「 EXPERT TUITION

Maths Questions By Topic:

Probability

Mark Scheme

Edexcel GCSE (Higher)

\# www.expert-tuition.co.ukonline.expert-tuition.co.uk
enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 Page 1
Paper 2 Page 11
Paper 3 Page 24
Old Spec A (Linear)
Paper 1 Page 34
Paper 2 Page 51

Question	Answer	Mark	Mark scheme	Additional guidance
\square	Venn Diagram	C1 C1 C1	for one correct region for two correct regions for all regions correct	Ignore all entries except the region you are marking for each mark
\square	$\frac{180}{336}$	P1 P1 P1 A1	for $\frac{3}{7}$ or $\frac{4}{7}$ or $\frac{5}{7}$ as probability for second counter for one correct product eg $\frac{3}{8} \times \frac{5}{7} \times \frac{4}{6}\left(=\frac{60}{336}\right)$ or $\frac{5}{8} \times \frac{3}{7} \times \frac{4}{6}\left(=\frac{60}{336}\right)$ or $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}\left(=\frac{60}{336}\right)$ for a complete process eg $\frac{3}{8} \times \frac{5}{7} \times \frac{4}{6}+\frac{5}{8} \times \frac{3}{7} \times \frac{4}{6}+\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$ oe, eg $\frac{15}{28}$ SC B1 for answer of $\frac{225}{512}$ (replacement)	May be seen in a calculation or on a diagram Accept equivalent fractions, decimals ($0.53 \ldots$ or 0.54) or percentages (53\% or 54\%)

Question	Answer	Mark	Mark scheme	Additional guidance Probabilities could also be given in fraction or percentage form
\square	0.42	P1	for appropriate multiplication eg $0.3 \times 0.7(=0.21)$ or $0.3 \times 0.1(=0.03)$ or $0.3 \times 0.6(=0.18)$	
		P1	(dep) for complete process eg $0.3 \times 0.7+0.7 \times 0.3$ or $0.3 \times 0.1+0.3 \times 0.6+0.6 \times 0.3+0.1 \times 0.3$	
		A1	oe	Acceptable equivalents are 42% or $\frac{42}{100}$ oe

Question	Answer	Mark	Mark scheme	Additional guidance
$\square \quad$ (a)	0.4, 0.4	P1	for process to find sum of unknown probabilities, eg 1-0.2 (=0.8)	Award mark for any two probabilities given that sum to 0.8 , eg given in the table
	60	A1	oe	Accept any equivalent fraction or 40\%
(b)		P1	for complete process to find total number of cubes, eg $12 \div 0.2$ or 12×5 or (" 0.4 " $\div 0.2) \times 12+(" 0.4 " \div 0.2) \times 12+12$	
			OR states $0.1=6$ or $0.4=24$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
-	12 red, 9 green	P1	for process to find a relationship between r and g eg $\frac{g}{r+g}=\frac{3}{7}$ or $\frac{g}{r}=\frac{3}{4}$	
		P1	for process to find a second relationship between r and g eg $\frac{g+3}{r+2+g+3}=\frac{6}{13}$ or $\frac{g+3}{r+2}=\frac{6}{7}$	
		P1	(dep P2) for start to process of solving pair of equations, eg eliminates one variable from the equations or removes fractions from both equations	
		P1	(dep P3) for complete process to solve equations to find g orr	
		A1	cao	
			OR	
		P1	for two of $3 x+3,4 x+2$ and $7 x+5$	
		P1	for $\frac{3 x+3}{7 x+5}=\frac{6}{13}$	
		P1	(dep P2) for removing fractions from the equation, eg $13(3 x+3)=6(7 x+5)$ or $39 x+39=42 x+30$	
		P1	$($ dep P3) for complete process to solve $13(3 x+3)=6(7 x+5)$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
\square	21	P1	for a relevant probability, eg $\mathrm{P}($ green $)=\frac{x}{2 x+3}$ or $\mathrm{P}($ blue $)=\frac{x+3}{2 x+3}$	the number of green and blue pens could be $x-3$ and x or equivalent probabilities must be in an algebraic form in a single variable
		P1	for a relevant product, eg. " $\frac{x}{2 x+3}$ " \times " $\frac{x-1}{2 x+2}$ " or " $\frac{x+3}{2 x+3}$ " \times " $\frac{x+2}{2 x+2}$ "	
			$\text { OR }\left(" \frac{x}{x+3} "\right)^{2}+\left(" \frac{x+3}{2 x+3} "\right)^{2}=\frac{27}{75}$	This is an exception using replacements. No further credit is available
		P1	forms an appropriate equation, $\text { eg. " } \frac{x}{2 x+3} \times \frac{x-1}{2 x+2} "+" \frac{x+3}{2 x+3} \times \frac{x+2}{2 x+2} "=\frac{27}{55}$	
		P1	$\begin{aligned} & \text { (dep P3) process to reduce equation to } a x^{2}+b x+c=0 \\ & \text { eg. } x^{2}-25 x+84=0 \end{aligned}$	
		P1	process to solve quadratic equation eg. $(x-21)(x-4)=0$	
		A1	cao	

Question	Working	Answer	Mark	Notes
\square		$\frac{28}{72}$	P1	for $\frac{6}{8}$ or $\frac{2}{8}$ or $\frac{7}{8}$ or $\frac{1}{8}$ oe seen on diagram or in a calculation
			P1	$\begin{array}{l\|l} \text { for } \frac{7}{9} \times \frac{2}{8} \text { or } \frac{2}{9} \times \frac{7}{8} \text { or } \frac{14}{72} \text { oe } \quad \text { for } \frac{7}{9} \times \frac{6}{8} \text { or } \frac{2}{9} \times \frac{1}{8} \text { or } \frac{42}{72} \text { or } \frac{2}{72} \text { or } \frac{44}{72} \text { oe }, \text { or } \end{array}$
			P1	for $\frac{7}{9} \times \frac{2}{8}+\frac{2}{9} \times \frac{7}{8} \quad$ for $1-\left(\frac{7}{9} \times \frac{6}{8}+\frac{2}{9} \times \frac{1}{8}\right)$ or $1-\left(" \frac{42}{72} "+"^{72}{ }^{\prime \prime}\right)$
				$\text { or " } \frac{14}{72} "+" \frac{14}{72} \text { "oe } \quad \text { or } 1-" \frac{44}{72} " \text { oe }$
			A1	oe SC B1 for $\frac{14}{81}$ B2 for $\frac{28}{81}$

Question	Working	Answer		
\square		25	P1	For process to start to solve. Eg use of X and 4 X or $\mathrm{X} / 5 \mathrm{X}$ and $4 \mathrm{X} / 5 \mathrm{x}$
			P1	process to form equation $\operatorname{eg} \frac{x}{5 x} \times \frac{x-1}{5 x-1}=\frac{6}{155}$

Question	Working	Answer	Notes
T		0.22	P1 begins process of subtraction of probabilities from 1 A1 oe
[1] (a) (b) (c)	Tot: H 300	Sharif No (supported) 9 16	B1 Sharif with mention of greatest total throws P1 starts working with proportions A1 Conclusion: correct for Paul, but not for the rest; or ref to just Paul's results P1 selects Sharif or overall and multiplies $P($ heads $) \times P($ heads $) ~ e g ~$ $3 / 4$$\times 3 / 4$
■		$\frac{10 x-x^{2}}{45}$	P1 for $\frac{x}{10}$ or $\frac{10-x}{10}$ or $\frac{x-1}{9}$ or $\frac{10-x}{9}$ or $\frac{x}{9}$ or $\frac{9-x}{9} \quad$ seen on diagram or in a calculation P1 for $\frac{x}{10} \times \frac{10-x}{9}$ or $\frac{10-x}{10} \times \frac{x}{9}$ for $\frac{x}{10} \times \frac{x-1}{9}+\frac{10-x}{10} \times \frac{9-x}{9}$ P1 for $\frac{x}{10} \times \frac{10-x}{9}+\frac{10-x}{10} \times \frac{x}{9}$ for $1-\left(\frac{x}{10} \times \frac{x-1}{9}+\frac{10-x}{10} \times \frac{9-x}{9}\right)$ P1 (dep on P3) for beginning to process the algebra A1 $\frac{10 x-x^{2}}{45}$ oe

Question	Working	Answer	Notes
b	$\begin{aligned} & \frac{1}{6} \times \frac{1}{5} \times 30 \times 5=5 \\ & \left(\frac{5}{6} \times \frac{1}{5}+\frac{1}{6} \times \frac{4}{5}+\frac{1}{6} \times \frac{1}{5}\right) \times 30 \times 2 \\ & 30-5-20 \end{aligned}$	5 Explanation	P1 for identifying correct process to find probabilities for winnng scores. May include use of tree diagram or sample space P1 for correct process to find prize money P1 for completing correct process to find profit A1 C1 for appropriate comment to interpret result eg probability so only likelihood not certainty, other than 30 may play, $£ 5$ is small difference.
■		Events independent	C1 Statement that events are independent

Question	Answer	Mark	Mark scheme	Additional guidance
■	0.748	P1	for a process to find a correct probability product for 2 consecutive days, eg. $0.7 \times 0.8($ rain $\mathrm{M}+\mathrm{T})$ or $0.7 \times 0.2($ rain $\mathrm{M}+$ no rain T$)$ or $0.3 \times 0.6($ no rain $M+$ rain on $T)$ or $0.3 \times 0.4($ no rain $M+T)$	Throughout accept probabilities given as fractions or percentages Could be for Tuesday and Wednesday also
		P1	for process to find a correct triple probability product for it raining on Wednesday, eg. $0.7 \times 0.8 \times 0.8($ rain $M+T+W)\left(=0.448\right.$ or $\frac{56}{125}$ oe $)$ or $0.7 \times 0.2 \times 0.6($ rain $M+$ no rain $T+$ rain $W)\left(=0.084\right.$ or $\frac{21}{250}$ oe $)$ or $0.3 \times 0.6 \times 0.8($ no rain $\mathrm{M}+$ rain $\mathrm{T}+$ rain W$)\left(=0.144\right.$ or $\frac{18}{125}$ oe) or $0.3 \times 0.4 \times 0.6$ (no rain $M+$ no rain $T+$ rain $W)\left(=0.072\right.$ or $\frac{9}{125}$ oe)	
		P1 A1	for complete process, eg. "0.448" + " $0.084 "+" 0.144 "+" 0.072 "$ oe eg, $\frac{187}{250}$	NB: correct answer without supportive working gets 0 marks

「 EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
]1 (a)	Venn diagram	M1	for correct numbers in at least one region	Ignore all entries except the region you are marking for each method mark
		M1 A1	for correct numbers in at least two regions for all regions correct	
(b)	$\frac{2}{10}$	M1	for $\frac{a}{10}$ where $0<a<10$ and a is an integer or $\frac{2}{b}$ where $b>2$ and b is an integer or ft diagram	Need not be written in correct form at this stage eg could be a ratio $2: 10$ Repeated digits in the diagram should be counted as 2 elements
		A1	$\frac{2}{10}$ oe or ft diagram	Accept any equivalent fraction, decimal form 0.2 or percentage form 20%

Question	Answer	Mark	Mark scheme	Additional guidance
Ш1 (a)	Shown	M1 M1 C1	for $\frac{n}{n+8}$ or starts to work with ratios, eg 3:7 forms equation and clears fractions, eg $10 n=7 n+56$ or $10 n+3(n+8)=10(n+8)$ or equates $\frac{3}{10}=\frac{8}{x}$ or $\frac{3}{10}=\frac{8}{n+8}$ or continues to work with ratios, eg 3:7 $=24: 56$ gives the total sweets eg $\frac{80}{3}$ oe or number of red sweets $n=\frac{56}{3}$ oe or gives number of red as $\frac{56}{3}$ OR award 3 marks for a complete written argument, eg, $\mathrm{P}(\mathrm{y})=\frac{3}{10}$ and there are 8 yellows. This cannot work as 3 is not a factor of 8 (and $\frac{3}{10}$ is in its simplest form)	Does not have to restate the $\frac{7}{10}$; giving a different probability will suffice

Question	Answer	Mark	Mark scheme	Additional guidance
Ш1 (b)	28	P1	for $\frac{n}{n+8}$ and $\frac{n-1}{n+7}$ oe	
		P1	forms an appropriate equation, eg $\frac{n}{n+8} \times \frac{n-1}{n+7}=\frac{3}{5}$	
		P1	for correctly forming a quadratic ready for solving, eg $a n^{2}+b n+c(=0), 2 n^{2}-50 n-168(=0), n^{2}-25 n-84(=0)$ oe	Note we do not need to see " $=0 "$; just the LHS is sufficient.
		P1	process to solve quadratic equation, ft 3 term quadratic factorising eg $(n+3)(n-28)(=0)$ oe or completing the square or correct use of formula $\operatorname{eg} \frac{--25 \pm \sqrt{25^{2}-4 \times-84}}{2}, \frac{--50 \pm \sqrt{50^{2}-4 \times 2 \times-168}}{2 \times 2}$	
		A1	cao	Award 0 marks for a correct answer with no supportive working.

Question	Answer	Mark	Mark scheme	Additional guidance
T	$\frac{52}{72}$	P1	$\text { for } \frac{4}{9} \times \frac{3}{8}\left(\frac{12}{72}\right) \text { or } \frac{4}{9} \times \frac{5}{8} \text { or } \frac{5}{9} \times \frac{4}{8}\left(\frac{20}{72}\right)$	
		P1	for $1-\left(\frac{5}{9} \times \frac{4}{8}\right)$ or $\frac{4}{9} \times \frac{3}{8}+\frac{4}{9} \times \frac{5}{8}+\frac{5}{9} \times \frac{4}{8}$ oe	
		A1	for $\frac{52}{72}, \frac{13}{18}$ oe SC B1 for answer of $\frac{56}{81}$ (replacement)	Accept equivalent fractions, decimals ($0.72 \ldots$) or percentages (72.22.....\%)

Question	Answer	Mark	Mark scheme	Additional guidance
D (a)	$\begin{gathered} \text { Diagram } \\ \text { completed } \\ 0.85 \\ 0.15,0.85,0.15, \\ 0.85 \end{gathered}$	M1 A1	for $1-0.15(=0.85)$ fully correct diagram	
(b)	0.2775	M1	for one correct product eg $0.15 \times 0.15(=0.0225)$ or $0.15 \times 0.85(=0.1275)$ or $0.85 \times 0.85(=0.7225)$	ft their diagram provided probabilities are less than 1
		M1	for a complete method eg " 0.0225 " $+2 \times$ " 0.1275 " OR 1 - " 0.7225 " oe	ft their diagram provided probabilities are less than 1
		A1	$\text { oe, eg } \frac{111}{400}$	

T EXPERT
 TUITION

Question	Answer	Mark	Mark scheme	Additional guidance				
■	$\frac{3}{22}$	P1	for a process to find a first value eg male/Britain $=32-11 \quad(=21)$ or Italy/total $=60-(32+12) \quad(=16)$ or female/total $=60-38 \quad(=22)$		Br	Sp	It	Tot
				M	21	9	8	38
				F	11	3	8	22
				Tot	32	12	16	60
		P1	for process to find a secondary value, eg male/Spain $=38-(" 21 "+8)(=9)$ or female/Italy $=$ " $16 "-8(=8)$	May be seen in a frequency tree Values attributed to a category or from method seen				
		P1	complete process to find female/Spain, eg 12 - " 9 " or " 22 " - ($11+$ " 8 ") (=3)					
		A1	oe accept 0.136 to 0.14					
			$\text { SC B3 for } \frac{3}{60}$					
ㄴ) (a)	$\begin{gathered} 0.55,0.67,0.33, \\ 0.35,0.65 \end{gathered}$	B1	for 0.55 in correct position	Can be seen as fractions or percentages				
		B1	for the branches for the second game correct					
(b)	0.341	M1	for one correct product, $\begin{aligned} & \text { eg } 0.45 \times " 0.33 "(=0.1485) \text { or " } 0.55 " \times " 0.35 "(=0.1925) \text { or } 0.45 \times \\ & " 0.67 "(=0.3015) \text { or " } 0.55 " \times " 0.65 "(=0.3575) \end{aligned}$	Follo mark provi Acce	thro from ng prob		ptab e in ies	for method (a) less than 1. nts
		M1	for correct method eg ($0.45 \times$ " 0.33 ") $+(" 0.55$ " \times " 0.35 ") or $1-(0.45 \times$ " 0.67 ") $-(" 0.55 " \times$ " 0.65 ")					
		A1	answer in range $0.34-0.341$ oe					

Question	Working	Answer	Mark	Notes
D (a)		$\frac{1}{55}$	M1	$\text { for } \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}$
			A1	$\text { for } \frac{1}{55} \text { oe }$
(b)		Conclusion (supported)	C1	starts correct argument, eg by calculating a relevant probability, eg $\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13}$
			C1	statement of "more likely" from eg comparison of probabilities, ft answer to (a) eg $\frac{1}{55}(=0.018 \ldots)$ and $\frac{2}{91}(=0.021 \ldots$ or 0.022$)$

「 EXPERT

Question	Working	Answer	Mark	Notes
\square				

Question	Working	Answer		Notes
D (a)		0.4,0.6	B1	correctly placing probs for light A eg 0.4, 0.6
		0.3,0.7,0.8,0.2	B1	correctly placing probs for light B eg 0.3, 0.7, $0.8,0.2$
		B with correct	P1	(ft) eg 0.4×0.3 or 0.6×0.8 or $1-(0.28+0.12)$
		probabilities	P1	both sets of correct probability calculations
			C1	Correct interpretation of results with correct comparable results

Question	Working	Answer	Notes	
[1] (a)(i)		$\begin{gathered} 10,12,14,15,16, \\ 18 \end{gathered}$	B1	cao
(ii)		12, 18	B1	cao
(b)		$\frac{7}{10}$	M1	for 7 or indicating correct region or for 10,14 , 16, 11, 13, 17, 19 listed
			A1	$\text { for } \frac{7}{10} \text { oe }$

Question	Answer	Mark	Mark scheme	Additional guidance
ㅁ) (a) (b)	$0.5,0.3$ 120	$\begin{aligned} & \text { P1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	for $1-0.05-0.15(=0.8)$ oe $18 \div 0.15$ oe or $6+18+a+b$ where $a+b=96$ cao	Award this mark for any two probabilities that sum to 0.8
■	$1-\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{2}\right)^{n}$	M1 A1	$\begin{aligned} & \text { for }\left(\frac{1}{2}\right)^{n} \text { oe } \\ & \text { oe eg } 1-\left(\frac{1}{2}\right)^{n-1} \end{aligned}$	

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \[
\frac{1}{3}, \frac{2}{3} \quad \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}
\]
\[
\frac{2}{9}
\] \& \begin{tabular}{l}
B2 \\
(B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
six fully correct probabilities \\
at least 2 correct probabilities) \\
for \(\frac{1}{3} \times \frac{2}{3}\) oe or ft probabilities from diagram \\
for \(\frac{2}{9}\) oe
\end{tabular} \& \begin{tabular}{l}
Accept any equivalent fraction, decimal form \(0.33(3 \ldots)\) and \(0.66(6 \ldots)\) or 0.67 or percentage form \(33(.3 \ldots) \%\) and \(66(.6 \ldots) \%\) or \(67 \%\) \\
Accept any equivalent fraction, decimal form \(0.22(2 \ldots)\) or percentage form \(22(.2 . .) \\).
\end{tabular} \\
\hline D \& 24 \& P1

P1

A1 \& | for start to process of working out the unknown probabilities, eg $1-0.32-0.20(=0.48)$ |
| :--- |
| or assigning probabilities as $5 x$ and x or process to work out the number of blue or green counters, eg $0.32 \times 300(=96)$ or $0.20 \times 300(=60)$ or $0.52 \times 300(=156)$ |
| for process to find the probability, eg $5 x+x=" 0.48$ " or " $0.48 " \div 6(=0.08)$ |
| or process to find the number of red or yellow counters, eg 300 - " $96 "$ - " $60 "$ or $300 \times$ " 0.48 " |
| cao | \& Award for $\mathrm{P}(\mathrm{R})+\mathrm{P}(\mathrm{Y})=0.48$, may be seen in table

\hline
\end{tabular}

Question	Answer	Mark	Mark scheme	Additional guidance
\square	0.1709	M1 M1 A1	for one product, $0.07 \times 0.98(=0.0686)$ or $0.93 \times 0.11(=0.1023)$ or $0.07 \times 0.02(=0.0014)$ or $0.93 \times 0.89(=0.8277)$ for a fully correct method, eg $0.07 \times 0.98+0.93 \times 0.11$ or $1-(0.07 \times 0.02)-(0.93 \times 0.89)$ oe	If all products shown, award this mark
■	$\frac{1}{81}$	M1 A1	for finding the probability of heads $\operatorname{eg}^{4} \sqrt{\frac{16}{81}}\left(=\frac{2}{3}\right)$ or for finding the probability of tails $1-\sqrt[4]{\frac{16}{81}}\left(=\frac{1}{3}\right)$ oe	Seeing a probability of $\frac{2}{3}$ or $\frac{1}{3}$ is enough for this mark
(a) (b)	$\begin{gathered} 6,9 \\ 1,5,8 \\ 2 \\ 3,4,7 \\ \frac{2}{9} \end{gathered}$	M1 M1 C1 M1 A1	for 6, 9 in the intersection only for $1,5,8$ in set A only or 2 in set B only or 3, 4, 7 in set $(A \cup B)^{\prime}$ only for all numbers correctly placed in the Venn Diagram ft for identification of 2 or 9 or ft diagram $\frac{2}{9}$ oe or ft diagram	Ignore all entries except the region you are marking for each method mark Need not be written in correct form at this stage eg could be a ratio $2: 9$ Repeated digits in the diagram should be counted as 2 elements Accept any equivalent fraction, decimal form 0.22 (22..) or percentage form 22(.22...) $\%$

Question	Answer	Mark	Mark scheme	Additional guidance
\square	Probabilities should sum to 1 0.35 and 0.65 reversed	$\mathrm{C} 1$ C1	for stating that the probabilities should total 1 eg 0.25 should be 0.35 for recognising that the 0.35 and 0.65 in the first branches for the 2 nd throw should be reversed eg, "for the second throw, the probability it lands on 4 should be 0.65 "	Can be shown on the diagram
(a) (b)	8	P1 P1 P1 A1 C1	for process to find sum of unknown probabilities, eg $1-0.45-0.25(=0.3)$ OR to find the total number of counters in the bag, eg $\frac{18}{0.45}(=40)$ OR to find the number of yellow counters, eg $\frac{0.25}{0.45} \times 18(=10)$ for process to find $\mathrm{P}($ red $)=0.2$ oe or $\mathrm{P}($ white $)=0.1$ oe OR for process to find the total number of red and white counters, eg $" 40 "-18-" 10 "(=12)$ OR for process to derive an equation in x, eg $2 x+x=1-0.45-0.25$ or $2 x+x=" 0.3 "$ or $x=0.1$ for a complete process to find the number of red counters, eg $\frac{2 \times 0.1}{0.45} \times 18$ or $\frac{2}{3} \times$ " 12 " or $0.2 \times$ " 40 " or $\frac{0.2}{0.025}$ cao for explanation eg 0.5 multiplied by an odd number will never be a whole number, for half of a number to be an integer that number must be even, you can't have half a marble	Award mark for any two probabilities given that sum to 0.3 eg given in the table. Award P2 for $\mathrm{P}($ red $)$ or P (white) (could be shown in table) Equations could be given as written statements or working but must be fully equivalent.

Question	Answer	Mark	Mark scheme	Additional guidance
-	$\frac{6}{490}$	P1 P1	for start to process information, eg draws Venn diagram and shows at least 1 unknown amount, eg 5 speak German and Spanish but not French for process to find at least 3 unknown amounts from, eg 5 speak German and Spanish but not French 3 speak French and German but not Spanish 22 speak French but not German or Spanish 0 speak German but not French or Spanish	See Venn Diagram at end of mark scheme - rectangle not needed
		P1 P1	for complete process to find number of people who speak only Spanish (=6) for $\frac{\text { [number speaking Spanish only] }}{50} \times \frac{\text { [number speaking Spanish only] - }}{49}$, eg $\frac{6}{50} \times \frac{5}{49}$	Award first 3 marks to students who show this on the Venn diagram or in a statement. Award this mark for use of their number of students who speak Spanish. Must be a clear link, eg from Venn diagram
		A1	for $\frac{6}{490}$ oe	See note 8 in general marking guidance but 0.01 or 1% must be from seen correct working.

■

ᄃ $\xlongequal{\substack{\text { EXPERT } \\ \text { TUITION }}}$

Question	Working	Answer	Mark	Notes
ㄱ (a) (b)		Mel (supported) $\frac{2}{9}$	B1 M1 A1	Mel with reference to greatest number of throws selects overall total and multiplies $\mathrm{P}($ point up $) \times \mathrm{P}($ point down $)$ eg $\frac{50}{150} \times \frac{100}{150}$ oe (accept $\frac{14}{45} \times \frac{31}{45}$ or $\frac{27}{80} \times \frac{53}{80}$ or $\frac{9}{25} \times \frac{16}{25}$) for $\frac{2}{9}$ oe
(a) (b)		$\begin{gathered} 0.05 \\ 20 \\ \text { Reason } \end{gathered}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \end{aligned}$	for 0.05 oe for stating that at least 20 required for reason eg explains that number of each colour must be a whole number or that there must be (at least) 1 red counter or shows that $0.05=\frac{1}{20}$
-		48	$\begin{aligned} & \hline \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	for $0.25 \times 0.6(=0.15)$ or $0.75 \times 0.4(=0.3)$ for $0.25 \times 0.6(=0.15)$ and $0.75 \times 0.4(=0.3)$ or for $24 \div " 0.15 "(=160)$ cao

Question	Working	Answer	Mark	Notes
(1) (a) a) (b)		Venn Diagram $\frac{7}{15}$	B1 M1 M1 C1 P1 A1	for labels on diagram for just 15 in the intersection for just 5 and 25 in only set B or just 3, 9,21 and 27 in only set A or just $1,7,11,13$, 17, 19, 23, 29 in $(A \cup B)^{\prime}$ for all numbers correctly placed in the Venn Diagram Ignore all entries except the region you are marking for each method mark ft for $\frac{" 7 "}{a}$ where $a \geq " 7$ " or $\frac{b}{" 15 "}$ where $b \leq " 15$ " ft $\frac{7}{15}$ oe
[Explanation	C1	No with statement about not being mutually exclusive events eg a person could be in both categories

T EXPERT

Question	Working	Answer	Notes
[(a)	Draws correct Venn diagram	$\frac{44}{50}$	M1 Begin to interpret given information e.g. 3 overlapping labelled ovals with central region correct M1 Extend interpretation of given information e.g. 3 overlapping labelled ovals with at least 5 regions correct M1 Method to communicate given information e.g. 3 overlapping labelled ovals with all regions correct including outside A1 oe
(b)		$\frac{21}{44}$	P1 For correct process to identify correct regions in Venn diagram and divide by '44' A1
■		0.49	$\begin{aligned} & \text { P1 for } \sqrt{0.09} \\ & \text { P1 for }(1-" \sqrt{0.09} ")^{2} \\ & \text { A1 cao } \end{aligned}$

Question	Working	Answer		Notes
W] (a)		chain of reasoning		for a relevant product eg $\frac{y}{y+5} \times \frac{5}{y+4}$
			C1	for a correct equation eg $2 \times\left(\frac{y}{y+5} \times \frac{5}{y+4}\right)=\frac{6}{11}$
			C1 C 1	for method to eliminate fractions from algebraic expression complete chain of reasoning
(b)		$\frac{3}{11}$	M	method to solve equation eg $(a x+b)(c x+d)$ with $a c=3$ and $b d= \pm 60$
			A1	$\begin{aligned} & \text { for selecting } y=6 \\ & \text { for } \frac{3}{11} \text { oe } \end{aligned}$

Question	Working	Answer	Mark	Notes
■		$\frac{4}{15}$	3	M1 for a method to find the total number of people eg $3 \times 5(=15)$ or $\frac{5}{15}=\frac{1}{3}$ M1 (dep) for " 15 " $-5-6(=4)$ A1 oe OR M1 for a method to find prob (boy) eg $\frac{6}{5} \times \frac{1}{3}\left(=\frac{6}{15}\right)$ M1 (dep) for $1-" \frac{6}{15}$ " $-\frac{1}{3}$ A1 oe OR M1 for an expression for the number of adults eg $\frac{5}{5+6+x}$ M1 (dep) for " $\frac{5}{5+6+x} "=\frac{1}{3} \quad$ or $x=4$ A1 oe SC: B2 for $\frac{4}{n}$ where $n>4, n \neq 15$

Question	Working	Answer	Mark	Notes
(a)		$\frac{42}{110}$	3	M1 for use of 11 and 10 in the denominators M1 for $\frac{7}{11} \times \frac{6}{10}$ oe A1 for $\frac{42}{110}$ oe SC for replacement: B 1 for $\frac{7}{11} \times \frac{7}{11} \quad\left(=\frac{49}{121}\right)$
(b)		$\frac{62}{110}$	3	M1 for correct method for GG $\frac{3}{11} \times \frac{2}{10}\left(=\frac{6}{110}\right)$ M1 (dep) $1-(\mathrm{BB}+\mathrm{GG})=1-\left(" \frac{42}{110} "+" \frac{6}{110} "\right)$ A1 for $\frac{62}{110}$ oe
				OR M1 for at least two of $\frac{7}{11} \times \frac{3}{10}, \frac{7}{11} \times \frac{1}{10}, \frac{3}{11} \times \frac{1}{10}$ oe M1 for a complete method eg $2 \times\left(\frac{7}{11} \times \frac{3}{10}+\frac{7}{11} \times \frac{1}{10}+\frac{3}{11} \times \frac{1}{10}\right)$ oe A1 for $\frac{62}{110}$ oe SC for replacement: B2 for $2 \times\left(\frac{7}{11} \times \frac{3}{11}+\frac{7}{11} \times \frac{1}{11}+\frac{3}{11} \times \frac{1}{11}\right)$ oe $\left(=\frac{62}{121}\right)$ or $\quad\left(\frac{7}{11} \times \frac{4}{11}+\frac{3}{11} \times \frac{8}{11}+\frac{10}{11} \times \frac{1}{11}\right)$ oe $\left(=\frac{62}{121}\right)$ or $\quad 1-\left(" \frac{49}{121} "+\frac{9}{121}+\frac{1}{121}\right)$ oe $\quad\left(=\frac{62}{121}\right)$ (B1 for at least two of $\frac{7}{11} \times \frac{3}{11}, \frac{7}{11} \times \frac{1}{11}, \frac{3}{11} \times \frac{1}{11}$ oe)

Question	Working	Answer	Mark	Notes
■		$\frac{52}{72}$	4	B1 for $\frac{3}{8}$ or $\frac{2}{8}$ or $\frac{1}{8}$ seen as second probability M1 for $\frac{4}{9} \times \frac{3}{8}$ or $\frac{3}{9} \times \frac{2}{8}$ or $\frac{2}{9} \times \frac{1}{8}$ M1 for $1-\left(\frac{4}{9} \times \frac{3}{8}+\frac{3}{9} \times \frac{2}{8}+\frac{2}{9} \times \frac{1}{8}\right)$ or $\frac{4}{9} \times \frac{3}{8}+\frac{4}{9} \times \frac{2}{8}+\frac{3}{9} \times \frac{4}{8}+\frac{3}{9} \times \frac{2}{8}+\frac{2}{9} \times \frac{4}{8}+\frac{2}{9} \times \frac{3}{8}$ A1 for $\frac{52}{72}$ oe OR B1 for $\frac{5}{8}$ or $\frac{6}{8}$ or $\frac{7}{8}$ seen as second probability M1 for $\frac{4}{9} \times \frac{5}{8}$ or $\frac{3}{9} \times \frac{6}{8}$ or $\frac{2}{9} \times \frac{7}{8}$ M1 for $\frac{4}{9} \times \frac{5}{8}+\frac{3}{9} \times \frac{6}{8}+\frac{2}{9} \times \frac{7}{8}$ A1 for $\frac{52}{72}$ oe SCB2 $\frac{52}{81}$ oe

Question	Working	Answer	Mark	Notes
■		90	3	M1 for $1-\frac{3}{5} \quad\left(=\frac{2}{5}\right.$ or 40%) oe M1 for a complete method to find the number of female teachers (54) eg $36 \div 2 \times 3$ or determines $\frac{3}{5}(60 \%)$ is 54 , or 10% is 9 A1 cao OR M1 for $\mathrm{F}: \mathrm{M}=3: 2$ M1 for a complete method to find the number of female teachers (54) $\text { eg } \frac{3}{2} \times 36 \text { oe }$ A1 cao
(a) (b)		0.7 0.2 0.3 0.8 0.05 0.95 0.04	3	B1 for 0.2, 0.8 oe B1 for 0.7, 0.3 oe B1 for $0.05,0.95$ oe M1 for " 0.8 " \times " 0.05 " A1 oe

Question		Working	Answer	Mark	Notes
■	(a) (b)		60 0.1	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1 for 200×0.3 oe A1 cao M1 subtracting sum of probabilities from 1, e.g. $1-(0.3+0.2+0.4)$ A1 cao
■		$2 p$ $1 p$ $1 / 2$ p Sot 7 16 (31) 54 Sun (15) 14 17 (46) Tot (22)(30) 48 (100)	14	4	M1 for total Sat bottles $100-46(=54)$ or for total $1 / 2$ pint bottles $100-$ $22-30(=48)$ or (total 2 pint bottles on Sat) $22-15(=7)$ M1 for total Sun bottles of $1 / 2$ pint " 48 " $-31(=17)$ or for total Sat bottles of 1 pint: " 54 " $-31-(22-15)(=16)$ M1 for 46-15-"17" or for $30-" 16 "$ A1 cao NB: any of the above figures could be shown in a 2-way table

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline D \& \begin{tabular}{l}
(a \\
(b)
\end{tabular} \& \& \begin{tabular}{l}
\[
\frac{2}{10}
\] \\
\(£ 10\) or 1000 p
\end{tabular} \& 2

3 \& | M1 for $\frac{2}{a}$ with a >2 or $\frac{b}{10}$ with $b<10$ |
| :--- |
| A1 for $\frac{2}{10}$ oe |
| M1 for " $\frac{2}{10}$ " $\times 100(=20)$ or $30($ p $) \times 100(=3000$ p or $£ 30)$ |
| M1 (dep) for " $30(\mathrm{p}) \times 100$ " $-(£) 1 \times$ " 20 " oe |
| A1 ft from (a), provided the answer is not negative. Units must be shown |

\hline ■ \& | (a |
| :--- |
| (b) | \& \& Proof

\[
10

\] \& 3 \& | M1 for $\frac{6}{n}$ or $\frac{5}{n-1}$ |
| :--- |
| M1 for $\frac{6}{n} \times \frac{5}{n-1}\left(=\frac{1}{3}\right)$ |
| A1 for fully correct algebra leading to $n^{2}-n-90=0$ |
| M1 for correct start to a solution, eg. $(n \pm 10)(n \pm 9)$ or substitution into the quadratic formula, condoning one sign error or $(n-0.5)^{2}-0.25-90$ |
| A1 for $(n-10)(n+9)$ or for 10 and -9 or $\frac{1 \mp 19}{2}$ oe |
| A1 for 10 only |

\hline
\end{tabular}

Question		Working	Answer	Mark	Notes
D	(a) (b)		$\frac{3}{10}, \frac{6}{9}, \frac{3}{9}, \frac{7}{9}, \frac{2}{9}$ $\frac{48}{90}$	2 3	B1 for $\frac{3}{10}$ on LH yellow branch B1 for $\frac{6}{9}, \frac{3}{9}, \frac{7}{9}, \frac{2}{9}$ correct on tree diagram M1 for $\frac{7}{10} \times 4 \frac{3}{9}$ " or " $\frac{3}{10} " \times " \frac{7}{9}$ "or " $\frac{3}{10} " \times " \frac{2}{9}$ " M1 for $\frac{7}{10} \times " \frac{3}{9} "+" \frac{3}{10} " \times " \frac{7}{9} "+" \frac{3}{10} " \times " \frac{2}{9} "$ A1 for $\frac{48}{90}$ oe OR M1 for $\frac{7}{10} \times " \frac{6}{9} "$ M1 for $1-\frac{7}{10} \times{ }^{\prime} \frac{6}{9}$ A1 for $\frac{48}{90}$ oe

Question		Working	Answer	Mark	Notes
■	(a) (b)		$\begin{aligned} & 0.25 \\ & 150 \end{aligned}$	1 2	B1 oe M1 for 0.75×200 oe A1 cao
■			0.82	3	M1 for $1-0.7(=0.3)$ or $1-0.4(=0.6)$ M1 for $1-{ }^{\prime} 0.3^{\prime} \times$ ' 0.6 ' A1 for 0.82 oe OR M1 for $1-0.7(=0.3)$ or $1-0.4(=0.6)$ M1 $(0.7 \times 0.4)+\left(0.7 \times{ }^{\prime} 0.6^{\prime}\right)+\left({ }^{\prime} 0.3^{\prime} \times 0.4\right)$ A1 for 0.82 oe

Question		Working	Answer	Mark	Notes
■		$\left\lvert\, \begin{array}{ccc} 50 & 1 & 1 \\ 1 & 50 & 1 \\ 1 & 1 & 50 \end{array}\right.$	$\frac{126}{720}$	4	M1 for 3 fractions $\frac{a}{10}, \frac{b}{9}, \frac{c}{8}$ where $\mathrm{a}<10, \mathrm{~b}<9$ and $\mathrm{c}<8$ M1 for $\frac{7}{10} \times \frac{3}{9} \times \frac{2}{8}$ or $\frac{3}{10} \times \frac{7}{9} \times \frac{2}{8}$ or $\frac{3}{10} \times \frac{2}{9} \times \frac{7}{8}\left(=\frac{42}{720}\right)$ M1 for $\frac{7}{10} \times \frac{3}{9} \times \frac{2}{8}+\frac{3}{10} \times \frac{7}{9} \times \frac{2}{8}+\frac{3}{10} \times \frac{2}{9} \times \frac{7}{8}$ or $3 \times \frac{3}{10} \times \frac{2}{9} \times \frac{7}{8}$ A1 for $\frac{126}{720}$ oe. eg. $\frac{7}{40}$ Alternative Scheme for With Replacement M1 for $\frac{7}{10} \times \frac{3}{10} \times \frac{3}{10}\left(=\frac{63}{1000}\right)$ M1 for $\frac{7}{10} \times \frac{3}{10} \times \frac{3}{10} \times 3\left(=\frac{189}{1000}\right)$ M0 A0 No further marks

	stion	Working	Answer	Mark	Notes
D		$\mathrm{EE}+\mathrm{CC}+\mathrm{HH}$ Or $\mathrm{EC}+\mathrm{EH}+\mathrm{CE}+\mathrm{CH}+\mathrm{HE}+\mathrm{HC}$ Or $\mathrm{E}, \operatorname{not} \mathrm{E}+\mathrm{C}, \operatorname{not} \mathrm{C}+\mathrm{H}, \operatorname{not} \mathrm{H}$	$\frac{76}{110}$	5	M1 for use of 10 as denominator for $2^{\text {nd }}$ probability M1 for $\frac{4}{11} \times \frac{3}{10}$ or $\frac{5}{11} \times \frac{4}{10}$ or $\frac{2}{11} \times \frac{1}{10}$ M1 for $\frac{4}{11} \times \frac{3}{10}+\frac{5}{11} \times \frac{4}{10}+\frac{2}{11} \times \frac{1}{10}\left(=\frac{34}{110}\right)$ M1 (dep on previous M1 for $1-{ }^{\prime} \frac{34}{110}$, A1 for $\frac{76}{110}$ oe Or M1 for use of 10 as denominator for $2^{\text {nd }}$ probability M1 for $\frac{4}{11} \times \frac{5}{10}$ or $\frac{4}{11} \times \frac{2}{10}$ or $\frac{5}{11} \times \frac{4}{10}$ or $\frac{5}{11} \times \frac{2}{10}$ or $\frac{2}{11} \times \frac{4}{10}$ or $\frac{2}{11} \times \frac{5}{10}$ M2 for $\frac{4}{11} \times \frac{5}{10}+\frac{4}{11} \times \frac{2}{10}+\frac{5}{11} \times \frac{4}{10}+\frac{5}{11} \times \frac{2}{10}+\frac{2}{11} \times \frac{4}{10}+\frac{2}{11} \times \frac{5}{10}$ (M1 for at least 3 of these) A1 for $\frac{76}{110}$ oe Or M1 for use of 10 as denominator for $2^{\text {nd }}$ probability M1 for $\frac{4}{11} \times \frac{7}{10}$ or $\frac{5}{11} \times \frac{6}{10}$ or $\frac{2}{11} \times \frac{9}{10}$ M2 for $\frac{4}{11} \times \frac{7}{10}+\frac{5}{11} \times \frac{6}{10}+\frac{2}{11} \times \frac{9}{10}$ (M1 for two of these added) A1 for $\frac{76}{110}$ oe PTO for SC's SC: B2 for $\frac{76}{121}$ SC: B1 for $\frac{4}{11} \times \frac{4}{11}+\frac{5}{11} \times \frac{5}{11}+\frac{2}{11} \times \frac{2}{11}\left(=\frac{45}{121}\right)$ Or $\frac{4}{11} \times \frac{5}{11}+\frac{4}{11} \times \frac{2}{11}+\frac{5}{11} \times \frac{4}{11}+\frac{5}{11} \times \frac{2}{11}+\frac{2}{11} \times \frac{4}{11}+\frac{2}{11} \times \frac{5}{11}$ Or $\frac{4}{11} \times \frac{7}{11}+\frac{5}{11} \times \frac{6}{11}+\frac{2}{11} \times \frac{9}{11}$

Question		Working	Answer	Mark	Notes
\square	(a)	0.15	2	M1 for $1-(0.2+0.5)$ oe or sight of 0.3 A1 oe M1 for 240×0.2 oe or $48+120+36+36$ A1 cao	
\square	$(\mathrm{a}$		48	2	2

Question		Working	Answer	Mark	Additional Guidance
66.		Reds 6, 12, 18, 24, 30... Greens 9, 18, 27...	$\frac{1}{20}$	3	B1 list of red and green multiples (both to at least 18) or explicitly states 'LCM' B1 works out highest number (90 seen)

Question		Working	Answer	Mark	Additional Guidance
67	(a)	4 6 8 10 6 8 10 12 8 10 12 14 10 12 14 16 OR $\frac{1}{4} \times \frac{1}{4}$ $\frac{1}{4} \times \frac{1}{4} \times 4$	$\frac{4}{16}$	3	M1 Attempts to list all outcome pairs A1 all 16 found A1 cao OR M2 $\frac{1}{4} \times \frac{1}{4} \times 4$ (M1 $\frac{1}{4} \times \frac{1}{4} \times 1,2$ or 3) A1 $\frac{4}{16}$ oe
	(b)	$\begin{aligned} & \text { Prob Ali wins }=\frac{6}{16} \\ & \text { Number of wins }=\frac{6}{16} \times 80 \end{aligned}$	30	3	B1 Prob Ali wins $=\frac{6}{16}$ oe M1 $\cdot \frac{6}{16} \times 80$ A 1 ft
					Total for Question: 6 marks

Question	Working	Answer	Mark	Additional Guidance
68			$\frac{3}{720} \times \frac{6}{9} \times \frac{5}{8}=\frac{120}{720}$	
$\frac{120}{720}+\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}+$				
$\frac{6}{10} \times \frac{4}{9} \times \frac{5}{8}$		M1 for $\frac{4}{10} \times \frac{6}{9} \times \frac{5}{8}$		

$\Gamma \underset{\text { EXPERT }}{\text { EUITION }}$

Question	Working	Answer	Mark	Notes
\square (a)		$\begin{gathered} 0.98 \\ 0.95,0.05,0.95 \end{gathered}$	2	B1 for 0.98 oe for machine A B1 for $0.95,0.05,0.95$ in correct positions for machine B
(b)		0.069	3	M1 for 0.02×0.05 or $0.02 \times$ " 0.95 " or " 0.98 " \times " 0.05 " or " $0.98 " \times$ " 0.95 " M1 for $0.02 \times 0.05+0.02 \times$ " $0.95 "+" 0.98 " \times$ " 0.05 " or $1-" 0.98 " \times$ " 0.95 " A1 for 0.069 oe

Question	Working	Answer	Mark	Notes	
\square	(a)		0.3	2	M1 for $1-(0.25+0.10+0.20+0.15)$ oe A1 for 0.3 oe
	(b)		21	3	M1 for $0.25+0.10(=0.35)$ or $0.25 \times 60(=15)$ or $0.10 \times 60(=6)$ M1 (dep) for $60 \times " 0.35 "$ or " $15 "+" 6 "$ A1 cao

Question		Working	Answer	Mark	Notes
T			$\frac{9}{20} \text { oe }$	2	B2 for $\frac{9}{20}$ oe or ff from stem and leaf diagram (B1 for $\frac{x}{20}$ where $x<20, x \neq 9$ or $\frac{9}{y}$ where $y>9$ or ft from stem and leaf diagram)
■			0.09, 0.36	3	M1 for $1-0.4-0.15 \mathrm{oe}(=0.45)$ or $100-100 \times 0.4-100 \times 0.15(=45)$ M1 for $(1-0.4-0.15) \div 5(=0.09)$ or $(100-100 \times 0.4-100 \times 0.15) \div 5(=9)$ A1 for 0.09 and 0.36 oe OR M1 for $0.4+0.15+x+4 x=1$ M1 for $x=(1-0.4-0.15) \div 5$ A1 for 0.09 and 0.36 oe [SC: B1 for 0.162 and 0.648 if M0 scored]

Question		Working	Answer	Mark	Notes
■		$\begin{aligned} & \frac{18}{30} \times \frac{12}{29}+\frac{7}{30} \times \frac{23}{29}+\frac{5}{30} \times \frac{25}{29} \\ & \text { or } \\ & 1-\left(\frac{18}{30} \times \frac{17}{29}+\frac{7}{30} \times \frac{6}{29}+\frac{5}{30} \times \frac{4}{29}\right) \\ & \text { or } \\ & \frac{18}{30} \times \frac{7}{29}+\frac{18}{30} \times \frac{5}{29}+\frac{7}{30} \times \frac{18}{29} \\ & +\frac{7}{30} \times \frac{5}{29}+\frac{5}{30} \times \frac{18}{29}+\frac{5}{30} \times \frac{7}{29} \end{aligned}$	$\frac{502}{870}$	4	B1 for a second 'branch' probability seen (could be seen in a tree) M1 for a product of any first and second stage correct probabilities M1 for a complete method to find the required probability A1 for $\frac{502}{870}$ oe Note if decimals used they must be correct to 2 decimal places SC with replacement B2 for $\frac{502}{900}$ oe B0 M1 $\frac{18}{30} \times \frac{12}{30}$ or $\frac{7}{30} \times \frac{23}{30}$ or $\frac{5}{30} \times \frac{25}{30}$ M1 $\frac{18}{30} \times \frac{12}{30}+\frac{7}{30} \times \frac{23}{30}+\frac{5}{30} \times \frac{25}{30}$ A0

Question		Working	Answer	Mark
\square	(a)		$\frac{1}{30}$	1
(b)		$\frac{3}{10}$	2	B1 for $\frac{1}{30}$ oe M1 for method to sum the number of white chocolates in the bag, (c)
		0.48	A1 for $\frac{3}{10}$ or $\frac{9}{30}$ oe	
		2	M1 for $1-(0.35+0.17)$ oe A1 for 0.48 oe	

Question		Working	Answer	Mark	Notes
D	(a)		0.2	2	M1 for $1-0.16-0.4-0.24$ oe A1 cao
	(b)		20	2	M1 for 0.16×125 oe A1 cao
\]			$\begin{gathered} 0.3 \\ 0.3,0.7,0.3 \end{gathered}$	2	B1 for 0.3 as first spin oe B1 for $0.3,0.7,0.3$ in correct positions for second spin oe
	(b)		0.42	3	M1 for ' 0.3 ' \times ‘ 0.7 ' or $0.7 \times{ }^{\prime} 0.3^{\prime}(=0.21)$ M1 for ' 0.3 ' $\times{ }^{‘} 0.7+0.7 \times{ }^{`} 0.3$ (OR M2 for $1-0.7^{2}-0.3^{2}$) A1 for 0.42 oe
Question		Working	Answer	Mark	Notes
:---:	:---:	:---:	:---:	:---:	:---:
■			$\frac{29}{100}$	2	M1 for $13+11+5(=29)$ A1 for $\frac{29}{100}$ oe (SC B1 for $\frac{16}{100}$ oe)
* \square			Yes	3	M1 for $1-0.6(=0.4)$ M1 for (" 0.4 ") ${ }^{3}$ oe C1 (dep on M1) for 0.064 oe leading to a correct deduction OR M1 for $1-\operatorname{Pr}(3 \mathrm{H}, 0 \mathrm{~T})-\operatorname{Pr}(2 \mathrm{H}, 1 \mathrm{~T})-\operatorname{Pr}(1 \mathrm{H}, 2 \mathrm{~T})$ oe M1 for $1-(0.6)^{3}-3(0.6)^{2}(0.4)-3(0.6)(0.4)^{2}$ C1 (dep on M1) for 0.064 oe leading to a correct deduction
\square			4	2	M1 for 14 or $\frac{3+7}{n}=\frac{5}{7}$ or any fraction equivalent to $\frac{2}{7}$ or $\frac{5}{7}$ A1 cao
Question		Working	Answer	Mark	Notes
:---:	:---:	:---:	:---:	:---:	:---:
D			126	3	M1 for $1-0.05-0.32(=0.63)$ M1 for ' 0.63 ’ $\times 200$ A1 cao OR M1 for $0.05 \times 200(=10)$ or $0.32 \times 200(=64)$ or $0.37 \times$ $200(=74)$ M1 for 200 - ' 10 ' - ‘ 64 ' A1 cao OR M1 for $100-5-32(=63)$ M1 for $\frac{63 "}{100} \times 200$ A1 cao SC: B2 for $\frac{126}{200}$ as the answer.

「 EXPERT

Question		Working	Answer	Mark	Notes
■	(a)	$\begin{aligned} & 1-0.2-0.1 \\ & 0.7 \div 2 \end{aligned}$	0.35	3	M1 for correctly using total probability is 1 or 100% if percentages used M1 (dep) for complete correct method to complete the solution A1 for 0.35 or 35% or $\frac{35}{100}$ oe
	(b)		20	2	M1 for 0.1×200 oe A1 cao SC : If M0 then award B1 for an answer of $\frac{20}{200}$

T EXPERT

| Question Working | | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: | :--- |
| \square | 0.3×400 | 120 | 2 | M1 for 0.3×400 oe
 A1 cao |

	estion	Working	Answer	Mark	Notes
■		$\begin{aligned} & \frac{12}{20} \times \frac{11}{19}+\frac{5}{20} \times \frac{4}{19}+\frac{3}{20} \times \frac{2}{19} \\ & 1-\left(\frac{12}{20} \times \frac{11}{19}+\frac{5}{20} \times \frac{4}{19}+\frac{3}{20} \times \frac{2}{19}\right) \end{aligned}$	$\frac{222}{380}$	4	B1 for $\frac{12}{19}$ or $\frac{5}{19}$ or $\frac{3}{19}$ (could be seen in working or on a tree diagram) M1 for $\frac{12}{20} \times \frac{5}{19}$ or $\frac{12}{20} \times \frac{3}{19} \frac{5}{20} \times \frac{12}{12}-\frac{5}{20} \times \frac{3}{20}-\frac{3}{19} \times \frac{12}{20} \times-\frac{3}{19} \times \frac{5}{20} \frac{5}{15}$ M1 for $\frac{12}{20} \times \frac{5}{19}+\frac{12}{20} \times \frac{3}{19}+\frac{5}{20} \times \frac{12}{19}+\frac{5}{20} \times \frac{3}{19}+\frac{3}{20} \times \frac{12}{19}+\frac{3}{20} \times \frac{5}{19}$ A1 for $\frac{222}{380}$ oe or $0.58(421 \ldots$) OR B1 for $\frac{8}{19}$ or $\frac{15}{19}$ or $\frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19}$ or $\frac{5}{20} \times \frac{15}{19}$ or $\frac{3}{20} \times \frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19}+\frac{5}{20} \times \frac{15}{19}+\frac{3}{20} \times \frac{17}{19}$ A1 for $\frac{222}{380}$ oe or $0.58(421 \ldots$...)

$\Gamma \underset{\text { EXPERT }}{\text { EXITION }}$

Que	tion	Working	Answer	Mark	Notes
$\underset{\text { contd }}{\mathbb{T}}$					B1 for $\frac{11}{19}$ or $\frac{4}{19}$ or $\frac{2}{19}$ M1 for $\frac{12}{20} \times \frac{11}{19}$ or $\frac{5}{20} \times \frac{4}{19}$ or $\frac{3}{20} \times \frac{2}{19}$ M1 for $1-\left(\frac{12}{20} \times \frac{11}{19}+\frac{5}{20} \times \frac{4}{19}+\frac{3}{20} \times \frac{2}{19}\right)$ A1 for $\frac{222}{380}$ oe or $0.58(421 \ldots$...) NB if decimals used they must be correct to at least 2 decimal places SC: with replacement B2 for $\frac{111}{200}$ oe OR e.g. B0 M1 for $\frac{12}{20} \times \frac{8}{20}$ or $\frac{5}{20} \times \frac{15}{20}$ or $\frac{3}{20} \times \frac{17}{20}$ M1 for $\frac{12}{20} \times \frac{8}{20}+\frac{5}{20} \times \frac{15}{20}+\frac{3}{20} \times \frac{17}{20}$ A0

