x+3),(x-6)(x-3)$ (dep) for the correct expansion of at least two expressions, irrespective of signs, eg. $2 x^{2}-18, x^{2}+2 x+3 x+6, x^{2}-6 x-3 x+18$ oe for $2 x^{2}-18-x^{2}-5 x-6-x^{2}+9 x-18$ for $a=4, b=-42($ accept $4 x-42)$

T EXPERT

Question	Working	Answer	Mark	Notes
117 (a) (b)		$\begin{gathered} -0.4 \text { to }-0.2 \text { and } 3.2 \\ \text { to } 3.4 \end{gathered}$ $1.6 \text { to } 2.5$	M1 A1 M1 M1 A1	for $(y=) x+4$ for answers in the range -0.4 to -0.2 and 3.2 to 3.4 for drawing a tangent to the curve at $x=2$ for method to find gradient of their tangent for answer in the range 1.6 to 2.5
118		$2 n^{2}+n+1$	M1 M1 A1	for a correct start to a method to find nth term, eg. equal 2nd differences imply a term in n^{2} or sight of $a n^{2}+b n+c$ for a method leading to $2 n^{2}$ and either n or 1 for $2 n^{2}+n+1$ oe
119		$y=\frac{-3}{\sqrt{7}} x+\frac{8}{\sqrt{7}}$	M1 M1 A1	for method to find gradient of $O P$, eg $\frac{\sqrt{7}}{2} \div \frac{3}{2}\left(=\frac{\sqrt{7}}{3}\right.$ or $\left.0.88 \ldots\right)$ oe (dep) for method to find gradient of tangent, m, eg. $\frac{\frac{\sqrt{7}}{2}}{\frac{3}{2}} \times m=-1\left(m=\frac{-3}{\sqrt{7}}\right.$ or -1.13 .. $)$ for $y-\frac{\sqrt{7}}{2}=\frac{-3}{\sqrt{7}}\left(x-\frac{3}{2}\right)$ or $y=\frac{-3 \sqrt{7}}{7} x+\frac{8 \sqrt{7}}{7}$ oe or $y-1.32 . .=-1.13 . .(x-1.5)$

Question	Working	Answer	Notes
120 (a) (b)		$4 n+2$ No (supported)	M start to deduce nth term from information given eg $4 n+k$ where $k \neq 2$ A1 cao M1 starts method that could lead to a deduction eg uses inverse operations C1 for a convincing argument eg 34 is 107 so NO; 凹Пã $\square \square$ is not an integer
(a) (b) (c)		$\begin{gathered} \hline(1,4) \\ -0.4,2.4 \\ 3.75 \end{gathered}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \quad \text { accept } 3.7-3.8 \end{aligned}$

Question	Working	Answer	Notes
122	$\begin{aligned} & \left(4 n^{2}+2 n+2 n+1\right) \\ & \quad-(2 n+1)= \\ & 4 n^{2}+4 n+1-2 n-1 \\ & =4 n^{2}+2 n \\ & =2 n(2 n+1) \end{aligned}$	proof (supported)	M1 for 3 out of 4 terms correct in the expansion of $(2 n+1)^{2}$ or $(2 n+1)\{(2 n+1)-1\}$ P1 for $4 n^{2}+2 n$ or equivalent expression in factorised form C1 for convincing statement using $2 n(2 n+1)$ or $2\left(2 n^{2}+n\right)$ or $4 n^{2}+2 n$ to prove the result
123		$\frac{2 x+1}{3 x+5}$	M1 for $(3 x \pm 5)(2 x \pm 1)$ or $(2 x+1)(2 x-1)$ M1 $\frac{1}{(3 x \pm 5)(2 x \pm 1)} \times(2 x+1)(2 x-1)$ A1

| Question |
| :---: | :---: | :---: | :---: | :---: |
| (a) Working |
| (b) |

Question	Working	Answer		
$\mathbf{1 2 6}$		$t=\frac{w-11}{3}$	M1For isolating term in t, eg. $3 t=w-11$ or dividing all terms by 3, eg. $\frac{w}{3}=\frac{3 t}{3}+\frac{11}{3}$ A1 for $t=\frac{w-11}{3}$ oe	
$\mathbf{1 2 7}$	$(3 x-1)\left(4 x^{2}+20 x-\right.$ $3 x-15)$ $(x+5)\left(12 x^{2}-4 x-\right.$ $9 x+3)$ $(4 x-3)\left(3 x^{2}-x+\right.$ $15 x-5)$	Fully correct algebra to show given result	M1 for method to find the product of any two linear expressions; eg. 3 correct terms or 4 terms ignoring signs (dep) for method of 6 products, 4 of which are correct (ft their first product) for fully accurate working to give the required result A1	

Question	Working	Answer	Notes
128		$n^{2}-n+1$ oe	$\begin{array}{ll}\text { M1 } & \begin{array}{l}\text { for correct deduction from differences, eg. 2nd difference of } 2 \text { implies } 1 n^{2} \text { or sight } \\ \text { of } 1^{2}, 2^{2}, 3^{2}, . .\end{array} \\ \text { M1 } \\ \text { for sight of } 1^{2}, 2^{2}, 3^{2}, . . \text { linked with } 1,2,3, \ldots\end{array}$ ($\left.\begin{array}{l}\text { for } n^{2}-n+1 \text { oe }\end{array}\right]$OR
129		$3 x^{2}+10 x$	

Question	Working	Answer	Notes
131 (a) (b)		$\begin{aligned} & 13 y-1 \\ & 35 u^{3} w^{7} \end{aligned}$	M1 for expansion of one bracket A1 for full simplification B1 for 2 of $35, u^{3}$ and w^{7} correct B1 cao
132 (a) (b)		explanation explanation	C1 for "incorrect expansion of brackets" oe C1 for "has not obtained both solutions" oe
133		119	M1 for 1.06×100 oe M1 for $1.06^{3} \times 100$ oe A1 accept 119.1016
134	$\begin{aligned} & (\sqrt{a}+2 \sqrt{b})(\sqrt{a}-2 \sqrt{b}) \\ & \sqrt{a} \times \sqrt{a}-2 \sqrt{a} \sqrt{b}+ \\ & 2 \sqrt{b} \sqrt{a}-2 \sqrt{b} \times 2 \sqrt{b} \end{aligned}$	$a-4 b$	M1 for expansion of brackets or $\sqrt{4 b}=2 \sqrt{b}$ M1 for a or $(-4 b)$ A1 cao
135 (a) (b)(i)		sketch sketch sketch	B1 for correct shape for $0 \leqslant x \leqslant 360$ B1 for fully correct sketch with labels B1 cao B1 cao

Question	Answer	Mark	Mark scheme	Additional guidance
136	12	P1	for a process to find the fifth term, eg 3a+5a(=8a)	
		P1	for setting up the equation eg $a+2 a+3 a+5 a+[8 a]=228$	allow use of what is clearly indicated as the missing term $\frac{228}{19}$ or $\frac{228}{1+2+3+5+8}$ scores P1 P1 $\frac{228}{1+2+3+5+[8]}$ scores P0P1
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
139	Shown (supported)	M1 M1 M1 C1	for eliminating y or x, eg $x^{2}+3 x-3=5 x-4$ for rearranging, collecting terms and setting to 0 eg $x^{2}-2 x+1(=0)$ for factorising or solving eg $(x-1)^{2}(=0)$ for statement confirming only 1 point in common eg only 1 root or only 1 value of x so only 1 set of coordinates	There must be a statement in words for the award of this mark
(a) (b)	19.1 Statement	M1 M1 A1 C1	for a method to find an estimate for the area of at least 1 trapezium under the curve eg $0.5 \times 1 \times(4+6)$ or $0.5 \times 1 \times(6+7.2)$ or $0.5 \times 1 \times(7.2+7.8)$ for a complete method eg $0.5 \times 1 \times(4+6)+0.5 \times 1 \times(6+7.2)+0.5 \times 1 \times(7.2+7.8)$ or $0.5\{(4+7.8)+2(6+7.2)\}$ cao eg distance (travelled)	Allow a maximum of 2 errors in y values used Ignore any reference to units If units are given they must be correct
141	$\frac{1}{x(x+4)}$	M1 M1 A1	inverting the fraction and multiplying eg $\frac{6 x^{3}}{\left(9 x^{2}-144\right)} \times \frac{3(x-4)}{2 x^{4}}$ for factorising $9 x^{2}-144$, eg $(3 x-12)(3 x+12)$ cao	

Question	Answer	Mark	Mark scheme	Additional guidance
142 (a) (b) (c)	n^{8} $c d^{3}$ $x>\frac{14}{5}$	B1 M1 A1 M1 A1	cao for partial simplification, eg c or d^{3} for $c d^{3}$ for $5 x>14$ or $5 x=14$ or critical value, $\frac{14}{5}$ oe $x>\frac{14}{5}$ or $x>2 \frac{4}{5}$ or $x>2.8$	May be seen as simplification in original fraction Accept $c^{1} d^{3}$ Must see carried out correctly, ie at least $5 x>7 \times 2$ not just intention seen. Allow other signs for this mark.
143 (a) (b)	$\begin{gathered} \hline-2,4 \\ 0.55 \text { to } 0.65, \\ 3.35 \text { to } 3.45 \end{gathered}$	B1 M1 A1	cao for correct method, eg marking intercepts with x-axis or one correct answer or both solutions given as a coordinate eg $(0.6,3.4)$ or $(0.6,0)(3.4,0)$ for answers in the ranges 0.55 to 0.65 and 3.35 to 3.45	If answers are stated as coordinates, award M1 for both coordinates and M0 for one coordinate. With no extras

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	$x^{2}-4 x-45$ $3 x(3 x+2)$	M1 A1 B2 (B1	for 3 of 4 terms correct or 4 terms correct ignoring signs cao for $3 x(3 x+2)$ for $3\left(3 x^{2}+2 x\right)$ or $x(9 x+6)$ or $3 x(a x+b)$ where a and b are integers or $(3 x+2)$ as a factor)	3 terms correct can be implied, eg $x^{2}-4 x+c$
148 (a) (b)	8.5 $4(y+3)$	M1 M1 A1 B1	for multiplying both sides by 7 as a first step eg $9+x=7(11-x)$ or dividing each term on the left hand side by $7 \operatorname{eg} \frac{9}{7}+\frac{x}{7}=11-x$ (dep M1) for method to isolate the x terms on one side oe $4(y+3) \text { or } 4 y+12$	$\times 7$ written near the equation is not enough for this mark
149	Proof	M1 M1 A1	for correct expressions for two consecutive even numbers eg $2 n$ and $2 n+2$ (dep M1) for expanding both expressions with at least one expansion fully correct eg $4 n^{2}$ and $4 n^{2}+4 n+4 n+4$ or for factorising both terms and intention to square correctly eg $(2 n)^{2}$ and $2^{2}(n+1)^{2}$ complete proof	$\begin{aligned} & (2 n)^{2}+(2 n+2)^{2} \\ & =4 n^{2}+4 n^{2}+8 n+4 \\ & =8 n^{2}+8 n+4=4\left(2 n^{2}+2 n+1\right) \end{aligned}$ Or $\begin{aligned} & (2 n)^{2}+(2 n-2)^{2} \\ & =4 n^{2}+4 n^{2}-8 n+4 \\ & =8 n^{2}-8 n+4=4\left(2 n^{2}-2 n+1\right) \end{aligned}$ Or $\begin{aligned} & (2 n)^{2}+(2 n+2)^{2} \\ & =4(n)^{2}+4(n+1)^{2} \\ & =4\left(n^{2}+(n+1)^{2}\right) \end{aligned}$

Question	Answer	Mark	Mark scheme 150	

Question	Answer	Mark	Mark scheme	Additional guidance
153	$(-7,-1)$	M1 A1	for a method which shows understanding of the type of transformation eg reflection in the y axis or translation $\binom{0}{-3}$ or "(0 units right and) 3 units down" or for x coordinate as -7 or y coordinate as -1 for $(-7,-1)$	"Reflection" or "Translation" alone is insufficient. Note that the -7 or the -1 may appear in the working space, not necessarily in the final answer.
154	$2 n^{2}-3$	M1 M1 A1	begins to work with $2^{\text {nd }}$ differences identifies $2 n^{2}$ as part of the expression eg gives the sequence $2,8,18,32, \ldots$ or gives a quadratic expression which includes the term $2 n^{2}$ oe	$\begin{array}{lllll} 6 & 10 & 14 & 18 & 22 \\ 4 & 4 & 4 \end{array}$ A quadratic expression of the form $2 n^{2}+b n+c$ can be awarded the first 2 marks
155	B, A, D, C	$\begin{aligned} & \mathrm{B} 2 \\ & \text { (B1 } \end{aligned}$	for all correct for two or three correct)	

Question	Answer	Mark	Mark scheme	Additional guidance
156 (a)	$\begin{gathered} 6 x^{3}+35 x^{2}+58 x+ \\ 21 \end{gathered}$	M1	for a method to find the product of two linear expressions, 3 correct terms out of 4 terms e.g. $2 x^{2}+x+6 x+3$ or $3 x^{2}+7 x+9 x+21$ or $6 x^{2}+14 x+3 x+7$	Note that, for example, $7 x+3$ is regarded as three terms in the expansion of $(2 x+1)(x+3)$
		M1	for a complete method to obtain all terms, at least half of which are correct (ft their first product) e.g. $6 x^{3}+32 x^{2}+42 x+3 x^{2}+16 x+21$	First product must be a 3 or 4 term quadratic but need not be simplified or may be simplified incorrectly
		A1	cao	Accept $a=6, b=35, c=58, d=21$
	$\frac{2}{5}<x<1 \frac{3}{5}$	M1	for first step of finding the square root of both sides eg $1-x< \pm \frac{3}{5}$ OR for writing in the form $a x^{2}+b x+c(<0)$ eg $x^{2}-2 x+\frac{16}{25}(<0)$ or $25 x^{2}-50 x+16(<0)$	Condone use of an " $=$ " sign; accept one square root (eg $\frac{3}{5}$) only shown.
		M1	for showing critical values $\frac{2}{5}(=0.4)$ and $1 \frac{3}{5}(=1.6)$ oe	Critical values can be stated, or shown in an expression (which may have incorrect inequality symbols)
		A1	for $\frac{2}{5}<x<1 \frac{3}{5}$ oe	Could be written as two separate expressions eg $x>\frac{2}{5}$ and $x<1 \frac{3}{5}$ oe

Question	Answer	Mark	Mark scheme	Additional guidance
157	$x=3 \frac{2}{5}, y=-\frac{4}{5}$	M1	for substitution of a rearrangement eg $x=\frac{7-4 y}{3}$ or $y=\frac{7-3 x}{4}$ into $x^{2}-4 y^{2}=9$ or expansion of $\left(\frac{7-4 y}{3}\right)^{2}=\frac{49-56 y+16 y^{2}}{9}$ or $\left(\frac{7-3 x}{4}\right)^{2}=\frac{49-42 x+9 x^{2}}{16}$	Expansion may not be in simplest form but must be correct
	$x=5, y=-2$	M1	for correct expansion and substitution eg $\frac{49-56 y+16 y^{2}}{9}-4 y^{2}=9$ or $x^{2}-4\left(\frac{49-42 x+9 x^{2}}{16}\right)=9$	
		A1	for forming quadratic ready for solving eg $-20 y^{2}-56 y-32(=0)$ or $5 y^{2}+14 y+8(=0)$ oe or $5 x^{2}-42 x+85(=0)$ oe	Note we do not need to see " $=0 "$; just the LHS is sufficient.
		M1	ft a 3 term quadratic, factorising eg $(5 y+4)(y+2)(=0)$ or $(5 x-17)(x-5)(=0)$ or correct use of formula eg $(y=) \frac{-14 \pm \sqrt{14^{2}-4 \times 5 \times 8}}{2 \times 5}$ or $(x=) \frac{--42 \pm \sqrt{42^{2}-4 \times 5 \times 85}}{2 \times 5}$ or completing the square, eg $\left(y+\frac{7}{5}\right)^{2}-\frac{9}{25}(=0)$ or $\left(x-\frac{21}{5}\right)^{2}-\frac{16}{25}(=0)$	Can be implied by both x values correct or both y values correct.
		A1	correctly pairs x and y values: $x=3 \frac{2}{5}, y=-\frac{4}{5}$ oe , $x=5, y=-2$	Answers must be correctly paired. Accept coordinate pairs

Question	Answer	Mark	Mark scheme	Additional guidance
158 (a)	$2,-4,2,8$	B2	all 4 values correct	
		(B1	for 2 or 3 correct values)	
	Graph	M1	(dep B1) for at least 5 points plotted correctly ft from part a	
		A1	for a fully correct curve drawn	Accept freehand curves drawn that are not line segments; there must be some attempt to draw the minimum point below $y=-4$
(c)	-2.6 or 1.6	B1	for 1 correct value, ft a non linear graph	Award for -2.6 or 1.6 or both values but do not award the mark if a correct value is given with an incorrect value. Accept 1.56 or -2.56 Note for ft to be applied if the graph may be joined by line segments

Question	Answer	Mark	Mark scheme	Additional guidance
160	1.56	B1	1.56 to 1.563	If an answer in the range is seen in working and then incorrectly rounded award full marks.
	3.63	M1	for a complete method to find $\operatorname{fg}(34)$ eg $4 \sin 65(=3.625 .$. or $\operatorname{fg}(x)$ eg $4 \sin (2 x-3)$	
		A1	for answer in the range 3.6 to 3.63	
	Statement	C1	for statement eg positive and negative square root required. Acceptable examples The other answer is -9 The quadratic should have 2 solutions.	
			Not acceptable examples He has not expanded the brackets. He needed to $(x+4)$ twice as there is a squared sign. $(x+4)^{2}$ is 16 not 25 . Didn't expand the bracket.	
161	Graph drawn	C2	for fully correct sketch between 0° and 360°	
		(C1	for a graph with clear asymptotes at 90° and 270° only or the correct graph translated along the x-axis must have a period of 180)	

Question	Answer	Mark	Mark scheme	Additional guidance
162	proof	C1	for writing an expression for an odd number, eg $2 n+1$ or $2 n-1($ assuming n is any integer $)$ or states n is even and eg $(n+1)$ or $(n+3)$ as odd numbers	
		C1	Cor a correct expression of the form $(2 n+1)^{2}-(2 n-1)^{2}$ expanded eg $4 n^{2}+12 n+9-\left(4 n^{2}+4 n+1\right)$ or $4 n^{2}+4 n+1-\left(4 n^{2}-4 n+1\right)$ or $(2 n+1+2 n-1)(2 n+1-(2 n-1))$ or when n is even and eg $\left(n^{2}+6 n+9\right)-\left(n^{2}+2 n+1\right)(=4 n+8)$ for a correct simplified expression as a multiple of 8 eg $8 n+8$ or $8 n$ or when n is even and eg $4 n+8$ and full explanation as to why $4(n+2)$ is always a multiple of 8	Expansion of $(2 n-1)^{2}-(2 n+1)^{2}$ oe is acceptable

Question	Answer	Mark	Mark scheme	Additional guidance
163	$x=-\frac{23}{7}, y=\frac{15}{7}$	M1	for substitution of a rearrangement eg for $2(1-2 y)^{2}-y^{2}=17$ or $2 x^{2}-\left(\frac{1-x}{2}\right)^{2}=17$ or expansion of $(1-2 y)^{2}=1-4 y+4 y^{2}$ or $\left(\frac{1-x}{2}\right)^{2}=\frac{1-2 x+x^{2}}{4}$	
	$x=3, y=-1$	M1	for expansion of bracket and substitution eg $2\left(1-4 y+4 y^{2}\right)-y^{2}(=17)$ or $8 x^{2}-\left(1-2 x+x^{2}\right)(=68)$	
		A1	for forming quadratic ready for solving eg $7 y^{2}-8 y-15(=0)$ or $7 x^{2}+2 x-69(=0)$	
		M1	ft a 3 term quadratic, factorising eg $(7 y-15)(y+1)(=0)$ or $(7 x+23)(x-3)(=0)$ or correct use of formula eg $\frac{8 \pm \sqrt{64+420}}{14}$ or $\frac{-2 \pm \sqrt{4+1932}}{14}$ or completing the square	Can be implied by both x values correct or both y values correct.
		A1	$x=-\frac{23}{7}$ oe, $y=\frac{15}{7}$ oe and $x=3, y=-1$	Answers must be correctly paired. (Maybe in the body of the working) Accept for x between -3.29 and -3.28 and for y between 2.14 and 2.15
				Answers only award 0 marks

Question	Answer	Mark	Mark scheme	Additional guidance
164	$9 p+13$	M1 A1	for method to expand one bracket, eg $5 \times p+5 \times 3(=5 p+15)$ or $2 \times 1-2 \times 2 p(=2-4 p)$ or $-2 \times 1-2 \times-2 p(=-2+4 p)$ cao	If an attempt is made to multiply by -2 in the second brackets then it must be done consistently.
165	3.8	M1 M1 A1	for a correct first step, eg $5-x=2(2 x-7)$ or $5-x=4 x-14$ or $\frac{5}{2}-\frac{x}{2}=2 x-7$ (dep) for isolating terms in x eg $4 x+x=14+5$ or $-\frac{x}{2}-2 x=-7-\frac{5}{2}$ oe	Method must show LHS $\times 2$ and both terms on RHS $\times 2$ or $5-x$ and both terms on RHS $\times 2$ eg $-4 x$ both sides with -5 both sides or $+x$ both sides with +14 both sides Accept $\frac{19}{5}, 3 \frac{4}{5}$ oe but not $\frac{-19}{-5}$ oe
(a) (b) (c)	1.5 Explanation Explanation	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { C1 } \\ & \text { C1 } \end{aligned}$	for method to find the gradient of the line, eg $\frac{12}{8}$ for 1.5 oe Explanation relating to rate of change of volume with time, eg rate at which the container fills or change in number of litres per second or number of litres added per second Explanation relating to volume (amount) of liquid in the container at the start eg number of litres in the container when $t=0$, amount of liquid in the container to start with	Must see use of scales. Ignore any quantities given. Award the mark for an explanation involving rate.

Question	Answer	Mark	Mark scheme	Additional guidance
167 (a) (b)	$488 \text { to } 507$ Underestimate (supported)	M1	for method to find area of one strip using trapezia, eg $\frac{1}{2} \times 5 \times 22(=55)$ or $\frac{1}{2} \times 5 \times(22+28)(=125)$ or $\frac{1}{2} \times 5 \times(28+32)(=150)$ or $\frac{1}{2} \times 5 \times(32+35)(=167.5)$ OR for a method to find an estimate for the area using rectangles eg 5×22 or 5×28 or 5×32 or 5×35 for complete and correct method to find the area using four strips, eg $\frac{1}{2} \times 5 \times 22+\frac{1}{2} \times 5 \times(22+28)+\frac{1}{2} \times 5 \times(28+32)$ $+\frac{1}{2} \times 5 \times(32+35)$ or $5 \times 22+5 \times 28+5 \times 32+5 \times 35$ for answer in the range 488 to 507 (SC B1 for using area under the curve) (dep M1) for underestimate since parts not included below the graph OR ft their method	May use area of triangle + area of rectangle for the second, third and fourth strips - lengths must be correct. May use triangle for first strip, $\frac{1}{2} \times 5 \times 22$ May use triangle for first strip, $\frac{1}{2} \times 5 \times 22$

Question	Answer	Mark	Mark scheme	Additional guidance
168	42	P1	for process to find an equation in a and b, eg $a \times 2^{2}+b \times 2=-2(4 a+2 b=-2)$ or $a \times 4^{2}+b \times 4=12(16 a+4 b=12)$	
		P1	for process to find a pair of simultaneous equations and eliminate one unknown, eg $16 a+8 b=-8$ and $16 a+4 b=12$ and subtraction or $16 a+4 b=12$ and $8 a+4 b=-4$ and subtraction	Allow one arithmetic error in elimination, eg $16 a+8 b=-8$ and $16 a+4 b=12$ leading to $4 b=20$ but no subtraction sign seen
		A1	for $a=2$ and $b=-5$	
		A1	cao	
	$n^{2}-n$	M1	for correct method, eg n^{2} seen as a term	
		A1	for $n^{2}-n$ oe	

Question	Answer	Mark	Mark scheme	Additional guidance
169	Correct statement	C1	for substituting both 1 and 2 into $x^{3}+x$ or into $x^{3}+x-7$	All arithmetic shown must be correct. Ignore any additional trials shown.
		C1	for values 2 and 10 plus explanation that these are above and below 7 , or for values -5 and 3 plus explanation that there is a change of sign, thus implying a solution lies between 1 and 2	
	Correct	C1	for correct algebraic rearrangement	
	1.74	M1	for substitution of 2 into the formula eg $\sqrt[3]{7-2}(=1.70997 \ldots)$	$\begin{aligned} & x_{1}=1.70997 \ldots \\ & x_{2}=1.74241 \ldots \end{aligned}$
		M1	for a substitution of x_{1} to give $x_{2}(=1.74241 \ldots)$	$x_{3}=1.73884 \ldots$ Accept an accuracy of 2 dp or more
		A1	for answer in the range 1.738 to 1.74	rounded or truncated for values of x_{1} and x_{2} Award the marks for 1.7 on the answer line provided correct iterations are shown in the working space.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :---: | :---: | :--- | :--- | :--- |
| 170 | $\frac{5}{3}$ | P1 | for process to derive an equation in x,
 eg $\frac{x}{4 x-1}=\frac{6 x+5}{12 x+31}$
 for complete process to remove fractions,
 eg $x(12 x+31)=(6 x+5)(4 x-1)$
 for process to reduce to a quadratic equation,
 eg $12 x^{2}-17 x-5=0$
 for process to solve the quadratic equation by factorisation or use of
 quadratic formula,
 eg $(4 x+1)(3 x-5)=0$ | Must be correct use of brackets |
| | | P1 | | Award for correct LHS only. |
| Accept substitution into the formula; | | | | |
| for $\frac{5}{3}$ oe | $\frac{-17 \pm \sqrt{(-17)^{2}-4 \times 12 \times-5}}{2 \times 12}$
 Accept answers in the range 1.66 to 1.67
 as equivalent | | | |

Question	Working	Answer	Mark	Notes
171		147	$\begin{aligned} & \text { P1 } \\ & \text { P1 } \\ & \text { P1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	starts process, eg uses x and $x+7$ starts to work with at least 6 correct sides, may be on the diagram or in an expression (dep on previous P 1) gives a correct expression for the perimeter, $\text { eg } x+x+7+x+7+x+7+x+x+7+x+7+x+7$ or adds at least 6 correct sides and equates to 70 for width $=3.5$ oe and length $=10.5 \mathrm{oe}$ $\mathrm{ft}(\operatorname{dep} \mathrm{P} 2)$ for correct area for their x
172		$(x+3)^{2}-16$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~A} 1 \end{aligned}$	for $(x+3)^{2}$ or $\left(x^{2}+6 x-7=\right) x^{2}+2 a x+a^{2}+b$ cao

Г EXPERT

Question	Working	Answer	Mark	Notes
(b) (c) (d)	$\begin{aligned} & x_{1}=0.625 \\ & x_{2}=0.6765327696 \\ & x_{3}=0.6704483001 \end{aligned}$	Shown Shown $0.6704(483001)$ Comment	M1 C1 C1 C1 M1 M1 A1 M1 C1	for method to establish at least one root between $x=0$ and $x=1$, eg $f(0)=-5$ and $f(1)=3$ for correct values and a deduction about the roots eg as there is a sign change there must be at least one root between $x=0$ and $x=1$ (as f is continuous) for a correct first step in rearrangement, eg $x\left(x^{2}+7\right)-5=0$ or $x^{3}+7 x=5$ for clear and correct steps showing complete rearrangement for substitution of 1 into the formula (to get 0.625) for substitution of " $x_{1}=0.625$ " and " $x_{2}=0.6765327696$ " to give x_{2} and x_{3} 0.6704(483001) substitutes answer to (c) into expression (to get $-0.00549 \ldots$...) appropriate comment, eg accurate as answer is close to 0
(a) (b)	values $0,2,5,10,18$		M1 M1 A1 C1	for starting to find area under the curve, eg $0.5 \times 5 \times 2(=5)$ for a complete method to find the area under the curve using 4 strips of equal width, eg " 5 " $+0.5 \times 5 \times(2+5)(=17.5)+0.5 \times 5 \times(5+10)(=37.5)+0.5 \times 5 \times(10+18)(=70)$ for 130 or answer in range 130.1 to 132 supported by accurate working for "overestimate" and appropriate reason linked to method eg area between trapeziums and curve also included
175		Proof (supported)	M1 M1 M1 M1 C1	starts process to find point of intersection by substituting, eg $(10+2 y)^{2}+y^{2}(=20)$ for expanding, eg $4 y^{2}+20 y+20 y+100$ (3 out of 4 terms correct) (dep M2) for 3-term quadratic equation ready for solving, eg $5 y^{2}+40 y+80=0$ (dep on previous M1) for method to solve an equation of the form $a y^{2}+b y+c=0$, eg by factorising or correct substitution into quadratic formula fully correct method leading to $y=-4$ or $x=2$ or $(y+4)^{2}=0$ or $(x-2)^{2}=0$ and statement, eg only one point of intersection so the line is a tangent to the circle

Question	Working	Answer	Mark	Notes
176		$\begin{aligned} & x=-\frac{2}{3} \\ & y=-2 \end{aligned}$	M1 M1 A1	for a method to eliminate one variable (condone one arithmetic error) (dep) for substituting found value in one of the equations or appropriate method after starting again (condone one arithmetic error) $x=-\frac{2}{3} \text { oe and } y=-2$
177		$\begin{aligned} & y \geq-2, y \geq x \\ & \text { and } y \leq 0.5 x+1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & y=-2 \text { indicated; accept any inequality for } "=" \\ & y=x \text { oe indicated; accept any inequality for } "=" \\ & y=0.5 x+1 \text { oe indicated; accept any inequality for } "=" \\ & y \geq-2, y \geq x \text { and } y \leq 0.5 x+1 \end{aligned}$
178 (a) (b)		$\frac{x+4}{2 x+3}$ $v=\frac{15 t}{w+30}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Factorising the denominator $(2 x \pm 3)(x \pm 4)$ or $2\left(x \pm 1 \frac{1}{2}\right)(x \pm 4)$ Factorising the numerator $(x-4)(x+4)$ oe A correct step towards solution e.g. expanding brackets to get $15 t-30 v$ or multiply both sides by v For a method to rearrange the formula to isolate terms in v eg $v w+30 \mathrm{v}=15 \mathrm{t}$ oe

Question	Working	Answer	Mark	Notes
179		$x<-2, x>\frac{1}{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	for a first step to solve the quadratic e.g. factorisation: $(2 x+4)\left(x-\frac{1}{2}\right)$ or $(2 x-1)(x+2)$ or using the formula $\frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times(-2)}}{2 \times 2}$ for -2 and $\frac{1}{2}$
$\begin{array}{cc} \hline 180 & \text { (a) } \\ & \text { (b) } \end{array}$		(0,1) Circle radius 4 Centre (3,0) and $(-1,0)$ and $(7,0)$ labelled	B1 M1 M1 A1	(0,1) For centre $(3,0)$ implied by drawing or label or a circle of radius 4 or intersections on the x-axis at -1 or 7 implied by drawing or labels for 2 of centre $(3,0)$ implied by drawing or label intersections on the x-axis at -1 and 7 implied by drawing or label circle drawn with radius 4 for a fully correct answer

Question	Working	Answer	Notes
181 (a)	$8,13,21, \quad 34$	B1 cao	
(b)	$a, b, a+b, a+2 b, 2 a+3 b$	Shown	

Question	Working	Answer	Notes
182 (a) (b) (c)	$6 x-x>17-4$	$(y+6)(y+1)$ 2.6 $-2,-1,0,1,2,3$	M1 for $(y \pm 6)(y \pm 1)$ A1 M1 for method to isolate terms in x in an inequality or an equation A1 oe eg. $\frac{13}{5}$ M1 for $\mathbf{o r}-2.5<n \leq 3$ or $-4,-2,0,2,4,6 \text { or }-4,-3,-2,-1,0,1,2,3,4,5,6$ A1
183 (a) (b)		$\frac{x+1}{4}$ $\frac{13}{16}$	M1 start to method eg. $y=4 x-1$ or $x=\frac{y+1}{4}$ A1 oe P1 for start to process eg. $\mathrm{f}(4 k)=16 k-1 \quad$ or $\mathrm{g}(2)=\frac{12+1}{4}$ A1

Question	Working	Answer	Notes
184	$\begin{aligned} & x=\frac{--5 \pm \sqrt{(-5)^{2}-4 \times 1 \times 3}}{2}= \\ & \frac{5 \pm \sqrt{13}}{2} \end{aligned}$	4.30 or 0.697	M1 Substitute into quadratic formula - allow sign errors M1 Evaluate as far as $\frac{5 \pm \sqrt{13}}{2}$ A1
185 (a)	$\begin{aligned} & \mathrm{F}(x)=x^{3}+4 x-1 \\ & \mathrm{~F}(0)=-1, \mathrm{~F}(1)=4 \end{aligned}$	Shown	M1 Method to establish at least one root in [0,1]e.g $x^{3}+4 x-1$ $(=0)$ and $F(0)(=-1), F(1)(=4)$ oe A1 Since there is a sign change there must be at least one root in $0<x<1$ (as F is continuous)
(b)	$\begin{aligned} & 4 x=1-x^{3} \\ & \text { Or } \quad \frac{x^{3}}{4}+x=\frac{1}{4} \end{aligned}$	Shown	C1 C1 for at least one correct step and no incorrect ones
(c)	$\begin{aligned} & x_{1}=\frac{1}{4}-\frac{0}{4}=\frac{1}{4} \\ & x_{2}=\frac{1}{4}-\frac{\left(\frac{1}{4}\right)^{3}}{4}=\frac{1}{4}-\frac{1}{256} \end{aligned}$	$\begin{gathered} 0.246(09375) \\ \text { Or } \\ \frac{63}{256} \end{gathered}$	B1 $\quad x_{1}=\frac{1}{4}$ M1 M1 for $x_{2}=\frac{1}{4}-\frac{\left(\frac{1}{4}\right)^{3}}{4}$ A1 A1 for $0.246(09375)$ or $\frac{63}{256}$ oe

Question	Working	Answer	Notes
186		$y=2 x+1$	M1 for a method to find the gradient M1 for a method to find the c in $y=\mathrm{m} x+\mathrm{c}$ A1 $y=2 x+1$
187		$\begin{aligned} & (x-1)(x \\ & +4) \end{aligned}$	$\begin{aligned} & \text { M1 }(x \pm 1)(x \pm 4) \\ & \text { A1 }(x-1)(x+4) \text { oe } \end{aligned}$
188		A and D	C1 in any order
189		Region R	M1 for one line correctly drawn M1 for two lines correctly drawn M1 for three lines correctly drawn A1 fully correct region indicated with all lines correct
190		$(x+1)^{2}-9$	$\begin{aligned} & \text { M1 for }(x+1)^{2} \text { or } m=1 \\ & \text { A1 cao } \end{aligned}$
191		$\frac{3 x+10}{x+2}$	B1 for factorising to get $(x+3)(x+2)$ M1 for dealing with the division of $(x+3)$ by $\frac{x^{2}+5 x+6}{x-2}$ M1 for two correct fractions with a common denominator or a correct single fraction prior to subtracting eg $\frac{4(x+2)-(x-2)}{x+2}$ or $\frac{4(x+2)}{(x+2)}-\frac{(x-2)}{(x+2)}$ A1 $\frac{3 x+10}{x+2}$
192		$(6,-1)$	M1 for a method showing the translation or reflection in the x-axis of a graph or a correct coordinate A1 cao
(b) (c)	$\begin{aligned} & x_{1}=3.29296875 \\ & x_{2}=3.276659786 \\ & x_{3}=3.279420684 \end{aligned}$	Rearrangement Values Statement	M1 for re arranging to $x^{3}=$ C 1 a clear step to show re arrangement M1 for substitution of 3.2 into the iterative formula A1 for $x_{1}=3.292(96875)$ A1 for $x_{2}=3.276(659786)$ and $x_{3}=3.279(420684)$ C1 Statement eg estimates of a solution to the original equation

Question	Working	Answer	Notes
194		Proof	B1 state the difference of two squares in algebraic notation eg $p^{2}-q^{2}$ M1 for writing down expressions for two different terms from the sequence eg $6 n+1$ and $6 m+1$ M1 for expanding one squared bracket to obtain 4 terms with all 4 correct without considering signs or for 3 terms out of 4 correct with correct signs A1 for $36\left(m^{2}-n^{2}\right)+12(m-n)$ oe M1 (dep M2) for factorising their expression by 12 C 1 for fully correct working with statement justifying $(m-n)(3(m+n)+1)$ is even eg considering odd and even combinations

都

Question	Working	Answer	Notes
195		$t=3(y+2 a)$	M1 adding $2 a$ to both sides or multiplying each term by 3 A1 $t=3(y+2 a)$ or $t=3 y+6 a$
196		$\begin{gathered} x=4.5 \\ y=-2.5 \end{gathered}$	M1 for a correct process to eliminate one variable (condone one arithmetic error) A1 cao for either x or y (dep) for substituting found value into one of the M1 equations or appropriate method after starting again (condone one arithmetic error) cao A1
197		shown	$\begin{aligned} & \text { C1 for } \frac{a(b+1)-a}{(b+1)^{2}} \text { or } \frac{a(b+1)^{2}-a(b+1)}{(b+1)^{3}} \text { oe } \\ & \text { C1 complete chain of reasoning } \end{aligned}$
198		proof	
199		$2(x+4)^{2}+3$ $(-4,3)$	$\left.\begin{array}{ll}\text { P1 } & \text { process to find } a \text {, eg } 2 x^{2}+16 x+35=2\left(x^{2}+\ldots\right) \\ & \text { or } a=2\end{array}\right]$P1 for $\left.2\left((x+4)^{2}+\ldots\right)\right)$ or $b=4$ A1 for $2(x+4)^{2}+3$ or $a=2, b=4, c=3$ B1 ft from answer of form $a(x+b)^{2}+c$

Question	Working	Answer	Mark	Notes
200 (a) (b) (c) (d)		x^{12}218example given	1 1 1	B1 cao B1cao B1 cao B1 for stating a value of n for which $6 n+1$ is not prime eg $4,8,9,14,19, \ldots, 1000$ etc
201		-2	3	M1 for expanding brackets eg $4 x+12 \quad(=2 x+8)$ or dividing by 4 as a first step eg $x+3=\frac{2 x}{4}+\frac{8}{4}$ M1 ft their equation of the form $a x+b=2 x+8$ or $x+3=a x+b$ for isolating terms in x and numbers e.g. $4 x-2 x=8-12$ seen as part of their solution oe A1 cao
202 (a) (b) (c)		$3 n-1$ Yes $3(n+1)-1$	2 2 1	B2 for $3 n-1$ oe (B1 for $3 n+k, k$ an integer $\neq-1$ or absent) M1 for $3 n-1=299 \mathrm{ft}$ if B1 earned in (a) A1 for eg Yes and $n=100$ oe B1 oe eg $3 n+2$ or ft (a) providing at least B1 earned
203		$(102,104)$	3	B1 for $(P=)(106,107)$ M1 for a complete method $\begin{aligned} & \operatorname{eg}[104-(" 106 "-104), 105.5-(" 107 "-105.5)] \\ & \text { or }(A=)(102, y) \text { or }(A=)(x, 104) \end{aligned}$ A1 cao

Question	Working	Answer	Mark	Notes
204 (a) (b) (c)		$\begin{gathered} 5,-1,5 \\ \begin{array}{c} \text { Correct } \\ \text { graph } \end{array} \\ -0.6,3.6 \end{gathered}$	2 2 2	B2 for all 3 correct (B1 for 1 or 2 correct) M1 ft for 5, 6 or 7 points plotted correctly, provided at least B1 awarded in (a) A1 for a fully correct graph (no line segments) M1 for use of $y=3$ A1 for -0.5 to $-0.7,3.5$ to 3.7 (ft quadratic graph)
205		130	4	M1 for setting up two correct equations eg $3 p+4 c=440$ $4 p+3 c=470$ M1 for adding the two equations eg $7 \mathrm{p}+7 \mathrm{c}=910$ or for a correct method to eliminate one variable (allow one error) M1 for a method to find $p+c$ eg $910 \div 7$ or for a complete method to find both p and $\mathrm{c} \quad(\mathrm{p}=80, \mathrm{c}=50)$ A1 for 130 or $£ 1.30$ (p) NB: Allow any letters for variables. Allow a non-algebraic approach eg 7 kg potatoes and 7 kg carrots costs a total of 910
206		0.5	4	M1 for identifying a common denominator in a correct expression or equation $\text { eg } \frac{4(x+1)}{12}+\frac{3(2 x+5)}{12}(=2)$ M1 (dep on M1) for expanding both brackets in an equation $\text { eg } \frac{4 x+4}{12}+\frac{6 x+15}{12}=2 \quad \text { eg } \quad 4 x+4+6 x+15=12 \times 2$ M1 (dep on M1) for isolating "like terms" on each side of an equation eg $4 x+6 x=24-15-4$ A1 for 0.5 oe

ᄃ $\stackrel{\substack{\text { EXPERT } \\ \text { TUIIION }}}{ }$

Question	Working	Answer	Mark	Notes (a) (b)

Question	Working	Answer	Mark	Notes
209 (a)		Diagram	2	B2 for fully correct solution with all three aspects with no ambiguity Aspect 1: circle at 3 Aspect 2: circle not shaded Aspect 3: arrow pointing left indicating extension beyond -4 or line extending beyond -4 (B1 for any two aspects)
(b)		$x \geq 5$	2	M1 for intention to add 7 to both sides (of inequality or equation) or to divide all 3 terms by 4 as a first step, or $(x=) 5$ A1 for $x \geq 5$ oe

Question	Working	Answer	Mark	Notes
210 (a)		75	2	M1 for $3 \times 5 \times 5$ oe A1 cao
(b)	$\begin{aligned} & 108=3 t^{2} \\ & t^{2}=\frac{108}{3}=36 \end{aligned}$	± 6	2	M1 for $\left(t^{2}=\right) \frac{108}{3}(=36)$ A1 for 6 or -6 or both
(c)		$a=\frac{v-u}{t}$	2	M1 for subtracting u from both sides or dividing both sides by t as a first step A1 for $a=\frac{v-u}{t}$ oe

Question	Working	Answer	Mark	Notes
211 (a) (b)		$\begin{gathered} -3,8 \\ y=-0.5 x+ \\ 6.5 \end{gathered}$	2 3	M1 for $3+(3-9)(=-3)$ oe or $5+(5-2)(=8)$ oe or $\frac{x+9}{2}=3$ or $\frac{y+2}{2}=5$ A1 cao M1 for a correct method to find the gradient ($=-0.5$), ft the possible use of coordinates in part (a) M1 for method to find c eg substituting into $y="-0.5 " x+c$ A1 for $y=-0.5 x+6.5$ oe

	Working									B2 for all 4 correct(B1 for 2 or 3 correct)M1 for at least 5 points plotted correctly from their table, provided at leastB1 scored in part (a)A1 cao for a correct graph drawn from$(-2,0.25)$ to $(3,8)$
(b)	y	-2	-1	0	1	2	3	$\begin{equation*} 0.5,1,4,8 \tag{a} \end{equation*}$ Correct graph	2 2	
213		$\begin{aligned} & -2 y= \\ & 2 y=1 \\ & =15 \\ & -y=1 \\ & -4 y= \\ & =-9 \end{aligned}$						$\begin{gathered} x=5 \\ y=-3 \end{gathered}$	3	M1 for correct process to eliminate one variable (condone one arithmetic error) M1 (dep) for substituting found value in one of the equations or appropriate method after starting again (condone one arithmetic error) A1 for $x=5$ and $y=-3$

Question	Working	Answer	Mark	Notes
214 (a) (b) (c) (d) (e)		p^{7}	1	B1 cao
		g^{2}	1	B1 cao
		k^{6}	1	B1 cao
		$-5 m+10$	2	M1 for $3 m+12$ or $-8 m-2$ or $8 m+2$ A1 for $-5 m+10$ or $10-5 \mathrm{~m}$ or $-5(\mathrm{~m}-2)$ or $5(2-\mathrm{m})$ oe
		$n(n-7)$	1	B1 cao
215		$T=5 x+20 y$	3	B3 for $T=5 x+20 y$ oe (B2 for $5 x+20 y$ or $T=5 x+y$ or $T=x+20 y$ or $T=20 x+5 y$) (B1 for $T=$ a two term linear expression in x and y, or $5 x+y$ or x $+20 y$)
216		-3, -2	2	M1 for $x=-3$ or $y=-2$; for finding the difference between the x or y coordinates of \quad and $P(\operatorname{eg} \pm 4$ or $\pm 4.5)$; for $\frac{x+5}{2}=1$ or for $\frac{y+7}{2}=2.5$ A1 for $x=-3, y=-2$

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
\[
217
\] \\
(a) \\
(b)
\end{tabular} \& \& \[
x<7
\]
\[
\frac{7}{5}
\] \& \[
2
\]
\[
3
\] \& \begin{tabular}{l}
M1 for isolating term in \(x\) eg \(3 x<16+5\) or \(3 x<21\) or for \((x=) 7\) or \(x>7\) etc \\
A1 cao \\
M1 for multiplying by 4 or adding \(\frac{w}{4}\) or subtracting \(\frac{11}{4}\) \\
or subtracting 1 [all applied to both sides and as a first step] M1 for isolating terms in \(w\) on one side and number terms on the other side of the equation \\
A1 for \(\frac{7}{5}\) oe
\end{tabular} \\
\hline \begin{tabular}{l}
\[
218 \quad \text { (a)(i) }
\] \\
(ii) \\
(b)
\end{tabular} \& \& \[
\begin{gathered}
-0.4 \text { to }-0.5 \\
4.4 \text { to } 4.5 \\
-1.0 \text { to }-1.2 \\
5.0 \text { to } 5.2 \\
\\
-1.6 \text { to }-1.8 \\
4.6 \text { to } 4.8
\end{gathered}
\] \& 3

3 \& | B1 for value in range -0.4 to -0.5 and value in range 4.4 to 4.5 NB: condone values given as part of coordinates. |
| :--- |
| M1 for $x^{2}-4 x-2=4$ or line $y=4$ drawn on graph or points marked with a y coord. of 4 or a value in range -1.0 to -1.2 or a value in range 5.0 to 5.2 |
| A1 for value in range -1.0 to -1.2 and value in range 5.0 to 5.2 ; do not accept coordinates. |
| M1 for $x+y=6$ drawn on graph |
| A2 for value in range -1.6 to -1.8 and value in range 4.6 to 4.8 |
| (A1 for one correct value or both values given as coordinates) |

\hline
\end{tabular}

Question	Working	Answer	Mark	Notes
219		2,6	3	M1 for $\left(x^{2}=\right) 4\left(x^{2}-6 x+9\right)$ or $4 x^{2}-24 x+36$ oe or for $\frac{x^{2}}{4}=x^{2}-6 x+9$
			M1 (dep) for $3 x^{2}-24 x+36=0$ or $3\left(x^{2}-8 x+12\right)=0$ or $(x-2)(x-6)=0$ or $(3 x-6)(x-6)=0$ oe A1 cao OR M1 for $x=(\pm) 2(x-3)$ or $\frac{x}{2}=(\pm)(x-3)$ M1 (dep) for correct solution of one equation A1 cao	

Question		Working	Answer	Mark	Notes
220	(a) (b)		$6 n+5$ No with explanation	2 2	B2 for $6 n+5$ (B1 for $6 n+k$ where k is an integer or absent) M1 for " $6 n+5$ " $=121$ or any other valid method, e.g. counting on 6 s (to get to 119 or more) A1 for No with complete explanation, e.g. $6 n=116$ will not give a whole number
221	(a) (b) (c) (d) (e)	$2 t^{2}+10 t-3 t-15$	$\begin{gathered} x^{2}+2 x \\ 3 y+4 x+2 \\ 2 t^{2}+7 t-15 \\ 4 a(2 a+3) \\ (y+1)(y-2) \end{gathered}$	2 2 2 2	B1 cao M1 for a method to expand a bracket, e.g. $3 y+6$ or $4 x-4$ A1 cao M1 for 4 terms correct ignoring signs or 3 out of no more than 4 terms with signs correct unless ambiguous A1 cao M1 for $4 a(\mathrm{n} a+\mathrm{c})$ or $2 a(4 a+6)$ or $a(8 a+12)$ [n, c integers, $\mathrm{c} \neq 0$] A1 cao M1 for $(y \pm 1)(y \pm 2)$ unless ambiguous Al cao
222	(a) (b) (c)		$2,0,0,6$ Correct curve $-0.6,3.6$	2 2 2	B2 for 2, $0,0,6$ (B 1 for at least two of $2,0,0,6$); could be taken from graph M1 (ft) for at least 5 points plotted correctly A1 for a fully correct curve M1 (ft if M1 awarded in (b) and at least B1 in (a)) for indicating a point or line drawn at $y=4$, or one solution given A1 (ft) for both solutions

Question		Working	Answer	Mark	Notes
223			$\begin{aligned} & x=3 \frac{1}{3} \\ & y=-2 \end{aligned}$	4	M1 for a correct process to eliminate either variable (condone one arithmetic error) or to rearrange and substitute for elimination A1 cao for either x or y M1 (dep on M1) for correct substitution of found value into one of the equation or appropriate method after starting again (condone one arithmetic error) A1 cao
224	(a) (b)		$\frac{9 x-8}{x(2-x)}$ $y=\frac{2-2 t}{t+3}$	3 4	M1 for method to use a common denominator, e.g. $\frac{5(x)-4(2-x)}{x(2-x)}$ M1 (dep on M1) for correct expansion of brackets and combination of numerators e.g. $5 x-8+4 x(=9 x-8)$ A1 for $\frac{9 x-8}{x(2-x)}$ or $\frac{9 x-8}{2 x-x^{2}}$ M1 for intention to multiply both sides by $y+2$ as a first step e.g. $t \times y+2=2-3 y$ M1 for intention to correctly isolate their y terms on one side and the other terms on the other side, e.g. $t y+3 y=2-2 t$ M1 for intention to factorise, e.g. $y(t+3) \quad(=2 \mathrm{~s} 2 t)$ A1 for $y=\frac{2-2 t}{t+3}$ oe

Question		Working	Answer	Mark	Notes
225	(a) (b)		$\begin{gathered} 36 \\ 2.5 \text { oe } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao M1 for collecting the terms in x or the number terms in an equation, eg. $5 x-x+4=14$ or $5 x=14-4+x$ A1 for 2.5 oe (accept $\frac{10}{4}$)
226	(a) (b) (c)		$\begin{gathered} 2 g-3 h \\ y(y-2) \\ p^{5} \end{gathered}$	1 2	M1 for $2 g$ or $-3 h$ A1 for $2 g-3 h$ or $-3 h+2 g$ B1 M1 for $\frac{p^{3+4}}{p^{2}}\left(=\frac{p^{7}}{p^{2}}\right)$ or $p^{3-2} \times p^{4}\left(=p^{1} \times p^{4}\right)$ or $p^{3} \times p^{4-2}\left(=p^{3} \times p^{2}\right)$ A1 cao

Question	Working	Answer	Mark	Notes	
228			Region identified	4	M1 for the graph of $x+y=7$ or $y=2 x$ drawn M1 for the graphs of $x+y=7, y=2 x$ and $y=3$ drawn M1 for any correct shading (in or out), satisfying at least two correct inequalities where the shading must extend from the appropriate lines. A1 for correct region identified by either shading in, or shading out; the letter R is not required. Accept without shading only with the correct region indicated by R. NB accept lines that are solid or dotted/dashed etc or lines defined by unambiguous shading
229					

Question		Working	Answer	Mark	Notes
231			$T=6 x+8 y$	3	M1 for $6 x$ or $8 y$ oe or $T=($ a linear expression in x and $y)$ M1 for $6 x+8 y$ oe or $T=6 x(+a y)$ oe or $T=8 y(+b x)$ oe A1 for $T=6 x+8 y$ oe
232	(a)		$y>0.5$	2	M1 for clear intention to subtract 5 from both sides of inequality or equation or divide all terms of the inequality or equation by 6 or $6 y>$ 3 or 0.5 oe seen A1 for $y>0.5$ oe as final answer
(b)		$-3<x \leq 4$	2	B2 for $-3<x \leq 4$ oe (B1 for one correct inequality, eg $-3<x$ or $x>-3$ or $x \leq 4$ or $4 \geq x$ or $-3 \leq x<4)$	
NB Accept the use of any letter					

Question		Working	Answer	Mark	Notes
233	(a)		$e(3 e+5)$	1	B1 for $e(3 e+5)$
	(b)		4	3	M1 for intention to expand brackets, eg $7 k-21$ or division of all terms on RHS by 7 as first step, eg $\frac{3}{7} k-\frac{5}{7}$ M1 for correct method to isolate terms in k in an equation A1 cao
	(c)		$2 x^{2}-13 x-24$	2	M1 for 4 terms correct ignoring signs or 3 out of no more than 4 terms correct A1 cao
	(d)		$-\frac{1}{3}$	3	M1 for clear intention to multiply both sides by 4 or split into individual fractions on LHS M1 for correct method to isolate term in f in an equation, ft from equations of form $a+b f=c$, where $a, b, c \neq 0$ A1 cao
234			8, (4), (2), 1, 0.8, 0.5	2	B2 all 4 correct Accept $\frac{4}{5}$ in place of 0.8 and $\frac{1}{2}$ in place of 0.5 (B1 for 2 or 3 correct)
	(b)		correct graph	2	M1 (ft dep on B1) for 5 or 6 points plotted correctly from their table (overlay) A1 cao for correct curve drawn from $(0.5,8)$ to $(8,0.5)$

Question		Working	Answer	Mark	Notes
235	(a) (b) (c)		1 $\frac{5 y}{8 x^{3}}$ $\frac{x+27}{(x-3)(x+3)}$	1 3	B1 cao M1 for correct square root or correct use of reciprocal eg $\frac{8 x^{3}}{5 y}$ or $\frac{25 y^{2}}{64 x^{6}}$ A1 for $\frac{5 y}{8 x^{3}}$ or $\frac{5}{8} y x^{-3}$ oe M1 for denominator $(x-3)(x+3)$ or $x^{2}-9$ M1 for $\frac{5(x+3)}{(x-3)(x+3)}$ oe or $\frac{4(x-3)}{(x-3)(x+3)}$ oe (NB The denominator must be $(x-3)(x+3)$ or $x^{2}-9$ or another suitable common denominator) A1 for $\frac{x+27}{(x-3)(x+3)}$ or $\frac{x+27}{x^{2}-9}$
*236		$\begin{aligned} & 2 y=3 x-4 \\ & y=\frac{3}{2} x-2 ; m=\frac{3}{2} \\ & \frac{3--1}{1-4}=-\frac{4}{3} \\ & \frac{3}{2} \times-\frac{4}{3}=-2 \end{aligned}$	No with reason	4	M1 for $\frac{3}{2}$ oe or $y=\frac{3}{2} x\left(-\frac{4}{2}\right)$ oe M1 for method to find gradient of $A B$, eg $\frac{3--1}{1-4}$ or $\frac{-1-3}{4-1}$ or $-\frac{4}{3}$ oe A1 for identifying gradients as $\frac{3}{2}$ oe and $-\frac{4}{3}$ oe C1 (dep on M1) for a conclusion with a correct reason, eg No as product of $\frac{3}{2}$ and $-\frac{4}{3}$ is not -1 , ft from their two gradients
237	(i) (ii) (iii)		$\begin{gathered} (3,-1) \\ (1.5,-4) \\ (-3,-4) \end{gathered}$	3	B1 cao B1 for $(1.5,-4)$ accept 1.5 or $1 \frac{1}{2}$ or $\frac{3}{2}$ for x coordinate B1 cao

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline 238 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \[
\begin{aligned}
\& 2 m^{2}+6 m \\
\& 3 x y(y-2)
\end{aligned}
\] \& \[
2
\] \& \begin{tabular}{l}
B1 for \(2 m^{2}+6 m\) \\
B2 for \(3 x y(y-2)\) \\
(B1 for \(3 x\left(y^{2}-2 y\right)\) or \(3 y(x y-2 x)\) or \(x y(3 y-6)\) or \(3 x y\) (a two term algebraic expression))
\end{tabular} \\
\hline 239 \& \begin{tabular}{l}
*(a) \\
(b)
\end{tabular} \& \& No, temp is \(25^{\circ} \mathrm{C}\)
\[
F=\frac{9 C}{5}+32
\] \& 3

3 \& | M1 for substitution of 77 into the RHS of the formula |
| :--- |
| A1 for 25 cao or for $225 / 9$ and 180/9 cao |
| C 1 (dep on M1) for conclusion (ft) following from working shown OR |
| M1 for substitution of 20 into LHS of formula and correct process to find F |
| A1 for 68 cao |
| C 1 (dep on M1) for conclusion (ft) following from working shown |
| M1 for expansion of the brackets (eg $5 \times F-5 \times 32$) or an attempt to multiply both sides by 9 , or divide both sides by 5 as the first step. M1 (dep) for a correct second step |
| A1 for $F=\frac{9 C}{5}+32$ oe |

\hline
\end{tabular}

Question		Working	Answer	Mark	Notes
240	(a) (b) (c)	$\begin{aligned} & x^{2}-3 x-4=0 \\ & (x-4)(x+1)=0 \end{aligned}$	$2,-1,2,7$ Correct graph $-1,4$	2 2 2	B2 for all correct (B1 for 2 or 3 correct) M1 (dep on at least B1) for at least 6 points from their table plotted correctly A1 cao for fully correct graph M1 for line $y=x+3$ drawn correctly or for reduction to correct 3 term quadratic $(=0)$ and : $(x \pm 1)(x \pm 4)$ or formula using $a=1, b=-3$ and $c=-4$, allow one sign error in the formula, or $\left(x-\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}$ A1 cao
241			$\begin{gathered} x=7 \\ y=-3 \end{gathered}$	3	M1 for correct process to eliminate one variable (condone one arithmetic error) M1 (dep) for substituting found value in one of the equations or appropriate method after starting again (condone one arithmetic error) A1 for $x=7$ and $y=-3$
242			$y=\frac{1}{2} x-5$	3	M1 for method to find gradient of L_{1} e.g $\frac{6-3}{6-0}\left(=\frac{1}{2}\right)$ M1 for $y=" \frac{1}{2} " x+c$ or $y=m x-5(c, m$ do not have to be numerical, or correct numerical values) or for $(L=) \frac{1}{2} x-5$ A1 $y=\frac{1}{2} x-5$ oe

Question		Working	Answer	Mark	Notes
243	(a) (b)		$\frac{x-3}{2 x-1}$	2 3	B2 cao (B1 for any two terms correct in a product, e.g. $9 x^{6} y^{12}$) M1 for $(x-3)(x+3)$ M1 for $(2 x-1)(x+3)$ A1 for $\frac{x-3}{2 x-1}$ cao
244	(a) (b) (c)		$\begin{gathered} 180,0 \\ 270,-1 \\ \\ a=2 \\ b=3 \\ c=1 \end{gathered}$	1 1 3	B1 for 180,0 Accept $\pi, 0$ B1 for $270,-1$ accept $\frac{3 \pi}{2},-1$ B1 cao B1 cao B1 cao

Question	Working	Answer	Mark	Notes
247	$6 x+8 y=10$ $6 x-9 y=27$ $y=-1$ $3 x-4=5$ $3 x=9$ $x=3$	$x=3, y=-1$		
OR				

Question		Working	Answer	Mark	Notes
249	(a)		4	3	M1 for correct expansion to $32 x-8$ or multiplying both sides by $3 x$ or dividing both sides by 4 M1 for a compete and correct method to isolate the x terms and the number terms (condone one arithmetic error in multiplying out the bracket) A1 cao
	(b)	$\frac{2(y-6)-(y+3)}{(y+3)(y-6)}$	$\frac{y-15}{(y+3)(y-6)}$	3	M1 for common denominator of $(y+3)(y-6)$ M1 for $\frac{2(y-6)}{(y+3)(y-6)}-\frac{y+3}{(y+3)(y-6)}$ oe or $\frac{2(y-6)-(y+3)}{(y+3)(y-6)}$ oe A1 for $\frac{y-15}{(y+3)(y-6)}$ or $\frac{y-15}{y^{2}-3 y-18}$

Question		Working	Answer	Mark	Notes
250	(a) (b) (c)	$m^{2}+10 m+3 m+30$	$\begin{gathered} 6+3 t \\ 6 x^{2}+15 x \\ m^{2}+13 m+30 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$B 1$ for $6+3 t$ B2 for $6 x^{2}+15 x$ (B1 for $6 x^{2}$ or $15 x$) M1 for all 4 terms (and no additional terms) correct with or without signs or 3 out of no more than four terms correct with signs A1 for $m^{2}+13 m+30$
251		$\begin{array}{lllllll} \hline x-2 & -1 & 0 & 1 & 2 & 3 & 4 \\ y & 4 & 4.5 & 5 & 5.5 & 6 & 6.5 \\ \hline \end{array}$	$\begin{gathered} y=1 / 2 x+5 \\ \text { drawn } \end{gathered}$	3	(Table of values/calculation of values) M1 for at least 2 correct attempts to find points by substituting values of x. M1 ft for plotting at least 2 of their points (any points plotted from their table must be plotted correctly) A1 for correct line between $x=-2$ and $x=4$ (No table of values) M1 for at least 2 correct points with no more than 2 incorrect points M1 for at least 2 correct points (and no incorrect points) plotted OR line segment of $y=1 / 2 x+5$ drawn A1 for correct line between $x=-2$ and $x=4$ (Use of $y=\mathbf{m} x+c$) M1 for line drawn with gradient 0.5 OR line drawn with y intercept at 5 M1 for line drawn with gradient 0.5 AND line drawn with y intercept at 5 A1 For correct line between $x=-2$ and $x=4$ SC B2 for a correct line from $x=0$ to $x=4$

Question		Working	Answer	Mark	Notes
252	(a)	Line joins an empty circle at -2 to a solid circle at 3	diagram	2	B2 cao (B1 for line from -2 to 3)
(b)	$2 x \geq 7$	$x \geq 3.5$	2	M1 for correct method to isolate variable and number terms (condone use of $=,>, \leq$, or $<)$ or $(x=)$ A1 for $x \geq 3.5$	

Question		Working	Answer	Mark
253	$12 x+21 y=3$ $12 x+40 y=60$ $19 y=57$ $y=3$ $3 x+10 \times 3=15$ $3 x=-15$	$x=-5, y=3$	4	M1 for a correct process to eliminate either x or y or rearrangement of one equation leading to substitution (condone one arithmetic error) A1 for either $x=-5$ or $y=3$ M1 (dep) for correct substitution of their found value A1 cao
Alternative method $x=\left(\frac{1-7 y}{4}\right)$ $3\left(\frac{1-7 y}{4}\right)+10 y=15$ $3-21 y+40 y=60$ $19 y=57$ $x=\left(\frac{1-7 \times 3}{4}\right)$				

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline 254 \& \& \[
\frac{4(x+5)}{(x+5)(x-3)}
\] \& \[
\frac{4}{x-3}
\] \& 2 \& \begin{tabular}{l}
M1 for \((x \pm 5)(x \pm 3)\) \\
A1 for \(\frac{4}{x-3}\)
\end{tabular} \\
\hline 255 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \[
a=4, b=5
\]
\[
(4,5)
\] \& 3

1 \& | M1 for sight of $(x-4)^{2}$ |
| :--- |
| M1 for $(x-4)^{2}-16+21$ |
| A1 for $a=4, b=5$ |
| OR |
| M1 for $x^{2}-2 a x+a^{2}+b$ |
| M1 for $-2 a=-8$ and $a^{2}+b=21$ |
| A1 for $a=4, b=5$ |
| B1 ft |

\hline 256 \& | (a) |
| :--- |
| (b) | \& \& | $(90,0)$ |
| :--- |
| Correct graph | \& | 1 |
| :--- |
| 1 | \& | B1 for $(90,0)$ (condone $\left.\left(\frac{\pi}{2}, 0\right)\right)$ |
| :--- |
| B1 for graph through $(0,2)(90,0)(180,-2)(270,0)$ $(360,2)$ professional judgement |

\hline
\end{tabular}

$\tau \underset{\text { EXIITION }}{\text { EXPRT }}$

257.

Г $\xlongequal[\substack{\text { EXPERT } \\ \text { TUITION }}]{\substack{\text { and }}}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline 258 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \[
6 n-3
\]
No + Reason \& 2

1 \& | M1 for attempt to establish linear expression in n with coefficient of 6 e.g. $6 n+k$ where k is an integer (accept $n=6 n-3$ for one mark) A1 cao |
| :--- |
| C1 ft from their answer to part (a) for decision and explanation eg " stating no and because all the terms in the sequence are odd and 150 is even" or |
| "no and ' $6 n-3$ ' $=150, n=153 / 6 \ldots$ so n is not an integer" or |
| Continuing the sequence to show terms 147 and 153 and state "no as 150 is not in the sequence" oe |

\hline 259 \& | (a) |
| :--- |
| (b) | \& \[

$$
\begin{aligned}
& 7 x+14=7 \quad \text { or } \quad x+2=1 \\
& 7 x=-7
\end{aligned}
$$

\] \& \[

6 x-3 y
\]

\[
x=-1

\] \& | 2 |
| :--- |
| 2 | \& | M1 for an attempt to combine terms in x or terms in y correctly eg $5 x+x(=6 x), 4 y-7 y(=-3 y)$ |
| :--- |
| A1 for $6 x-3 y$ oe |
| M1 for correctly expanding the bracket or an attempt to divide both sides by 7 e.g. $7 x+14$ or $x+2=7 \div 7$ oe |
| A1 cao |

\hline 260 \& | (a) |
| :--- |
| (b) |
| (c) | \& \& \[

$$
\begin{gathered}
a^{9} \\
9 e^{5} f^{6} \\
3
\end{gathered}
$$

\] \& | 1 |
| :--- |
| 2 |
| 1 | \& | B1 for a^{4+5} or a^{9} |
| :--- |
| B2 cao |
| (B1 for two of $9, e^{6-1}, f^{8-2}$ as a product) |
| B1 (accept ± 3 but not just -3) |

\hline
\end{tabular}

Question		Working	Answer	Mark	Notes
261			$\frac{12}{13}$	3	M1 for multiplying throughout by 10 oe or writing LHS as a single fraction e.g $2(4 x-1)+5(x+4)=3 \times 10$ or $\frac{2(4 x-1)+5(x+4)}{10} \text { or } \frac{2(4 x-1)}{10}+\frac{5(x+4)}{10}$ M1 (dep) for a complete correct method to obtain linear equation of the form $a x=b$ (condone one arithmetic error in multiplying out the bracket) A1 for $\frac{12}{13}$ oe (decimal equivalent is $0.923 \ldots$)

Question		Working	Answer	Mark	Notes
262	(a)(i) (ii) (b)		$\begin{aligned} & (x-9)(x-3) \\ & x=9, x=3 \\ & (y+10)(y-10) \end{aligned}$	3 1	M1 for $(x \pm 9)(x \pm 3)$ A1 for $(x-9)(x-3)$ B1 cao B1 for $(y+10)(y-10)$
*263		$\begin{aligned} & (n+1)^{2}-n^{2} \\ & =n^{2}+2 n+1-n^{2}=2 n+1 \\ & (n+1)+n=2 n+1 \end{aligned}$ OR $\begin{aligned} & (n+1)^{2}-n^{2} \\ & =(n+1+n)(n+1-n) \\ & =(2 n+1)(1)=2 n+1 \\ & (n+1)+n=2 n+1 \end{aligned}$ OR $\begin{aligned} & n^{2}-(n+1)^{2}=n^{2}-\left(n^{2}+2 n+1\right)= \\ & -2 n-1=-(2 n+1) \end{aligned}$ Difference is $2 n+1$ $(n+1)+n=2 n+1$	proof	4	M1 for any two consecutive integers expressed algebraically eg n and $n+1$ M1 (dep on M1) for the difference between the squares of 'two consecutive integers' expressed algebraically eg $(n+1)^{2}-n^{2}$ A1 for correct expansion and simplification of difference of squares, eg $2 n+1$ C1 (dep on M2A1) for showing statement is correct, eg $n+n+1=2 \mathrm{n}+1$ and $(n+1)^{2}-n^{2}=2 \mathrm{n}+1$ from correct supporting algebra
264	(a) (b)		sketch $y=\mathrm{f}(x-6)$	1	M1 for inverting the parabola, so maximum is at $(-2,0)$ A1 for parabola passing through all three of the points $(-2,0)$, $(0,-4),(-4,-4)$ B1 for $y=\mathrm{f}(x-6)$ or $y=(x-4)^{2}$ oe

264.

$\tau \left\lvert\, \begin{aligned} & \text { EXPERT } \\ & \text { TUITION }\end{aligned}\right.$

Question		Working	Answer	Mark	Notes
265	(a)		$12 x+20$	1	B1 cao
	(b)		$5 x+7$	2	M1 for $2 \times x-2 \times 4$ or $3 \times x+3 \times 5$ A1 cao
	(c)		$x^{2}+10 x+24$	2	B2 cao (B1 for 4 correct terms with or without signs, or 3 out of no more than 4 terms, with correct signs. The terms may be in an expression or in a table)
266	(a		m^{2}	1	B1 for m^{2} or m^{5-3}
	(b)			2	M1 for $x^{4+2} y^{\mathrm{a}}$ or $x^{\mathrm{b}} y^{3+1}$ A1 cao
267			$\begin{gathered} (4,3),(4,4),(4,5),(5.4) \\ \text { marked } \end{gathered}$	3	M2 for identifying the correct region or at least 3 correct points with no more than 3 incorrect points (M1 for drawing $x=3$ (solid or dashed line) or at least 1 correct point with no more than 3 incorrect points) A1 cao

「 EXPERT

Question		Working	Answer	Mark	Notes
268		$\begin{aligned} & 12 x+8 y=16 \\ & 12 x+15 y=51 \\ & 7 y=35 \\ & 3 x+2 \times 5=6 \end{aligned}$ Alternative method $\begin{aligned} & x=\frac{4-2 y}{3} \\ & 4\left(\frac{4-2 y}{3}\right)+5 y=17 \\ & 16-8 y+15 y=51 \\ & 7 y=35 \\ & x=\frac{4-2 \times 5}{3} \end{aligned}$	$\begin{gathered} x=-2 \\ y=5 \end{gathered}$	4	M1 for a correct process to eliminate either x or y or leading to substitution (condone one arithmetic error) A1 for either $x=-2$ or $y=5$ M1 (dep) for correct substitution of their found value A1 cao SC If M0 scored B1 for $y=-2$ and $x=5$

「 EXPERT

Question	Working	Answer	Mark	Notes
269				

「 EXPERT

Question		Working	Answer	Mark	Notes
271	(a)		Circle, centre O, radius 2	2	B2 cao (B1 for a circle radius 2 any centre or for a circle or part of a circle centre $(0,0)$ any radius)
	(b)		$\begin{aligned} & \text { Cosine curve crossing } \\ & \text { at }(0,1),(90,0), \\ & (270,0) \text { and }(360,1) \end{aligned}$	2	B2 cao (ignore if sketch outside region) (B1 for a curve with correct intercepts but incorrect amplitude OR for a curve starting at $(0,1)$ with correct amplitude but incorrect intercepts; curves must have a shape that approximates to a cosine curve)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline 274 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& 10 t=g h \\
\& h=\frac{10 t}{g}
\end{aligned}
\] \& \[
\begin{gathered}
6 y-15 \\
4 x(2 x+y)
\end{gathered}
\]
\[
\frac{10 t}{g}
\] \& 1
2

2 \& | B1 cao |
| :--- |
| B2 cao |
| (B1 for $x(8 x+4 y)$ or $2 x(4 x+2 y)$ or $4\left(2 x^{2}+x y\right)$ or $4 x(a x+b y)$ where a, b are positive integers or $a x(2 x+y)$ where a is a positive integer or $4 x(2 x-y))$ |
| M1 for clear intention to multiply both sides of the equation by 10 (eg. $\times 10$ seen on both sides of equation) or clear intention to divide both sides of the equation by $g($ eg. $\div \mathrm{g}$ seen on both sides of equation) |
| or $10 t=g h$ or $\frac{t}{g}=\frac{h}{10}$ or |
| fully correct reverse flow diagram |
| eg. $\leftarrow \times 10 \leftarrow \div g \leftarrow$ |
| A1 for $\frac{10 t}{g}$ oe |

\hline 275 \& | (a |
| :--- |
| (b) | \& \& \[

(x+5)(x-2)
\] \& 1

\[
2

\] \& | B1 for m^{-10} or $\frac{1}{m^{10}}$ |
| :--- |
| M1 for $(x \pm 5)(x \pm 2)$ or $x(x-2)+5(x-2)$ or $x(x+5)-2(x+5)$ A1 |

\hline
\end{tabular}

「 EXPERT

Question		Working	Answer	Mark	Notes
276		$\begin{aligned} & 15 x+6 y=33 \\ & 8 x-6 y=36 \\ & 23 x=69 \\ & 5 \times 3+2 y=11 \\ & \text { OR } \\ & x=\frac{11-2 y}{5} \\ & 4 \times\left(\frac{11-2 y}{5}\right)-3 y=18 \\ & 44-8 y-15 y=90 \\ & -46=23 y \\ & y=-2 \end{aligned}$	$\begin{gathered} x=3 \\ y=-2 \end{gathered}$	4	M1 for coefficients of x or y the same followed by correct operation (condone one arithmetic error) A1 cao for first solution M1 (dep on M1) for correct substitution of found value into one of the equations or appropriate method after starting again (condone one arithmetic error) A1 cao for second solution OR M1 for full method to rearrange and substitute to eliminate x or y, (condone one arithmetical error) A1 cao for first solution M1 (dep on M1) for correct substitution of found value into one of the equations or appropriate method after starting again (condone one arithmetic error) A1 cao for second solution Trial and improvement 0 marks unless both x and y correct values found

Г EXPERT

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& estion \& Working \& Answer \& Mark \& Notes \\
\hline 277 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \frac{(x+4)(x-1)}{(2 x-3)(x-1)} \\
\& \frac{4(x-2)}{(x+2)(x-2)}+\frac{3(x+2)}{(x+2)(x-2)}
\end{aligned}
\] \& \[
\begin{gathered}
\frac{x+4}{2 x-3} \\
\frac{7 x-2}{(x+2)(x-2)}
\end{gathered}
\] \& 3

3 \& | M1 for $(x+4)(x-1)$ |
| :--- |
| M1 for $(2 x-3)(x-1)$ |
| A1 cao |
| M1 for denominator $(x+2)(x-2)$ oe or $x^{2}-4$ M1 for $\frac{4(x-2)}{(x+2)(x-2)}$ oe or $\frac{3(x+2)}{(x+2)(x-2)}$ oe |
| (NB. The denominator must be $(x+2)(x-2)$ or $x^{2}-4$ or another suitable common denominator) |
| A1 for $\frac{7 x-2}{(x+2)(x-2)}$ or $\frac{7 x-2}{x^{2}-4}$ |
| SC: If no marks awarded then award B1 for $\frac{4(x-2)}{x^{2}-2}+\frac{3(x+2)}{x^{2}-2}$ oe |

\hline 278 \& | (a) |
| :--- |
| (b) | \& \& | $\begin{gathered} \text { Parabola through } \\ (4,-1),(2,3),(6,3)(3,0) \\ (5,0) \end{gathered}$ |
| :--- |
| Parabola through $(1,-2),(0,0),(2,0)$ | \& | 2 |
| :---: |
| |
| |
| 2 | \& | B2 for a parabola with $\min (4,-1)$, through $(2,3)$, $(6,3),(3,0),(5,0)$ |
| :--- |
| (B1 for a parabola with $\min (4,-1)$ or a parabola through $(2,3)$ and $(6,3)$ or a parabola through $(3,0)$ and $(5,0)$ or a translation of the given parabola along the x-axis by any value other than +3 with the points $(-1,3)(0,0)$ $(1,-1)(2,0)(3,3)$ all translated by the same amount) |
| B2 parabola with min $(1,-2)$, through $(0,0)$ and $(2,0)$ (B1 parabola with $\min (1,-2)$ or parabola through $(0,0),(2,0)(-1,6)$ and $(3,6))$ |

\hline
\end{tabular}

Question		Working	Answer	Mark	Additional Guidance
279	(i) (ii)	$\begin{aligned} & 6-12 x-3 x-3=0 \\ & 3-15 x=0 \\ & 15 x=3 \end{aligned}$	$30 x-10 y$ $\frac{1}{5}$	5	B2 cao (If no marks then B1 30x, B1 10y) M1 for correct multiplication of brackets to get $6-12 x-3 x-3$ A1 $3-15 x=0$ B1 ft for " $\frac{1}{5}$ "
Total for Question: 5 marks					
280	(a)	$5 p=20$	$p=4$	2	M1 add 16 to both sides A1 cao
	(b)	$-9=3 q$	$q=-3$	2	M1 correct method to isolate $\pm 3 q$ A1 cao
	(c)	$6 x-3-10-6 x=$	-13	2	M1 at least one expansion correct A1 - 13 or a statement that the answer is indep of x depending on correct working
Total for Question: 6 marks					
281	(i) (ii)	$\begin{aligned} 2 n^{2}= & 400, n^{2}=200, n \text { not a } \\ & \text { whole number } \end{aligned}$	32 $\mathrm{No}+$ explanation	1 2	B1 cao M1 sets $2 n^{2}=400$ C1 and concludes correctly OR M1 14th term is (392), 15th term is (450) C1 and concludes correctly
- Total for Question: 3 marks					

T EXPERT

Question		Working	Answer	Mark	Additional Guidance
282	(a) (i) (ii)		$\begin{gathered} a^{2} \\ 6 x^{4} y^{3} \end{gathered}$	3	B1 cao B2 $6 x^{4} y^{3}$ (B1 for 2 out of 3 terms correct in a product)
	(b)	$x^{2}+3 x+7 x+21$	$x^{2}+10 x+21$	2	M1 3 or 4 terms out of 4 correct in a 4 term expansion A1 cao
	(c)		$3 p(q-4 p)$	2	B2 cao (B1 $p(3 q-12 p), 12 p\left(\frac{1}{4} q-p\right), p(a q+b p)$ where a and b are numbers)
	(d)(i) (ii)	$(3(x+2)-1)(x+2-3)$ OR $\begin{aligned} & 3 x^{2}+12 x+12-10 x-20+3 \\ & =3 x^{2}+2 x-5 \end{aligned}$	$\begin{aligned} & (3 y-1)(y-3) \\ & (3 x+5)(x-1) \end{aligned}$	4	B2 cao $($ B1 $(3 y-m)(y-n)$ where $m n= \pm 3$ or $m+n= \pm 10$ M1 use of the factorised form with y replaced twice by $3 x+2$ A1 cao OR $\begin{aligned} & \text { B1 } 3 x^{2}+2 x-5 \\ & \text { B1 cao } \end{aligned}$

$\left.\begin{array}{|l|l|l|l|ll|}\hline \hline \mathbf{2 8 3} & & \frac{(3 x+5)(x-7)}{(3 x-5)(3 x+5)} & \frac{x-7}{3 x-5} & 3 & \text { B1 }(3 x+5)(x-7) \\ \text { B1 }(3 x-5)(3 x+5) \\ \text { B1 } \frac{x-7}{3 x-5}\end{array}\right]$.

Total for Question: 11 marks

Question		Working	Answer	Mark	Additional Guidance
$\mathbf{2 8 4}$	(a)		Smooth curve	2	B1 correct plot of their values B1 smooth curve through their points
	(b)			$x=3$ $y=0$	3
				M1 attempts to draw circle at origin M1 uses radius 3 cm (using graph scale correctly) A1 cao OR	
					B1 for substituting a value of x into $y=x(x-3)$ and $x^{2}+y=r^{2}$ B1 for substituting y into $x=3$ into $x(x-3)$ and $x^{2}+y=r^{2}$ B1 cao

$\begin{aligned} & 285 \\ & \text { QWC } \\ & \text { ii, iii } \end{aligned}$	$\begin{aligned} & (2 n+1)^{2}-(2 n-1)^{2} \\ & = \\ & 4 n^{2}+4 n+1-\left(4 n^{2}-4 n+1\right) \\ & =8 n \end{aligned}$ OR $\begin{aligned} & (2 n+1)^{2}-(2 n-1)^{2}= \\ & ((2 n+1)-(2 n-1))(2 n+1+2 n-1)) \\ & =2 \times 4 n=8 n \end{aligned}$	Fully algebraic argument, set out in a logical and coherent manner	6	B2 the nth term for consecutive odd numbers is $2 n-1$ oe (B1 $2 n+k, k \neq-1$ or $n=2 n-1$ or $2 x-1$ B1 use of $2 n+1$ and $2 n-1$ oe M1 $(2 n+1)^{2}-(2 n-1)^{2}$ M1 $4 n^{2}+4 n+1-\left(4 n^{2}-4 n+1\right)$ C1 conclusion based on correct algebra QWC: Conclusion should be stated, with correct supporting algebra. OR B1 use of $2 n+1$ and $2 n-1$ oe M1 $(2 n+1)^{2}-(2 n-1)^{2}$ $\text { M1 }((2 n+1)-(2 n-1))(2 n+1+2 n-1))$ C1 conclusion based on correct algebra QWC: Conclusion should be stated, with correct supporting algebra.
				Total for Question: 6 m

141

Question	Working	Answer	Mark	Notes
$286 \quad \text { (a) }$		$6 a b-7 g$	2	M1 for $6 a b$ or $-7 g$ A1 cao
(b)		$3(2 m-3)$	1	B1 cao
(c)		t^{5}	1	B1 cao
(d)		$2 x y(x+2 y)$	2	B2 cao (B1 for $x y(2 x+4 y)$ or $2 x\left(x y+2 y^{2}\right)$ or $2 y\left(x^{2}+2 x y\right)$ or $2 x y(\ldots)$ where (\ldots) has two terms one of which is correct)
(e)	$w^{2}-5 w-5 w+25$	$w^{2}-10 w+25$	2	M1 for all 4 terms (and no additional terms) correct with or without signs or 3 out of no more than 4 terms correct with signs A1 cao
\square		72	4	M1 for " $x "+24$ or " $x "-24$ or for " g " and $5 " g$ " M1 for forming an appropriate equation eg $x+24=5(x-24)$ or for $(5 g-g) \div 2=24$ or $g=12$ M1 for correct operations to isolate x terms and non- x terms in an equation of the form $a x+b=c x+d$ or $a x+b=c(x+d)$ or $x=36$ or for $6 \times$ " 12 " oe A1 cao

T EXPERT

Question	Working	Answer	Mark	Notes
(a) (b) (c)		$\frac{3}{x+1}$ -2 $m=\frac{2 E}{v^{2}}$	1 3 3	B1 oe M1 for attempting to multiply both sides by 5 as a first step and cancelling the LHS (can be implied by equations of the form $15-x=15 x+$? or $15-x=? x+55$) M1 for method to isolate terms in x and number terms from $a x+b=c x+d$ A1 for -2.5 oe OR M1 for splitting the LHS correctly into two parts $\frac{15}{5}-\frac{x}{5}=3 x+11$ M1 for method to isolate terms in x and number terms from $a x+b=c x+d$ A1 for -2.5 oe M1 for a method to remove square root or clear fraction as a first step M1 for a method to remove square root and clear fraction A1 for $m=\frac{2 E}{v^{2}}$
\square	$\frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times-7}}{2 \times 2}$	1.27, -2.77	3	M1 for substitution of $a=2, b=3, c=-7$ (condone one sign error) M1 for $\frac{-3 \pm \sqrt{65}}{4}$ A1 for solutions in range 1.26 to 1.27 and -2.76 to -2.77
\square		$y=\frac{1}{4} x+5$	4	B1 for $m=-4$ M1 (indep) for gradient of perpendicular $=-\frac{1}{"-4 "}$ or $\frac{1}{4}$ M1 (dep on previous M1) for substituting $x=-8, y=3$ into $y=" \frac{1}{4} " x+c$ A1 for $y=\frac{1}{4} x+5 \mathrm{oe}$ SC If M0 is scored then B2 for $y=-\frac{1}{4} x+1$

Question	Working	Answer	Mark	Notes
$\square \square$	$\begin{array}{lclllll} x & -1 & 0 & 1 & 2 & 3 & 4 \\ y & 10 & 8 & 6 & 4 & 2 & 0 \end{array}$	$y=8-2 x$ drawn	3	B3 for a correct line between $x=-1$ and $x=4$ OR B2 for a correct straight line segment through at least 3 of $(-1,10),(0,8),(1,6),(2,4),(3,2),(4,0)$ or for all of these points plotted but not joined or for a line drawn with a negative gradient through $(0,8)$ and clear intention to use of a gradient of -2 , eg line through $(0,8)$ and $(0.5,6)$ OR B1 for at least 2 correct points stated or plotted or for a line drawn with a negative gradient through $(0,8)$ or a line with gradient -2
(a) (b) (c) (d)		n^{4} $3 x^{2}+4 x$ $5(y-3)$ $9 a b(2+3 b)$	2 2 1 2	M1 for $\frac{n^{10}}{n^{6}}$ oe or $\frac{n^{7}}{n^{3}}$ oe or $n \times n^{3}$ oe A1 cao B2 for $3 x^{2}+4 x$ or $x(3 x+4)$ (B1 for $x^{2}-2 x$ or $2 x^{2}+6 x$ or $3 x^{2}+n x$ or $p x^{2}+4 x$) B1 cao B2 for $9 a b(2+3 b)$ (B1 for $9 a\left(2 b+3 b^{2}\right)$ or $9 b(2 a+3 \mathrm{a} b)$ or $a b(18+27 b)$ or $3 a b(6+9 b)$ or $3 a\left(6 b+9 b^{2}\right)$ or $3 b(6 a+9 a b)$ or $9 a b($ a two term algebraic expression))

Question	Working	Answer	Mark	Notes
\square		$\frac{8}{17}$	5	M1 for $5 x+4$ or $10-x$ M1 (dep) for " $5 x+4 "=\frac{2}{3} "(10-x) "$ M1 for expanding the bracket or multiplying both sides by 3 in an equation of the form $(a x+b)=\frac{2}{3}(c x+d)$ A1 for correct equation with terms in x and number terms isolated, eg $15 x$ $+2 x=20-12 \text { or } 5 x+\frac{2 x}{3}=\frac{20}{3}-4$ A1 for $\frac{8}{17}$ oe accept $0.47(0588 \ldots$...
(a) (b) (c)		$y^{2}+7 y+10$ $(e-3)(e+4)$ $0.77,-0.43$	2 2 3	M1 for all 4 terms (and no additional terms) correct ignoring signs or 3 terms correct A1 for $y^{2}+7 y+10$ M1 for $(e \pm 3)(e \pm 4)$ A1 for $(e-3)(e+4)$ M1 for $\frac{--1 \pm \sqrt{(-1)^{2}-4 \times 3 \times-1}}{2 \times 3}$ (condone one sign error) M1 for $\begin{gathered}1 \pm \sqrt{13} \\ 6\end{gathered}$ A1 for one answer in the range 0.767 to 0.77 and one answer in the range -0.43 to -0.4343
(a) (b)	$2=k^{-1}$	$1 / 2$ correct graph	2 2	M1 for reading off and substituting a pair of values from the graph (excluding 0,1) into the equation, eg $x=-1, y=2$ A1 for $1 / 2$ oe B2 cao (B1 for correct general shape, eg $y=-\sin x^{\circ}$)

Question	Working	Answer	Mark	Notes
* ${ }^{\text {W }}$	$\begin{aligned} & \left(n^{2}+4 n+4\right)-\left(n^{2}+\right. \\ & 2 n+1) \\ & \frac{2 n+3}{2 n^{2}+3 n} \\ & \frac{2 n+3}{n(2 n+3)} \end{aligned}$	Proof	4	M1 for correct method to expand $(n+2)^{2}$ or $(n+1)^{2}$ M1 for correct simplification of numerator M1 for factorisation of $2 n^{2}+3 n$ or for clearing the fractions on both sides correctly C1 for complete and correct proof OR M1 for $\{(n+2)-(n+1)\}\{(n+2)+(n+1)\}$ M1 for $1 \times(2 n+3)$ M1 for factorisation of $2 n^{2}+3 n$ or for clearing the fractions on both sides correctly C1 for complete and correct proof OR M1 for $n\left\{(n+2)^{2}-(n+1)^{2}\right\}=\left(2 n^{2}+3 n\right) \times 1$ M1 for $n(n+2)^{2}-n(n+1)^{2}$ or for correct expansion of $(n+2)^{2}-(n+1)^{2}$ M1 for correct expansion of $n\left\{(n+2)^{2}-(n+1)^{2}\right\}$ C1 for complete and correct proof (must include statement recognising the equality of LHS and RHS)

Question		Working	Answer	Mark	Notes
Ш1]	(a) (b) (c)		$\begin{gathered} \hline 30 a b c \\ 3(y+2) \\ x^{2}-3 x \end{gathered}$	1 1 1	B1 B1 B1
Ш1]	(a) (b) (c)		20.3 68.04 2.61	2 2 3	M1 for $\frac{50}{1.57^{2}}$ oe A1 for answer in range 20.2 to 20.3 M1 for $(\mathrm{m}=) 1.8^{2} \times 21 \mathrm{oe}$ A1 for 68.04 M2 for a complete method to find 145% of 1.8 , eg. $\frac{145}{100} \times 1.80$ oe (M1 for a method to find 45% of 1.8 , eg. $\frac{45}{100} \times 1.80(=0.81)$ or for a multiplication factor of 1.45) A1 cao
Ш10	(a) (b)		$-1,1,-1$ Correct graph	2 2	B2 for all correct (B1 for 1 or 2 correct) M1 ft for 4 or 5 points from their table plotted correctly, provided at least B1 awarded in part (a) A1 for a fully correct graph (no line segments)

Question		Working	Answer	Mark	Notes
D]	(a) (b)		$y=5 p^{2}-x$	2 3	B2 cao (B1 for any two of $10, a^{5}, b^{4}$ in a product) M1 for a correct first step to either remove the square root, eg. $p^{2}=\frac{x+y}{5}$ or clear the fraction, eg. $\sqrt{5} p=\sqrt{x+y}$ M1 (dep) for a method to remove the square root and a method to clear the fraction, eg. $5 p^{2}=x+y$ A1 for $y=5 p^{2}-x$
П]		$\begin{aligned} & \frac{-6 \pm \sqrt{6^{2}-4 \times 3 \times-2}}{2 \times 3} \\ & (x+1)^{2}-1-\frac{2}{3}=0 \end{aligned}$	$\begin{gathered} 0.29 \text { and } \\ -2.29 \end{gathered}$	3	M1 for substitution of $a=3, b=6, c=-2$ into the formula or for completing the square (condone one sign error) M1 for $\frac{-6 \pm \sqrt{60}}{6}$ or $-1 \pm \sqrt{\frac{5}{3}}$ or in simplified form A1 for answers in the range 0.29 to 0.292 and -2.292 to -2.29
प	(a) (b)		$\frac{-1}{3 x+4}$ $\frac{2 x}{x^{2}-1}$	2 3	M1 for $(3 x \pm 4)(x \pm 3)$ or $(-3 x \pm 4)(-x \pm 3)$ A1 for $\frac{-1}{3 x+4}$, accept $\frac{1}{-3 x-4}$ M1 for common denominator $(x-1)(x+1)$ or $x^{2}-1$ M1 for $\frac{x(x+1)}{(x-1)(x+1)}-\frac{x(x-1)}{(x-1)(x+1)}$ oe or $\frac{x(x+1)-x(x-1)}{(x-1)(x+1)}$ oe (NB: The denominator must be $(x-1)(x+1)$ or $x^{2}-1$ or another suitable common denominator) A1 for $\frac{2 x}{(x-1)(x+1)}$ or $\frac{2 x}{x^{2}-1}$

Question		Working	Answer	Mark	Notes
D]			$\begin{aligned} & 32 \\ & 64 \\ & 29 \end{aligned}$	4	M1 for $2 y$ or $y-3$ M1 for adding their three expressions and setting equal to 125 M1 for correct method to solve $a y+b=125$ A1 Ali 32, Bhavara 64 and Ceris 29
\square	(a (b) (c) (d)		± 7 $0.125 \text { or } \frac{1}{8}$ $27 x^{6}$ $p=\frac{w+16}{4}$	2 1 2 2	M1 for intent to divide both sides by 3 as a first step or answer of 7 or -7 $\mathrm{A} 1 \pm 7$ B1 cao M1 for either 27 or x^{6} in a two term product A1 cao M1 for $\div 4$ throughout or adding 16 to both sides as a first step A1 $p=\frac{w+16}{4} \mathrm{oe}$
D]	(a (b)		5 and 6 Region identified	2 4	M1 for evidence that $(x=) 4,5,6$ or evidence that $(y=) 5,6,7,8$ A1 cao M1 for two of the lines $y=-1, y=3 x-1$ and $y=4-x$ drawn M1 for three of the lines $y=-1, y=3 x-1$ and $y=4-x$ drawn M1 any correct shading(in or out) satisfying at least two of the inequalities where the shading must extend from the appropriate line A1 Fully correct region shown by either shading in, shading out or the use of R Accept lines that are solid or dashed
\square			$y=3 x-5$	3	M1 for recognition that the gradient of \mathbf{L}_{2} is 3 M1 for substitution of $x=3$ and $y=4$ into $y=" m " x+\mathrm{c}$ A1 $y=3 x-5$ oe (SC B2 for ' $3 x-5$ ' or $\mathrm{L}_{2}=3 x-5$)
\square			$\begin{gathered} 2 x^{2}+7 x+4 \\ =0 \end{gathered}$	3	M1 for finding a correct coefficient M1 for a method to find a and c or b and c A1 $2 x^{2}+7 x+4=0$ or $a=2, b=7, c=4$

Question		Working	Answer	Mark	Notes
\square	(a)		Graph drawn	2	B2 correct graph drawn (B1 for a graph translated up/down)
(b)		2	B2 for correct graph drawn drawn (B1 for a graph reflected in the x axis or stretched by sf 2 parallel to the y axis)		

Question		Working	Answer	Mark	Notes
*凹		$\begin{aligned} & 1155 \div 15=77 \\ & x+2 x+x-7=77 \\ & 4 x-7=77 \\ & 4 x=84 ; x=21 \end{aligned}$ OR $\begin{aligned} & 15 x+(15 \times 2 x)+15(x-7) \\ & =1155 \\ & 60 x-105=1155 \\ & 60 x=1260 \\ & x=21 \end{aligned}$	$\begin{gathered} \text { Redlands } 21 \\ \text { St Samuels } 42 \\ \text { Francis Long } 14 \end{gathered}$	5	M1 for $2 x$ or $x-7$ M1 for $1155 \div 15(=77)$ M1 (dep M2) for equation summing their three expressions to "77" A1 for 21, 42 and 14 C1 for fully correct answer with correct labels OR M1 for an expression for the cost of the pupils from Redlands M1 for expression for the cost of the pupils from either St Samuels or Francis Long M1 (dep M2) for equation summing their three expressions to 1155 A1 for 21,42 , and 14 C1 for fully correct answer with correct labels
[1]	(a) (b) (c)	$t^{2}+2 t+4 t+8$	$\begin{gathered} 7 x+35 \\ 12 y^{2}-9 y \\ t^{2}+6 t+8 \end{gathered}$	1	B1 cao B1 cao M1 for all 4 terms (and no additional terms) correct with or without signs or 3 out of no more than 4 terms correct with signs A1 for $t^{2}+6 t+8$
ㅁ]			$p=8, q=10$	3	M1 for finding the difference between the x or y coordinates eg 4-2 (=2) or 17-5 (= 12) M1 for a complete method to find the value of p or the value of q A1 cao
W		Gradient of $\mathrm{N}=3$ Gradient of perpendicular to line $\mathrm{N}=-\frac{1}{3}$	$y=-\frac{1}{3} x+1$	3	M1 for complete method to find gradient of line N or for drawing a perpendicular line M1 for method to find the gradient of a perpendicular line A1 $y=-\frac{1}{3} x+1$ oe

Question		Working	Answer	Mark	Notes
\square			Shown	3	M1 for correct expansion of $(n+3)^{2}$ or $(n-3)^{2}$ eg $(n+3)^{2}=n^{2}+6 n+9$ or $(n-3)^{2}=n^{2}-6 n+9$ M1 for correct expansion of complete expression, eg $\left(n^{2}+6 n+9\right)-\left(n^{2}-6 n+9\right)$ A1 for $12 n$ and conclusion OR M1 for $[n+3+n-3][n+3-(n-3)])$ M1 for $2 n \times 6$ A1 for conclusion
-		$\frac{-4 \pm \sqrt{4^{2}-4 \times 3 \times-12}}{2 \times 3}$	1.44 and -2.77	3	M1 for substitution of $a=3, b=4, c=-12$ into the formula (condone one sign error) or for completing the square M1 for $\frac{-4 \pm \sqrt{160}}{6}$ or in simplified form A1 for answers in the ranges 1.43 to 1.45 and -2.76 to -2.78
प	(a) (b)		Circle drawn $\begin{aligned} & x=1.4, \quad y=3.8 \\ & x=-2.2, y=-3.4 \end{aligned}$	2 3	B2 fully correct circle drawn (B1 for circle drawn with centre $(0,0)$ or circle drawn with radius 4) OR M1 at least 5 correct points calculated and plotted A1 fully correct circle drawn M1 for $y=2 x+1$ drawn or for elimination of one variable A1 for one correct pair of values given or for $x=1.4,-2.2(\pm 0.2)$ or ft from graph provided 2 marks in (a) A1 for second correct pair of values given (± 0.2) or ft from graph provided 2 marks in (a)

Question		Working	Answer	Mark	Notes
[1]			-1	2	M1 for $3 \times-5+7 \times 2$ A1 cao
	(b)		$3(x+2)$	1	B1 cao
	(c)		$7 y-16$	2	M1 for intention to expand a bracket eg $5 y-10$ or $2 y-6$ A1 cao
	(d)		m^{8}	1	B1 cao
	(e)		p^{4}	1	B1 cao
W			$4 n-2$	2	B2 for $4 n-2$ oe (B1 for $4 n+k, k \neq-2$ or k is absent, or $n=4 n-2$)
	*(b)		Yes + reason	1	C 1 ft from (a) for decision and explanation, e.g. equating 86 with nth term and "Yes, its the 22 nd term" or continuing the sequence up to 86 and "Yes, 86 is in the sequence" oe

Question		Working	Answer	Mark	Notes
$\square 20$			1.85 and -0.180	3	M1 for $\frac{--5 \pm \sqrt{-5^{2}-4 \times 3 \times-1}}{2 \times 3}$ (condone one sign error) M1 for $\frac{5 \pm \sqrt{37}}{6}(=1.8$ to 1.85 or -0.18 to -0.181$)$ A1 for answers in the ranges 1.8 to 1.85 , and -0.18 to -0.181
D]	(a) (b)	$\frac{(2 x-3)(x-1)}{(x+6)(x-1)}$ $\begin{aligned} & \frac{m b-t v}{v b}=\frac{m-t}{R} \\ & m b R-t v R=m v b-t v b \\ & m b R-m v b=t v R-t v b \\ & m(b R-v b)=t v R-t v b \end{aligned}$ OR $\begin{aligned} & \frac{m}{v}-\frac{t}{b}=\frac{m}{R}-\frac{t}{R} \\ & \frac{m}{v}-\frac{m}{R}=\frac{t}{b}-\frac{t}{R} \\ & \frac{m R-m v}{v R}=\frac{t R-t b}{b R} \\ & \frac{m(R-v)}{v R}=\frac{t R-t b}{b R} \end{aligned}$	$\frac{2 x-3}{x+6}$ $m=\frac{t v(R-b)}{b(R-v)}$	3 4	M1 for $(2 x-3)(x-1)$ M1 for $(x+6)(x-1)$ A1 cao M1 for putting LHS over a common denominator with at least one correct numerator (ignore signs) or for showing an intention to multiply each term on both sides by R or v or b M1 for rearranging correctly to isolate terms in m M1 for factorising with common factor m from 2 terms A1 for $m=\frac{t v(R-b)}{b(R-v)}$ oe

Question		Working	Answer	Mark	Notes
W			(4, 51/2)	2	M1 for $\frac{2+6}{2}$ or $\frac{3+8}{2}$ or $4,5^{1 / 2}$ without brackets A1 for $(4,51 / 2)$ oe NB: $(4,5)$ gets 0 without working
W			2.064(285714...)	2	M1 for substitution of 0.7 into expression or 2.89 or 2.06 seen A1 for 2.064(285714...) or $\frac{289}{140}$
[1]	(a) (b) (c) (d)		p^{6} t^{5} 6 4	1	$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \\ & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$
- [1]	(a) (b)		$\begin{gathered} 5 n-1 \\ 2\left(3 n-n^{2}\right) \end{gathered}$		B2 for $5 n-1$ oe (B1 for $5 n+c(\mathrm{c} \neq-1$ or absent) or $n=5 n-1)$ B1 for $2\left(3 n-n^{2}\right)$ oe
[1]	(a) (b)		$-4,-3,-2,-1,0$ $x>41 / 2$	2 2	B2 for all 5 correct values; ignore repeats, any order (B1 for 4 correct (and no incorrect) values or all 5 correct values and -5) M1 for an attempt to expand brackets (eg $6 \times x-6 \times 2$) or $6 x-12$ or for an intention to divide both sides by 6 as the first step or for $41 / 2$ oe seen A1 for $x>4 \frac{1}{2}$ oe

Question		Working	Answer	Mark	Notes
- [(a) *(b)	$y^{2}-2 y-5 y+10$ $\begin{aligned} & \left(4 n^{2}+2 n+2 n+1\right) \\ & \quad-(2 n+1) \\ & =4 n^{2}+4 n+1-2 n-1 \\ & =4 n^{2}+2 n \\ & =2 n(2 n+1) \end{aligned}$	$y^{2}-7 y+10$ Proof	2 3	M1 for all 4 terms correct (condone incorrect signs) or 3 out of 4 terms correct with correct signs A1 cao M1 for 3 out of 4 terms correct in the expansion of $(2 n+1)^{2}$ or $(2 n+1)\{(2 n+1)-1\}$ A1 for $4 n^{2}+2 n$ or equivalent expression in factorised form C1 for convincing statement using $2 n(2 n+1)$ or $2\left(2 n^{2}+n\right)$ or $4 n^{2}+$ $2 n$ to prove the result
$\square \square$		$\begin{aligned} & y(5 y+24)=0 \\ & \frac{-24 \pm \sqrt{ }\left(24^{2}\right.}{10} \end{aligned}$	$\begin{gathered} x=6, y=0 \\ x=-3.6, y=-4.8 \end{gathered}$	5	M1 for substitution for elimination eg $(2 y+6)^{2}+y^{2}=36$ M1 (dep on M1) for expansion eg $4 y^{2}+12 y+12 y+36$ (3 out of 4 terms correct) A 1 for $4 y^{2}+24 y+36+y^{2}=36$ oe M1 for a correct attempt to solve a 2 or 3 term quadratic equation eg by factorising or correct substitution into a quadratic formula A1 for $x=6, y=0$ and $x=-3.6$ oe, $y=-4.8$ oe SC: B1 (if M0 scored) for all 4 values mis-associated or one correct pair of values.

Question	Working	Answer	Mark	Notes
(a) (b)		$7 n$ 『4 explanation	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	B2 for $7 n \square 4$ (B1 for $7 n+d$ where d is an integer) M1 for ' $7 n \square 4$ ' $=150$ or any other valid method, eg. counting on 7 s (to get 150) A1 for a complete explanation eg. the 22 nd term is 150 or $n=22$ from solution of equation or a clear demonstration based on 22 or complete sequence
미 (a) (b) (c)		$\begin{gathered} x^{10} \\ m^{12} \\ 3 a^{-4} f^{6} \end{gathered}$	1 1 2	B1 cao B1 cao B2 for $3 a^{-4} f^{6}$ or $\frac{3 f^{6}}{a^{4}}$ (B1 for any two from 3, a^{-4} or $\frac{1}{a^{4}}, f^{6}$ in a product)
(a) (b)		$\begin{array}{r} \hline 6.25 \\ -0.75 \end{array}$	3 4	M1 for clear intention to expand bracket or divide both sides of the equation by 5 as first step M1 for correct method to isolate terms in f A1 for 6.25 oe M1 for correct method to clear fractions eg. multiply all terms by 6 M1 for expansion of brackets oe M1 (dep on M1) for isolating the terms in \boldsymbol{h} and the constant terms A1 for -0.75 oe
(a) (b)		$\begin{gathered} \mathbf{- 1 5}, \mathbf{0}, 3,0,-\mathbf{3}, \mathbf{0} \\ 15 \end{gathered}$ Correct graph	2 2	B2 for all correct (B1 for any 2 or 3 correct) M1 for at least 5 points plotted correctly (ft from table if at least B1 awarded in (a)) A1 for a fully correct curve

Question	Working	Answer	Mark	Notes
(a) (b)		$\begin{gathered} (2 x+3)(2 x-3) \\ m=\frac{g-5}{a+3} \end{gathered}$	1 3	B1 cao M1 for correct processes to isolate terms in m from other terms M1 for taking m out as a common factor A1 for $m=\frac{g-5}{a+3}$ or $m=\frac{5-g}{-a-3}$
*口1		Yes with explanation	3	M1 For Line A: writes equation as $y=1.5 x+4$ or gives the gradient as 1.5 or constant term of 4 OR for Line B: shows a method which could lead to finding the gradient or gives the gradient as 2 or constant term of 4 or calculates a sequence of points including $(0,4)$ or writes equation of line as $y=2 x+4$ M1 Shows correct aspects relating to an aspect of Line A and an aspect of Line B that enables some comparison to be made eg gradients, equations or points. C1 for gradients 1.5 and 2 and Yes with explanation that the gradients are different or states the lines intersect at $(0,4)$ or explanation that interprets common constant term (4) from equations OR M1 for a diagram that shows both lines drawn and intersecting at $(0,4)$ M1 for a diagram that shows both lines and their intersection point identified as $(0,4)$ C 1 for Yes and states the intersection point as $(0,4)$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Working \& Answer \& Mark \& Notes

\hline Ш10 \& (a)

(b) \& $$
\begin{aligned}
& 3 x-6=x+7 \\
& 2 x=13
\end{aligned}
$$

$$
2-y=1 \times 5
$$ \& \[

6.5
\]

$$
-3
$$ \& 3

2 \& | M1 for $3 \times x-3 \times 2(=3 x-6)$ or $\frac{x}{3}+\frac{7}{3}$ seen |
| :--- |
| M1 for correct method to isolate the terms in x or the number terms on opposite sides of an equation |
| A1 for 6.5 oe |
| M1 for intention to multiply both sides by 5 (to give 2 $-y=1 \times 5)$ |
| A1 cao |

\hline Ш1] \& | (a) |
| :--- |
| (b) | \& \& \[

(3,3.5) \mathrm{oe}
\]

$$
-1.8 \text { oe }
$$ \& 2

2 \& | M1 for a correct method to find the value of either the x coordinate or the y coordinate of the midpoint or $x=$ 3 or $y=3.5$ |
| :--- |
| A1 cao |
| M1 for correct method to find the gradient OR $(+) 1.8$ A1 for -1.8 oe |

\hline Ш1 \& | (a) |
| :--- |
| (b) |
| (c) | \& \[

$$
\begin{aligned}
& x^{2}-2 x-3=0 \text { OR } \\
& (x-3)(x+1)=0
\end{aligned}
$$

\] \& | -2 -1 0 1 2 3 4
 $\mathbf{8}$ 3 0 $\mathbf{- 1}$ $\mathbf{0}$ 3 $\mathbf{8}$ |
| :--- |
| Correct curve |
| 3 and -1 | \& | 2 |
| :--- |
| 2 |
| 2 | \& | B2 for $8,-1,0,8$ |
| :--- |
| (B1 for at least two of $8,-1,0,8$) |
| M1 (ft) for at least 5 points plotted correctly |
| A1 for a fully correct curve |
| M1 for the straight line $y=3$ drawn to intersect the "graph" from (a) |
| A1 for both solutions |
| OR |
| M1 for identifying $y=3$ from the table |
| A1 for both solutions |
| OR |
| M1 for $(x \pm 3)(x \pm 1)$ |
| A1 for both solutions |

\hline
\end{tabular}

I EXPERT

Question		Working	Answer	Mark	Notes
D8		$\begin{aligned} & 3 p^{2}=y+4 \\ & p^{2}=\frac{y+4}{3} \end{aligned}$	$p=\sqrt{\frac{y+4}{3}}$	3	M1 for clear intention to add 4 to both sides or divide all terms by 3(with at least 3 terms) M1 for clear intention to find the square root from $p^{2}=($ expression in $y)$ A1 for $p=\sqrt{\frac{y+4}{3}}$ oe \quad (accept \pm a correct root)
$\square 9$	(a) (b) (c)		$\begin{gathered} 3(2+3 x) \\ (y+4)(y-4) \\ (2 p-5)(p+2) \end{gathered}$	1 1 2	B1 for 3(2+3x) B1 for $(y+4)(y-4)$ M1 for $(2 p \pm 5)(p \pm 2)$ A1 for $(2 p-5)(p+2)$
\square			$\begin{gathered} x=2.87, y= \\ -0.87 \\ \text { and } \\ x=-0.87, y= \\ 2.87 \end{gathered}$	6	M1 for $x^{2}+(2-x)^{2}=9$ M1 for $4-4 x+x^{2}$ A1 for $2 x^{2}-4 x-5=0$ oe 3 term simplified quadratic M1 for a correct method to solve their quadratic $\operatorname{Eg} \quad x=\frac{4 \pm \sqrt{ }(16-4 \times 2 \times-5)}{4}$ A1 for $x=2.87, y=-0.87$ or better A1 for $x=-0.87, y=2.87$ or better Award marks for equivalent algebraic expressions. Apply the same scheme as above for y first.

\boldsymbol{T} EXPERT

Question		Working	Answer	Mark	Notes
D]	(a) (b) (c)		30 20 graph completed	1 1 2	B1 for 30 minutes B1 cao B1 for horizontal line from $(5,20)$ to $(5.30,20)$ B1 for a single straight line with the correct gradient from '(5.30, 20)' to the time axis
\square	(a) (b) (c)	$3 x+12+10 x-2$ $2 x^{2}-8 x+x-4$	$13 x+10$ $2 x^{2}-7 x-4$ $3 y(2 y-3 x)$	2 2 2	M1 for correct method to expand one bracket eg $3 \times x+3 \times 4$ or $3 x+12$ or $2 \times 5 x-2 \times 1$ or $10 x-2$ A1 for $13 x+10$ M1 for all 4 terms (and no additional terms) correct ignoring signs or 3 out of no more than four terms correct A1 for $2 x^{2}-7 x-4$ B2 for $3 y(2 y-3 x)$ (B1 for $3\left(2 y^{2}-3 x y\right)$ or $y(6 y-9 x)$ or $3 y(2 y+3 x)$ or $3 y(2 y-a x)$ where a is any positive integer except 3 or $3 y(b y-3 x)$ where b is any positive integer except 2)

「 EXPERT

Question		Working	Answer	Mark	Notes
D]	(a (b)		$-2,-1,0,1$ $p>6$	2 2	B2 for all 4 correct values; ignore repeats, any order (B1 for 3 correct (and no incorrect values) eg. $-2,-1,0$ or one additional value eg. $-3,-2,-1,0,1$) M1 for clear intention to add 7 to both sides or $3 p>11+7$ or clear intention to divide all 3 terms by 3 as a first step or $3 p>18 \text { or } 3 p=18 \text { or } 3 p<18 \text { or } \frac{18}{3}$ A1 for $p>6$ as final answer NB: $(p=) 6$ on the answer line scores M1 A0
D]	(a) (b)	$\begin{aligned} & 100=4 \times 2 \times c \\ & m^{2}=\frac{k+1}{4} \\ & 4 m^{2}=k+1 \\ & k=4 m^{2}-1 \\ & \text { or } \\ & 2 m=\sqrt{ }(k+1) \\ & 4 m^{2}=k+1 \\ & k=4 m^{2}-1 \end{aligned}$	12.5 $k=4 m^{2}-1$	2 3	M1 for correct substitution into formula A1 for 12.5 oe M1 for correct method to clear fraction or remove square root sign M1 (dep) for a fully correct method to both clear fraction and remove square root sign A 1 for $k=4 m^{2}-1$ or $k=(2 m+1)(2 m-1)$

Question		Working	Answer	Mark	Notes
W]	(a)		-1, 0, 1, 2, 3	2	B2 for all 5 correct values; ignore repeats, any order (B1 for 4 correct (and no incorrect values) eg. $0,1,2,3$ or one additional value, eg $-1,0,1,2,3,4$)
	(b)		$-4<x \leq 3$	2	B2 for $-4<x \leq 3$ or >-4 and ≤ 3 (B1 for $-4<x$ or $x>-4$ or $x \leq 3$ or $3 \geq x$ or >-4 or ≤ 3 or $-4 \leq x<3$) NB: Accept the use of any letter
	(c)	$\begin{aligned} & 3 y-2>5 \\ & 3 y>7 \end{aligned}$	$y>\frac{7}{3}$	2	M1 for clear intention to add 2 to both sides (of inequality or equation) or clear intention to divide all three terms by 3 or $3 y>7$ or $3 y<7$ or $3 y=7$ A1 $y>\frac{7}{3}$ or $y>2 \frac{1}{3}$ or $y>2 . \dot{3}$ NB. final answer must be an inequality (SC B1 for $\frac{7}{3}$ oe seen if M0 scored)
D]	(a)		$x(x+7)$	1	B1 cao
	(b)		$(y-8)(y-2)$	2	M1 $(y \pm 8)(y \pm 2)$ or $y(y-2)-8(y-2)$ or $y(y-8)-2(y-8)$ A1 cao
	(c)(i)	$2 t^{2}+5 t+2=(2 t+1)(t+2)$	$(2 t+1)(t+2)$	3	$\begin{array}{ll} \text { M1 } & (2 t+2)(t+1) \text { oe or } 2 t(t+2)+1(t+2) \text { or } \\ & t(2 t+1)+2(2 t+1) \\ \text { A1 } & (2 t+1)(t+2) \end{array}$
	(ii)	This is always a product of two whole numbers each of which is greater than 1	Correct explanation		B1 ft from (i) for a convincing explanation referring to factors found in (i)

Question		Working								Answer Correct table Correct graph		B2 all 3 correct (B1 1 or 2 correct $)$
W	(a) (b)		$\begin{array}{l\|l} \hline x & 0.5 \\ \hline & 12 \\ \hline \end{array}$			3 2	${ }_{\text {(1.5) }}$	5 1.2	(1)		2 2	
[1]			$\frac{3(x+1)}{6}+$	$\frac{2(x+}{6}$	$=$	$3 x+$	2x+6			$\frac{5 x+9}{6}$	3	M1 Use of common denominator of 6 (or any other multiple of 6) and at least one numerator correct Eg. $\frac{3(x+1)}{6}$ or $\frac{2(x+3)}{6}$ M1 $\frac{3(x+1)}{6}+\frac{2(x+3)}{6}$ oe A1 cao

「 EXPERT

347.

	tion	Working	Answer	Mark	Notes
W	(a)	$x=\frac{-9 \pm \sqrt{9^{2}-4 \times 2 \times-7}}{2 \times 2}=\frac{-9 \pm \sqrt{137}}{4}$ Put $y=\frac{1}{x}$ and use part (a) Or $\begin{aligned} & 7 y^{2}-9 y-2=0 \\ & y=\frac{--9 \pm \sqrt{(-9)^{2}-4 \times 7 \times(-2)}}{2 \times 7} \\ & \frac{9 \pm \sqrt{137}}{14} \end{aligned}$	0.676, - 5.18	3	M1 $\frac{-9 \pm \sqrt{9^{2}-4 \times 2 \times-7}}{2 \times 2}$ allow substitution of ± 7 for c M1 $\frac{-9 \pm \sqrt{137}}{4}$ A1 answers in ranges $0.67-0.68$ and -5.17 to -5.18 OR M1 $\left(x+\frac{9}{4}\right)^{2}$ oe M1 for method leading to $\pm \sqrt{\frac{137}{16}}-\frac{9}{4}$ A1 answers in ranges $0.67-0.68 \text { and }-5.17 \text { to }-5.18$ M1 $y=\frac{1}{x}$ or $x=\frac{1}{y}$ A1 (ft) answers in range $1.47-1.48 \text { and }-0.19 \text { to }-0.194$ OR M1 fully correct method which leads to $7 y^{2}-9 y-2=0$ or $-7 y^{2}+9 y+2=0$ with correct method to solve (condone sign errors in substitution) A1 (ft) answers in range $1.47-1.48$ and -0.19 to -0.194

Question		Working						Answer	Mark	Notes
Ш1		x y O U gr y	$\begin{array}{\|c\|} \hline-1 \\ \hline-5 \end{array}$	$\begin{gathered} 0 \\ \hline-2 \end{gathered}$ $n x+$ $=-2$	$\frac{1}{1}$	$\frac{2}{4}$	3 7	Straight line from $(-1,-5)$ to $(3,7)$	3	(Table of values) M1 for at least 2 correct attempts to find points by substituting values of x. M1 ft for plotting at least 2 of their points (any points plotted from their table must be correctly plotted) A1 for correct line between -1 and 3 (No table of values) M2 for at least 2 correct points (and no incorrect points) plotted OR line segment of $y=3 x-2$ drawn (ignore any additional incorrect segments) (M1 for at least 3 correct points plotted with no more than 2 incorrect points) A1 for correct line between -1 and 3 (Use of $\boldsymbol{y}=\mathbf{m} \boldsymbol{x}+\mathbf{c}$) M2 for line segment of $y=3 x-2$ drawn (ignore any additional incorrect segments) (M1 for line drawn with gradient of 3 OR line drawn with a y intercept of -2 and a positive gradient) A1 for correct line between -1 and 3
\square	(a) (b)							$-1,0,1,2,3$ $x<3.25$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	B2 for all 5 correct values; ignore repeats, any order. (-1 for each omission or additional value) M1 for a clear intention to use a correct operation to collect x terms or non- x terms in an (in)equality A1 for $x<3.25$ oe (SC: B1 for 3.25 oe seen if M0 scored)

T EXPERT

Г EXPERT
 TUITION

Qu	Working	Answer	Mark	Notes
D]	$\begin{aligned} & \sqrt{\frac{8.5 \times 10^{9}-4 \times 10^{8}}{8.5 \times 10^{9} \times 4 \times 10^{8}}} \\ & =\sqrt{\frac{8.1 \times 10^{9}}{3.4 \times 10^{18}}} \\ & =\sqrt{2.3823529 \ldots \times 10^{-9}} \\ & \text { OR } \\ & \sqrt{\frac{1}{4 \times 10^{8}-\frac{1}{8.5 \times 10^{9}}}} \\ & =\sqrt{2.5 \times 10^{-9}-1.17647 \times 10^{-10}} \\ & =\sqrt{2.3823529 \ldots \times 10^{-9}} \end{aligned}$	4.9×10^{-5}	3	B3 for 4.88×10^{-5} to 4.9×10^{-5} (B2 for digits 238(23529) or 24 or $488(09353)$ or 49) (B1 for digits 81 or 34) OR B3 for 4.88×10^{-5} to 4.9×10^{-5} (B2 for digits 238(23529) or 24 or 488(09353) or 49) (B1 for digits 25 or 117(647))
प]	$\begin{aligned} & 2 d-2 t=4 t+7 \\ & 2 d-7=4 t+2 t \\ & 2 d-7=6 t \\ & \frac{2 d-7}{6} \end{aligned}$	$\frac{2 d-7}{6}$	3	B1 for $2 d-2 t$ or $2 t+\frac{7}{2}$ oe M1 for rearranging 4 terms correctly to isolate terms in t e.g. ' $2 d$ ' $-7=4 t+{ }^{\prime} 2 t$ ' or $2 d-7=6 t$ or $-6 t=7-2 d$ seen A1 for $\frac{2 d-7}{6}$ oe
प	$\begin{aligned} & 4 n^{2}+12 n+3^{2}-\left(4 n^{2}-12 n+3^{2}\right) \\ & =4 n^{2}+12 n+9-4 n^{2}+12 n-9 \\ & =24 n \\ & =8 \times 3 n \end{aligned}$	Proof	3	M1 for 3 out of 4 terms correct in expansion of either $(2 n+3)^{2}$ or $(2 n-3)^{2}$ or $((2 n+3)-(2 n-3))((2 n+3)+(2 n-3))$ A1 for $24 n$ from correct expansion of both brackets A1 (dep on A1) for $24 n$ is a multiple of 8 or $24 n=8 \times 3 n \text { or } 24 n \div 8=3 n$

	estion	Working	Answer	Mark	Notes
W		$\begin{aligned} & a=3, b=-4, c=-2 \\ & x=\frac{--4 \pm \sqrt{(-4)^{2}-4 \times 3 \times-2}}{2 \times 3} \\ & =\frac{4 \pm \sqrt{16+24}}{6}=\frac{4 \pm \sqrt{40}}{6} \\ & =1.72075922 \\ & \text { or } \\ & =-0.3874258867 \\ & \text { OR } \\ & x^{2}-\frac{4}{3} x-\frac{2}{3}=0 \\ & \left(x-\frac{2}{3}\right)^{2}-\left(\frac{2}{3}\right)^{2}-\frac{2}{3}=0 \\ & x-\frac{2}{3}=\sqrt{\left(\frac{2}{3}\right)^{2}+\frac{2}{3}} \\ & x=\frac{2}{3} \pm \sqrt{\frac{10}{9}} \end{aligned}$	1.72, -0.387	3	M1 for $\frac{--4 \pm \sqrt{(-4)^{2}-4 \times 3 \times-2}}{2 \times 3}$ (condone incorrect signs for -4 and -2) M1 for $\frac{4 \pm \sqrt{40}}{6}$ or $\frac{2 \pm \sqrt{10}}{3}$ A1 for one answer in the range 1.72 to 1.721 and one answer in the range -0.387 to -0.38743 OR M1 for $\left(x-\frac{2}{3}\right)^{2}$ oe M1 for method leading to $\frac{2}{3} \pm \sqrt{\frac{10}{9}}$ oe A1 for one answer in the range 1.72 to 1.721 and one answer in the range -0.387 to -0.38743

