EXPERT TUITION

Maths Questions By Topic:

Probability Mark Scheme

Edexcel GCSE (Higher)

ر 0207 060 4494

www.expert-tuition.co.uk

💻 online.expert-tuition.co.uk

🖂 enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec

Paper 1	Page	1
Paper 2	Page	11
Paper 3	Page	24

Old Spec A (Linear)

Paper	1	Page	34
Paper	2	Page	51

Question	Answer	Mark	Mark scheme	Additional guidance
3	Venn Diagram	C1	for one correct region	(0) 4 8 10 16
		C1	for two correct regions	
		C1	for all regions correct	
				Ignore all entries except the region you are marking for each mark
4	$\frac{180}{336}$	P1	for $\frac{3}{7}$ or $\frac{4}{7}$ or $\frac{5}{7}$ as probability for second counter	May be seen in a calculation or on a diagram
		P1	for one correct product eg $\frac{3}{8} \times \frac{5}{7} \times \frac{4}{6} \ (= \frac{60}{336})$ or $\frac{5}{8} \times \frac{3}{7} \times \frac{4}{6} \ (= \frac{60}{336})$ or $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \ (= \frac{60}{336})$	
		P1	for a complete process eg $\frac{3}{8} \times \frac{5}{7} \times \frac{4}{6} + \frac{5}{8} \times \frac{3}{7} \times \frac{4}{6} + \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$	
		A1	oe, eg $\frac{15}{28}$ SC B1 for answer of $\frac{225}{512}$ (replacement)	Accept equivalent fractions, decimals (0.53 or 0.54) or percentages (53% or 54%)

Question	Answer	Mark	Mark scheme	Additional guidance
5	0.42	P1	for appropriate multiplication eg 0.3×0.7 (=0.21) or 0.3×0.1 (=0.03) or 0.3×0.6 (=0.18)	Probabilities could also be given in fraction or percentage form
		P1	(dep) for complete process eg $0.3 \times 0.7 + 0.7 \times 0.3$ or $0.3 \times 0.1 + 0.3 \times 0.6 + 0.6 \times 0.3 + 0.1 \times 0.3$	
		A1	oe	Acceptable equivalents are 42% or $\frac{42}{100}$
				oe

Questi	ion	Answer	Mark	Mark scheme	Additional guidance
6	(a)	0.4, 0.4	P1	for process to find sum of unknown probabilities, eg $1 - 0.2$ (= 0.8)	Award mark for any two probabilities given that sum to 0.8, eg given in the table
			A1	oe	Accept any equivalent fraction or 40%
	(b)	60	P1	for complete process to find total number of cubes, eg 12 \div 0.2 or 12 \times 5 or ("0.4" \div 0.2) \times 12 + ("0.4" \div 0.2) \times 12 + 12	
				OR states $0.1 = 6$ or $0.4 = 24$	
			A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
7	12 red, 9 green	P1	for process to find a relationship between r and g	
			$eg = \frac{g}{1} = \frac{3}{2} \text{ or } \frac{g}{g} = \frac{3}{2}$	
			r+g 7 r 4	
		D1		
		PI	for process to find a second relationship between r and g	
			$eg \frac{g+5}{r+2+r+2} = \frac{0}{12} \text{ or } \frac{g+5}{r+2} = \frac{0}{7}$	
			r+2+g+3 15 $r+2$	
		P1	(dep P2) for start to process of solving pair of equations, eg eliminates	
			one variable from the equations or removes fractions from both	
			equations	
		P1	(dep P3) for complete process to solve equations to find σ or r	
		11	(dep 15) for complete process to solve equations to find g of 7	
		A1	cao	
			OP	
			OK .	
		P1	for two of $3x + 3$, $4x + 2$ and $7x + 5$	
		P1	for $\frac{3x+3}{7} = \frac{6}{12}$	
			7x+5 13	
		P1	(dep P2) for removing fractions from the equation.	
			eg $13(3x+3) = 6(7x+5)$ or $39x+39 = 42x+30$	
		D1	$(1 - \pi D^2)$ for some late manages to call $(12/2 + 2) = (7/2 + 5)$	
		11	(dep P3) for complete process to solve $13(3x+3) = 6(7x+5)$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
8	21	P1	for a relevant probability, eg P(green) = $\frac{x}{2x+3}$ or P(blue) = $\frac{x+3}{2x+3}$	the number of green and blue pens could be $x - 3$ and x or equivalent probabilities must be in an algebraic form in a single variable
		P1	for a relevant product, eg. " $\frac{x}{2x+3}$ " ×" $\frac{x-1}{2x+2}$ " or " $\frac{x+3}{2x+3}$ " × " $\frac{x+2}{2x+2}$ "	
			OR $\left(\left\ \frac{x}{x+3}\right\ \right)^2 + \left(\left\ \frac{x+3}{2x+3}\right\ \right)^2 = \frac{27}{75}$	This is an exception using replacements. No further credit is available
		P1	forms an appropriate equation, eg. $"\frac{x}{2x+3} \times \frac{x-1}{2x+2}" + "\frac{x+3}{2x+3} \times \frac{x+2}{2x+2}" = \frac{27}{55}$	
		P1	(dep P3) process to reduce equation to $ax^2 + bx + c = 0$ eg. $x^2 - 25x + 84 = 0$	
		P1	process to solve quadratic equation eg. $(x - 21)(x - 4) = 0$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
9	0.12	P1	for process to start	Just $1 - 0.2 = 0.8$ is not sufficient for P1
			eg $(1 - 0.2) \div (3 + 17)$ (= 0.04)	
			or $(3 + 17) \div (1 - 0.2)$ oe (= 25)	
			or $(100 - 20) \div (3 + 17)$ (= 4)	
			or 3 × 4 (= 12) and 17× 4 (= 68)	May be seen in a ratio
		P1	full process to find the required probability	
			eg 3 × "0.04" or $\frac{3}{20}$ × (1 – 0.2) oe or 3 ÷ "25" or 3 × "4" ÷ 100	
		A1	oe	0.12 using incorrect probability notation gets P2

Question	Working	Answer	Mark		Notes
:		$\frac{28}{72}$	P1	for $\frac{6}{8}$ or $\frac{2}{8}$ or $\frac{7}{8}$ or $\frac{1}{8}$ oe seen on diag	ram or in a calculation
			P1	for $\frac{7}{9} \times \frac{2}{8}$ or $\frac{2}{9} \times \frac{7}{8}$ or $\frac{14}{72}$ oe	for $\frac{7}{9} \times \frac{6}{8}$ or $\frac{2}{9} \times \frac{1}{8}$ or $\frac{42}{72}$ or $\frac{2}{72}$ or $\frac{44}{72}$ oe
			P1	for $\frac{7}{9} \times \frac{2}{8} + \frac{2}{9} \times \frac{7}{8}$	for $1 - (\frac{7}{9} \times \frac{6}{8} + \frac{2}{9} \times \frac{1}{8})$ or $1 - (\frac{42}{72} + \frac{2}{72})$
				or " $\frac{14}{72}$ " + " $\frac{14}{72}$ " oe	or $1 - "\frac{44}{72}$ " oe
			A1	oe SC B1 for $\frac{14}{81}$ B2 for $\frac{28}{81}$	1

Question	Working	Answer	Notes
;		25	P1 For process to start to solve. Eg use of x and $4x$ or $x/5x$ and $4x/5x$
			P1 process to form equation $eg \frac{x}{5x} \times \frac{x-1}{5x-1} = \frac{6}{155}$
			P1 Processes to eliminate fractions and reduce equation to linear form eg. $155x - 155 = 150x - 30$
			A1

Question	Working	Answer		Notes
32		0.22	P1	begins process of subtraction of probabilities from 1
			A1	oe
33" (a)		Sharif	B1	Sharif with mention of greatest total throws
(b)		No	D1	starts working with proportions
(0)		(average arts d)		Conclusion, compart for David, but not for the next, or refite just David's regults
		(supported)		Conclusion: correct for Paul, but not for the rest, or ref to just Paul s results $1 + (21 + 1) + $
			PI	selects Sharif or overall and multiplies P(heads)×P(heads) eg $\frac{3}{4} \times \frac{3}{4}$
(c)	Tot: H 300	9	Δ1	0e
(0)	T 100	1(111	
	1 100	10		
34		$10x - x^2$	P1	x 10-x x-1 10-x x 9-x
		45		for $\frac{1}{10}$ or $\frac{1}{10}$ or $\frac{1}{9}$ or $\frac{1}{9}$ or $\frac{1}{9}$ or $\frac{1}{9}$ or $\frac{1}{9}$ seen on diagram or in a
				calculation
			P1	for $\frac{x}{x} \times \frac{10-x}{x}$ or $\frac{10-x}{x} \times \frac{x}{x}$ for $\frac{x}{x} \times \frac{x-1}{x+1} + \frac{10-x}{x} \times \frac{9-x}{x}$
				10 9 10 9 10 9 10 9 10 9
			P1	for $\frac{x}{10} \times \frac{10-x}{9} + \frac{10-x}{10} \times \frac{x}{9}$ for $1 - (\frac{x}{10} \times \frac{x-1}{9} + \frac{10-x}{10} \times \frac{9-x}{9})$
			P1	(dep on P3) for beginning to process the algebra
			A1	$10x - x^2$
				oe

Question	Working	Answer	Notes
33" a	$\frac{\frac{1}{6} \times \frac{1}{5} \times 30 \times 5 = 5}{(\frac{5}{6} \times \frac{1}{5} + \frac{1}{6} \times \frac{4}{5} + \frac{1}{6} \times \frac{1}{5}) \times 30 \times 2}$ 30 - 5 - 20	5	 P1 for identifying correct process to find probabilities for winnng scores. May include use of tree diagram or sample space P1 for correct process to find prize money P1 for completing correct process to find profit A1
b		Explanation	C1 for appropriate comment to interpret result eg probability so only likelihood not certainty, other than 30 may play, £5 is small difference.
36		Events independent	C1 Statement that events are independent

Question	Answer	Mark	Mark scheme	Additional guidance
37	0.748	P1 P1	for a process to find a correct probability product for 2 consecutive days, eg. 0.7×0.8 (rain M + T) or 0.7×0.2 (rain M + no rain T) or 0.3×0.6 (no rain M + rain on T) or 0.3×0.4 (no rain M + T) for process to find a correct triple probability product for it raining on Wednesday, eg. $0.7 \times 0.8 \times 0.8$ (rain M + T + W) (= 0.448 or $\frac{56}{125}$ oe) or $0.7 \times 0.2 \times 0.6$ (rain M + no rain T + rain W) (= 0.084 or $\frac{21}{250}$ oe) or $0.3 \times 0.6 \times 0.8$ (no rain M + rain T + rain W) (= 0.144 or $\frac{18}{125}$ oe)	Throughout accept probabilities given as fractions or percentages Could be for Tuesday and Wednesday also
		P1 A1	or $0.3 \times 0.4 \times 0.6$ (no rain M + no rain T + rain W) (= 0.072 or $\frac{9}{125}$ oe) for complete process, eg. "0.448" + "0.084" + "0.144" + "0.072" oe eg, $\frac{187}{250}$	NB: correct answer without supportive working gets 0 marks

Question	Answer	Mark	Mark scheme	Additional guidance
38" (a)	Venn diagram	M1	for correct numbers in at least one region	Ignore all entries except the region you are marking for each method mark
		M1	for correct numbers in at least two regions	4, 6, 8 2 1
		A1	for all regions correct	3, 7, 9
(b)	$\frac{2}{10}$	M1	for $\frac{a}{10}$ where $0 < a < 10$ and <i>a</i> is an integer or $\frac{2}{b}$ where $b > 2$ and <i>b</i> is an integer or ft diagram	Need not be written in correct form at this stage eg could be a ratio 2 : 10 Repeated digits in the diagram should be counted as 2 elements
		A1	$\frac{2}{10}$ oe or ft diagram	Accept any equivalent fraction, decimal form 0.2 or percentage form 20%

Question	Answer	Mark	Mark scheme	Additional guidance				
39" (a)	Shown	M1	for $\frac{n}{n+8}$ or starts to work with ratios, eg 3:7					
		M1	forms equation and clears fractions, eg $10n = 7n + 56$ or $10n + 3(n + 8) = 10 (n + 8)$ or equates $\frac{3}{10} = \frac{8}{x}$ or $\frac{3}{10} = \frac{8}{n+8}$ or continues to work with ratios, eg $3:7 = 24:56$					
		C1	gives the total sweets eg $\frac{80}{3}$ oe or number of red sweets $n = \frac{56}{3}$ oe or gives number of red as $\frac{56}{3}$	Does not have to restate the $\frac{7}{10}$; giving a different probability will suffice				
			OR award 3 marks for a complete written argument, eg, $P(y) = \frac{3}{10}$ and there are 8 yellows. This cannot work as 3 is not a factor of 8 (and $\frac{3}{10}$ is in its simplest form)					

Question	Answer	Mark	Mark scheme	Additional guidance
39" (b)	28	P1	for $\frac{n}{n+8}$ and $\frac{n-1}{n+7}$ oe	
		P1	forms an appropriate equation, eg $\frac{n}{n+8} \times \frac{n-1}{n+7} = \frac{3}{5}$	
		P1	for correctly forming a quadratic ready for solving, eg $an^2 + bn + c$ (= 0), $2n^2 - 50n - 168$ (= 0), $n^2 - 25n - 84$ (= 0) oe	Note we do not need to see "= 0"; just the LHS is sufficient.
		P1	process to solve quadratic equation, ft a 3 term quadratic factorising eg $(n + 3)(n - 28)$ (=0) oe or completing the square or correct use of formula eg $\frac{-25 \pm \sqrt{25^2 - 4 \times -84}}{2}$, $\frac{-50 \pm \sqrt{50^2 - 4 \times 2 \times -168}}{2 \times 2}$	
		A1	cao	Award 0 marks for a correct answer with no supportive working.

Question	Answer	Mark	Mark scheme	Additional guidance
3:	$\frac{52}{72}$	P1	for $\frac{4}{9} \times \frac{3}{8} \left(\frac{12}{72}\right)$ or $\frac{4}{9} \times \frac{5}{8}$ or $\frac{5}{9} \times \frac{4}{8} \left(\frac{20}{72}\right)$	
		P1	for $1 - \left(\frac{5}{9} \times \frac{4}{8}\right)$ or $\frac{4}{9} \times \frac{3}{8} + \frac{4}{9} \times \frac{5}{8} + \frac{5}{9} \times \frac{4}{8}$ oe	
		A1	for $\frac{52}{72}$, $\frac{13}{18}$ oe	Accept equivalent fractions, decimals (0.72) or percentages (72.22%)
			SC B1 for answer of $\frac{56}{81}$ (replacement)	

Question	Answer	Mark	Mark scheme	Additional guidance
3; (a)	Diagram completed	M1	for 1 – 0.15 (=0.85)	
	0.85 0.15, 0.85, 0.15,	A1	fully correct diagram	
	0.85			
(b)	0.2775	M1	for one correct product eg $0.15 \times 0.15 (= 0.0225)$ or $0.15 \times 0.85 (= 0.1275)$ or $0.85 \times 0.85 (= 0.7225)$	ft their diagram provided probabilities are less than 1
		M1	for a complete method eg " 0.0225 " + 2×" 0.1275 " OR 1 – " 0.7225 " oe	ft their diagram provided probabilities are less than 1
		A1	oe, eg $\frac{111}{400}$	

Questi	ion	Answer	Mark	Mark scheme	Additional guidance		
42	(a)	Venn diagram	C4 (C3	fully correct Venn diagram 7 of the 8 regions correct or for a diagram with only one number incorrectly placed)	$ \begin{array}{c c} \hline 2, 10, & 6 \\ \hline 14 & 8 \\ \hline 8 \\ 20 \\ \hline \end{array} $		
			(C2	5 or 6 of the 8 regions correct)	4, 12 18, 22 16, 24		
			(C1	3 or 4 of the 8 regions correct)			
	(b)	$\frac{1}{12}$	M1	ft for identification of 1 or 12 eg from the diagram	Need not be written as a fraction or probability at this stage. eg could be a ratio 1:12		
			A1	ft oe	Acceptable equivalents are (eg, could ft) any		
					fraction equivalent to $\frac{1}{12}$, 0.08(33) or 8(.33)%		
43	(a)	0.455	M1	for $0.65 \times (1 - 0.65)$ or 0.65×0.35 (=0.2275 or $\frac{91}{400}$) or 2×0.2275 oe	Could be shown on a tree diagram but must show an intention to multiply		
			A1	oe	Acceptable equivalents are 45.5% or $\frac{91}{200}$ oe		
	(b)	42	M1	for a start of the process eg $78 \div 0.65$ (= 120) or 78×0.35 (=27.3)	$\frac{78 \times 0.35}{0.65} , \frac{78}{0.65} - 78$		
			A1	cao			

Question	Answer	Answer Mark Mark scheme				Additional guidance				
44	3	P1	for a process to find a first value	Br	Sp	It	Tot			
	22		eg male/Britain = $32 - 11$ (=21)	М	21	9	8	38		
			or Italy/total = $60 - (32+12)$ (=16)	F	11	3	8	22		
			or female/total = $60 - 38$ (=22)	Tot	32	12	16	60		
		P1 P1 A1	for process to find a secondary value, eg male/Spain = $38 - ("21" + 8)$ (=9) or female/Italy = "16" - 8 (=8) complete process to find female/Spain, eg $12 - "9"$ or "22" - (11 + "8") (=3) oe accept 0.136 to 0.14	May be seen in a frequency tree Values attributed to a category or from method seen			r from			
			SC B3 for $\frac{3}{60}$							
45 (a)	0.55, 0.67, 0.33, 0.35, 0.65	B1	for 0.55 in correct position Can be seen as fractions of				or perce	ntages		
		B1	for the branches for the second game correct							
(b)	0.341	M1	for one correct product, eg 0.45×0.33 (=0.1485) or 0.55 × 0.35 (=0.1925) or $0.45 \times$ " 0.67 " (=0.3015) or 0.55 × 0.65 " (=0.3575) Follow through a marks from their providing probab for correct method		gh acc heir tro babili onal eo	eptabl ee in p ties ar quival	le for m part (a) re less th ents	ethod nan 1.		
			for correct method eg $(0.45 \times ``0.33") + (``0.55" \times ``0.35")$ or $1 - (0.45 \times ``0.67") - (``0.55" \times ``0.65")$							
		AI	answer in range $0.34 - 0.341$ de							

Question	Working	Answer	Mark	Notes
46 (a)		$\frac{1}{55}$	M1	$for \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}$
			A1	for $\frac{1}{55}$ oe
(b)		Conclusion (supported)	C1	starts correct argument, eg by calculating a relevant probability, eg $\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13}$
			C1	statement of "more likely" from eg comparison of probabilities, ft answer to (a) eg $\frac{1}{55}$ (= 0.018) and $\frac{2}{91}$ (= 0.021or 0.022)

Question	Working	Answer	Mark	Notes
47		98	P1	for process to find P(1), eg. $1 - 0.17 - 0.18 - 0.09 - 0.15 - 0.1$ (= 0.31) or for a process to find P(1 or 3), eg. $1 - 0.17 - 0.09 - 0.15 - 0.1$ (= 0.49)
			P1	for process to find the number of 3s eg. 0.18×200 (=36) or process to find the number of 1s, e.g. P(1) × 200 (= 62), or process to find the number of (1 or 3)s, eg [P(1) + 0.18] × 200 or for process to find any expected frequency using any probability × 200 eg. 0.17 × 200
			Al	Cao OR
			P1 P1 A1	for process to find P(2 or 4 or 5 or 6), eg. $0.17 + 0.09 + 0.15 + 0.1 (= 0.51)$ for process to find the number of (2 or 4 or 5 or 6)s, eg. " 0.51 " × 200 (= 102) cao
48 (a)		comment	C1	for comment e.g. incorrect denominator for the 2nd student or probabilities for 2 nd student do not add up to 1
(b)		No (supported)	C1	for "no" with supporting evidence, e.g. probabilities should be multiplied together or 0.4×0.25

Question Working		Answer		Notes
49 (a)		0.4,0.6	B1	correctly placing probs for light A eg 0.4, 0.6
		0.3,0.7,0.8,0.2	B1	correctly placing probs for light B eg 0.3, 0.7, 0.8, 0.2
(b)		B with correct	P1	(ft) eg 0.4×0.3 or 0.6×0.8 or $1-(0.28+0.12)$
		probabilities	P1	both sets of correct probability calculations
			C1	Correct interpretation of results with correct comparable results

Question	Working	Answer	Notes
4: (a)		0.49	$\begin{array}{ccc} M1 & \text{for } 0.7 \times 0.7 \\ A1 & \text{for } 0.49 \text{ oe} \end{array}$
(b)		0.51	M1 for a correct process, eg. $1 - "0.49"$ or $0.7 \times 0.3 + 0.3 \times 0.7 + 0.3 \times 0.3$ A1 for 0.51 oe

Question	Working	Answer		Notes
4; " (a)(i)		10, 12, 14, 15, 16,	B1	cao
		18		
(ii)		12, 18	B1	cao
(b)		$\frac{7}{10}$	M1	for 7 or indicating correct region or for 10, 14, 16, 11, 13, 17, 19 listed
			A1	for $\frac{7}{10}$ oe

Question	Answer	Mark	Mark scheme	Additional guidance
52 (a)	0.5, 0.3	P1	for $1 - 0.05 - 0.15 (= 0.8)$	Award this mark for any two probabilities that sum to 0.8
		A1	oe	
(b)	120	M1	$18 \div 0.15$ oe or $6 + 18 + a + b$ where $a + b = 96$	
		A1	cao	
53	$1 - \left(\frac{1}{2}\right)^n - \left(\frac{1}{2}\right)^n$	M1	for $\left(\frac{1}{2}\right)^n$ oe	
		A1	oe eg $1 - \left(\frac{1}{2}\right)^{n-1}$	

Questi	ion	Answer	Mark	Mark scheme	Additional guidance
54	(a)	$\frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}$	B2 (B1	six fully correct probabilities at least 2 correct probabilities)	Accept any equivalent fraction, decimal form 0.33(3) and 0.66(6) or 0.67 or percentage form 33(.3)% and 66(.6)% or 67%
	(b)	$\frac{2}{9}$	M1	for $\frac{1}{3} \times \frac{2}{3}$ oe or ft probabilities from diagram	
			A1	for $\frac{2}{9}$ oe	Accept any equivalent fraction, decimal form 0.22(2) or percentage form 22(.2)%
55		24	P1	for start to process of working out the unknown probabilities, eg $1 - 0.32 - 0.20 (= 0.48)$ or assigning probabilities as $5x$ and x or process to work out the number of blue or green counters, eg $0.32 \times 300 (= 96)$ or $0.20 \times 300 (= 60)$ or $0.52 \times 300 (= 156)$	Award for $P(R) + P(Y) = 0.48$, may be seen in table
			P1	for process to find the probability, eg $5x + x = "0.48"$ or "0.48" $\div 6 (= 0.08)$ or process to find the number of red or yellow counters, eg $300 - "96" - "60"$ or $300 \times "0.48"$	
			A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
56	0.1709	M1	for one product, 0.07×0.98 (=0.0686) or 0.93×0.11 (=0.1023) or 0.07×0.02 (=0.0014) or 0.93×0.89 (= 0.8277)	If all products shown, award this mark
		M1	for a fully correct method, eg $0.07 \times 0.98 + 0.93 \times 0.11$ or $1 - (0.07 \times 0.02) - (0.93 \times 0.89)$	
		A1	oe	
57	$\frac{1}{81}$	M1	for finding the probability of heads $eg \sqrt[4]{\frac{16}{81}} (=\frac{2}{3})$	Seeing a probability of $\frac{2}{3}$ or $\frac{1}{3}$ is enough for this mark
			or for finding the probability of tails $1 - \sqrt[4]{\frac{16}{81}} (=\frac{1}{3})$	
		A1	oe	
58 (a)	6, 9	M1	for 6, 9 in the intersection only	Ignore all entries except the region you are marking for each method mark
	1, 5, 8 2 3, 4, 7	M1	for 1, 5, 8 in set A only or 2 in set B only or 3, 4, 7 in set $(A \cup B)'$ only	$(1, 5, 8 \begin{pmatrix} 6 \\ 9 \end{pmatrix})^2$
		C1	for all numbers correctly placed in the Venn Diagram	3, 4, 7
(b)	$\frac{2}{9}$	M1	ft for identification of 2 or 9 or ft diagram	Need not be written in correct form at this stage eg could be a ratio 2 : 9 Repeated digits in the diagram should be counted as 2 elements
		A1	$\frac{2}{9}$ oe or ft diagram	Accept any equivalent fraction, decimal form 0.22(22) or percentage form 22(.22)%

Question Answer Mark Ma		Mark scheme	Additional guidance	
59	Probabilities should sum to 1 0.35 and 0.65 reversed	C1 C1	for stating that the probabilities should total 1 eg 0.25 should be 0.35 for recognising that the 0.35 and 0.65 in the first branches for the 2nd throw should be reversed eg, "for the second throw, the probability it lands on 4 should be 0.65"	Can be shown on the diagram
5: (a)	8	P1	for process to find sum of unknown probabilities, eg $1 - 0.45 - 0.25$ (= 0.3) OR to find the total number of counters in the bag, eg $\frac{18}{0.45}$ (= 40) OR to find the number of yellow counters, eg $\frac{0.25}{0.45} \times 18$ (= 10)	Award mark for any two probabilities given that sum to 0.3 eg given in the table.
		P1 P1	for process to find P(red) = 0.2 oe or P(white) = 0.1 oe OR for process to find the total number of red and white counters, eg "40" - 18 - "10" (=12) OR for process to derive an equation in x, eg $2x + x = 1 - 0.45 - 0.25$ or $2x + x = "0.3"$ or $x = 0.1$ for a complete process to find the number of red counters, eg $\frac{2 \times 0.1}{0.45} \times 18$ or $\frac{2}{3} \times "12"$ or $0.2 \times "40"$ or $\frac{0.2}{0.025}$	Award P2 for P(red) or P(white) (could be shown in table) Equations could be given as written statements or working but must be fully equivalent.
(b)	Explanation	C1	cao for explanation eg 0.5 multiplied by an odd number will never be a whole number, for half of a number to be an integer that number must be even, you can't have half a marble	

Question	Answer	Mark	Mark scheme	Additional guidance
5;	$\frac{6}{490}$	P1	for start to process information, eg draws Venn diagram and shows at least 1 unknown amount, eg 5 speak German and Spanish but not French	See Venn Diagram at end of mark scheme – rectangle not needed
		P1	 for process to find at least 3 unknown amounts from, eg 5 speak German and Spanish but not French 3 speak French and German but not Spanish 22 speak French but not German or Spanish 0 speak German but not French or Spanish 	
		P1	for complete process to find number of people who speak only Spanish (= 6)	Award first 3 marks to students who show this on the Venn diagram or in a statement.
		P1	for $\frac{[\text{number speaking Spanish only}]}{50} \times \frac{[\text{number speaking Spanish only}] - 1}{49}$, eg $\frac{6}{50} \times \frac{5}{49}$	Award this mark for use of their number of students who speak Spanish. Must be a clear link, eg from Venn diagram
		A1	for $\frac{6}{490}$ oe	See note 8 in general marking guidance but 0.01 or 1% must be from seen correct working.

Qu	estion	Working	Answer	Mark	Notes
62	(a)		Mel (supported)	B1	Mel with reference to greatest number of throws
	(b)		$\frac{2}{9}$	M1	selects overall total and multiplies P(point up)×P(point down) eg $\frac{50}{150} \times \frac{100}{150}$ oe
					$(\text{accept } \frac{14}{45} \times \frac{51}{45} \text{ or } \frac{27}{80} \times \frac{53}{80} \text{ or } \frac{9}{25} \times \frac{10}{25})$
				A1	for $\frac{2}{9}$ oe
63	(a)		0.05	B1	for 0.05 oe
	(b)		20	C1	for stating that at least 20 required
			Reason	C1	for reason eg explains that number of each colour must be a whole number or that there
					must be (at least) 1 red counter or shows that $0.05 = \frac{1}{20}$
64			48	M1	for $0.25 \times 0.6 = 0.15$ or $0.75 \times 0.4 = 0.3$
				M1	for $0.25 \times 0.6 = 0.15$ and $0.75 \times 0.4 = 0.3$ or for $24 \div 0.15$ (= 160)
				A1	cao

Question	Working	Answer	Mark	Notes
65 (a)		Venn Diagram	B1	for labels on diagram
			M1	for just 15 in the intersection
			M1	for just 5 and 25 in only set B or just 3, 9, 21 and 27 in only set A or just 1, 7, 11, 13,
	$\left[\left(\begin{array}{c} 3,9,\\ 21,27 \end{array} \right) \left(\begin{array}{c} 15\\ 21,27 \end{array} \right) \left(\begin{array}{c} 5,25\\ 3,25 \end{array} \right) \right]$			17, 19, 23, 29 in $(A \cup B)'$
	$ \langle 21, 2/ \rangle / \rangle$		C1	for all numbers correctly placed in the Venn Diagram
	1,7,11,13,17,19,23,29			Ignore all entries except the region you are marking for each method mark
		7	D 1	ft for $\frac{"7"}{m}$ where $a \ge "7"$ or $\frac{b}{m}$ where $b \le "15"$
(b)		15	PI	a "15" where $a \leq r$ of "15"
				$ft = \frac{7}{2}$ or
			Al	15
66		Explanation	C1	No with statement about not being mutually exclusive events eg a person could be in
				both categories

Question	Working	Answer	Notes
67 (a)	Draws correct Venn diagram	$\frac{44}{50}$	M1 Begin to interpret given information e.g. 3 overlapping labelled ovals with central region correct
			M1 Extend interpretation of given information e.g. 3 overlapping labelled ovals with at least 5 regions correct
			M1 Method to communicate given information e.g. 3 overlapping labelled ovals with all regions correct including outside
			A1 oe
(b)		$\frac{21}{44}$	 P1 For correct process to identify correct regions in Venn diagram and divide by '44' A1
68		0.49	P1 for $\sqrt{0.09}$ P1 for $(1-"\sqrt{0.09}")^2$ A1 cao

Question	Working	Answer	Notes
69" (a)		chain of reasoning	C1 for a relevant product eg $\frac{y}{y+5} \times \frac{5}{y+4}$
			C1 for a correct equation eg $2 \times \left(\frac{y}{y+5} \times \frac{5}{y+4}\right) = \frac{6}{11}$
			C1 for method to eliminate fractions from algebraic expression
			C1 complete chain of reasoning
(b)		$\frac{3}{11}$	M1 method to solve equation eg $(ax + b)(cx + d)$ with $ac = 3$ and $bd = \pm 60$
			A1 for selecting $y = 6$
			for $\frac{3}{11}$ oe

Question	Working	Answer	Mark	Notes
6:		<u>4</u> 15	3	M1 for a method to find the total number of people eg $3 \times 5 (= 15)$ or $\frac{5}{15} = \frac{1}{3}$ M1 (dep) for "15" - 5 - 6 (= 4) A1 oe OR M1 for a method to find prob (boy) eg $\frac{6}{5} \times \frac{1}{3} (= \frac{6}{15})$ M1 (dep) for $1 - \frac{6}{15} - \frac{1}{3}$ A1 oe OR M1 for an expression for the number of adults eg $\frac{5}{5+6+x}$ M1 (dep) for " $\frac{5}{5+6+x}$ " = $\frac{1}{3}$ or $x = 4$ A1 oe SC: B2 for $\frac{4}{n}$ where $n > 4$, $n \neq 15$

Question	Working	Answer	Mark	Notes
6; (a)		$\frac{42}{110}$	3	M1 for use of 11 and 10 in the denominators M1 for $\frac{7}{11} \times \frac{6}{10}$ oe A1 for $\frac{42}{10}$ oe
				SC for replacement : B1 for $\frac{7}{11} \times \frac{7}{11} = (=\frac{49}{121})$
(b)		$\frac{62}{110}$	3	M1 for correct method for GG $\frac{3}{11} \times \frac{2}{10} \left(\frac{-6}{110} \right)$ M1 (dep) 1 - (BB + GG) = 1 - (" $\frac{42}{110}$ " + " $\frac{6}{110}$ ") A1 for $\frac{62}{110}$ oe
				OR M1 for at least two of $\frac{7}{11} \times \frac{3}{10}$, $\frac{7}{11} \times \frac{1}{10}$, $\frac{3}{11} \times \frac{1}{10}$ oe M1 for a complete method eg $2 \times (\frac{7}{11} \times \frac{3}{10} + \frac{7}{11} \times \frac{1}{10} + \frac{3}{11} \times \frac{1}{10})$ oe A1 for $\frac{62}{11}$ oe
				SC for replacement: B2 for $2 \times (\frac{7}{11} \times \frac{3}{11} + \frac{7}{11} \times \frac{1}{11} + \frac{3}{11} \times \frac{1}{11})$ oe $(=\frac{62}{121})$ or $(\frac{7}{11} \times \frac{4}{11} + \frac{3}{11} \times \frac{8}{11} + \frac{10}{11} \times \frac{1}{11})$ oe $(=\frac{62}{121})$ or $1 - (\frac{49}{121} + \frac{9}{121} + \frac{1}{121})$ oe $(=\frac{62}{121})$
				(B1 for at least two of $\frac{7}{11} \times \frac{3}{11}$, $\frac{7}{11} \times \frac{1}{11}$, $\frac{3}{11} \times \frac{1}{11}$ oe)

Question	Working	Answer	Mark	Notes
72		$\frac{52}{72}$	4	B1 for $\frac{3}{8}$ or $\frac{2}{8}$ or $\frac{1}{8}$ seen as second probability
				M1 for $\frac{4}{9} \times \frac{3}{8}$ or $\frac{3}{9} \times \frac{2}{8}$ or $\frac{2}{9} \times \frac{1}{8}$
				M1 for $1 - (\frac{4}{9} \times \frac{3}{8} + \frac{3}{9} \times \frac{2}{8} + \frac{2}{9} \times \frac{1}{8})$ or
				$\frac{4}{9} \times \frac{3}{8} + \frac{4}{9} \times \frac{2}{8} + \frac{3}{9} \times \frac{4}{8} + \frac{3}{9} \times \frac{2}{8} + \frac{2}{9} \times \frac{4}{8} + \frac{2}{9} \times \frac{3}{8}$
				A1 for $\frac{52}{72}$ oe
				OR
				B1 for $\frac{5}{8}$ or $\frac{6}{8}$ or $\frac{7}{8}$ seen as second probability
				M1 for $\frac{4}{9} \times \frac{5}{8}$ or $\frac{3}{9} \times \frac{6}{8}$ or $\frac{2}{9} \times \frac{7}{8}$
				M1 for $\frac{4}{9} \times \frac{5}{8} + \frac{3}{9} \times \frac{6}{8} + \frac{2}{9} \times \frac{7}{8}$
				A1 for $\frac{52}{72}$ oe
				SCB2 $\frac{52}{81}$ oe

Question	Working	Answer	Mark	Notes
73		90	3	M1 for $1-\frac{3}{5}$ (= $\frac{2}{5}$ or 40%) oe M1 for a complete method to find the number of female teachers (54) eg 36 ÷ 2 ×3 or determines $\frac{3}{5}$ (60%) is 54, or 10% is 9 A1 cao OR M1 for F : M = 3 : 2 M1 for a complete method to find the number of female teachers (54) eg $\frac{3}{2} \times 36$ oe A1 cao
74 (a)		0.7 0.2 0.3 0.8 0.05 0.95	3	B1 for 0.2, 0.8 oe B1 for 0.7, 0.3 oe B1 for 0.05, 0.95 oe
(b)		0.04	2	M1 for "0.8" × "0.05" A1 oe

Que	stion	Working	Answer	Mark	Notes
75	(a)		60	2	M1 for 200×0.3 oe A1 cao
	(b)		0.1	2	M1 subtracting sum of probabilities from 1, e.g. 1–(0.3+0.2+0.4) A1 cao
76		2p 1p ½ p Tot Sat 7 16 (31) 54 Sun (15) 14 17 (46) Tot (22)(30) 48 (100)	14	4	M1 for total Sat bottles $100 - 46$ (=54) or for total $\frac{1}{2}$ pint bottles $100 - 22 - 30$ (=48) or (total 2 pint bottles on Sat) $22 - 15$ (=7) M1 for total Sun bottles of $\frac{1}{2}$ pint "48" - 31 (=17) or for total Sat bottles of 1 pint: "54" - 31 - (22 - 15) (=16) M1 for $46 - 15 - "17"$ or for $30 - "16"$ A1 cao NB: any of the above figures could be shown in a 2-way table

Que	stion	Working	Answer	Mark	Notes
77	(a		$\frac{2}{10}$	2	M1 for $\frac{2}{a}$ with a > 2 or $\frac{b}{10}$ with b < 10 A1 for $\frac{2}{10}$ oe
	(b)		£10 or 1000p	3	M1 for " $\frac{2}{10}$ " × 100 (= 20) or 30(p) × 100 (= 3000p or £30) M1 (dep) for "30(p) × 100" – (£)1 × "20" oe A1 ft from (a), provided the answer is not negative. Units must be shown
78	(a (b)		Proof 10	3	M1 for $\frac{6}{n}$ or $\frac{5}{n-1}$ M1 for $\frac{6}{n} \times \frac{5}{n-1} \left(=\frac{1}{3}\right)$ A1 for fully correct algebra leading to $n^2 - n - 90 = 0$ M1 for correct start to a solution, eg. $(n \pm 10)(n \pm 9)$ or substitution into the quadratic formula, condoning one sign error or $(n - 0.5)^2 - 0.25 - 90$ A1 for $(n - 10)(n + 9)$ or for 10 and -9 or $\frac{1 \mp 19}{2}$ oe A1 for 10 only

Question	Working	Answer	Mark	Notes
79		156	4	Method 1 (Combinations for odd T)
		336		M1 for one probability for odd T, eg P(2,3,4) = $\frac{1}{8} \times \frac{2}{7} \times \frac{1}{6}$ or P(2,4,5)
				$= \frac{1}{8} \times \frac{1}{7} \times \frac{4}{6} \text{ or } P(3,3,5) = \frac{2}{8} \times \frac{1}{7} \times \frac{4}{6} \text{ or } P(3,5,5) = \frac{2}{8} \times \frac{4}{7} \times \frac{6}{3} \text{ or } P(5,5,5)$ $= \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}$
				M1 for adding at least two probabilities for odd T, eg $\frac{1}{8} \times \frac{2}{7} \times \frac{1}{6} +$
				$\frac{1}{8} \times \frac{1}{7} \times \frac{4}{6} \text{ or } 3\left(\frac{2}{8} \times \frac{1}{7} \times \frac{4}{6}\right)$
				M1 for completely correct method, ie $6\left(\frac{1}{8} \times \frac{2}{7} \times \frac{1}{6}\right) +$
				$6\left(\frac{1}{8} \times \frac{1}{7} \times \frac{4}{6}\right) + 3\left(\frac{2}{8} \times \frac{1}{7} \times \frac{4}{6}\right) + 3\left(\frac{2}{8} \times \frac{4}{7} \times \frac{3}{6}\right) + \left(\frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}\right) \text{ oe}$
				A1 for $\frac{156}{336}$ oe, eg $\frac{13}{28}$ or 0.46(4)
				OR
				Method 2 (Combinations for even T)
				M1 for one probability for even T, eg P(3,4,5) = $\frac{2}{3} \times \frac{1}{5} \times \frac{4}{5}$ or P(2,3,3)
				$= \frac{1}{8} \times \frac{2}{7} \times \frac{1}{6} \text{ or } P(2,5,5) = \frac{1}{8} \times \frac{4}{7} \times \frac{3}{6} \text{ or } P(2,3,5) = \frac{1}{8} \times \frac{2}{7} \times \frac{4}{6} \text{ or } P(4,5,5)$ $= \frac{1}{8} \times \frac{4}{7} \times \frac{3}{6} \text{ or } P(3,3,4) = \frac{2}{8} \times \frac{1}{7} \times \frac{1}{6}$
				M1 for adding at least two probabilities for even T, eg $\frac{2}{8} \times \frac{1}{7} \times \frac{4}{6} +$
				$\frac{1}{8} \times \frac{2}{7} \times \frac{1}{6} \text{ or } 3\left(\frac{1}{8} \times \frac{2}{7} \times \frac{1}{6}\right)$ (2.1.1)
				M1 for completely correct method, ie $1 - \left[6\left(\frac{2}{8} \times \frac{1}{7} \times \frac{4}{6}\right) + \right]$
				$3\left(\frac{1}{8} \times \frac{2}{7} \times \frac{1}{6}\right) + 3\left(\frac{1}{8} \times \frac{4}{7} \times \frac{3}{6}\right) + 6\left(\frac{1}{8} \times \frac{2}{7} \times \frac{4}{6}\right) + 3\left(\frac{1}{8} \times \frac{4}{7} \times \frac{3}{6}\right) + 3\left(\frac{2}{8} \times \frac{1}{7} \times \frac{1}{6}\right) $ oe
				A1 for $\frac{156}{336}$ oe, eg $\frac{13}{28}$ or 0.46(4)
				РТО

		Method 3 (Combinations of odd and even numbers- odd totals)
		M1 for one probability for odd T, eg P(E,E,O) = $\frac{2}{8} \times \frac{1}{7} \times \frac{6}{6}$ or
		$P(O,O,O) = \frac{6}{9} \times \frac{5}{7} \times \frac{4}{6}$
		M1 for adding at least two probabilities for odd <i>T</i> ,
		eg 3 $\left(\frac{2}{8} \times \frac{1}{7} \times \frac{6}{6}\right)$ or $\left(\frac{2}{8} \times \frac{1}{7} \times \frac{6}{6}\right) + \left(\frac{6}{8} \times \frac{5}{7} \times \frac{4}{6}\right)$
		M1 for completely correct method, ie $3\left(\frac{2}{8} \times \frac{1}{7} \times \frac{6}{6}\right) + \left(\frac{6}{8} \times \frac{5}{7} \times \frac{4}{6}\right)$
		A1 for $\frac{156}{336}$ oe, eg $\frac{13}{28}$ or 0.46(4)
		OR
		Method 4 (combinations of odd and even numbers- even totals)
		M1 for probability for even T, ie = $\frac{2}{8} \times \frac{6}{7} \times \frac{3}{6}$
		M1 for adding at least two probabilities for even T ,
		eg 3 $\left(\frac{2}{8} \times \frac{3}{7} \times \frac{3}{6}\right)$
		M1 for completely correct method, ie $1 - 3\left(\frac{2}{8} \times \frac{6}{7} \times \frac{5}{6}\right)$
		A1 for $\frac{156}{336}$ oe, eg $\frac{13}{28}$ or 0.46(4)
		SC (with replacement)
		For example,
		M0 M1 for adding at least two probabilities for add or even T as
		In the radding at least two probabilities for odd or even 1, eg $P(F = O) = {}^{2} \times {}^{2} \times {}^{6} \operatorname{cr} P(O = O) = {}^{6} \times {}^{6} \times {}^{6}$
		$\Gamma(E,E,O) = \frac{1}{8} \times \frac{1}{8} \times \frac{1}{8} \text{ of } \Gamma(O,O,O) = \frac{1}{8} \times \frac{1}{8} \times \frac{1}{8}$
		M1 for completely correct method, eg 3 $\left(\frac{1}{8} \times \frac{1}{8} \times \frac{1}{8}\right) + \left(\frac{1}{8} \times \frac{1}{8} \times \frac{1}{8}\right)$ or
		$\frac{288}{512}$ oe, eg $\frac{9}{16}$ or 0.56(25)
		512 16

Questio	on	Working	Answer	Mark	Notes
7: ((a)		$\frac{3}{10}, \frac{6}{9}, \frac{3}{9}, \frac{7}{9}, \frac{2}{9}$	2	B1 for $\frac{3}{10}$ on LH yellow branch
					B1 for $\frac{6}{9}$, $\frac{3}{9}$, $\frac{7}{9}$, $\frac{2}{9}$ correct on tree diagram
((b)		$\frac{48}{90}$	3	M1 for $\frac{7}{10} \times "\frac{3}{9}$ " or " $\frac{3}{10}$ " $\times "\frac{7}{9}$ " or " $\frac{3}{10}$ " $\times "\frac{2}{9}$ "
					M1 for $\frac{7}{10} \times "\frac{3}{9}" + "\frac{3}{10}" \times "\frac{7}{9}" + "\frac{3}{10}" \times "\frac{2}{9}"$
					A1 for $\frac{48}{90}$ oe
					OR
					M1 for $\frac{7}{10} \times "\frac{6}{9}$ "
					M1 for $1 - \frac{7}{10} \times \frac{6}{9}$
					A1 for $\frac{48}{90}$ oe

Ques	stion	Working	Answer	Mark	Notes
7;	(a)		0.25	1	B1 oe
	(b)		150	2	M1 for 0.75 × 200 oe A1 cao
82			0.82	3	M1 for $1 - 0.7 (= 0.3)$ or $1 - 0.4 (= 0.6)$ M1 for $1 - `0.3' \times `0.6'$ A1 for 0.82 oe OR M1 for $1 - 0.7 (= 0.3)$ or $1 - 0.4 (= 0.6)$ M1 $(0.7 \times 0.4) + (0.7 \times `0.6') + (`0.3' \times 0.4)$ A1 for 0.82 oe

Quest	tion	Working	Answer	Mark	Notes
83		50 1 1 1 50 1 1 1 50	126 720	4	M1 for 3 fractions $\frac{a}{10}$, $\frac{b}{9}$, $\frac{c}{8}$ where a < 10, b < 9 and c < 8 M1 for $\frac{7}{10} \times \frac{3}{9} \times \frac{2}{8}$ or $\frac{3}{10} \times \frac{7}{9} \times \frac{2}{8}$ or $\frac{3}{10} \times \frac{2}{9} \times \frac{7}{8} (=\frac{42}{720})$ M1 for $\frac{7}{10} \times \frac{3}{9} \times \frac{2}{8} + \frac{3}{10} \times \frac{7}{9} \times \frac{2}{8} + \frac{3}{10} \times \frac{2}{9} \times \frac{7}{8}$ or $3 \times \frac{3}{10} \times \frac{2}{9} \times \frac{7}{8}$ A1 for $\frac{126}{720}$ oe. eg. $\frac{7}{40}$ Alternative Scheme for With Replacement M1 for $\frac{7}{10} \times \frac{3}{10} \times \frac{3}{10} (=\frac{63}{1000})$ M1 for $\frac{7}{10} \times \frac{3}{10} \times \frac{3}{10} \times 3 (=\frac{189}{1000})$ M0 A0 No further marks

Que	stion	Working	Answer	Mark	Notes
84		EE + CC + HH	76	5	M1 for use of 10 as denominator for 2 nd probability
			110		M1 for $\frac{4}{3} \times \frac{3}{3} \text{ ar} \frac{5}{3} \times \frac{4}{3} \text{ ar} \frac{2}{3} \times \frac{1}{3}$
					$\frac{1}{11} \frac{1}{10} \frac{1}{11} \frac{1}{10} \frac{1}{11} \frac{1}{10} \frac{1}{11} \frac{1}{10} \frac{1}{11} \frac{1}{10} \frac{1}{11} \frac{1}{10} \frac$
					M1 for $4 \ 3 \ 5 \ 4 \ 2 \ 1 \ (-34)$
					$\begin{bmatrix} 111 & 101 & \frac{1}{11} \times \frac{1}{10} + \frac{1}{11} \times \frac{1}{10} + \frac{1}{11} \times \frac{1}{10} \begin{bmatrix} -\frac{1}{110} \end{bmatrix}$
					M1 (dep on previous M1 for $1 - 34$
					A1 for $\frac{76}{110}$ oe
		0.			nr 110
		01			M1 for use of 10 as denominator for 2^{nd} probability
		FC+FH+CF+CH+HF+HC			M1 for 4×5 or 4×2 or 5×4 or 5×2 or 2×4 or 2×5
		EC EII CE CII IE IIC			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
					M2 for $\frac{4 \times 5}{4} + \frac{4 \times 2}{5} + \frac{4 \times 2}{4} + \frac{5 \times 4}{5} + \frac{5 \times 2}{5} + \frac{2 \times 4}{5} + \frac{2 \times 5}{5}$
					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
					(101 101 at least 5 01 tilese)
					$\frac{1}{110} \frac{1}{10} $
		Or			Or
					M1 for use of 10 as denominator for 2 nd probability
		E,not E+ C,not C + H,not H			M1 for $\frac{4}{7} \times \frac{7}{7} ar \frac{5}{5} \times \frac{6}{6} ar \frac{2}{7} \times \frac{9}{7}$
					11 10 11 10 11 10
					M2 for $\frac{4}{7} \times \frac{7}{7} + \frac{5}{5} \times \frac{6}{6} + \frac{2}{7} \times \frac{9}{7}$
					(M1 for two of these added)
					A1 for $\frac{76}{110}$ oe PTO for SC's
					$\mathbf{SC} \cdot \mathbf{B2}$ for 76
					$\frac{1}{121}$
					SC: B1 for $\frac{4}{3} \times \frac{4}{3} + \frac{5}{3} \times \frac{5}{3} + \frac{2}{3} \times \frac{2}{3} (=\frac{45}{3})$
					11 11 11 11 11 11 121 /
					$\begin{array}{c} 4 \\ 4 \\ 5 \\ 4 \\ 2 \\ 2 \\ 2 \\ 4 \\ 5 \\ 4 \\ 5 \\ 2 \\ 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 5 \\ 5 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 4 \\ 2 \\ 5 \\ $
					$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
					Ur 4 7 5 6 2 9
					$\left \frac{1}{11} \times \frac{1}{11} + \frac{1}{11} \times \frac{1}{11} + \frac{1}{11} \times \frac{1}{11} \right $

Qu	estion	Working	Answer	Mark	Notes
85	(a)		0.15	2	M1 for $1 - (0.2 + 0.5)$ oe or sight of 0.3
					A1 oe
	(b)		48	2	M1 for 240×0.2 oe or $48 + 120 + 36 + 36$
					A1 cao
86	(a		0.6	n	B1 for 0.6 in correct position on tree diagram
			0.7, 0.3, 0.7	2	B1 for 0.7, 0.3, 0.7 in correct positions on tree
					diagram
	(b)	$0.4 \times 0.3 =$	0.12	2	M1 for 0.4×0.3 oe or a complete alternative method
					ft from tree diagram
					A1 for 0.12 oe

Question	Working	Answer	Mark	Additional Guidance
65.	$x + 4x + \frac{1}{2} = 1$ $5x = \frac{1}{2}, x = \frac{1}{10}$ OR Chooses a suitable number of balls (say 10) 5 will be red The other 5 need to be shared out in the ratio 1:4, Hence 1 yellow and 4 blue	<u>4</u> 10	3	M1 $x + 4x + \frac{1}{2} = 1$ A1 $x = \frac{1}{10}$ A1 $\frac{4}{10}$ oe
				Total for Question: 3 marks

Questio	on Working	Answer	Mark	Additional Guidance			
66.	Reds 6, 12, 18, 24, 30 Greens 9, 18, 27	$\frac{1}{20}$	3	B1 list of red and green multiples (both to at least 18) or explicitly states 'LCM' B1 works out highest number (90 seen) B1 $\frac{1}{20}$ (accept $\frac{5}{100}$)			
	Total for Question: 3 marks						

Question	Working	Answer	Mark	Additional Guidance
67 (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{4}{16}$	3	M1 Attempts to list all outcome pairs A1 all 16 found A1 cao OR M2 $\frac{1}{4} \times \frac{1}{4} \times 4$ (M1 $\frac{1}{4} \times \frac{1}{4} \times 1$, 2 or 3) A1 $\frac{4}{16}$ oe
(b)	Prob Ali wins = $\frac{6}{16}$ Number of wins = $\frac{6}{16} \times 80$	30	3	B1 Prob Ali wins = $\frac{6}{16}$ oe M1 $\frac{6}{16} \times 80$ A1 ft
				Total for Question: 6 marks

Question	Working	Answer	Mark	Additional Guidance
68	$\frac{4}{10} \times \frac{6}{9} \times \frac{5}{8} = \frac{120}{720}$ $\frac{120}{720} + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} + \frac{6}{10} \times \frac{4}{9} \times \frac{5}{8}$	<u>360</u> 720	4	M1 for $\frac{4}{10} \times \frac{6}{9} \times \frac{5}{8}$ A1 for $\frac{120}{720}$ oe M1 $\frac{120'}{720}$ + 2 correct cases (M1 any 2 correct cases) or $\frac{120'}{720} \times 3$ A1 cao SC with replacement M1 $\frac{4}{10} \times \frac{6}{10} \times \frac{6}{10}$ M1 $\frac{4}{10} \times \frac{6}{10} \times \frac{6}{10} \times 3$
				Total for Question: 4 marks

Question	Working	Answer	Mark	Notes
8; (a)		0.98 0.95, 0.05, 0.95	2	B1 for 0.98 oe for machine A B1 for 0.95, 0.05, 0.95 in correct positions for machine B
(b)		0.069	3	M1 for 0.02×0.05 or $0.02 \times "0.95$ " or " 0.98 " × " 0.05 " or " 0.98 " × " 0.95 " M1 for $0.02 \times 0.05 + 0.02 \times "0.95$ " + " 0.98 " × " 0.05 " or $1 - "0.98$ " × " 0.95 " A1 for 0.069 oe

Question	Working	Answer	Mark	Notes
92 (a)		0.3	2	M1 for 1 – (0.25 + 0.10 + 0.20 + 0.15) oe A1 for 0.3 oe
(b)		21	3	M1 for $0.25 + 0.10 (= 0.35)$ or $0.25 \times 60 (= 15)$ or $0.10 \times 60 (= 6)$ M1(dep) for $60 \times "0.35"$ or "15" + "6" A1 cao

Question	Working	Answer	Mark	Notes
93		$\frac{9}{20}$ oe	2	B2 for $\frac{9}{20}$ oe or ft from stem and leaf diagram (B1 for $\frac{x}{20}$ where $x < 20, x \neq 9$ or $\frac{9}{y}$ where $y > 9$ or ft from stem and leaf diagram)
94		0.09, 0.36	3	M1 for $1 - 0.4 - 0.15$ oe $(= 0.45)$ or $100 - 100 \times 0.4 - 100 \times 0.15$ $(= 45)$ M1 for $(1 - 0.4 - 0.15) \div 5$ $(= 0.09)$ or $(100 - 100 \times 0.4 - 100 \times 0.15) \div 5$ $(= 9)$ A1 for 0.09 and 0.36 oe OR M1 for $0.4 + 0.15 + x + 4x = 1$ M1 for $x = (1 - 0.4 - 0.15) \div 5$ A1 for 0.09 and 0.36 oe [SC: B1 for 0.162 and 0.648 if M0 scored]

Question	Working	Answer	Mark	Notes
95	$\frac{\frac{18}{30} \times \frac{12}{29} + \frac{7}{30} \times \frac{23}{29} + \frac{5}{30} \times \frac{25}{29}}{\text{or}}$ or $1 - \left(\frac{18}{30} \times \frac{17}{29} + \frac{7}{30} \times \frac{6}{29} + \frac{5}{30} \times \frac{4}{29}\right)$ or $\frac{\frac{18}{30} \times \frac{7}{29} + \frac{18}{30} \times \frac{5}{29} + \frac{7}{30} \times \frac{18}{29}}{\frac{7}{30} \times \frac{5}{29} + \frac{5}{30} \times \frac{18}{29} + \frac{5}{30} \times \frac{7}{29}}$	502 870	4	B1 for a second 'branch' probability seen (could be seen in a tree) M1 for a product of any first and second stage correct probabilities M1 for a complete method to find the required probability A1 for $\frac{502}{870}$ oe Note if decimals used they must be correct to 2 decimal places SC with replacement B2 for $\frac{502}{900}$ oe B0 M1 $\frac{18}{30} \times \frac{12}{30}$ or $\frac{7}{30} \times \frac{23}{30}$ or $\frac{5}{30} \times \frac{25}{30}$ M1 $\frac{18}{30} \times \frac{12}{30} + \frac{7}{30} \times \frac{23}{30} + \frac{5}{30} \times \frac{25}{30}$ A0
	$1 - \left(\frac{18}{30} \times \frac{17}{29} + \frac{7}{30} \times \frac{6}{29} + \frac{5}{30} \times \frac{4}{29}\right)$ or $\frac{18}{30} \times \frac{7}{29} + \frac{18}{30} \times \frac{5}{29} + \frac{7}{30} \times \frac{18}{29} + \frac{7}{30} \times \frac{5}{29} + \frac{5}{30} \times \frac{18}{29} + \frac{5}{30} \times \frac{7}{29} + \frac{5}{30} \times \frac{18}{29} + \frac{5}{30} \times \frac{7}{29}$			A1 for $\frac{502}{870}$ oe Note if decimals used they must be correct to 2 decimal places SC with replacement B2 for $\frac{502}{900}$ oe B0 M1 $\frac{18}{30} \times \frac{12}{30}$ or $\frac{7}{30} \times \frac{23}{30}$ or $\frac{5}{30} \times \frac{25}{30}$ M1 $\frac{18}{30} \times \frac{12}{30} + \frac{7}{30} \times \frac{23}{30} + \frac{5}{30} \times \frac{25}{30}$ A0

Que	stion	Working	Answer	Mark	Notes
96	(a)		$\frac{1}{30}$	1	B1 for $\frac{1}{30}$ oe
	(b)		$\frac{3}{10}$	2	M1 for method to sum the number of white chocolates in the bag, eg $4 + 4 + 1$ (= 9), A1 for $\frac{3}{10}$ or $\frac{9}{30}$ oe
	(c)		0.48	2	M1 for 1– (0.35 + 0.17) oe A1 for 0.48 oe

Que	stion	Working	Answer	Mark	Notes
97	(a)		0.2	2	M1 for $1 - 0.16 - 0.4 - 0.24$ oe A1 cao
	(b)		20	2	M1 for 0.16 × 125 oe A1 cao
98	(a)		0.3 0.3, 0.7, 0.3	2	B1 for 0.3 as first spin oe B1 for 0.3, 0.7, 0.3 in correct positions for second spin oe
	(b)		0.42	3	M1 for '0.3' × '0.7' or 0.7 × '0.3' (=0.21) M1 for '0.3' × '0.7 + 0.7 × '0.3 (OR M2 for $1 - 0.7^2 - 0.3^2$) A1 for 0.42 oe

Questio	on Working	Answer	Mark	Notes
99		$\frac{29}{100}$	2	M1 for $13 + 11 + 5$ (=29) A1 for $\frac{29}{100}$ oe (SC B1 for $\frac{16}{100}$ oe)
*9:		Yes	3	M1 for $1 - 0.6 (=0.4)$ M1 for ("0.4") ³ oe C1 (dep on M1) for 0.064 oe leading to a correct deduction OR M1 for $1-Pr(3H, 0T) - Pr(2H, 1T) - Pr(1H, 2T)$ oe M1 for $1-(0.6)^3-3(0.6)^2(0.4)-3(0.6)(0.4)^2$ C1 (dep on M1) for 0.064 oe leading to a correct deduction
9;		4	2	M1 for 14 or $\frac{3+7}{n} = \frac{5}{7}$ or any fraction equivalent to $\frac{2}{7}$ or $\frac{5}{7}$ A1 cao

Questi	on Working	Answer	Mark	Notes
:2		126	3	M1 for $1 - 0.05 - 0.32 (= 0.63)$
				M1 for '0.63' × 200
				A1 cao
				OR
				M1 for 0.05×200 (= 10) or 0.32×200 (= 64) or $0.37 \times$
				200 (=74)
				M1 for 200 – '10' – '64'
				A1 cao
				OR
				M1 for 100 – 5 – 32 (= 63)
				M1 for $\frac{"63"}{100} \times 200$
				A1 cao
				SC: B2 for $\frac{126}{200}$ as the answer.

Que	stion	Working	Answer	Mark	Notes
: 3	(a)	1 - 0.2 - 0.1 $0.7 \div 2$	0.35	3	M1 for correctly using total probability is 1 or 100% if percentages used M1 (dep) for complete correct method to complete the solution A1 for 0.35 or 35% or $\frac{35}{100}$ oe
	(b)		20	2	M1 for 0.1×200 oe A1 cao SC : If M0 then award B1 for an answer of $\frac{20}{200}$

Question	Working	Answer Mark	Notes
:4 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2}{42}$ 2	M1 $\frac{2}{7} \times \frac{1}{6}$ A1 $\frac{2}{42}$ oe OR M1 Fully correct sample space with the correct cases identified A1 $\frac{2}{42}$ oe SC : B1 for an answer of $\frac{4}{49}$

Question	Working	Answer	Mark	Notes
:4 (b)	$ \frac{2}{7} \times \frac{5}{6} + \frac{3}{7} \times \frac{2}{6} $ OR $ \frac{1 1 2 2 3 3}{1 X \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{1}}}}}}}}}} $ $ \frac{1 X \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{1}}}}}}}}}{1 X \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{2}}}}}}}}$	$\frac{16}{42}$	3	M1 for identifying all 3 possibilities of (1,2) and (1,3) and (2,3) OR at least one of $\frac{2}{7} \times \frac{3}{6}(1,2)$ or $\frac{2}{7} \times \frac{2}{6}(1,3)$ or $\frac{3}{7} \times \frac{2}{6}(2,3)$ or $\frac{2}{7} \times \frac{5}{6}(1,2 \text{ or }3)$ M1 $\frac{2}{7} \times \frac{5}{6} + \frac{3}{7} \times \frac{2}{6}$ or $\frac{2}{7} \times \frac{3}{6} + \frac{2}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{2}{6}$ A1 $\frac{16}{42}$ oe OR M2 Fully correct sample space with the correct cases identified (M1 for 1,2 and 1,3 and 2,3 identified on a sample space) A1 $\frac{16}{42}$ oe SC: B2 for an answer of $\frac{16}{49}$

Qu	estion	Working	Answer	Mark	Notes
: 5		0.3 imes 400	120	2	M1 for 0.3×400 oe

Question	Working	Answer	Mark	Notes
Question : 6	Working $\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{2}{19}$ $1 - \left(\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{2}{19}\right)$	Answer <u>222</u> <u>380</u>	<u>Mark</u> 4	Notes B1 for $\frac{12}{19}$ or $\frac{5}{19}$ or $\frac{3}{19}$ (could be seen in working or on a tree diagram) M1 for $\frac{12}{2} \cdot \frac{5}{00} \cdot \frac{12}{20} \cdot \frac{3}{19} \cdot \frac{5}{00} \cdot \frac{12}{20} \cdot \frac{5}{19} \cdot \frac{3}{20} \cdot \frac{3}{12} \cdot \frac{3}{20} \cdot \frac{5}{12} \cdot \frac{5}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{5}{19} \cdot \frac{12}{20} \cdot \frac{5}{19} \cdot \frac{12}{20} \cdot \frac{5}{19} \cdot \frac{12}{20} \cdot \frac{5}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{5}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{5}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{5}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{20} \cdot \frac{5}{19} \cdot \frac{3}{20} \cdot \frac{3}{19} \cdot \frac{3}{$
				B1 for $\frac{8}{19}$ or $\frac{15}{19}$ or $\frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19}$ or $\frac{5}{20} \times \frac{15}{19}$ or $\frac{3}{20} \times \frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19} + \frac{5}{20} \times \frac{15}{19} + \frac{3}{20} \times \frac{17}{19}$ A1 for $\frac{222}{380}$ oe or 0.58(421) OR (continued overleaf)

Question	Working	Answer	Mark	Notes
: 6 contd	Working	Answer	Mark	Notes B1 for $\frac{11}{19}$ or $\frac{4}{19}$ or $\frac{2}{19}$ M1 for $\frac{12}{20} \times \frac{11}{19}$ or $\frac{5}{20} \times \frac{4}{19}$ or $\frac{3}{20} \times \frac{2}{19}$ M1 for $1 - \left(\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{2}{19}\right)$ A1 for $\frac{222}{380}$ oe or $0.58(421)$ NB if decimals used they must be correct to at least 2 decimal places SC : with replacement B2 for $\frac{111}{200}$ oe OR e.g. B0
				M1 for $\frac{12}{20} \times \frac{8}{20}$ or $\frac{5}{20} \times \frac{15}{20}$ or $\frac{3}{20} \times \frac{17}{20}$ M1 for $\frac{12}{20} \times \frac{8}{20} + \frac{5}{20} \times \frac{15}{20} + \frac{3}{20} \times \frac{17}{20}$ A0

