

Maths Questions By Topic:

Geometry \& Measures Mark Scheme

Edexcel GCSE (Higher)

\# www.expert-tuition.co.uk
\square online.expert-tuition.co.uk
《enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 .. Page 1
Paper 2 ... Page 21
Paper 3
Page 49
Old Spec A (Linear)
Paper 1 ... Page 74
Paper 2
Page 126

Question	Answer	Mark	Mark scheme	Additional guidance
1	12	P1 P1 A1	for a process to find the area of cross section, eg $750 \div 25(=30)$ oe or $\frac{1}{2} \times 5 \times h$ oe for a correct equation in h, eg $750 \div 25=\frac{1}{2} \times 5 \times h$ oe or $\frac{1}{2} \times 5 \times h \times 25=750$ oe or for a complete process to find h, eg $\frac{750}{25} \times \frac{2}{5}$ oe or " 30 " $\times 2 \div 5$ cao SC B1 for answer of 6 if P0 scored	May use any letter for h or may use ?
2	Shown	M1 M1 M1 A1	for a correct expression for the area of one face of the cube, eg x^{2} or a correct expression for the surface area of the cube, eg $6 \times x^{2}$ for a correct expression for the surface area of the sphere, eg $4 \times \pi \times 3^{2}(=36 \pi)$ for forming a suitable equation, eg $6 \times x^{2}=4 \times \pi \times 3^{2}$ or $6 x^{2}=" 36 \pi$ " for completing the method to $x=\sqrt{6 \pi}$ or $k=6$	No marks for $x=\sqrt{6 \pi}$ without any working. $\begin{aligned} & 6 \times x^{2}=4 \times \pi \times 3^{2} \\ & x^{2}=36 \pi \div 6 \\ & x=\sqrt{6 \pi} \end{aligned}$

Question	Answer	Mark	Mark scheme	Additional guidance
3 (a) (b)	30 Explanation	P1 P1 A1 C1	for a start to the process, eg $5406 \div 6(=901)$ or $5400 \div 6(=900)$ or $5000 \div 6(=833.33 .$. or $5410 \div 6(=901.66$..) for a process to find the length of one side, eg $\sqrt{" 901 "}$ or $\sqrt{" 900 "}$ or $\sqrt{" 833.33 . . " ~ o r ~} \sqrt{" 901.66 . . "}$ for 30 for a correct explanation based on their working in (a), eg underestimate because I rounded the total area down	Must be based on the use of a rounded value in a calculation
4	A \& D	B1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance 5 with working and reasons	M1

Question	Answer	Mark	Mark scheme	Additional guidance
6	Proof	M1 M1 B1 C1	for $\overrightarrow{D Q}=1 / 2(\mathbf{b}-\mathbf{a})$ oe or $\overrightarrow{E Q}=1 / 2(\mathbf{a}-\mathbf{b})$ oe for $\overrightarrow{P Q}=1 / 2 \mathbf{a}+\overrightarrow{D Q}$ or $1 / 2 \mathbf{a}+1 / 2(\mathbf{b}-\mathbf{a})$ oe or $\overrightarrow{P Q}=-1 / 2 \mathbf{a}+\mathbf{b}+\overrightarrow{E Q}$ or $-1 / 2 \mathbf{a}+\mathbf{b}+1 / 2(\mathbf{a}-\mathbf{b})$ oe for $\overrightarrow{P Q}=1 / 2 \mathbf{b}$ for complete proof with statement, eg $F E=2 P Q$ or $F E$ is a multiple of $P Q$ or $\mathbf{b}=2(1 / 2 \mathbf{b})$	Vectors could be written on the diagram
7	0.5	P1 P1 P1 P1 A1	derive an algebraic expression for the area of A eg $\frac{1}{8} \pi\left[(5 x-1)^{2}-(3 x-1)^{2}\right]$ expand and simplify for either area A or area B eg $\frac{1}{8} \pi\left(16 x^{2}-4 x\right)$ or $\pi\left(x^{2}-2 x+1\right)$ (dep P2) equate and rearrange into a quadratic eqn of the form $a x^{2}+b x+c=0$ eg $2 x^{2}+3 x-2=0$ (dep P3) factorise eg $(2 x-1)(x+2)=0$ or use of formula eg $\frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times-2}}{2 \times 2}$ oe	Accept only the single value of 0.5 oe but award 0 marks for a correct answer with no supportive working

Question	Answer	Mark	Mark scheme	Additional guidance
8	sketch	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for sketch of a cylinder sketch of cylinder, with dimensions shown	Hidden edges may or may not be shown $2(\mathrm{~cm})$ for radius or $4(\mathrm{~cm})$ for diameter and $5(\mathrm{~cm})$ for height
9	$\begin{aligned} & c=-6 \\ & d=-1 \end{aligned}$	M1 A1 A1	for reflection in x-axis shown on diagram for $c=-6$ or $d=-1$ for both $c=-6$ and $d=-1$ SCB2 for $c=-1$ and $d=-6$	Vertices $(3,-2),(5,-2),(3,-5)$ One correct value is M1A1 regardless of second value or diagram
10	8.5	P1 P1 P1 A1	for process to use the area of $P Q R S$ to find the length of $P Q$, eg $10 y=45$ or $45 \div 10(=4.5)$ for process to use the perimeter of $A B C D$, eg $2 x+2 \times$ " 4.5 " $=26$ or $26-2 \times$ " 4.5 " $(=17)$ or $26 \div 2(=13)$ for process to use length of $B C$ to find length of $A B$, eg solves $2 x+2 \times " 4.5 "=26$ or $(26-2 \times " 4.5 ") \div 2$ or " $13 "-$ " $4.5 "$ for 8.5 or $8 \frac{1}{2}$	Sets up equation for area Uses perimeter of $A B C D$ Accept $\frac{17}{2}$

Question	Answer	Mark	Mark scheme	Additional guidance
11	$\frac{1}{2}$	M1 A1	$\begin{aligned} & \text { for } \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{2} \text { or } \frac{\sqrt{3}}{3} \times \frac{\sqrt{3}}{2} \text { or }\left(\frac{1}{2} \div \frac{\sqrt{3}}{2}\right) \times \frac{\sqrt{3}}{2} \\ & \text { OR } \tan 30=\frac{1}{\sqrt{3}} \text { oe or } \sin 60=\frac{\sqrt{3}}{2} \\ & \text { for } \frac{1}{2} \text { or } 0.5 \end{aligned}$	
12	48	M1 M1 M1 A1	for method to use a volume formula with correct substitution for the cone, sphere or hemisphere eg $\frac{1}{3} \times \pi \times 3^{2} \times 10$ or $\frac{4}{3} \times \pi \times 3^{3}$ or $\frac{2}{3} \times \pi \times 3^{3}$ oe for complete method to find total volume eg $\frac{1}{3} \times \pi \times 3^{2} \times 10+\frac{2}{3} \times \pi \times 3^{3}$ (dep first M1) for correct partial simplification, eg 30π or 18π cao SC B2 for answer of 264 or 264π	May work without π or with an approximation of π; must use the correct radius of 3 (and 10) in substitution Must be cone or hemisphere Accept 48π

「 EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
15	21	C1 C1 C1	for angle $O A B=90-56(=34)$ for process to find angle $C A D(=69)$ or angle $B C A(=56)$ or angle $C O A$ $(=138)$, eg use of alternate segment theorem or angle at centre is twice the angle at the circumference cao	Throughout, angles may be written on the diagram; accept as evidence if correct. Ignore absence of degree sign Reasons need not be given.
16	$\begin{gathered} \text { enlargement scale } \\ \text { factor }-\frac{1}{3} \\ \text { centre }(2,2) \end{gathered}$	$\mathrm{C} 2$ (C1	for all of: enlargement, (scale factor $=)-\frac{1}{3}$ oe, $($ centre $=)(2,2)$ for two of: enlargement, (scale factor $=)-\frac{1}{3}$ oe, $($ centre $\left.=)(2,2)\right)$ Note: award no marks if more than one transformation is given	

Question	Answer	Mark	Mark scheme	Additional guidance
17	3:4	P1	starts process eg $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$ oe	
		P1	for process to find $\overrightarrow{O M}=\mathbf{a}+\frac{1}{2}$ " $(\mathbf{b}-\mathbf{a})$ "oe $\quad\left(=\frac{\dot{2}}{2}(\mathbf{a}+\mathbf{b})\right)$	
		P1	for process to find $\overrightarrow{A P}=-\mathbf{a}+\frac{3}{5}$ " $\left(\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right)$ " oe or (indep) for $\overrightarrow{A N}=-\mathbf{a}+" k " \mathbf{b}$	
		P1	process to find " k " using $\overrightarrow{A N}=-\mathbf{a}+$ " k " \mathbf{b} as a multiple of $\overrightarrow{A P}$	
		A1	cao	
		P1 P1 P1 P1 A1	ALTERNATIVE for producing $O M$ to C such that $A C$ is parallel to $O B$ for process to show that $M C=O M$, using congruent triangles $A C M$ and $B O M$ for process to find $P C$ as a multiple of $O M / 5(=7 O M / 5)$ for process to find $O N$ as a multiple of $A C(O B)(=3 O B / 7)$ using similar triangles $A C P$ and $N O P$ cao	Formal geometric reasoning relating to congruent and similar triangles is not required

Question	Answer	Mark	Mark scheme	Additional guidance
18 (a)	isosceles triangle, base 6 cm , height 4 cm	M1	for drawing an isosceles triangle or for drawing a triangle of base 6 cm and height 4 cm	Accept a freehand drawing Only a single triangle is acceptable; do not accept any attempted nets or 3-D diagrams
(b)	$96 \mathrm{~cm}^{2}$	A1	for a fully correct diagram	Condone a perpendicular drawn from base to vertex
		M1	for a method to find the area of a triangular face eg $1 / 2 \times 6 \times 5(=15)$	
		M1	(dep) for finding the total surface area eg $4 \times$ " 15 " $+6 \times 6$	
		A1	for a numerical answer of 96 SC B1 for an answer of 84 if M0 scored	Ignore incorrect or absent units for this mark [The SC is from: $4 \times 1 / 2 \times 6 \times 4+6 \times 6$]
		B1	cm^{2}	Ignore incorrect or absent numerical answer for this mark

Question	Answer	Mark	Mark scheme	Additional guidance
19	$(22,20)$	P1	for process to find width or height of diagram eg 38-6(=32) or $36-7(=29)$ for process to find length of side of square $\text { eg " } 32 " \div 4(=8)$ or process to find half width of diagram eg " 32 " $\div 2(=16)$	Figures may be shown on the diagram If $(6+38) \div 2$ leads to an answer other than 22, award P2 only
		P1	for process to find x coordinate eg $6+2 \times$ " 8 " $(=22)$ or $6+" 16 "(=22)$ or $(6+38) \div 2(=22)$	
		P1	for process to find y coordinate eg $36-2 \times$ " $8 "(=20)$ or $36-" 16 "(=20)$ or $7+" 8 "+" 29 "-3 \times " 8 "$ ($=20$)	
		A1	cao SC: award 4 marks for $(20,22)$	Award for P 3 for $(22, y)$ or $(x, 20)$ or $x=22$ or $y=20$
20	$\begin{gathered} \text { rotation } 180^{\circ} \\ \text { about }(-1,-2) \\ \text { or } \\ \text { enlargement } \\ \operatorname{sf}-1 \\ \text { centre }(-1,-2) \end{gathered}$	B2 (B1	rotation 180° about $(-1,-2)$ or enlargement sf -1 centre $(-1,-2)$ rotation 180° or rotation about $(-1,-2)$ OR enlargement sf -1 or enlargement centre $(-1,-2)$) Award no marks for the description if more than one transformation is given SC B1 for fully correct diagram if B0 scored	Condone missing brackets but do not accept centre written as a vector Do not accept 'half turn' for 'rotation 180° Ignore references to clockwise and anticlockwise Triangles at $(-3,1),(-5,1),(-4,3)$ and $(-3,-5),(-5,-5),(-4,-7)$

Question	Answer	Mark	Mark scheme	Additional guidance
21	216	P1 P1 P1 A1	for process to work with ratio eg $72 \div(3+4+5)(=6)$ or $72 \div 12(=6)$ for process to find length of base or height of triangle eg $3 \times " 6 "(=18)$ or $4 \times " 6 "(=24)$ OR process to find area scale factor eg " 6 " \times " 6 " $(=36)$ complete process to find the area of the triangle eg $1 / 2 \times$ " 18 " \times " 24 " or $1 / 2 \times 3 \times 4 \times$ " 6 " ${ }^{2}$ cao	
22	$90-2 x$	M1 M1 A1 C2 (C1	for identifying an unknown angle eg $B A O=x, A O B=180-2 x, O B C=90, A B C=90+x$ full method to find the required angle eg a method leading to $180-x-x-90$ for $90-2 x$ (dep M2) full reasons for their method, from base angles in an isosceles triangle are equal angles in a triangle add up to 180° a tangent to a circle is perpendicular to the radius (diameter) angles on a straight line equal 180° the exterior angle of a triangle is equal to the sum of the interior opposite angles (dep M1) for a tangent to a circle is perpendicular to the radius (diameter))	Could be shown on the diagram alone Needs to be an algebraic method Accept $x+x+90+y=180$ for M2 Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit. Apply the above criteria

Question	Working	Answer	Mark	Notes
23	$C B$ extended to form $C G$	Reasoning	B1 M1 C2 (C1	for 35 or 75 or 145 or 105 or $D E F=70$, marked on the diagram or 3 letter description for 180-70-35 or 180-75-35 or a correct pair of angles that would lead to 75 or 70, eg $A F B=35$ and $F A B=75$ or $A F B=35$ and $A B G=75$ or $F B C=35$ and $A B G=75$ or $E D F=75$ and $D E F=70$ or $F D C=105$ and $F B C=35$ or $A B C=105$ and $F B C=35$ (dep on B1M1) All figures correct with all appropriate reasons stated. Angles must be clearly labelled or on the diagram. Full solution must be seen (dep on B1 or M1) for one reason clearly used and stated.) Corresponding angles are equal, alternate angles are equal, opposite angles in a parallelogram are equal, angles in a triangle sum to 180 , angles on a straight line sum to 180 , vertically opposite angles are equal, vertically opposite angles are equal, angles in a quadrilateral sum to 360 , co-interior angles sum to 180 , allied angles sum to 180 , angles around a point sum to 360
24		Daisy is wrong (supported)	P1 P1 A1 C1	for process to find area of any relevant circle ie $\pi \times 4^{2}(=16 \pi), \pi \times 7^{2}(=49 \pi)$, $\pi \times 10^{2}(=100 \pi)$ or 7^{2} and 4^{2} for completed method to find shaded area eg " $\pi \times 7^{2 "}$ " " $\pi \times 4^{2 "}$ " $=33 \pi$) or use of radii eg $7^{2}-4^{2}(=33)$ for 2 comparable figures, eg 33π and 100π or 33 and 100 or 103 to 103.7 and 314 to 314.2 or 103 to 103.7 and 104.6 to 104.8 statement eg No because it should be $\frac{33}{100}$ and their accurate figures Allow use of $\pi=3$ or better

Question	Working	Answer	Mark	Notes
25		Correct enlargement	B2	Correct enlargement $(-1,-1.5),(-1,-3.5)(-2,-1.5)$
(B1	correct size, correct orientation in incorrect position or 2 out of 3 vertices correctly placed $)$			
26		$1+\sqrt{2}$	B1	for a value for a known trigonometric ratio stated
			P1	for process to form 2 equations in a and b or one correct value stated
for complete process to solve to reach $a=2$ and $b=1$				
		A1	for $1+\sqrt{2}$ oe	

T EXPERT

Question	Working	Answer	Mark	Notes
27		70.5	P1 P1 P1 P1 A1	starts process of Pythagoras e.g. $5^{2}+12^{2}$ complete process for Pythagoras e.g. $\sqrt{5^{2}+12^{2}}$ or $\sqrt{25+144}$ or $\sqrt{169}(=13)$ (dep P1 for Pythagoras) process of adding all the lengths e.g. $5+5+12+12+$ "13" (=47) (indep) process of multiplying at least 2 lengths by 1.5 cao SC: any evidence of working with Pythagoras award the P1 or P2
28		$\frac{2}{5}$	P1 P1 P1 A1	for first step to solve the problem e.g. $\overrightarrow{A C}=-\mathbf{a}+\mathbf{c}$ or $\overrightarrow{O X}=\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{c}$ or demonstrates the location of D and X on the diagram for a correct vector statement using $\overrightarrow{C D}$ eg $\overrightarrow{C D}=\overrightarrow{C X}+\overrightarrow{X D}$ or $\overrightarrow{C D}=\overrightarrow{O D}-\overrightarrow{O C}$ or $\overrightarrow{O D}=\frac{7}{2}$ c or $\overrightarrow{C D}=2.5 \mathbf{c}$ oe for a correct equation or ratio using k eg equating $\overrightarrow{X D}=3 \mathbf{c}-\frac{1}{2} \mathbf{a}=\frac{1}{2}(-\mathbf{a}+\mathbf{c})+\frac{1}{k} \mathbf{c}$ or $\frac{\overrightarrow{O D}}{\overrightarrow{O C}}=\frac{k+1}{k}$ or $k=\frac{1}{2.5}$ or using a ratio approach eg $(\overrightarrow{O C}: \overrightarrow{C D})=k: 1=1: 2.5$ cao

Question	Working	Answer	Mark	Notes
29			C1 C1 C1 C1	states (angle) $A B C=$ (angle) $B C D$ states $2^{\text {nd }} \operatorname{link} A B=C D$ states $3{ }^{\text {rd }}$ link with reason: $B C=B C$ (common) concludes proof by stating (triangle) $A B C \equiv$ (triangle) $D C B$ with reason SAS and $A C=B D$
30	$\begin{aligned} & \cos \mathrm{PBQ}= \\ & \frac{10^{2}+10^{2}-x^{2}(2-\sqrt{3})}{200} \\ & =\frac{200-x^{2}(2-\sqrt{3})}{200} \end{aligned}$	Proof	B1 M1 M1 M1 A1	(indep) for stating $\cos 30=\frac{\sqrt{3}}{2}$ for $P Q^{2}=10^{2}+10^{2}-2 \times 10 \times 10 \times \cos P B Q$ or $A C^{2}=x^{2}+x^{2}-2 \times x \times x \times \cos 30\left(=x^{2}(2-\sqrt{ } 3)\right)$ oe for $\cos P B Q=\frac{10^{2}+10^{2}-P Q^{2}}{2 \times 10 \times 10} \quad$ (implies previous M1) for $\cos P B Q=\frac{10^{2}+10^{2}-\left(x^{2}+x^{2}-2 \times x \times x \times \cos 30\right)}{2 \times 10 \times 10}$ conclusion of proof with all working seen

Question	Working	Answer	Notes
31		152	M1 Start to method $A B D=38^{\circ}$ and $B A D$ or $D B C$ or $D C B=38^{\circ}$ M1 $A D B$ or $B D C=180-2 \times 38(=104)$ A1 for 152 with working
32		Correct sketch	C1interprets diagram eg. draw a solid shape with at least two correct dimensionsC1 \quad draws correct prism with all necessary dimensions.
33		$x=21, y=50$	P1 process to start solving problem eg. form an appropriate equation P1 complete process to isolate terms in x A1 for $x=21$ P1 complete process to find second variable A1 $y=50$
34		6.4	P1 Start to process eg. find scale factor (0.4) or $\frac{A E}{4}=\frac{4}{10}$ P1 Complete process to find area A1
35 (a) (b)		$\begin{aligned} & (-2,-2)(-6,-2) \\ & (-2,-4)(-4,-4) \end{aligned}$ Enlargement sf -0.5 centre $(0,0)$	M1 Shape drawn in correct orientation A1 C1

Question	Working	Answer	Notes	
36		42	process to start problem solving eg forms an appropriate equation complete process to solve their equation cao	
37		48	begins to work with rectangle dimensions eg $l+w=7$ or $2 \times l+w(=11)$ shows a result for a dimension eg using $l=4$ or $w=3$ begins process of finding total area eg $4 \times$ " 3 " \times " 4 " cao	
38		explanation	M1 works with volume eg 240000 M1 uses conversion 1 litre $=1000 \mathrm{~cm}^{3}$ M1 uses 8000 eg vol $\div 8000(=30)$ M1 uses " 30 " eg " 30 " $\times 2.50$ C1 for explanation and 75 stated	begins working back eg 70 $\div 2.50$ (=28) uses conversion 1 litre $=1000 \mathrm{~cm}^{3}$ uses 8000 eg " 28 " $\times 8000$ ($=224000$) works with vol. eg 240000 for explanation with 240000 and 224000
$39 \quad \text { (a) }$ (b)		$\begin{gathered} \frac{\sqrt{3}}{2} \\ 6 \end{gathered}$		

Question	Working	Answer	Notes
40		SAS	M1 links angles PQR and PRQ (eg isosceles triangle) with full reasons M1 links TR and SQ with full reasons C1 gives full conclusion for congruency eg SAS
41		75π	P1 starts process by using $\frac{250}{3} \pi$ and $\frac{1}{2} \times \frac{4}{3} \pi r^{3}$ to find radius P1 starts process using $1 / 2$ curved surface area eg $\left(4 \times \pi \times\right.$ " 5 " $\left.{ }^{2}\right) \div 2$ P1 complete process shown eg $\left(4 \times \pi \times{ }^{\prime \prime}{ }^{5}{ }^{\prime 2}\right) \div 2+\left(\pi \times{ }^{\prime} 5\right.$ " $)$ A1 for 75π
42			M1 states $A B$ as $6 \mathbf{b}-3 \mathbf{a}$ M1 for $A X=1 / 3 A B$ or $1 / 3^{"}(6 \mathbf{b}-3 \mathbf{a}) "$ or ft to $2 \mathbf{b}-\mathbf{a}$ M1 for $\overrightarrow{C Y}=\overrightarrow{C B}+\overline{B Y}$ or $6 \mathbf{b}+5 \mathbf{a}-\mathbf{b}(=5 \mathbf{b}+5 \mathbf{a})$ M1 for $\overrightarrow{C X}=3 \mathbf{a}+" 2 \mathbf{b}-\mathbf{a} "$ or $\overrightarrow{C X}=6 \mathbf{b}-2 / 3^{" c}(6 \mathbf{b}-3 \mathbf{a}) " \quad(=2 \mathbf{a}+2 \mathbf{b})$ C1 for $\frac{2}{5} \overrightarrow{C Y}=\frac{2}{5}(5 \mathbf{a}+5 \mathbf{b})=2(\mathbf{a}+\mathbf{b})=\overrightarrow{C X}$

Question	Working		Answer No with reasoning	

Question	Answer	Mark	Mark scheme	Additional guidance
49	41.6	P1 P1 P1 A1	for start of process to find the length of the hypotenuse, eg $\left(\mathrm{hyp}^{2}=\right) 8^{2}+10^{2}(=164)$ for complete process to find hypotenuse, eg $\sqrt{8^{2}+10^{2}}$ or $\sqrt{64+100}$ or $\sqrt{164}(=12.8 \ldots)$ (dep P2) for complete process to find the required perimeter, eg $8+8+10+" 12.8 "+" 12.8-10 "$ or $16+4 \sqrt{41}$ for answer in the range 41 to 42	Note lengths may be seen on the diagram $8+8+" 12.8 "+$ " 12.8 " oe is acceptable for this mark If an answer in the range 41 to 42 is given in the working space then incorrectly rounded, award full marks.
$50 \quad \text { (a) }$	17.8	M1 A1	for $\tan 56=\frac{x}{12}$ or $(B C)=12 \times \tan 56$ oe or alternative method to find $B C$ for an answer in the range 17.7 to 17.8	For any alternative method candidates must arrive at an equation with BC as the only unknown If an answer in the range 17.7 to 17.8 is given in the working space then incorrectly rounded, award full marks.
(b)	33.6	M1 A1	for $\cos x=\frac{15}{18}$ or $\cos x=0.83$.. or $x=\cos ^{-1} \frac{15}{18}$ or alternative method to find x for an answer in the range 33.5 to 33.91	For any alternative method candidates must arrive at an equation with x as the only unknown If an answer in the range 33.5 to 33.91 is given in the working space then incorrectly rounded, award full marks.

Question	Answer	Mark	Mark scheme	Additional guidance
51	25 with reasons	M1	for method to find angle $B C D$ eg $180 \div(3+1) \quad(=45)$ or $B A D=180 \div(3+1) \times 3(=135)$	Could be shown on the diagram or in working Do not award if it ambiguous as to which angle is being found
		M1	for method to find angle $B D A$ eg $180-20-(180-" 45 ") \quad(=25)$ or method to find angle $S B D$ eg $S B D=B C D \quad(=45)$	
		C2	for finding $S B A(=25)$ and both reasons given, eg Opposite angles of a cyclic quadrilateral add up to 180 for angle $S B D=45$ because alternate segment theorem	
		(C1	(dep M1) for one reason given Opposite angles of a cyclic quadrilateral add up to 180 for angle $S B D=45$ because alternate segment theorem)	Underlined words need to be shown; reasons need to be linked to their method
$52 \quad$ (a)	11.4	M1	for start to method to find the length of $B C$ eg. $8^{2}+11^{2}-2 \times 8 \times 11 \times \cos 72$	If an answer within the given range is seen in working and rounded incorrectly award full marks. Any alternative method must be complete If an answer within the given range is seen in working and rounded incorrectly award full marks.
		M1	(dep on M1) for method to use correct order of operations, eg. $64+121-54.38 \ldots$. $(=130.61 \ldots)$	
		A1	for answer in the range 11.4 to 11.5	
	41.8	M1	for $0.5 \times 8 \times 11 \times \sin 72(=41.8 \ldots)$	
		A1	for answer in the range 41.5 to 41.9	

Question	Answer	Mark	Mark scheme	Additional guidance
53	99.5	M1 A1	for $\sin (34)=\frac{x}{178}$ oe or alternative method to find x for answer in range 99.5 to 99.7	If an answer in the range 99.5 to 99.7 is given in the working space then incorrectly rounded, award full marks
54	$\binom{-9}{14}$	M1 A1	for $2\binom{3}{4}-3\binom{5}{-2}$ or $\binom{6}{8}$ and $\binom{15}{-6}$ or $\binom{-9}{y}$ or $\binom{x}{14}$ cao	May be seen in two separate calculations eg $2 \times 3+-3 \times 5$ and $2 \times 4+-3 \times-2$ Condone incorrect notation if method is clear for this mark only
55	35.3	P1 P1 P1 A1	for starting the process to find length of third side of triangle, eg $9^{2}-6^{2}(=45)$ or $6^{2}+x^{2}=9^{2}$ for $\sqrt{9^{2}-6^{2}}$ or $\sqrt{81-36}$ or $\sqrt{45}$ or $3 \sqrt{5}\left(=6.7\right.$..) or $r^{2}=45$ for stating or using $\pi \times[\text { radius }]^{2} \div 4$ for answer in range 35.2 to 35.4	[radius] is any value If an answer in the range 35.2 to 35.4 is given in the working space then incorrectly rounded, award full marks No working, answer only, no marks

Question	Answer	Mark	Mark scheme	Additional guidance
56	15.4	M1 M1 A1	for $\frac{A B}{\sin 34}=\frac{23.8}{\sin " 120^{\prime \prime}} \quad$ or $\quad \frac{\sin 34}{A B}=\frac{\sin " 120 "}{23.8}$ for $(A B=) \frac{23.8}{\sin " 120 "} \times \sin 34$ for answer in range 15.36 to 15.4	" 120 " comes from 180-26-34 If an answer in the range 15.36 to 15.4 is given in the working space then incorrectly rounded, award full marks
57	116	P1 P1 A1 B1	$\left.\left.\begin{array}{l}\begin{array}{l\|l}\text { for setting up an equation, } \\ \text { eg }(x+4)^{2}=x^{2}+70\end{array} \\ \begin{array}{l}\text { for process to reduce equation } \\ \text { down to a linear equation ready to } \\ \text { solve eg } 8 x=54 \text { oe }\end{array} \\ \text { for } 6.75 \text { oe } \\ \text { eg } x^{2}-(x-4)^{2}=70\end{array} \quad \begin{array}{l}\text { for process to reduce equation } \\ \text { down to a linear equation ready to } \\ \text { solve eg } 8 x=86 \text { oe }\end{array}\right] \begin{array}{l}\text { for } 10.75 \text { oe }\end{array}\right\}$ft (dep P2) for finding the area of B or for answer in range 115 to 116	Equation must be in a single variable. If a candidate uses a trial and improvement method, it is either full marks or no marks. Candidates must get as far as $a x=b$
58	$\begin{gathered} \text { Enlargement } \\ \text { sf-1.5 } \\ \text { centre }(1,1) \end{gathered}$	B2 (B1	for enlargement scale factor -1.5 and centre $(1,1)$ for enlargement scale factor -1.5 or enlargement centre $(1,1)$)	Award no marks if more than one transformation is given

Question	Answer	Mark	Mark scheme	Additional guidance
59	160π	P1	for process to find curved surface area of cone, eg $\pi \times 10 \times 25(=250 \pi)(=785 \ldots .$.	
		P1	for process to find the radius or diameter of the smaller cone eg $10 \times \frac{15}{25}(=6)$ or $20 \times \frac{15}{25}(=12)$ oe OR uses area scale factor, eg " 250π " $\times\left(\frac{15}{25}\right)^{2}(=90 \pi)$	15 comes from $25-10$ $\frac{15}{25}$ may be seen as 0.6
		P1	for a complete process, eg " $250 \pi "-\pi \times " 6 " \times 15(=785 \ldots-282 \ldots)$ or answer in range 502 to 503	
		A1	for 160π	Award 0 marks for an answer of 160π or an answer in range 502 to 503 with no supportive working. If 160π seen but answer in range 502 to 503 given on answer line isw and award full marks

Question	Answer	Mark	Mark scheme	Additional guidance
60	No (supported)	P1	for finding the area of 3 or more faces of the cuboid and adding $\operatorname{eg}(6 \times 8)+(8 \times 18)+(6 \times 18) \ldots \text { or " } 48 "+" 144 "+" 108 " \ldots(=300)$	Could be an addition of any three faces eg $48+$ $48+144$ etc.
		P1	complete process to find surface area of cuboid, eg $6 \times 8 \times 2+6 \times 18 \times 2+8 \times 18 \times 2(=600)$	
		P1	for process to find side length of cube, eg [surface area] $\div 6$ and square rooting (= 10) for a process to find the volume of the cuboid $6 \times 8 \times 18(=864)$ and cube rooting ($=9.52 \ldots$) to find a side length	[surface area] must come from the addition of at least three attempts at area, but not from volume.
		P1	(dep on previous P1) for processes to find volume of cube and volume of cuboid, eg [side length] ${ }^{3}(=1000)$ and $6 \times 8 \times 18(=864)$$\quad$(dep on previous P1) for process to find surface area of cube, eg. ("9.52 ..") $\times 6(=544.28 \ldots)$	
		A1	No with 1000 and 864 OR No with 600 and 544(.28...)	
61	32.1	P1	starts process, eg $\sin 40=\frac{D B}{8.6}$ oe or for $8.6 \times \sin 40(=5.52797 \ldots)$	Accept values rounded or truncated to 2 dp .
		P1	complete process to find $E D, \operatorname{eg}(8.6 \times \sin 40) \div 2(=2.76 \ldots)$	
		P1	process to find angle $E A D$, eg $\tan ^{-1}\left(\frac{" 2.76 \ldots . . .}{4.4}\right)$ or $\tan ^{-1}$ ("0.628...")	
		A1	answer in range 32.09 to 32.2	If an answer in the range is seen in working and then incorrectly rounded award full marks

Question	Answer	Mark	Mark scheme	Additional guidance
62	61	B1 M1 A1	angle $O A D=90$, may be marked on diagram method to work out angle $O A B(=29)$ cao	Angle could be shown by a right-angle symbol Correct method can be implied from angles on the diagram if no ambiguity or contradiction. Reasons need not be given. Award 0 marks for an answer of 61 with no other working.
63	155	M1 A1	for a complete method to find the volume of the hemisphere, eg $\frac{1}{2} \times \frac{4}{3} \times \pi \times 4.2^{3}$ oe answer in range 155 to 155.2	If an answer in the range is seen in working and then incorrectly rounded award full marks
64	Description	$\mathrm{C} 2$ (C1	$\begin{aligned} & \text { for (rotation) } 90^{\circ} \text { clockwise about }(-1,0) \\ & \text { or (rotation) } 90^{\circ} \text { anticlockwise about }(-1,6) \\ & \text { or (rotation) } 180^{\circ} \text { about }(-1,2) \\ & \text { or (rotation) } 180^{\circ} \text { about }(-1,4) \\ & \text { for }(-1,0) \text { or }(-1,6) \text { or }(-1,2) \text { or }(-1,4)) \end{aligned}$	Award 0 marks if there is reference to other transformations eg coordinates given as vectors (which is a translation)

EXPERT

TUITION

Question	Answer	Mark	Mark scheme	Additional guidance
65	8	P1	for working with volume of the cuboid, eg $30 \times 6 \times 19(=3420)$ OR for using $\frac{\square}{3}$ with one dimension, eg. $30 \times 2 \div 3(=20)$	For P marks, ignore attempts at unit conversion
		P1	$\begin{aligned} & \text { for " } 3420 " \times 2 \div 3(=2280) \text { or " } 3420 " \div 3(=1140) \\ & \text { OR " } 20 " \times 6 \times 19(=2280) \\ & \text { OR " } 3420 " \div 275(=12.4 \ldots=12 \text { cups }) \end{aligned}$	
		P1	(dep on P2) for " $2280 " \div 275(=8(.29 \ldots))$ or " $1140 " \div 275(=4(.14 \ldots))$ OR " 12 " $\times 2 \div 3$ OR for $275 \times 8(=2200)$ or $275 \times 9(=2475)$	
		A1	cao	
\square	9.85	M1 $\mathrm{A} 1$	for $\sin (38)=\frac{\$ \%}{16} \mathrm{oe}$ or alternative method to find $A B$ for an answer in the range 9.76 to 9.92	

Question	Answer	Mark	Mark scheme	Additional guidance
■	25.4	P2	for finding the size of the angle eg $\frac{40 \times 360}{\pi \times 7^{2}}(=93.5(4 .)$. or for working with proportion, eg $\frac{40}{49 \pi}(=0.259(8 \ldots)$ or 0.26$)$ or $\frac{49 \pi}{40}(=3.84(8 \ldots)$ or 3.85$)$	
		$\begin{aligned} & \text { (P1 } \\ & \text { P1 } \end{aligned}$	for finding the area of the circle eg $\pi \times 7^{2}(=153(.938 .$.$\left.) or 154)\right)$ (dep on P2) for a process to find the arc length, $\begin{aligned} & \text { eg } \frac{" 93.5(4 \ldots) "}{360} \times \pi \times 2 \times 7(=11.4(28 \ldots)) \text { or } \frac{40}{49 \pi} \times \pi \times 2 \times 7 \\ & (=11.4(28 \ldots)) \text { or } \pi \times 2 \times 7 \div \frac{49 \pi}{40}(=11.4(28 \ldots)) \end{aligned}$	May be embedded
		A1	for answer in the range 25 to 25.44	If an answer is shown in the range in working and then incorrectly rounded award full marks. Accept $\frac{178}{7}$

T EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
■	75° with reasons	M1	for finding angle $B A D=\frac{180-40}{2} \quad(=70)$ or angle $B D A=\frac{180-40}{2}(=70)$	Could be shown on the diagram or in working
		M1	for finding angle $B C D=180-" 70 "(=110)$ or $40+x+70+x=180$	
		A1	for finding angle $A D E=75$	
		C2	(dep M2) for Opposite angles of a cyclic quadrilateral add up to 180 and one other reason; all reasons given must be appropriate for their working Base angles of an isosceles triangle are equal Angles in a triangle add up to 180 , Angles on a straight line add up to 180 [or exterior angle of a cyclic quadrilateral is equal to the interior opposite angle]	Underlined words need to be shown; reasons need to be linked to their method
		(C1	(dep M2) for Opposite angles of a cyclic quadrilateral add up to 180 , or all other reasons given appropriate for their working)	Apply the above criteria

Question	Answer	Mark	Mark scheme	Additional guidance
■	31.0	P1	for $\tan 35=B E \div 15$ or $B E=10.5(0 \ldots)$ OR finding the length $\mathrm{DM}=\frac{2}{5} \times 15(=6)$ or $\mathrm{MA}=\frac{3}{5} \times 15(=9)$ or $6: 9$ OR showing the required angle on a diagram eg with an arc	$\begin{aligned} & M B=\sqrt{9 \cdot 15^{2}}=\sqrt{306}(=17.4(9 \ldots) \text { or } 17.5) \\ & B E=15 \times \tan 35(=10.5(0 \ldots)) \\ & A E=15 \div \cos 35(=18.3(1 \ldots)) \\ & M E=\sqrt{9^{2} 1 \quad 8.31 \ldots}=\sqrt{416 .(3 \ldots)} \\ & (=20.4(0 \ldots)) \end{aligned}$
		P1	$\begin{aligned} & \text { for } M B=\sqrt{15^{2}+" 9 " 2} \text { or } \sqrt{306} \text { or } 17.4(9 \ldots) \\ & \text { OR } M E=\sqrt{" 9 "^{2} " 18.3(1 \ldots)^{2}} \text { or } \sqrt{416 .(3 \ldots)} \text { or } 20.4(0 \ldots) \end{aligned}$	Check diagram for working
		P1	for using appropriate trigonometry ratio to set up an equation in angle $E M B$ eg $\tan \theta=" 10.5(0 \ldots) " \div$ "17.4(9...)" or $\cos \theta=" 17.4(9 \ldots) " \div$ " $20.4(0 \ldots) "$ or $\sin \theta=" 10.5(0 \ldots) " \div " 20.4(0 \ldots) "$	
		A1	for answer in the range 30.9 to 31	If an answer is shown in the range in working and then incorrectly rounded award full marks.

Question	Answer	Mark	Mark scheme	Additional guidance
■ (a)	2 a	M1	for $\mathbf{a}-\mathbf{b}+\mathbf{a}+\mathbf{b}(=2 \mathbf{a})$	
		A1	cao	
(b)	4	P1	for a process to find $\overrightarrow{M F}=-0.5 \mathbf{b}-\mathbf{a}-(\mathbf{a}-\mathbf{b})(=0.5 \mathbf{b}-2 \mathbf{a})$ or $\overrightarrow{C E}=\mathbf{a}+\mathbf{b}$ or $\overrightarrow{F M}=\mathbf{a}-\mathbf{b}+\mathbf{a}+0.5 \mathbf{b}(=2 \mathbf{a}-0.5 \mathbf{b})$	Accept ft from (a) providing vectors are clearly stated$\begin{array}{ll} \overrightarrow{C X}=\frac{n-1}{n+1} \mathbf{a}+\frac{n+2}{2(n+1)} \mathbf{b} & \overrightarrow{X E}=\frac{2}{n+1} \mathbf{a}+\frac{n}{2(n+1)} \mathbf{b} \\ \overrightarrow{X C}=\frac{1-n}{n+1} \mathbf{a}+\frac{-n-2}{2(n+1)} \mathbf{b} & \overrightarrow{E X}=\frac{-2}{n+1} \mathbf{a}-\frac{n}{2(n+1)} \mathbf{b} \end{array}$
		P1	For finding a suitable vector expression for two of $(\overrightarrow{C E}$ or $\overrightarrow{E C})$, ($\overrightarrow{C X}$ or $\overrightarrow{X C}$) or ($\overrightarrow{E X}$ or $\overrightarrow{X E}$) eg, $\overrightarrow{C X}=\mathbf{a}+0.5 \mathbf{b}+\frac{1}{n+1}(0.5 \mathbf{b}-2 \mathbf{a})$ or $\overrightarrow{C X}=-\mathbf{a}+\mathbf{b}+\frac{n}{n+1}(2 \mathbf{a}-0.5 \mathbf{b})$ $\overrightarrow{X E}=\frac{1}{n+1}(2 \mathbf{a}-0.5 \mathbf{b})+0.5 \mathbf{b}$ or $\overrightarrow{X E}=\frac{n}{n+1}(0.5 \mathbf{b}-2 \mathbf{a})+2 \mathbf{a} \quad$ or $\overrightarrow{X C}=\frac{n}{n+1}(0.5 \mathbf{b}-2 \mathbf{a})+\mathbf{a}-\mathbf{b}$ or $\overrightarrow{X C}=\frac{1}{n+1}(2 \mathbf{a}-0.5 \mathbf{b})-0.5 \mathbf{b}-\mathbf{a} \quad$ or $\overrightarrow{E X}=-0.5 \mathbf{b}+\frac{1}{n+1}(0.5 \mathbf{b}-2 \mathbf{a})$ or $\overrightarrow{E X}=-2 \mathbf{a}+\frac{n}{n+1}(2 \mathbf{a}-0.5 \mathbf{b})$	
		P1	for complete process to equate the coefficients of \mathbf{a} and \mathbf{b} eg $\frac{n-1}{n+1}=\frac{n+2}{2(n+1)}$	
		A1	cao	
			ALTERNATIVE	
		P1	for a process to find $\overrightarrow{M F}=-0.5 \mathbf{b}-\mathbf{a}-(\mathbf{a}-\mathbf{b})(=0.5 \mathbf{b}-2 \mathbf{a})$ or $\overrightarrow{C E}=\mathbf{a}+\mathbf{b}$ or $\overrightarrow{F M}=\mathbf{a}-\mathbf{b}+\mathbf{a}+0.5 \mathbf{b}(=2 \mathbf{a}-0.5 \mathbf{b})$	Accept ft from (a) providing vectors are clearly stated
		P1	For finding two suitable vector expressions for $\overrightarrow{F X}$ eg $\overrightarrow{F X}=\frac{n}{n+1}(2 \mathbf{a}-0.5 \mathbf{b})$ and $\overrightarrow{F X}=\mathbf{a}-\mathbf{b}+k \mathbf{a}+k \mathbf{b}$	
		P1	for complete process to equate the coefficients of \mathbf{a} and \mathbf{b} eg $\frac{2 n}{n+1}-1=1-\frac{n}{2(n+1)}$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
■	60	M1 M1 A1 C1	use of parallel lines to find an angle eg $A B E=70$ or $E B G=75$ or $E B C=$ 110 or shows parts of x as 35 or 25 for a complete method to find angle x; could be in working or on the diagram for $x=60$ (dep on M1) for one reason linked to parallel lines and one other reason, supported by working taken from: alternate angles are equal, allied angles / co-interior angles add up to 180 , angles on a straight line add up to 180 , angles in a triangle add up to 180°	Parts of x should be identified on the diagram by the insertion of a dividing line through angle x (need not be identified or drawn parallel). Correct method can be implied from angles on the diagram if no ambiguity or contradiction. Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit. There should be no incorrect reasons given.
■	Rotation 90° anticlockwise centre $(-1,1)$	M1 A1 A1	stating rotation or for showing $\mathbf{R}[(1,1),(1,-3),(3,-3)]$ for rotation of 90° anticlockwise for centre $(-1,1)$ given as a coordinate.	Award for a triangle in the correct position without the label R as long as this is the only triangle in lower right quadrant. Accept rotation of 270° clockwise Can be given as a coordinate alone. Do not award A marks if there is evidence of other transformations in the description, or other ambiguity in the answer given.
\square	84.9	P1 P1 A1	shows a process to find the radius or diameter eg $44=2 \times \pi \times r$ or $r=\frac{22}{\pi}$ or $d=\frac{44}{\pi}$ or $r=7.0028$ or $d=14.0056$.. (dep on P1) complete method to find the area eg $1 / 2 \times$ " d " $2 \times$ Sin60 oe, $1 / 2 \times 14 \times$ Tan60 oe, $1 / 2 \times 14 \times \sqrt{14^{2}-7^{2}}$ oe for answer in the range 84.8 to 85	Allow r in the range 7 to 7.1 and d in the range 14 to 14.1 Could be shown on the diagram. If the correct answer in the range is given in working and then rounded incorrectly award full marks.

Question	Answer	Mark	Mark scheme	Additional guidance
\square	3.75	P1	works to find vol of frustum eg $1 / 3 \pi(3.6)^{2} \times 6.4-1 / 3 \pi(1.8)^{2} \times 3.2$ or 86.858.. $-10.857 \ldots$ ($=24.192 \pi$ or $76.00 .$.	
		P1	works to find vol of hemisphere eg $\frac{1}{2} \times \frac{4}{3} \pi \times 3.6^{3}(=31.104 \pi$ or $97.7 \ldots$.	781.7... by use of diameter does not get the mark [vol] is their volume which could be ft using the radius, using the diameter, or could be another value as long as it is stated as being the volume, or clearly intended from working.
		P1	mass of frustum as $[\mathrm{vol}] \times$ density eg " 76.00 " $\times 2.4$ (=182.4..) or mass of hemisphere as $[\mathrm{vol}] \times$ density eg "97.7...." $\times 4.8$ ($=469.037 \ldots$...)	
		P1	$\begin{gathered} \text { mean density as total mass } \div \text { total volume } \\ \text { eg ("182.4.." }+" 469.037 ") \div(" 76 \ldots . "+" 97.7 . . ") \\ \text { or " } 651.4 . . " \div \text { "173.7...." } \end{gathered}$	All figures must come from correct method shown.
		A1	answer in the range 3.7 to 3.8	
\square	proof	C1	uses cyclic quad eg if $C A B=x$ then $C R O=180-x$ (Opposite angles of a cyclic quadrilateral add up to 180°.)	Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit.
		C1	establishes relationship outside a circle eg $O R B=x$ (Angles on a straight line add up to 180)	Correct method can be implied from angles on the diagram if no ambiguity or contradiction.
		C1	uses properties of a circle eg $R O=O B$ (both radii) so $A B C=x$ (Base angles of an isosceles triangle are equal.)	
		C1	Complete proof and conclusion	Full reasons given without any redundant reasons and correct reasoning throughout.

Question	Answer	Mark	Mark scheme	Additional guidance
$7 \square$	Enlargement	$\begin{aligned} & \mathrm{B} 2 \\ & \text { (B1 } \end{aligned}$	for correct enlargement at $(1,2)(2,3)(2,4)(1,4)$ for correct size and orientation in the wrong position OR 3 of 4 vertices correct and joined OR 4 correct vertices not joined)	
■ (a) (b)	Diagram $\binom{3}{4}$	B1 M1 A1	for correct vector drawn including arrow for $\mathbf{a}+2 \mathbf{b}$ drawn with resultant vector or for writing \mathbf{a} and \mathbf{b} as column vectors and attempt to add $\mathbf{a}+2 \mathbf{b}$, eg $\binom{1}{2}+2 \times\binom{ 1}{-3}$ or $\binom{1+2}{c}$ or $\binom{d}{2+-6}$ or $\binom{-4}{3}$ cao	May be drawn anywhere on the grid. Condone missing label Accept consistent incorrect notation for M1
(a) (b)	Shown Explanation	M1 A1 C1 C1	for finding one missing angle eg $B D E=y$ or $O D E=90$ or $O D F=90$ or $D B O=x$ or $B C D=180-y$ or (reflex) $B O D=2 y$ for a complete correct method leading to $y-x=90$ (dep on A1) for all correct circle theorems given appropriate for their working eg The tangent to a circle is perpendicular $\left(90^{\circ}\right)$ to the radius (diameter) Alternate segment theorem OR Angle at the centre is twice the angle at the circumference Opposite angles in a cyclic quadrilateral sum to 180° for explanation eg No as y must be less than 180 as it is an angle in a triangle	Could be shown on the diagram or in working

Question	Answer	Mark	Mark scheme	Additional guidance
■	39.5	P1 P1 P1 A1	for a start to a process eg, for a correct trigonometric statement, eg $\sin 48=\frac{7.3}{A C}$ or $\cos 42=\frac{7.3}{A C}$ or $\frac{A C}{\sin 90}=\frac{7.3}{\sin 48}$ OR angle CAH unambiguously identified on a diagram for a complete correct process to find $A C$, $\operatorname{eg}(A C=) \frac{7.3}{\sin (48)}(=9.8 .$.$) or (A C=) \frac{7.3}{\cos (42)}(=9.8 .$. or $(A C=) \sin 90 \times \frac{7.3}{\sin 48}(=9.8 .$. for a correct statement using angle $C A H$, eg $\tan (C A H)=\frac{8.1}{49.8 . . . "}$ OR $\sqrt{8.1^{2}+{ }^{29.8 " 2}}(=12.7 \ldots)$ and $\frac{\sin C A H}{8.1}=\frac{\sin 90}{12.7^{\prime \prime}}$ for answer in the range $39.5-39.51$	Must include correct values If an answer is given in the range but then incorrectly rounded award full marks.

Question	Answer	Mark	Mark scheme	Additional guidance
-	905	P1	for correct use of formula for the volume of a sphere eg $\frac{1}{4} \times \frac{4}{3} \times \pi \times r^{3}$ (= 576π or $1809 \ldots$) OR $576 \pi \times 4$ or 2304π or $7238 \ldots\left(=\frac{4}{3} \times \pi \times r^{3}\right)$	We do not need to see what is in the brackets to award this mark. The contents of the bracket alone would score P0
		P1	for a complete correct process to find r, eg $r=\sqrt[3]{\frac{576 \times 4 \times 3}{4}}$ or $r=12$	Could be shown in several stages $\sqrt[3]{\frac{576 \times 4 \times 3}{4}}=\sqrt[3]{1728}$
		P1	for a process to find the curved surface area eg $\frac{4 \times \pi \times \text { rradius }^{2}}{4}(=144 \pi$ or $452 \ldots$) OR the surface area of both flat surfaces $\operatorname{eg}\left(2 \times \frac{\pi \times[\text { radius }]^{2}}{2}\right)$ OR complete expression for the total surface area eg $\frac{4 \pi r^{2}}{4}+\frac{\pi r^{2}}{2} \times 2$ oe	Radius used must be clearly identified as their radius of the solid
		P1	for process to find the complete surface area eg $\frac{4 \times \pi \times[\text { radius }]^{2}}{4}+\left(2 \times \frac{\pi \times[\text { radius }]^{2}}{2}\right)$	
		A1	answer in the range $904.7-905$ or 288π (SCB2 for an answer in the range $358.1-359.2$)	If an answer is given in the range but then incorrectly rounded, award full marks.

Question	Working	Answer	Mark	Notes
■		31.4	P1 A1	for working with circumference formula, eg $\pi \times 80(=251 \ldots$...) oe for answer in the range 31.4 to 31.5 accept 10π
(a) (b)		$\begin{aligned} & (-2,1)(-4,1) \\ & (-2,2)(-5,2) \\ & (1,-4)(3,-4) \\ & (1,-5)(4,-5) \end{aligned}$	B1 B1	Shape labelled A Shape labelled B
T		32.3	P1 P1 P1 P1 A1	for using Pythagoras to find length of third side of triangle, eg $7.5^{2}-6^{2}$ or $6^{2}+x^{2}=7.5^{2}$ or uses trigonometry to find angle in triangle, eg $\sin A=\frac{6}{7.5}$ or $\cos B=\frac{6}{7.5}$ (dep P1) for complete process to find length of third side of triangle eg $\sqrt{7.5^{2}-6^{2}}$ or $\sqrt{56.25-36}$ or $\sqrt{20.25}(=4.5)$ or uses trigonometry to find base length of triangle, eg $7.5 \times \cos$ " A " or $7.5 \times \sin$ " B " or $\frac{6}{\tan ^{\prime} A \text { " }}$ (dep P2) for $24-10-" 4.5 "(=9.5)$ (indep) for process to find angle $C D A$, eg $\tan C D A=\frac{6}{\text { base }}$ from right- angled triangle for answer in the range 32.2 to 32.3

T EXPERT

Question	Working	Answer	Mark	Notes
■		15	P1 P1 A1	for a process to find the interior or exterior angle of a regular 12 sided polygon e.g. $\frac{10 \times 180}{12}(=150)$ or $\frac{360}{12}(=30)$, must be no contradictions for process to find angle $S T R$, eg $\frac{180-" 150 "}{2}$ or $\frac{" 30 "}{2}$ cao
■		Proof (supported)	M1 M1 A1 C1	for a method to find coordinates of $M(-1,-1)$ or $N(3,1)$ for method to find gradient of $M N$ or $P R$ or for method to find column vector for $M N$ or $P R$ or for differences of x coordinates and differences of y coordinates for $M N$ or $P R$ for gradients of $M N$ and $P R$, ie $1 / 2$ oe or for column vectors of $M N$ and $P R, \overrightarrow{M N}=\binom{4}{2}$ and $\overrightarrow{P R}=\binom{8}{4}$ or for differences of x coordinates and of y coordinates for $M N$ and $P R$ for conclusion from reasoning and correct working

Question	Working	Answer	Mark	Notes
■		68.5	B1	for angle $O A B=90^{\circ}$ or angle $O C B=90^{\circ}$, may be seen on diagram
			P1	for a process to find the length of $A B$ or the length of $C B(=10 \sqrt{3}$ oe $)$ eg $10 \times \tan 60^{\circ}(=17.3 \ldots)$ or the length of $O B(=20)$, eg $10 \div \cos 60^{\circ}$
			P1	for a process (dep previous P 1$)$ to find the area of the triangle $O A B(=50 \sqrt{ } 3$ oe $)$ or area of triangle $O C B(=50 \sqrt{ } 3$ oe $)$ or area of kite $O A B C(=100 \sqrt{ } 3$ oe $)$
			P1	for a process to find the area of the sector $O A C$ e.g. $\frac{1}{3} \times \pi \times 10^{2}(=104.7 \ldots)$,accept rounded or truncated to 3 significant figures or more
			A1	for 68.4-68.6

Question	Working	Answer	Mark	Notes
■		Side elevation Front elevation	C2 [C1 C2 [C1	for the side elevation (4 cm by 2 cm rectangle with a solid line drawn 1 cm from the 2 cm edge, and correct orientation) for the side elevation as a rectangle] for the front elevation as a trapezium in correct orientation with base 4 cm , parallel sides 1 cm and 4 cm for the front elevation as a trapezium with two right angles] [Ignore incorrect or no labelling]
■		No (supported)	M2 [M1 C1 M2 C1	for the correct position of C or E for a correct position of B or D] for No with correct supporting evidence, eg. showing C and E in the correct positions OR for C is a rotation of 90° anticlockwise about O or E is a rotation of 90° clockwise about O for No with supporting evidence, eg. C is a rotation of 90° anticlockwise about O and E is a rotation of 90° clockwise about O.

Question	Working	Answer	Mark	Notes
■		Proof	C1 C1 C1	for identifying one pair of equal angles with a correct reason, e.g. (angle) $B A E=$ (angle) $C D E$; angles in the same segment are equal or angles at the circumference subtended on the same arc are equal or for identifying two pairs of equal angles with no correct reasons given (angles must be within the appropriate triangles) for identifying a second pair of equal angles with a correct reason, e.g. (angle) $A E B=$ (angle) $D E C$; opposite angles or vertically opposite angles are equal or for identifying the three pairs of equal angles with no correct reasons given for stating the three pairs of equal angles of the two triangles e.g. $A B E=D C E, B E A=C E D, E A B=E D C$ with fully correct reasons
■		66.5	B1 P1 P1 A1	for recognising an angle of 60 at $A O B$ for a process to find the area of the sector, e.g. $\frac{" 60 "}{360} \times \pi \times 11^{2}\left(=63.3\right.$.. or $\left.\frac{121 \pi}{6}\right)$ for a process to find the area of the triangle, e.g. $\frac{1}{2} \times 7^{2} \times \sin " 60$ " $\left(=21.2\right.$.. or $\left.\frac{49 \sqrt{3}}{4}\right)$ for a process to find the required percentage, eg. $\frac{\text { "63.3.."-"21.2." }}{\text { "63.3.." }} \times 100$ for answer in the range 66.5 to 66.6
W		8600	$\begin{aligned} & \hline \text { P1 } \\ & \text { P1 } \\ & \text { P1 } \\ & \text { A1 } \end{aligned}$	for process to find the length of the rectangle, e.g. $24 \times 4(=96)$ for process to find the perpendicular height of an equilateral triangle of side $(24 \times 2) \mathrm{cm}$, e.g. $48 \sin 60(=41.5(69 .)$.$) or \sqrt{48^{2}-24^{2}}(=24 \sqrt{3}$ oe $)$ for complete process to find the width of rectangle, e.g. " $41.5(69$..)" $+24+24$ (= 89.5(69..)) for answer in the range 8592 to 8602

Question	Working	Answer	Notes
$\square 2$		20.9	M1 correct recall of appropriate formula eg $\sin x=\frac{5}{14}$ A1 for 20.9(248...)
\square		9.54	P1 $10^{2}-5^{2}(=75)$ P1 $" 75 "+4^{2}(=91)$ P1 $\sqrt{ }\left(10^{2}-5^{2}+4^{2}\right)$ A1 $9.53-9.54$
$9 \square$		203	P1 translate into algebra for rectangle: $4 x+4 x+3 x+4+3 x+4 \quad(=14 x+8)$ or for trapezium: $5 x+5 x+x-3+7 x-3(=18 x-6)$ P1 equating: eg $18 x-6=14 x+8(4 x=14)$ A1 solving for $x: x=14 / 4=3.5$ oe P1 process to find area: " 3.5 " $\times 3+4(\mathrm{ft})$ or " 3.5 " $\times 4 \mathrm{ft}$ A1 cao

Question	Working	Answer	Notes
■		29°	C1 angle $O T P=90^{\circ}$, quoted or shown on the diagram
			M1 method that leads to $180-(90+32)$ or 58 shown at $T O P$ OR that leads to 122 shown at $S O T$
			M1 complete method leading to " 58 " $\div 2$ or $(180-$ " 122 ") $\div 2$ or 29 shown at TSP
			C1 for angle of 29° clearly indicated and appropriate reasons linked to method eg angle between radius and tangent $=\underline{90^{\circ}}$ and sum of angles in a triangle $=180^{\circ}$; ext angle of a triangle equal to sum of int opp angles and base angles of an isos triangle are equal or angle at centre $=\underline{2 x}$ angle at circumference or ext angle of a triangle equal to sum of int opp angles
■		4.89	M1 $\frac{40}{360} \times 2 \times \pi \times 7$ oe
			A1 $4.8-4.9$

Question	Working	Answer	Notes
- (a)		130	P1 start to process eg draw a labelled triangle or use of sine rule $\frac{\sin Q}{8.7}=\frac{\sin 32}{5.2}$
			P1 \quad process to find of Q eg $Q=\sin ^{-1}\left[\frac{\sin 32}{5.2} \times 8.7\right]$
			P1 process to find area of triangle $P R Q$.
			A1 $22.5-22.6$
(b)			C1 angle $P R Q$ is obtuse so need to find area of two triangles.
D		1361	P1 process using similar triangles to find base of small cone eg. 4 cm used as diameter or 2 cm used as radius
			P1 process to find volume of one cone
			P1 complete process to find volume of frustum P1 complete process to find mass or 1360-1362
			A1 1361 or 1360 or 1400

Question	Working	Answer	Notes
99		66.9	P1 for process to find the area of one shape, eg. $19 \times 16(=304)$ or $\pi \times 8^{2}(=201.06 \ldots)$ P1 for process to find the shaded area, eg. "304" - "201.06" $\div 2(=203.46 \ldots)$ P1 for a complete process to find required percentage, eg. $\frac{203.46 "}{304} \times 100$ A1 for answer in range 66 to 68
100		135	B1 for identifying the angle of 70° (on the diagram), showing understanding of notation P1 for process to find an angle in triangle $A B C$, eg. for process to find angle $B A C$, eg. $(180-50) \div 2\left(=65^{\circ}\right)$ A1 for 135
101	$\begin{aligned} & \text { angle } B A D=\text { angle } \\ & D C A=22.62^{\circ} \\ & \text { angle } D B A=\text { angle } \\ & D A C=67.38^{\circ} \end{aligned}$	33.8	P1 for recognition of similar triangles or equal ratio of sides OR for a method to find angle $B A D$ or angle $D B A$ and state that this is the same as angle $D C A$ or angle $D A C$ P1 for process to find $C B$, eg. $\frac{5}{13}=\frac{13}{C B}$ A1 for an answer rounding to 33.8
102		8.63 to 8.65	P1 for a start of process, eg. $0.5 x(x-2)=2.5$ P1 for rearranging to give a quadratic equation, eg $x^{2}-2 x-5(=0)$ oe. P1 (dep on P1) for a process to solve their 3-term quadratic equation, condoning one sign error in use of formula $(x=3.449 \ldots$ and $x=-1.449 \ldots)$ P1 for selecting the positive value of x and applying Pythagoras to find the hypotenuse, eg. $\sqrt{ }\left(" 3.449^{\prime 2}+" 1.449^{\prime 2}\right)(=3.74 \ldots)$ P1 (dep on previous P1)for complete process to find perimeter for answer in the range 8.63 to 8.65 A1

| Question | Working | Answer | Notes |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 0 3}$ | | Proof | C1for joining $A O$ (extended to D) and considering angles in two triangles (algebraic
 notation may be used here)
 for using isosceles triangle properties to find angle $B O D($ eg. $x+x=2 x)$ or angle |
| | | | C1$C O D($ eg. $y+y=2 y)$
 for angle $B O C=2 x+2 y$
 $[=2 \times$ angle $B A O+2 \times$ angle $C A O]$
 for completion of proof with all relevant reasons given, eg. base angles of isosceles
 triangle are equal and sum of angles at a point is $\underline{360^{\circ}}$ |

Question	Working	Answer	Notes
\square		$\begin{gathered} \text { Translation } \\ \text { by }\binom{4}{-3} \end{gathered}$	B1 for translation $\text { B1 } \quad\binom{4}{-3}$
\square		105	P1 for process to find the exterior angle or interior angle of a hexagon or octagon P1 for process to find the both exterior angles or both interior angles A1 for 105 from correct working
\square	$\begin{aligned} & \frac{1}{4} \times \pi \times 4.8^{2} \\ & \frac{1}{2} \times 4.8 \times 4.8 \\ & \frac{1}{4} \times \pi \times 4.8^{2}-\frac{1}{2} \times 4.8 \times 4.8 \end{aligned}$	6.58	B1 for use of formula for area of a circle P1 for complete process to find area of shaded region A1 for 6.56-6.58
\square	$\angle \mathrm{TSU}=360 \div 5(=72)$ Exterior angles of a polygon add up to 360° $\angle Q R O=\angle O T P=90$ The tangent to a circle is perpendicular $\left(90^{\circ}\right)$ to the radius (diameter) $\begin{aligned} & \angle R O T=540-2 \times 90-2 \times \\ & 108(=144) \\ & \angle R \cup T=144 \div 2(=72) \end{aligned}$ The angle at the centre of a circle is twice the angle at the circumference Base angles of an isosceles triangle are equal	proof	M1 for method to find interior or exterior angle of regular pentagon M1 for using angle between tangent and radius M1 for method to find angle ROT C1 for method to find angle RUT with reason C 1 for deduction that $\mathrm{ST}=\mathrm{UT}$ with reasons

Question	Answer	Mark	Mark scheme	Additional guidance
$\square \square$	18.3	P1 P1 P1 A1	for finding the area of the triangle eg $0.5 \times 8 \times 8(=32)$ for finding the area of the circle $\pi \times 8 \times 8(=201.06 .$. for finding the area of the sector eg $\frac{1}{4} \times \pi \times 8^{2}$ or " $201.06 . . " \div 4(=50.26 \ldots)$ for an answer in the range 18.2 to 18.3	Accept rounded or truncated figures If the answer is given within the range but then rounded incorrectly award full marks.
$10 \square$	14.14	P1 P1 P1 A1	works out scale factor eg $(9+6) \div 6(=2.5)$ OR for start of process to find angle $D B E$ eg $\sin B=\frac{2}{6}$ oe uses Pythagoras eg $6^{2}-2^{2}(=32)$ or $\sqrt{32}(=5.6 \ldots)$ OR calculates $A C$ eg $2 \times$ " 2.5 " (=5) OR for complete process to find angle $D B E$ eg $\sin ^{-1}\left(\frac{2}{6}\right)(=19.4 \ldots)$ complete process to find $C B$ eg " 2.5 " \times " $\sqrt{32 " ~}(=10 \sqrt{ } 2)$ or $\sqrt{(9+6)^{2}-" 5^{\prime 2}} \quad(=10 \sqrt{ } 2)$ OR uses trigonometry, eg $15 \times \cos$ " $19.4 \ldots$ ".." 14.1 to 14.15	Note method can be carried out in either order May be seen on diagram If the answer is given within the range but then rounded incorrectly award full marks.

Question	Answer	Mark	Mark scheme	Additional guidance
W	$\frac{2}{5} \mathbf{a}+\mathbf{b}$	P1 P1 P1 A1	for relationship involving D eg $\overrightarrow{O D}=\frac{2}{5} \overrightarrow{O B}$ or $\overrightarrow{D B}=\frac{3}{5} \overrightarrow{O B}$ or for relationship involving E eg $\overrightarrow{B E}=\frac{1}{5} \overrightarrow{B C}$ or $\overrightarrow{E C}=\frac{4}{5} \overrightarrow{B C}$ for relationship involving D in terms of \mathbf{a} and \mathbf{b} eg $\overrightarrow{O D}=\frac{2}{5}(\mathbf{a}+\mathbf{b})$ or $\overrightarrow{D B}=\frac{3}{5}(\mathbf{a}+\mathbf{b})$ or for relationship involving E in terms of \mathbf{a} and \mathbf{b} eg $\overrightarrow{B E}=\frac{1}{5}(-\mathbf{b}-\mathbf{a}+3 \mathbf{b})$ oe or $\overrightarrow{E C}=\frac{4}{5}(-\mathbf{b}-\mathbf{a}+3 \mathbf{b})$ oe $\frac{\text { or }}{\overrightarrow{B C}}=2 \mathbf{b}-\mathbf{a} \text { oe or } \overrightarrow{C B}=\mathbf{a}-2 \mathbf{b} \text { oe }$ (dep P2) for expression for $\overrightarrow{D E}$ in terms of \mathbf{a} and \mathbf{b} eg $\overrightarrow{D E}=\frac{3}{5}(\mathbf{a}+\mathbf{b})+\frac{1}{5}(-\mathbf{b}-\mathbf{a}+3 \mathbf{b})$ $\text { for } \frac{2}{5} \mathbf{a}+(1) \mathbf{b} \text { or } \frac{1}{5}(2 \mathbf{a}+5 \mathbf{b})$	

Question	Answer	Mark	Mark scheme	Additional guidance
\square	2820	P1	for start to process to find height of triangle, eg $\tan (40)=\frac{h}{5}$ oe or equivalent process to find the height of the triangle or start to process to find slant height, eg $\frac{10}{\sin 100}=\frac{x}{\sin 40}$	
		P1	for complete process to find height of triangle, eg $5 \tan 40(=4.19 \ldots)$ or complete process to find the slant height, eg $\frac{10}{\sin 100} \times \sin 40(=6.5 \ldots)$	Accept 4.2
		P1	for start of process to find volume of prism, eg $10 \times 20 \times 12(=2400)$ or $0.5 \times 10 \times$ " $4.19 \ldots " \times 20(=419 \ldots$. or $\frac{1}{2} \times 10 \times$ " $6.52 \ldots$.." $\times \sin 40 \times 20$ (419....) or process to find total area of cross section, eg $0.5 \times 10 \times$ " $4.19 \ldots$..." $+10 \times 12(=140.9 \ldots)$ or $\frac{1}{2} \times " 6.52 \ldots " \times " 6.52 \ldots " \times \sin 100+10 \times 12(=140.9 \ldots)$	$10 \times 20 \times 12$ may be seen as part of a calculation to find the volume of the prism
		P1	for complete process to find total volume, eg $(0.5 \times 10 \times$ " $4.19 \ldots . . "+10 \times 12) \times 20$ for an answer in the range 2810 to 2820	If an answer is given in the range in working and then rounded incorrectly award full marks.

Question	Answer	Mark	Mark scheme	Additional guidance
11】(a)	rotation of 180° about $(2.5,-1)$	M1	for method to find position of \mathbf{Q}, eg shape drawn at $(-1,-2),(-1,-5)$ and $(-2,-5)$ or for method to find position of \mathbf{R}, eg shape drawn at $(4,-4),(4,-7)$ and $(3,-7)$ or for method to translate their \mathbf{Q} correctly	The method mark is awarded if no working is shown but at least 2 of the 3 aspects are correct in the description
(b)	$(2.5,-1)$	$\begin{aligned} & \mathrm{A} 2 \\ & \text { (A1 } \end{aligned}$	for rotation of 180° about $(2.5,-1)$ or enlargement by scale factor -1 , centre $(2.5,-1)$ for any 2 of the 3 aspects)	Cannot award A marks for a combination of transformations With no extra incorrect aspects
		B1	for $(2.5,-1) \mathrm{ft}$ from rotation or enlargement in (a)	No follow through from a combined transformation in part (a)
$1 \square 4$	60(supported)	M1	for angle DBF, eg 180-100 (= 80)	Angles may be shown on the diagram or in working
		M1	for angle BFD, eg 180-"80"-40(=60) or for angle CBF $=40$	
		A1	$\text { for angle } A B D=60$	
		C1	(dep M2) for at least 2 reasons from	Underlined words need to be shown; reasons need to be linked to their method
			Opposite angles of a cyclic quadrilateral add up to 180 Anoles in a trianole add up to 180	
			Alternate segment theorem	
			OR	
			Opposite angles of a cyclic quadrilateral add up to 180	
			Alternate segment theorem	
			Angles on a straight line add up to 180	

Question	Answer	Mark	Mark scheme	Additional guidance
DT	Proof	P1	for start to process to find area of ABCDEF, eg area of equilateral triangle $=\frac{1}{2} \times \mathbf{X} \times \mathrm{X} \times \sin 60\left(=\frac{\sqrt{3}}{4} \mathrm{x}^{2}\right)$ OR for start to process to find area of FGHIJ K , $\mathrm{eg} \text { area of equilateral triangle }=\frac{1}{2} \times \mathrm{px} \times \mathrm{px} \times \sin 60\left(=\frac{\sqrt{3}}{4} p^{2} \mathrm{x}^{2}\right)$	Any correct process to find the area of part of the hexagon is acceptable for this mark, $\begin{aligned} & \text { eg } \frac{1}{2} \times x \times x \times \sin 120 \\ & \text { or } \frac{1}{2} \times(X+2 x) \times \frac{\sqrt{3}}{2} x \end{aligned}$ Allow sin 60 left in expressions for the first 3 marks.
		P1	for complete process of finding area of $A B C D E F$, eg $6 \times \frac{1}{2} \times x \times x \times \sin 60$ or $6 \times \frac{1}{2} \times x \times x \times \frac{\sqrt{3}}{2} \quad\left(=\frac{3 \sqrt{3}}{2} x^{2}\right)$ oe OR for complete process of finding area of FGHIJ K , eg $6 \times \frac{1}{2} \times p x \times p x \times \frac{\sqrt{3}}{2} \quad\left(=\frac{3 \sqrt{3}}{2} p^{2} x^{2}\right)$ oe	
		P1	for process of finding area of $A B C D E F$ eg $\frac{3 \sqrt{3}}{2} x^{2}$ oe AND for process of finding area of FGHIJ K , eg $p^{2} \times \frac{3 \sqrt{3}}{2} x^{2}$ oe	
		C1	correct algebra leading to given result, $\frac{3 \sqrt{3}}{2}\left(p^{2}-1\right) x^{2}$	Accept $\frac{3 \sqrt{3}}{2} x^{2}\left(p^{2}-1\right)$ as final result.

Question	Answer	Mark	Mark scheme	Additional guidance
D	45	P1	for $180-117$ (=63) or states, or uses, exterior angle $+X=117$	Angles may be shown on the diagram. Any angle labelled correctly as 63 and not contradicted scores this mark
		P1	for process to find the exterior or the interior angle of the pentagon, eg $360 \div 5(=72)$ or $180-(360 \div 5)(=108)$ or $((5-2) \times 180) \div 5$ (=108)	Exterior $=108$ or interior $=72$ does not score the mark
		P1	for a complete process to find x, eg 180 - " 72 " - " 63 " or " 108 " - " 63 " or 117 - " 72 "	
		A1	cao	An answer of 45 with no supporting working scores 0
\square	Enlargement	$\begin{array}{\|l\|} \hline \mathrm{B} 2 \\ \text { (B1 } \end{array}$	vertices at $(2.5,1)(2.5,6)(5,6)$ for triangle of the correct size and orientation in the wrong position or a correct enlargement of a different scale factor centre $(0,1)$ or correct orientation with 2 of 3 vertices correct)	
$\square 18$	1.95	P1	for correct substitution into the cosine rule, eg $3.4^{2}=6.1^{2}+6.2^{2}-2 \times 6.1 \times 6.2 \times \operatorname{cosBCA}$	Can be any angle within triangle $A B C$ P2 can be awarded for $B C A=32(.08046913 \ldots)$
		P1	for a full process to find BCA eg $(\cos B C A=) \frac{6.1^{2}+6.2^{2}-3.4^{2}}{2 \times 6.1 \times 6.2}$ or $(B C A=) 32(.08046913 \ldots)$	
		P1	correct substitution into the sine rule, $\operatorname{eg} \frac{D C}{\sin \left(" 32.08 \ldots . . " \times \frac{2}{5}\right)}=\frac{6.2}{\sin \left(180-" 32.08 \ldots "-\left(" 32.08 \ldots . .{ }^{2} \times \frac{2}{5}\right)\right.}$	
		P1	for complete process to find $D C \operatorname{eg}(D C=) \frac{6.2 \times \sin " 12.832 "}{\sin " 135.088 "}$	Must not come from incorrect processing
		A1	Answer in the range 1.94 to 1.951	

Question	Answer	Mark	Mark scheme	AOB does not need to be the subject of the equation
D]	264	P1	correct substitution into the volume formula, eg $56.8=\frac{1}{3} \times \pi \times \mathrm{r}^{2} \times 3.6$	
		P1	completes process to find base radius or the value of r^{2}, eg $\mathrm{r}=$ $\sqrt{\frac{56.8 \times 3}{\pi \times 3.6}}(=3.88158 \ldots) \text { or } \mathrm{r}^{2}=\frac{56.8}{1.2 \pi}(=15.066)$	
		P1	Uses Pythagoras to find the sloping length, eg $\sqrt{43.88 \ldots{ }^{2}+3.6^{2}}(=5.29 \ldots .$.	
		P1	process to find an equation in AOB, eg $\pi \times " 3.88 " \times$ " $5.29 "=\frac{A O B}{360} \times \pi$ \times " 5.29 " ${ }^{2}$ or $\frac{A O B}{360} \times \pi \times 2 \times " 5.29 "=2 \times \pi \times$ " 3.88 " or $\frac{A O B}{360} \times " 5.29 "=" 3.88$ "	
		A1	answer in the range 263.9 to 264.1	
\square	4:3	P1	Process to find a missing vector using the given ratios as fractions, eg. $\frac{1}{3}$ of $\overrightarrow{O X}\left(=\frac{1}{3} \mathbf{a}\right)$ or. $\frac{1}{4}$ of $\overrightarrow{O Y}\left(=\frac{1}{4} \mathbf{b}\right)$	
		P1	for a process to use $\overrightarrow{Z O}=\overrightarrow{Y X}=\mathbf{a}-\mathbf{b}$ oe	Might be embedded in their answer for 7
		P1	for a process to find either $\overrightarrow{Z P}$ or $\overrightarrow{Z R}$ in terms of \mathbf{a} and \mathbf{b}, eg. either $\overrightarrow{Z P}=\mathbf{a}-\mathbf{b}+\frac{1}{3} \mathbf{a}$ or $\overrightarrow{Z R}=\mathbf{a}-\mathbf{b}+\frac{1}{4} \mathbf{b}$	The award of this mark implies the first two process marks.
		P1	for a process to write $\overrightarrow{Z P}$ and $\overrightarrow{Z R}$ as multiples of the same vector, eg. multiplying both by 12 to get the ratio, $\frac{4}{3}(\mathbf{a}-0.75 \mathbf{b})$ and $\mathbf{a}-0.75 \mathbf{b}$ respectively	
		A1	oe	

Question	Answer	Mark	Mark scheme	Additional guidance
प]	162 supported	M1	for method to find sum of the interior angles of a hexagon eg $(6-2) \times 180(=720)$ oe OR for method to find sum of the interior angles of a pentagon, $\operatorname{eg}(5-2) \times 180(=540)$ OR for method to find angle $A F C$ or $B C F$, eg $(360-2 \times 117) \div 2(=63)$ OR for dropping a perpendicular from A or B to $E D$ with 90° marked on $E D$ and 27° at the top	Must be a complete process that would lead to a figure of 720 if evaluated correctly. For a pentagon there must be an indication that they have divided the hexagon into two halves. 63 may be shown on the diagram for angle $A F C$ or angle BCF
		M1	for method to use ratio 2:1 eg marks as $2 x$ and x or as x and $\frac{-x}{2}$ on diagram OR for ([angle sum of hexagon] $-2 \times 117) \div 6(=81)$ oe or $([$ angle sum of hexagon $] \div 2-117) \div 3(=81)$ oe or $117+117+2 x+2 x+x+x=$ [angle sum of hexagon] oe OR eg ([angle sum of pentagon] $-117-180) \div 3(=81)$ oe or $117+180+2 x+x=$ [angle sum of pentagon] oe	Ratio must be used correctly if awarded for diagram Award provided [angle sum of hexagon] is greater than 700 or [angle sum of pentagon] is greater than 500 Algebraic route needs to show both sides of the equation. LHS of equation may be simplified.
		M1	for finding angle $F E D=81$ or for finding angle $C D E=81$ OR for complete process to find angle $A F E$ eg ([angle sum of hexagon] $-2 \times 117) \div 6 \times 2$ oe OR ([angle sum of pentagon] $-117-180) \div 3 \times 2$ oe	This may be shown by solving a correct equation to find the value of x.
		C1	for accurate working leading to angle $A F E=162$	Award marks for 162 on the diagram with working and not contradicted by the answer line. Award 0 marks for 162 without working.

Question	Answer	Mark	Mark scheme	Additional guidance
$\square \square$	No Supported	P1	for finding the area of a circle eg $\pi \times 0.8^{2}(=2.01 \ldots)$	Must be area of circle and not part of a volume, eg $\pi r^{2} h$ May be seen as $2 \pi r^{2}$
		P1	for finding the curved surface area eg $2 \pi \times 0.8 \times 1.8(=9.047 \ldots)$	May be seen from $2 \pi r h$ or from $\pi d h$
		P1	for use of the coverage information with an area eg " $2.01 \ldots$ " $\div 5(=0.402 \ldots)$ or " $4.02 \ldots$ " $\div 5(=0.804 \ldots)$ or "9.047..." $\div 5(=1.8095 \ldots)$ or " $11.058 " \div 5(=2.2116 .$. or " $13.069 \ldots$ " $\div 5(=2.6138 \ldots)$ OR for process to find total coverage for comparison eg $5 \times 7(=35)$	Accept numbers without working written to no less than 2dp Do not award if a volume has been used as part of the calculation. An independent mark for 5×7
		P1	(dep P1) for finding total surface area for 3 tanks eg [total surface area] $\times 3(=39.2 \ldots)$ OR for complete process to find the number of tins needed for total area of 3 tanks eg " 13.069 ".... $\times 3 \div 5$ ($=7.84 \ldots .$. OR for complete process to find coverage needed from each tin eg " 13.069 "... $\times 3 \div 7$ (= $5.6 \ldots$)	[total surface area] must come from the addition of two attempts at area, but not from volume.
		C1	for conclusion "No" supported by accurate figures eg 8 tins or $7.84(>7)$ or $39.2>35$ or $5.6(>5)$	Clear statement that there is not enough paint supported by correct figures for comparison. NB: $2.6 \times 3=9$ tins needed is inaccurate 8 or 7.84 tins is sufficient without restating the 7 , $5.6 \mathrm{~m}^{2}$ is sufficient without restating the 5 but 39.2 and 35 are needed for comparison. A statement of "No, 8 tins" alone gets 0 marks without supporting working.

Question	Answer	Mark	Mark scheme	Additional guidance
D]	36	P1	for process to find an expression for the area of triangle eg $\frac{1}{2} \times 24 \times A E \times \sin 30(=6 A E)$	Accept any correct expression,$\operatorname{eg} \frac{1}{2} \times 24 \times y \times \sin 30$
		P1	(dep P1) for process to link the area of rectangle with the area of the triangle eg $2 \times \frac{1}{2} \times 24 \times A E \times \sin 30(=12 A E)$ or for $A B=12$	
		P1	(indep) for use of given ratio eg $A E=3 A B$ oe, eg area of rectangle $=A E \times A B=3 x \times x$	May be shown on the diagram by labelling $A E$ and $A B$ with, for example, $3 x, x$ or $x, \frac{1}{3} x$ or $\frac{3}{4} x, \frac{1}{4} x$ Do not accept 3,1 or $1, \frac{1}{3}$ or $\frac{3}{4}, \frac{1}{4}$ for this mark.
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
Ш1	39.9	P1	for finding the length of the minor or major arc eg $\frac{220}{360} \pi \times 12(=23(.03834 .)$.	Allow appropriate rounding if calculation seen in parts
		P1	for substituting into the sine or cosine rule to find $O D$ eg $14 \div \sin 140=O D \div \sin 24$ or $\left(O D^{2}=\right) 6^{2}+14^{2}-2 \times 6 \times 14 \times \cos 24(=78.5 \ldots$.	Must involve $O D$ in the relationship but may be implied
		P1	for a complete process to find the length $O D$ eg $14 \div \sin 140 \times \sin 24(=8.8(58778 .)$.	
		P1	for a complete process to find the perimeter eg "23(.03834..)" $+14+$ "8.8(58778..)" - 6	May be seen in multiple calculations
		A1	for an answer in the range 39.8 to 40	If an answer in the range is seen in working and then incorrectly rounded award full marks.
\square	$(-3.5,1)$	M1	for a complete method to show the transformations	Image at (-4,1), (-3,1) and (-3.5, -2)
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
\square	Triangle of area 18	M1 A1	for a complete method to find area of trapezium eg $\frac{1}{2}(2+7) \times 4(=18)$ OR for a triangle drawn of area 36 OR for a triangle that would give an area ft their area of trapezium for a triangle drawn of area 18 eg base $=6$, height $=6$ or base $=9$, height $=4$	The value for the area of the trapezium must be clear for the ft to be checked. Accept use of dimensions that are not whole numbers as long as the intention is clear
(a) (b)	50.5 Increase (supported)	M1 A1 C1	for $\cos A B C=\frac{7}{11}(0.63 \ldots)$ oe for answer in the range 50.4 to 50.51 States increase with supporting reason eg " $\frac{7}{10}$ is greater than $\frac{7}{11}$ " " 0.636 is less than 0.7 " "cos increases as angle decreases" "decreasing the denominator increases the value of the fraction" "angle is now 45.6" (accept 45.5-45.6)	Must be a complete statement for cos, \sin or tan with all three elements present. If an answer is in the range 50.4 to 50.51 is given in the working space then incorrectly rounded, award full marks. If figures are given they must be correct (truncated or rounded).

Question	Answer	Mark	Mark scheme	Additional guidance
DT	140	P1	for complete process to find sum of the interior angles of a pentagon $\operatorname{eg}(5-2) \times 180$ or exterior $360 \div 5=72$, interior $180-72=108,108 \times 5$ OR for complete process to find sum of the exterior angles of the pentagon $\mathrm{eg}(180-x)+(180-2 x)+(180-125)+(180-115)+(180-90)$	Must be a complete process that could lead to a figure of 540 if that process is evaluated incorrectly
		A1	for sum of interior angles is 540 OR for sum of exterior angles is 360	360 must be identified as the sum of the exterior angles
		P1	for start to process to find angle $A B C$ eg [angles in a pentagon] - 115-125-90 (=210) or $115+125+90+x+2 x=$ [angles in a pentagon] OR $(180-x)+(180-2 x)+(180-125)+(180-115)+(180-90)=360$	Award provided [angles in a pentagon] is greater than 400 Algebraic route needs to show both sides of the equation. LHS of equation may be simplified
		P1	for process to find angle $A B C$ eg " 210 " $\div 3(=70)$, " 210 " divided in the ratio $2: 1$ or for process to find angle $B C D$ eg $\frac{2}{3} \times " 210 "$ or for $3 x=" 210 "$ or $-3 x=-" 210 "$	Award if 70 is given for either $A B C$ or $B C D$ on the diagram
		A1	cao	Award marks for 140 on the diagram with working and not contradicted by the answer line. Award 0 marks for 140 without working.

Question	Answer	Mark	Mark scheme	Additional guidance
$\square \square$	13.1	P1	for start of process to find the length of $B D$, $\operatorname{eg} \frac{B D}{\sin 34^{\circ}}=\frac{12.5}{\sin 109^{\circ}}$	Accept 7.4 for the award of the first two P marks
		P1	for complete process to find the length of $B D$, eg $B D=\frac{12.5}{\sin 109^{\circ}} \times \sin 34^{\circ}(=7.39 \ldots)$	
		P1	for process to find the length of $A D$, $\text { eg } A D^{2}=11.4^{2}+" 7.39^{2} "-2 \times 11.4 \times \text { " } 7.39 " \times \cos 86^{\circ}$	
		P1	for process to use correct order of operations, eg $129.96+54.6(5 \ldots .)-.11.7(5 \ldots)(=172.85 \ldots$.	
		A1	for answer in the range 13.1 to 13.2	If an answer is given within the range and then incorrectly rounded to 3 sig figs award full marks.
ㅁ. ${ }^{(a)}$	Proof	C1	for starting the proof, identifying a pair of relevant equal sides or angles with reasons from $A D=B C$ (opposite sides of a parallelogram are equal) angle $P A D=$ angle $Q C B$ (opposite angles of a parallelogram are equal) angle $A D P=$ angle $C B Q$ (given or both 90°)	Congruency conclusion must include a reference to ASA
		C1	(dep C 1$)$ for complete identification of all three equal aspects with reasons	
		C1	(dep C2) for conclusion of congruency proof	
	Explanation	C1	for identifying a pair of equal sides or angles in $A P C Q$, with reason, eg $A P=Q C$ since triangle $A D P$ is congruent to triangle $C B Q$	
		C1	(dep C 1) for reasoning that $A P C Q$ is a parallelogram so opposite sides of a parallelogram are parallel	

Question	Working	Answer	Mark	Notes
- []		14.4	P1 P1 P1 P1 A1	for start of process, eg $0.5 \times 11 \times C D \times \sin 105=56$ for complete process to find $C D, \operatorname{eg}(C D=) \frac{56}{0.5 \times 11 \times \sin 105}$ oe $(=10.54)$ for process to find $A C$, eg $\left(A C^{2}=\right) 11^{2}+[C D]^{2}-2 \times 11 \times[C D] \times \cos 105(A C=17.09)$ for process to find $A B$, eg $\frac{A B}{\sin 48}=\frac{[A C]}{\sin 118}$ answer in range 14.3 to 14.4
TD		Proof	C1 C1 C1 C1	draws $O C$ and considers angles in an isosceles triangle (algebraic notation may be used, eg two angles labelled x) finds sum of angles in triangle $A B C, \operatorname{eg} x+x+y+y=180$, or sum of angles at O, eg $180-2 x+180-2 y$ complete method leading to $A C B=90$ complete proof with all reasons given, eg base angles of an isosceles triangle are equal, angles in a triangle add up to 180°, angles on a straight line add up to 180°
$\square \square$		$\frac{2}{5}$	P1 P1 P1 P1 A1	for process to find $\overrightarrow{A B}(=\mathbf{b}-\mathbf{a})$ or $\overrightarrow{B A}(=\mathbf{a}-\mathbf{b})$ for process to find $\overrightarrow{M N}\left(=-\frac{1}{2} \mathbf{b}+\mathbf{a}+2 \mathbf{a}\right)$ or $\overrightarrow{P N}(=-\mathrm{k}(\mathbf{b}-\mathbf{a})+2 \mathbf{a})$ or $\overrightarrow{M P}\left(=-\frac{1}{2} \mathbf{b}+\mathbf{a}+k(\mathbf{b}-\mathbf{a})\right.$ or $\left.\frac{1}{2} \mathbf{b}+(1-k)(\mathbf{a}-\mathbf{b})\right)$ for process to find two of $\overrightarrow{M N}, \overrightarrow{P N}$ and $\overrightarrow{M P}$ for process to find k, using $\overrightarrow{M N}$ as a multiple of $\overrightarrow{P N}$ or using $\overrightarrow{M N}$ as a multiple of $\overrightarrow{M P}$ or using $\overrightarrow{P N}$ as a multiple of $\overrightarrow{M P}$ for $\frac{2}{5}$ oe

Question	Working	Answer	Mark	Notes
[1]		Shows polygon is a hexagon	M1 M1 A1 C1	for a complete method to find the interior or exterior angle of the dodecagon eg $180-\frac{360}{12}, \frac{180}{12}(12-2)$ oe $(=150), 360 \div 12(=30)$ for a complete method to find the interior angle of polygon \mathbf{P} eg at B or $C: 360-" 150 "-90(=120)$ or " $30 "+90(=120)$ or for a complete method to find the interior or exterior angle of the hexagon eg $180-\frac{360}{6}, \frac{180}{6}(6-2)$ oe $(=120), 360 \div 6(=60)$ for 30 and 120 or 30 and 60 or 120 and 150 or 60 and 150 complete solution, fully supported by accurate figures
W		5.86	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for $\sin 23=\frac{\$ \%}{15}$ NB Allow any alternative equivalent method to form an equation in $A B$ 5.8 to 5.9
W		5.59	M1 M1 M1 A1	For use of $\pi r^{2}=49$, where r is the radius or $r=3.9(49 \ldots)$ or diameter $=7.8(9865 \ldots)$ For use of Pythagoras to set up an equation in x^{2} e.g. $x^{2}+x^{2}=(d)^{2}$ or $x^{2}=r^{2}+r^{2}$ (dep on M2) Rearrange to $\left(x^{2}=\right) 2 \times$ " $3.949 . . "{ }^{2}$ 5.5 to 5.6 For use of trigonometry to set up an equation in x eg $\sin 45=x \div d$ Rearrange to $(x=)$ " $7.898 . . " \times \sin 45$ oe
W		2.63	P1 P1 P1 P1 A1	for setting up the expression $\frac{1}{2}(x+3)(2 x-1) \sin 45$ (may be seen in an equation) (dep) for expanding the brackets in the expression or for the equation $\frac{1}{2}(x+3)(2 x-1) \sin 45=6 \sqrt{2}$ oe (dep) for the process to set up the equation and rearrange to the form $\mathrm{ax}^{2}+b x+c=d$ e.g. to $2 x^{2}+5 x-27=0$ or $24=2 x^{2}+5 x-3$ (dep) for substitution into the quadratic formula e.g. $\frac{-5 \pm \sqrt{5^{2}-4 \times 2 \times-27}}{4}$ for 2.63(10436...)

Question	Working	Answer	Mark	Notes
\square	Note $D O C=D O A$, $A D O=C D O$	21.6	P1 P1 P1 P1 A1	Recognises that $O A D$ or $O C D$ is 90° or right angle for using trigonometry to set up an equation in $D O A$ or $A D O$ eg $\operatorname{Cos} D O A=\frac{5}{9}$ for using inverse trigonometry to find $D O A$ or $A D O$ eg $D O A=\operatorname{Cos}^{-1} \frac{5}{9}(=56.25 \ldots)$ for a complete process to find arc length $A B C$ or $A C$ eg $\frac{360-2 \times " 56.25 . . " ~}{360} \times 2 \times \pi \times 5\left(=21.598\right.$..) or $\frac{2 \times " 56.25 . . " ~}{360} \times 2 \times \pi \times 5$ ($=9.8174$..) for answer in the range 21.5 to 21.65

T EXPERT

Question	Working	Answer	Notes
[1]		252	P1 For start to process eg. radius $=12 \div 4(=3)$ M1 Method to find area of trapezium or semicircle or circle P1 Process to find area of the shaded region A1 $251.7-252$
W	$D N=M B$ (given) $\angle N D C=\angle M B C$ (base angles of isosceles triangle) $D C=B C$ (sides of a rhombus are equal) $\therefore \triangle D N C \equiv \triangle B M C$ (SAS)	Proof	C1 One correct relevant statement C1 All correct relevant statements C1 Correct conclusion with reasons
[1]	$\begin{aligned} & A C^{2}=20^{2}+20^{2}=800 \\ & A X^{2}=10^{2}+10^{2}=200 \\ & \sqrt{200} \times \tan 55=V X \quad(=20.19 \ldots) \\ & V M^{2}=\sqrt{" 20.19^{12}+10^{2}} \quad(=22.54 \ldots) \\ & 4 \times \frac{1}{2} \times 22.54 " \times 20+20^{2} \end{aligned}$	1300	Let X be centre of base, M be midpoint of $A B$ P1 process to find $A C$ or $A X$ P1 process to find $V X$ or $V A$ P1 process to find height of sloping face or angle of sloping face. P1 process to find surface area of one triangular face. A1 For $1300-1302$

Question	Working	Answer	Notes
146	160 tiles 18 packs	18	M1 a full method to find the area of the trapezium M1 a full method to calculate both areas in consistent units M1 for the area of the trapezium \div area of a tile (with consistent units) M1 (dep on previous M) for complete method to find the number of packs required A1
147	$\begin{aligned} & 1.5 \times 1.7-1.7 \mathrm{Or} \\ & 0.5 \times 1.7=(0.85) \end{aligned}$	0.664(09..)	P1 for finding the difference in height by ratio or multiplier P1 for use of \tan ratio P1 (dep) for " 0.85 " $\div \tan 52$ oe A1 0.664 to 0.6641
148		430	P1 for appropriate use of Pythagoras P1 for setting up an equation equivalent to $x=15-5-7$ or better eg $\sqrt{151}$ P1 for finding the volume using their " $\sqrt{15-5-7}$ " A1 430 to 430.1
149	$\begin{aligned} & l=20 x \\ & x=3 \end{aligned}$	20736	P1 for a first step to solve the problem eg method to find the slant height of the cone or the volume equals $768 \pi x^{3}$ P1 for setting up an equation for the curved surface area in terms of x eg $2160 \pi=\pi \times 12 x \times 20 x$ P1 for complete method to find the value of x P1 for a method to find the volume or value of V Al cao

Question	Working	Answer	Notes
W		plan	C1 a partially correct plan C1 correct plan
W		complete chain of reasoning	C1 starts chain of reasoning eg finds area of large square and area of triangle or use of Pythagoras C1 for $(x+y)^{2}-4 \times(x \times y \div 2)$ oe or $\sqrt{x^{2}+y^{2}} \times$ $\sqrt{x^{2}+y^{2}}$ C1 complete chain of reasoning with correct algebra
W		$\begin{gathered} \text { Triangle } \\ (-6,2),(-6,-1), \\ (-3,-1) \end{gathered}$	M1 for correct shape and the correct orientation in the wrong position or two vertices correct. cao A1
Ш1]		18.2	M1 for $\frac{260}{360} \times \pi \times 8$ oe or $\frac{100}{360} \times \pi \times 8$ oe A1 for 18.1 to 18.2
W		$\frac{1}{4}$	P1 starts process eg $\overrightarrow{A B}=2 \mathbf{b}-2 \mathbf{a}$ P1 process to find $\overrightarrow{A P}$ or $\overrightarrow{B P}$ P1 complete process to find $\overrightarrow{O P}$ A1 for $\frac{1}{4}$ oe

Question	Working	Answer	Notes
W		10.4	P1 starts process by using cosine rule to find CD $\operatorname{eg}(C D)^{2}=4.9^{2}+3.8^{2}-2 \times 4.9 \times 3.8 \times \cos 80(=$ 31.98..)
			P1 uses sine rule to find angle $A C D$ or angle $A D C$ $\text { eg } \frac{\sin C}{3.8}=\frac{\sin 80}{5.655^{\prime}} \text { or } \frac{\sin D}{4.9}=\frac{\sin 80}{5.655^{\prime}}$
			P1 uses sine rule to find $B C$ or $B D$ eg $\frac{B D}{\sin 25}=\frac{' 5.655^{\prime}}{\sin 33.6^{\prime}}$
			P1 process to find area eg $1 / 2 \mathrm{absinC}$ A1 for 10.4 to 10.43

Question	Working	Answer	Mark	Notes
\square		42	3	M1 for a method to find angle $A B D$ eg $A B D=360-130-130-40(=60)$ or angle $D B C$ eg $D B C=180-2 \times 72(=36) \quad$ (may be on the diagram) M1 for a complete method eg (180-" $60 "-" 36 ") \div 2$ A1 cao OR M1 for a method to find angle $A B C$ eg $A B C=540-130-40-130-72-72(=96)$ M1 for a complete method eg $(180-$ " 96 ") $\div 2$ A1 cao
\square		15200	3	M1 for a method to obtain at least 2 different areas from $50 \times 80(=4000), \quad \frac{1}{2} \times 40 \times 60(=1200), \quad 60 \times 80(=4800)$ M1 (dep on M1) for adding at least 4 correct face areas A1 cao
$\square 8 \quad(a)$ (b)		Transfor mation Description	2 3	B2 for a triangle with vertices at $(-1,1),(-2,3)$ and $(-2,1)$ (B1 for a triangle in correct orientation or rotated 90° clockwise centre the origin) B1 Enlargement B1 Scale factor 3 (accept $\times 3$) B1 Centre $(1,0)$ NB: More than one transformation is B0
प]		270	3	M1 for correct use of formula for volume of a cylinder using exact or (some) approximate figures eg $\pi \times 31^{2} \times 97.5$ or $\pi \times 31^{2} \times 100$ or using an estimate of π eg $\pi=3$ in the volume formula M1 for a complete method to find an estimate for the volume in cm^{3} with at least 2 values rounded $\text { eg } \pi \times 30^{2} \times 100(=270000) \quad \text { eg } 3.1 \times 30^{2} \times 100 \quad \text { eg } 3 \times 31^{2} \times 100$ A1 accept answer in the range $270-300$ from a method using estimates

158b

T	EXPERT
TUITION	

Question	Working	Answer	Mark	Notes
П]		18	4	M1 for correct initial use of Pythagoras eg $\left(A B^{2}=\right) 10^{2}-6^{2}(=64)$ or $A B=8$ M1 (dep M1) for " $\sqrt{64}$ " $\div 2(=4)$ M1 for method to find area of trapezium eg $\frac{1}{2} \times$ " 4 " $\times(6 \div 2+6)$ A1 cao OR M1 for correct initial use of Pythagoras eg $\left(A B^{2}=\right) 10^{2}-6^{2}(=64)$ or $A B=8$ M1 (dep M1) for method to find area of $\triangle A B C$ eg $\frac{1}{2} \times$ " $\sqrt{64} " \times 6 \quad(=24)$ or area of $\triangle A E D \quad \frac{1}{2} \times 6 \div 2 \times " 4 " \quad(=6)$ or $24 \times\left(\frac{1}{2}\right)^{2} \quad(=6)$ M1 for a complete method to find area of $E D B C$ e.g $\frac{3}{4} \times$ " 24 " eg " 24 " - " 6 " A1 cao

Question	Working	Answer	Mark	Notes
*口		155°	5	M1 for a method to find angle $A O D$ e.g $90-40(=50)$ M1 for a complete method to find angle $B C D$ eg $360-50 '(=310)$ and $310 ' \div 2(=155)$ A1 for 155 C2 for complete reasons for their method Angle between tangent and radius $=\underline{90}$ Angle at the centre is twice the angle at the circumference oe $\underline{\text { Angle }}$ sum of a triangle $=\underline{180}$ Sum of angles round a point $=\underline{360}$ (C 1 for at least two reasons, one of which must be a circle theorem) OR M1 for a method to find angle $A O D$ eg $90-40(=50)$ M1 for a complete method to find angle $B C D$ eg $50 \div 2(=25)$ and $180-25{ }^{\prime}(=155)$ A1 for 155 C2 for complete reasons for their method Angle between tangent and radius $=\underline{90}$ Angle at the centre is twice the angle at the circumference oe Opposite angles of a cyclic quadrilateral add up to $\underline{180}$ $\underline{\text { Angle }}$ sum of a triangle $=\underline{180}$ (C1 for at least two reasons, one of which must be a circle theorem)

Question	Working	Answer	Mark	Notes
W		Diagram drawn	3	B3 for fully correct shape (B2 for 3 or 4 vertices correct or enlargement scale factor 3 in wrong position or enlargement, centre A, with different scale factor) (B1 for 2 vertices correct or enlargement, not from A, with different scale factor)
W			2	B2 for correct side elevation (B1 for a rectangle with base 2 squares or height 3 squares)
165	$\begin{aligned} & (7+3+3) \times(4+3+3)- \\ & 7 \times 4=102 \end{aligned}$ OR $\begin{aligned} & 2 \times 7 \times 3+2 \times 4 \times 3+4 \times \\ & 3 \times 3=102 \end{aligned}$	11	4	M1 for a correct method to find the area of one appropriate rectangle M1 for a complete method to find the area of the path M1 (dep on M1) for " 102 " $\div 10$ A1 cao from correct working
* ${ }^{\text {D }}$		$\begin{gathered} 95^{\circ} \\ \text { with } \\ \text { reasons } \end{gathered}$	4	M1 for angle $D B C=180-125$ ($=55$) or angle $E A C=180-125$ (=55) (May be on diagram) A1 for $x=95$ C2 (dep on M1) with full reasons for their given method, e.g. angles on a straight line add up to $\underline{180^{\circ}}$ and angles in a triangle add up to $\underline{180^{\circ}}$ and corresponding angles are equal or allied angles / co-interior angles add up to 180° and angles in a triangle add up to 180° ($\mathrm{C} 1(\mathrm{dep}$ on M 1$)$ for one appropriate reason linked to parallel lines) M1 for angle $C D B=125-30(=95)$) (May be on diagram) A1 for $x=95$ C2 (dep on M1) for full reasons, for their given method, e.g. exterior angles are equal to the sum of the interior opposite angles and corresponding angles are equal (C1 (dep on M1) for one of these appropriate reasons linked to parallel lines)
W(a) (b)		$\begin{gathered} \hline 049 \\ 12 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 for answer in range 47 to 51 M1 for line drawn on a bearing of $320^{\circ} \pm 2^{\circ}$ A1 for answer in range 10 to 14

Question	Working	Answer	Mark	Notes
W	B at $(1,0),(1,-1),(3,-2)$ \mathbf{C} at $(-2,-1),(-2,-2),(0$, -3) Rotation 90° clockwise (or 270° anti-clockwise) about $(-2,2)$	```Rotation 90 clockwise centre (-2, 2)```	3	M2 for stating rotation 90° clockwise (or 270° anti-clockwise) or centre $(-2,2)$ (M1 for showing \mathbf{B} and \mathbf{C} correctly on the grid) A1 for a fully correct description NB Award a maximum of M1 if more than one transformation is given
169		3.75 oe	3	M1 for a correct scale factor or ratio using two corresponding sides from similar triangles or two sides from the same triangle (may be seen in an equation) e.g $\frac{6}{1.5}$ oe or $\frac{1.5}{6}$ oe or $\frac{5}{6}$ or $\frac{6}{5}$ etc. (accept these written as ratios) M1 for a complete method to find ED A1
WII		$9 x^{2}+7 x-2$	4	M1 for finding an expression for a missing length eg $4 x-1-x-x(=2 x-1)$ or $x+2-2 x(=2-x)$ M1 for a correct expression for one area from the cross-section, eg. $x \times 2 x$ or $(4 x-1)(x+2-2 x)$ or for one volume of cuboid(s), eg. $x \times 2 x \times(x+1)$ M1 for a complete method to find the volume A1 for $9 x^{2}+7 x-2$ or $(9 x-2)(x+1)$ oe
171		8	4	M1 for $(2 \sqrt{10})^{2}-2^{2}(=36)$ A 1 for $(C D=) 6$ M1 (dep on M1) for ' 6 ' $\times 4-\frac{1}{2} \times{ }^{\prime} 6$ ' $\times 2-\frac{1}{2} \times 2 \times 2-\frac{1}{2} \times\left({ }^{\prime} 6\right.$ ' -2$) \times 4$ C 1 for area of 8 from fully correct working

Question	Working	Answer	Mark	Notes
W		$750 \mathrm{~cm}^{3}$	3	M1 for 30×25 A1 for 750 B1 (indep) for cm^{3}
(a) (b)		Correct shape Correct shape	2	B2 for correct reflection with vertices $(-4,2)(-6,3)(-6,7)(-4,6)$ (B1 for reflection in a vertical or horizontal line) B2 for correct rotation with vertices $(-1,3)(-5,3)(-6,5)(-2,5)$ (B1 for rotation of $90\left({ }^{\circ}\right)$ clockwise about $(0,1)$ or correct orientation fully in top left quadrant)
* $\square 7 \square$		Conclusion (supported)	5	M1 for finding the area of one rectangle which is not 6×10 eg $2 \times 2.5(=5)$ or $4 \times 10(=40)$ or 2.5×6 or 5×2 M1 for a complete method to find the total area eg $5+5+40$ or $60-10(=50)$ M1 for a complete method to find the number of tins needed eg " 50 " $\div 5 \div 2.5$ (=4) OR for a complete method to find the number of litres needed. eg " 50 " $\div 5(=10)$ OR for a complete method to find the area covered by 3 tins eg $3 \times 2.5 \times 5(=37.5)$ A1 for $50\left(\mathrm{~m}^{2}\right)$ and 4 (tins needed) or for 10 (litres) and 7.5 (litres) or for $50\left(\mathrm{~m}^{2}\right)$ and $37.5\left(\mathrm{~m}^{2}\right)$ C1 (dep M2) for a conclusion supported by their calculations
W		$100-25 \pi$	3	M1 for $\pi \times 5 \times 5$ or 25π M1 for ($10 \times 10-" \pi \times 5 \times 5$ ") A1 for $100-25 \pi$ oe NB: ignore the inclusion of any units.

Question	Working	Answer	Mark	Notes
(a) (b)		Correct construction Correct construction	2	M1 for correct construction arcs or bisector within guidelines but no (or incorrect) construction arcs A1 for bisector within guidelines with correct arcs shown M1 for correct construction arcs or perpendicular within guidelines but no (or incorrect) construction arcs A1 for perpendicular within guidelines with correct arcs shown
* ${ }^{\text {] }}$		$\begin{gathered} 69^{\circ} \\ \text { (supported) } \end{gathered}$	5	M1 for method to find angle PSR eg 90-48(=42) or method in triangle POS to find angle POS (=84) M1 for method to find angle PMS (= 42) A1 cao C2 (dep on at least M1) for correct and complete set of appropriate reasons (C 1 for one correct reason involving a circle theorem supported by working) eg The tangent to a circle is perpendicular (90) to the radius (diameter) Alternate segment theorem. Angles in a triangle add up to 180 Base angles of an isosceles triangle are equal. The angle at the centre of a circle is twice the angle at the circumference.

Question	Working	Answer	Mark	Notes
DI (a)(i) (ii) (b) *(c)		$\begin{gathered} \mathbf{a}+\mathbf{b} \\ -\mathbf{a}+3 \mathbf{b} \\ \frac{3}{4} \mathbf{a}+\frac{3}{4} \mathbf{b} \\ \mathrm{OS}=\frac{3}{4} \mathrm{OT} \end{gathered}$	2 2 2	B1 for $\mathbf{a}+\mathbf{b}$ oe B1 for $-\mathbf{a}+3 \mathbf{b}$ oe M1 for $\overrightarrow{O P}+\frac{1}{4} \overrightarrow{P R}$ or $\overrightarrow{O R}+\frac{3}{4} \overrightarrow{R P}$ (may be in terms of \mathbf{a} and \mathbf{b}) A1 for $\frac{3}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}$ or $\frac{3}{4}(\mathbf{a}+\mathbf{b})$ C2 (dep A1) for Sdivides OT in the ratio $3: 1$ oe or $\mathrm{OS}=\frac{3}{4} \mathrm{OT}$ oe (C1 (dep A1) for Slies on OT or that OT and PR intersect at Soe)
W		$\frac{1}{4}-\frac{\sqrt{6}}{12}$	3	M1 for $\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}$ or $\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3}$ M1 for $\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}-\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3}$ A1 for $\frac{1}{4}-\frac{\sqrt{6}}{12}$ oe OR M1 for $(B C=) \frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}$ M1 for $\frac{1}{2} \times\left\{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}\right\} \times \frac{\sqrt{2}}{2}$ A1 for $\frac{1}{4}-\frac{\sqrt{6}}{12}$ oe

Question		Working	Answer	Mark	Notes
\square			40°	4	M1 for angle $\mathrm{FBC}=70$ or $\mathrm{CFG}=\mathrm{x}$ or $\mathrm{ABF}=110$ may be seen in diagram M1 for angle $\mathrm{CBF}=\mathrm{BFC}=70$ or $90-1 / 2 \mathrm{x}$ A1 for 40 supported by working C1 (dep on M2) for all reasons and linked to appropriate working, e.g. Alternate angles are equal; Allied angles / Co-interior angles add up to 180°; Base angles of an isosceles triangle are equal; angles in a $\underline{\text { triangle }}$ add to $\underline{180^{\circ}}$, angles on a straight line equals $\underline{180^{\circ}}$
*			NO with evidence	4	M1 for $50 \times 40 \times 30(=60000)$ M1 for " 60000 " $\div 3000(=20)$ M1 for " 20 " $\times £ 3.50$ C 1 eg for 70 and comparison resulting in NO OR M1 for $£ 60 \div 3.50$ ($=17$ bottles) M1 for " 17 " $\times 3000(=51000)$ M1 for $50 \times 40 \times 30(=60000)$ C1 eg for 51000 and 60000 and comparison resulting in NO
\square	(a) (b)		$\begin{aligned} & 150 \\ & \\ & \hline 1140 \end{aligned}$	$\overline{2}$ 4	M1 for $180-(360-330)$ or $180-30$ or $330-180$ or a complete diagram showing the bearing of 330° A1 cao M1 for $200 \div 120(=12 / 3 \mathrm{~h})$ M1 for conversion between hours and minutes A1 for 1 h 40 min or 100 minutes B1 (ft dep on M1) for 1140
\square			126	4	M1 for method to find exterior or interior angle of octagon M1 for method to find exterior or interior angle of pentagon M1 for complete method A1 cao

Que	Working	Answer	Mark	Notes
D]		13.75	5	M1 for finding perimeter of rectangle e.g. $5 x+5+5 x+5+4 x+4 x(=18 x+10)$ M1 for finding perimeter of trapezium e.g. $9 x-2+7 x-2+10 x(=26 x$ -4) M1 for equation e.g. $26 x-4=18 x+10($ or $8 x=14)$ A1 for finding the value of X as 1.75 B1 ft for subs of X into $5 \mathrm{x}+5$ and evaluated (=13.75)
Ш1]		756π	5	M1 for $1 / 3 \pi r^{2} \times 10(=270 \pi)$ A1 for $r=9$ M1 (dep on M1) for $\frac{1}{2} \times \frac{4}{3} \pi \times{ }^{\prime \prime} 9^{33} \quad(=486 \pi)$ M1 for $270 \pi+$ " 486π " oe Al cao
*		Proof	5	M1 for finding one other vector expressed as a and/or b M 1 for method to find one of $\overrightarrow{\mathrm{DM}}, \overrightarrow{\mathrm{MA}}$ or $\overrightarrow{\mathrm{DA}}$ eg $\overrightarrow{\mathrm{DM}}=-\mathbf{b}+1 / 2(3 \mathbf{b}+\mathbf{a})$ oe, $\overrightarrow{\mathrm{MA}}=1 / 2(3 \mathbf{b}+\mathbf{a})+\mathbf{a}$ oe or $\bar{D} \vec{A}=2 b+2 \mathbf{a}$ oe M1 for method to find two of $\overrightarrow{D M}, \bar{M} \vec{A}$ or $\bar{D} \vec{A}$ A1 for two of $\overline{\mathrm{D}} \vec{M}=1 / 2(\mathbf{a}+\mathbf{b}), \overrightarrow{\mathrm{M}} \overrightarrow{\mathrm{A}}=1.5(\mathbf{a}+\mathbf{b}), \overrightarrow{\mathrm{D}} \overrightarrow{\mathrm{A}}=2(\mathbf{a}+\mathbf{b})$ ie simplified but oe C1 (dep on working shown) for conclusion relating to correct working
* \square D		Similarity and proof	5	B1 for method matching a pair of opposite angles, e.g. if $\mathrm{EAB}=x, B D E=180-x, E A B+B D E=180$ B 1 for linking angles between quad and triangle, e.g. if $B D E=180-x$ then $B D C=x$ $B 1$ for stating or implying $A C E=B C D$ (same angle) C 1 for Opposite angles of a cyclic quadrilateral add up to $\underline{180}^{\circ}$ or statement linking three angles for similarity C1 for complete proof

Question		Working	Answer	Mark	Notes
W			12	3	M1 for a method to find volume of a cuboid, eg. $2 \times 10 \times 15(=300)$ or $5 \times 5 \times x(=25 x)$ M1 (dep) for " 300 " $\div 25$ " oe A1 cao OR M1 for $10 \div 5(=2)$ and $15 \div 5(=3)$ or $10 \div 5(=2)$ and $2 \div 5(=0.4)$ M1 (dep) for $2 \times$ " 2 " \times " 3 " or $15 \times$ " 2 " \times " 0.4 " A1 cao
W	(a) (b)		Triangle with vertices at $(-3,3),(-3,4)$ and $(-1,4)$ Reflection in line $y=x$	2	B2 for a triangle with vertices at $(-3,3),(-3,4),(-1,4)$ (B1 for triangle in correct orientation and size or rotated 90° clockwise about centre O or three correct vertices without joining) B1 for reflection B1 for (in the line) $y=x$ Note: award no marks if more than one transformation is given

Question		Working	Answer	Mark	Notes
			Has enough (with evidence)	5	M1 for splitting the shape (or showing recognition of the "absent" triangles) and using a method to find the area of one shape M1 for a complete method to find the total area, $\left(=9 \mathrm{~m}^{2}\right)$ M1 (dep on M1) for a method to find the number of packs required from their total area, eg. " 9 " $\div 2=4.5$ rounded up to 5 M1 for a method to find 75% of 24.80 or 75% of the cost of their total number of packs, eg. $24.80 \times 45 \times \frac{75}{100}(=93)$ or $24.80 \times \frac{75}{100}$ (=18.6) C1 for a conclusion supported by fully correct answers, eg. showing $9\left(\mathrm{~m}^{2}\right), 5$ (packs) and 93 or 7 (from $100-93$) OR M1 for method to find 75% of $£ 24.80$, eg. $24.80 \times \frac{75}{100}(=18.6)$ M1 for method to find total number of packs Mary can buy, eg. $100 \div " 18.60 "=5.3 \ldots$. truncated to 5 or $10\left(\mathrm{~m}^{2}\right)$ M1 for finding area of one relevant shape or showing how one pack $\left(2 \mathrm{~m}^{2}\right)$ can fit in the diagram M1 (dep on previous M1) for complete method to show that 5 packs can cover the floor C1 for a conclusion supported by fully correct answers, showing the capacity (10) greater than total area (9)

EXPERT

TUITION

Que	Working	Answer	Mark	Notes
* ${ }_{\text {W }}$		40° with reasons	4	M1 for finding one related angle using parallel lines A1 for $x=40\left({ }^{\circ}\right)$ C2 for full reasons linked to appropriate method eg. alternate angles are equal and angles in a triangle add up to 180° eg. angles on a straight line add up to 180° and corresponding angles are equal and alternate angles are equal eg. co-interior (allied) angles add up to 180° and exterior angle of a triangle is equal to sum of interior opposite angles Other solutions may include reasons such as: vertically opposite angles are equal the sum of angles at a point is equal to 360° (C1 (dep on M1) for one appropriate reason linked to parallel lines)
एT		48	5	M1 for 8-2 (=6) M1 (indep) for $x^{2}+8^{2}$ (provided $x \leq 8$) M1 (dep on previous M1) fo $\sqrt{" x^{\prime 2}+8^{2}}$ or $\sqrt{100^{"}}$ M1 (dep on M2) for $4 \times 2+4 \times 10 "$ Al cao
ए		18	4	M1 for a method to find the exterior angle of a pentagon eg. $360 \div 5(=72)$ or the interior angle of a pentagon, eg. $180-360 \div 5(=108)$ A1 for 72 or 108 M1 (dep M1) for a fully complete method to find the required angle, $D C F$ A1 for 18 or ft their interior or exterior angle

Question		Working	Answer	Mark	Notes
D]			$\frac{14}{3}$	5	M1 for correct substitution into a volume formula for a cylinder or a cone, eg. $\frac{1}{3} \times \pi \times 3^{2} \times 4(=12 \pi)$ or $\pi \times 3^{2} \times(6-4)(=18 \pi)$ or $\pi \times 3^{2} \times h(=9 \pi h)$ or $\pi \times 3^{2} \times(h-2)$ M1 for method to find volume after 5 hours, eg. " 12π " + " 18π " (= $=30 \pi$) M1 (dep on M1) for use of a correct ratio, eg. " $30 \pi " \times \frac{\square}{5}(=54 \pi)$ or " 30π " $\times \frac{4}{5}(=24 \pi)$ M1 for deriving an equation in h, eg. " $54 \pi "=" 9 \pi h "+" 12 \pi "$ A1 for $\frac{14}{3}$ or equivalent fraction

Question		Working	Answer	Mark

Question		Working	Answer	Mark	Notes
$\square \square$			construction	2	M1 for a pair of arcs or a single arc, centre C, that cut line $A B$ and at least one pair of arcs not at C within guidelines A1 for perpendicular within guidelines with appropriate construction arcs OR M 1 for an arc, centre A radius $A C$ and an arc centre B radius $B C$. The two arcs must intersect below $A B$ A1 for perpendicular within guidelines with appropriate construction arcs (SC If M0 scored, B1 for correct perpendicular line within guidelines)

Question	Working	Answer	Mark	Notes
\square		25	4	M1 for complete method to work out interior angle of a regular octagon or 135° identified as an interior angle of the octagon M1 for complete method to work out angle $K F G$ or angle $K F G$ identified as 110° M1 (dep on M2) for complete method to work out angle $K F E$, eg "135" - "110" or ($8 \times$ " 135 " -4×1135 " -4×110 ") $\div 4$ or $(3 \times 180-2 \times " 135 "-2 \times " 110 ") \div 2$ A1 for 25 with supporting working OR M1 for complete method to work out the exterior angle of a regular octagon or 45° identified as an exterior angle of the octagon M1 for complete method to work out angle $K F G$ or angle $K F G$ identified as 110° M1 (dep on M2) for complete method to work out angle $K F E$, eg 180 - " 45 " - "110" A1 for 25 with supporting working OR M1 for complete method to work out the exterior angle of a regular octagon or 45° identified as an exterior angle of the octagon M1 for complete method to work out angle $J K F$ or angle $J K F$ identified as 70° M1 (dep on M2) for complete method to work out angle $K F E$, eg "70" - "45" A1 for 25 with supporting working

Question		Working	Answer	Mark	Notes
D]	(a)		7.5	2	M1 for $\frac{12}{18}$ oe or $\frac{18}{12}$ oe or $\frac{12}{5}$ oe or $\frac{5}{12}$ oe A1 cao
	(b)		45	3	M1 for $\left(" \frac{3}{2}\right)^{2}$ oe or $\left.\left(" \frac{2}{3}\right)^{2}\right)^{2}$ oe M1 for complete method to find area of shaded region, eg $36 \times$ " 1.5^{2} - 36 A1 cao (SC B2 for 81)
$2 \square 0$			128π	5	M1 for $\frac{4 \pi r^{2}}{2}=32 \pi$ oe A1 for $(r=) 4$ M1 for $2 \times \pi \times 4 " \times 10(=80 \pi)$ or $\pi \times 44^{2}(=16 \pi)$ or ft their r M1 for $32 \pi+" 80 \pi "+" 16 \pi$ " oe or $402.1-402.3$ or ft their r Al cao

Question		Working	Answer	Mark	Notes
* \square			3	4	M1 for a method to calculate at least one area eg $10 \times 7(=70)$ or 16×10 (=160) M1 for a method to find the total area $(=124)$ M1 (dep on M1) for " 124 " $\div 36$ C1 (dep on M3) for 3 (pigs) clearly identified and supported by correct calculations Or M1 for an area of $36 \mathrm{~m}^{2}$ drawn with dimensions shown M1 for 3 areas of $36 \mathrm{~m}^{2}$ drawn with dimensions shown M1 (dep on M1) for method to find the area left (=16) C1 (dep on M3) for 3 (pigs) clearly identified and supported by correct calculations
[(a) (b)		Shape drawn Triangle drawn		B2 for shape with vertices at $(0,-1),(-1,-3),(-2,-3),(-2,-1)$ (B 1 for rotation of 180° about the wrong centre) B2 for triangle with vertices at (6, 9), (9, 9), (9,3) (B1 for 2 vertices correct or enlargement sf 3 in wrong position or enlargement, centre $(0,0)$, but sf $>1, \neq 3$)
W			36	3	M1 for a correct method to find either an interior or an exterior angle; eg. $(180 \times 3) \div 5$ or $540 \div 5(=108)$ or $360 \div 5(=72)$ M1 (dep) for a complete method to find angle CFD. A1 cao

Question		Working	Answer	Mark	Notes
$20 \square$			6	3	M1 for $\frac{15}{10}(=1.5)$ or $\frac{10}{15}(=0.66 .$.$) or \frac{16}{10}(=1.6)$ or $\frac{10}{16}(=0.625)$ M1 for $\frac{15}{10} \times 16(=24)$ oe A1 cao OR M1 for $\frac{15}{16}(=0.9375)$ or $\frac{16}{15}(=1.066 \ldots)$ or $\frac{16}{10}(=1.6)$ or $\frac{10}{16}(=0.625)$ M1 for $\frac{15}{16} \times 10(=9.375)$ oe A1 20.625 oe
[1]			55	3	M 1 for angle $\mathrm{ABO}=90$ or angle $\mathrm{ADO}=90$, or angle $\mathrm{OBC}=15$ or angle $\mathrm{FDO}=90$ or angle $\mathrm{EBO}=90$ (could be marked on the diagram) M1 for reflex angle $\mathrm{BOD}=360-(360-90-90-40)(=220)$ or angle $\mathrm{BCD}=(360-90-90-40) \div 2(=70)$ or angle BDO or angle $\mathrm{DBO}=90-(180-40) / 2(=20)$ or angle $\mathrm{BOC}=180-(15+15)(=150)$ A1 cao
*2■			Proof	3	M1 for $\overrightarrow{M N}=\overrightarrow{M O}+\overrightarrow{O N}(=\mathbf{n}-\mathbf{m})$ or $\overrightarrow{N M}=\overrightarrow{O M}+\overrightarrow{N O}(=\mathbf{m}-\mathbf{n})$ or $\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}(=2 \mathbf{n}-2 \mathbf{m})$ or $\overrightarrow{B A}=\overrightarrow{O A}+\overrightarrow{B O}(=2 \mathbf{m}-2 \mathbf{n})$ M 1 for $\overrightarrow{M N}=\mathbf{n}-\mathbf{m}$ and $\overrightarrow{A B}=2 \mathbf{n}-2 \mathbf{m}$ oe C 1 (dep on $\mathrm{M} 1, \mathrm{M} 1$) for fully correct proof, with $\overrightarrow{A B}=2 \overrightarrow{M N}$ or $\overrightarrow{\mathrm{AB}}$ is a multiple of $\overrightarrow{M N}$ [SC M1 for $\overrightarrow{M N}=0.5 \mathbf{n}-0.5 \mathbf{m}$ and $\overrightarrow{A B}=\mathbf{n}-\mathbf{m}$ C 1 (dep on M1) for fully correct proof, with $\overrightarrow{A B}=2 \overrightarrow{M N}$ or $\overrightarrow{\mathrm{AB}}$ is a multiple of of $\overrightarrow{M N}$]

Question		Working	Answer	Mark	Notes
D			$120 \mathrm{~cm}^{3}$	4	M1 for $\frac{1}{2} \times 3 \times 4$ M1 (dep) for ' $\frac{1}{2} \times 3 \times 4$ ' $\times 20$ A1 for 120 B1 (indep) for cm^{3}
Ш1]	(a) (b)		Shape with vertices at $\begin{gathered} (-1,3),(0,6), \\ (2,6),(1,3) \end{gathered}$ Rotation centre (0,0) 90° anticlockwise	1 3	B1 for correct shape in correct position B1 rotation B1 (centre) $(0,0)$ B1 90° anticlockwise or 270° clockwise Note: award no marks if more than one transformation is given
Ш1]			38	5	M1 $3 \mathrm{X}-5=19-\mathrm{x}$ M1 for a correct operation to collect the Xterms or the number terms on one side of an equation of the form $\mathrm{ax}+\mathrm{b}=\mathrm{cx}+\mathrm{d}$ A1 for $\mathrm{x}=6$ M1 for substituting their value of x in the three expressions and adding or substituting their value of x after adding the three expressions A1 cao

Question		Working	Answer	Mark	Notes
* $\square 10$			Not enough, needs $£ 133$	5	M1 for splitting the shape (or showing recognition of the "absent" rectangle) and using a correct method to find the area of one shape M1 for a complete and correct method to find the total area M1 for a complete method to find 70% of $19(=13.3)$ or 70% of their total cost or 70% of their area A1 $114\left(\mathrm{~m}^{2}\right)$ and $(£) 133$ or $114\left(\mathrm{~m}^{2}\right)$ and $(£) 13.3(0)$ and $108\left(\mathrm{~m}^{2}\right)$ C1 (dep on M2) for a conclusion supported by their calculations OR M1 for a complete method for the number of tins required for one section of the area of the floor M1 for a complete method to find the number of tins for the whole floor M1 for a complete method to find 70% of their total number of tins and multiply by 19 A1 (£) 133 C1 (dep on M2) for a conclusion supported by their calculations

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes

\hline Ш1] \& (a)

(b) \& \[
$$
\begin{aligned}
& \overrightarrow{A B}=-\mathbf{a}+\mathbf{b} \\
& \overrightarrow{O N}=\overrightarrow{O A}+\frac{2}{3} \overrightarrow{A B} \\
& \overrightarrow{O N}=\mathbf{a}+\frac{2}{3}(-\mathbf{a}+\mathbf{b}) \\
& =\frac{1}{3} \mathbf{a}+\frac{2}{3} \mathbf{b} \\
& \mathrm{OR} \\
& \overrightarrow{O N}=\overrightarrow{O B}+\frac{1}{3} \overrightarrow{B A} \\
& \overrightarrow{O N}=\mathbf{b}+\frac{1}{3}(-\mathbf{b}+\mathbf{a}) \\
& =\frac{1}{3} \mathbf{a}+\frac{2}{3} \mathbf{b} \\
& \overrightarrow{O D}=\overrightarrow{O A}+\overrightarrow{A C}+\overrightarrow{C D} \\
& =\mathbf{a}+\mathbf{b}+\mathbf{b} \\
& =\mathbf{a}+\mathbf{2 b} \\
& \overrightarrow{\mathrm{OD}}=3\left(\frac{1}{3} \mathbf{a}+\frac{2}{3} \mathbf{b}\right) \\
& \overrightarrow{\mathrm{OD}}=3 \overrightarrow{\mathrm{ON}}
\end{aligned}
$$

\] \& | $\frac{1}{3} \mathbf{a}+\frac{2}{3} \mathbf{b}$ |
| :--- |
| Proof | \& 3

3 \& | M 1 for correct vector equation involving $\overrightarrow{\mathrm{ON}}$, eg. $\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AN}}$, may be written, partially or fully, in terms of a and \mathbf{b}, e.g. $(\overrightarrow{\mathrm{ON}}=)$ $\mathbf{a}+\frac{2}{3} \overrightarrow{\mathrm{AB}}$ |
| :--- |
| M1 for showing answer requires $\overrightarrow{\mathrm{AN}}=\frac{2}{3} \overrightarrow{\mathrm{AB}}$ or $\overrightarrow{\mathrm{BN}}=\frac{1}{3} \overrightarrow{\mathrm{BA}}$ A1 $\frac{1}{3} \mathbf{a}+\frac{2}{3} \mathbf{b}$ oe |
| M1 for a correct vector statement for $\overrightarrow{\mathrm{OD}}$ or $\overrightarrow{\mathrm{ND}}$ in terms of \mathbf{a} and b, e.g. $\overrightarrow{O D}=\mathbf{a}+\mathbf{b}+\mathbf{b}$ oe or $\overrightarrow{\mathrm{ND}}=\frac{2}{3}(-\mathbf{b}+\mathbf{a})+\mathbf{b}+\mathbf{b}$ oe |
| A1 for correct and fully simplified vectors for $\overrightarrow{\mathrm{ON}}$ (may be seen in (a)) and for $\overrightarrow{\mathrm{OD}}(=\mathbf{a}+2 \mathbf{b})$ or $\overrightarrow{\mathrm{ND}}\left(=\frac{2}{3} \mathbf{a}+\frac{4}{3} \mathbf{b}\right)$ |
| C 1 (dep on A1) for statement that $\overrightarrow{O D}$ or $\overrightarrow{\mathrm{ND}}$ is a multiple of $\overrightarrow{O N}$ (+ common point) |

\hline
\end{tabular}

Question		Working	Answer	Mark	Notes
214		$\begin{aligned} & (4,0)(3,0)(3,-1)(2,-1) \\ & (2,2)(4,2) \end{aligned}$	Correct position	2	B2 for correct shape in correct position (B1 for any incorrect translation of correct shape)
	(b)		$\begin{gathered} \text { Rotation } \\ 180^{\circ} \\ (0,1) \end{gathered}$	3	B1 for rotation B1 for 180° (ignore direction) B1 for $(0,1)$ OR B1 for enlargement B1 for scale factor -1 B1 for $(0,1)$ (NB: a combination of transformations gets B0)

T EXPERT

Question		Working	Answer	Mark	Notes
215			1.5	4	M1 for correct expression for perimeter eg. $4+3 x+x+6+4+3 x+x+6$ oe M1 for forming a correct equation eg. $4+3 x+x+6+4+3 x+x+6=32$ oe M1 for $8 x=12$ or $12 \div 8$ A1 for 1.5 oe OR M1 for correct expression for semi-perimeter eg. $4+3 x+x+6$ oe M1 for forming a correct equation eg. $4+3 x+x+6=16$ oe M1 for $4 x=6$ or $6 \div 4$ A1 for 1.5 oe

「 EXPERT
 TUITION

Question		Working	Answer	Mark	Notes
W			$5 x^{2}$	4	M1 for $4 x \times 4 x$ M1 for $(2 x \times 4 x) / 2$ or $(2 x \times x) / 2 \operatorname{or}(3 x \times 4 x) / 2$ M1 (dep M2) for " $16 x^{2 "}-" 4 x^{2 "}-" x^{2 "}-" 6 x^{2 "}$ A1 for $5 x^{2}$ OR M1 for $\sqrt{(2 \mathrm{x})^{2}+(4 \mathrm{x})^{2}}\left(=\sqrt{20 x^{2}}=\sqrt{20} x\right)$ M1 for $\sqrt{(x)^{2}+(2 x)^{2}}\left(=\sqrt{5 x^{2}}=\sqrt{5} x\right)$ M1 (dep M2) for $\frac{" \sqrt{5} x^{\prime \prime} \times " \sqrt{20} x "}{2}\left(=\frac{\sqrt{100}}{2} x^{2}\right)$ A1 for $5 x^{2}$
W	(a (b)		$\begin{gathered} \mathbf{a}-\mathbf{b} \\ \frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{b} \end{gathered}$	3	B1 for $\mathbf{a}-\mathbf{b}$ oe M1 for a correct vector statement for $\overrightarrow{N R}$ eg. $(\overrightarrow{N R}=) \overrightarrow{\mathrm{NQ}}+\overrightarrow{\mathrm{QR}}$ or $(\overrightarrow{N R}=) \overrightarrow{\mathrm{NS}}+\overrightarrow{\mathrm{SR}}$ M1 for $\frac{2}{5} S Q(+Q R)$ or $\frac{3}{5} Q S(+S R)$ ($S Q, Q R, Q S, S R$ may be written in terms of a and b) $\text { A } 1 \text { for } \frac{2}{5}(\mathbf{a}-\mathbf{b})+\mathbf{b} \text { oe or } \frac{3}{5}(\mathbf{b}-\mathbf{a})+\mathbf{a} \text { oe }$

$\Gamma \underset{\text { EXPERT }}{\text { EXITION }}$

Question		Working	Answer	Mark	Notes
*			$x=109$	4	B1 for angle $A E D=38$ or $A E F=142$ M1 for a complete method to find one of the base angles of the isosceles triangle C2 (dep M1) for $x=109$ with complete reasons (C1 (dep M1) for one reason correctly used and stated)

Question		Working	Answer	Mark	Notes
W			54	3	M1 for $180-360 \div 5$ or 108 seen as the interior angle of a pentagon M1 (dep on previous M1) for $360-2 \times$ ' 108 ' -90 A1 for 54 cao OR M1 for $180 \times(5-2)(=540) \div 5$ or 108 given as the interior angle of a pentagon M1 (dep on previous M1) for $360-2 \times$ ' 108 ' -90 A1 for 54 cao

T EXPERT

	Working	Answer	Mark	Notes
D]	$\begin{aligned} & \mathbf{Q} \text { at }(-3,1),(-6,1) \\ & (-5,3)(-3,3) \\ & \mathbf{R} \text { at }(-3,-1),(-6,-1), \\ & (-5,-3)(-3,-3) \end{aligned}$	Rotation 180° about ($-1,0$)	3	M1 for showing \mathbf{R} correctly on the grid without showing \mathbf{Q} or for showing \mathbf{Q} and \mathbf{R} correctly on the grid A1 for rotation of 180° A1 for (centre) $(-1,0)$ Or M1 for showing \mathbf{R} correctly on the grid without showing \mathbf{Q} or for showing \mathbf{Q} and \mathbf{R} correctly on the grid A1 for Enlargement Scale Factor -1 A1 for centre $(-1,0)$ NB Award no marks for any correct answer from an incorrect diagram or any Accuracy marks if more than one transformation is given
प】		68	3	M1 for angle $O B C=90^{\circ}$ or angle $O A C=90^{\circ}$ (may be marked on the diagram or used in subsequent working) M1 for correct method to find angle $B O C$ or $A O C$ or $A O B$ e.g. angle $B O C=180-90-34(=56)$ or angle $A O C=180-90-34(=56)$ or angle $A O B=180-2 \times 34(=112)$ A1 cao NB (68 must be clearly stated as an answer and not just seen on diagram)
Ш1]	Vertices at $\begin{aligned} & (-2,-4),(-4,-4), \\ & (-4,-6),(-2,-5) \end{aligned}$	Correct diagram	3	M1 for a similar shape in the correct orientation in the third quadrant M1 for an image in the correct orientation of the correct size A1 cao

221.

223.

ᄃ $\stackrel{\substack{\text { EXPERT } \\ \text { TUIIION }}}{ }$

Question		Working	Answer	Mark	Notes
W			75π	3	M1 for $\left(4 \times \pi \times 5^{2}\right) \div 2$ oe M1 for $\pi \times 5^{2}$ oe A1 for 75π accept 235.5 Condone the use of $\pi=3.14 \ldots$
W	(a (b)		$6 \mathrm{~b}-3 \mathbf{a}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { B1 for } 6 \mathbf{b}-3 \mathbf{a} \text { oe } \\ & \text { M1 for } \overrightarrow{A X}=\frac{1}{3} \overrightarrow{A B} \text { or } \frac{1}{3}{ }^{\prime}(6 \mathbf{b}-3 \mathbf{a}) \text { ' or ft to } \mathbf{2 b}-\mathrm{a} \\ & \text { M1 for } \overrightarrow{O Y}=\overrightarrow{O B}+B Y=6 \mathbf{b}+5 \mathbf{a}-\mathbf{b}(=5 \mathbf{b}+5 \mathbf{a}) \text { oe } \\ & \text { M1 for } \overrightarrow{O X}=3 \mathbf{a}+{ }^{\prime} 2 \mathbf{b}-\mathbf{a},=2 \mathbf{a}+2 \mathbf{b} \text { oe } \\ & \text { Or } \longrightarrow \\ & O X=6 \mathbf{b}-\frac{2}{3} ‘(6 \mathbf{b}-3 \mathbf{a})^{\prime}(=2 \mathbf{a}+2 \mathbf{b}) \text { oe } \\ & \text { C1 for } \frac{2}{5} \overrightarrow{O Y}=\frac{2}{5} \times 5(\mathbf{a}+\mathbf{b})=2(\mathbf{a}+\mathbf{b})=\overrightarrow{O X} \end{aligned}$

$\Gamma \underset{\text { EXPERT }}{\text { EUITION }}$

Qu	Working	Answer	Mark	Notes
D		$\begin{aligned} & \text { Enlargement, } \\ & \text { scale factor } 2.5, \\ & \text { centre }(0,0) \end{aligned}$	3	B1 for enlargement B1 for scale factor 2.5 oe B1 for $(0,0)$; accept origin or O NB: if two different transformations are stated then 0 marks.
Ш1]	$\begin{aligned} & \frac{9}{2} \times(12+18)=135 \\ & 135 \div 20=6.75(=7 \\ & \text { bags }) \\ & 7 \times 4.99 \\ & \text { OR } \\ & 18 \times 9-\frac{1}{2}(6 \times 9)=135 \\ & 135 \div 20=6.75(=7 \\ & \text { bags }) \\ & 7 \times 4.99 \end{aligned}$	34.93	4	M1 for $\frac{9}{2} \times(12+18)$ or $18 \times 9-\frac{1}{2}(6 \times 9)$ or $9 \times 12+\frac{1}{2} \times(18-12) \times 9$ or 135 seen M1 (dep) for ' 135 ' $\div 20$ or 6 or 7 seen M1 (dep on previous M1) for ' 6 ' $\times 4.99$ or ' 7 ' $\times 4.99$ A1 cao [SC: M1 for $(12 \times 9+6 \times 9) \div 20(=162 \div 20)$ or 8 or 9 seen M1 (dep) for ' 8 ' $\times 4.99$ or ' 9 ' $\times 4.99$ OR M1 for $(18 \times 9-6 \times 9) \div 20(=108 \div 20)$ or 5 or 6 seen M1 (dep) for ' 5 ' $\times 4.99$ or ' 6 ' $\times 4.99$]
\square		380	3	M1 fo $4 \times 7+5 \times 2(=38)$ or $9 \times 2+5 \times 4(=38)$ or $4 \times 7 \times 10$ or $(7 \times 9-5 \times 5)$ or $5 \times 2 \times 10(=100)$ or $9 \times 2 \times 10(=180)$ or $5 \times 4 \times 10(=200)$ or $9 \times 7 \times 10(=630)$ or $5 \times 5 \times 10(=250)$ M1 (dep) or ' 38 ' $\times 10$ or 380 or $4 \times 7 \times 10+5 \times 2 \times 10$ or $9 \times 2 \times 10+5 \times 4 \times 10$ or $\times 10$ A1 ca
\square		$36-9 \pi$	3	M1 fo $\pi \times 6 \times 6$ or 36π seen value 113.03-113.2 M1 for $\left.12 \times 12-{ }^{\prime} \pi \times 6 \times 6^{\prime}\right) \div 4$ or value 7.7-7.8 A1 for $36-9 \pi$ oe OR M1 fo $\pi \times 6 \times 6 \div 4$ or 9π seen or value 28.2-28.3 M1 fo $6 \times 6-$ ' $\pi \times 6 \times 6 \div 4$ ' or value 7.7-7.8 A1 for $36-\boxed{\pi}$ oe NB: for M marks π may be given numerically.

Question		Working	Answer	Mark	Notes
W			230	2	M1 for $180+50$ A1 cao OR M1 for $360-(180-50)$ or $360-130$ A1 cao OR M1 for $50+(90-50)+90+50$ or $50+40+90+50$ A1 cao OR M1 for a suitable diagram (sketch) with bearing of lighthouse from ship indicated and 50° marked at lighthouse; diagram only intended to indicate position of 50°; ignore other labels and markings unless they create ambiguity. A1 cao
T]			84	4	M1 for $x-1+3 x+1+3 x(=56)$ or $7 x=56+1-1$ or $\frac{3 x(x-1)}{2}$ oe M1 for $7 x=56$ or 8 seen M1 for $0.5 \times\left({ }^{\prime} 8^{\prime}-1\right) \times\left(3 \times{ }^{\prime} 8^{\prime}\right)$ A1 cao Ignore any statement of units. SC B2 for 8 as the answer or 7 identified as the height and 24 identified as the base of the triangle.

T EXPERT
 TUITION

Question		Working	Answer	Mark	Notes
\square			12	4	B1 for 60 seen M1 for $(360-60) \div 2(=150)$ M1 for $360 \div(180-150)$ or $150 \times n=180(n-2)$ oe A1 cao OR B1 for 60 seen M1 for $60 \div 2(=30)$ M1 for $360 \div(60 \div 2)$ A1 cao OR M2 for 30 seen M1 for $360 \div 30$ A1 cao

「 EXPERT

Question		Working	Answer	Mark	Notes
\square	(a)		$\mathbf{a}-3 \mathrm{~b}$	1	B1 for $\mathbf{a}-3 \mathbf{b}$ oe
	(b)			4	M1 for ($\mathbf{N C =}$) $2 \mathbf{a}-2 \mathbf{b}$ oe
					$\text { M1 for }(\mathbf{N M}=) \mathbf{b}+\frac{1}{2} "(\mathbf{a}-3 \mathbf{b}) "$
					A1 for $\frac{1}{2}(\mathbf{a}-\mathbf{b})$ oe and $2 \mathbf{a}-2 \mathbf{b}$ oe C 1 for $\mathbf{N C}$ is a multiple of $\mathbf{N M}$ (+ common point)
					OR
					M1 for (NC=) $2 \mathbf{a}-2 \mathbf{b}$ oe
					$\text { M1 for }(\mathbf{M C}=) \frac{1}{2} "(\mathbf{a}-3 \mathbf{b}) "+\mathbf{a}$
					A1 for $\frac{3}{2}(\mathbf{a}-\mathbf{b})$ oe and $2 \mathbf{a}-2 \mathbf{b}$ oe C1 for $\mathbf{N C}$ is a multiple of $\mathbf{M C}$ (+ common point)
					OR
					$\text { M1 for }(\mathbf{N M}=) \mathbf{b}+\frac{1}{2} "(\mathbf{a}-3 \mathbf{b}) "$
					$\text { M1 for }(\mathbf{M C}=) \frac{1}{2} "(\mathbf{a}-3 \mathbf{b}) "+\mathbf{a}$
					A1 for $\frac{1}{2}(\mathbf{a}-\mathbf{b})$ oe and $\frac{3}{2}(\mathbf{a}-\mathbf{b})$ oe
					C1 for $\mathbf{N M}$ is a multiple to MC (+ common point)

Г EXPERT
 TUITION

Qu		Working	Answer	Mark	Notes
D]	(a)	$\begin{aligned} & 360 \div 60=6 \\ & 300 \div 60=5 \\ & 6 \times 5= \end{aligned}$	Yes and 30	3	M1 for dividing side of patio by side of paving slab eg. $360 \div 60$ or $300 \div 60$ or $3.6 \div 0.6$ or $3 \div 0.6$ or 6 and 5 seen (may be on a diagram) or 6 divisions seen on length of diagram or 5 divisions seen on width of diagram M1 for correct method to find number of paving slabs eg. $(360 \div 60) \times(300 \div 60)$ oe or 6×5 or 30 squares seen on diagram (units may not be consistent) A1 for Yes and 30 (or 2 extra) with correct calculations OR M1 for correct method to find area of patio or paving slab eg 360×300 or 108000 seen or 60×60 or 3600 seen or 3.6×3 or 10.8 seen or 0.6×0.6 or 0.36 seen M1 for dividing area of patio by area of a paving slab eg. $(3.6 \times 3) \div(0.6 \times 0.6)$ oe (units may not be consistent) A1 for Yes and 30 (or 2 extra) with correct calculations OR M1 for method to find area of patio or area of 32 slabs eg. $60 \times 60 \times 32$ or 360×300 M1 for method to find both area of patio and area of 32 slabs eg. $60 \times 60 \times 32$ and 360×300 (units may not be consistent) A1 for Yes and 115200 and 108000 OR Yes and 11.52 and 10.8 NB : Throughout the question, candidates could be working in metres or centimetres

Question		Working	Answer	Mark	Notes
Ш1	(b)	$\begin{array}{r} 1726 \\ \underline{25890} \\ \hline 27616 \end{array}$ 800 60 3 30 24000 1800 90 2 1600 120 6$\begin{aligned} & 24000+1800+90+1600+120+6= \\ & 27616 \end{aligned}$	276.16	3	M1 for complete correct method with relative place value correct. Condone 1 multiplication error, addition not necessary. OR M1 for a complete grid. Condone 1 multiplication error, addition not necessary. OR M1 for sight of a complete partitioning method, condone 1 multiplication error. Final addition not necessary. A1 for digits 27616 A1 ft (dep on M1) for correct placement of decimal point after addition (of appropriate values) (SC: B1 for attempting to add 32 lots of 8.63)

「 EXPERT

Question		Working	Answer	Mark	Notes
W			Rotation 180° Centre (3, 3) or Enlargement Scale factor -1 Centre (3, 3)	3	B1 for rotation B1 for 180° B1 for $(3,3)$ OR B1 for enlargement B1 for scale factor -1 B1 for $(3,3)$ B0 for a combination of transformations

Γ EXPERT

「 EXPERT

「 EXPERT

Question		Working	Answer	Mark	Notes
W]		$\begin{aligned} & 180-(360 \div 6)=120 \\ & 180-(360 \div 8)=135 \\ & 360-120-135= \\ & \text { OR } \\ & 360 \div 6=60 \\ & 360 \div 8=45 \\ & 60+45= \end{aligned}$	105	4	NB. Do remember to look at the diagram when marking this question. Looking at the complete method should confirm if interior or exterior angles are being calculated M1 for a correct method to work out the interior angle of a regular hexagon eg. $180-(360 \div 6)$ oe or $(6-2) \times 180 \div 6$ oe or 120 as interior angle of the hexagon M1 for a correct method to work out the interior angle of a regular octagon $180-(360 \div 8)$ oe or $(8-2) \times 180 \div 8$ oe or 135 as interior angle of the octagon M1 (dep on at least M1) for a complete method eg. $360-" 120 "$ - " 135 " A1 cao OR M1 for a correct method to work out an exterior angle of a regular hexagon eg. $360 \div 6$ or 60 as exterior angle of the hexagon M1 for a correct method to work out an exterior angle of a regular hexagon $360 \div 8$ or 45 as exterior angle of the octagon M1 (dep on at least M1) for a complete method eg. " $60 "+" 45$ " A1 cao SC: B1 for answer of 255

Question		Working	Answer	Mark	Notes
W	(a) (b) (c)		35110Position of B marked	1	B1 for $34-36$ B1 for 108-112 B1 for a point marked on a bearing of $40^{\circ}\left(\pm 2^{\circ}\right)$ from H or for a line on a bearing of $40^{\circ}\left(\pm 2^{\circ}\right)$ (use straight line guidelines on overlay) B1 for a point $4 \mathrm{~cm}(\pm 0.2 \mathrm{~cm})$ from H or for a line of length $4 \mathrm{~cm}(\pm 0.2 \mathrm{~cm})$ from H (use circular guidelines on overlay) NB. No label needed for point
[$\begin{aligned} & \frac{1}{2} \times 4 \times 3=6 \\ & \left(\frac{1}{2}\right)^{2} \times 6= \end{aligned}$	1.5	3	M1 for $\frac{1}{2} \times 4 \times 3$ oe M1 for $\left(\frac{1}{2}\right)^{2} \times " 6 "$ A1 cao OR M2 for $\frac{1}{2} \times 2 \times 1.5 \mathrm{oe}$ (M1 for triangle with all lengths $\frac{1}{2}$ corresponding lengths of triangle $A B C$ seen in any position or vertices seen at $(1,1)(3,1)$ and $(2.5,2.5)$ or stated) A1 cao

Г EXPERT
 TUITION

Question		Working	Answer	Mark	Notes
2■1*		$A B O=A D O=90^{\circ}$ (Angle between tangent and radius is 90 ${ }^{\circ}$) $D O B=360-90-90-50$ (Angles in a quadrilateral add up to 360 ${ }^{\circ}$) $B C D=130 \div 2$ (Angle at centre is twice angle at circumference) OR $A B D=(180-50) \div 2$ (Base angles of an isosceles triangle) $B C D=65$ (Alternate segment theorem)	65°	4	B1 for $A B O=90$ or $A D O=90$ (may be on diagram) B 1 for $B C D=65$ (may be on diagram) $C 2$ for $B C D=65^{\circ}$ stated or $D C B=65^{\circ}$ stated or angle $C=65^{\circ}$ stated with all reasons: angle between tangent and radius is 90°; angles in a quadrilateral sum to 360°; angle at centre is twice angle at circumference (accept angle at circumference is half (or $\frac{1}{2}$) the angle at the centre) (C1 for one correct and appropriate circle theorem reason) QWC: Working clearly laid out and reasons given using correct language OR B 1 for $A B D=65$ or $A D B=65$ (may be on diagram) B 1 for $B C D=65$ (may be on diagram) $C 2$ for $B C D=65^{\circ}$ stated or $D C B=65^{\circ}$ stated or angle $C=65^{\circ}$ stated with all reasons: base angles of an isosceles triangle are equal; angles in a triangle sum to 180°; tangents from an external point are equal; alternate segment theorem (C1 for one correct and appropriate circle theorem reason) QWC: Working clearly laid out and reasons given using correct language

	Working	Answer	Mark	Notes
W	$\begin{aligned} \begin{aligned} \text { Vol cylinder } & =\pi \times(2 x)^{2} \times 9 x \\ & =36 \pi x^{3} \end{aligned} \\ 36 \pi x^{3}=\frac{4}{3} \pi r^{3} \\ r^{3}=27 x^{3} \end{aligned}$	$3 x$	3	M1 for sub. into $\pi r^{2} \mathrm{~h}$ eg. $\pi \times(2 x)^{2} \times 9 x$ oe M1 for $\pi \times(2 x)^{2} \times 9 x=\frac{4}{3} \pi r^{3}$ oe A1 oe eg. $\sqrt[3]{\frac{36 x^{3}}{\frac{4}{3}}}$ NB : For both method marks condone missing brackets around the $2 x$

$\tau \underset{\text { EXPERT }}{\text { EUITION }}$

Question		Working	Answer	Mark	Additional Guidance
FE					

T EXPERT

Question		Working	Answer	Mark	Additional Guidance
245		Let $A B=x, A D=y$ Area of rectangle $=x y$ Area $A X D=\frac{x y}{4}$ Area $C Y Z=\frac{x y}{8}$ Shaded area $=\frac{5 x y}{8}$	$\frac{5}{8}$	4	M1 a full method to find the unshaded area and subtracting from 1 B1 area of $A X D=$ area of $A B C D \div 4$ B1 area of $C Y Z=$ area of $A B C D \div 8$ A1 cao OR Diagram M1 for dividing left into 2 congruent triangles for dividing right into 4 congruent triangles B1 left $=2 A$ and $2 A$ or shaded $=\frac{1}{2}$ of $\frac{1}{2}=\frac{1}{4}=\frac{2}{8}$ B1 right $=2 A$ and A and A or shaded $=\frac{3}{4}$ of $\frac{1}{2}=\frac{3}{8}$ A1 cao Substitution M1 for deciding upon suitable side lengths for $A D$ and $A B$ and calculating dimensions of internal shapes B1 for area of $D Z X$ B1 for area of $Z X B Y$ A1 cao OR M1 for deciding upon suitable side lengths for $A D$ and $A B$ and calculating dimensions of internal shapes B1 for area $A D X$ B1 for area $Z C Y$ A1 cao

Question		Working	Answer 12a-4b		Additional Guidance
246	(a) (i) (ii)	$\begin{aligned} & \overrightarrow{B C}=\overrightarrow{C O}+\overrightarrow{O B} \\ & \overrightarrow{A Q}=\overrightarrow{A O}+\overrightarrow{O B}+\overrightarrow{B Q} \\ & =-4 \mathbf{a}+4 \mathbf{b}+\frac{1}{4}(12 \mathbf{a}-4 \mathbf{b}) \end{aligned}$	$12 a-4 b$ $3 b-a$	4	$\begin{aligned} & \mathrm{M} 1 \overrightarrow{B C}=\overrightarrow{C O}+\overrightarrow{O B} \\ & \text { A1 cao } \\ & \mathrm{M} 1-4 \mathbf{a}+4 \mathbf{b}+\frac{1}{4} \\ & \text { '(12a-4b)' } \\ & \text { A1 cao } \end{aligned}$
	(b)	$\begin{aligned} & \overrightarrow{O X}=12 \mathrm{~b}, \overrightarrow{A X}=4 \mathrm{a}+12 \mathrm{~b} \\ & =4(-\mathrm{a}+3 \mathrm{~b}) \end{aligned}$	Correct reason, with correct working	3	B1 $\overrightarrow{O X}=12 \mathrm{~b}$ B1 $\overrightarrow{A X}=-4 \mathrm{a}+12 \mathrm{~b}$ C1 convincing explanation

Question	Working	Answer	Mark	Notes
*口1		$\begin{gathered} x=30^{\circ} \text { with } \\ \text { complete } \\ \text { reasons } \end{gathered}$	4	M1 for a correct first step, eg angle $G E D=55$ or angle $G A D=55$ or angle $E G A=180-55(=125)$ A1 for 30 C2 for 30 with full reasons, appropriate to their given method eg alternate angles are equal and corresponding angles are equal and angles on a straight line add up to $\underline{180}$ eg corresponding angles are equal and angles in a triangle add up to $\underline{180}$ and alternate angles are equal (C1 (dep on at least M1) for one appropriate reason relating to parallel lines or opposite angles of a parallelogram)
\square		$\begin{gathered} \text { Correct } \\ \text { position of } C \end{gathered}$	3	M1 for line drawn or point marked on a bearing of 130° from A M1 for line drawn or point marked on a bearing of 245° from B A1 for correct position of C
*口		No (supported)	5	M1 for $\pi \times 9 \div 2(=14.137 \ldots)$ or $\pi \times 5 \div 2(=7.85 \ldots)$ or for $\pi \times 9(=28.27 \ldots)$ or $\pi \times 5$ (=15.7...) M1 for complete method to work out perimeter eg $2+2+(\pi \times 9 \div 2)+$ $(\pi \times 5 \div 2)(=25.99 \ldots)$ M1 (dep M1) for method to find number of rolls required for their perimeter, eg "their total perimeter" $\div 2.4$ eg $25.99 . . \div 2.4(=10.8)$, "47.97.." $\div 2.4(=19.9)$ or "43.47.." $\div 2.4(=18.3)$ M1 for method to work out cost eg $3 \times 10+2 \times 3.99(=37.98)$ or $11 \times 3.99(=43.89)$, $20 \rightarrow 67.98,19 \rightarrow 63.00$ or for method to find how many rolls can be bought for £35 (=10) C1 for a conclusion supported by fully correct answers eg 37.98 (for comparing with 35) e.g 10.8 and 10 OR M1 for $\pi \times 9 \div 2(=14.137 \ldots)$ or $\pi \times 5 \div 2(=7.85 \ldots)$ or for $\pi \times 9(=28.27 \ldots)$ or $\pi \times 5$ ($=15.7 \ldots$) M1 for complete method to work out perimeter eg $2+2+(\pi \times 9 \div 2)+$ $(\pi \times 5 \div 2)(=25.99 \ldots)$ M1 for a method to find how many rolls can be bought for $£ 35$ (=10) M1 for a method to work out the coverage of 10 rolls e.g. $10 \times 2.4(=24)$ C1 for a conclusion supported by fully correct answers eg $25.9(\ldots)$ and 24

Question	Working	Answer	Mark	Notes

Question	Working	Answer	Mark	Notes
[3		26	3	M1 for $(360-90) \div 2(=135)$ M1 for $4 x+31=" 135 "$ or $6 x-21=" 135$ " A1 cao OR M1 for forming an appropriate equation eg $4 x+31=6 x-21$ or $6 x-21+4 x+31+90=360$ oe M1 (dep) for isolating terms in x and number terms A1 cao
W		180	3	M1 for a correct start to the process, eg $300 \div 5(=60)$ or $300 \div(5 \times 1.5)(=40)$ or $8 \div 5(=1.6)$ or $5 \div 8(=0.625)$ M1 for a complete method that will lead to the number of bricks needed to build the wall $(=480)$ or for a complete method that will lead to the number of extra bricks needed to build the wall, eg $300 \div 5 \times 3$ A1 cao
W		6.56	4	```M1 for \(200^{2}+60^{2}(=43600)\) M1 for \(\sqrt{40000+3600}\) or \(\sqrt{43600}(=208.8 \ldots)\) M1 for a complete method eg (" 208.8 " \(+2 \times 200+2 \times 60) \div 100 \times 0.9\) oe A1 for \(6.55-6.561\)```
-	$\pi \times 6^{2}-2 \times 6 \times 6$	41.1	4	M1 for correct method to work out the area of the circle or quarter circle or semi-circle eg $\pi \times 6^{2}(=113(.09 .).) ; \pi \times 6^{2} \div 2=56.5(4 ..) ; \pi \times 6^{2} \div 4=$ 28.2(7...)) M1 for method to work out the area of the square (=72) oe or a triangle eg $1 / 2 \times 6 \times 6(=18)$ M1 for complete method to find shaded area. A1 for value in the range 41.04-41.112

Question	Working	Answer	Mark	Notes
Ш1]		126	3	M1 for $180-(360 \div 5)(=108)$ or $(5-2) \times 180 \div 5(=108)$ M1 for a complete method eg $\frac{360-\text { "108" }}{2}$ or $180-\frac{\text { " } 108 \text { " }}{2}$ A1 cao
Ш1]		28.9	5	M1 for $\sin 62=\frac{B D}{15}$ or $\frac{B D}{\sin 62}=\frac{15}{\sin 90}$ oe M1 for $(B D=) 15 \times \sin 62$ or $\frac{15}{\sin 90} \times \sin 62$ oe $(=13.24 \ldots)$ M1 for $\tan B C D=\frac{" 13.24 "}{24}$ oe or $\tan B D C=\frac{24}{" 13.24 "}$ with $B D C$ clearly identified M1 for $B C D=\tan ^{-1} \frac{" 13.24 "}{24}$ oe or $B D C=\tan ^{-1} \frac{24}{" 13.24 "}$ with $B D C$ clearly identified A1 for $28.8-28.9$ OR M1 for $\cos (90-62)=\frac{B D}{15}$ M1 for $(B D=) 15 \times \cos (90-62)(=13.24 \ldots)$ M 1 for $\tan B C D=\frac{" 13.24 "}{24}$ oe or $\tan B D C=\frac{24}{" 13.24 "}$ with $B D C$ clearly identified M1 for $B C D=\tan ^{-1} \frac{13.24 "}{24}$ oe or $B D C=\tan ^{-1} \frac{24}{" 13.24 "}$ with $B D C$ clearly identified A1 for $28.8-28.9$

Question	Working	Answer	Mark	Notes
* ${ }^{\text {d }}$		28°	4	M1 for angle $A B D=62^{\circ}$ M1 for angle $B A D=90^{\circ}$ C 2 for angle $A D B=28^{\circ}$ with full, appropriate reasons given angles in the same segment are equal; angles in a semicircle are 90°; angles in a triangle add up to 180° (C1 (dep on relevant M 1) for one correct and appropriate reason relating to a circle theorem) OR M1 for angle $A O D=62^{\circ} \times 2\left(=124^{\circ}\right)$ M1 for $\left(180^{\circ}-124^{\circ}\right) \div 2$ C 2 for angle $A D B=28^{\circ}$ with full, appropriate reasons given the angle at the centre of a circle is twice the angle at the circumference; base angles of an isosceles triangle are equal; angles in a triangle add up to 180° (C1 (dep on relevant M 1) for one correct and appropriate reason relating to a circle theorem)
* ${ }^{\text {[1] }}$		No with explanation and supportive working	4	M1 for method to find the volume of compost needed to fill one or more baskets eg $\frac{2}{3} \times \pi \times 20^{3}(=16755(.16 \ldots))$ $\text { Or } \frac{4}{3} \times \pi \times 20^{3}(=33510(.32 \ldots))$ M1 for appropriate use of 1 litre $=1000 \mathrm{~cm}^{3}$, eg $4 \times 50 \times 1000(=200000)$ or " 16755 " $\div 1000$ M1 for complete method to find values needed to make decision C 1 for conclusion supported by correct values, eg 200000 and 201061(.92...) (accept 201000 to 201120) or 16666(.66...) and 16755(.16...) or 11.9(36...) NB Calculations can be in litres or cm^{3}

Question	Working	Answer	Mark	Notes
- [Correct conclusion from correct working	4	B1 for $\overrightarrow{A B}=-5 \mathbf{a}+2 \mathbf{b}$ or $\overrightarrow{B A}=5 \mathbf{a}-2 \mathbf{b}$ M1 for a correct vector statement for $\overrightarrow{O T}$ eg $\overrightarrow{O A}+\overrightarrow{A T}$ or $\overrightarrow{O B}+\overrightarrow{B T}$ or $\overrightarrow{O A}+\frac{5}{6} \overrightarrow{A B}$ or $\overrightarrow{O B}+\frac{1}{6} \overrightarrow{B A}$, may be written partially or fully in terms of \mathbf{a} and \mathbf{b} M1 for $5 \mathbf{a}+\frac{5}{6}(-5 \mathbf{a}+2 \mathbf{b})$ oe or $2 \mathbf{b}+\frac{1}{6}(5 \mathbf{a}-2 \mathbf{b})$ oe A1 for $\frac{5}{6}(\mathbf{a}+2 \mathbf{b})$ is parallel to $\mathbf{a}+2 \mathbf{b}$

Question		Working	Answer	Mark	Notes
Ш1			9.25	3	M2 for $x+x+4+x+x+4=45$ oe or $x+x+4=22.5$ oe (M1 for $x+x+4+x+x+4$ oe) A1 for 9.25 or $\frac{37}{4}$ oe OR M1 for $45-8(=37)$ or $22.5-4(=18.5)$ M1 for $(45-8) \div 4$ or $(22.5-4) \div 2$ A1 for 9.25 or $\frac{37}{4}$ oe
\square			$124^{\circ} \text { with }$ reasons	4	M1 for a method to find any angle, eg. angle $D E F=180-70-54(=56)$ or angle $A E B=70$ or angle $E A B=54$ or angle GEB $=180-70(=110)$ A1 for $\mathrm{X}=124$ NB : angles may be just shown on the diagram C 2 for full reasons, appropriate to their given method, with no additional reasons (C1 for one appropriate reason relating to parallel lines) Possible reasons: corresponding angles are equal; alternate angles are equal; co-interior angles (allied) add up to 180 angles on a straight line add up to $\underline{180}$; angles in a triangle add up to $\underline{180}$; vertically opposite angles are equal ; the exterior angle of a triangle is equal to the sum of the interior opposite angles; angles at a point add up to $\underline{360}$;

Question		Working	Answer	Mark	Notes
-			28.9	3	$\begin{aligned} & \text { M2 for } \frac{75}{360} \times 2 \times \pi \times 6 \text { oe }+\frac{75}{360} \times 2 \times \pi \times 10 \text { oe } \\ & (=7.85 \ldots \end{aligned}+\frac{13.08 \ldots \quad=20.94 \ldots)}{} \begin{aligned} & \text { (M1 for } \left.\frac{75}{360} \times 2 \times \pi \times 6 \text { oe or } \frac{75}{360} \times 2 \times \pi \times 10 \text { oe }\right) \end{aligned}$ A1 for 28.9 to 28.95

Question		Working	Answer	Mark	Notes
[1]			40000	2	M1 for 100×100 isolated or $4 \times 100 \times 100$ A1 cao
* ${ }^{\text {[] }}$			No not enough	5	M1 for substituting into Pythagoras' theorem M1 for complete correct use of Pythagoras' theorem M1 for a complete method to find the perimeter of their trapezium A1 51.(20655..) C1 (dep on correct first 2 M marks) for correct conclusion dependent upon supporting calculations
[Correct line drawn	2	M1 for two pairs of relevant arcs drawn A1 correct line drawn (with arcs) SC B1 Correct line no arcs visible
[Rotation about $(2,1)$ through 180°	3	B1 rotation B1 about (2,1) B1 through 180° Or B2 enlargement scale factor -1 B1 about (2,1) Note Award no marks if more than one transformation is given
*ロ	(a) (b)		2.75	4	C1 for a complete reason eg Angles in a semicircle are 90°, alternate segment theorem M1 for $7 \times \sin 35$ M1 for $7 \times \sin 35 \times 2$ M1 (indep) for " $D B$ " $\times \cos 70$ A1 2.74-2.75

Question		Working	Answer	Mark	Notes
D]			31.1	5	M1 for $\frac{1}{2} \times 8.4 \times x \times \sin 40=100$ M1 for $100 \div(0.5 \times 8.4 \times \sin 40) \quad(=37 .(041 \ldots))$ M1 (dep on $1^{\text {st }} \mathrm{M} 1$) for substituting the appropriate figures into the cosine rule eg $8.4^{2}+{ }^{\prime} 37.041^{\prime 2}-2 \times 8.4 \times{ }^{\prime} 37.041{ }^{\prime} \cos 40^{\circ}$ M1 (dep on previous M1) for correct order of evaluation or ($c^{2}=$) 965.(897...) A1 31.07-31.1

Qu	Working	Answer	Mark	Notes
\square		Enlargement	2	B2 for fully correct triangle (B1 for 2 vertices correct or enlargement scale factor 2 in the wrong position or enlargement, centre A, with a different scale factor)
*口1		No supported by working	4	M1 for $\pi \times 7$ (=21.9 to 22$)$ or $\pi \times 7 \times 2.54=(55.5$ to 56$)$ M1 (dep) for a complete method that could lead to two figures that are comparable eg $\pi \times 7 \times 2.54 ; \pi \times 7$ and $50 \div 2.54$ A1 for correct comparable figures eg 55.5 to 56 (cm); 21.9 to 22 (in) and 19.6 to 19.7 (in) C1 (dep M2) for a correct conclusion based on their comparable figures OR M1 for eg $50 \div \pi(=15.9$ to 15.92$)$ or $50 \div 2.54 \pi(=6.26$ to 6.27$)$ M1 (dep) for a complete method that could lead to two figures that are comparable eg $(50 \div \pi) \div 2.54 ; 50 \div \pi$ and 7×2.54 A1 for correct comparable figures eg 6.26 to 6.27 (in); 15.9 to $15.92(\mathrm{~cm})$ and 17.7 to $17.8(\mathrm{~cm})$ C1 (dep M2) for a correct conclusion based on their comparable figures
\square		245	2	M1 for method to identify the angle required, including on a diagram A1 cao
\square	$\begin{aligned} & \mathrm{BC}=\frac{12}{\tan 60}=6.92(8 \ldots) \\ & \mathrm{DE}=6.92(\ldots) \times \tan 30=4 \\ & \mathrm{CE}=12+4 \end{aligned}$ $\begin{aligned} & \mathrm{AC}=\frac{12}{\sin 60}=13.8(5 \ldots) \\ & \mathrm{CE}=\frac{13.8(5 \ldots)}{\cos 30} \end{aligned}$	16 with supporting working	4	M1 for a method to find BC or AC or AD B 1 for angle $\mathrm{EAD}=30^{\circ}$ or $\mathrm{AED}=60^{\circ}$ or $\mathrm{ACD}=30^{\circ}$ or $\mathrm{CAD}=60^{\circ}$ M1 for a method to find CE A1 for 15.9-16.1 with supporting working

Que	Working	Answer	Mark	Notes
Ш1		22.5	3	M1 for $\frac{1}{2} \times 7 \times 5 \times \sin 40$ or $\frac{1}{2} \times 7 \times 5 \times \sin (180-40)$ M1 (dep M1) for doubling the area of the triangle A1 for 22.4-22.5 OR M1 for complete method to find height of parallelogram, eg $5 \sin 40^{\circ}$ M1 (dep M1) for complete method to find the area of the parallelogram, eg $7 \times 5 \sin 40^{\circ}$ A1 for 22.4-22.5
प प	$\begin{aligned} & \overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B} \\ &=\mathbf{a}+\mathbf{b} \\ & \overrightarrow{A C}=\frac{7}{2} \overrightarrow{A B} \\ & \overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C} \\ &=2 \mathbf{a}+\mathbf{b}+\frac{7}{2}(\mathbf{a}+\mathbf{b}) \end{aligned}$	$\frac{11}{2} \mathbf{a}+\frac{9}{2} \mathbf{b}$	4	M 1 for $\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}(=-(2 \mathbf{a}+\mathbf{b})+(3 \boldsymbol{a}+2 \boldsymbol{b}))$ or $\mathbf{a}+\mathbf{b}$ M1 for $\overrightarrow{A C}=\frac{7}{2} \overrightarrow{A B}$ or $\overrightarrow{B C}=\frac{5}{2} \overrightarrow{A B}$, may be in terms of \mathbf{a} and \mathbf{b} M1 (dep M2) for complete method to find $\overrightarrow{O C}$ in terms of \mathbf{a} and \mathbf{b} A1 for $\frac{11}{2} \mathbf{a}+\frac{9}{2} \mathbf{b}$ or equivalent simplest form (SCB2 for $\frac{11}{2} \mathbf{a}+\frac{23}{2} \mathbf{b}$ or $\frac{11}{2} \mathbf{a}+\frac{19}{2} \mathbf{b}$)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline D] \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \begin{tabular}{l}
Correct shape \\
Translation by \(\binom{4}{-1}\)
\end{tabular} \& 2 \& \begin{tabular}{l}
B2 cao \\
(B1 for shape in the correct orientation below the line \(y=x\) or for 2 vertices correct) with vertices at \((2,1),(4,1),(4,0),(3,0)\) \\
B1 for translation \\
B1 for \(\binom{4}{-1}\) \\
NB: B0 if more than one transformation given
\end{tabular} \\
\hline *口 \& \& \& No + reason \& 4 \& \begin{tabular}{l}
M1 for intention to find the circumference eg \(140 \times \pi(=439.82 \ldots)\) \\
A1 for circumference \(=439-440\) \\
M1 (dep on M1) for a complete method shown that could arrive at two figures that are comparable eg "C" \(\div 60 \times 12\) (\(=87.96\)..) , \(90 \div 12 \times 60\) (=450) , \(90 \times 60 \div\) "C" \((=12.27)\), "C" \(\div 90 \times 12\) (=58.64..) \\
C1 (dep on both M marks) for No and explanation that shows a correct comparison eg only 84 people could sit around the tables or that 13 tables are needed or that 480 cm is needed.
\end{tabular} \\
\hline \(\square\) \& (a)

(b) \& \& | $\overline{65}$ |
| :--- |
| C | \& 5

1 \& | M1 for splitting up the cross section into separate areas and a method to find the area of one part |
| :--- |
| OR for splitting up the pool into smaller prisms and a method to find the volume of one small prism, e.g. a cuboid |
| M1 (dep) for a complete method to find the area of the cross section [with correct dimensions] OR for a method to find the total volume of more than one correct prism |
| M1 (dep) for a complete method to find the volume of the pool [with correct dimensions] (= 195) |
| M1 for " 195 " $\times 1000 \div 50(=3900)$ oe where " 195 " comes from a volume |
| A1 cao |
| B1 cao |

\hline
\end{tabular}

Qu	Working	Answer	Mark	Notes
D	$\begin{aligned} & \mathrm{AC}^{2}=5^{2}+3^{2} \\ & \mathrm{AC}=\sqrt{25+9}(=5.83) \\ & \frac{5}{5.83}=\frac{\mathrm{DB}}{3} \\ & \mathrm{DB}=\frac{5}{5.83} \times 3(=2.57) \\ & 5+3+5.83+2.57= \\ & \mathrm{OR} \\ & \mathrm{AC}=\sqrt{25+9}(=5.83) \\ & \tan \mathrm{A}=\frac{3}{5} \\ & \mathrm{~A}=30.96 \\ & \sin 30.96=\frac{\mathrm{DB}}{5} \\ & \mathrm{DB}=5 \times \sin 30.96(=2.57) \\ & 5+3+5.83+2.57= \end{aligned}$	16.4	5	M1 for $\left.\left(\mathrm{AC}^{2}\right)=5^{2}+3^{2}=34\right)$ M1 for $\sqrt{25+9}$ or $\sqrt{34}(=5.83)$ M1 for $\frac{5}{{ }^{5.83 '}}=\frac{\mathrm{DB}}{3}$ or $\mathrm{DB} \times \mathrm{AC}=5 \times 3$ M1 for $(D B=) \frac{5}{15.83^{\prime}} \times 3$ A1 for 16.4 to 16.41 OR M1 for $\left(A C^{2}\right)=5^{2}+3^{2} \quad(=34)$ M1 for $\sqrt{25+9}$ or $\sqrt{34}(=5.83)$ M1 for using a correct trig ratio in an attempt to find angle A or angle C, e.g. $\tan A=\frac{3}{5}, \sin A=\frac{3}{{ }^{5} 5.83^{\prime}}, \cos C=\frac{3}{{ }^{\prime} 5.83^{\prime}}$ M1 for using DB in a a correct trig ratio, e.g. $\sin ^{‘} 30.96^{\prime}=\frac{D B}{5}$ A1 for 16.4 to 16.41
\square		35°	4	M1 for $\mathrm{ABC}=90$ M1 for $(A C B=) 180-90-25(=65)$ M1 for $(\mathrm{DBC}=) 180-‘ 65$ ' $-80(=35)$ A1 cao supported by working OR M1 for $(\mathrm{AOB}=) 180-2 \times 25(=130)$ M1 for $(\mathrm{ADB}=) 130 \div 2(=65)$ M1 for $(D A C=) 180-65-80$ A1 cao supported by working.

Question		Working	Answer	Mark	Notes
\square			8.52	5	M1 for $\frac{B D}{\sin 45}=\frac{7.4}{\sin 80}$ oe M1 for $(B D=) \frac{7.4}{\sin 80} \times \sin 45(=5.3133 .$. M1 for $5.8^{2}+{ }^{\prime} 5.31{ }^{\prime}{ }^{2}-2 \times 5.8 \times{ }^{\prime} 5.31$ ' $\cos 100$ M1 (dep) for correct order of evaluation or 72.5(73...) A1 for 8.51-8.52 OR M1 for $\frac{A D}{\sin (180-80-45)}=\frac{7.4}{\sin 80}$ oe M1 for $(A D=) \frac{7.4}{\sin 80} \times \sin (180-80-45)(=6.15 \ldots)$ M1 for $7.4^{2}+\left({ }^{\prime} 6.15{ }^{\prime}+5.8\right)^{2}-2 \times 7.4 \times\left({ }^{\prime} 6.15{ }^{\prime}+5.8\right) \times \cos 45$ M1 (dep) for correct order of evaluation or $72.5(7398 \ldots)$ A1 for 8.51-8.52

Que	Working	Answer	Mark	Notes
[1]		28.3	2	M1 for $\pi \times 9$ or $2 \times \pi \times 4.5$ oe A1 for $28.25-28.3$
[]		Translation $\binom{5}{-3}$	2	B1 for translation B1 for $\binom{5}{-3}$ NB No marks if more than one transformation given.
* ${ }^{\text {W }}$		54 with reasons	3	M1 for angle $R W Y$ or angle TWZ $=180-126(=54)$ or angle $T W R$ or angle $W R S=126$ (may be marked on diagram) A1 for 54 C1 for appropriate reasons for method shown eg. Angles on a straight line add up to $\underline{180}$ and Alternate angles are equal OR Corresponding angles are equal and Angles on a straight line add up to $\underline{180}$ OR Vertically opposite angles are equal and Allied angles / Co-interior angles add up to $\underline{180}$ OR Angles at a point add up to $\underline{360}$ with other reasons as above.
[$5 \frac{2}{3}$	4	M1 for $A B=2 x$ or $D C=2 x+4$ or for $38-4$ M1 (dep) for $x+$ " x " + " $2 x "+" 2 x+4$ " or for " $38-4$ " $\div 6$ M1 for " $6 x+4$ " $=38$ A1 for $5 \frac{2}{3}$ oe NB: Accept answers in the range 5.6 to 5.7 if M3 scored. SC if M0 then B 2 for answer in range 5.6-5.7

		Working	Answer	Mark	Notes
ए1	(a) (b)		7.5 8	2 2	M1 for sight of $\frac{9}{6}(=1.5)$ oe or $\frac{6}{9}(=0.66 .$.$) oe or \frac{5}{6}(=0.83 .$.$) oe or$ $\frac{6}{5}(=1.2)$ oe or a ratio, eg 6:9 oe or decimal, eg 1.5 oe A1 cao M1 for $12 \times \frac{6}{9}$ oe or $12 \div \frac{9}{6}$ oe or $\frac{12}{47.5 "} \times 5$ oe A1 cao
W			302	3	M1 for $\frac{1}{2} \times \frac{4}{3} \times \pi \times 4^{3}$ oe ($=133.9-134.2$) M1 for $\frac{1}{3} \times \pi \times 4^{2} \times 10$ oe ($=167.4-167.7$) A1 for $301-302$ (or 96π or $\frac{288}{3} \pi$)

Question		Working	Answer	Mark	Notes
\square			43.9	5	M1 for $\frac{11}{\sin 100}=\frac{9}{\sin D}$ oe M1 for $\sin D=\frac{9 \sin 100}{11}(=0.80575 \ldots)$ or $D=53.68 \ldots$ M1 for angle $\mathrm{DCA}=180-100-$ "D" (=26.317..) M1 for area of $A B C D=2 \times 1 / 2 \times 11 \times 9 \times \sin$ " 26.317 " A1 for 43.8-43.9 OR M1 for $\frac{11}{\sin 100}=\frac{9}{\sin D}$ oe M1 for $\sin D=\frac{9 \sin 100}{11}(=0.80575 \ldots)$ or $D=53.68 \ldots$ M1 for (height=) $9 \times \sin (180-100-" D$ ") or height $=3.990 \ldots$ M1 for area of $A B C D=(2 \times 1 / 2) \times 11 \times$ "height" A1 for 43.8-43.9 OR M1 for $11^{2}=A D^{2}+9^{2}-2 \times A D \times 9 \times \cos 100$ M1 for $A D=\frac{18 \cos 100+\sqrt{(18 \cos 100)^{2}-4(1)(-40)}}{2(1)}$ M1 for $A D=\frac{18 \cos 100+\sqrt{169.7(69795 \ldots)}}{2(1)} \quad(=4.95195(\ldots))$ M1 for area of $A B C D=2 \times \frac{1}{2} \times " 4.95195 " \times 9 \times \sin 100$ A1 for 43.8-43.9

Question	Working	Answer	Mark	Notes
D]		\square	2	M1 for a 5 cm by 5 cm square or a 5 cm by 3 cm rectangle or a 5 cm by 2 cm rectangle A1 for correct elevation with dividing line NB: diagrams which appear to have a 3D element get 0 marks
D		115	4	M1 for $360-4 \times 25$ (=260) M1 (dep) for '260' $\div 4$ ($=65$) M1 for $180-\quad 65$ ' or $(360-2 \times ' 65$ ') $\div 2$ A1 for 115 with working OR M1 for $360 \div 4(=90)$ M1 (dep) for '90' - 25 (=65) M1 for $180-\quad 65$ ' or $\left(360-2 \times^{\prime} 65 '\right) \div 2$ A1 for 115 with working
\square		440	2	M1 for $140 \times \pi$ oe or 439 A1 for 439.6-440
Ш1]		80.1	3	M1 for $39^{2}+70^{2}$ M1 for $\sqrt{" 1521 "+" 4900 "}$ or $\sqrt{" 6421 "}$ A1 for 80.1-80.2

Question	Working	Answer	Mark	Notes
Ш1		49.5	4	$\text { M1 for } \tan 54=\frac{\text { height }}{6}$
				M1 for (height $=$) $6 \times \tan 54(=8.2-8.3)$ M1 for $\frac{1}{2} \times$ '8.258..' $\times 12$ A1 for 49.2-50
				OR
				M1 for $\cos 54=\frac{6}{A C}$ M1 for $(A C=) \frac{6}{\cos 54}(=10.2(07 \ldots))$
				M1 for $\frac{1}{2} \times 12 \times 10.207 \times \sin 54$ A1 for 49.2-50
				OR
				M1 for $\frac{A C}{\sin 54}=\frac{12}{\sin 72}$ M1 for $(A C=) \frac{12}{\sin 72} \times \sin 54(=10.2(07 \ldots))$
				M1 for $\frac{1}{2} \times 12 \times 10.207 \times \sin 54$ A1 for 49.2 - 50

Question	Working	Answer	Mark	Notes
(a) (b)		'show' 13	2 3	M1 for $\frac{1}{2} \times(x-4+x+5) \times 2$ or $2 \mathrm{x} \times(\mathrm{X}-4)+\frac{1}{2} \times 2 x \times 9$ A1 for completion with correct processes seen M1 for $\frac{-1 \pm \sqrt{1^{2}-4 \times 2 \times-351}}{2 \times 2}$ condone incorrect sign for 351 M1 for $\frac{-1 \pm \sqrt{2809}}{4}$ A1 for 13 NB for either M mark accept + only in place of \pm OR M2 for $(2 x+27)(x-13)$ (M1 for $(2 x \pm 27)(x \pm 13))$ A1 for 13
$\square \square$		14.4	3	M1 for $\pi \times 6.5^{2} \times 11.5$ ($=1526.42 \ldots$) M1 (dep) for $\frac{' 1526.42 \ldots \text { '. }}{\pi \times 5.8^{2}}$ A1 for 14.4-14.5 OR M1 for $\frac{5.8}{6.5}$ or $\frac{6.5}{5.8}$ or $0.89(23 \ldots)$ or $1.12(06896 \ldots)$ M1 for $11.5 \div\left(\frac{5.8}{6.5}\right)^{2}$ or $11.5 \div\left(\frac{6.5}{5.8}\right)^{2}$ A1 for 14.4-14.5
-	$\begin{aligned} & 180-136-" 34.4 " \\ & =9.504 \end{aligned}$	3.73	5	M1 for $\frac{\sin L}{12.8}=\frac{\sin 136}{15.7}$ M1 for $L=\sin ^{-1}\left(\frac{\sin 136}{15.7} \times 12.8\right)$ or or $\sin ^{-1} 0.566 \ldots$ A1 for 34.4-34.5 M1 for $\frac{L N}{\sin \left(180-136-^{\prime} 34.4^{\prime}\right)}=\frac{15.7}{\sin 136}$ or $\frac{\mathrm{LN}}{\sin \left(180-136-^{\prime} 34.4^{\prime}\right)}=\frac{12.8}{\sin ^{\prime} 34.4^{\prime}}$ or $\left(\mathrm{LN}^{2}=\right) 15.7^{2}+12.8^{2}-2 \times 15.7 \times 12.8 \times \cos \left(180-136-{ }^{\prime} 34.4^{\prime}\right)$ A1 for 3.73-3.74

「 EXPERT
 TUITION

Question	Working	Answer	Mark	Notes
* ${ }^{\text {Qu }}$		Proof	3	M1 for one pair of equal angles or sides with reason M1 for second pair of equal angles or sides with reason C 1 for proof completed correctly with full reasons and reason for congruence Acceptable reasons: AD common (oe eg both same) Angle $B A D=$ angle CDA (angles in a semicircle are $\underline{90}^{\underline{0}}$) Angle $A B O=$ angle $D C A$ (angles in the same segment are equal) Triangle ABD and triangle DCA are congruent - ASA OR $B D=C A$ (diameters of the circle) Angle $B A D=$ angle $C D A$ (angles in a semicircle are $\underline{90}{ }^{\circ}$.) AD common Triangle $A B D$ and triangle DCA are congruent - RHS OR $B D=C A$ (diameters of the circle) $A D$ is common Angle $A D B=$ angle $C A D$ (base angles of an isosceles triangle are equal.) Triangle ABD and triangle DCA are congruent - SAS

Question		Working	Answer	Mark	k Notes
$\square \square$			40.5	3	M1 for 1.5×6 or 1.5×1.5 M1 for adding area of 5 or 6 faces provided at least 3 are the correct area A1 cao NB: anything that leads to a volume calculation 0 marks.
प			10752	4	M1 for splitting the pentagon (or show the recognition of the "absent" triangle) and using a correct method to find the area of one shape M1 for a complete and correct method to find the total area M1 (dep on at least one prev M1) for multiplying their total area by 2.56 (where total area is a calculation involving at least two areas) A1 cao
प			55	4	M1 for a correct method to find a different angle using $35^{\circ} \mathrm{M} 1$ for setting up a complete process to calculate angle x A1 cao B1 states one of the following reasons relating to their chosen method: Alternate angles are equal; Corresponding angles are equal; Allied angles / Co-interior angles add up to 180 ; the exterior angle of a triangle is equal to the sum of the interior opposite angles.

T EXPERT

Que	Working	Answer	Mark	Notes
\square		3.52	3	M1 for $1.35^{2}+3.25^{2}$ M1 (dep) for $\sqrt{ }\left(1.35^{2}+3.25^{2}\right)(=\sqrt{ } 12.385)$ A1 for answer in the range 3.51 to 3.52
* \square		29	5	B1 for angle OTP $=90^{\circ}$, quoted or shown on the diagram M1 for a method that leads to $180-(90+32)$ or 58 shown at TOP M1 for completing the method leading to " 58 " $\div 2$ or 29 shown at TSP A1 cao C 1 for "angle between radius and tangent $=\underline{90}$ " and one other correct reason given from theory used NB: C0 if inappropriate rules listed OR B1 for angle OTP $=90^{\circ}$, quoted or shown on the diagram M1 for a method that leads to 122 shown at SOT M1 for $(180-$ " 122 ") $\div 2$ or 29 shown at TSP A1 cao C 1 for "angle between radius and tangent $=\underline{90^{\circ}}$ " and one other correct reason given from theory used NB: C0 if inappropriate rules listed

Question		Working	Answer	Mark	Notes
\square		$\begin{aligned} & \cos y=2.25 \div 6 \\ & y=\cos ^{-1}(2.25 \div 6) \end{aligned}$ OR $6 \cos 75=1.55 \ldots$	The ladder is not safe because y is not near to 75	3	M1 for $\cos y=2.25 \div 6$ oe M1 for $\cos ^{-1}(2.25 \div 6)$ C1 for sight of 67-68 and a statement eg this angle is NOT (near to) 75° and so the ladder is not steep enough and so not safe. OR M1 for $\cos 75=x \div 6$ M1 for $6 \cos 75$ C1 for sight of $1.55(29 \ldots)$ and a statement eg that 2.25 NOT (near to) 1.55 and so the ladder is not steep enough and so not safe.
\square	(a)		18.2	2	M1 for $1 / 2 \times 6 \times 7 \times \sin 60$ A1 for answer in range 18.1 to 18.2
	(b)		6.56	3	M1 for $6^{2}+7^{2}-2 \times 6 \times 7 \times \cos 60$ M1 for correct order of operation eg $36+49-42(=43)$ A1 for answer in range 6.55 to 6.56

T EXPERT
 TUITION

Question		Working	Answer	Mark	Notes
W		$\pi \times 5 \times 1.80$	28.27	3	M1 for use of $\pi \times x($ with $x=5$ or $x=2.5)$ or $2 \times \pi \times x($ with $x=5$ or $x=2.5)$ M1 for $\pi \times 5 \times 1.8(0)$ or $2 \times \pi \times 2.5 \times 1.8(0)$ A1 for 28.26 or 28.27 or 28.28 or $28.3(0)$ or 28.8(0)
[1]			1180	3	M1 for a correct method to find the area of the cross section M1 (dep) for a complete correct method for the volume of the prism A1 cao OR M1 for a correct method to find the volume of one cuboid M1 (dep) for a complete correct method for the volume of the prism A1 cao
-			Translation; ($\binom{6}{1}$	2	B1 for translation B1 for $\binom{6}{-1}$ NB: B0 if more than one transformation given
TI	(a)		11.5 47.2	3 3	M1 for $13^{2}-6^{2}$ or $169-36$ or 133 M1 (dep on M1) for $\sqrt{13^{2}-6^{2 "}}$ or $\sqrt{133}$ A1 for answer in the range 11.5-11.6 M1 for $\cos (R P Q)=\frac{17}{25}$ oe OR $\sin P Q R=\frac{17}{25}$ with $P Q R$ clearly identified M1 for $(R P Q=+) \cos ^{-1} \frac{17}{25}$ oe $\mathbf{O R} P Q R=\sin ^{-1} \frac{17}{25}$ with $P Q R$ clearly identified A1 for answer in the range 47.1-47.2 $\mathrm{SC}: \mathrm{B} 2$ for an answer of $0.823(033 \ldots)$ or $52.3(95 \ldots)$ or 52.4

Question		Working	Answer	Mark	Notes
-	(a) (b)	$\frac{1}{2} \times(4+12) \times 10$ For example $\frac{P T+10}{P T}=\frac{12}{4} 3$ $\begin{aligned} & P T+10=3 P T \\ & 2 P T=10 \end{aligned}$	80 5	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	M1 for a fully correct method for area of QRST A1 cao M1 for a correct scale factor or ratio using two corresponding sides from two similar triangles or two sides within the same triangle (may be seen within an equation) eg. $\frac{12}{4}$ oe or $4: 12$ oe or $\frac{P T}{4}$ or $\frac{P S}{12}$ or $\frac{12}{12-4}$ etc. M1 for a correct equation with PT or PS as the only variable or complete correct method using scale factor A1 cao
]		$\frac{30}{360} \times \pi \times 15^{2}$	58.8	2	M1 for a correct method to find the area of sector $O A B$ A1 for answer in range $58.8-58.9125$
\square			15.0	3	M1 for $8^{2}+8^{2}-2 \times 8 \times 8 \times \cos 140$ M1 (dep) for correct order of evaluation or 226.(05...) A1 for answer in range 15.0-15.04 OR M1 for $\frac{P R}{\operatorname{SIN} 140}=\frac{8}{\sin \left(\left(\frac{180-140}{2}\right)\right)}$ M1 for $P R=\frac{8}{\sin \left(\left(\frac{180-140}{2}\right)\right)} \times \sin 140$ A1 for answer in range 15.0-15.04 OR M1 for $8 \times \sin 70$ or $8 \times \cos 20$ M1 for $2 \times 8 \times \sin 70$ or $2 \times 8 \times \cos 20$ A1 for answer in range $15.0-15.04$

「 EXPERT

Question		Working	Answer	Mark	Notes
W	(a)		Triangle with vertices $(1,5)(4,5)(4,7)$	2	B2 correct reflection (B1 a translation of the correct answer with the final shape above $y=x$ or any two correct vertices) $\mathrm{SC}: \mathrm{B} 1$ for a triangle with vertices at $(2,5)(4,5)(4,8)$
	(b)		Translation by $\binom{-2}{-4}$	2	B1 Translation B1 $\binom{-2}{-4}$ NB. Award no marks for a combination of transformations

ᄃ $\xlongequal[\substack{\text { EXPERT } \\ \text { TUITION }}]{\substack{\text { len }}}$

Qu	Working	Answer	Mark	Notes
$\square \square$	Angle $D E C=180-41=139$ Angles on a straight line sum to 180° Angle $E D C=60-38$ or Angle $A B D=180-120-38(=22)$ Co-interior/allied angles of parallel lines sum to 180° or Angles in a triangle sum to 180° and Alternate angles $\overline{x=) 1} 80-139 \text { ' - '22' }(=19)$ Angles in a triangle sum to $\underline{180^{\circ}}$ OR Angle $A D C=180^{\circ}-120^{\circ}=60^{\circ}$ Co-interior/allied angles of parallel lines sum to 180° Angle $E D C=22^{\circ}$ Angle $E C D=41^{\circ}-22^{\circ}=19^{\circ}$ Exterior angle of triangle equals sum of the two opposite interior angles OR Angle $D B C=38^{\circ} \quad$ Alternate angles Angle $B C E=101^{\circ} \quad$ Angle sum of a triangle is $\underline{180^{\circ}}$ Angle $B C D=120^{\circ} \quad$ Opposite angles of a parallelogram are equal Angle $E C D=120^{\circ}-101^{\circ}=19^{\circ}$	$x=19^{\circ} \text { and }$ reasons	4	$\begin{aligned} & \text { M1 for } D B C=38^{\circ} \text { or } \\ & A D C=60^{\circ}\left(\text { can be implied by } B D C=22^{\circ}\right) \text { or } A B C= \\ & 60^{\circ} \text { or } \\ & D C B=120^{\circ} \text { or } \\ & (A B D=) 180-120-38(=22) \\ & \\ & \text { M1 for }(B D C=) 60-38(=22) \text { or } \\ & B D C=22^{\prime} \text { or } \\ & (D E C=) 180-41(=139) \text { or } \\ & (B C E=) 180-41-38(=101) \end{aligned}$ M1 (dep on both previous M1) for complete correct method to find x or $(x=) 19$ C1 for $x=19^{\circ} \quad$ AND Co-interior/allied angles of parallel lines sum to 180° or Opposite angles of a parallelogram are equal or Alternate angles AND Angles on a straight line sum to 180° or Angles in a triangle sum to 180° or Exterior angle of triangle equals sum of the two opposite interior angles or Angles in a quadrilateral sum to $\underline{360^{\circ}}$

	Working	Answer	Mark	Notes
ए	$17.8 \div 160 \times 210=0.11125 \times 210=23.3625 \mathrm{~g}$ OR $210 \div 160 \times 17.8=1.3125 \times 17.8=23.3625 \mathrm{~g}$ OR $\begin{aligned} & 210-160(=50) \\ & \frac{17.8}{160} \times ' 50 '(=5.5625) \\ & 17.8+5.5625 \end{aligned}$	23.3(625)	3	M1 $17.8 \div 160(=0.11125)$ or $17.8 \times 210(=3738)$ or $210 \div 160(=1.3125)$ M1 (dep) ' 0.11125 ' $\times 210$ or ' $3738^{\prime} \div 160$ or ' 1.3125 ' $\times 17.8$ A1 for answer in range 23.3-23.4 OR M1 for $\frac{17.8}{160} \times(210-160)(=5.5625)$ M1 (dep) for $17.8+{ }^{\prime} 5.5625^{\prime}$ A1 for answer in range 23.3-23.4 OR M1 for correct method to find weight of 2 cm or 5 cm or 10 cm M1 (dep) for complete method A1 for answer in range 23.3-23.4

T EXPERT

	Working	Answer	Mark	Notes
ए	$\sin 60^{\circ}=\frac{x}{32} x=32 \times \sin 60(=27.712 \ldots)$	27.7	3	M1 $\sin 60=\frac{x}{32}$ or $\frac{x}{\sin 60}=\frac{32}{\sin 90}$ oe M1 $(x=) 32 \times \sin 60$ or $(x=) \frac{32}{\sin 90} \times \sin 60$ A1 27.7-27.72 OR M1 $\quad \cos (90-60)=\frac{x}{32}$ M1 $(x=) 32 \times \cos (90-60)$ A1 27.7-27.72 Radians :-9.7539398... Gradians : 25.888554... SC: B2 for an answer in the range (-) 9.75 to (-)9.754 or 25.8 to 25.9

$\Gamma \underset{\text { EXIITION }}{\text { EXPER }}$

Question		Working	Answer	Mark	Notes
\square	(a)	Let O be the centre of the base. $\begin{aligned} & O B^{2}+O C^{2}=10^{2} ; O B^{2}=50 \\ & A O^{2}=A B^{2}-O B^{2}=50 \\ & \mathrm{Vol}=\frac{1}{3} \times 10^{2} \times \sqrt{50} \end{aligned}$ OR Let M be the midpt of side $B C$ and let O be the centre of the base. $\begin{aligned} & A M^{2}+M C^{2}=10^{2} ; A M^{2}=75 \\ & A O^{2}=A M^{2}-M O^{2}=50 \\ & \mathrm{Vol}=\frac{1}{3} \times 10^{2} \times \sqrt{50} \end{aligned}$	236	4	M1 correct method to start to find $B D$ or $B O$ using triangle $O B C$ or triangle $B C D$ (oe) Eg. $O B^{2}+O C^{2}=10^{2}$ or $B O^{2}=50$ or $\begin{aligned} & B O=\sqrt{50}(=7.07 . .) \text { or } B O=\frac{\sqrt{200}}{2} \text { or } \\ & 10^{2}+10^{2}=B D^{2} \text { or } B D^{2}=200 \text { or } B D=\sqrt{200}(=14.1 . .) \end{aligned}$ M1 (dep) correct method to find height of pyramid using triangle $A O B$ $\begin{aligned} & \text { Eg. } A O^{2}=10^{2}-\sqrt{50}^{\prime 2} \text { or } A O^{2}=50 \text { or } \\ & A O=\sqrt{50}(=7.07 . .) \end{aligned}$ M1 (indep) $\frac{1}{3} \times 10^{2} \times 1 \sqrt{50}$, (but not $\frac{1}{3} \times 10^{2} \times 10$) A1 235-236 OR M1 correct method to start to find height of a face using triangle $A M C$ (oe) Eg. $A M^{2}+5^{2}=10^{2}$ or $A M^{2}=75$ or $A M=\sqrt{75}(=8.66 \ldots)$ M1 (dep) correct method to find height of pyramid using triangle $A O M$ $\begin{aligned} & \text { Eg. } A O^{2}=1 \sqrt{75}^{\prime 2}-5^{2} \text { or } A O^{2}=50 \text { or } \\ & A O=\sqrt{50}(=7.07 . .) \end{aligned}$ M1 (indep) $\frac{1}{3} \times 10^{2} \times{ }^{\prime} \sqrt{50}$ ' (but not $\frac{1}{3} \times 10^{2} \times 10$) A1 235-236

Question		Working	Answer	Mark	Notes
DI cont.	(a)				OR M1 for $\sin 45=\frac{x}{10}$ or $\cos 45=\frac{x}{10}$ M1 for $h=10 \times \sin 45$ or $h=10 \times \cos 45$ (=7.07..) M1 (indep) $\frac{1}{3} \times 10^{2} \times 17.07 \ldots$... (but not $\frac{1}{3} \times 10^{2} \times 10$) A1 $235-236$

Question		Working	Answer	Mark	Notes
Ш1]	(b)	Angle $A B O=45^{\circ}$ Angle $D A B=180-45-45$ OR In $\triangle B A D, \cos A=\frac{10^{2}+10^{2}-{ }^{\prime} \sqrt{200}{ }^{\prime 2}}{2 \times 10 \times 10}=0$ OR In $\triangle B O A, \cos B=\frac{1 \sqrt{50}}{10}$ Angle $B A D=180-‘ 45$ ' -45 ' OR $\begin{aligned} & \sin A=\frac{' \sqrt{50}}{10} \\ & A=45 \end{aligned}$ Angle $B A D=2 \times ' 45$ '	90	2	M1 Angle $D A B=180-2 \times$ ' 45 ' A1 89.98-90 OR M1 $\cos B A D=\frac{10^{2}+10^{2}-1 \sqrt{200}{ }^{\prime 2}}{2 \times 10 \times 10}$ A1 89.98-90 OR M1 $\sin A=\frac{' \sqrt{50}{ }^{\prime}}{10}$ A1 89.98-90

$\Gamma \underset{\text { EXIITION }}{\text { EXPER }}$

Question	Working	Answer	Mark	Notes
- [$\begin{aligned} & A=\frac{1}{2} \times x \times 2 x \times \sin 30^{\circ} \\ & A=\frac{1}{2} \times 2 x^{2} \times 0.5 \end{aligned}$ OR $\begin{aligned} & \text { Height }=2 x \sin 30^{\circ}=x \\ & A=\frac{x \times x}{2}=\frac{x^{2}}{2} \end{aligned}$ OR $\begin{aligned} & \text { Height }=x \sin 30=\frac{x}{2} \\ & A=\frac{1}{2} \times 2 x \times \frac{x}{2}=\frac{x^{2}}{2} \end{aligned}$	$\begin{gathered} x=\sqrt{2 A} \\ \text { shown } \end{gathered}$	3	M1 $(A=) \frac{1}{2} \times x \times 2 x \times \sin 30^{\circ}$ A1 $A=x^{2} \times 0.5$ or $A=\frac{x^{2}}{2}$ C1 for completion with all steps shown OR M1 height $=2 x \sin 30(=x)$ A1 $A=x^{2} \times 0.5$ or $A=\frac{x^{2}}{2}$ C1 for completion with all steps shown OR M1 for height $=x \sin 30\left(=\frac{x}{2}\right)$ A1 $A=x^{2} \times 0.5$ or $A=\frac{x^{2}}{2}$ C1 for completion with all steps shown

Question		Working	Answer	Mark	Notes
Ш1]		180-47	133	3	M1 for 180-47 A1 for 133 C 1 (dep on M1) for full reasons e.g. angles on a straight line add up to 180° and alternate angles are equal OR corresponding angles are equal and angles on a straight line add up to $\underline{180^{\circ}}$ OR vertically opposite angles (or vertically opposite angles) are equal and allied angles (or co-interior angles) add up to 180°
D	(a) (b)		Triangle with vertices $(2,-1)(4,-1)(4,-4)$ Triangle with vertices $(7,2)(13,2)(7,11)$	2 3	B2 for triangle with vertices $(2,-1)(4,-1)(4,-4)$ (B1 for triangle in correct orientation or rotated 90° anticlockwise centre O B3 for triangle with vertices $(7,2)(13,2)(7,11)$ (B2 for 2 vertices correct or enlargement scale factor 3 in wrong position or enlargement, centre (1,2), with different scale factor) (B1 for 1 vertex correct or enlargement, not from (1,2), different scale factor)

	Working	Answer	Mark	Notes
DI	$\begin{aligned} & \cos x=\frac{6.4}{9.6} \\ & x=\cos ^{-1} \frac{6.4}{9.6}= \end{aligned}$	48.2	3	M1 for $\cos x=\frac{6.4}{9.6}$ or $\cos x=0.66(6 \ldots)$ or $\cos x=0.67$ M1 for $\cos ^{-1} \frac{6.4}{9.6}$ or $\cos ^{-1} 0.66(6 \ldots)$ or $\cos ^{-1} 0.67$ A1 for 48.1-48.2 OR Correct use of Pythagoras and then trigonometry, no marks until M1 for $\sin x=\frac{' 7.155 '}{9.6}$ or $\tan x=\frac{' 7.155 '}{6.4}$ or $\sin x=\frac{\text { '7.155' }}{9.6} \times \sin 90$ or $\cos x=\frac{6.4^{2}+9.6^{2}-{ }^{\prime} 7.155^{\prime 2}}{2 \times 6.4 \times 9.6}$ M1 for $\sin ^{-1} \frac{\text { ' } 7.155 \text { ' }}{9.6}$ or $\tan ^{-1} \frac{\text { '7.155' }}{6.4}$ or $\sin ^{-1}\left(\frac{' 7.155 '}{9.6} \times \sin 90\right)$ or $\cos ^{-1}\left(\frac{6.4^{2}+9.6^{2}-{ }^{\prime} 7.155^{\prime 2}}{2 \times 6.4 \times 9.6}\right)$ A1 for 48.1-48.2 SC B2 for $0.841 \ldots$ (using rad) or 53.5... (using grad)

Г EXPERT

	Working	Answer	Mark	Notes
[1]	$\begin{aligned} & B D^{2}+12^{2}=16^{2} \text { oe } \\ & \mathrm{BD}=\sqrt{256-144} \\ & (=10.58 \ldots) \\ & \sin 40=\frac{\prime 10.58^{\prime}}{C D} \\ & C D=\frac{' 10.58^{\prime}}{\sin 40} \end{aligned}$	16.5	5	M1 for $B D^{2}+12^{2}=16^{2}$ oe or $16^{2}-12^{2}$ or 112 seen M1 for $\sqrt{256-144}$ or $\sqrt{112}(=10.58 \ldots)$ M1 for $\sin 40=\frac{' 10.58^{\prime}}{C D}$ or $\cos 50=\frac{' 10.58^{\prime}}{C D}$ M1 for $(C D=) \frac{' 10.58^{\prime}}{\sin 40}$ or $\frac{' 10.58^{\prime}}{\cos 50}$ A1 for $16.4-16.5$ OR M1 for $B D^{2}+12^{2}=16^{2}$ oe or $16^{2}-12^{2}$ or 112 seen M1 for $\sqrt{256-144}$ or $\sqrt{112}(=10.58$..) M1 for $(B C=)^{\prime} 10.58^{\prime} \times \tan 50$ or $\frac{' 10.58^{\prime}}{\tan 40}(=12.6 \ldots)$ M1 for $\sqrt{12.6^{\prime 2}+{ }^{\prime} 10.58 . . .{ }^{\prime 2}}$ A1 for 16.4-16.5

「 EXPERT

Qu	Working	Answer	Mark	Notes
-	$\begin{aligned} & \frac{A C}{\sin 49}=\frac{8.7}{\sin 64} \\ & A C=\frac{8.7}{\sin 64} \times \sin 49 \\ & (=7.305 \ldots) \\ & \frac{1}{2} \times 8.7 \times 7.305 \ldots \times \sin (180-64-49) \end{aligned}$	29.3	5	M1 for $\frac{A C}{\sin 49}=\frac{8.7}{\sin 64}$ oe M1 for $(A C=) \frac{8.7}{\sin 64} \times \sin 49$ A1 for 7.3(05...) M1 for $\frac{1}{2} \times 8.7 \times{ }^{\prime} 7.305^{\prime} \times \sin (180-64-49)$ A1 for 29.19-29.3 OR M1 for $\frac{B C}{\sin (180-64-49)}=\frac{8.7}{\sin 64}$ oe M1 for $(B C=) \frac{8.7}{\sin 64} \times \sin ^{\prime} 67^{\prime}$ A1 for 8.9(10...) M1 for $\frac{1}{2} \times 8.7 \times{ }^{\prime} 8.910^{\prime} \times \sin 49$ A1 for 29.19-29.3 OR (X is point such that $A X$ is perpendicular to $B C$) M1 for $A X=8.7 \times \sin 49(=6.565 \ldots)$ or $X B=8.7 \times \cos 49(=5.707 \ldots)$ M1 for $X B=8.7 \times \cos 49(=5.707 \ldots)$ and $C X=‘ 6.565$ ' $\div \tan 64$ oe $(=3.202 \ldots)$ A1 for $8.9(10 \ldots)$ or $5.7(07 \ldots)$ and $3.2(02 \ldots)$ M1 for $1 / 2 \times$ ' $6.565 \ldots$... $\times\left({ }^{\prime} 5.707\right.$ ' + ' 3.202^{\prime}) oe A1 for 29.19-29.3

T EXPERT
 TUITION

Question		Working	Answer	Mark	Notes
Ш1]	(a) (b)	$\begin{aligned} & \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \\ & \overrightarrow{A P}=\frac{3}{4} \times(\mathbf{b}-\mathbf{a}) \\ & \overrightarrow{O P}=\mathbf{a}+\frac{3}{4} \times(\mathbf{b}-\mathbf{a}) \end{aligned}$ OR $\begin{aligned} & \overrightarrow{O P}=\overrightarrow{O B}+\overrightarrow{B P} \\ & \overrightarrow{B P}=\frac{1}{4} \times(\mathbf{a}-\mathbf{b}) \\ & \overrightarrow{O P}=\mathbf{b}+\frac{1}{4} \times(\mathbf{a}-\mathbf{b}) \end{aligned}$	$\begin{gathered} \mathbf{b}-\mathbf{a} \\ \frac{1}{4}(\mathbf{a}+3 \mathbf{b}) \end{gathered}$	1 3	B1 for $\mathbf{b}-\mathbf{a}$ or $-\mathbf{a}+\mathbf{b}$ B1 for $\frac{3}{4} \times{ }^{\prime}(\mathbf{b}-\mathbf{a})^{\prime}$ M1 for $(\overrightarrow{O P}=) \overrightarrow{O A}+\overrightarrow{A P}$ or $(\overrightarrow{O P}=) \overrightarrow{O A}+\frac{3}{4} \overrightarrow{A B}$ or $\mathbf{a} \pm \frac{3}{4} \times{ }^{\prime}(\mathbf{b}-\mathbf{a})$, A1 for $\frac{1}{4}(\mathbf{a}+3 \mathbf{b})$ or $\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}$ OR B1 for $\frac{1}{4} \times{ }^{\prime}(\mathbf{a}-\mathbf{b})$, M1 for $(\overrightarrow{O P}=) \overrightarrow{O B}+\overrightarrow{B P}$ or $(\overrightarrow{O P}=) \overrightarrow{O B}+\frac{1}{4} \overrightarrow{B A}$ or $\mathbf{b} \pm \frac{1}{4} \times{ }^{\prime}(\mathbf{a}-\mathbf{b})^{\prime}$ A1 for $\frac{1}{4}(\mathbf{a}+3 \mathbf{b})$ or $\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}$

$\Gamma \underset{\text { EXPERT }}{\text { EXITION }}$

