Γ EXPERT TUITION

Maths Questions By Topic:

Number

Mark Scheme

Edexcel GCSE (Higher)

\#www.expert-tuition.co.uk
\square online.expert-tuition.co.uk
《enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 .. Page 1
Paper 2 ... Page 30
Paper 3 Page 42

Old Spec A (Linear)
Paper 1 ... Page 55
Paper 2
Page 76

Question	$\begin{gathered} \hline \text { Answer } \\ \hline 15.414 \end{gathered}$	$\begin{gathered} \hline \text { Mark } \\ \hline \text { M1 } \end{gathered}$	Mark scheme	Additional guidance			
1 (a)	15.414	M1	for a complete method with relative place value correct including intention to add all the appropriate elements of the calculation eg 2 lines of the $1^{\text {st }}$ method, internal numbers of grids, or complete structure shown of partitioning methods.	$\begin{array}{r} 146 \\ 7 \\ 154 \\ 1 \\ 5 \end{array}$	$\frac{6}{2}$		
				40 2 1200 1541	$\begin{array}{r} 300 \\ 12000 \\ 6600 \\ \hline 400+2 \end{array}$	$\begin{gathered} \hline 60 \\ \hline 2400 \\ \hline 120 \\ \hline 0+60 \end{gathered}$	280 14 $120+14=$ $=$
	37.4	A1 A1	for digits 15414 (ft) dep on M1 for correct placement of the decimal point into their final answer				
(b)		M1 A1 A1	for a start to a method, eg $598.4 \div 16$ (or $59.84 \div 1.6$) $=3$ (as a first digit) for digits 374 (ft) dep on M1 for correct placement of the decimal point into their final answer	A start to a repeated subtraction method or build-up method is acceptable if a correct first digit of 3 is found			

Question	Answer	Mark	Mark scheme	Additional guidance
2	$1 \frac{8}{15}$	M2 (M1 A1	for a complete method, eg $4-2+\frac{3}{15}-\frac{10}{15}$ condoning error with one numerator or for $\frac{21}{5}-\frac{8}{3}=\frac{63}{15}-\frac{40}{15}\left(=\frac{23}{15}\right)$ with no more than one error for finding two fractions with a correct common denominator, with at least one correct corresponding numerator, eg $\frac{3}{15}, \frac{10}{15}$ or for converting both to improper fractions, eg $\frac{21}{5}, \frac{8}{3}$) $1 \frac{8}{15} \text { oe }$	At least one improper fraction must be correct Any equivalents must be a mixed number

Question	Answer	Mark	Mark scheme	Additional guidance
3	1	B1	cao	
	3	B1	cao	
	$\frac{1}{16}$	B1	oe	
	3	B1	cao	
4 (a)	30	P1	for a start to the process, eg $5406 \div 6(=901)$ or $5400 \div 6(=900)$ or $5000 \div 6(=833.33 .$. or $5410 \div 6(=901.66 .$.	
		P1	for a process to find the length of one side, eg $\sqrt{" 901 "}$ or $\sqrt{" 900 "}$ or $\sqrt{" 833.33 . . " ~ o r ~} \sqrt{" 901.66 . . "}$	
		A1	for 30	
(b)	Explanation	C1	for a correct explanation based on their working in (a), eg underestimate because I rounded the total area down	Must be based on the use of a rounded value in a calculation

Question	Answer	Mark	Mark scheme	Additional guidance
5	Explanation	C1	explanation Acceptable examples he should have used $100(x)$ rather than $10(x)$ he should have used $1000 x$ and $10 x$ Ted's working does not eliminate the recurring decimals the recurring numbers after the decimal point have to be in the same sequence he should have multiplied by 100 to subtract easier after the decimal point he should have multiplied by 100 because two numbers are recurring	Not acceptable examples it is not correct the method is not complete he should have used 1000x he should have multiplied by 100 he should have multiplied by 100 and then done $100 x-10 x$ to give 43/90

Question	Answer	Mark	Mark scheme	Additional guidance
6	Result shown	M1	(indep) for writing $\sqrt{12}$ as $2 \sqrt{3}$	This mark can be awarded whenever this is seen, which might be later in the process.
		M1	for method to rationalise the denominator eg $\frac{8+\sqrt{12}}{5+\sqrt{3}} \times \frac{5-\sqrt{3}}{5-\sqrt{3}}$ or $\frac{8+2 \sqrt{3}}{5+\sqrt{3}} \times \frac{5-\sqrt{3}}{5-\sqrt{3}}$ oe	
		M1	(dep on previous M1) for expanding terms, condone one error in numerator or denominator eg $\frac{40-8 \sqrt{3}+5 \sqrt{12}-\sqrt{12} \sqrt{3}}{25-5 \sqrt{3}+5 \sqrt{3}-\sqrt{3} \sqrt{3}}$ or $\frac{40-8 \sqrt{3}+10 \sqrt{3}-2 \sqrt{3} \sqrt{3}}{25-5 \sqrt{3}+5 \sqrt{3}-\sqrt{3} \sqrt{3}}$ or $\frac{34+2 \sqrt{3}}{22}$ oe	
		A1	for a complete chain of reasoning leading to $\frac{17+\sqrt{3}}{11}$	

Question	Answer	Mark	Mark scheme	Additional guidance
7	Shown	M1 M1 C1	for conversion to improper fractions eg. $\frac{7}{3}$ or $\frac{15}{4}$ (dep) for method to multiply fractions, eg. $\frac{7 \times 15}{3 \times 4}\left(=\frac{105}{12}\right)$ or $\frac{28 \times 45}{12 \times 12}\left(=\frac{1260}{144}\right)$ oe for complete working showing each stage as far as $\frac{35}{4}$ or $8 \frac{9}{12}$	Need not be shown with operators

Question	Answer	Mark	Mark scheme	Additional guidance
8	0.000672, 67.2×10^{-4} 6.72×10^{5} 672×10^{4}	B2	(B1	for correct conversions to same format, condoning one error
			or for 3 numbers in the correct order (ignoring one)	Accept correct numbers in any form
			or for all 4 numbers listed in reverse order)	

Question	Answer	Mark	Mark scheme	Additional guidance
9 (a)	300	M1	for working out $\sqrt[4]{81}$ as 3 or $\sqrt[4]{10^{8}}$ as 10^{2} or 100	Mark may be awarded if operations are attempted on 8100000000 eg 300000000
		A1	for 300 or 3×10^{2} or 3×100	
(b)	$\frac{1}{8}$	M1	for showing a square root of 64 as 8 or recognition of the reciprocal eg $\frac{1}{n}$ or shows expressions that show an understanding of the $1 / 2$ index and the minus index eg $\frac{1}{\sqrt{64}}$ or other equivalent forms	
		A1	oe	$\text { Accept } \pm \frac{1}{8} \text { oe }$
(c)	3^{2-n}	M1	$\text { for } 3^{2(n-1)} \text { or } 3^{2 n-2} \text { or }\left(3^{2}\right)^{n-1}$	
		A1	for 3^{2-n} oe eg $3^{n-2(n-1)}$	

Question	Answer	Mark	Mark scheme	Additional guidance
10	$1+\frac{\sqrt{5}}{5}$	P1	for writing $\sqrt{180}$ as $6 \sqrt{5}$	This process mark can be awarded whenever this is seen, which might be later in the process.
		P1	for process to rationalising the denominator eg $\frac{\sqrt{180}-2 \sqrt{5}}{5 \sqrt{5}-5} \times \frac{5 \sqrt{5}+5}{5 \sqrt{5}+5}$ or $\frac{4 \sqrt{5}}{5 \sqrt{5}-5} \times \frac{5 \sqrt{5}+5}{5 \sqrt{5}+5}$ oe	
		P1	(dep on previous P 1) for expanding terms eg $\frac{5 \sqrt{5} \sqrt{180}+5 \sqrt{180}-50-10 \sqrt{5}}{125-25}$ or $\frac{100+20 \sqrt{5}}{100}$ oe	
		A1	for $1+\frac{\sqrt{5}}{5}$	Accept written as $a=1, b=5$

T EXPERT
 TUITION

Question	Answer	Mark	Mark scheme	Additional guidance
11	1080	M1	for method to write one number as a product of prime factors (condone one division error in method chosen), eg. one complete factor tree or $2,2,3,3,3$ or $2,2,2,3,5$ or for listing at least 5 multiples of either number (condone one error) or for any common multiple ($\neq 1080$), eg. $12960(=108 \times 120)$	Accept first 5 multiples if all correct or one error in the first 6 multiples
		M1	for method to write both numbers as a product of prime factors (condone a total of one division error) eg. two complete factor trees or $2,2,3,3,3$ and $2,2,2,3,5$ or lists of multiples of the two numbers, at least 5 of each, one of which includes 1080	For the list not containing 1080, accept first 5 correct multiples or one error in the first 6 multiples
		A1	cao SC: B2 for any product that would lead to 1080 , eg. $2^{3} \times 3^{3} \times 5$ or $12 \times 9 \times 10$	

Question	Answer	Mark	Mark scheme	
12	$2 \frac{1}{3}$	M1	for either $\frac{7}{4}$ oe or $\frac{4}{3}$ oe	Additional guidance
		M1	for method to find the product, eg. $\frac{7 \times 4}{4 \times 3}$ or $\frac{21 \times 16}{12 \times 12}$ oe or for $\frac{28}{12}$ or $\frac{7}{3}$ oe for $2 \frac{1}{3}$ or an equivalent mixed number	

Question	Answer	Mark	Mark scheme	Additional guidance
13	$\frac{414}{990}$	M1 M1 A1	for $(x=) 0.41818 \ldots$ or $(10 x=) 4 . \dot{1} \dot{8}$ or $4.1818 \ldots$ or $(100 x=) 41 . \dot{8} 1$ or $41.818 \ldots$ or $(1000 x=) 418.18$ or $418.18 \ldots$ for using two recurring decimals with a terminating decimal difference, eg. $(1000 x-10 x=) 418.18-4.18$ or 418.18... - 4.1818 ... (= 414) for $\frac{414}{990}$ oe, eg $\frac{23}{55}$	Accept $(100 x-x=) 41.81-0.41 \dot{8}$ or 41.818... - 0.41818... (= 41.4) $\frac{41.4}{99}$ must be simplified to gain the accuracy mark
(a) (b)	$2 \sqrt{11}$ $\frac{6+\sqrt{3}}{11}$	M1 A1 M1 M1 A1	for method to multiply numerator and denominator by $\sqrt{11}$ or a multiple of $\sqrt{11}$, eg $\frac{22}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}}$ for $2 \sqrt{11}$ for method to multiply numerator and denominator by $2 \sqrt{3}+1$ or a multiple of $2 \sqrt{3}+1$, eg $\frac{\sqrt{3}}{2 \sqrt{3}-1} \times \frac{2 \sqrt{3}+1}{2 \sqrt{3}+1}$ (dep) for $\sqrt{3} \times 2 \sqrt{3}=6$ or $2 \sqrt{3} \times 2 \sqrt{3}=12$ for $\frac{6+\sqrt{3}}{11}$ (accept $a=6$ and $b=11$)	

Question	Answer	Mark	Mark scheme	Additional guidance
15	$\frac{3}{4}$ oe	P1	for a first step to converting to a common base with one correct conversion, eg. $9^{-\frac{1}{2}}=3^{-1}$ or $\frac{1}{3}$ or $27^{\frac{1}{4}}=3^{\frac{3}{4}}$ oe	$9^{-\frac{1}{2}}=3^{-1}$ (or $\frac{1}{3}$) oe or $27^{\frac{1}{4}}=3^{\frac{3}{4}}$ oe seen alone gets the P1
	P1	(dep) for $3^{-1}=3^{\frac{3}{4}} \div 3^{x+1}$ oe		
cao	A1			

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b) (c)	$\begin{gathered} 75 \text { to } 81 \\ 0.000148 \\ \frac{1}{25} \end{gathered}$	B2 (B1 B1 B1	for answer in the range 75 to 81 for 60 or 100 or 6000 or 6400 or $\sqrt{64 \times 100}$) for 0.000148 oe for $\frac{1}{25}$ or 0.04	Can use standard form
18	$5 \frac{3}{5}$	M1 M1 A1	for writing as improper fractions with at least one correct, eg $\frac{7}{2} \times \frac{8}{5}$ oe (dep) for multiplying improper fractions, eg $\frac{" 56 "}{410 "}$ or $5 \frac{6}{10}$ or $\frac{28}{5}$ oe cao	

Question	Answer	Mark	Mark scheme	Additional guidance
19 (a) (b)	125 60	M1 A1 M1 A1	for method to find the number of 3 digit combinations, eg 5^{3} or $5^{3}-1$ for 125 or 124 for method to find the number of combinations with 3 different digits eg $5 \times 4 \times 3$ or finds there are 65 combinations that do not have 3 different digits cao	
20 (a) (b)	$3 \sqrt{3}$ $\frac{\sqrt{3}}{81}$	M1 A1 M1 M1 A1	for working unambiguously with $\sqrt{12}$, eg $\sqrt{4 \times 3}$ or $\sqrt{4} \times \sqrt{3}$ or $2 \sqrt{3}$ cao for simplifying the power eg $(\sqrt{3})^{7}=27 \sqrt{3}$ for method to rationalise the denominator eg multiplying by $\frac{\sqrt{3}}{\sqrt{3}}$ for $\frac{\sqrt{3}}{81}$ or equivalent fraction in form $\frac{\sqrt{b}}{c}$, eg $\frac{\sqrt{2187}}{2187}$	May be seen as the first step

T EXPERT
 TUITION

Question	Answer	Mark	Mark scheme	Additional guidance
21	9	M1 A1	for a correct first step, using the laws of indices to simplify eg. 3^{2} or 3^{7+-2} or 3^{7-3} or 3^{-2-3} OR for using exact values, eg. $2187 \times \frac{1}{9}(=243)$ or $2187 \div 27(=81)$ or $\frac{1}{27 \times 9}\left(=\frac{1}{243}\right)$ cao	
22 (a)	$16 \text { to } 20$	P1	$\begin{aligned} & \text { for using time }=\frac{\text { distance }}{\text { speed }}, \text { eg } \frac{1}{200} \text { or } \frac{1}{213} \\ & \text { or for } 1 \text { hour }=60 \times 60(=3600) \text { seconds } \end{aligned}$	
		P1 A1	complete process, eg $\frac{1}{200} \times 60 \times 60$ oe or $\frac{1}{213} \times 60 \times 60$ oe for answer in range 16 to 20	Calculation could be done in stages.
(b)	decision with reason	C1	$\left(\right.$ dep on correct use of time $\left.=\frac{\text { distance }}{\text { speed }}\right)$ for reason related to their response to part(a), eg overestimate as speed rounded down	

Question	Answer	Mark	Mark scheme	Additional guidance
23 (a)	$\frac{8}{27}$	M1	for showing the 4th root of 16 as 2 and the 4th root of 81 as 3 or $\frac{8}{n}(n \neq 27)$ or $\frac{n}{27}(n \neq 8)$ or an intention to find the 4th root and cube, eg. $\sqrt[4]{\left(\frac{16}{81}\right)^{3}}$ or $\left(\sqrt[4]{\frac{16}{81}}\right)^{3}$ oe	
		A1	cao	
(b)	0	M1	for writing $\frac{1}{9}=3^{-2}, 9 \sqrt{3}=3^{2.5}, \frac{1}{\sqrt{3}}=3^{-0.5}$ as powers of 3 , with at least 2 correct or for working out $\frac{1}{9} \times 9 \sqrt{3} \times \frac{1}{\sqrt{3}}=1$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
24	Proof with $\frac{127}{495}$	M1 M1 C1	$0.25656 \ldots$ or $0.2+0.05656$.. or $(10 \times 0.2 \dot{5} \dot{6}=) 2 . \dot{5} \dot{6}$ or $2.5656 \ldots$ or $(100 \times 0.2 \dot{5} \dot{6}=) 25 . \dot{6} \dot{5}$ or $25.6565 \ldots$ or $(1000 \times 0.25 \dot{6}=) 256.5 \dot{6} \dot{6}$ or $256.5656 \ldots$ for finding two correct recurring decimals that when subtracted would result in a terminating decimal or integer, eg. 256.5656.... $-2.5656 \ldots$. or $25.6565 \ldots . .-0.25656 \ldots$. or $256.5 ் 6$ $-2.5 \dot{6}$ or $25 . \dot{6} \dot{5}-0.2 \dot{5} \dot{6}$ or for $\frac{254}{990}$ or $\frac{25.4}{99}$ full proof seen with $\frac{127}{495}$	
25	fully correct working leading to $16(1+\sqrt{2})$	C1 C1 C1	for expanding the numerator, eg $18+2 \sqrt{2} \sqrt{18}+2$ or $\sqrt{324}+\sqrt{36}+\sqrt{36}+\sqrt{4}(=32)$ or for simplifying $\sqrt{18}$, eg. $\sqrt{18}=3 \sqrt{2}$ or $\sqrt{18}+\sqrt{2}=4 \sqrt{2}$ (indep) for method to rationalise the denominator, eg. $\frac{\text { "numerator" }}{\sqrt{8}-2} \times \frac{\sqrt{8}+2}{\sqrt{8}+2}$ for fully correct working leading to $16(1+\sqrt{2})$	Expanded terms need not be simplified Accept $a=16, b=1$

Question	Answer	Mark	Mark scheme	Additional guidance
26	$\frac{95}{28}$	M1	for a method to add using common denominators with at least one fraction correct (matching numerator with common denominator) eg $\frac{60}{28}+\frac{35}{28}$ or (2) $\frac{4}{28}+(1) \frac{7}{28}$	Use of decimals gets no credit unless it leads to a correct fraction
		A1	$\frac{95}{28} \text { oe eg } 3 \frac{11}{28}$	
	$1 \frac{3}{5}$	M1	for $\frac{6}{5} \times \frac{4}{3}$ or $\frac{24}{20} \div \frac{15}{20}$ or $\frac{8}{5}$ oe eg $1 \frac{9}{15}$	Use of decimals gets no credit unless it leads to a correct fraction
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
27	30	P1	for full process to find the number of bags sold eg $5 \times 1000 \div 250(=20)$ OR for process to find selling price of 1 kg of sweets eg $0.65 \times 4(=2.60)$	This could be by repeated addition Calculations can be in $£$ or pence
		P1	for [number of bags] $\times 0.65$ or " 20 " $\times 0.65(=13)$ or " 2.60 " $\times 5(=13)$ OR for $10 \div$ " 20 " oe $(=0.50)$ OR for $0.65 \times 4(=2.60)$ and $10 \div 5(=2)$	[number of bags] can only come from $5 \times 10 \div 250(=0.2)$ or $5 \times 100 \div 250(=2)$ or $5 \div 250(=0.02)$
		P1	(dep on previous P1) for a process to find the percentage profit eg (" 13 " -10$) \div 10 \times 100$ or $(0.65-$ " 0.50 ") $\div 0.50$ " $\times 100$ or ("2.60" - " 2 ") \div " 2 " $\times 100$	$3 / 10$ or 0.3 is not enough but should be awarded 2 marks
			OR " 13 " $\div 10 \times 100(=130)$ oe	Award P3 for 130(\%)
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
28 (a)	Estimated value	P1	for using a rounded value in a correct process eg $3000 \div 15$ or 15×8 or 20×8	Their rounded value must be used in a calculation
				Rounding may appear after a correct process eg $15.12 \times 8=120.96 \approx 100$ followed by eg $3069.25 \div 100$
		P1	for a full process to find the number of days eg " $3000 " \div$ " 15 " \div " 10 " (= 20) or " $3000 " \div$ " $15 " \div 8$ (= 25)	Accept $3069.25 \div 15.12 \div 8$ oe
		A1	for a correct answer following through their rounded values	
(b)	Explanation	C1	eg less days required or it doesn't affect the answer because I would still round 16.27 down to 15 (or up to 20)	Refers to time taken

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b) (c)	$\begin{aligned} & 6 \\ & 1 \\ & \frac{1}{9} \end{aligned}$	B1 B1 M1 A1	cao cao for evidence of working with a cube root eg $\sqrt[3]{27}$ or $\sqrt[3]{729}$ OR evidence of working with a reciprocal eg $\frac{1}{27^{2 / 3}}$ or $\left(\frac{1}{27}\right)^{\frac{2}{3}}$ cao	Accept ± 6
30	5	M1 M1 A1	for $\sqrt{40}$ or $\sqrt{90}$ OR $2 \sqrt{2}$ or $3 \sqrt{2}$ for $2 \sqrt{10}$ or $3 \sqrt{10}$ or $\sqrt{4} \times \sqrt{10}$ or $\sqrt{9} \times \sqrt{10}$ or $\sqrt{4 \times 10}$ or $\sqrt{9 \times 10}$ OR $2 \sqrt{2}+3 \sqrt{2}$ cao	Answer of $5 \sqrt{10}$ from correct working gets M2 A0

Question	Working	Answer	Mark	Notes
31		$2 \times 2 \times 3 \times 3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for complete method to find prime factors; could be shown on a complete factor tree with no more than 1 arithmetic error or $2,2,3,3,(1)$ $2 \times 2 \times 3 \times 3 \text { oe }$
32		$\begin{array}{cc} 0.246, & 0 . \dot{2} 4 \dot{6} \\ 0.2 \dot{4} \dot{6}, & 0.24 \dot{6} \end{array}$	M1 A1	for correct use of recurring symbol eg $0.2 \dot{4} \dot{6}=0.24646 \ldots$ or 3 terms in the correct relative position cao
33 (a) (b)		$\begin{aligned} & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	accept ± 10 for $(\sqrt[3]{125})^{2}$ or $\sqrt[3]{125}=5$ or $125^{2}=15625$ or $\sqrt[3]{125^{2}}$ cao
34		Proof to reach $\frac{24}{55}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	for $100 x=43.636 \ldots(43 . \dot{6} \dot{3})$ or $10 x=4.3636 \ldots(4 . \dot{\delta} \dot{6})$ and $1000 x=436.36 \ldots .(436 . \dot{3} \dot{6})$ (dep) for finding difference that would lead to a terminating decimal for completing algebra to reach $\frac{24}{55}$
35	$\begin{aligned} & \frac{6-\sqrt{8}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1} \\ & =\frac{6 \sqrt{2}+6-\sqrt{8} \sqrt{2}-\sqrt{8}}{2-1} \\ & =6 \sqrt{2}+6-4-2 \sqrt{2} \end{aligned}$	$2+4 \sqrt{2}$	M1 M1 A1	for correct first step eg multiplies numerator and denominator by $\sqrt{2}+1$ condone missing brackets (dep) for expansion of numerator with 4 terms correct with or without signs or 3 out of exactly 4 terms correct for $2+4 \sqrt{2}$ oe or for stating $a=2$ and $b=4$

Question	Working	Answer	Mark	Notes
36		$2 \times 2 \times 2 \times 7$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for complete method to find prime factors; could be shown on a complete factor tree with no more than 1 arithmetic error accept $2^{3} \times 7$
37	$\begin{gathered} 21840 \\ 1638 \\ 23478 \end{gathered}$ 500 40 6 40 20000 1600 240 3 1500 120 18$\begin{aligned} & 20000+1600+240+1500+ \\ & 120+18=23478 \end{aligned}$	234.78	M1 A1 A1	for complete method with relative place value correct including addition of all the appropriate elements of the calculation e.g. two lines of $1^{\text {st }}$ method, internal numbers of grids, or complete structure shown of partitioning methods for digits 23478 (ft dep M1) for correct placement of the decimal point into their final answer
38 (a) (b)		$\begin{gathered} 0.00000797 \\ 6.3 \times 10^{7} \end{gathered}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	```cao for partial calculation involving powers of 10 e.g. \(0.63 \times 10^{5--3}\) or \(6.3 \times 10^{n}\) where \(n \neq 7\) or for \(n \times\) \(10^{8}\) or for 63000000 cao```
39 (a) (b)		$\frac{1}{9}$ $\frac{16}{25}$	M1 A1 M1 A1	for showing a method using either reciprocal or square root e.g. $\frac{1}{n}$ or 9 seen cao Accept $\pm \frac{1}{9}$ or 0.1 recurring for showing cube root of 64 as 4 and the cube root of 125 as 5 or $\frac{16}{n}(n \neq 25)$ or $\frac{n}{25}(n \neq 16)$ or an intention to find the cube root and square. cao Accept 0.64

Question	Working	Answer	Mark	Notes
(a) (b)		$3.5 \text { to } 4.5$	M1 M1 A1 C1	substitution into formula $\frac{1}{3} \pi r^{2} h$ of chosen values for r and V (accept $r=5.13$ and $\left.V=98\right)$ and starts rearrangement e.g. multiplies by 3 , divides by π or divides by r^{2} (both sides) uses estimates in calculation e.g. $\frac{3 \times 100}{3 \times 25}$ (or in rearranged formula) or $\frac{12}{\pi}$ arrives at a single value from estimate in the range 3.5 to 4.5 ft e.g. more since number in numerator goes up; numbers in denominator go down.

Question	Working	Answer	Notes
41		32.968	M1 for correct method (condone one error) A1 for digits 32968 A1 $\quad \mathrm{ft}(\operatorname{dep} \mathrm{M} 1)$ for correct placement of decimal pt
42		2.7×10^{4}	```M1 For evidence of a correct method eg. \(27 \times 10^{-4+7}\) A1```
43 (a) (b)		$\begin{gathered} 8 \\ \frac{25}{4} \mathrm{oe} \end{gathered}$	B1 M1 for correct first step A1
44 (a) (b)		2.5×10^{24} Under-estimate	P1 process to estimate or divide P1 a complete process eg. $\left(1 \times 10^{3}\right) \div\left(4 \times 10^{-22}\right)$ A1 C1 ft from (i) Eg. under estimate as number rounded up but in denominator of fraction
45		Given result	C1 Correct first step towards simplifying expression eg. $\frac{\sqrt{2}}{\sqrt{2}+1}$ C1 Correct step to rationalise denominator C1 Conclusion to given result

Question	Working	Answer	Notes
46 (a) (b)		$\begin{aligned} & 5.7 \times 10^{26} \text { to } \\ & 6 \times 10^{26} \\ & \text { explanation } \end{aligned}$	B1 uses estimates eg 1.9 or 2 M1 process of multiplication eg 0.57×10^{27} or 2×0.3 A1 between 5.7×10^{26} and 6×10^{26} C1 eg overestimate a number is rounded up
47		25	B1 cao
48		$\sqrt{31}$	M1 expands brackets eg $36+6 \sqrt{5}-6 \sqrt{5}-\sqrt{25} \quad(=31)$ M1 rationalises the denominator eg using $\sqrt{ } 31$ with numerator $\&$ denominator A1 for $\sqrt{ } 31$

Question	Working	Answer	Notes
$49 \quad \text { a }$ b		$7 \frac{1}{2}$ $\begin{gathered} 5 \frac{1}{4}+6 \frac{2}{3} \text { or } \\ 5 \frac{2}{3}+6 \frac{1}{4} \end{gathered}$	M1 $\frac{9}{4} \times \frac{10}{3}$ oe M1 $\frac{90}{12}$ oe A1 $7 \frac{1}{2}$ B1 $5 \frac{1}{4}+6 \frac{2}{3}$ or $5 \frac{2}{3}+6 \frac{1}{4}$
50		4-4.5	B1 Rounds appropriately using two of 5, 2 or 7 M1 $\sqrt{19}$ A1 4-4.5
51		Completes reasoning	```M1 Expansion of \((4-\sqrt{3})(4+\sqrt{3})\) with at least 3 terms out of 4 correct or \(4^{2}-\sqrt{3} \times \sqrt{3}\) C1 for \(\sqrt{13}\) from correct working```
52 a b c		200 3 -2	B1 200 or 2×10^{2} B1 $\quad 12$ and $\frac{1}{4}$ A1 3 cao M1 $81=3^{4}$ or $\frac{1}{81}=3^{-4}$ A1 cao

$\Gamma \underset{\text { EXPERT }}{\text { EUITION }}$

Question	Answer	Mark	Mark scheme	Additional guidance
53	12	M1	for a correct factor tree for either 60 or 84 with no more than one arithmetic error or for listing factors of 60 or 84 , at least 4 correct for either (with no more than 1 incorrect in either list), could be in factor pairs or for the prime factors of $60(2,2,3,5)$ or $84(2,2,3,7)$	Condone the use of 1 in any factor tree 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 84: $1,2,3,4,6,7,12,14,21,28,42,84$
		A1	for 12 or $2 \times 2 \times 3$ oe SC B1 for answer of 4 or 6 , if M0 scored	2,2,3 is not enough, it must be a product
	120	M1	for a correct factor tree for either 24 or 40 with no more than one arithmetic error or for at least 3 multiples of both 24 and 40 (can include 24 and 40) or for the prime factors of either $24(2,2,2,3)$ or $40(2,2,2,5)$ or for a common multiple from their lists $(\neq 120)$	Condone the use of 1 in any factor tree $24: 24,48,72,96,120, \ldots$ 40: 40, 80, 120, ... For the list not containing 120, accept the first 3 correct multiples or one error in the first 4 multiples
		A1	for 120 or $2 \times 2 \times 2 \times 3 \times 5$ oe	
54	192000	M1	for $16 \times 120 \times 100 \mathrm{oe}$	
		A1		

Question	Answer	Mark	Mark scheme	Additional guidance
58	127.5 and 128.5	B1 B1	for 127.5 in the correct position for 128.5 in the correct position	Accept 128.49 or $128.499 \ldots$
59	4.56×10^{-2}	M1 A1	for $0.000000342 \div 0.0000075$ OR for 0.0456 oe eg 0.456×10^{-1} or 45.6×10^{-3} or $\frac{57}{1250}$ OR for an answer of 4.56×10^{n} cao	
60	7	M1 A1	method to find number of combinations, eg 19×25 oe $(=475)$ or for $3325 \div 19(=175)$ or $3325 \div 25(=133)$ cao	
61	160 (supported)	B1 M1 A1 C1	stating bound of 10.85 or 10.95 using both UB and LB to work out value of d eg $[\mathrm{UB} \text { of } c]^{3} \div 8$ and $[\mathrm{LB} \text { of } c]^{3} \div 8$ or gives a bound of $159.66 \ldots$ from correct working or gives a bound of 164.11... from correct working for 159.66... and 164.11... from correct working for 160 from $159.66 \ldots$ and $164.11 \ldots$ with a supporting reason eg "since both UB and LB round to 160 "	Accept $10.94 \dot{9}$ or 10.9499 ... for 10.95 $\begin{aligned} & 10.9<\mathrm{UB} \leq 10.98 \\ & 10.85 \leq \mathrm{LB}<10.9 \end{aligned}$ Accept bounds rounded or truncated to at least 4 sig fig

Question	Answer	Mark	Mark scheme	Additional guidance
62	8.3 and 8.4	B1	for 8.3 in the correct position	
63		B1	for 8.4 in the correct position	
			Accept 8.39 or $8.399 \ldots$	
	(b)	5.62×10^{-3}	B1	cao
	B1	cao		

$\tau \underset{\text { EXPERT }}{\text { TUITION }}$

Question	Answer	Mark	Mark scheme	Additional guidance
$64 \quad \text { (a) }$ (b)	$\begin{gathered} 8.623 \times 10^{-5} \\ 7.44 \times 10^{6} \end{gathered}$	B1 M1 A1	```cao for \(\frac{3200+0.051}{0.00043}\) or \(\frac{3200.051}{0.00043}\) or performs an operation eg shows 163.2, \(7441860.5,118.6(\ldots)\) or an answer or \(7.44(\ldots) \times 10^{n}\) where \(n \neq 6\) or \(7441979(\ldots)\) or an answer of \(7.4 \times 10^{6}\) for \(7.44(1979 \ldots) \times 10^{6}\)```	7441979.0689... If a correct answer is shown in working and then rounded incorrectly, award full marks. Answer need only be given correctly to 3 sig fig; if following digits are incorrect ignore them.
65	$7 \leq N<8$	M1 A1	for identifying the key numbers 7 and 8 cao	Ignore any inequality symbols used at this stage Accept 7.9 (recurring) for 8 as shown by 7.999 or $7.9 \ldots$ or recurring notation (or words)
66	1335	M1 M1 C1	for one correct procedure eg $9 \times 15(=135)$ or $15 \times 8(=120)$ or $9 \times 15 \times 8(=1080)$ for all three correct products eg " 135 ", " 120 ", " 1080 " or $9 \times 15,15 \times 8,9 \times 15 \times 8$ oe for showing the three correct products added eg $135+120+1080$	Ignore additional products. Only these three products must be identified. There is no need to indicate summing at this stage. There is no need to show the three products sum to 1335

Question	Answer	Mark	Mark scheme	Additional guidance
67 (a) (b)	280 60	M1 A1 B1	for listing at least 3 multiples of both 40 and 56 OR finds the prime factors of both 40 and 56 cao 60 or $2^{2} \times 3 \times 5$ oe	40, 80, 120, ... 56, 112, 168, ... OR 2,2,2,5 and 2,2,2,7 $2^{2}, 3,5$ not enough ie must be a product
$68 \quad \text { (a) }$ (b)	explanation explanation	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \end{aligned}$	for a correct explanation, eg $\sqrt{3} \times-\sqrt{3}=-3$, not 3 for correct explanation, eg $\sqrt{12}=2 \sqrt{3}$, not $3 \sqrt{2}$	
69	0.43	B1 P1 P1 A1 C1	for one correct bound for mass or length eg 1967.5 or 1972.5 or 13.15 or 15.95 or 21.65 or 13.25 or 16.05 or 21.75 for a correct process to find a bound for the volume, eg $13.15 \times 15.95 \times 21.65(=454(0.925125))$ or $13.25 \times 16.05 \times 21.75(=462(5.409375))$ for a correct process to find a bound for density, eg [mass LB] \div "462(5.409375)" (=0.425(367755)) where $1965 \leq$ mass LB < 1970 or [mass UB] \div " $454(0.925125) "(=0.434(3828506))$ where $1970<$ mass UB ≤ 1975 for both correct bounds, 0.425(367755) and 0.434(3828506) (dep on A1) for a correct statement on degree of accuracy e.g. UB and LB both round to 0.43 to 2 decimal places or 2 significant figures	Can work in any units Accept volumes truncated or rounded to at least 3 sig fig Accept densities truncated or rounded to at least 3 sig fig Accept bounds truncated or rounded to at least 3 sig fig At this point correct units must be used Must be 0.43 not 0.4

Question	Working	Answer	Mark	Notes
70 (a) (b)		$2.7560 \ldots$ 2.76	M1 A1 B1	for $1.0654(059 \ldots), 0.1402(633 . .),. 7.5957(541 . .),$.2.756 truncated or rounded to no less than 2dp for $2.7560(\ldots$. for 2.76 ft from (a)
71 (a) (b)		No with reason 66	C1 M1 A1	for "no" with reason, eg Tracey should multiply 8 and 7 for starting a method to find number of games played, eg 12×11 (= 132) or sum of integers from 1 to 11 cao

Question	Working	Answer	Mark	Notes
72		$4.755 \leq n<4.765$	$\begin{array}{r} \text { B2 } \\ \text { [B1 } \end{array}$	for $4.755 \leq n<4.765$ for 4.755 or 4.765 or 4.7649]
73 (a) (b) (c)		Jupiter $\begin{gathered} 4.5388 \times 10^{24} \\ \text { Yes } \\ \text { (supported) } \end{gathered}$	B1 B1 M1 A1	for Jupiter (accept 1.898×10^{27}) for 4.5388×10^{24} oe (e.g. 45.388×10^{23}) for $\left(4.35 \times 10^{9}\right) \div\left(4.14 \times 10^{7}\right) \quad(=105(.07 .)$. or $\left(4.14 \times 10^{7}\right) \times 100\left(=4.14 \times 10^{9}\right)$ or $\left(4.35 \times 10^{9}\right) \div 100 \quad\left(=4.35 \times 10^{7}\right)$ for Yes with correct supporting evidence
74			M1 M1 C1 M1 M1 C1	for the start of a method to convert 0.22 .. to a fraction, eg10y $=2.22$.. or $(y=) \frac{2}{9}$ for the start of a method to convert $0.13636 \ldots$ to a fraction, $10 x=1.3636$. or $100 x=13.6363 \ldots$ or $1000 x=136.3636$. . or $(x=)_{-} \frac{13.5}{99}$ or $(x=) \frac{135}{990}$ for correct arithmetic and concluding the proof OR for $0.1 \dot{3} \dot{6} \times 0 . \dot{2}=0 . \dot{0} \dot{3}(=z)$ for complete method to find two appropriate recurring decimals the difference of which is a rational number, eg. $100 z=3.0303 \ldots,(z=) 0.0303 \ldots$ or $\frac{3}{99}$ for correct arithmetic and concluding the proof

Question	Working	Answer	Notes
77 (a) (b)		$\begin{gathered} 0.4 \\ 0.586 \end{gathered}$	B1 For 0.4 oe M1 for $" 3.48207 \ldots . . " \div 17.34$ or $3.48207 \ldots . \div " 17.34 "$ or $0.200811 \ldots$ for 0.585 to 0.586 A1
78		1.5	```for any correct bound clearly identified, eg. \(99.65 \rightarrow x \rightarrow 99.75\) or \(66.5 \rightarrow y \rightarrow 67.5\) M1 (dep on B1) for method to find UB, eg. "99.75" \(\div\) " 66.5 " A1 for 1.5```

Question	Working	Answer	Notes
$79 \quad \text { (a) }$ (b)	25×24 $\begin{array}{\|l} 12 \times 10 \times 11 \\ 10 \times 12 \times 9 \\ 1320+1080 \end{array}$	600 2400	P1 for process to find number of ways A1 cao P1 for process to find number of lists with boy then girl then boy or the number of lists with girl then boy then girl P1 for complete process to find the total number of lists A1 cao
$\begin{array}{ll} \hline 80 & \text { (i) } \\ & \text { (ii) } \end{array}$		$\begin{aligned} & \hline 200 \\ & 5.6 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \text { cao } \\ \text { B1 } & \text { For 5.6(2...) } \end{array}$
81	$\sqrt{8.35^{2}-6.05^{2}}$	5.754997828	B1 for finding bounds of one measurement,8.25 $8.35,6.05$ or 6.15 P1 for process of choosing and using correct bounds P1 for process of Pythagoras' rule with correct bounds A1 for 5.754(997...)

Question	Answer	Mark	Mark scheme	Additional guidance
82 (a) (b) (c)	$\begin{aligned} & 450000 \\ & 7 \times 10^{-3} \\ & 4.73 \times 10^{3} \end{aligned}$	B1 B1 M1 A1	cao cao for 4730 oe or for 4.73×10^{n} where $n \neq 3$ cao	
83 (a) (b)	4 Statement	$\begin{aligned} & \text { P1 } \\ & \text { A1 } \\ & \text { C1 } \end{aligned}$	$12 \times 5 \div 15$ cao Acceptable examples it could take more time it could take less time it could take more or less time it would take longer if they worked at a slower rate Not acceptable examples the time will be less as there are more people if the rate at which the 15 people work changes it would have taken longer it would take less time	
84	6.35, 6.45	B1 B1	for 6.35 in the correct position for 6.45 in the correct position	Accept 6.449 oe or $6.4499 . .$. oe

T EXPERT
 TUITION

Question	Answer	Mark	Mark scheme	Additional guidance
85	9.35, 9.45	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	for 9.35 in the correct position for 9.45 in the correct position	Accept 9.449ं oe or 9.4499...oe
86	Proof	M1 A1	for $10 \mathrm{x}=7.333 \ldots$ (7.3) and for finding difference that would lead to a terminating decimal for completing algebra to reach $\frac{11}{15}$	100x and 1000x, etc could also be used
87 (a) (b)	3.0×10^{9} 4.5×10^{-11}	P1 A1 P1 A1	for correct process, eg $10^{5} \times 365 \times 81$ or for a correct answer not written in standard form, eg 2956500000 or $2.9(565) \times 10^{n}$ where $n \neq 9$ oe for an answer in the range 2.8×10^{9} to 4.0×10^{9} for correct process, eg $\frac{90}{2 \times 10^{12}}$ or for correct answer not written in standard form, eg 45×10^{-12} or 0.45×10^{-10} or 4.5×10^{n} where $n \neq-11$ cao	Values may be rounded. Allow 350, 360, 366, 370, 400 and 80, 100 Allow $90 \div 2 \times 10^{12}$

Question	Answer	Mark	Mark scheme	Additional guidance
88	6.495190528	B1	for 11.25 or 11.35	
M1	use $\mathrm{a}^{2}+\mathrm{a}^{2}+\mathrm{a}^{2}$ oe for the square of the length of a diagonal			
M1		for writing an equation to find the length of a side, eg $\mathrm{a}^{2}+\mathrm{a}^{2}+\mathrm{a}^{2}=[\mathrm{LB}]^{2}$ where $11.25 \leq \mathrm{LB}<11.3$ oe for an answer in the range 6.49 to 6.50	If the answer is given in the range 6.49 to 6.5 without supportive evidence award 0 marks.	
89	98^{91}	B1	cao	Must be clear and unambiguous

「 EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
90 (a) (b)	$157.668(255)$ 157.7	M1 A1 B1	for 836.4 or 5.304(809139) or 28.141 or a truncated or rounded version of 157.668255 to no less than 3 sf for 157.668(255) ft from part (a) provided answer to (a) has at least 5 sf	Answer must be given to at least 3 decimal places rounded or truncated Accept a clear indication of the decimal point. Check first 3 decimal places only
91 (a) (b) (c)	$\begin{gathered} 3.246 \times 10^{7} \\ 0.00496 \end{gathered}$ No with explanation	B1 B1 C1	cao cao No and explanation that B is bigger as the power of 10 is bigger. Acceptable examples She is incorrect as 10^{8} is smaller than 10^{9} No, because B has more digits than A No, A is millions but B is billions No, if you subtract A from B the answer is positive (but if you subtract B from A the answer is negative) $A=621200000, B=4730000000$, B is bigger No because she did not take into account standard form No as when you find the ordinary number B is greater than A Not acceptable examples Yes... $\mathrm{A}=5$ zeros after the number where as $\mathrm{B}=7$ zeros after the number No as 4.73×10^{9} is one more than 6.212×10^{8} 6.212 is to the power of 8 and 4.73 is to the power of 9 so there is an extra digit Asma is wrong because she has more numbers behind the decimal point which means that it will be bigger than A No B has more zeros	Decision eg "No" may be seen by the question. "She is incorrect" is equivalent to "no"

Question	Answer	Mark	Mark scheme	Additional guidance
92	0.319	M1 A1	for partial method eg $1.70\left(499 \ldots\right.$) or 16.74 or $\frac{837}{50}$ or $0.101(8516 \ldots)$ or 0.102 or 0.32 for $0.319(1419 \ldots$...)	Accept 0.319 or better. Condone incorrect digits after the 0.319 ; isw incorrect rounding if $0.319(1419 \ldots)$ is shown in working.
(a) (b)	130 Explanation	P1 A1 C1	for process to divide eg $\left(3.9 \times 10^{7}\right) \div\left(3 \times 10^{5}\right)$ cao Explanation referring to the time Acceptable examples The time will be more It will take longer The answer will be bigger Not acceptable examples The answer will be wrong The answer will be different	Condone missing brackets Accept 1.3×10^{2}
94	Explanation	C1	for explanation eg needs to find 4th root or gives the correct answer of 2.828... Acceptable examples: He needs to find $\sqrt[4]{64}$ It should be 2.8 ..(or $2 \sqrt{2}$) It is not asking for $64 \div 4$, it is asking what number to the power of $4=64$ $64^{\frac{1}{4}}$ means the fourth root not a quarter of 64 $64^{\frac{1}{4}}$ means square root and square root again, not divide by 4 Not acceptable examples: It should be 2 The expression is 64 to the power of $\frac{1}{4}$ $64^{\frac{1}{4}}$ is not a $\frac{1}{4}$ of 64	

Question	Answer	Mark	Mark scheme	Additional guidance
95	81.0662	M1	for one of 26.15 or 26.25 or 4.25 or 4.35	Accept 26.249் for 26.25 and $4.34 \dot{9}$ for 4.35
		M1	for a correct process to find the upper bound for D [UB of $u]^{2} \div[2 \times$ LB of $a]$ eg $\frac{26.25^{2}}{2 \times 4.25}$ where $26.2<$ UB of $u \leq 26.25$ and $4.25 \leq$ LB of $a<4.3$	Award for $\frac{26.25^{2}}{4.25}$
		A1	for answer given in the range 81.0661 to 81.0662 from correct working	
	80	B1	for 80 ft answer to (a) with 78.6003	
	explanation	C1	for explanation relating to the upper bound found in (a) Acceptable examples bounds agree when rounded to 80 bounds agree to nearest 10 Not acceptable examples 80 79.83325 rounded to nearest tenth	

Question	Answer	Mark	Mark scheme	Additional guidance
96 (a) (b)	7360 0.1077981356	B1 B2 (B1	```cao for \(0.1077(981 \ldots)\) for 5.74(45626...) or 53.29 or 0.11 or 0.107 or 0.108)```	Answer must be given to at least 4 decimal places rounded or truncated Accept a clear indication of the decimal point. Check first four decimal places only
97	2.7 with statement	B1 B1 P1 A1 C1	for 179.5 or 180.5 or 180.4999... for 486.5 or 487.5 or 487.4999... for a correct process to find a bound for average speed, eg [upper bound of distance] \div [lower bound of time] where $487<[\mathrm{UB}$ of distance] ≤ 487.5 and $179.5 \leq[\mathrm{LB}$ of time] < 180 or for [lower bound of distance] \div [upper bound of time] where $486.5 \leq[$ LB of distance $]<487$ and $180<[\mathrm{UB}$ of time] ≤ 180.5 (dep on all previous marks) for $2.695(2 \ldots)$ and $2.715(8 \ldots$) with both values clearly coming from working with correct values for 2.7 from $2.695 \ldots$ and $2.715 \ldots$ and statement that both LB and UB round to 2.7	Accept bounds truncated or rounded to at least 4 sig fig

Question	Answer	Mark	Mark scheme	Additional guidance
98	4.52×10^{3}	M1 A1	for 2.04.... $\times 10^{7}$ oe eg $2.04 \ldots \times 10^{-5} \div 10^{-12}$ or $20.4 \ldots \times 10^{6}$ or 204(08163.27) or for correct value of T, 4517.(53....), not written in standard form, eg 4520 for answer in the range 4.51×10^{3} to 4.52×10^{3} (SC B1 for $6.32 \ldots \times 10^{-1}$)	May be given correct to 3 sig figs or more
99	10	P1 P1 A1	for start to a process to find the LCM of 20, 45 and 120 ($=360$), eg $45=3 \times 3 \times 5$ or $20=2 \times 2 \times 5$ or $120=2 \times 2 \times 2 \times 3 \times 5$ or writes down at least 3 multiples of 45 and 120 (dep) for a process to find number of times/hour using their LCM, eg $3600 \div 360$ or $3600 \div 720$ for 10 or 11	Could be presented as complete prime factor trees for 45 or 120 Must use a common multiple. Working may be in minutes.
100	240	M1 A1	for start to method to find total number of matches, eg 16×15 or $16^{2}-16$ or $16 \times 15 \times 2(=480)$ or $\frac{16 \times 15}{2}(=120)$ cao	Credit complete listing strategies

Question	Working	Answer	Mark	Notes
101 (a) (b)		$\begin{gathered} 0.625 \\ 9.75 \leq x<9.85 \end{gathered}$	B1 B2 [B1	cao for $9.75 \leq x<9.85$ for 9.75 or 9.85 (or $9.84 \dot{9}$)]
102		0.0007452	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	digits 7452 seen cao
103		Yes and correct working	B1 P1 A1	for 147.5 or 148.5 or $148.4999 \ldots$ or 11.75 or 11.85 or 11.84999... substitutes $11.8<\mathrm{UB} \leq 11.85$ and $147.5 \leq \mathrm{LB}<148$ in the formula to work out petrol consumption for 'Yes' and 8.03(3898305...) from correct working

Question	Working	Answer	Mark	Notes
104		No (supported)	$\begin{aligned} & \text { P1 } \\ & \text { C1 } \end{aligned}$	Process to find number of rose trees e.g. $215 \div 17(=12.647 \ldots$...) or show number of choices with 12 and 13 eg $17 \times 12=204$ and $17 \times 13=221$ No with interpretation that 12.6 .. is not a whole number or a whole number of plants must be bought or number of plants would have to be between 12 and 13 which is not possible
105 (a)		No (supported)	P1 P1 P1 C1	for 265 or 275 or 274.999... or 107.5 or 112.5 or 112.4999... process to find $\frac{d}{t}$ where $270<d \leq 275$ and $107.5 \leq t<110$ oe for process to work in consistent units of time eg $\frac{d}{t} \times 60$ or $t \div 60$ where $265 \leq d \leq 275$ and $107.5 \leq t<110$ oe or $160 \div 60$ (= 2.666 ..) Conclusion supported with correct figure(s) given eg No and 153(.488..) or No and 2.66 to 2.7 and $2.5(581 .$.$) from correct working$
(b)		Statement	C1	e.g. Less distance in the same time so (max) speed would drop

Question	Working	Answer	Notes
$\mathbf{1 0 6}$		B1	
$\mathbf{1 0 7}$ (a)	Number of men possible is 17 Number of women possible is 26 Each man can be paired with 26 different women 17×26	442	P1 Process to find number of combinations
(b)		Ben with reason	C1

Question	Working	Answer	Notes
108		$\begin{gathered} 12.5 \leq \mathrm{L}< \\ 13.5 \end{gathered}$	$\begin{aligned} & \text { B1 } 12.5 \\ & \text { B1 } 13.5 \text { or } 13.4 \end{aligned}$
109		168	M1 product of 14 and 12 A1 cao
110 (a) (b)		Number of errors Decision	P1 $1000000 \div 256$ oe A1 3906 or 3907 or 3900 or 3910 or 4000 from correct working C1 Decision and supporting statement Eg no 'model' never zero or yes cannot have a part error Note just yes or no will score zero
111 (a) (b)		$\begin{gathered} 4.23 \times 10^{-4} \\ 45000 \end{gathered}$	B1 B1

Question	Working	Answer	Notes	
$\mathbf{1 1 2}$		$7.15 \leq \mathrm{x}<7.25$	B1 B1	for 7.15 and 7.25 cao
$\mathbf{1 1 3}$		proof	M1	for finding two correct recurring decimals that when subtracted would result in a terminating decimal or integer with intention to subtract eg $\mathrm{x}=0.31818 \ldots, 100 \mathrm{x}=31.81818 \ldots$. fully correct proof

Question	Working	Answer	Mark	Notes
114 (a)		5.4×10^{6}	1	B1 cao
(b)		0.00032	1	B1 cao
(c)		6.3×10^{32}	2	$\begin{aligned} & \text { M1 for } 630 \times 10^{30} \text { oe or figures } 63 \text { with } \times 10^{n} \\ & \text { A1 for } 6.3 \times 10^{32} \text { or } 6.30 \times 10^{32} \end{aligned}$
115		17.6(0)	4	M1 $18 \times 6.45(=116.1(0))$ or $18 \times 645=(11610)$ M1 for $18 \times 6.45-98.50$ in the correct order but units may not be consistent A1 for digits 1760 A1 (dep on M2) for correct placement of decimal point after subtraction (of appropriate values)
116		44-56	2	B2 for 44-56 (B1 for 1000 or 900 or 20 or 18 or 19, unless it is clear these have not come from estimation)
117		7×10^{8}	2	M1 for $7 \times 10^{n}, \mathrm{n} \neq 8$ or $\mathrm{a} \times 10^{8}, \mathrm{a} \neq 7$ or 700000000 or 0.7×10^{9} A1 cao

Question	Working	Answer	Mark	Notes
$\mathbf{1 1 8}$ (a)		$2 \frac{4}{5}$	3	M1 for writing as improper fractions eg $\frac{6}{5}$ or $\frac{7}{3}$

\(\left.\begin{array}{|c|c|c|c|l|}\hline Question \& Working \& Answer \& Mark \& Notes

\hline \mathbf{1 1 9} (i) \& \& 19.44 \& 2 \& B1 cao

\& \& 19440 \& B1 cao\end{array}\right]\)| (ii) |
| :--- |

Question	Working	Answer	Mark	Notes
121	$\begin{aligned} & 40,80,120 \\ & 15,30,45,60,75,90 \text {, } \\ & 105,120 \end{aligned}$ $\begin{aligned} & 40=2 \times 2 \times 2 \times 5 \\ & 15=3 \times 5 \end{aligned}$	3 and 8 or any multiple of 3,8	3	M1 for multiples of both 40 and 15 (at least 2 of each shown but condone errors if intention is clear) or for 40×15 M1 (dep on M1) for a complete method to find a common multiple of 40 and 15, eg. 120, 240, 600 condoning one arithmetic error in any lists of multiples shown A1 for 3,8 or any multiple of 3,8 OR M1 for factors 2,2,2,5 and factors 3,5 M1 (dep on M1) for a complete method to find a common multiple of 40 and 15 A1 for 3,8 or any multiple of 3,8

Question		Working	Answer	Mark	Notes
122			Proof	3	M1 for ($x=$) 0.04545(...) or $1000 x=45.4545(\ldots)$, accept $1000 x=45 . \dot{4} \dot{5}$ or $100 x=4.54545(\ldots)$, accept $100 x=4.5 \dot{4}$ or $10 x=0.4545(\ldots)$, accept $10 x=0 . \dot{4} \dot{5}$ M1 for finding the difference between two correct, relevant recurring decimals for which the answer is a terminating decimal A1 (dep on M2) for completing the proof by subtracting and cancelling to give a correct fraction eg $\frac{45}{990}=\frac{1}{22}$ or $\frac{4.5}{99}=\frac{1}{22}$
123	(a) (b) (c)		$\begin{gathered} \frac{1}{8} \\ 1.5 \\ 3 \end{gathered}$	1 2	B1 for $\frac{1}{8}$ oe B1 for 1.5 oe M1 for $\sqrt{ } 12 \times \sqrt{ } 12-\sqrt{ } 12 \times \sqrt{ } 3-\sqrt{ } 3 \times \sqrt{ } 12+\sqrt{ } 3 \times \sqrt{ } 3$ or $\sqrt{ } 144-\sqrt{ } 36-\sqrt{ } 36+\sqrt{ } 9$ oe. with no more than one sign error A1 cao OR M1 for writing $(\sqrt{ } 12-\sqrt{ } 3)$ as $(2 \sqrt{ } 3-\sqrt{ } 3)(=\sqrt{ } 3)$ A1cao

Question		Working	Answer	Mark	Notes
124	(i) (ii) (iii)		$\begin{gathered} 3484 \\ 34.84 \\ 670 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	B1 cao B1 cao B1 cao
*125			Maths with correct comparative figure(s)	2	M1 for correct method to find figure(s) to compare, eg $\frac{32}{80} \times 100(=40)$ oe or 0.38×80 oe $(=30.4)$ C1 for maths with 40% or 30.4 or $\frac{40}{100}$ and $\frac{38}{100}$ oe
*126		$\begin{array}{r} 554 \\ \times 27 \\ \hline 3878 \\ \mathbf{1 1 0 8 0} \\ \hline 14958 \\ \hline \end{array}$	Yes with correct working	4	M1 for a complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation. A1 for $£ 149.58$ or 42 p (spare) C 1 ft (dep on M1) for correct decision for their total cost OR M1 for a complete grid with not more than 1 multiplication error, addition not necessary M1 (dep) for addition of all the appropriate elements of the calculation A1 for $£ 149.58$ or 42 p (spare) C 1 ft (dep on M1) for correct decision for their total cost PTO

Question		Working	Answer	Mark	Notes
127	(a) (b)		$2 \times 2 \times 3 \times 3 \times 5$ $\begin{gathered} \mathrm{Eg} \\ 6,30 \end{gathered}$	3 2	M1 for a continual prime factorisation (at least two consecutive steps correct) or at least two stages of a factor tree correct M1 for a fully correct factor tree or list $2,2,3,3,5$ A1 for $2 \times 2 \times 3 \times 3 \times 5$ or $2^{2} \times 3^{2} \times 5$ M1 for two numbers with an HCF of 6 or for two numbers with a LCM a multiple of 15 A1 for two numbers with an HCF of 6 and a LCM a multiple of 15 (eg $(6,30),(12,30), \ldots)$ OR M1 for 2×3 and 3×5 or for $2 \times 3 \times 5$ A1 for two numbers with an HCF of 6 and a LCM a multiple of 15 eg $(6,30)(12,30) \ldots$
128		$3-\sqrt{2}+3 \sqrt{2}-\sqrt{2} \sqrt{2}$	$1+2 \sqrt{2}$	2	M1 for 4 terms correct ignoring signs or 3 out of no more than 4 terms correct A1 cao

Question		Working	Answer	Mark	Notes
129	(a) (b)		$\begin{aligned} & \frac{2}{21} \\ & \frac{4}{15} \end{aligned}$	2	B1 for $\frac{2}{21}$ M1 for attempting to use a suitable common denominator with at least one of the two fractions correct A1 for $\frac{4}{15}$ oe
*130		$\begin{gathered} 1.18 \div 4=0.295 \\ (118 \div 4=29.5) \\ 1.74 \div 6=0.29 \\ (174 \div 6=29) \\ \hline 1.18 \div 2=0.59 \\ 1.74 \div 3=0.58 \\ \hline 1.74 \times 4=6.96 \\ \underline{1.18 \times 6}=7.08 \\ 1.74 \times 2=3.48 \\ \underline{1.18 \times 3}=3.54 \\ \underline{1.18 \div 2 \times 3=1.77} \\ \underline{1.74 \div 3 \times 2=1.16} \\ \hline 4 \div 1.18=3.3(\ldots) \\ \underline{6 \div 1.74}=3.4(\ldots) \\ \hline \end{gathered}$	6 pints	3	M1 for division of price by quantity for both bottles or division of quantity by price for both bottles or complete method to find price of same quantity of milk A1 for two correct values that could be used for a comparison C 1 ft (dep on M1) for comparison of their values with a correct conclusion.
*131			Answer in range $35-50$	4	M1 for a method to either find the exact or approximate number of seconds in one day, e.g. $24 \times 60 \times 60(=86400)$ or the number of minutes in 2014 seconds, e.g. $2014 \div 60$ or $2000 \div 60(\approx 30)$ M1 for a correct method to find the number of prizes; eg. ' $24 \times 60 \times 60$ ' $\div 2014$ oe or $60 \div 30$ " $\times 24$ oe B1 for rounding at least one appropriate value in the working to 1 sf , e.g. 24 rounded to 20 or 2014 rounded to 2000 or 86400 rounded to 90000 C1 (dep on M2) for answer in $35-50$ clearly identified

Question		Working	Answer	Mark	Notes
132	(a) (b) (c)		$\begin{gathered} \hline 1 \\ \frac{1}{100} \\ 0.00273 \\ 27.3 \times 10^{-3} \\ 2.73 \times 10^{3} \\ 273 \times 10^{2} \end{gathered}$	1 1 2	B1 cao B1 for $\frac{1}{100}$ or 0.01 M1 for converting all numbers to same form with at least one conversion correct A1 for fully correct order with correct numbers in any correct form (SC B1 if one number incorrectly placed or all 4 numbers listed in reverse order)
133	(a) (b)		$4 \sqrt{3}$	2 2	M1 for $\frac{12}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ A1 for $\frac{12 \sqrt{3}}{3}$ oe with a rational denominator M1 for $\sqrt{ } 2 \times \sqrt{ } 2+\sqrt{ } 2 \times \sqrt{ } 8+\sqrt{ } 8 \times \sqrt{ } 2+\sqrt{ } 8 \times \sqrt{ } 8$ oe A1 cao OR M1 for $(\sqrt{ } 2+2 \sqrt{ } 2)^{2}$ A1cao

Question		Working	Answer	Mark	Notes
134	(i)	$\begin{aligned} & 20,40,60 \\ & 12,24,36,48,60 \end{aligned}$ $\begin{aligned} & 20=4 \times 5=2 \times 2 \times 5 \\ & 12=4 \times 3=2 \times 2 \times 3 \end{aligned}$	3 and 5 or any multiple of 3,5	4	M1 attempts multiples of both 20 and 12 (at least 3 of each shown but condone errors if intention is clear) or identifies 60 or a multiple of 60 M1 (dep on M1) for a division by 20 or 12 or counts up 'multiples' or identifies a common multiple (implied if one answer is correct or answers reversed) A1 cheese slices (packets) 3, burgers (boxes) 5 or any multiple of 3,5 OR M1 for expansion of either 20 or 12 into factors M1 for demonstration that both expansions include 4 (or 2×2) A1 cao for cheese slices (packets) 3, burgers (boxes) 5 B1 for 60 or ft from their correct answer in (i) or ft 'common multiple'
135	(a) (b) (c)	$9 \times 10^{4} \times 3 \times 10^{3}$	$\begin{gathered} \frac{1}{5} \\ \frac{1}{9} \\ 2.7 \times 10^{8} \end{gathered}$	1 1 2	B1 oe B1 cao M1 27×10^{7} oe or $9 \times 3 \times 10^{4+3}$ A1 cao

Question		Working	Answer	$\frac{\text { Mark }}{1}$	Notes
136	(a)		331.705		B1 cao
	(b)		179300	1	B1 cao
137		$\begin{gathered} 5 \mid 525 \\ 5 \mid 105 \\ 3 \mid 21 \\ 7 \end{gathered}$	$3 \times 5 \times 5 \times 7$	3	M1 for continual prime factorisation (at least first 2 steps correct) or first two stages of a factor tree correct M1 for fully correct factor tree or list 3, 5, 5, 7 A1 $3 \times 5 \times 5 \times 7$ or $3 \times 5^{2} \times 7$

Qu	Working	Answer	Mark	Notes
$\begin{aligned} & \text { *140 } \\ & \text { QWC } \end{aligned}$		No + explanation	3	M1 for $500 \times 9 \times 10^{-3}$ oe A1 for 4.5 C1 (dep M1) for correct decision based on comparison of their paper height with 4 OR M1 for $4 \div 500$ oe A1 for 0.008 C1 (dep M1) for correct decision based on comparison of their paper thickness with 0.009 OR M1 for $4 \div\left(9 \times 10^{-3}\right)$ oe A1 for 444(.4...) C1 (dep M1) for correct decision based on comparison of their number of sheets of paper with 500
141	-5, 0.2, 0.5, 1	$-5,5^{-1}, 0.5,5^{0}$	2	M1 for either 5^{-1} or 5^{0} evaluated correctly A1 for a fully correct list from correct working, accept original numbers or evaluated (SC B1 for one error in position or correct list in reverse order)

T EXPERT

Г EXPERT

Question		Working	Answer	Mark	Notes
143			0936	3	M1 for listing $9,18,27,36,45, \ldots$ (at least 3 correct multiples with at most one incorrect) M1 for listing 12, 24, 36, 48, (at least 3 correct multiples with at most one incorrect) A1 for 0936 or 936 (am) OR M1 for listing 9.09 $9.18 \quad 9.27 \quad 9.36$...(at least 3correct times with at most one incorrect) M1 for listing 9.12 9.24 $9.36 \ldots$ (at least 3 correct times with at most one incorrect) A1 for 0936 or 936 (am) OR M1 for $9=3 \times 3$ or $12=2 \times 2 \times 3$ (could be in factor tree) M1 for $9=3 \times 3$ and $12=2 \times 2 \times 3$ (could be in a factor tree) A1 for 0936 or 936 (am) SC B2 for 936 pm or (after) 36 (minutes) on the answer line
144	(a) (b) (c)		$\begin{gathered} 820000 \\ 3.76 \times 10^{-4} \\ 5 \times 10^{8} \end{gathered}$	1 1 2	B1 cao B1 cao M1 for $2.3 \div 4.6 \times 10^{12-3}$ oe or 500000000 or 0.5×10^{9} A1 cao (accept 5.0×10^{8}

Qu	Working	Answer	Mark	Notes
145*		9	4	M1 for $7155-7095$ or 60 seen or 7155×15 (or .15) or 7095×15 (or .15) or 107325 or 106425 or 1073.25 or 1064.25 M1 for ' 60 ' $\times 15$ or $7155 \times 15-7095 \times 15$ [or .15 instead of 15] A1 for 9 or 9.00 or 900 C1 (ft) for answer with correct units (money notation) identified as the answer.
146		600	3	(M2 for $300 \div 0.5$ or 60×10 or 30×20) M1 for at least two of 30,10 and 0.5 or sight of 300 or 60 or 20 A1 for 600-620 but not 601.1(198428...) OR (M2 for $310 \div 0.5$ or 62×10 or 31×20) M1 for at least two of 31,10 and 0.5 or sight of 310 or 62 or 20 A1 for 600-620 but not 601.1(198428...)
147	$\begin{aligned} & 0.38 \times 10^{-1}, 3800 \times 10^{-4}, \\ & 0.038 \times 10^{2}, 380 \end{aligned}$	Correct order	2	M1 changing any one correctly or at least 3 in the correct order (ignoring one) or reverse order A1 for correct order (accept any form)

Question		Working	Answer	Mark	Notes
148	(a) (b)		$\frac{5 \sqrt{2}}{2}$ $8 \sqrt{3}$	2	M1 for $\frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ oe A1 for $\frac{5 \sqrt{2}}{2}$ oe M1 for $2 \times 2+2 \sqrt{3}+2 \sqrt{3}+\sqrt{3} \times \sqrt{3}$ or $(4+4 \sqrt{3}+3)-(4-4 \sqrt{3}+3)$ or $2 \times 2-2 \sqrt{3}-2 \sqrt{3}+\sqrt{3} \times \sqrt{3}$ at least three terms in either correct; could be in a grid. A1 cao OR Difference of two squares M1 for $((2+\sqrt{3})-(2-\sqrt{3}))((2+\sqrt{3})+(2-\sqrt{3}))$ A1 cao

$\Gamma \underset{\text { EXIITION }}{\text { EXPER }}$

Question		Working	Answer	Mark	Notes
149		Acton after 24, 48, 72, 96, 120 Barton after 20, 40, 60, 80, 100, 120 LCM of 20 and 24 is 120 9:00 am +120 minutes OR Acton after 24, 48, 1h 12 m, 1h 36m, 2h Barton after 20, 40, $1 \mathrm{~h}, 1 \mathrm{~h} 20 \mathrm{~m}$, 1h 40m, 2h LCM is 2 hours 9:00 am + 2 hours OR Times from 9:00 am when each bus leaves the bus station Acton at 9:24, 9:48, 10:12, 10:36, 11:00 Barton at 9: 20, 9:40, 10:00, 10:20, 10:40, 11:00 OR $\begin{aligned} & 20=2 \times 2 \times 5 \\ & 24=2 \times 2 \times 2 \times 3 \end{aligned}$ $2 \times 2 \times 2 \times 3 \times 5=120$	11:00 am	3	M1 for listing multiples of 20 and 24 with at least 3 numbers in each list ; multiples could be given in minutes or in hours and minutes (condone one addition error in total in first 3 numbers in lists) A1 identify 120 (mins) or 2 (hours) as LCM A1 for 11:00 (am) or 11(am) or 11 o'clock OR M1 for listing times after 9am when each bus leaves the bus station, with at least 3 times in each list (condone one addition error in total in first 3 times after 9am in lists) A1 for correct times in each list up to and including 11:00 A1 for 11:00 (am) or 11(am) or 11 o'clock OR M1 for correct method to write 20 and 24 in terms of their prime factors $2,2,5$ and $2,2,2,3$ (condone one error) A1 identify 120 as LCM A1 for 11:00 (am) or 11(am) or 11 o'clock
150	(a) (b) (c)		$\begin{gathered} \hline 1 \\ 0.000067 \\ 2.7 \times 10^{14} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao B1 cao M1 for $27 \times 10^{7+6}$ or 27×10^{13} oe or an answer of 2.7×10^{n} where n is an integer or an answer of $a \times 10^{14}$ where $1 \leq a<10$ A1 cao

Question		Working	Answer	Mark	Notes
$\mathbf{1 5 1}$		eg. $x=0.28181 \ldots$ $100 x=28.181 \ldots$	$\frac{31}{110}$	3	M1 for 0.28181(...) or 0.2 + 0.08181(...) or evidence of correct recurring decimal eg. 281.81(...) M1 for two correct recurring decimals that, when subtracted, would result in a terminating decimal, and attempting the subtraction eg. $100 x=28.1818 \ldots, x=0.28181 \ldots$ and subtracting
eg. $1000 x=281.8181 \ldots, 10 x=2.8181 \ldots$ and subtracting					
OR $\frac{27.9}{99}$ or $\frac{279}{990}$ oe					
A1 cao					

T EXPERT
 TUITION

Question	Working	Answer	Mark	Notes
$\mathbf{1 5 5}$		$\frac{528}{167}$	3	B1 for 37.55 or 37.65 or 11.25 or 11.35 or 8.35 or 8.45
				M1 for $\frac{37.65-11.25}{8.35}$ for $\frac{v_{u b}-u_{l b}}{t_{l b}}$ where $37.6<v_{\mathrm{ub}} \leq 37.65$ and
			$11.25 \leq u_{\mathrm{lb}}<11.3$ and $8.35 \leq t_{\mathrm{ub}}<8.4$ A1 for answer in range 3.16 to 3.162 from correct working	

Question	Working	Answer	Mark	Notes
156		1.4091(...)	2	B2 for $1.4091(\ldots)$ (B1 for 2.1025 or 1.492 or $2.397 \ldots$ or 2.398)
*157		large carton with correct calculations	3	M1 for $1.60 \div 125(=0.0128)$ or $2.8 \div 225(=0.0124(4 \ldots))$ or $125 \div 1.60(=78(.125(\mathrm{~g}))$ or $225 \div 2.80(=80(.35 \ldots \mathrm{~g}))$ or any other calculation that could lead to a comparative figure M1 for $1.60 \div 125(=0.0128)$ and $2.8 \div 225(=0.0124(4 \ldots))$ or for $125 \div 1.60(=78(.125(\mathrm{~g}))$ and $225 \div 2.80(=80(.35 \ldots \mathrm{~g}))$ or for calculations that could lead to comparative figures for the cartons C1 for correct comparative figures for both cartons leading to a correctly stated comparison. Accept any other method considered equivalent. Figures may be truncated or rounded as long as their method is clear.
158		17.7(014...)	3	B1 for 7.75 or 7.85 or 5.15 or 5.25 or 62.5 or 63.5 M1 for $\frac{1}{2} \times 7.7 \times 5.15 \times$ in 62.5 A1 for 17.7(0140994...)
159	$\begin{array}{\|l} \hline 400 \div 18=22(.2) \\ 499 \div 20=24(.95) \text { or } 25 \\ 600 \div 26=23(.07 \ldots) \text { (or } \\ \text { equivalent in } £) \\ 18 \div 4=4.5 \\ 20 \div 4.99=4(.008 \ldots) 26 \\ \div 6=4.3(333 \ldots) \\ \hline \end{array}$	18 pack with supporting working	4	M1 for a method that would result in at least two values that could be used to compare two packs M1 for a complete method that would result in values that could be used to compare all three packs A1 for all fully correct figures suitable for comparison C 1 ft (dep on M2) for comparison of their values with a correct conclusion from their figures
160		29.25	3	B1 for one of $14.5,13.5,8.75,8.65$ M1 for " v_{UB} " - " u_{LB} " where $14<$ " $v_{\text {UB }} " \leq 14.5$ and $8.65 \leq " u_{\text {LB }} "<8.7$ A1 for 29.25 from correct working

Question		Working	Answer	Mark	Notes
*161			125 ml	4	M1 for a complete method to find the cost per ml or the number of ml per $£ 1$ for one tube or for a method that results in at least 2 values that can be used to compare 2 tubes M1 for a complete method to find all three equivalent figures A1 3 correct figures suitable for comparison C1(dep on M2) for stating the correct tube size from their calculations
162	(a) (b)		$\begin{gathered} 6.4 \times 10^{8} \\ 5 \times 10^{2} \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao M1 for $3 \div 6 \times 10^{7-4}$ or 0.5×10^{3} or 500 or $30000000 \div 60000$ A1 cao
163	(a) (b)		4.25 $7.20-7.21$	1 3	B1 cao B1 4.35 or 0.35 M1 for $4.35+\frac{1}{0.35}$ A1 7.2(0)-7.21 or $\frac{1009}{140}$ from a correct method seen

Question		Working	Answer	Mark	Notes		
$\mathbf{1 6 4}$	(a)		$4.58006(9567)$	2	$\begin{array}{l}\text { M1 for } 1.83 \text { or } 8.381(527307) \text { or } 4.6 \text { or } 4.58 \text { or } 4.580 \text { or } 4.5801 \\ \text { A1 for } 4.58006(9567)\end{array}$		
(b)		4.5801	1	B1 ft provided at least 5 decimal places in (a)		$]$	
:---							
$\mathbf{1 6 5}$							

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: | :--- |

	Working	Answer	Mark	Notes
169		2.15 pm	3	M1 for $240 \div 60(=4)$ M1 for adding at least 3 of the 4 periods of time eg 20 (mins) + " 4 (hrs)" +25 (mins) +30 (mins) $(=5 \mathrm{~h} 15 \mathrm{~min})$ oe or 2.15 without units A1 for 2.15 pm 1415 (h or pm) oe
170	$\begin{aligned} & 12,24,36,48,60,72, \ldots \\ & 8,16,24,32,40,48,56,64 \\ & 72, \ldots \end{aligned}$	25.80	5	M1 for listing at least 3 multiples of each of 12 and 8 or 24 in two lists of multiples or from factor trees M1 (dep) for attempt to find a common multiple of 12 and 8 above $60(=72)$ M1 (dep M2) for method to find the number of boxes and the number of packs $72 \div 12(=6)$ and $72 \div 8(=9)$ M1 for finding the total cost by multiplying numbers by cost and adding eg " 6 " $\times 2.50+$ " 9 " $\times 1.20$ A1 for $25.8(0)$
171		1.875×10^{8}	2	M1 for digits 1875 A1 cao

Question	Working	Answer	Mark	Notes
172 (a) (b)		18.75 20	2 1	M1 for 84 or 4.48 or $\frac{112}{25}$ or 18.7 or 18.8 or 19 or 20 or $\frac{75}{4}$ A1 cao B1 for 20 or ft from their answer to (a) provided (a) is written to 2 or more significant figures
173		19	4	M1 for 130-96(=34) M1 for $73-55(=18)$ M1 for '34' - $9-18$ ' +12 A1 cao OR M1 for 96-55-12 (=29) M1 for $9+29$ ' (=38) M1 for 130-73-'38' A1 cao

Question	Working	Answer	Mark	Notes
*174		Small with correct figures for comparison	4	M1 for one calculation eg $6.5 \div 30(=0.216 \ldots)$ or $8.95 \div 40(=0.22375)$ or $10.99 \div$ $50(=0.2198)$ M1 for all three calculations eg $6.5 \div 30(=0.216 \ldots)$ and $8.95 \div 40(=0.22375)$ and $10.99 \div 50(=0.2198)$ A1 for $0.216(6 \ldots)$ and $0.223(75)$ and $0.219(8 \ldots)$; can be rounded or truncated as long as they remain different C1 (dep on M1) for conclusion ft from three comparable figures [could use different figures relating to $30,40,50$] OR M1 for one calculation eg $6.5 \times 20(=130)$ or $8.95 \times 15(=134.25)$ or 10.99×12 (=131.88) M1 for three calculations eg $6.5 \times 20(=130)$ and $8.95 \times 15(=134.25)$ and $10.99 \times$ $12(=131.88)$ A1 for 130 and $134(.25)$ and $131(.88)$; can be rounded or truncated as long as they remain different C1 (dep on M1) for conclusion ft from three comparable figures eg cost of 600 plants or comparing small and medium and small and large e.g. 120 plants and 150 plants separately] OR M1 for one calculation e.g $30 \div 6.5(=4.615 \ldots)$ or $40 \div 8.95(=4.469 \ldots)$ or $50 \div 10.99(=4.549 \ldots)$ M1 for three calculations e.g. $30 \div 6.5(=4.615 \ldots)$ and $40 \div 8.95(=4.469 \ldots)$ and $50 \div 10.99(=4.549 \ldots)$ A1 for $4.6(15 \ldots)$ and $4.4(69 \ldots)$ and $4.5(49 \ldots)$ can be rounded or truncated as long as they remain different C 1 (dep on M1) for conclusion ft from three comparable figures [or any other calculations leading to comparable figures]
$175 \quad \text { (a) }$ (b)		$\begin{gathered} 0.00078 \\ 9.56 \times 10^{7} \end{gathered}$		B1 cao B1 cao

Qu	Working	Answer	Mark	Notes
176		4.8	4	M1 for 60×60 (=3600) M1 for $15000 \div 20(=750)$ or $20 \div 15000(=0.00133 .$.$) or$ " 3600 " $\div 15000(=0.24)$ or $15000 \div$ " 3600 " ($=4.16 .$. M1 for " 3600 " $\div(15000 \div 20)$ or " 3600 " $\times 20 \div 15000$ oe A1 cao
177	$\begin{aligned} & \text { d: } \mathrm{UB}=54.5 \text { (or } 54.499 \text {), } \mathrm{LB}= \\ & 53.5 \\ & C: \mathrm{UB}=170.5 \text { (or } 170.499 \text {), } \mathrm{LB} \\ & =169.5 \\ & 170.5 \div 53.5 \\ & 169.5 \div 54.5 \end{aligned}$	$\begin{gathered} \hline 3.19 \\ 3.11 . . \end{gathered}$	4	B1 for any one correct bound quoted M1 for $170.5 \div 53.5$ or $169.5 \div 54.5$ A1 for UB = answer in range 3.18 to 3.19 from correct working A1 for LB = 3.11.. from correct working

「 EXPERT

Question		Working	Answer	Mark	Notes
178		$\sqrt{\frac{2.73 \ldots}{0.732 \ldots}}$	1.931851...	2	M1 for 2.73... or 0.732...or 3.73...or 1.931 or 1.932 or 1.93 or $(1+\sqrt{3})$ or $(\sqrt{3}-1)$ or $(2+\sqrt{3})$ or $1.65 \ldots$ or $0.855 \ldots$ A1 for $1.9318(5 \ldots$) SC: B1 for 2.5127(17...)
*179			0.229 because the LB and UB agree to that number of figures	5	B1 for 3.465 or 3.475 or $3.474999 .$. B1 for 8.1315 or 8.1325 or $8.132499 .$. M1 for $\frac{\sqrt{3.475}}{8.1315}$ as UB OR $\frac{\sqrt{3.465}}{8.1325}$ as LB C1 (dep on all previous marks) for $0.2292 \ldots$ and $0.2288 \ldots$ both values must clearly come from working with correct values C1 for 0.229 from $0.2292 \ldots$ and $0.2288 \ldots$ and 'both LB and UB round to 0.229 '

Question	Working	Answer	Mark	Notes
$\mathbf{1 8 0}$	$\frac{\sqrt{20.4}}{6.2 \times 0.48}=\frac{4.5166359}{2.976}$	$1.5176(868)$	2	$\left.\begin{array}{l}\text { B2 for } 1.5176 \ldots \\ (B 1 \text { for sight of } 4.51(66359 . .) \text { or } 4.52 \text { or } 2.97(6) \text { or } 2.98 \text { or } \\ 1.51 \text { or } 1.52 \text { or } 1.518 \text { or } 1.517 \text { or } 1.5177 \text { or } \frac{\sqrt{510}}{5}\end{array}\right)$

Question		Working	Answer	Mark	Notes
181	(a) (b)	$\frac{546.7}{12.5}=$	43.736 40	2	B2 for 43.736 (B1 for 546.7 or $\frac{5467}{10}$ or $\frac{5467}{125}$ or 12.5 or $\frac{25}{2}$ or 43.7 or 43.8 or 43.73 or 43.74 or 40 or 44) B1 for 40 or ft from their answer to (a) provided (a) is written to 2 or more significant figures
182			Farm shop	4	M1 for $12.5 \div 2.5$ (=5) M1 for ' 5 ' $\times 1.83$ or ' 5 ' $\times 183$ A1 for (£) 9.15 or 915(p) C1 (dep on at least M1) for decision ft working shown OR M1 for $12.5 \div 2.5$ (=5) M1 for $9 \div$ ' 5 ' or $900 \div$ ' 5 ' A1 for ($£$)1.8(0) or 180(p) C1 (dep on at least M1) for decision ft working shown OR M1 for $9 \div 12.5(=0.72)$ or $1.83 \div 2.5(=0.732)$ M1 for $9 \div 12.5(=0.72)$ and $1.83 \div 2.5(=0.732)$ A1 for 72(p) and 73.(2)(p) or ($£$)0.72 and ($£$) 0.73(2) C1 (dep on at least M1) for decision ft working shown OR M1 for $12.5 \div 9$ (= 1.388...) M1 for $2.5 \div 1.83$ (= 1.366...) A1 for $1.38 \ldots$ and $1.36 \ldots$ truncated or rounded C1 (dep on at least M1) for decision ft working shown

