

Maths Questions By Topic:

Ratio, Proportion \& Rates of

 Change
Mark Scheme

Edexcel GCSE (Foundation)

\# www.expert-tuition.co.uk
\square online.expert-tuition.co.uk

- enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 .. Page 1
Paper 2 ... Page 30
Paper 3 Page 59

Old Spec A (Linear)

Paper 1
 Page 85

Paper 2
Page 106

Question	Answer	Mark	Mark scheme	Additional guidance
\square	Yes, supported by correct working	P1	for 36:48 oe OR $\frac{36}{84}$ oe or $\frac{48}{84}$ oe	Relating to drama group 1
		P1	for $\frac{4}{7}$ or $3: 4$ oe (for group 2) OR $\left(\frac{36}{84}=\frac{3}{7}\right)$ or $\left(\frac{48}{84}=\frac{4}{7}\right)$ or $84 \times 3 \div 7$ (= 36 boys) or $84 \times 4 \div 7$ (= 48 girls)	Relating to drama group 2
			or $N \times 3 \div 7$ and $N \times 4 \div 7$	N can be any number (other than 84) of students in the $2^{\text {nd }}$ group
		A1	for Yes with both ratios $3: 4$ oe or for a correct pair of fractions and stating they are equivalent.	Both equivalent forms of the ratios (fractions) must be the same "Yes" may be implied from working

Question	Answer	Mark	Mark scheme	Additional guidance
\square	3.3(0)	P1	for a process to find cost of 1 kg of carrots, eg $1.80 \div 3(=0.60)$	Could work in $£$ or p for P marks Condone incorrect money notation
		P1	for a start to a process to find cost of 1 kg of potatoes, eg $3.45-2 \times$ " 0.60 " $(=2.25)$ or $(1.80+3.45) \div 5(=1.05)$	$1 \mathrm{~kg} \text { of potatoes }=(£) 0.45 \text { or } 45 \mathrm{p}$
			OR for a process to find the cost of 4 kg of carrots, eg " 0.60 " $\times 4(=2.40)$	
		P1	(dep on P2) for a complete process to find the cost of 4 kg of carrots and the cost of 2 kg of potatoes,	
			$\begin{aligned} & \text { eg "0.60" } \times 4(=2.40) \text { and }(" 2.25 " \div 5) \times 2(=0.90) \\ & \text { or ""0.60" } \times 4(=2.40) \text { and }(" 1.05-" 0.60 ") \times 2(=0.90) \end{aligned}$	
		A1	cao	Award 0 marks for a correct answer with no supportive working.

Question	Answer	Mark	Mark scheme	Additional guidance
\square (a)	42	P1 P1	for a correct start to the process by finding the number of batches for one ingredient, $\text { eg } 500 \div 125(=4) \text { or } 700 \div 200(=3.5 \text { or } 3) \text { or } 250 \div 50(=5)$ OR for a correct start to building up number of batches of all ingredients, eg. (24 biscuits or 2 batches $=$) 250 (butter), 400 (flour) and 100 (sugar) OR for a start to the process by finding the amount of one ingredient needed to make 1 biscuit, eg $125 \div 12\left(=10 \frac{5}{12}\right)$ or $200 \div 12\left(=16 \frac{8}{12}\right)$ or $50 \div 12\left(=4 \frac{2}{12}\right)$ for a correct process to find the number of batches for all 3 ingredients, eg $500 \div 125(=4)$ and $700 \div 200(=3.5$ or 3$)$ and $250 \div 50(=5)$ OR for a build-up process reaching a point where there is not enough of one ingredient, eg. (36 biscuits or 3 batches $=$) 375 (butter), 600 (flour) and 150 (sugar) or (48 biscuits or 4 batches $=$) 500 (butter), 800 (flour) and 200 (sugar) OR for a correct process to find the amount of each ingredient needed to make 1 biscuit, eg $125 \div 12\left(=10 \frac{5}{12}\right)$ and $200 \div 12\left(=16 \frac{8}{12}\right)$ and $50 \div 12\left(=4 \frac{2}{12}\right)$	

Question	Answer	Mark	Mark scheme	Additional guidance
(b)	Explanation	P1 A1 C1	(dep on P2) for a process to find the number of biscuits, eg "4" $\times 12(=48)$ or " 3.5 " $\times 12(=42)$ or " $3 " \times 12(=36)$ or " 5 " $\times 12(=60)$ OR (dep on P2) for $(700-600) \div 200 \times 12(=6)$ or " 3 " $\times 12(=36)$ OR (dep on P2) for a process to find the number of biscuits, eg $500 \div " 10 \frac{5}{12} "(=48)$ or $700 \div " 16 \frac{8}{12} "(=42)$ or $250 \div " 4 \frac{2}{12} "(=60)$ cao (dep on P3) for a correct explanation, ft (a) for the critical ingredient identified Acceptable examples No, since flour is the critical value No, since flour gives you the least number of batches No since she needs more flour to make more biscuits. Not acceptable examples Yes ... No (no reason given) No, since we would need more of the other ingredients too	

Question	Answer	Mark	Mark scheme	Additional guidance
\square	30	M1	$\begin{aligned} & \text { for } 80-56(=24) \text { or for } \frac{56}{80} \times 100(=70) \\ & \text { or (loss of }) 10 \%=80 \div 10(=8) \end{aligned}$	
		M1	for a complete method, $\text { eg " } 24 " \div 80 \times 100 \text { or } 100-" 70 " \text { or }(80-56) \div " 8 " \times 10$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
\square	Rahim (supported)	P1 P1 A1 C1	for start to the process to find 20% for Tamara, eg 220000×0.2 oe $(=44000)$ RU 30% for Rahim, eg 160000×0.3 oe $(=48000)$ 25 ! for $1-0.2(=0.8)$ RU100 $-20(=80)$ $\mathbf{R U 1}+0.3(=1.3) \mathbf{R U} 100+30(=130)$ for a complete process to find at least one new value, eg 220000 - "44000" (= 176000) RU160000 + "48000" (= 208000) 25 [$220000 \times " 0.8 "(=176000) \mathbf{R U 1 6 0 0 0 0 \times " 1 . 3 "}(=208000)$ for one correct value, 176000 or 208000 for correct conclusion supported by correct figures eg Rahim, 176000 and 208000	Build up processes are acceptable but must be complete and correct Award 0 marks for a correct answer with no supportive working.
\square	33	P1 P1 A1	for relating 24 to 8 parts, $\mathbf{R U}(1$ part $=) 24 \div 8(=3)$ RU15-7 (=8) RUstarts to use a build-up method, eg (8:) $14: 30$ for $(15-4) \operatorname{DQG}(24 \div 8)$ $\mathbf{R U 1 5} \times 3(=45) \mathbf{D Q G 4} \times 3(=12)$ RUfor 12 (: 21) : 45 cao	8 parts $=24$

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	$\begin{gathered} \frac{3}{7} \\ 1: 2.5 \end{gathered}$	B1 M1 A1	oe for appropriate method shown eg $30 \div 12(=2.5)$ or for a method that involves simplification of $12: 30$ approaching $1: n$, eg. $4: 10$ or $6: 15$ or $2: 5$ or for $2.5: 1$ or $2 \frac{1}{2}: 1$ for $1: 2.5$ or $1: 2 \frac{1}{2}$ or for $n=2.5$	Accept a fraction equivalent to $2 \frac{1}{2}$, eg. $1: \frac{30}{12}$ 2.5 alone gets M1A0
\square	Conclusion (supported)	P1 P1 P1 P1 C1	for process to find $1 / 10$ of 500 eg. $500 \div 10(=50)$ or $1-0.1(=0.9)$ oe (dep) for process to reduce 500 by $1 / 10$ eg. $500-$ " 50 " or $500 \times$ " 0.9 " $(=450)$ for process to calculate 20% of [Monday sale price] eg. " 450 " $\times \frac{20}{100}(=90)$ oe or for use of $100-20(=80)$ or $1-0.2(=0.8)$ in relation to [Monday sale price] (dep on P3) for a fully correct process to find the cost of the TV on Tuesday eg. " $450 "-" 90 "(=360)$ or " $450 " \times " 0.8 "(=360)$ for conclusion (Yes) supported by correct figures.	eg Yes, the TV will cost 360 Yes, he will have 40 over left

Question	Answer	Mark	Mark scheme	Additional guidance
\square	20	P1 P1 A1	for process to find SP of 24 chocolate bars, eg. $0.50 \times 24(=12)$ oe or for process to find the overall profit eg $(24 \times 0.5)-10(=2)$ or for process to find CP of one chocolate bar, eg. $1000 \div 24(=41.66 \ldots)$ oe (dep) for start to a process to find percentage profit, eg. using $\frac{\text { "12" }-10}{10}$ or $\frac{\text { "12" }}{10}$ or $\frac{50-" 41.66 . . "}{" 41.66 \ldots \text {..." }}$ oe with consistent units cao	
■	450	M1 M1 A1	for $18 \div 3(=6)$ for substitution eg. $75=\frac{F}{" 6 "}$ or $75 \times$ " 6 " cao	Ignore units

T EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
\square	6:15:20	P1 P1 A1	chooses a multiplier to equate the two fractions in terms of b eg $\frac{2}{5} \times \frac{3}{3}\left(=\frac{6}{15}\right)$ or $\frac{3}{4} \times \frac{5}{5}\left(=\frac{15}{20}\right)$ or lists equivalent fractions to $\frac{2}{5}$ up to at least $\frac{6}{15}$ eg. $\frac{2}{5}, \frac{4}{10}, \frac{6}{15}, \ldots .$. or lists equivalent fractions to $\frac{3}{4}$ up to at least $\frac{15}{20}$, eg. $\frac{3}{4}, \frac{6}{8}, \frac{9}{12}, \frac{12}{16}, \frac{15}{20}, \ldots \ldots$ or $(a: b=) 2: 5$ and $(b: c=) 3: 4$ or for $6: 15$ or $15: 20$ seen puts into related terms ready for ratio eg $\frac{2}{5} \times \frac{3}{3}=\frac{6}{15}$ and $\frac{3}{4} \times \frac{5}{5}=\frac{15}{20}$ or for $(a: b=) 6: 15$ and $(b: c=) 15: 20$ or lists equivalent ratios up to a common element for b, eg $a: b=2: 5,4: 10,6: \underline{15}$ and $b: c=3: 4,6: 8,9: 12,12: 16, \underline{15}: 20$ for 6: 15:20 oe	Need not be written in ratio form Accept equivalent ratios Accept $a=6 . b=15$ and $c=20$

Question	Answer	Mark	Mark scheme	Additional guidance
D	0.15	B1	cao	
\square	10	M1 A1	for converting $1 \frac{1}{4}$ hours or $\frac{1}{4}$ hour to minutes eg. $1 \frac{1}{4}$ hours $=60+15(=75)$ or $\frac{1}{4}$ hour $=15$ minutes or for converting 1 hour 25 minutes to minutes eg $60+25(=85)$ cao	Condone absence of units in the working
■	2 (supported)	P1 P1 P1 A1	for a process to find the number of men, eg. $(60 \div 2) \div 3(=10)$ for a process to find the number of children, eg. $60-" 30 "-" 10 "(=20)$ for a start of a process to find the value of n, eg. (" $20 "$: " $10 ") \div 5$ or $20: 10=10: 5$ or " $20 " \div$ " 10 " for 2 with supportive working	$60 \div 3=20$ scores no marks. Any ratio must come from correct processes to find the number of children and the number of men Award 0 marks for 2 with no correct supportive working Award full marks for 2:1 given as final answer from correct supportive working

Question	Answer	Mark	Mark scheme	Additional guidance
$1 \square$	3	B1	cao	
■	73	B1	cao	
(a) (b)	6 $1235 \mathrm{pm}$	M1 A1 M1 A1	for method to find distance, eg $4 \times$ time difference or $30 \mathrm{mins}=2$ miles cao for method to add time using consistent units eg 1120 or $50+75$ or 2 hours 5 mins 1235 pm or 1235 (h)	$10.30 \mathrm{am}-9 \mathrm{am}$ may be seen as $1.5(\mathrm{hr})$ or $1(\mathrm{hr}) 30(\mathrm{~min})$ or $90(\mathrm{~min})$ or $\frac{3}{2}(\mathrm{hr})$ or $1 \frac{1}{2}(\mathrm{hr})$ Allow 1235 but not 1235 am
■	$10 x$	B1	for $10 x$ oe	
■	Accurate figures with supportive working	M1 M1 M1 A1	for a correct first step eg $600 \div 30(=20)$ or $120 \div 30(=4)$ or 600×120 $(=72000)$ or $30 \times 30(=900)$ for finding an appropriate cost $2.5 \times$ " 20 " $(=50)$ or $2.5 \times$ " 4 " $(=10)$ OR number of tiles required "72000" \div " 900 " $(=80)$ or " 4 " \times " 20 " (=80) OR number they can afford $220 \div 2.5(=88)$ for full method to get figures to compare eg cost to tile whole area eg " 80 " $\times 2.5$ OR number of tiles they need and number they can afford eg "72 000 " \div " 900 " and $220 \div 2.5$ for 200 OR 80 and 88 OR 72000 and 79200 OR 132 (cm) OR 660 (cm) SC B2 for answer of 60	Could work in m or cm Units must be consistent

Question	Answer	Mark	Mark scheme	Additional guidance
】	12.5	P1 P1 A1	starts to process the problem, eg assigns lengths of sides to squares \mathbf{A} and \mathbf{B} in the ratio $1: 2$ oe and calculates at least one area $\mathbf{O R}$ fits 4 of square \mathbf{A} into square \mathbf{B} OR for ratio of areas of squares eg 1:4 oe for process to express relationship between area of shaded triangle and area of square B, eg $1: 8, \frac{1}{8}$ OR 0.125 for 12.5 oe	May be seen in a diagram May be seen in a diagram with figure given
23 (a) (b)	600	P1 P1 A1 P1 A1	for starting process to calculate amount of flour eg $60 \div 15(=4)$ or $3 \times 50(=150)$ for complete process eg $\frac{60}{15} \times$ " 150 " cao for process to calculate amount of butter eg $\frac{60}{15} \times 2 \times 50(=400)$ OR for process to calculate the number of packs of butter needed eg [butter] $\div 250$ cao	4 implied by 200 g of sugar [butter] must be clearly stated or calculated, may be seen in part (a) 2 must not come from incorrect working

Question	Answer	Mark	Mark scheme	Additional guidance
\square	96	P1	for process to find the ratio of the number of pens of each colour sold, eg $2 \times 7: 5 \times 3: 6 \times 4 \quad(=14: 15: 24)$	Does not have to be seen as a ratio but all three needed
		P1	for process to find the proportion of green pens sold, eg $\frac{212}{" 14 "+" 15 "+244^{\prime \prime}}$ or $\frac{" 24 "}{" 14++15 "+24 "}$	
		P1	for a complete process to find the number of green pens sold, eg $\frac{212}{" 144^{\prime \prime}+155^{\prime+}+244^{\prime}} \times$ " 24 " or $\frac{" 24 \text { " }}{\text { "14"+"15"+" } 24 \text { " }} \times 212$	P3 can be implied by the values 56, 60 and 96
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
$2 \square$	60	B1	cao	
(a) (b)	$\begin{aligned} & 10 \\ & 30 \end{aligned}$	B1 M1 A1	cao for using the graph to take one correct reading 30 or ft from correct use of graph	May be shown on graph
\square	4:1:2	M1 A1 (SCB1	for start to express the statements as a ratio eg $4: 1,1: 4,1: 2$ or $2: 1$ with clear and correct link to Azmol, Ryan, Kim OR as algebraic expressions, two of $4 x, x$ and $2 x$ eg $4 x: x, 1 x: 4 x, 1 x: 2 x$ or $2 x: 1 x$ with clear and correct link to Azmol, Ryan, Kim 4:1:2 oe 3 integer numbers in correct ratio but no ratio notation, eg 4, 1, 2 or $20,5,10$)	Allow any equivalent ratio, integers only May be seen as part of an incorrect answer. May be seen as integer multiples of these algebraic expressions. Any letter may be used. Accept $8: 2: 4$ or equivalent ratios involving integers

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	420 explanation	P1 P1 A1 C1	starts process, eg $300 \div 5(=60)$ or $200 \div 2(=100)$ OR builds up ratio to at least 300 ml orange juice with one error complete process, eg " 60 " $\times 5+$ " 60 " $\times 2$ or $300: 120$ cao explains that it will have no effect with reason, eg because he only needs $120 \mathrm{~m} l$ of lemonade because he has no more orange juice to use	May be seen as " 60 " $\times 7$ " 60 " must come from correct method
■	No and explanation	C1	'No' and explanation with reference to multiplication or division eg No he's incorrect as you would multiply the sides by a number rather than add	
T	Jan's store (supported)	P1 P1 C1	process to reduce $£ 5$ by $20 \%(=£ 4)$ or increase 400 by $30 \%(=520)$ process to reduce $£ 5$ by $20 \%(=£ 4)$ and increase 400 by 30% (= $=520$) (dep P2) process to find comparable values, eg $400 \div$ " 4 " and " 520 " $\div 5$ 'Jan's store' fully supported by correct comparative values, eg 100 (g / f) and $104(\mathrm{~g} / \mathfrak{f})$	May work in pence throughout Accept any correct appropriate percentage process May use $£ / \mathrm{g}$ or any other comparable values Do not award without correct comparable values and full working.

Question	Answer	Mark	Mark scheme	May compare bonus shares of a single salesman or total bonus share for all 7 salesmen.
■	No (supported)	P1	for start to process, eg $2100 \times \frac{40}{100}(=840)$ or $100-40(=60)$	
		P1	for process to find the 7 salesmen's share of bonus, eg $2100-" 840 "(=1260)$ or $2100 \times \frac{" 60 "}{100}(=1260)$	
		P1	for process to find bonus amount each salesman gets $\text { eg " } 1260 " \div 7(=180)$ OR process to find the total bonus for all salesmen if shared equally, eg $\frac{2100}{10} \times 7(=1470)$	
		P1	for process to compare what a single salesman gets under each scheme, eg " 180 " $\times \frac{25}{100}(=45)$ and " $\frac{2100}{10} "-" 180 "(=30)$ or " 180 " $\times \frac{25}{100}(=45)$ and " $180 "+" 45 "(=225)$ oe and $\frac{2100}{10}(=210)$ or $\left(\frac{2100}{10}-" 180 " \div " 180 " \times 100(=16.6 \ldots)\right.$	
			OR process to compare what all salesmen gets under each scheme, eg " 1260 " $\times \frac{25}{100}(=315)$ and " 1470 " - " 1260 " (= 210) or " 1260 " $\times \frac{25}{100}(=315)$ and " 1260 " $+" 315$ " $(=1575)$ oe and " 1470 " or (" $1470 "-" 1260 ") \div$ " $1260 " \times 100(=16.6 \ldots)$	
		A1	'No' supported by correct figures, eg 45 and 30, 225 and 210, 315 and 210 or 1575 and 1470 or $16 .(6 \ldots)(\%$ and $25 \%)$	Do not award unless correct figures have been shown to support a statement made that the salesman was not correct.

Question	Answer	Mark	Mark scheme	Additional guidance
$3 \square$	$\frac{20}{100}$	B1	$\frac{20}{100} \text { oe, eg } \frac{2}{10} \text { or } \frac{1}{5}$	Ignore any incorrect simplification of $\frac{20}{100}$ oe and award the mark if $\frac{20}{100}$ oe is seen
■	36	M1 A1	for method to find cost of 1 kg , eg $54 \div 3(=18)$ or $54 \div 3 \times 2$ oe cao	
D	Isabel (supported)	P1 P1 A1 C1	for process to work with $\frac{3}{4}$ eg $1-\frac{3}{4}\left(=\frac{1}{4}\right)$ oe, eg 25% or $\frac{25}{100}$ or $\frac{3}{4}=75 \%$ or $\frac{75}{100}$ or value of salary (say 1000$) \times 3 \div 4(=750)$ for process to work with ratio 3:7 eg $\frac{3}{3+7}$ oe or $\frac{7}{3+7}$ oe or value of salary $($ say 1000$) \div(3+7)(=100)$ for (28(\%)), 25(\%) and 30(\%) or 72(\%), 75(\%), 70(\%) or $0.28,0.25,0.3$ or for using value of salary (say 1000) giving 280, 250,300 or $720,750,700$ (dep P2) for Isabel or ft their comparative values	"Isabel" alone without supported evidence, gets 0 marks.
$\square \square$	$\square \square$	$0 \square$ \$ \square	for method to find 15% of 160 , eg $160 \times \frac{15}{100}$ oe $(=24)$ or $10 \%=160 \div 10(=16)$ plus $5 \%=" 16 " \div 2(=8)(=24)$ cao SC B1 for answer of 136 or 184 if M0 scored	When using partitioning methods, the method to find individual \%s must be clear including the need to show an intention to sum eg. $10 \%=16+5 \%=8$

Question	Answer	Mark	Mark scheme	Additional guidance
]	1:3	M1 A1	for $\frac{1}{4}: \frac{3}{4}$ oe OR for any correct un-simplified ratio, eg 25 : 75 cao SC: B1 for an answer of $3: 1$ or $1: \frac{1}{3}$ if M0 scored	Ignore 'units' such as 1 nuts : 3 no nuts 1 : 3n gets M1A0
-	140	P1 P1 A1	for beginning to solve the problem eg $50 \div 5 \times 8(=80)$ or $14: 8: 5$ oe or $14: 8$ and $8: 5$ oe (linked) for a full process to solve the problem eg " 80 " $\div 4 \times 7$ or $\frac{50}{5} \times$ " 14 " or $140: 80: 50$ cao	80 may be seen in the ratio 80 : 50 If 140 clearly identified as houses in working award full marks
■	30	P1 P1 P1 A1	for full process to find the number of bags sold eg $5 \times 1000 \div 250(=20)$ OR for process to find selling price of 1 kg of sweets eg $0.65 \times 4(=2.60)$ for [number of bags] $\times 0.65$ or " 20 " $\times 0.65(=13)$ or " 2.60 " $\times 5(=13)$ OR for $10 \div$ " 20 " oe ($=0.50$) OR for $0.65 \times 4(=2.60)$ and $10 \div 5(=2)$ (dep on previous P 1) for a process to find the percentage profit eg (" 13 " -10) $\div 10 \times 100$ or $(0.65-" 0.50 ") \div$ " $0.50 " \times 100$ or (" 2.60 " - " 2 ") \div " $2 " \times 100$ OR " 13 " $\div 10 \times 100(=130)$ oe cao	This could be by repeated addition Calculations can be in $£$ or pence [number of bags] can only come from $5 \times 10 \div 250(=0.2)$ or $5 \times 100 \div 250(=2)$ or $5 \div 250(=0.02)$ $3 / 10$ or 0.3 is not enough but should be awarded 2 marks Award P3 for 130(\%)

Question	Answer	Mark	Mark scheme	Additional guidance
ㄱ (a)	Estimated value	P1	for using a rounded value in a correct process eg $3000 \div 15$ or 15×8 or 20×8	Their rounded value must be used in a calculation
				Rounding may appear after a correct process eg $15.12 \times 8=120.96 \approx 100$ followed by eg $3069.25 \div 100$
		P1	for a full process to find the number of days eg " 3000 " $\div 15$ " \div " 10 " (= 20) or " $3000 " \div$ " 15 " $\div 8$ (= 25)	Accept $3069.25 \div 15.12 \div 8$ oe
		A1	for a correct answer following through their rounded values	
(b)	Explanation	C1	eg less days required or it doesn't affect the answer because I would still round 16.27 down to 15 (or up to 20)	Refers to time taken

Question	Working	Answer	Mark	Notes
■ (a) (b)		$\begin{aligned} & 3.65 \\ & 2700 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { cao } \\ & \text { cao } \end{aligned}$
■		4×8 rectangle drawn	M1 A1	Draws a rectangle with side lengths in the ratio $2: 1$ or lists possible dimensions in the ratio $2: 1$ or gives two numbers which multiply to 32 for correct diagram on grid
(a) (b)	$30 \div 8$	4 No with reason	P1 A1 C1	for $30 \div 8$ or 3.75 or 3 or counting up 8 s towards 30 to at least 3 lots of 8 or $4 \times 8(=32)$ oe cao No with $32 \div 8$ or ft from (a)
■		45	M1 A1	for a correct first step eg $\frac{9}{7+4+9}\left(=\frac{9}{20}\right)$ or $\frac{100}{7+4+9}(=5)$ or a full method for one of the other colours cao
(a) (b)		Explanation $182.7(0)$	C1 P1 P1 P1 A1	eg States over-estimated for both values for a process to find 10% of a value stated in the question eg $\frac{10}{100} \times 5.80(=0.58)$ or $\frac{10}{100}$ $\times 35(=3.5)$ oe or $35 \times 5.80(=203)$, allow $30 \times 5.80(=174)$ or $35 \times$ [reduced price] for a process to find 90% of a value stated in the question eg $35-" 3.5$ " $(=31.5)$ or $0.9 \times 5.80(=5.22)$ oe or $\frac{10}{100} \times$ " 203 " $(=20.3)$ or $\frac{10}{100} \times$ " 174 " $(=17.4)$ oe for a complete process to find actual cost of $35 \mathrm{eg} 0.9 \times 5.80 \times 35$ oe cao SC B2 156.6(0)

Question	Working	Answer	Mark	Notes
■		135	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for $450 \div$ " $2+3+5$ " $(=45)$ or $\frac{3}{10} \times 450(=135)$ or 5 parts are 225 or 2 parts are 90 indicated Cao
T		180, 210, 375, 3	M1 M1 A1	for $\frac{24}{16}$ or 1.5 or $\frac{16}{24}$ oe or 0.5 of any figure in the recipe calculated or amount of any ingredient for 1 flapjack or 3 (tablespoons) for method to scale at least one ingredient in grams eg 120×1.5 or 140×1.5 or 250 $\times 1.5$ for all quantities correct
T		4	$\begin{array}{\|c} \hline \text { M1 } \\ \text { A1 } \end{array}$	a complete method eg $2.80 \times 100 \div(100-30)$ oe or $2.80 \div 0.7$ oe or build up method but must show all intermediate steps unless all figures are correct $2.8 \div 7=0.4$ and " 0.40 " $\times 10(=4)$

Question	Working	Answer	Mark	Notes
D		80	B1	cao
■		126	P1 P1 P1 A1	for working with time,eg $10-8(=2)$ or $12 \times 8(=96)$ or $12 \times 10(=120)$ for working with overtime, eg $12 \div 4(=3)$ or $1.25 \times$ " 2 " $(=2.5)$ or $0.25 \times$ " 2 " (=0.5) or $1.25 \times$ $12(=15)$ for a complete process, eg $(10-8) \times$ overtime rate $+12 \times 8$ or $12 \times 10+" 0.5$ " $\times 12$ cao
■		1:10	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	for $12:(20 \times 6)$ oe or $10: 1$ or 1 with 10 in incorrect notation cao
■ (a (b)		$\begin{gathered} 1.5 \text { to } 2 \\ 7.5 \text { to } 12 \end{gathered}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \end{gathered}$	in the range 1.5 to 2 for scale factor in the range 5 to 6 (ft) or for answer in the range 7.5 to 12
■		1110	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	method to find the weight of 1 tin of soup e.g. $1750 \div 5(=350)$ method to find the weight of 3 packets of soup e.g. $1490-(4 \times$ " 350 ") $\quad(=90)$ method to find the weight of 3 tins and 2 packets e.g. $3 \times$ " 350 " + " 90 " $\div 3 \times 2$ cao
■		1545	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	shows a method to find 3% eg $1500 \times 0.03(=45)$ cao

Question	Working	Answer	Notes
D		7.50	M1 $\quad 60 \div 8$ A1 accept 7.5
[$\frac{2}{7}$	B1
■		loss (supported by correct figures)	P1 process to find total spent eg. $20 \times 7(=140)$ P1 complete process to find profit from full price oranges eg. $\frac{2}{5} \times 25 \times 20 \times 40(=8000)$ P1 complete process to find profit from reduced price oranges eg. $50 \times\left(\frac{3}{5} \times 25 \times 20\right) \div 3(=5000)$ P1 complete process to find total income with consistent units A1 loss with $£ 10$ or $-£ 10$ or $£ 130$ and $£ 140$
[75	P1 for start to process eg. linking 20% with 15 or $100 \div 5(=20)$ A1
(a) (b)		48	P1 start to process eg. $3 \times 80(=240)$ P1 ' $240 ' \div 5$ A1 C1 eg. she may drive a different distance and therefore her average speed could be different

Question	Working	Answer	Notes	
\square		28	P1	Process to start to solve problem eg. $\frac{3}{5} \times 40$ or divide any number in the ratio $3: 2$
			P1	Second step in process to solve problem eg. $\frac{2}{5} \times 10$ or find number of males/females under 25 for candidate's chosen number for complete process

Question	Working	Answer	Notes
■		5.3(0)	B1 cao
D		195	B1 cao
■		1:3	M1 for stating a ratio eg 28:84 oe, or 3:1 A1 cao
Ш		125	P1 for process to find $7 / 20$ of $500(=175)$ or $7 / 20+4 / 10(=3 / 4)$ or 40% of 500 P1 for complete process to find the number of children. A1 cao
(a) (b)		$\begin{gathered} 2.79 \\ \text { pay more } \end{gathered}$	P1 method to find amount of milk needed, eg $7 \times 3 / 4(=5.25)$ P1 uses appropriate integer from their working to calculate a cost eg 5.25 as 6 pints and 3×2 pints A1 cao C1 deduces he may have to pay more [if he uses more than 0.857 pints a day]
W		$4 \mathrm{~m}^{2}$	C1 substitution into formula eg $35=\frac{140}{\$}$ A1 4 stated C1 (indep) units stated

Question	Working	Answer	Notes
W		80	B1
Ш		5.25 litres	P1 for start to process eg. $5 \div 2(=2.5)$ P1 for complete process eg. $5000+2.5 \times 100$ A1 or $5250 \mathrm{~m} l$
Ш		700	P1 for process for total non-fiction books $\operatorname{eg} \frac{1}{4} \times 80(=20)$ P1 process for total takings for non fiction eg $20 \times \frac{1}{2} \times 10(=100)$ P1 process to find total takings " 100 " $+60 \times 10$ A1 700
D	£5	£5	P1 for $\frac{25}{100} \times 60$ P1 for process to find difference between totals $20-" 15 "$ A1 cao
■		35	M1 for method to find increase $108-80(=28)$ M1 for method to find $\%$ increase eg $\frac{28}{80} \times 100$ A1 cao

Question	Answer	Mark	Mark scheme	Additional guidance
■	$\frac{31}{100} \text { oe }$	B1	for $\frac{31}{100}$ or any equivalent fraction	Ignore any attempt at simplification of $\frac{31}{100}$
■	300	B1	cao	
■	7 cm by 4 cm rectangle drawn	M1 A1	for a rectangle drawn with one correct dimension or $35 \div 5(=7)$ and $20 \div 5(=4)$ for a fully correct 7 cm by 4 cm rectangle drawn	Correct calculations/measurements seen the method mark can be awarded even if the drawing is incorrect or not present Accept any orientation of a correct rectangle
■	$\frac{17}{30}$	B1	for $\frac{17}{30}$ or any equivalent fraction	
T (a) (b)	$\begin{gathered} 15 \\ 540 \end{gathered}$	B1 M1 A1	14 to 16 for a complete method, eg $30 \times(36 \div 2)$ or $45 \times(36 \div 3)$ or $60 \times(36 \div 4)$ or ft "hourly rate from (a)" $\times 36$ for 540 or ft (a)	May be seen using a complete build up method for " 45 " allow 44 to 46 ft for accuracy Condone use of mixed rates eg $75 \times 7+16=541$
■ (a) (b)	80 Travel graph	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { C2 } \\ & \text { (C1 } \end{aligned}$	for a complete method eg $\frac{20}{15} \times 60$ or 20×4 or $20 \div \frac{1}{4}$ cao for method to find distance travelled in last 20 minutes, eg $75 \times \frac{20}{60}(=25)$ for a fully correct travel graph for horizontal straight line from $(1015,20)$ to $(1025,20)$ or for a line of the correct length and gradient to indicate a speed of $75 \mathrm{~km} / \mathrm{h}$ eg straight line from $(1025,20)$ to $(1045,45)$)	Can be implied by a distance of 25 km drawn on the graph

Question 79 Distance
travelled (kilometres)

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :--- | :---: | :--- | :--- | :--- |
| $\square \square$ | 32000 | M1 | for a complete method eg $272000 \div\left(\frac{100-15}{100}\right)$ | |
| | | | | |

Г $\xlongequal{\substack{\text { EXPERT } \\ \text { TUIITION }}}$

Question	Answer	Mark	Mark scheme	Additional guidance
\square	25	B1	cao	
\square	Yes with supporting calculations	M1 M1 C1	for ONE correct time conversion seen or used eg 105 (mins) is 1 (hr) 45 (mins) or $1645-1430=2 \mathrm{hr} 15 \mathrm{mins}$ or $1430+1$ (hr) +45 (mins) for a full method to make a comparison eg for adding 20 and 105 to $1430(=1635)$ or for subtracting 20 and 105 from $1645(=1440)$ or for finding the time differences eg 1645-1430 (=2 hr 15 mins$)$ and $105+20$ ($=125 \mathrm{mins}$) or adding 105 to $14: 30(=1615)$ and $1645-" 1615 "(=30)$ correct conclusion from the comparison of accurate figure(s) eg Yes and 1635 or $4.35(\mathrm{pm})$ 1440 or $2.40(\mathrm{pm})$ or for 2 hours 5 minutes and 2 hours 15 minutes oe or for 10 minutes spare or 30 (minutes to get to the bus stop)	May be implied by a correct calculation $1 \mathrm{hr}=60 \mathrm{mins}$ is not enough for this mark Intention to do the correct calculation or calculations is enough for this mark Accept any sensible time notation throughout (pm is not required) Yes may be implied by a statement
(a) (b) (c)	25 24 Comment	B1 M1 A1 C1	for 25 , accept answer in range 24 to 26 for $40 \div 10 \times 6$ cao (dep B1 or M1) ft for comment for their results, eg the two answers are quite close or answer to (b) is less than answer to (a) or the rule gives a smaller answer	

Question	Answer	Mark	Mark scheme	Additional guidance
\square (a)	5	P1	for finding the number of oranges required eg $8 \div 2 \times 30(=120)$ oe or for finding the number of oranges left from use of at least 2 boxes eg $24 \times 2-30(=18)$ or $24 \times 4-90(=6)$ or finds the correct amount of juice possible from at least two boxes eg $24+24$ is 2 litres or $24+24+24$ is 4 litres	A build up method with no process shown must use fully correct figures
		P1	$\begin{aligned} & \text { for a complete process eg " } 120 \text { " } \div 24(=5) \text { oe } \\ & \text { or } 30+30+30+30(=120) \text { and } 24+24+24+24+24(=120) \\ & \text { or } 24 \times 2-30=18,18+24=42,42-30=12,12+24=36,36-30=6, \\ & 6+24=30 \end{aligned}$	May be seen as a mixture of repeated subtraction and addition
		A1	cao with no arithmetic errors seen SCB1 for an answer of 10 supported by working	This mark cannot be awarded if the supporting work has an arithmetic error An answer only and no working is no marks
(b)	$9: 2$	M1	for a partially simplified correct ratio eg $126: 28$ or any other equivalent ratio or 2:9	$\begin{aligned} & \text { eg } 630: 140,315: 70,63: 14 \\ & 180: 40,90: 20,45: 10,4.5: 1 \end{aligned}$
		A1	cao	
\square	$\frac{3}{10}$	P1	for a process to find three amounts in the correct proportions, eg $R=1, L=3 \times 1=3, A=2 \times 3=6$, or $\mathrm{R}: \mathrm{L}: \mathrm{A}=\frac{1}{6}: 0.5: 1 \mathrm{oe}$ or $L=3 R, L=\frac{A}{2}$ or $L=3 R, 2 L=A$	Relationship could be given in algebraic form or in ratio form, using fractional comparison or using their own figures
		A1	for $\frac{3}{10}$ or equivalent fraction	Award P1 for correct answer not given as a fraction

Question	Answer	Mark	Mark scheme	Additional guidance
\square	1.75	P1 P1 P1 A1	for an initial process eg $1.80 \div 12(=0.15)$ or $1.80 \div 3(=0.6)$ for a correct second step eg " 0.15 " $\div 3(=0.05)$ or " 0.6 " $\times 7(=4.2)$ or $3 \div " 0.15 "(=20)$ or $7 \div 3(=2.3 .$.$) or " 0.15 " \times 7(=1.05)$ for finding the price of one pen eg-" $0.05 " \times 7(=0.35)$ or " 4.2 " $\div 12(=0.35)$ or $7 \div$ " $20 "(=0.35)$ or " $2.3 \ldots \times$ " $0.15 "(=0.35)$ or " 1.05 " $\div 3(=0.35)$ cao	Accept $1.8 \div 12=15$ (p) They can work in pounds or pence
\square	No (supported)	P1 P1 P1 P1 C1	for $3000 \div(2+3)(=600)$ for " 600 " $\times 2(=1200)$ or " 600 " $\times 3(=1800)$ or " 600 " $\div 6(=100)$ or " 600 " $\div 20(=30)$ for " 1200 " $\div 6(=200)$ or " 1800 " $\div 20(=90)$ or " 100 " $\times 2(=200)$ or " $30 " \times 3(=90)$ for " 90 " $\div($ " $200 "+$ " 90 ") $\times 100(=31.0 \ldots)$ oe or " 90 " $\div($ (" $200 "$ + " 90 ") $(=0.31 \ldots)$ or $0.3 \times(" 200 "+" 90 ")(=87)$ oe correct conclusion and fully correct calculations with accurate figure eg No and 87 or No and 31% or No and 0.31	Full method to compare No may be implied by a statement No working, answer only no marks

Question	Answer	Mark	Mark scheme	Additional guidance
\square	23	B1	cao	
\square	$\frac{13}{20}$	M1 A1	for $20-7(=13)$ or $\frac{7}{20}$ oe or 0.65 or 65% for $\frac{13}{20}$ or equivalent fraction	
■	80	M1 M1 A1	for converting to cm for use of scale eg $19.2 \div 24(=0.8)$ or $1920 \div 24$ or [length] $\div 24$ cao	Can be done at any stage of the problem eg $19.2 \times 100(=1920)$ or 0.8×100 [length] must come from an attempt to change 19.2 metres into cm
■	243	M1 A1	for $1.8 \div 100 \times 4500$ oe ($=81$) or for a complete method eg $4500 \times 1.8 \times 3 \div 100$ oe or for 4743 or 4257 cao	Award M1 for 4500×1.018^{n}

Question	Answer	Mark	Mark scheme	Additional guidance
■	40	P1	for a process to find the maximum number of batches for one ingredient, eg $500 \div 175(=2.85 \ldots)$ or $300 \div 75(=4)$ or $625 \div 250(=2.5)$ OR for a process to find the amount of one ingredient for 1 biscuit, eg $175 \div 16(=10.9375)$ or $75 \div 16(=4.6875)$ or $250 \div 16(=15.625)$ OR for multiples of $175: 75: 250$, eg $175 \times 2(=350)$ and $75 \times 2(=150)$ and $250 \times 2(=500)$ (dep P1) identifies flour as the limiting factor OR for a process to find the maximum number of biscuits for one ingredient, eg butter: " 2.85 " $\times 16$ or $500 \div$ " $10.9 .$. " oe (= 45.7...) sugar: " 4 " $\times 16$ or $300 \div$ "4.6.." oe $(=64)$ flour: " 2.5 " $\times 16$ or $625 \div$ " 15.625 " oe $(=40)$ cao SCB2 for answer of 32	Figures may be truncated or rounded
$\square 3$	18	P1 P1 P1 A1	```for \(240 \div 10(=24)\) or \(240 \div 8(=30)\) for \(3 \times\) " 24 " \((=72)\) or \(7 \times\) " 24 " \((=168)\) or \(3 \times\) " \(30 "(=90)\) or \(5 \times\) " 30 " (= 150) for \(3 \times\) " 24 " \((=72)\) and \(3 \times\) " 30 " \((=90)\) or \(7 \times\) " 24 " \((=168)\) and \(5 \times\) " 30 " \((=150)\) cao```	Accept $3+7$ for 10, $3+5$ for 8

Question	Answer	Mark	Mark scheme	Additional guidance
■	6	M1	for $720 \div 40(=18)$ or $720 \div 30(=24)$	
		M1	for a complete process $\operatorname{eg}(720 \div 30)-(720 \div 40) \text { or " } 18 " \times 4 / 3-" 18 " \text { or " } 24 "-" 24 " \times 3 / 4$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
■	1.756	B1	cao	
■	2:1	B1	cao	
■	3240	P1 P1 P1 A1 P1 P1 P1 A1	for $90 \times 60(=5400)$ OR $40 \div 100 \times 90(=36)$ OR $40 \div 100 \times 60(=24)$ for a process to work out area that is flowers eg. $40 \div 100 \times$ " 5400 " ($=2160$) OR " 36 " $\times 60$ (= 2160) OR $90 \times$ " 24 " $(=2160)$ for a full process to find the area that is grass eg. " $5400 "$ - " $2160 "(=3240)$ cao ALTERNATIVE for $100-40(=60)$ (indep) for $90 \times 60(=5400)$ OR $90 \times 60 \div 100(=54)$ or $60 \times 60 \div 100(=36)$ for a full process to find the area that is grass eg. " 60 " $\div 100 \times$ " 5400 " $(=3240)$ OR " 54 " $\times 60(=3240)$ or " 36 " $\times 90(=3240)$ cao	

Question	Answer	Mark	Mark scheme	Additional guidance
D	180.9	P1	for starting to work with proportion eg. $60 \div 100(=0.6)$ or $150 \div 100(=1.5)$ OR $100 \div 60(=1.66 .$.$) or 100 \div 150(=0.66 .$. OR $84 \div 100(=0.84)$ or $87 \div 100(=0.87)$ or $84 \div 10(=8.4)$ or $87 \div 10(=8.7)$ or $84 \div 2(=42)$ or $87 \div 2(=43.5)$ OR $100 \div 84(=1.19 .$.$) or 100 \div 87(=1.14 .$.	
		P1	for a complete process to work out the calories in either item eg. " 0.6 " $\times 84(=50.4)$ or " 1.5 " $\times 87(=130.5)$ OR $84 \div$ "1.66.." (=50.4) or $87 \div$ "0.66.." (= 130.5) OR " 0.84 " $\times 60(=50.4)$ or " $0.87 " \times 150(=130.5)$ or "8.4" $\times 6$ (= 50.4) or "8.7" $\times 15$ (= 130.5) or " 42 " $\times 6 \div 5(=50.4)$ or " 43.5 " $\times 3(=130.5)$ OR $60 \div$ "1.19.." $(=50.4)$ or $150 \div$ "1.14.." $(=130.5)$	
		P1	(dep on P2) for a complete process to find total number of calories in the breakfast, eg. " $50.4 "+$ " 130.5 "	
		A1	for 180.9 or 181	

Question	Answer	Mark	Mark scheme	Additional guidance
■	952	P1 P1 P1 A1	for starting to work with parts, eg. $6 \times 60 \div 10(=36)$ or $10 \div 6(=1.66 .$.$) or 6 \div 10(=0.6)$ or $13 \times 60 \div 15(=52)$ or $15 \div 13(=1.15 .$.$) or 13 \div 15(=0.866 .$. OR for $60 \div 10 \times 12(=72)$ or $10 \times 60 \div 15(=40)$ for a full process to find the number of parts made by machine A eg " 36 " $\times 12(=432)$ or $12 \times 60 \div$ " $1.66 .$. " $(=432)$ or $12 \times 60 \times$ " 0.6 " $(=432)$ OR "72" $\times 6(=432)$ for a full process to find the number of parts made by machine B eg " 52 " $\times 10(=520)$ or $10 \times 60 \div$ " $1.15 . . "(=520)$ or $10 \times 60 \times$ " $0.866 . . "(=520)$ OR" 40 " $\times 13(=520)$ for 952 or 432 and 520	
प	168	P1 P1 P1 A1	for working with ratio to find the amount for C or D eg. $1.5 \times 2(=3)$ or $(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}=) 2,7,3,3$ oe OR for suitable expressions linking A with C or D , eg. $\mathrm{A}=x, \mathrm{C}=1.5 x$ for " $2+3+3+7$ " (=15) OR adds 4 suitable expressions, eg. " $x+3.5 x+1.5 x+1.5 x$ " $(=7.5 x)$ for a complete process to find the amount of money eg. $360 \div$ " 15 " $\times 7$ OR $360 \div 7.5$ " $\times 3.5$ cao	

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	$\begin{gathered} 4.56 \\ 7300 \end{gathered}$	B1 B1	cao cao	Accept trailing zeros, eg 4.560 Accept trailing zeros, eg 7300.0
\square	263.2	M1 A1	for using the scale eg 14×18.8 or 14×18 or for the digits 2632 or an answer of 263 cao	
D]	4	M1 M1 A1	for $\frac{30}{100} \times 80(=24)$ oe or for 104 (dep) for 28 -" 24 " or $108-104$ for 4 or - 4	Numbers in subtraction may be reversed
D]	2.5	M1 M1 A1	for $(R=) \frac{100 I}{P T}$ or $600 \times 5(=3000)$ or $75 \times 100(=7500)$ or $75 \div 5(=15)$ or $75 \div 600(=0.125)$ for $\frac{75 \times 100}{600 \times 5}$ oe OR $\frac{" 15 "}{600}(=0.025)$ or " $0.125 " \div 5(=0.025)$ or 1.025 cao	Calculations may be done in stages. May work in decimals or in percentages

Question	Answer	Mark	Mark scheme	Additional guidance
D	2 bags of stone	P2 (P1 C1	for a complete process to work out how many bags of each material is required eg $180 \div 25(=7.2$ or 8$), 375 \div 22.5(=16.6$. or 17$)$, $1080 \div 50(=21.6$ or 22$)$ or a complete process to work out the total weight of each element that he has $\operatorname{eg} 25 \times 10(=250), 20 \times 22.5(=450), 50 \times 20(=1000)$ for a correct start to the process, eg for at least one correct calculation correct conclusion eg 2 bags of stone, with no incorrect working	The correct figures do not need to be seen to award the process marks
(a) (b)	explanation $\begin{gathered} (150 \times) 0.97 \\ =145.5 \end{gathered}$	$\mathrm{C} 1$ B1	explanation eg should be 1.03 , this is 30% (not 3%) Acceptable examples Because 1.3 is 130% He is increasing it by 30% 1.3 means 1.30 , not 1.03 He needs to put a 0 in front of the 3 1.3 is the wrong decimal He should multiply by 0.03 3% is 0.03 , (not 1.3) His answer should be 154.5 He is meant to increase it by 4.5 , not by 45 Not acceptable examples Because he is increasing by 130%, not 3% He needs to find 1% and then times it by 3 for 0.97 (or $\frac{97}{100}$ or 97%) and 145.5	

Question	Answer	Mark	Mark scheme	Additional guidance
Ш1 (a)	Ben (supported)	P1	shows how to work interest out for one year eg $2000 \times 0.025(=50)$ or $1600 \times 0.035(=56)$ or 150 or 168 or $2000 \times 1.025(=2050)$ or $1600 \times 1.035(=1656)$	Throughout accept figures ± 1 pence which do not need to be presented in money notation (to 2 dp) or with monetary symbols.
		P1	shows compound interest calculation for one account $\begin{aligned} & \text { eg } 2050 \rightarrow 51.25 \text { or } 2101.25 \rightarrow 52.53 \\ & \text { or } 1656 \rightarrow 57.96 \text { or } 1713.96 \rightarrow 59.99 \\ & \text { eg } 2000 \times 1.025^{3}(=2153.78) \text { or } 1600 \times 1.035^{3}(=1773.95) \end{aligned}$	Award mark for a correct process shown, for which these figures can be taken as implying the process.
		P1	shows complete compound interest calculation for both accounts eg $2000 \times 1.025^{3}(=2153.78)$ and $1600 \times 1.035^{3}(=1773.95)$ OR one interest stated correctly eg 153.78 or 173.95	As above, award mark for both correct processes shown for both accounts, which these figures can be taken as implying the process.
		C1	Ben (shares) supported by 153.78 and 173.95	Accept an answer of "shares".
(b)	conclusion	C1	conclusion (ft) eg no change, shares now 182.5...	Conclusion needs to be supported.
			Acceptable examples no since shares/Ben now 182.5 Still Ben since $182.5>$ Ali No; he only gets 8.57 more No; he gets 68.56 instead of 59.98 ($3^{\text {rd }} \mathrm{yr}$) No; Ben already gets more interest, he would just get even more	of (b) need to be correct for the comparison to be valid.
			Not acceptable examples no shares now 182.5 Still Ben since less than Ali $182.5>153.78$ no; he needs 20.17 more	

Question	Answer	Mark	Mark scheme	Additional guidance
W]	$\begin{gathered} \text { No } \\ \text { (supported) } \end{gathered}$	P1	calculates area of trapezium eg $1 / 2 \times 7 \times(10+16)(=91)$	
		P1	for division by coverage eg $\div 2$ or for process to find number of tins [area of trapezium] $\div 2(=45.5)$ bought eg $160 \div 16.99=9$ tins or process to find coverage per tin eg $5 \times 2(=10)$	[area of trapezium] needs to be clearly stated if the process of finding the area is not clear
		P1	for division to find the number of for using whole no. of tins to find tins eg $\div 5$ or "45.5" $\div 5(=9.1)$ or total litres eg $9 \times 5(=45)$ [area of trapezium $] \div " 10 "(=9.1)$	
		P1	(dep on at least P2) for a process to multiply a whole number of tins (rounded up) by 16.99 (dep on at least P2) for a process to find the total coverage eg "45" $\times 2(=90)$	
		C1	for 'No' supported by correct figures eg 169.9 or 90 and 91	There must be a conclusion ("No" or equivalent wording) including the figure 169.9 and working showing processes followed.

Question		Answer	Mark	Mark scheme	Additional guidance
1】		8	B1	cao	
\square	(a) (b) (c)	$\begin{aligned} & 350 \\ & 7.7 \\ & 320 \end{aligned}$	B1 B1 B1	cao cao cao	Accept trailing zeros eg 350.0 Accept trailing zeros eg 7.70 Accept trailing zeros eg 320.0
П1	(a) (b)	$\begin{aligned} & \hline 62 \\ & 232 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	```for distance : time eg 186\div3 or 186\div(3\times60)(=1.03..) cao for speed }\times\mathrm{ time eg 58 < 4 or 58 < 4 < 60(=13920) cao```	May use hours or minutes at this point May use hours or minutes at this point
\square		90	P1 P1 A1	for a process to find the number of batches for at least 2 ingredients, eg $900 \div 225(=4)$ or $1000 \div 110(=9.09$..) or $1000 \div 275(=3.6 \ldots$.) or $225 \div 75(=3)$ OR A full method to find the maximum number of biscuits for 1 ingredient eg $900 \div 225 \times 30$ OR Amount required for 1 biscuit for at least 2 ingredients eg $225 \div 30(=7.5)$ or $110 \div 30(=3.6 .$.$) or 275 \div 30(=9.1$. .) or $75 \div 30$ (=2.5) OR Amount required for 3 batches for at least 2 ingredients eg $225 \times 3(=675)$ or $110 \times 3(=330)$ or $275 \times 3(=825)$ or 75×3 (=225) (dep P1) for a complete process to find the maximum number of biscuits after considering at least 3 different ingredients eg " 3 " $\times 30$ (dep P2) cao from fully correct working	They must use their smallest multiplier after considering at least 3 different ingredients 90 without working award no marks

Question	Working	Answer	Mark	Notes
$\square 5$ (a) (b)		$\frac{33}{60}$ Pie chart drawn	M1 A1 M1 M1 A1 B1	for method to find number of students who did not walk to school eg $15+12+6$ or $60-27(=33)$ or 0.55 or for $1-\frac{27}{60}$ for $\frac{33}{60}$ or equivalent fraction for method to find the angle for at least one sector eg $\frac{27}{60} \times 360, \frac{12}{60} \times 360, \frac{6}{60} \times 360,27 \div \frac{60}{360}, 12 \div \frac{60}{360}, 6 \div \frac{60}{360} \text { oe }(0.166 . .)$ NB: could be implied by one angle drawn accurately. for drawing at least one sector accurately (from 4 sectors) eg 162° or 72° or 36° for an accurately drawn pie chart (dep on 4 sectors with at least one accurately drawn) for showing labels Walk Car Bicycle
$\square 6$ (a) (b)		$\begin{aligned} & \frac{3}{7} \\ & 3: 1 \end{aligned}$	B1 B1	for $\frac{3}{7}$ or equivalent fraction for $3: 1$ or equivalent ratio
피 (a) (b)		2.75 130	M1 A1 B1	for accurately measuring the distance between Backley and Cremford as $5.3 \mathrm{~cm}-5.7 \mathrm{~cm}$ oe or their measurement $\times 0.5$ oe for answer in the range 2.65 to 2.85 for answer in the range 128 to 132

Question	Working	Answer	Mark	Notes
$11 \square$		5:2:10	P1 P1 A1	for process to calculate total for quiz or total of membership fees eg. $13 \times 5+35$ $(=100), 25 \times 20(=500)$ for complete process to write (correct) figures as a ratio, eg 250:100:500 oe in any order (condone inclusion of units or words) cao
\square		Shown	M1 M1 $\mathrm{C} 1$	for method started to find comparable amounts, eg $17 \times 46(=782)$ or 17×0.46 $(=7.82)$ or $17 \times 35(=595)$ or $266 \div 35(=7.6)$ or $26600 \div 35(=760)$ for complete method to find comparable figures eg $17 \times 46(=782)$ or 17×0.46 $(=7.82)$ AND $266 \div 35(=7.6)$ or $26600 \div 35(=760)$ eg $17 \times 46 \times 35(=27370)$ or $17 \times 0.46 \times 35(=273.7)$ Shows correct comparable figures eg 7.82 and 7.6(0), 782 and 760 OR 273.7(0)
DI	$\begin{aligned} & £ 6-£ 5.64=36 \text { p or } \\ & 50 \mathrm{p}-47 \mathrm{p}=3 \mathrm{p} \end{aligned}$ $6.3829787 \ldots \%$	6.4	P1 P1 A1	for a strategy to compare the same number of bottles e.g. $£ 5.64 \div 12$ ($=47$ or 0.47) or 12×50 p $(=6$ or 600$)$ or 36 or 0.36 or 3 or 0.03 for start of process to find percentage profit e.g. $\frac{" 36 "}{564}$ or $\frac{" 3 "}{447 "}$ or $\frac{" 6 "}{5.64}$ or $\frac{50}{477 "}$ oe with consistent units for answer in the range 6.3 to 6.4

Question	Working	Answer	Mark	Notes
Ш1		$\frac{1}{11}$	P1	for starting the process, eg by writing down a correct ratio or using a given number of cubes for one relationship, eg 2 B 1 Y or $\mathrm{B}: \mathrm{Y}=2: 1$ or 4 G 1 B or $\mathrm{G}: \mathrm{B}=4: 1$ or $8 \mathrm{G}, 1 \mathrm{Y}$ or $\mathrm{G}: \mathrm{Y}=8: 1$ oe or yellow $=2$, blue $=4$, or states 2:1:8 oe in any order (can be algebraic)
			P1	for complete process to find possible number of each colour or equivalent ratio, eg 8G 2 B 1 Y or $\mathrm{G}: \mathrm{B}: \mathrm{Y}=8: 2: 1$ oe or yellow $=2$, blue $=4$, green $=16$ oe (can be algebraic $)$
			A1	$\frac{1}{11} \mathrm{oe}$

Question	Working	Answer	Mark	Notes
[1]		Yes (supported)	P1	for process to work out the total number of children, e.g. $117 \times 4(=468)$
			P1	(dep P1) for process to work out total number of adults or the total number of people, e.g. " 468 " $\times 5 \div 2(=1170)$ or " 468 " $\times 7 \div 2(=1638)$
			A1	for 1170 or 1638
			P1	for process to work out the percentage of theatre full, e.g. $\frac{468 "+1170 "}{2600} \times 100(=63)$ or for a process to work out 60% of $2600(=1560)$
			C1	for a correct conclusion supported by correct figures e.g. 63\% or 1560 and 1638
			P1	OR for a process to work out 60% of 2600 , eg. $\frac{60}{100} \times 2600(=1560)$
			P1	(dep P1) for process to work out total number of children, e.g. " 1560 " $\times 2 \div 7(=445(.7 . .)$.
			A1	for 445(.7...)
			P1	for process to work out number of children in the circle, eg. "445(.7...)" $\div 4$ (= 111 to 112)
			C1	for a correct conclusion supported by correct figures e.g. 111 to 112 [Where appropriate, accept rounded or truncated values]

Question	Working	Answer	Mark	Notes
D] cont.			P1 P1 A1 P1 C1	OR for a process to find the maximum number of children, eg. $2600 \times 2 \div 7(=742(.8 \ldots))$ for process to work out the total number of children, e.g. $117 \times 4(=468)$ for 468 and 742(.8...) for $\frac{4468 "}{772(.8 .))^{\prime}} \times 100(=63)$ or process to work out 60% of " $742.8 . . "(=445(7 .)$. for a correct conclusion supported by correct figures e.g. 63% or 468 and 445(.7...) [Where appropriate, accept rounded or truncated values]

「 EXPERT

Question	Working	Answer	Mark	Notes
(a) (b)		57.1 explanation	P1 P1 P1 A1 C1	for a process to find time from Liverpool to Manchester, eg. $56 \div 70(=0.8(\mathrm{hrs})$ or $48(\mathrm{mins}))$ for a process to find the total distance, eg $56+61(=117)$ or the total time, eg" $48 "+75(=123)$ or " $0.8 "+\frac{75}{60}(=2.05)$, with consistent units of time (dep P2) for a correct process to find average speed with consistent units of time, eg." 117 " $\div 2.05$ " or ." 117 " \div " 123 " for answer in the range 57 to 57.1 for explaining that the time taken for the two parts of the journey must be the same or the distance from Leeds to York is $\frac{3}{4}$ the distance from Barnsley to York oe
(a) (b)		3.9 2.05	M1 A1 M1 A1	for a ratio of $\frac{8.1}{5.4}(=1.5)$ oe or $\frac{5.4}{8.1}(=0.66 .$.$) oe or \frac{2.6}{5.4}(=0.48 .$.$) oe or \frac{5.4}{2.6}(=2.07 .$.$) oe$ cao for $\frac{5.4}{8.1} \times 6.15(=4.1)$ or $\frac{2.7}{8.1} \times 6.15$ oe or ft "scale factor" from (a) cao

Question	Working	Answer	Mark	Notes
D]		Secure Bank (supported)	P1	for a process to work out the interest after one year e.g. $0.02 \times 25000(=500)$ or $0.043 \times 25000(=1075)$ or for 1.02 or 25500 or 1.043 or 26075
			P1	for process to find value of the investment after 3 years or the multiplicative factor for 3 years at one of the banks, e.g. $25000 \times 1.02 \times 1.02 \times 1.02$ oe $(=26530 \ldots)$ or $1.02^{3}(=1.0612 \ldots)$ or $25000 \times 1.043 \times 1.009 \times 1.009$ oe $(=26546 \ldots)$ or $1.043 \times 1.009 \times 1.009(=1.0618 \ldots . .$. [accept total interest of $1530 \ldots$ or 1546 ...if final values of investment are not found]
			C1	for Secure Bank from correct figures eg 26530.. and 26546..or 1530.. and 1546.. or 1.0612.. and 1.0618

Question	Working	Answer	Notes
\square		$\frac{53}{64}$	P1 for interpreting information e.g. recognising that the shaded area $=$ $\frac{3}{4}+\left(\frac{1}{4} \times \frac{1}{4}\right)+\left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right)$ or adding in lines to diagram to show 64ths A1 cao
(a) (b)		graph 15 miles (supported)	C1 introduce a scale for the y axis C1 plots at least 2 points correctly C1 fully correct and complete graph M1 reads off graph eg $20 \mathrm{~km}=12-13$ miles or 15 miles $=24 \mathrm{~km}$ or C1 Ctates 15 miles $(24 \mathrm{~km})$ with appropriate evidence
$\square \square$	£ per kg: $1.89 \div 2=0.945$ (94.5); $4.30 \div 5=0.86$ (86); $8.46 \div 9=0.94$ (94) kg per £: $\begin{aligned} & 2 \div 1.89=1.058(2 . .) ; \\ & 5 \div 4.30=1.162(79 \ldots) \\ & 9 \div 8.46=1.0638(297 \ldots) \end{aligned}$ Price per 90 kg : $\begin{aligned} & 1.89 \times 45=85.05 \\ & 4.30 \times 18=77.4(0) \\ & 8.46 \times 10=84.6(0) \end{aligned}$	$\begin{gathered} 5 \mathrm{~kg} \\ \text { (supported) } \end{gathered}$	P1 for a process (for at least two boxes) of division of price by quantity or division of quantity by price or a complete method to find price of same quantity or to find quantity of same price P1 for a complete process to give values that can be used for comparison of all 3 boxes C1 for 5 kg and correct values that can be used for comparison for all 3 boxes and a comparison of their values

Question	Working	Answer	Notes			
$1 \square 9$		720	P1 attempt to find the maximum biscuits for one of the ingredients e.g. $5000 \div 15(=33.3 .$.$) or 2500 \div 75(=33.3 .$.$) or 3000 \div 100(=-$ 30) or $320 \div 10(=32)$ for identifying butter as the limiting factor or $30 \times 24(=720)$ seen	attempt to find the maximum biscuits for one of the ingredients e.g. $5000 \div 15(=33.3$..) or $2500 \div 75(=33.3$..) or $3000 \div 100(=-$ 30) or $320 \div 10(=32)$ for identifying butter as the limiting factor or $30 \times 24(=720)$ seen		
प1]		96	P1 P1 A1	a strategy to start to solve the problem eg $18 \div(7-4)(=6)$ for completing the process of solution eg " 6 " $\times(4+5+7)$ cao		
प\|]		conclusion (supported)	P1 P1 C1	$\begin{aligned} & 30 \div 70(=0.428) \\ & 60 \times " 0.428 \ldots \text { " } \\ & \text { for conclusion lin } \end{aligned}$	$\begin{aligned} & 26 \div 60(=0.4333 \ldots) \\ & 70 \times \text { " } 0.4333 \ldots \text { ". } \\ & \text { to } 25.7 \text { mins, } 30.3 \text { mild } \end{aligned}$	$\begin{aligned} & 30 \div 26(=1.153 \ldots) \\ & 60 \times \text { " } 1.153 \ldots \text { " } \\ & \text { or } 69.2 \mathrm{mph} \end{aligned}$

Question	Working	Answer		Notes
[1]		for No with supporting evidence	P1 P1 C1	for correct process to find price in week 1 , eg $65 \times 0.8(=52)$ for process to find the price in week 2 , eg "52" - 10 (= 42) for No with correct supporting evidence
W		$\begin{gathered} \hline \text { butter }=1080 \\ \text { flour }=1575 \\ \text { sugar }=450 \\ \text { mincemeat }= \\ 1260 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	for correct use of a correct scale factor, $72 \div 16(=4.5)$ on at least one ingredient for complete method applied to all ingredients cao
ए1		Jardins of Paris	$\begin{aligned} & \text { P1 } \\ & \text { P1 } \\ & \text { C1 } \end{aligned}$	correct process to convert one price to another currency, eg $1980 \div 1.34$ for a complete process leading to 3 prices in the same currency for 3 correct and consistent results and a correct comparison made.
(a) (b)		graph 4.5	M C1 C1 M A1	for method to start to find distance cycled in 36 mins, eg. line drawn of correct gradient or पس[$\left[^{\frac{36}{60}}\right.$ for correct graph from 9.00 am to 9.36 am for graph drawn from " $(9.36,9)$ " to (10.45, "9" + 8) for 18×0.25 cao
ए1		8112	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for complete method, eg 7500×1.04^{2} cao
ए1		No with supporting evidence	P1 P1 C1	for the start of a correct process, eg two of [, 2[and 2[+7 oe or a fully correct trial, eg. $5+10+17=32$ for setting up an equation in $[$, eg $[+2$ [$+2[+7=57$ or a correct trial totalling 57 , eg $10+20+27=57$ for a correct deduction from their correct answers, eg Chris has 20 so it is impossible for all to have 20 since 60 marbles would be needed.

Question	Working	Answer	Notes
$13 \square$		46	M1 for process to find value after 1 year M1 for process to find value after 4 years A1 cao
$1 \square$		3p	M1 for method to find gradient of line A1 for 3p oe
		10 correct explanation	P1 for process to find number of people that Ellie can make mousse for using the sugar available P1 for process to find number of people that Ellie can make mousse for using the chocolate available A1 for correct answer with supportive working C1 for "can only make mousse for 6 people" oe
W		8	B1 cao
W]		3:4	M1 for $32-8(=24)$ M1 (dep) for " 24 " $: 32$ A1 cao
D]		1.52	M1 for 20 $4.55 \quad 60$ A1 for 1.52 or $1.516(\ldots)$.

Question	Answer	Mark	Mark scheme	Additional guidance
1】	0.45	B1	cao	
(a) (b)	3 hrs 16 mins $\frac{x}{2}$	P1 A1 B1	$196-60-60-60(=16)$ oe or $196 \div 60(=3.26 .$. or $3.27 \ldots)$ or states 3 hours in their answer (with an incorrect number of minutes or minutes left blank) 3 hours 16 minutes $\frac{x}{2} \text { oe }$	
(a) (b)	50 60	M1 A1 M1 A1	$[2.5] \times 20(=50)$ for an answer in the range 46 to 54 $\begin{aligned} & 5 \times 1200(=6000) \\ & \text { or } 1200 \div 100(=12) \\ & \text { or conversion } 5 \div 100(=0.05) \\ & \text { cao } \end{aligned}$	[2.5] a number in the range 2.3 to 2.7 or identified as the distance from Shelton to Trilby
(a) (b)	40 $20: 80$	M1 A1 M1 A1	$2 \div(2+3) \times 100(=40)$ or build up to (and shows) 40:60 oe or for sight of $\frac{2}{5}$ oe or $100 \div 5(=20)$ cao $100-20(=80)$ or $80: 20$ oe $20: 80 \text { oe }$	Accept any equivalent ratio; award full marks if an acceptable ratio is given and then incorrectly simplified.
$1 \square 8$	10000	B1	cao	

T EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
D]	$\begin{aligned} & 12.85 \text { or } 12.86 \\ & \text { or } 13.5(0) \end{aligned}$	P1	for $9+2+1$ (=12)	Award this mark for sight of 4500, 1000 or 500
		P1	for working out how many lots of 175 g are needed eg $6000 \div$ " $12 " \times 2 \div 175$ ($=5.71$..)	Process may lead to 5 or 6 instead of 5.71
		P1	for a complete process eg " $5.71 \ldots$ " $\times 2.25$ (=12.857..)	" $5.71 \ldots$. (ft) or a figure rounded or truncated eg " 6 "
		A1	for 12.85 or 12.86 or $13.5(0)$	

Question	Answer	Mark	Mark scheme	Additional guidance
1】	3	B1	cao	
D1	$\frac{40}{100}$	B1	for $\frac{40}{100}$ or any equivalent fraction	
\square	$\frac{3}{4}$	M1 A1	for method to find fraction shaded, eg 12 out of 16 squares shaded or unsimplified answer eg $\frac{12}{16}$ or for $1-\frac{1}{4}$ oe or for an answer of $\frac{1}{4}$ cao	May be expressed in a wide variety of ways.
\square	258 to 275	M1 M1 A1	for taking a correct reading from the graph that shows conversion of an amount in $\$$ to $£$ for a complete method eg attempts to read from the graph at using numbers that sum to 345 and finds the sum of their readings eg $6 \times 50+45$ for answer in the range 258 to 275	Must be a complete method to get to 345 Condone incorrect money notation if the meaning is clear
(a) (b)	140 32	M1 A1 M1 A1	for complete method eg $56 \div 40 \times 100$ cao for method to find percentage, eg $\frac{18}{56} \times 100(=32.14 \ldots)$ for an answer in the range 32 to 32.2	May be seen in different ways, eg 2.5×56

Question	Answer	Mark	Mark scheme	Additional guidance
\square	2 hours 45 minutes	P1 P1 A1	for $30 \div 24(=1.25)$ or $12 \div 8(=1.5)$ for finding the sum of their two times eg " 1.25 " + " 1.5 " (= 2.75) or 165 (minutes) cao	May be written in hours and/or minutes or 3 h 15 min or 2 h 75 min
(a) (b)	Yes (supported) Yes, (does not have enough) (supported)	P1 P1 P1 C1 C1	for start of process, eg $5 \times 9(=45)$ or $10 \times 14(=140)$ or $5 \times 2(=10(\mathrm{~kg}))$ or $3 \div 2$ (= 1.5 (boxes)) for process using ratio of areas, eg " 140 " \div " 45 " (= $3.1 \ldots$) or for using ratio of amount of seed eg " 10 " $\div 3$ (= $3.3 \ldots$...) or for finding coverage for 1 kg of grass seed, eg " 45 " $\div 3\left(=15\left(\mathrm{~m}^{2}\right)\right)$ for process to find amount of seed needed, eg " 140 " $\div 45$ " $\times 3$ (=9.3...kg) or " 140 " \div " 45 " \times " 1.5 " (= $4.6 \ldots$ (boxes)) oe or " 15 " $\times 2\left(=30\left(\mathrm{~m}^{2}\right.\right.$ per box $\left.)\right)$ and " $140 " \div$ " 30 " $(=4.6 \ldots$ (boxes) $)$ or for process to find area that can be seeded, eg " 10 " $\div 3 \times$ " 45 " ($\left.=150\left(\mathrm{~m}^{2}\right)\right)$ or " 140 " \div " 10 " (= $14\left(\mathrm{~m}^{2}\right)$) oe for "Yes" supported by correct figures eg 4.6...(and 5), or 9.3...and 10 or 150 and 140 (or 140 to 148.5) or 15 and 14 for reasoning supported with correct figures, eg does not have enough seed and compares $9(\mathrm{~kg})$ with $9.3 \ldots(\mathrm{~kg})$ or 4.5 (boxes) with $4.6 \ldots$ (boxes) or $135\left(\mathrm{~m}^{2}\right)$ with $140\left(\mathrm{~m}^{2}\right)$ or $14\left(\mathrm{~m}^{2}\right)$ with $15\left(\mathrm{~m}^{2}\right) \mathrm{ft}$ from (a)	Accept values rounded or truncated to 1 dp in both (a) and (b). Ignore units Accept 9.4 Accept 4.7 Values used in (a) do not need repeating in (b) as long as intention is clear
\square	96	M1 M1 A1	for a complete process to find the volume eg $6 \times 4 \times 10 \div 2(=120)$ for a complete process, eg $(6 \times 4 \times 10 \div 2) \times 0.8$ cao SC B1 for 192	

Question	Answer	Mark	Mark scheme	Additional guidance
$\square 5 \square$	4000	B1	cao	
$\square 6 \square$	3:5	B1	for 3:5 or for any other equivalent ratio	
(b)	$2.5(0)$ 96	P1 P1 A1 M1 A1	$\begin{aligned} & \text { for } 13 \times 7.5(0)(=97.5(0)) \text { or } 5 \times 20(=100) \\ & \text { for " } 100 \text { " }-" 97.5(0) " \\ & \text { cao } \\ & \text { for } \frac{1}{5} \times 120(=24) \text { oe or } \frac{4}{5} \times 120 \text { oe } \\ & \text { cao } \end{aligned}$	
$1 \square 2$	6	P1 P1 A1	process to find the weight of small boxes eg $3 \times 450(=1350)$ complete process to find the number of large boxes, eg (5850 - " 1350 ") $\div 750$ or $5850-$ " $1350 "(=4500)$ and $6 \times 750(=4500)$ cao	Cannot award this mark if 6 comes from a rounded value due to error in calculating

Question	Answer	Mark	Mark scheme	Additional guidance
D]	50	B1	for finding the time difference, eg, 1 hr 18 mins or 78 mins oe	Allow 1.18 for this mark 118 scores B0
		P1	for correct process to convert minutes to hours, eg $18 \div 60(=0.3)$ or $78 \div 60(=1.3)$ or for a correct process to convert speed in miles per minute to mph eg " $0.833 \ldots$.." $\times 60$	For a conversion of time or speed
		P1	for using speed $=$ distance \div time eg, $65 \div[$ time $]$ or $65 \div 78(=0.833 \ldots)$	[time] is what the candidate clearly indicates as time difference
		A1	cao SCB2 for $83(.333 \ldots)$ seen as the answer	

Question	Answer	Mark	Mark scheme	Additional guidance
$\square \square$	1500	B1	cao	
$\square \square$	$\frac{19}{100}$	B1	or any other equivalent fraction.	
$\square 6 \square$	16	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for a complete method to find 20% of 80 eg 80×0.2 oe cao SC B1 for an answer of 64 or 96	
$1 \square 0$	$\frac{3}{5}$	M1 M1 A1	for a start in the method eg $35+50+75(=160)$ or $400-35-50-75(=240)$ or $\frac{160}{400}$ oe for eg $\frac{400-" 160 "}{400}$ or $\frac{2}{5}$ or $1-\frac{160}{400}$ or for an unsimplified answer eg $\frac{" 240 "}{400}$ oe or as 60% oe cao	
1】	$\frac{9}{25}$	M1 A1	for $\frac{n}{6+9+10}$ where n is an integer <25 for $\frac{9}{25}$	Or equivalent fraction
17	9	M1 A1	for a method to find the scaling factor eg " 10.8 " \div " 1.8 " (= 6) or " 1.8 " \div $1.5(=1.2)$ or $1.5 \div$ " $1.8 "(=0.833 .$. or a sf given from 5.5 to 6.5 or from 1.06 to 1.4 or from 0.75 to 0.94 eg used with 1.5 accept an answer in the range 8 to 10	Could be shown on the diagram by appropriate working eg 6 steps Allow 10.6 to 11.0 and 1.6 to 2.0 for their measured lengths.

Question	Answer	Mark	Mark scheme	Additional guidance
D	78	P1 P1 A1	for process to find the number of rand, eg $850 \times 18.53(=15750.5)$ OR for process to find number of $£$, eg $200 \div 18.53$ ($=10.79 \ldots$) (dep P 1) for process to find the number of rand notes, eg " 15750.5 " $\div 200$ (= 78.7...) OR $850 \div$ "10.79.." (= 78.7...) cao	
\square	79.76	P1 P1 P1 A1	```process to find number of gallons eg \(560 \div 34.5(=16.23 \ldots)\) OR finding the miles per litre eg \(34.5 \div 4.55(=7.582 \ldots)\) process to convert from gallons to litres eg " 16.23 " \(\times 4.55\) (=73.855 \(\ldots\).) OR to work out the cost per gallon eg \(4.55 \times 1.08(=4.914)\) OR finding the number of litres eg \(560 \div\) " \(7.582 \ldots .\). (\(=73.859 \ldots\)) (dep P2) for a complete process to work out the cost using the operations \((560 \div 34.5) \times 4.55 \times 1.08\) eg "73.855 ..." \(\times 1.08\) (=79.763 \(\ldots\)) or "4.914" \(\times\) "16.23 ..." (=79.763 ...) or "73.859 ..." \(\times 1.08\) (=79.763....) for 79.69 to 79.79```	For P marks allow use of truncated/rounded values To 2 dp but accept 79.7

Question	Answer	Mark	Mark scheme	Additional guidance
D	$\begin{aligned} & 12272.70 \\ & 12272.71 \text { or } \\ & 12272.72 \end{aligned}$	M1	for evidence of using a correct first step eg $200000 \times 0.015(=3000)$ or $200000 \times 1.015(=203000)$	
		M1	```for evidence of a compound interest method eg \(203000 \times 0.015(=3045)\) or \(203000 \times 1.015(=206045)\) or \(206045 \times 0.015(=3090.675)\) or \(206045 \times 1.015(=209135.675)\) or \(209135.675 \times 0.015(=3137.035 \ldots)\) or \(209135.675 \times 1.015(212272.710 \ldots)\) or \(200000 \times 1.015^{\mathrm{t}}, t \geq 2\)```	values may be rounded or truncated to 2 dp
		A1	for $12272.7(0)$ or 12272.71 or 12272.72	
			SC B2 for $212272.7(0)$ or 212272.71 or 212272.72	

Question	Answer	Mark	Mark scheme	Additional guidance
$\square \square$	$\frac{3}{100}$	B1	cao	
D7	1.94 m or 194 cm	M1 A1	for 188 or 0.06 or 194 or 1.94 1.94 m or 194 cm	Do not accept numerical answers without the correct unit shown.
D 8	Yes with correct figures	P1 P1 P1 C1	begins to work with proportion eg $20 \div 2(=10)$ or $20 \div 5(=4)$ or $2.38 \div 2(=1.19)$ or $5.60 \div 5(=1.12)$ full process to find the cost of 20 pens or 20 folders eg. $20 \div 2 \times 2.38(=23.8)$ or $20 \div 5 \times 5.60(=22.4)$ or $2.38 \div 2 \times 20(=23.8)$ or $5.60 \div 5 \times 20(=22.4)$ full process to find total price or amount remaining eg " $23.8 "+" 22.4 "(=46.2)$ or $50-" 23.8 "-" 22.4 "(=3.8)$ Yes with correct figures eg 46.2 or 3.8 (left)	Throughout monetary units not required; trailing zeros not needed. Can work in pence throughout 'Yes' might be implied from working eg $46.2<50$ or a statement that 3.8 is left, but 46.2 alone must also show an answer such as 'Yes' (may be written elsewhere). Working leading to 46.2 must be shown for this mark.
(a) (b)	Trapezium C and D	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	cao cao	Accept in either order.
$1 \square$	40	P1 P1 A1	```for \(100-30(=70)\) or \(1-0.3(=0.7)\) or \(1-\frac{3}{10}\left(=\frac{7}{10}\right)\) or \(28 \div 7 \times 3(=12)\) for a complete process eg \(28 \div(\) " 70 " \(\div 10) \times 10\) oe or \(28+" 12\) " cao```	

Question	Answer	Mark	Mark scheme	Additional guidance
П]	30:1	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for stating $450: 15$ oe or $450 \div 15(=30)$ oe or $1: 30$ cao	$90: 3$ Ignore units throughout.
П]	260 to 260.5	M1 M1 A1	for $883-245(=638)$ or $883 \div 245$ ($=3.60$..) or $883 \div 245 \times 100(=360(.408 .)$.$) oe$ for a complete method to find the percentage increase eg " 638 " $\div 245 \times 100(=260(.408 .)$. or $883 \div 245 \times 100-100(=260(.408 .)$.$) oe$ Accept answers in the range 260 to 260.5	
(a) (b) (c)	$2,-4,2,8$ Graph $-2.6 \text { or } 1.6$	B2 B1 M1 A1 B1	all 4 values correct for 2 or 3 correct values) (dep B1) for at least 5 points plotted correctly ft from part a for a fully correct curve drawn for 1 correct value, ft a non linear graph	Accept freehand curves drawn that are not line segments; there must be some attempt to draw the minimum point below $y=-4$. Award for -2.6 or 1.6 or both values but do not award the mark if a correct value is given with an incorrect value. Accept 1.56 or -2.56 Note for ft to be applied the graph may be joined by line segments.
\square	5	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & " 2 " \div 40 \times 100 \\ & \text { cao } \end{aligned}$	" 2 " comes from their reading of the height of the 20 to 24 column

Question	Answer	Mark	Mark scheme	Additional guidance
Ш1 (a)	2 mins 48 secs	P1	for an appropriate first step eg $700 \div 475$ ($=1.47$..) or $475 \div[$ time $](=4.16 . . \mathrm{m} / \mathrm{s})$ or [time] $\div 475(=0.24 \mathrm{~s} / \mathrm{m})$	[time] what candidate indicates as time of first race Units are not needed and can be ignored if given
		P1	for a complete process to find the required time eg $700 \div 475 \times$ [time] $(=168)$ or $700 \div(475 \div[$ time $])(=168)$ or $[$ time] $\div 475 \times 700(=168)$	Allow calculation in stages and appropriate rounding.
		A1	cao	
(b)	Statement	C1	eg takes less time	
			Acceptable examples	
			Quicker time	
			Faster time	
			Reduces my answer to part (a)	
			Not acceptable examples	
			It is an underestimate	
			The amount of time could/may increase	
			Laura goes faster	

Question	Answer	Mark	Mark scheme	Additional guidance
\square	30	B1	cao	Accept 30.0
T7	24	M1 A1	for a complete method eg $6 \times 2 \times 2$ or sight of $6,2,2$ ready for calculation，or with the wrong operation cao	Could be seen as two separate calculations $\mathrm{SC}: \mathrm{B} 1$ for a answer of 1.5 oe
1】	Shows earnings	M1 M1 C1	for a method to start to work out earnings eg $11.2 \times 8(=89.6)$ or $20-8(=12)$ or $8.4 \times 12(=100.8)$ for a complete method eg $11.2 \times 8+8.4 \times(20-8)$ or＂ $89.6 "+$＂ 100.8 ＂or $200-" 89.6 "-" 100.8 "(=9.6)$ Shows earnings eg 190．4（0）or 9．6（0）with fully correct arithmetic	Accept calculations in pence，or $£$ written in decimal form． Conclusion in figures；ignore written conclusion．
1】	$\frac{40}{560} \text { oe }$	M1 A1	for correct start to method eg $600-560(=40)$ or $\frac{600}{560}$ oe $(=1.07(14 \ldots))$ OR correct answer but not a fraction eg 0．07（14．．．） for any equivalent fraction to $\frac{40}{560}$ eg $\frac{1}{14}$	
1】	69.2	B1 P1 P1 P1 A1	for a correct measurement of either length or width， eg $11.5(\mathrm{~cm})$ or $5.8(\mathrm{~cm})$ for process to find actual dimensions， eg［length］$\times 200(=2300)$ or［width］$\times 200(=1160)$ （indep）for process to convert to metres［length in cm］$\div 100$ eg＂ 2300 ＂$\div 100(=23)$ or＂ 1160 ＂$\div 100(=11.6)$ （indep）for process to find the perimeter， eg＂ $23 " \times 2+" 11.6 " \times 2(=69.2)$ or ＂ 11.5 ＂$\times 2+" 5.8 " \times 2(=34.6)$ for an answer in the range 67.6 to 70.8	Allow measurements 11.3 to 11.7 cm and 5.6 to 6.0 cm NB ：could work in mm ［length］in the range 11.0 to 12.0 ［width］in the range 5.0 to 6.5 NB ：could work in mm This mark can be awarded for the conversion of any amount in cm to m （ie not from an area） calculations could be in cm or in m and could be scaled or unscaled figures SC：award 3 marks for an answer in the range 67.6 to 70.8 using measurements outside the above ranges

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& 10

$1: 3$ \& | M1 |
| :--- |
| A1 |
| P1 |
| P1 |
| A1 | \& | for a start of method to find Bispah's share, eg $2.50 \times 8(=20)$ or $\frac{1}{2} \div \frac{1}{8}(=4)$ cao |
| :--- |
| for a process to find Chan's share, eg " 20 " $-2.5-[$ Bispah's money $](=7.5)$ or $1-\frac{1}{8}-\frac{1}{2} \quad\left(=\frac{3}{8}\right)$ |
| for a correct ratio eg $2.5:$ " 7.5 " or $\frac{1}{8}:$ " $\frac{3}{8}$ " or $3: 1$ oe for $1: 3$ oe eg $5: 15$ | \& | Accept 10.00 |
| :--- |
| Accept working in pence, or in $£$ given as a decimal oe NB: award this mark if the working is seen in part (a) |
| Accept 3:1 (correct answer in reverse order) which can also be an equivalent ratio to $3: 1$ |
| Award full marks for 1:3 or an equivalent ratio. If an equivalent ratio to $1: 3$ is shown and then simplified incorrectly award full marks. |

\hline | (a) |
| :--- |
| (b) | \& 9.6

10 \& \begin{tabular}{l}
M1

A1

M1

A1

 \&

for a correct ratio,

$$
\begin{aligned}
& \text { eg } \frac{12.6}{8.4}(=1.5) \text { or } \frac{8.4}{12.6}(=0.66 . .) \\
& \text { or } \frac{6.4}{8.4}(=0.76 . .) \text { or } \frac{8.4}{6.4}(=1.31) \text { oe } \\
& \text { cao }
\end{aligned}
$$

for $15 \div$ " 1.5 " or $15 \times$ " $0.66 . . "$ or ft their ratio from part (a) oe cao

 \&

Decimal equivalents can be truncated or rounded to 2 dp

Accept equivalent methods to use a sf eg $\frac{6.4}{2}+\square 6.4$ (Qdicative of 1.5)

Award the method mark for any (equivalent) complete method shown.
\end{tabular}

\hline
\end{tabular}

Question	Working	Answer	Mark	Notes
D		$\begin{gathered} (£ 6), 18,24,27 \\ 15,45,60,67.50 \end{gathered}$	M1 M1 A1	demonstrates a proportional method to find at least one cost for cotton, eg. $£ 6 \div 2 \times 9(=(£) 27)$ or a correct entry in the table. demonstrates a proportional method to find at least one cost for silk, eg. $£ 6 \div 2 \times 5(=(£) 15)$ or a correct entry in the table. for a fully correct table (accept 67.5(0))
\square		New York (supported)	P1 P1 C1	for changing between $£$ and $\$$, eg 1.089×1.46 (= 1.58(9.)) or $2.83 \div 1.46(=1.93(8)$.$) or between litres and gallons,$ eg $1.089 \times 3.785(=4.12(1)$.$) or 2.83 \div 3.785(=0.74(7)$. for a complete process to give values that can be used for comparison, eg "1.938..." $\div 3.785(=0.51(2)$.$) or " 1.589 \ldots$...... 3.785 (= 6.01(7.)) or $1.089 \times 3.785=(4.12(1)$.$) and 2.83 \div 1.46(=1.93(8)$. for New York and correct comparative values.
\square		648	M2 [M1 A1	a complete method, eg $12.5 \times 1000 \div 19.3$ for using volume $=$ mass $/$ density, eg $12500 \div 19.3$ (condone inconsistent units or incorrect conversions) may be implied by digits 647... or 648...] for answer in range 647 to 648
DT		15	P1 P1 A1	strategy to start the problem, eg 8:20 and 20:5 process to solve the problem, eg $\frac{5}{33} \times 100$ or $24: 60: 15$ cao

Question प】

London	$1.089 \times 1.46=\$ 1.58(9 .$.$) per litre$	\rightarrow	$1.589 . . . \times 3.785=\$ 6.01(7 .$.$) per gallon$
	$1.089 \times 3.785=£ 4.12(1 .$.$) per gallon$	\rightarrow	$4.121 \ldots \times 1.46=\$ 6.01(7 .$.$) per gallon$
	$2.83 \div 1.46=£ 1.93(8 .$.$) per gallon$	\rightarrow	$1.938 \ldots \div 3.785=£ 0.51(2 .$.$) per litre$
	$2.83 \div 3.785=\$ 0.74(7 .$.$) per litre$	\rightarrow	$0.747 \ldots \div 1.46=£ 0.51(2 .$.$) per litre$

The table shows the most commonly used approaches. There are of course other approaches that can be used.

Question	Working	Answer	Mark	Notes
(a) (b)		$1: 3$ 42	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	oe ft $56 \div 4(=14)$ or complete method to find number of grey tiles eg $56-(56 \div 4)$, $56 \div 4 \times 3$ oe $(=42)$ for 42 or ft
Ш1]		$\begin{gathered} \text { No } \\ \text { (supported) } \end{gathered}$	P1 P1 C1	for finding a time difference e.g. length of day ($=7 \mathrm{~h}$ or 420 min) or adding at least two of the five times on to 9 am or adding all the room times given $(=5 \mathrm{~h} 55 \mathrm{~min}$ or 355 min$)$ or adding all five times given ($=7 \mathrm{~h} 10 \mathrm{~min}$ or 430 min) for a complete process to inform final decision eg finds length of day ($=7 \mathrm{~h}$) and total of all five times $(=7 \mathrm{~h} 10 \mathrm{~min})$ or starts at 9 am and adds on all five times to find finishing time ($=4.10 \mathrm{pm}$) NO supported by correct values eg 4.10 pm or 7 h and 7 h 10 min or 420 min and 430 min
Ш1		75	$\begin{aligned} & \text { P1 } \\ & \text { P1 } \\ & \text { A1 } \end{aligned}$	for $90 \div 6(=15)$ or for connecting $A B$ and $B C$ by ratio or proportion eg 5 and 1 on the diagram for a complete method to find the length $A B$ eg $90 \div 6 \times 5(=75)$ cao
(a) (b)	$\$$ $£$ 5 $2.631 \ldots$ 60 $31.578 \ldots$ 196 $103.157 \ldots$ 2744 $1444.21 \ldots$ 2804 $1475.789 \ldots$	2975.79 Statement	$\begin{aligned} & \text { P1 } \\ & \text { A1 } \\ & \end{aligned}$	for process to find total room cost eg $196 \times 14(=2744)$ for process to find total wifi cost eg $5 \times 12(=60)$ for using exchange rate appropriately (could be used earlier in the question), eg " 2804 " $\div 1.90(=(£) 1475.789 \ldots)$ or $1500 \times 1.90(=(\$) 2850)$ for process to find the total cost in $£$, eg " $1475.79(.$.$) " +1500$ or in \$, eg "2850" + "2804" (=5654) 2975 to 2976 Statement about the total price rising May comment that flights will not change but the rest will rise

Question	Working	Answer	Mark	Notes
\square		1.01	P1 P1 P1 A1	fruit syrup $15 \times 1.4(=21)$ or water $280 \times 0.99(=277.2)$ or apple juice $25 \times 1.05(=26.25)$ (dep P1) for complete process to find the total mass e.g. "277.2" + " 26.25 " + " 21 " $(=324.45)$ or a weighted density eg $15 \times 1.4 \div 320(=0.065625)$ or $280 \times 0.99 \div 320(=0.86625)$ or $25 \times 1.05 \div 320(=0.08203125)$ (dep P2) for complete process to find the density eg " 324.45 " $\div 320$ (=1.01..) or "0.065625" + "0.86625" + "0.08203125" (= 1.0139..) 1.01 to 1.014
\square		200000	M1 A1	for recognising that $210000=105 \%$ or a full method to find the original price eg 210000 $\div 1.05$ oe $(=200000)$ cao

Question	Working	Answer	Notes
W		1230	$\begin{aligned} & \text { P1 for start to process eg. } 6760-3879-1241(=1640) \\ & \text { P1 } \quad \text { for use of fraction eg. " } 1640 \text { " } \div 4 \text { or } 1-\frac{1}{4}\left(=\frac{3}{4}\right) \\ & \text { A1 } \end{aligned}$
[1]	$\begin{aligned} & 2000 \div 5=400 \\ & 2080-3 \times 400=880 \\ & 880 \div 4 \end{aligned}$	400, 220	B1 for 400 (weight of beans) P1 Process to find total weight of 4 jars of jam P1 Process to find weight of 1 jar of jam A1
[1]		20	M1 for conversion of km to metres or hours to minutes M1 for conversion of hours to seconds A1 cao
Wा(a) (b) (c)	550×3.5601 $210 \div 7 \times 2=30 \times 2$ Or $60 \div 2=30 \text { and } 30 \times 7=210$	1958 Shown Correct evaluation	M1 550×3.5601 A1 For correct method to convert cost in UK to lira or vice versa, M1 using Asif's approximation C1 Shown with correct calculations C1 For an evaluation e.g. It is a sensible start to the method because he can do the calculations without a calculator and 3.5 lira to the $£$ is a good approximation
2■		Have a water meter (from working with correct figures)	P1 Process to find number of litres eg. $180 \div 1000$ P1 Full process to find cost per day P1 Full process to find total cost of water used per year (accept use of alternative time period for both options) P1 Full process with consistent units for total cost of water A1 Correct decision from correct figures (88.13154 or correct figure for their time period)

Question	Working	Answer	Notes
W		$\begin{aligned} & \text { 1.75Oor } 1750 \\ & \mathrm{mO} \end{aligned}$	B1 for knowledge of 1 litre is 1000 millilitres P1 for adding their two amounts C1 for 1.75 Oor 1750 mO (must include units)
W		2	P1 for correct process to find fibre for 400 g OR to find weight of 1 slice P1 for a complete process to find the fibre per slice A1 cao
ए1] ए [田		$\frac{3}{4}$	
W		[\$ ITIIER HV
W	176 tiles 20 packs	Supported statement	P1 finding the number of packs for 10% more tiles or 10% of their number of packs, ft from (a) C1 Statement, eg. increase in packs is 2 more which is more than 10%
W		1.0625	P1 for a complete process to find the density of liquid A, eg $\frac{19}{22} \times 1.1(=0.95)$ P1 for a complete process to find the mass of liquid C, eg $5 \times 0.95+15 \times 1.1$ P1 for a complete process to find the density of liquid C, eg $\frac{21.25}{20}$ A1 cao

\begin{tabular}{|c|c|c|c|}
\hline Question \& Working \& Answer \& Notes \\
\hline 71] \& \& 4.5 \& B1 cao \\
\hline \begin{tabular}{l}
Ш1 (a) \\
(b)
\end{tabular} \& \& No change with reason \& \begin{tabular}{ll}
P1 \& start of process eg \(8 \times 2 \times 28(=448)\) \\
P1 \& eg ‘ 448 ' \(\div 200(=2.24)\) or build up method \\
A1 \& cao \\
\& \\
P1 \& process to evaluate effect of 2.5 g \\
C1 \& explanation that number of jars is unchanged
\end{tabular} \\
\hline [1] \& \& 34 \& M1 for first step in process eg \(17 \times 200(=3400)\)
A1 cao \\
\hline W \& \& 60 litres with evidence \& \begin{tabular}{ll}
M1 \& reads from graph, eg \(30 l=6.6\) gals or 6 gals \(=\) \\
C1 \& \(27 l\) \\
60 litres with sufficient evidence
\end{tabular} \\
\hline D \& \& 2.70 \& \(\left.\begin{array}{ll}\text { P1 } \& \text { start of process } 1.95 \times 3(=5.85) \\ \text { P1 } \& \text { complete process eg }\left(6.93-{ }^{`} 5.85\right.\end{array}\right) \div 0.4\) \\
\hline \begin{tabular}{l}
피 (a) \\
(b)
\end{tabular} \& \& \[
\begin{aligned}
\& \frac{20}{35} \\
\& 3: 4
\end{aligned}
\] \& \begin{tabular}{llll}
B1 \& \(\frac{20}{35}\) oe \\
M1 \& 15 \& 20 \\
A1 \& cao
\end{tabular} \\
\hline [1] \& \& Sophie and correct values \& \begin{tabular}{ll}
P1 \& \begin{tabular}{l}
process leading to two comparable values eg \\
\(75 \div 15 \times 8(=40)\) or \(56 \div 100 \times 75(=42)\) oe
\end{tabular} \\
P1 \& \begin{tabular}{l}
complete process leading to 3 comparable values \\
correct deduction with correct comparable values
\end{tabular} \\
C1
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Question \& Working \& Answer \& Notes \\
\hline W] \& \& 171 \& \begin{tabular}{l}
P1 for process to find one share \\
P1 for process to find total \\
A1 cao
\end{tabular} \\
\hline \begin{tabular}{l}
Шा(a) \\
(b)
\end{tabular} \& \& \begin{tabular}{l}
\[
1.95
\] \\
D
\end{tabular} \& \begin{tabular}{ll}
M1 \& method to find one temperature eg \(4500 \div 1200\) \\
M1 \& for complete method \\
A1 \& cao \\
\& \\
B1 \& cao
\end{tabular} \\
\hline \begin{tabular}{l}
2円 (a) \\
(b)
\end{tabular} \& \& 36.4 \& \begin{tabular}{l}
P1 start process eg method to find area of trapezium \\
P1 complete process to find volume of tank \\
P1 process to find time eg volume \(\times 1000 \div 300\) \\
P1 process to find \(85 \%\) of volume or of time \\
A1 for 36.4 or 36 mins 24 secs \\
C1 explanation eg if the average rate was slower it would take more time, if the average rate was faster it would take less time
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline \[
\begin{aligned}
\& \text { Шㅣ (a) } \\
\& *(b)
\end{aligned}
\] \& \& \begin{tabular}{l}
8 \\
No with working
\end{tabular} \& \begin{tabular}{l}
1 \\
3
\end{tabular} \& \begin{tabular}{l}
B1 7.8-8.2 \\
M1 for complete method to change 90 gallons to litres \\
e.g. 10 gallons \(=" 45 "\) litres and \(9 \times " 45 "=405\) (litres) \\
or 9 gallons \(=" 40 "\) litres and \(10 \times\) " \(40 "=400\) (litres) \\
A1 for answer in range 396-414 (litres) or room for 36-54(litres) C1 (dep on M1) for conclusion ft their answer. \\
or \\
M1 for complete method to change 450 litres to gallons \\
e.g. 50 litres \(=" 11 "\) gallons and \(9 \times\) " \(11 "(=99\) (gallons) \()\) \\
or 45 litres \(=\) " 10 " gallons and " \(10 " \times 10(=100\) (gallons) \()\) \\
A1 for answer in range 99 to 100 (gallons) or room for 9 or 10 (gallons) \\
C 1 (dep on M1) for conclusion ft their answer.
\end{tabular} \\
\hline \(\square\) \& \& 485 \& 5 \& \begin{tabular}{l}
M1 for a method to find weekly basic pay \\
e.g. \(7 \times 10(=70)\) and " 70 " \(\times 5(=350)\) \\
M1 for a method to find overtime rate e.g. \(10+5\) or \(1 \frac{1}{2} \times 10(=15)\) \\
M1 for a method to find total overtime pay \\
e.g. \((3+2+1+3) \times " 15 "(=135)\) \\
M1 for a method to find total pay e.g. " 350 " + " 135 " \\
A1 cao \\
or \\
M3 for method to calculate pay per day for 5 days \\
e.g. Mon \(70+45(=115)\), Tues \(=70+30(=100)\), \(\mathrm{Wed}=70\), \\
Thurs \(=70+15(=85)\), Fri \(=70+45(=115)\) \\
(M2 for method to calculate pay per day for 3 or 4 days) \\
(M1 for method to calculate pay per day for 1 or 2days except Wednesday) \\
M1 for totalling all five days e.g. " \(115 "+" 100 "+" 70 "+" 85 "+" 115 "\) \\
A1 cao \\
or \\
M1 for a method to find overtime hours \\
e.g. \(3+2+1+3(=9)\) and weekday hours \(7 \times 5(=35)\) \\
M1 for a method to find equivalent time on overtime \\
e.g " 9 " \(+" 9\) " \(\div 2\) \\
M1 for a method to find total equivalent time e.g. " 13.5 " + " 35 " \\
M1 for a method to find total pay e.g " 48.5 " \(\times 10\) \\
A1 cao \\
SC B2 for answer of 575
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline * \(\square\) D \& \& \[
\begin{gathered}
\text { Yes } \\
\text { (supported) }
\end{gathered}
\] \& 5 \& \begin{tabular}{l}
M1 for method to calculate profit on one laptop \\
e.g. \(400 \times 0.3\) oe \((=120)\) or \(400 \times 0.15\) oe \((=60)\) \\
M1 for method to calculate selling price of one laptop \\
e.g. \(400 \times 1.3\) oe \((=520)\) or \(400 \times 1.15\) oe \((=460)\) \\
M1 for method to calculate the total selling price in one of the two deals
\[
\text { e.g. } 40 \times 400 \times 1.3 \text { oe }(=20800)
\] \\
or for \(10 \times 400 \times 1.15\) oe \((=4600)\) \\
M1 for total income e.g. "20 800" + "4600" \\
C1 for Yes and (£)25 400 or Yes with \(£ 400\) more or \\
M1 for a method for the profit on one laptop \\
e.g. \(400 \times 0.3\) oe \((=120)\) or \(400 \times 0.15\) oe \((=60)\) \\
M1 for a method for the total profit in one of the two deals \\
e.g. \(40 \times\) " 120 " \((=4800)\) or \(10 \times\) " \(60 "(=600)\) \\
M1 for a method for total profit " \(4800 "+" 600 "(=5400)\) \\
M1 for a method for target profit \\
e.g. \(25000-400 \times 50(=5000)\) \\
C1 for Yes with \((£) 5400\) and \((£) 5000\) or Yes with \(£ 400\) more \\
or \\
M1 for a method for the profit on one laptop
\[
\text { e.g. } 400 \times 0.3 \text { oe }(=120) \text { or } 400 \times 0.15 \text { oe }(=60)
\] \\
M1 for a method for the total profit for one of the two deals \\
e.g. \(40 \times\) " 120 " \((=4800)\) or \(10 \times\) " \(60 "(=600)\) \\
M1 for \(50 \times 400+" 4800 "\) or \(50 \times 400+" 600 "\) or " \(4800 "+" 600 "\) \\
M1 for \(50 \times 400+" 4800 "+" 600 "(=25400)\) \\
C1 for Yes and (£)25 400 or Yes with \(£ 400\) more
\end{tabular} \\
\hline (b) \& \& \[
\begin{gathered}
40,100 \\
\\
1.44
\end{gathered}
\] \& \[
3
\]
\[
3
\] \& \begin{tabular}{l}
M1 method to find unit weight e.g. \(60 \div 3(=20)\) \\
M1 for complete method to find weight of one of the other ingredients e.g " 20 "
\[
\times 2(=40) \text { or " } 20 " \times 5(=100)
\] \\
A1 cao \\
M1 for a complete method to work out the weight of nuts needed \\
e.g. \(300 \div(3+2+5) \times 3(=90)\)
\[
\text { or } 300 \div(60+" 40 "+" 100 ") \times 60(=90)
\] \\
M1 for a complete method to work out the cost
\[
\operatorname{eg}(800 \div 500) \times " 90 "(=144)
\] \\
A1 cao
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline (b) \& \& Correct explanation
\[
75
\] \& \[
2
\] \& \begin{tabular}{l}
M1 for working out area of triangle (=6) and area of rectangle (=24) or for dividing rectangle into eighths or other comparable areas \\
A1 for explaining that that \(24 \div 6\) is 4 or \(\frac{2}{8}=\frac{1}{4}\) or that \(1 / 2 \times 1 / 2=1 / 4\) from symmetry of shape \\
B1 cao
\end{tabular} \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \& \begin{tabular}{l}
1 \\
6 \\
4 \\
6
\end{tabular} \& \begin{tabular}{l}
\[
1
\] \\
2 \\
2
\end{tabular} \& \begin{tabular}{l}
B1 cao \\
M1 for \(20 \div 5(=4)\) Allow build up method to 4 lots of \(1: 5\) \\
Al cao \\
M1 for a full method to find the number of red counters needed eg
\[
20 \div 2-" 4 "
\] \\
A1 ft from (b)
\end{tabular} \\
\hline *2口 \& \& \begin{tabular}{l}
Bathroom \\
Mart and correct figures
\end{tabular} \& 4 \& \begin{tabular}{l}
M1 for \(\frac{1}{3} \times 1500(=500)\) or \(\frac{2}{3} \times 1500(=1000)\) \\
M2 for a correct method to reduce 1500 by \(60 \%\) and then by a further \(15 \%\) eg \(1500 \times\) " \(0.4 " \times 0.85(=510)\) oe \\
(M1 for method to find \(60 \%\) or \(40 \%\) of 1500 e.g. \(\frac{60}{100} \times 1500(=900)\) C1 for 510 and 500 with a correct conclusion.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline - [\& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& 42

168 \& 5

3 \& | M1 for $300 \times 3(=900)$ or $150 \div 3(=50)$ |
| :--- |
| M1 (dep) for " 900 " $\div 150$ (= 6 jars) or $300 \div$ " $50 "$ ($=6$ jars $)$ |
| M1 for $500 \div 160(=4$ boxes $)$ |
| M1 for " 6 " $\times 4.00(=24)+" 4 " \times 4.50(18)$ |
| A1 cao |
| M1 for 6×30 |
| M1 (dep) for " 180 " - 12 |
| A1 cao |

\hline Ш1] \& | (a) |
| :--- |
| (b) | \& \& \[

$$
\begin{aligned}
& 30 \\
& 120
\end{aligned}
$$

\] \& \[

1
\]

\[
2

\] \& | B1 cao |
| :--- |
| M1 for $\frac{15}{100} \times 800$ oe A1 cao |

\hline
\end{tabular}

Question		Working	Answer	Mark	Notes
\square	(a) (b)		12 44 pounds or 20 kg	2 4	M1 for correct first step, eg $37-13(=24)$ or $(37+13) \div 2(=25)$ oe or two weights with a difference of 13 or two weights with a total of 37 A1 cao M1 for $30 \times 2.2(=66)$ M1 (dep) for 110 - " $66 "(=44)$ A1 for 44 A1 (dep on first M1) for pounds OR M1 for $110 \div 2.2(=50)$ M1 (dep) for " 50 " $-30(=20)$ A1 for 20 A1 (dep on first M1) for kg
$\square \square$			69	4	M1 for finding 15% of $£ 720$ (=108) M1 (dep) for finding total of $£ 720$ plus interest $(=828)$ or 115% of 720 M1 (dep on previous M1) for dividing by 12 A1 cao OR M1 for finding $720 \div 12(=60)$ M1 (dep) for finding 15% of 60 (=9) M1 (dep on previous M1) for adding, eg $60+9(=69)$ A1 cao
$\square \square$			20	3	M1 for $330 \div 120(=2.75)$ or $200 \div 60\left(=3^{1 / 3}\right)$ or $450 \div 180(=2.5)$ M1 for $450 \div 180(=2.5)$ AND $8 \times " 2.5 "(=20)$ A1 cao OR M1 for $120 \div 8(=15)$ or $60 \div 8(=7.5)$ or $180 \div 8(=22.5)$ M1 for $330 \div(120 \div 8)(=22)$ or $200 \div(60 \div 8)(=26.6 \ldots)$ or $450 \div$ $(180 \div 8)(=20)$ A1 cao OR M1 for multiples of 120:60:180, eg 240:120:360 M1 for multiples linked to 450 and $8+8+4$ or scaling 2.5 oe A1 cao

Question		Working	Answer	Mark	Notes
W	(a) (b) (c) (d)		50 $\frac{3}{8}$ 2 squares shaded $\frac{2}{8} \text { and } \frac{5}{20}$	1	B1 cao B1 cao B1 cao B2 for both correct (B1 for one correct)
* ${ }^{\text {■ }}$		$\begin{aligned} & 1195 \\ & 4780 \\ & 5975 \end{aligned}$ 200 30 9 20 000 600 180 5 000 150 45 $4000+1000+600+150+$ $180+45=5975$	Kirsty's Plants with correct calculations	5	M1 for complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation or digits 5975 M1 for a complete method to find 120% of $£ 52.50$ A1 for 59.75 and 63(.00) C1 (dep on M2) for correct conclusion for their figures OR M1 for the start of a method to divide $£ 52.50$ by 25 , eg. 2 rem 2 M1 for a complete method to divide $£ 52.50$ by 25 , condone one arithmetic error, or digits 21 M1 for a complete method to find 120% of " $£ 2.10$ " A1 for 2.52 C1 (dep on M2) for correct conclusion for their figures OR M1 for a complete method to find 120% of $£ 52.50$ M1 for the start of a method to divide " 63 " by 25 , eg. 2 rem 13 M1 for a complete method to divide " 63 " by 25 , condone one arithmetic error, or digits 252 A1 for 2.52 C1 (dep on M2) for correct conclusion for their figures

Question		Working	Answer	Mark	Notes
\square			25.60	4	M1 for a correct method to find $\frac{1}{3}$ of $24(=8)$ or $\frac{2}{3}$ of $24(=16)$ M1 for a correct method to find $60 \%(=7.2)$ or $40 \%(=4.8)$ of 12 or $60 \%(=14.4)$ or $40 \%(=9.6)$ of 24 M1 (dep on at least M1) for a method to find the sum of their discounted adult ticket $+2 \times$ their discounted child ticket A1 25.6(0)
*口		$1.18 \div 4=0.295$ $(118 \div 4=29.5)$ $1.74 \div 6=0.29$ $(174 \div 6=29)$ $1.18 \div 2=0.59$ $\underline{1.74 \div 3=0.58}$ $1.74 \times 4=6.96$ $\underline{1.18 \times 6}=7.08$ $1.74 \times 2=3.48$ $\underline{1.18 \times 3}=3.54$ $\underline{1.18 \div 2 \times 3=1.77}$ $\underline{1.74 \div 3 \times 2=1.16}$ $4 \div 1.18=3.3(\ldots)$ $\underline{6 \div 1.74=3.4(\ldots)}$	6 pints	3	M1 for division of price by quantity for both bottles or division of quantity by price for both bottles or a complete method to find the price of the same quantity of milk. A1 for two correct values that could be used for a comparison C 1 ft (dep on M1) for comparison of their values with a correct conclusion.
\square	(a) *(b)		120 Tuesday $\begin{gathered} 125 \text { miles }>120 \text { miles } \\ 200 \mathrm{~km}>192 \mathrm{~km} \end{gathered}$	2 3	M1 4×30 A1 cao M1 for $200 \div 8 \times 5$ or " 120 " $\div 5 \times 8$ A1 for 125 or 192 or ft from "a" C1 (dep M1) Correct conclusion for their calculated figure with its correct units stated. of " 125 " miles and "a" miles or " 192 " km and 200 km

Question		Working	Answer	Mark	Notes
[1]			$\begin{aligned} & 1.83 \mathrm{~m} \text { or } \\ & 183 \mathrm{~cm} \end{aligned}$	2	M1 for $178+5$ or $1.78+0.05$ or 183 or 1.83 A1 for 1.83 m or 183 cm (units must be correct)
ए	(a) (b)		50 12	3 2	M1 for $\frac{6}{8} \times 80$ oe $(=60)$ or $\frac{1}{8} \times 80$ oe $(=10)$ (may be seen on gauges eg. 10 by $\frac{1}{8}$ position or 60 by $\frac{6}{8}$ position on either gauge) M1 (dep) for a complete correct method eg." 60 " - " 10 " or $5 \times$ " 10 " A1 for 50 (accept answers in the range 49-51) or M1 for $\frac{6}{8}-\frac{1}{8}\left(=\frac{5}{8}\right)$ M1 (dep) for " ${ }_{8}^{8}$ " $\times 80$ A1 for 50 (accept answers in the range 49-51) M1 for $180 \div 15$ oe A1 cao
[1]			$£ 1.12$	3	M1 for use of 1000 g in 1 kg eg. $1000 \div 200(=5) ; 200 \div 1000(=0.2)$ oe ; 20%; 500 g costs $£ 2.80 ; 100 \mathrm{~g}$ costs 56 p M1(dep) for a fully correct method eg. $5.60 \div$ " 5 " ($=1.12$) or 56×2 A1 $£ 1.12$ or 112p

Question		Working	Answer	Mark	Notes
Ш1			24	4	M1 for 0.15×240 oe ($=36$) M1 for $\frac{3}{4} \times 240$ oe $(=180)$ M1 (dep on both prev M1) for 240 - " 180 " - " 36 " A1 cao OR M1 for $15(\%)+75(\%)(=90(\%))$ M1 for $100(\%)-" 90 "(\%)(=10(\%))$ M1 (dep on both prev M1) for " $\frac{10}{100} " \times 240$ oe Al cao OR M1 for $0.15+0.75 \mathrm{oe}(=0.9)$ M1 for " 0.9 " $\times 240$ oe ($=216$) M1 (dep on both prev M1) for 240 - " 216 " A1 cao OR M1 for $0.15+0.75 \mathrm{oe}(=0.9)$ M1 for 1 -" 0.9 " oe (= 0.1) M1 (dep on both prev M1) for " $0.1 " \times 240=24$ Al cao

Question		Working	Answer	Mark	Notes
* \square]	(a) (b)	Example of figures for comparison 7 min 30 sec with 7 min 28 secs 3 mins 43 secs with 3 mins 45 secs 224 secs with 225 secs 3 mins 44 secs with 3 mins 45 secs	$\begin{gathered} 2045 \\ \text { No } \end{gathered}$	1 3	B1 M1 for doubling Seeta's time or halving Ninal's time or finding the difference between the two times Eg $3 \min 45 \mathrm{sec} \times 2$ or $(7 \mathrm{~m} \mathrm{28s}) \div 2$ or $7 \mathrm{~m} 28 \mathrm{~s}-3 \mathrm{~min} 45 \mathrm{secs}$ M1 for a complete method to convert their time(s) to common units with the units stated C1 for No and correct figures compared (could be in secs or mins and secs)
\square	(a) (b)		32 7	2 3	M1 for $4 \times 5+12$ oe A1 cao M1 for $40-12$ or 28 seen M1 (dep) for ' 28 ' $\div 4$ A1 cao OR M1 for $12+4+4+\ldots$ M1 for $12+7 \times 4$ oe A1 cao OR M1 for $12+4 x=40$ oe M1 for $4 x=40-12$ oe A1 cao NOTE: A correct embedded answer scores M2 A0 OR M1 ft for ' 32 ' $+4 \ldots$ or $40-$ ' 32^{\prime} M1 ft for $5+1 \ldots$ oe A1 ft Note: Do not follow through from part a an answer of 40

Question		Working	Answer	Mark	Notes
DI	(a) (b)		$\begin{gathered} 8 \\ 550 \end{gathered}$	1 4	B1 for 8 (.00) M1 for $600-200(=400)$ M1 for correct method to convert ' $\$ 400$ ' to $£$ M1 (dep on the previous M1) for 800 - ' $\$ 400$ ' in $£ s$ A1 for value in the range $540-560$ OR M1 for correct method to convert $\$ 600$ and $\$ 200$ to pounds M1 for ' 375 '-' 125 ' M1 (dep on the previous M1) 800 -' 250 ' A1 for a value in the range 540-560 OR M1 for correct method to convert $£ 800$ to dollars M1 for ' 1280 ' $+200-600$ M1 (dep on the previous M1) for attempt to convert ' $\$ 880$ ' back to £ A1 for value in the range $540-560$
Ш1]			required region	4	M1 arc radius 5 cm centre C M1 bisector of angle $B A D$ M1 line 3 cm from $D C$ A1 for correct region identified (see overlay)

Question		Working	Answer	Mark	Notes
$\square \square$			730	5	M1 for $\frac{5}{100} \times 200(=10)$ oe M1 for $\frac{10}{100} \times 350(=35)$ oe M1 for $6 \times$ ' 10^{\prime} or $4 \times$ ' 35 ' M1 (dep on M1 earned for a correct method for a percentage calculation) for ' 60 ' + ' 140 ' +530 A1 cao Or M1 for $6 \times 200(=1200)$ or $4 \times 350(=1400)$ M1 for $\frac{5}{100} \times " 1200$ " $(=60)$ oe M1 for $\frac{10}{100} \times " 1400 "(=140)$ oe M1 (dep on M1 earned for a correct method for a percentage calculation) for ' 60 ' $+{ }^{\prime} 140$ ' +530 A1 cao
\square			240	4	M1 for 16×2 (= 32 girls) M1 for $16+$ ' 16×2 ' $(=48)$ M1 (dep on the previous M1) for $(16+' 32$ ') $\times 5$ or $(16+‘ 32 ’) \times(4+1)$ A1 cao OR M1 for $1: 2=3$ parts M1 for 5 schools $\times 3$ parts ($=15$ parts) M1 (dep on the previous M1) for ' 15 ' parts $\times 16$ A1 cao SC B2 for 176 given on the answer line

Question		Working	Answer	Mark	Notes
D	(a) (b) (c)		$\begin{gathered} \frac{3}{5} \\ 0.9 \\ \text { No + reason } \end{gathered}$	2 1 1	B2 cao (B1 for $\frac{9}{15}$ oe) [SC: B1 for an answer of $\frac{2}{5}$] B1 for 0.9 or 0.90 or .9 B1 for no and 0.75 or 80% or $\frac{75}{100}$ and $\frac{80}{100}$
\square	(a) (b)	e.g. $\begin{aligned} & \$ 20=£ 12.50 \\ & \$ 100=5 \times £ 12.50= \\ & £ 62.50 \\ & £ 62.50-60=£ 2.50 \end{aligned}$	32 $£ 2.50$ OR \$4	1 3	B1 cao M1 for a correct method to convert $\$ 100$ to $£$, e.g. $5 \times$ ' 12.50 ', $(=62.50)$ (' 12.50 ' is their reading from the graph at $\$ 20$) M1 (dep) for ' 62.50 ' - 60 A1 for $£ 2.5(0)$ (units \square Pust be stated) OR M1 for colldet method to convert $£ 60$ to $\$$, e.g. 3×32 (=96) or ft their answer to part (a) M1 (dep) or 100 - ' 96 ' A1 for $\$ 4$ units must be stated)

「 EXPERT

	Working	Answer	Mark	Notes
Ш1]	$\begin{aligned} & \frac{1}{2} \times 60=30,30 \times 5=150 \\ & \frac{1}{3} \times 60=20,20 \times 4=£ 80 \\ & 3 \times 60=180 \\ & 180+75-150-80=£ 25 \\ & 10 \text { bags (i.e. } 60-30-20 \text {) } \\ & \text { sold for } 25 \\ & 25 \div 10=2.50 \\ & \text { OR } \\ & \frac{1}{2} \times 60=30,30 \times £ 2=£ 60 \text { profit } \\ & \frac{1}{3} \times 60=20,20 \times £ 1=£ 20 \text { profit } \\ & 60+20=£ 80 \\ & 80-75=5 \text { loss on } \\ & 10 \text { bags (i.e. } 60-30-20 \text {) } \\ & 10 \times £ 3=£ 30 \\ & 30-5=£ 25 \\ & £ 25 \div 10=£ 2.50 \end{aligned}$	2.50	4	M1 for $\frac{1}{2} \times 60 \times 5(=150)$ or $\frac{1}{3} \times 60 \times 4(=80)$ M1 (dep on 1st M1) for $3 \times 60+75-$ ' 150 ' - ' 80 ' oe ($=25$) M1 (dep on previous M1) for ' 25 ' $\div(60-$ ' 30 ' - ' 20 ') A1 for 2.50 (accept 2.5) OR M1 for $\frac{1}{2} \times 60 \times 2(=60)$ or $\frac{1}{3} \times 60 \times 1(=20)$ M1 (dep on 1st M1) for ($\left.60-‘ 30^{\prime}-{ }^{\prime} 20^{\prime}\right) \times 3-\left({ }^{\prime} 60{ }^{\prime}+{ }^{\prime} 20\right.$ ' -75) oe (=25) M1 (dep on previous M1) for ' 25 ' $\div(60-$ ' 30 ' - ' 20 ') A1 for 2.50 (accept 2.5)

T EXPERT

「 EXPERT

Question		Working	Answer	Mark	Notes
D	(a)		30	2	M1 for $25 \div 10$ or 2.5 seen or $10 \div 25$ or 0.4 seen or $12+12+6$ oe or a complete method eg. $25 \times 12 \div 10$ oe A1 cao
	(b)	$1000 \div 200 \times 12$	60	2	M1 for $500 \div 50$ or $1000 \div 200$ or $500 \div 10$ or correct scale factor clearly linked with one ingredient eg 10 with sugar or 5 with butter or flour or 50 with milk or an answer of 120 or 600 A1 cao

T EXPERT

Ques	Working	Answer	Mark	Additional Guidance
269. QWC ii, iii	$\frac{1}{2}=\frac{4}{8} ; \frac{1}{4}=\frac{2}{8}$ So $\frac{3}{8}$ is half way OR use of 0.5 and 0.25 to get 0.375 and compare to 0.33 OR $\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$ and $\frac{1}{3}-\frac{1}{4}=$ $\frac{1}{12}$ followed by conclusion OR use of 0.5 and 0.25 and differences of $0.5-0.33(3, \ldots$. and 0.33(3...) - 0.25	Coherent and well structured argument with appropriate reason	3	M1 to change both fractions to equivalent fractions M 1 (dep on at least one correct equivalent fraction) to find midpoint C1 conclusion following correct work by stating that $\frac{3}{8}$ is not equal to $\frac{1}{3}$ QWC: Decision should be stated with supporting reason given OR M1 use of 0.5 and 0.25 M1 (dep on at least correct decimal one find midpoint) C1 conclusion following correct work and sight of 0.37 (5) and $0.33(3 .$. QWC: Decision should be stated with supporting reason given OR M1 for working out differences M1 For a correct method of calculating differences of fractions using equivalent fractions C1 conclusion following from $\frac{1}{6}$ and $\frac{1}{12}$ QWC: Decision should be stated with supporting reason given OR M1 for working out differences M1 for a correct method of calculating differences of fractions using equivalent fractions C1 conclusion following from $\frac{1}{6}$ and $\frac{1}{12}$ QWC: Decision should be stated with supporting reason given OR M1 use of 0.5 and 0.25 M1 (dep on at least one correct decimal) for working out differences C1 for conclusion based on 0.17(or better) and 0.08(23...) QWC: Decision should be stated with supporting reason given

Total for Question: 3 marks

Question	Working	Answer	Mark	Notes
* $\square^{\text {Q }}$		Liz is wrong (supported)	4	M1 for adding the 4 times eg $2 \times 1 \mathrm{~min}+2 \times 45 \mathrm{secs}(=3 \mathrm{~min} 30 \mathrm{sec}$ or 210 sec$)$ M1 for $60 \div$ " 3.5 " (= 17.14..) oe or $200 \div 10(=20)$ M1 for complete method leading to comparable figures eg. compares no. trips: $\quad 60 \div$ " 3.5 " $(=\mathbf{1 7 . 1 4 . .)}$) and $200 \div 10$ (20) compares no. people: $60 \div$ " 3.5 " $(=17.14 .$.$) then \times 10(=\mathbf{1 7 1 . 4}$..) [200 given] compares tot. time needed: $200 \div 10(=20)$ then $\times 3.5$ " $(=\mathbf{7 0})$ [$\mathbf{6 0}$ min given] compares time per trip $200 \div 10(=20)$ then $60 \div$ " 20 " $(=\mathbf{3})$ [" 3.5 "calculated] C 1 for statement that Liz is wrong with correct comparable figures (see above) NB: throughout accept rounding of 17.14 to 17 for all marks, and work in seconds if consistent.
*口		Yes with comparable values	3	M1 for method to change 14 ft 4 in to in eg $14 \times 12+4$ ($=172$) M1 for method to convert an amount of in to cm eg " 172 " $\times 2.54$ ($=436$.(88) or 437), 4 $\times 2.54(=10.16),(12 \times 14) \times 2.54(=426.72)$ C1 for Yes with 4.36-4.37 or with 436.(88) or 437 and 440 OR M1 for method to convert 4.4 m to $\mathrm{cm} \mathrm{eg} 4.4 \times 100(=440)$ M1 for method to convert cm to in eg $440 \div 2.54$ ($=173.22 \ldots$...) C 1 for Yes with 14 ft 5 in OR M1 for method to convert 4.4 m to cm eg $4.4 \times 100(=440)$ M1 for method to change 14 ft 4 in to in eg $14 \times 12+4(=172)$ C1 for Yes with 173(.22..) and 172
$\square \square$		6.29	3	M1 for using $1 \mathrm{~kg}=1000 \mathrm{~g}$, eg $650 \div 1000(=0.65)$ M1 complete method, eg " 0.65 " $\times 9.68$ or $9.68 \div 1000 \times 650$ or for 6.292 A1 for 6.29, accept 6.3(0) SC: B1 for 62.92

Question	Working	Answer	Mark	Notes
- []		555	3	M1 for recognising that 1295 is 70\% eg 70\% = 1295 M1 for $10 \%=1295 \div 7(=185)$ or $1 \%=1295 \div 70(=18.5)$ or $1295 \times \frac{3}{7}$ oe or $(1295-185) \div 2$ or $1295 \times \frac{10}{7}$ oe $(=1850)$ A1 cao
- []	$\begin{aligned} & \mathbf{£ : 1 8 9 \div 1 . 3 9 = 1 3 5 . 9 7} \\ & 174 \div 1.27=137.01 \\ & \text { SF: } 115 \times 1.39=159.85 \\ & 174 \div 1.27 \times 1.39=190.44 \\ & €: 115 \times 1.27=146.05 \\ & 189 \div 1.39 \times 1.27=172.68 \end{aligned}$	London with correct comparable figures	3	M1 for method to convert one price to another currency, eg $189 \div 1.39$ M1 for a complete method leading to 3 prices in the same currency or to figures that can be used to compare the 3 prices A1 for London and correct comparable figures. (accept rounded or truncated to the nearest unit)
- [1]		23	3	M1 for method to find difference in cost, eg $23 \times 24-425$ (=127) or for $425 \div(23 \times 24)$ $(=0.7699 \ldots)$ or $24-(425 \div 23)(=5.52 \ldots)$ M1 for $\frac{\text { " } 127 \text { " }}{" 552 "} \times 100$ oe or $100-\times 0.7699 " \times 100$ or $\frac{" 5.52 "}{24} \times 100$ A1 for answer in range 23-23.01

Question	Working	Answer	Mark	Notes
(a) (b)		50 70	2 3	M1 for $1 \mathrm{~kg}=1000 \mathrm{~g}$ or $1 \div 20(=0.05)$ A1 cao M1 for 5000/20 (=250) or for $250 / 100(=2.5)$ or for 5000/2000 (=2.5) M1 for $28 \times$ " 2.5 " A1 cao Note: calculations may be carried out in kg or in g .
(a) (b)		61 3	2 3	M1 for a complete method eg $7 \times 8+5$ A1 cao M1 for 29-5 (=24) or for $8[+5=29$ M1 for " 24 " $\div 8$ or for $8[=24$ A1 cao
(a) (b)		$\begin{array}{r} \hline 66 \\ 125 \end{array}$	1 2	B1 for 65-67 M1 for complete method using graph eg 50 euros $=£ 42 ; 42 \times 3$ A1 for 122 - 128

Question	Working	Answer	Mark	Notes
(a) *(b)		25 yes with correct comparative figures	3	B1 cao M1 for method to calculate journey time travelling at 30 mph , $\operatorname{eg} \frac{20}{30}(=0.66 \ldots) \text { or } 40(\mathrm{mins})$ M1 (dep) for method to work out arrival time at home, (consistent units), $\text { eg } 1810+" 40 \text { mins" (=18 50) }$ C1 for yes with comparison of 40 minutes with 50 minutes or stating arrival time home as 1850 OR M1 for method to calculate speed in order to get home by 1900 $\operatorname{eg} 20 \div \frac{50}{60}(=24 \mathrm{mph})$ M1 (dep) for stating speed as 24 mph C 1 for yes with supporting calculations showing speed as 24 mph

Question	Working	Answer	Mark	Notes
W		6:5	4	M1 for $\frac{2}{3} \times 165$ oe $(=110) \quad$ [black counters] M1 (dep M1) for $\frac{40}{100} \times$ " 110 " oe ($=44$) [where 110 is their black counters] M1 (dep M2) for ($110-$ " 44 ") : 55 or $66: 55$ or a reversed ratio A1 cao OR M1 for 2: 1 M1 for $2 \times$ " $1-0.4$ " or 1.2 M1 (dep M2) for " 1.2 " : 1 A1 cao OR M1 for correct method to find proportion of black counters left in the bag eg $\frac{60}{100} \times \frac{2}{3}\left(=\frac{120}{300}\right)$ M1 for correct method to find proportion of white counters in the bag ie $\frac{1}{3}$ oe M1 (dep M2) for correct method to find ratio after $\text { eg " } \frac{120}{300} ": " \frac{1}{3} "$ A1 cao

Question	Working	Answer	Mark	Notes
(a) (b) (c)		$\frac{7}{10}$ 12 squares shaded 64	1 1 3	B1 cao B1 for 12 squares shaded M1 for $80 \div 5(=16)$ M1 (dep) for $80-$ " 16 " or " 16 " $\times 4$ A1 cao OR M1 for $1-\frac{1}{5}\left(=\frac{4}{5}\right)$ M1 (dep) for " $\frac{4}{5} " \times 80$ A1 cao
(a) *(b)		24 No and explanation	3 4	M1 for using $1 \mathrm{~kg}=1000 \mathrm{~g}$ M1 for dividing " 5.4 kg " by 450 g or $10 \times 450+900=5400$ or $10+2=12$ oe A1 cao NB: Candidates can work in kg and/or g M1 for a correct first step eg $90+30(=120)$ $\text { eg } 5.4 \times 20(=108 \text { or } 1 \mathrm{~h} 48 \mathrm{~m})$ M1(dep) for a complete method to get 618 pm or 212 pm or 228 or 3 h 48 m A1 for 618 pm or 212 pm or 228 and 210 or 18 or 3 h 48 m and 3 h 30 m C 1 ft (dep on M2) for correct decision based on their figures

Question	Working	Answer	Mark	Notes
(a) (b) (c)		$\begin{gathered} 20.3 \\ 68.04 \\ 2.61 \end{gathered}$	2 2 3	M1 for $\frac{50}{1.57^{2}}$ oe A1 for answer in range 20.2 to 20.3 M1 for $(m=) 1.8^{2} \times 21$ oe A1 cao M2 for a complete method to find 145% of 1.8 , eg. $\frac{145}{100} \times 1.80$ oe (M1 for a method to find 45% of 1.8 , eg. $\frac{45}{100} \times 1.80(=0.81)$ or for a multiplication factor of 1.45) A1 cao
2■		42.28	5	M1 for method to find weekly mileage eg. $18 \times 2 \times 5(=180)$ or weekly car park charge, eg. $3.50 \times 5(=17.50)$ M1 for method to find fuel used in a relevant journey eg. $180 \div 45.2(=3.9823$ gallons $)$ or $18 \div 45.2(=0.39823$ gallons $)$ M1 for a correct use of the conversion factor to convert between gallons and litres eg. "3.9823" $\times 4.546$ ($=18.1 \ldots$ litres) or " 0.39823 " $\times 4.546$ ($=1.81 \ldots$. litres) or $1.369 \times 4.546(=6.22 \ldots £ /$ gallon $)$ or $45.2 \div 4.546(=9.942$ miles $/ \mathrm{litre})$ M1 for a method to find the cost of a relevant journey eg. "18.1 .." $\times 1.369(=24.78 \ldots)$ or $" 1.81 \ldots$ " $\times 1.369(=2.478 \ldots)$ or "3.9823" \times " 6.22 .." (= $24.78 . .$. A1 for answer in the range 42.26 to $42.3(0)$ NB candidates could work in litres or in gallons and/or could work in $£$ or p

Table for use in Question 2 \square

Journeys in miles	Fuel used in gallons; miles $\div 45.2$	Fuel used in litres, gallons $\times 4.546$	Cost of journey in $£$, litres $\times 1.369$ or gallons $\times 6.22 \ldots$
18	$0.398 \ldots$	$1.81 \ldots$	$2.478 \ldots$
36	$0.796 \ldots$	$3.62 \ldots$	$4.956 \ldots$
90	$1.991 \ldots$	$9.05 \ldots$	$12.39 \ldots$
180	$3.98 \ldots$	$18.1 \ldots$	$24.78 \ldots$
252	$5.57 \ldots$	$25.3 \ldots$	$34.69 \ldots$

Question		Working	Answer	Mark	Notes
W	(a) (b) (c) *(d)		$\frac{3}{7}$ 2 squares shaded 150 Explanation	1 2 2	B1 cao B1 cao M1 $200 \div 4 \times 3$ or 0.75×200 oe A1 cao C2 for a full explanation, eg answer given as $4 / 35$ or "He subtracted $3 / 5$ from a fraction less than 1 so the answer must be less than 1 " (C1 for a partial explanation, eg use of a suitable common denominator or "He should have used a common denominator")
W			$3.2 \mathrm{~m}-5 \mathrm{~m}$	3	M1 man's height seen as $1.6 \mathrm{~m}-2 \mathrm{~m}$ oe or $5 \mathrm{ft} 3 \mathrm{in}-6 \mathrm{ft} 7 \mathrm{in}$ oe M1 for 2 to $2.5 \times$ 'man's height' A1 for $3.2 \mathrm{~m}-5 \mathrm{~m}$ oe or $10 \mathrm{ft} 6 \mathrm{in}-16 \mathrm{ft} 6$ in oe (units needed)
[1]	(a) (b)		$\begin{gathered} \hline 2: 3 \\ \frac{3}{5} \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao M1 ft for adding the numbers in their ratio to get an acceptable total AND using this as their denominator eg $4+6=10$ or $2+3=5$ Alft $\frac{3}{5}$ oe

Question		Working	Answer	Mark	Notes
Ш1	(a) (b) *(c)		15 minutes 305 No with reason	2 2 2	B1 15 B1 (indep) minutes M1 for intention to add 10 minutes and 55 minutes to 2 o'clock A1 305 oe M1 for a method to add 75 minutes to ' 305 ' or to work out the difference between ' 305 ' and 4 pm or to subtract 75 minutes from 4 pm C1(dep M1) for conclusion based on appropriate working and correct time calculations, ft from (b)
Ш1]	(a) (b)		$\begin{aligned} & 12.5 \\ & 500 \end{aligned}$	1 2	B1 cao M1 for a complete method to find $\frac{5}{6}$ of 600 or $600 \div 6(=100)$ A1 cao
*口			65 km is not enough	4	M1 for intention to add the four distances M1 for adding with consistent and correct use of units A1 $65(\mathrm{~km})$ oe [can work in other units eg metres] C1 (dep on M2) correct conclusion comparing their figure to 70 with supporting working eg $18.2+14.25+20.5+12.05=65 \mathrm{~km}$ or $18+14+20+12=64 ; 0.2+0.25+0.5+0.05=1 ; 64+1=65 \mathrm{~km}$
\square			4	3	M1 for method to find 6% of $2000(=120)$ M1 (dep) for $480 \div$ ' 120 ' or for repeated addition of ' 120 ' to 480 A1 cao
2■			Loci drawn	3	B1 line parallel to $B C$ and 3 cm from $B C$ B1 arc drawn centre C with radius 4 cm B1 ft for shading a region below their horizontal line and inside their arc

Question		Working	Answer	Mark	Notes
D]			36	4	M1 for $\frac{3}{5} \times 240(=144)$ M1 for $\frac{1}{4} \times 240(=60)$ M1 (dep on M2) for $240-\left({ }^{\prime} 144{ }^{\prime}+{ }^{\prime} 60^{\prime}\right)$ A1 cao OR M1 for $\frac{3}{5}+\frac{1}{4}$ or $\frac{17}{20}$ oe M1 for $1-{ }^{\prime} \frac{17}{20}{ }^{\prime}\left(=\frac{3}{20}\right)$ or ${ }^{\prime} \frac{17}{20}, \times 240(=204)$ M1 (dep on M2) for ' $\frac{3}{20}$ ' $\times 240$ or $240-{ }^{\prime} 204$ ' A1 cao
\square	(a) (b)		360 25	2 2	M1 $30 \div 10(=3)$ or $120 \div 10(=12)$ or $120+120+120$ oe A1 cao M1 for $\frac{750}{300}(=2.5)$ oe A1 cao
प			2.10 euros or $£ 1.81$	3	M1 for $2.5 \times 1.16(=2.9)$ M1 (dep) for 5 - " $2.9 "(=2.1)$ A1 for 2.1(0) euros OR M1 for $5 \div 1.16$ (= 4.31...) M1 (dep) for " 4.31 " $-2.50(=1.81)$ A1 for $£ 1.81$

Question		Working	Answer	Mark	Notes
*2 \square_{\square}			Decision (No the attendance target was not met)	3	M1 for attempting to find total number of students or 1210 seen M1 for $\frac{{ }^{\prime} 1092^{\prime}}{{ }^{\prime} 1210^{\prime}} \times 100$ oe or $\frac{' 118^{\prime}}{\prime 1210^{\prime}} \times 100$ oe C1 for correct decision with 90.(2479...) or correct decision with 6 and 9.(752...) OR M1 for attempting to find total number of students or 1210 seen M1 for $\frac{94}{100} \times$ ' 1210 ' oe C1 for correct decision with 1137 (.4) and 1092 or correct decision with 72(.6) and 118 OR M1 for a correct $\%$ method for one year, e.g. $\frac{192}{208} \times 100$ or $\frac{94}{100} \times 208$ M1 for a correct \% method for each year C1 for correct decision with 92.(30...), 90.(87...), 89.(31...), 89.(27...), 89.(91...) or 195(.5..), 226.(9...), 246.(2..), 245.(3...), 223.(7...)

Question		Working	Answer	Mark	Notes
D	(a) $\begin{aligned} & (\mathrm{b})(\mathrm{i}) \\ & (\mathrm{b})(\mathrm{ii}) \end{aligned}$		C and D F 2	1 2	B1 cao B1 cao B1 cao
$\square \square$	$\begin{aligned} & \hline \text { (a) } \\ & *(b) \end{aligned}$	£100 1300 rand 3700 rand $£ 285$ Computer 4680 rand Watch 5200 rand Camera	2600 computer, camera	3	B1 for 2600 M1 for method to convert 3700 rand into $£$ or for changing one amount in pounds into rand M1for a complete method to compare total money Simon has with the cost of each item C1 (dep M2) for correct conclusion with correct figures e.g.£383$£ 386$ or 4950 rand to 5050 rand
- IT			237600	4	M1 for one multiplication involving two numbers from (1500 or 8 or 60) or 90000 or 480 or 12000 given M1 for $1500 \times 8 \times 60(=720000)$ M1 for multiplying their number of cans by 330 and dividing by 1000 A1 cao Note these operations can be applied in any order SC B2 if M0 scored for digits 2376

Question		Working	Answer	Mark	Notes
*口1			$\frac{2}{3}$	3	M1 for attempting to write at least two fractions expressed with a common denominator with at least one of the two fractions correct A1 for three correct fractions with suitable common denominator C1 (dep M1) for correct conclusion from comparison of their three OR M1 for writing at least two of the fractions as decimals ie $\frac{2}{3}$ as $0.66(\ldots) \text { or } 66(.6 \ldots) \%, \frac{7}{8} \text { as } 0.87(5) \text { or } 87 .(5) \%, \frac{3}{4} \text { as } 0.75 \text { or } 75 \%$ A1 for three correct decimals or percentages C1 (dep M1) for correct conclusion from comparison of their three OR M1 for finding two fractions of the same number e.g. $\frac{2}{3}$ of 48 or $\frac{7}{8}$ of 48 (may be implied by shading a fraction of a rectangle divided into e.g. 48 parts) A1 for three correct values or three correct diagrams with shading C1 (dep M1) for correct conclusion from comparison of their three OR M1 for attempting to find the difference between $\frac{3}{4}$ and $\frac{2}{3}$ and between $\frac{3}{4}$ and $\frac{7}{8}$ at least one pair of fractions expressed with a suitable common denominator and at least one of the two fractions correct A1 for $\frac{1}{12}$ and $\frac{1}{8}$ or $0.08(333 \ldots)$ and $0.12(5)$ C1 (dep M1) for correct conclusion from comparison of the 2 differences.

Question		Working	Answer	Mark	Notes
* $\square^{\text {Qu }}$			Tuesday and Friday	3	M1 for $179 \div 12$ or $162 \div 12$ or $170 \div 12$ or $143 \div 12$ A1 for $14.9(166 \ldots)$ or 15 and 13.5 or 14 and $14.1(66 \ldots)$ or 15 and 11.9(16...) or 12 C 1 (dep M1) ft for comparison of their results for all the days with the number of teachers available leading to a correct statement Or M1 for $179 \div 15$ or $162 \div 13$ or $170 \div 14$ or $143 \div 12$ A1 for $11.9(3 \ldots)$ or 12 and $12.4(6 \ldots)$ or 13 and $12.1(4 \ldots)$ or 13 and $11.9(1 \ldots)$ or 12 C 1 (dep M1) ft for comparison of their results for all the days with 12 leading to a correct statement Or M1 for 15×12 or 13×12 or 14×12 or 12×12 A1 for 180 and 156 and 168 and 144 C 1 (dep M1) ft for comparison of their results for all the days with the number of students taking part leading to a correct statement

Question	Working	Answer	Mark	Notes
Ш1 (a) (b) (c)		$\frac{5}{9}$ 3 squares shaded 80	1 2	B1 for $\frac{5}{9}$ oe B1 for any 3 squares shaded M1 for $120 \div 3(=40)$ or $2 \times 120(=240)$ or $\frac{2}{3} \times 120$ oe A1 cao
W		1.9 km or 1900 m	3	M1 for $1.25 \times 1000(=1250)$ or $650 \div 1000(=0.65)$ M1 for " 1250 " +650 or $1.25+$ " 0.65 " A1 for for 1.9 km or 1900 m
W	$\begin{aligned} & 80 \text { litres } \approx 18 \text { gallons } \\ & \text { or } \\ & 16 \text { gallons } \approx 72 \text { litres } \end{aligned}$	A with correct figures	3	M1 for reading from the graph eg. 8 gallons $=36$ litres; 20 litres $=4.4$ gallons M1 for a complete method to convert either 80 litres into gallons or 16 gallons into litres e.g. 80 litres $=$ " $4.4 " \times 4$ gallons or 16 gallons $=" 36 " \times 2$ litres A1 for car A with correct figures in range $17.5-18.5$ gallons or $64-72$ litres
W		7	4	M1 for 1800×36 or 1800×2.54 or 36×2.54 M1 for $1800 \times 36 \times 2.54(=164592)$ M1 (dep on M1) for a complete method e.g. $1800 \times 36 \times 2.54 \div 100 \div 245(=6.71 \ldots$...) A1 for 7 with correct working OR M1 for $245 \times 100(=24500)$ M1 for " 24500 " $\div 2.54 \div 36$ ($=267.93 \ldots$...) M1 for $1800 \div$ " $267.93 . . "(=6.71 \ldots)$ A1 for 7 with correct working
[1]		6.45	5	M1 for $110+12 \times 16.80(=311.6)$ M1 for 0.15×359 oe ($=53.85$) M1 (dep on previous M1) for 359 - " 53.85 " oe (= 305.15) M1 (dep on M3) for " 311.6 " - " 305.15 " A1 for 6.45 from correct working

Question	Working	Answer	Mark	Notes
*口		No with correct figure	3	M1 for a calculation which uses the Time \times Speed $=$ Distance relationship OR a conversion of units eg between hours \& minutes or between mph \& miles per min M1 for a calculation involving both of the above C1 for "no" with a correct calculation, with units, from working: $25.2-25.8$ minutes, 30.1 - 30.8 miles, $69-69.3 \mathrm{mph}$ Distance \div speed: $30 \div 70(=0.42-0.43)$; Distance \div time: $30 \div 26(=1.15 \ldots)$; Speed \times time: $=70 \times 26(=1820 \mathrm{mins})$ Mph to $\mathrm{miles} / \mathrm{min} 70 \div 60(=1.16-1.67)$; Minutes to hours is $26 \div 60(=0.43 \ldots)$ NB $70 \div 26 \times 30$ as a single stage calculation gets 0 marks

Г EXPERT
 TUITION

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline D] \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \[
720
\]
\[
£ 10 \text { or } € 12
\] \& 2
3 \& \begin{tabular}{l}
M1 for \(6 \times 120\) or \(600 \times 120 \div 100\) oe \\
A1 for 720 oe (accept 720.0) \\
M1 for \(540 \div 1.2(=450)\) oe, eg \(4 \times 100+50(=450)\) \\
M1 (dep) for 460 - '450' (=10) \\
A1 for \(£ 10\) oe (accept \(£ 10.0\)) \\
OR \\
M1 for \(460 \times 1.2(=552)\) oe, eg \(4 \times 120+60+12(=552)\) \\
M1 (dep) for ' 552 ' \(-540(=12)\) \\
A1 for \(€ 12\) oe (accept \(€ 12.0\))
\end{tabular} \\
\hline W] \& (a)

(b) \& \& \& 3

2 \& | M1 for $120 \times 100(=12000)$ or $20 \times 15(=300)$ |
| :--- |
| M1 (dep) for ' 12000 ' \div ' 300 ' |
| A1 cao |
| OR |
| M1 for $120 \div 15(=8)$ or $100 \div 20(=5)$ |
| M1 (dep) for ' 8 ' \times ' 5 ' |
| A1 cao |
| OR |
| M1 for $120 \div 20(=6)$ or $100 \div 15(=6.66 \ldots)$ |
| M1 (dep) for ' 6 ' $\times 6.66 \ldots$ ' $(=40)$ or ' 6 ' \times ' 6 ' $(=36)$ or ' 6 ' $\times{ }^{\prime} 7$ ' $(=42)$ |
| A1 cao |
| M1 for $\frac{20}{100} \times 52$ oe |
| A1 for 10.4(0) |
| [SC B1 for 62.4(0) or 41.6(0)] |

\hline
\end{tabular}

「 EXPERT
 TUITION

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline D \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \[
2.70
\]
\[
2.21
\] \& 3

3 \& | M1 for $2 \times 1.40+2.10+2.40(=7.30)$ |
| :--- |
| M1 (dep) for $10-{ }^{\prime} 7.30$ ' or $2.7(0)$ |
| A1 for 2.70 in correct money notation |
| OR |
| M1 for subtracting at least 2 different correct costs from (£)10 |
| M1 for $10-1.40-1.40-2.10-2.40$ |
| A1 for 2.70 in correct money notation |
| [SC B1 for 4.10 in correct money notation] |
| M1 for $2.60 \times 0.15(=0.39)$ or $260 \times 0.15(=39 p)$ |
| M1 (dep) for 2.60 - ' 0.39 ' or $260-39$ ($=221 \mathrm{p}$) |
| A1 cao |
| OR |
| M1 for $1-0.15(=0.85)$ or $100-15(=85)$ |
| M1 (dep) for 2.60×0.85 oe |
| A1 cao |

\hline
\end{tabular}

Question		Working	Answer	Mark	Notes
*口1			Not enough mincemeat since $600<700$ OR Only able to make 38 mince pies since insufficient mincemeat	4	M1 for $45 \div 18(=2.5)$ M1 for 2.5 used as factor or divisor A1 for 562.5 and 875 and 250 and 700 and 2.5 (accept 2 or 3) OR for availables as 400 and 400 and 200 and 240 and 2.4 (accept 2 or 3) C 1 ft (dep on at least M1) for identifying and stating which ingredient is insufficient for the recipe (with some supportive evidence) OR M1 for a correct method to determine the number of pies one ingredient could produce M1 for a correct method to determine the number of pies all ingredient could produce A1 for 80 and 51 and 90 and 38 and 108 C 1 ft (dep on at least M1) for identifying and stating which ingredient is insufficient for the recipe (with some supportive evidence)

Question		Working	Answer	Mark	Notes
T]			28% or $\frac{14}{50}$	4	M1 for $100-30(=70)$ or $1-\frac{3}{10}\left(=\frac{7}{10}\right)$ M1 for ' +70 ' $\div(3+2)(=14)$ or ' $\frac{7}{10}{ }^{\prime} \div(3+2)\left(=\frac{7}{50}\right)$ M1 for ' 14 ' $\times 2$ or $\frac{7}{50} \times 2$ A1 for 28% or $\frac{14}{50}$ oe OR M1 for a correct method to find (100-30)\% of any actual sum of money, eg 0.7×500 M1 for ' 350 ' $\div(3+2)(=70)$ M1 for ' 70 ' $\times 2$ ($=140$) A1 for 28% or $\frac{14}{50}$ oe OR M1 for starting with a two numbers in ratio 3:2, eg 21 and 14 M1 for equating sum of their numbers to $100-30(=70)$, eg ' 21 ' + ' 14 ' ($=35$) M1 for scaling sum of their numbers to 100%, eg ' 35 ' $\div 70 \times 100(=50)$ A1 for 28% or $\frac{14}{50}$ oe [SC award B3 for oe answers expressed in an incorrect form eg $\frac{2.8}{10}$]

T EXPERT

Question		Working	Answer	Mark	Notes
W			9 squares shaded	1	B1 for any 9 squares shaded oe
* ${ }^{\text {[1] }}$			$\begin{aligned} & \hline \text { Yes + supporting } \\ & \text { work } \end{aligned}$	4	M1 for adding the weights of all the ingredients (= 96) M1 (dep) for ' 96 ' $\times 8$ A1 cao for 768 C1 (dep on M2), ft for a correct conclusion (yes or no) from a comparison of 750 (pots) with their ' 768 ' pots; units must be quoted [SC: B1 for 768 seen without working if M0M0 scored] OR M1 for adding the weights of all the ingredients (=96) M1 for $750 \div 8$ A1 cao for 93.75 C 1 (dep on M2), ft for a correct conclusion (yes or no) from a comparison of their weight of ingredients in one tank full ' 93.75 ' kg with ' 96 ' kg ; units must be quoted [SC: B1 for 93.75 seen without working if M0M0 scored]] OR M1 for adding the weights of all the ingredients (= 96) M1 (dep) for $750 \div$ ' 96 ' A1 cao for 7.8125 C 1 (dep on M2), ft for a correct conclusion (yes or no) from a comparison of their number of pots, ' 7.8125 ' pots with 8 (pots); units must be quoted [SC: B1 for 7.8125 seen without working if M0M0 scored]]
W	(a) (b)		2.5 A marked on diagram	2 2	M1 for $10(\mathrm{~cm})$ or " 10 " $\div 4$ A1 for 2.45-2.55 M1 for a point marked (or line drawn) on a bearing of 038° from either point B or point W , OR for a point marked (or arc drawn) 6 cm from B A1 for the position of Avebury marked (accept without label if not ambiguous)

Question		Working	Answer	Mark	Notes
D	(a) *(b)	$15 \div 6$	Yes + evidence	2 2	M1 for $15 \div 6$ oe A1 for 2.5 or $2 \frac{1}{2}$ M1 for a correct method to change 15 miles into kilometres C 1 (dep on M 1) for 24 km and statement with correct conclusion [SC: B1 for "Yes" oe and 24 km shown if M0 scored] OR M1 for a correct method to change 20 kilometres into miles C 1 (dep on M1) for 12.5 miles and statement with correct conclusion [SC: B1 for "Yes" oe and 12.5 miles shown if M0 scored]

Question		Working	Answer	Mark	Notes
\square			414.96	5	M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method to find the cost of oil required before the discount M1 for a correct method of finding 5% of their calculated cost M1 (dep on previous M1) for a correct method to find the discounted cost A1 for correct answer of 414.96 or 41496 p OR M1 for a correct method of finding 5% of the cost of 1 litre of oil M1 (dep on previous M1) for a correct method to find the discounted cost of 1 litre of oil M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method to find the discounted cost of the oil required A1 for correct answer of 414.96 or 41496 p OR M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method of finding 5\% of their calculated amount of oil M1 (dep on previous M1) for a correct method to find the reduced amount of oil M1 for a correct method to find the cost of the reduced amount of oil A1 for correct answer of 414.96 or 41496 p

Qu	Working	Answer	Mark	Notes
[1]	$180 \times \frac{10}{100}=18$ or $\frac{20}{180} \times 100=11.1$	No	3	M1 for $180 \times \frac{10}{100}$ oe or 180×1.1 oe or $\frac{20}{180} \times 100(=11 . \dot{i})$ oe A1 for (£) 18 or (£) 198 or 11% C1 (dep M1) for comparison of increases or total pay or percentage increases leading to a correct deduction
[1]	Paint R Us $6 \times 2.19(=13.14)$ Deco Mart $9 \times 1.80(=16.20)$ $16.20 \times 0.9(=14.58)$	Paint R Us	6	Paint R Us M1 for ' $9-3$ ' $\times 2.19$ A1 for 13.14 Deco Mart M2 for $\frac{90}{100} \times{ }^{\prime} 16.20^{\prime}$ oe (M1 for $\frac{10}{100} \times{ }^{\prime} 16.20^{\prime}$ oe) A1 for 14.58 C1 (dep M1) for comparison of cost of 9 tins at Paint R Us with cost of 9 tins at Deco Mart leading to a correct deduction
T]	$\begin{aligned} & 25 \div 50=0.5 \mathrm{~h}=30 \mathrm{~min} \\ & 25 \div 60=0.416 \mathrm{~h}=25 \mathrm{~min} \end{aligned}$	5	3	M1 for $25 \div 50$ or $\frac{60}{50} \times 25$ or $30(\mathrm{~min})$ or $0.5(\mathrm{~h})$ or $25 \div 60$ or $\frac{60}{60} \times 25$ or $25(\mathrm{~min})$ or $0.41(6)(\mathrm{h})$ M1(dep) '0.5’ - ‘0.41(6)'or ‘30' - ‘25’ A1 cao OR M1 for $60 \div 25(=2.4)$ and $60 \div$ " 2.4 " or $50 \div 25(=2)$ and $60 \div$ " 2 " M1 (dep) for '30' - ' 25 ' A1 cao

Question		Working	Answer	Mark	Notes
(a)	(a)		4.8	1	B1 for answer in range $4.6-5$
(b)		37.5	M1 for a valid method eg reading from graph for 6 km then $\times 10$ A1 for answer in range $35-40$		
				OR M1 for use of conversion factor $60 \times 5 / 8$ oe A1 for answer in range $35-40$	

Γ EXPERT

T EXPERT

Qu	Working	Answer	Mark	Notes
$\underset{\text { FRQ }}{\text { ITD }}$				OR M1 for $\frac{42}{100}+\frac{2}{5}\left(=\frac{82}{100}\right)$ or $\left(=\frac{41}{50}\right)$ M1 for $\frac{41}{50} \times 250$ M1 for 250-'205' A1 cao OR M1 for $\frac{2}{5} \times 100$ or $\frac{2}{5}=\frac{2 \times 20}{5 \times 20}$ or 2×20 M1 for ' $(42+' 40)^{\prime} / 100 \times 250$ M1 for 250-'205' A1 cao

「 EXPERT
 TUITION

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes

\hline Пロ \& (a)

(b) \& \& \& 3

3 \& | M1 $200 \times 25.82(=5164)$ |
| :--- |
| A1 for 5164 or 5200 or 5100 or 51.64 or $51.6(0)$ or 5160 or 52 |
| A1 for 51 |
| OR |
| M1 for $100 \div 25.82(3.87 \ldots)$ and $200 \div$ ' $3.87 \ldots$, $(=51.64 . .)$ |
| A1 for 5164 or 5200 or 5100 or 51.64 or $51.6(0)$ or 5160 or 52 |
| A1 for 51 cao |
| M1 for $400 \div 25.82$ |
| A1 for 15.4918... |
| A1 for $£ 15.49$ or $£ 15.50$ |
| OR |
| M1 for $4 \times$ ' $3.87 \ldots$ '.. from (a) |
| A1 15.4918... |
| A1 for $£ 15.49$ or $£ 15.50$ |

\hline
\end{tabular}

「 EXPERT
 TUITION

Question	Working	Answer	Mark	Notes
*口1	$\begin{aligned} & 180 \times 365=65700 \\ & 65700 \div 1000=65.7 \\ & 65.7 \times 91.22=5993.154 \\ & 5993.154 \div 100+28.20=88.13 . . \end{aligned}$D U C T 366 65880 6010 88.30 365 65700 5993 88.13 65000 5929 87.49 66000 6020 88.40 364 65520 5976 87.96 360 64800 5911 87.31 336 60480 5517 83.37	Decision (Should have a water meter installed)	5	Per year M1 for $180 \times$ ' 365 ' $(=65700)$ M1 for " 65700 " $\div 1000(=65.7$ or 65 or 66) M1 for " 65.7 " $\times 91.22$ (=5993.....) A1 for answer in range (£)87-(£)89 C 1 (dep on at least M 1) for conclusion following from working seen OR (per day) M1 for $107 \div$ ' 365 ’ ($=0.293 \ldots$... M1 for $180 \div 1000 \times 91.22(=16.4196)$ M1 for $28.2 \div$ ' 365 ' + ' 0.164196 ' (units must be consistent) A1 for $29-30(\mathrm{p})$ and $24-24.3(\mathrm{p})$ oe C 1 (dep on at least M 1) for conclusion following from working seen OR M1 for $(107-28.20) \div 0.9122(=86.384 .$. M1 for '86.384..' $\times 1000$ ($=86384.5 \ldots$...) M1 for ' 365 ' $\times 180(=65700)$ A1 for 65700 and 86384.5.. C 1 (dep on at least M1) for conclusion following from working seen NB : Allow 365 or 366 or $52 \times 7(=364)$ or 12×30 $(=360)$ or $365 \frac{1}{4}$ for number of days

