EXPERT TUITION

Maths Questions By Topic:

Ratio, Proportion & Rates of Change

Mark Scheme

Edexcel GCSE (Foundation)

ر*ب* 0207 060 4494

www.expert-tuition.co.uk

💻 online.expert-tuition.co.uk

🖂 enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec

Paper 1	Page	1
Paper 2	Page	30
Paper 3	Page	59

Old Spec A (Linear)

Paper 1	Page	85
Paper 2	Page	106

Question	Answer	Mark	Mark scheme	Additional guidance
3	Yes, supported by correct working	P1	for 36 : 48 oe OR $\frac{36}{84}$ oe or $\frac{48}{84}$ oe	Relating to drama group 1
		P1	for $\frac{4}{7}$ or 3 : 4 oe (for group 2) OR $(\frac{36}{7} = \frac{3}{7})$ or $(\frac{48}{7} = \frac{4}{7})$	Relating to drama group 2
			or $84 \times 3 \div 7$ (= 36 boys) or $84 \times 4 \div 7$ (= 48 girls) or $N \times 3 \div 7$ and $N \times 4 \div 7$	N can be any number (other than 84) of
		A1	for Yes with both ratios 3 : 4 oe or for a correct pair of fractions and stating they are equivalent.	students in the 2 nd group Both equivalent forms of the ratios (fractions) must be the same
				"Yes" may be implied from working

Question	Answer	Mark	Mark scheme	Additional guidance
4	3.3(0)	P1	for a process to find cost of 1 kg of carrots, eg $1.80 \div 3 (= 0.60)$	Could work in £ or p for P marks
		P1	for a start to a process to find cost of 1kg of potatoes, eg $3.45 - 2 \times "0.60"$ (= 2.25) or $(1.80 + 3.45) \div 5$ (= 1.05)	Condone incorrect money notation 1 kg of potatoes = $(\pounds)0.45$ or $45p$
		P1	OR for a process to find the cost of 4 kg of carrots, eg " 0.60 " × 4 (= 2.40) (dep on P2) for a complete process to find the cost of 4 kg of carrots and the cost of 2 kg of potatoes, eg " 0.60 " × 4 (= 2.40) and (" 2.25 " ÷ 5) × 2 (= 0.90) or " 0.60 " × 4 (= 2.40) and (" $1.05 - "0.60$ ") × 2 (= 0.90)	
		A1	cao	Award 0 marks for a correct answer with no supportive working.

Question	Answer	Mark	Mark scheme	Additional guidance
Question 5 (a)	Answer 42	Mark P1 P1	Mark schemefor a correct start to the process by finding the number of batches forone ingredient,eg 500 \div 125 (= 4) or 700 \div 200 (= 3.5 or 3) or 250 \div 50 (= 5)ORfor a correct start to building up number of batches of all ingredients, eg.(24 biscuits or 2 batches =) 250 (butter), 400 (flour) and 100 (sugar)ORfor a start to the process by finding the amount of one ingredient neededto make 1 biscuit,eg 125 \div 12 (= $10\frac{5}{12}$) or 200 \div 12 (= $16\frac{8}{12}$) or 50 \div 12 (= $4\frac{2}{12}$)for a correct process to find the number of batches for all 3 ingredients,eg 500 \div 125 (= 4) and 700 \div 200 (= 3.5 or 3) and 250 \div 50 (= 5)ORfor a build-up process reaching a point where there is not enough of oneingredient, eg. (36 biscuits or 3 batches =) 375 (butter), 600 (flour) and150 (sugar) or (48 biscuits or 4 batches =) 500 (butter), 800 (flour) and200 (sugar)ORfor a correct process to find the amount of each ingredient needed to	Additional guidance
			OR for a correct process to find the amount of each ingredient needed to make 1 biscuit, eg 125 ÷ 12 (= $10\frac{5}{12}$) and 200 ÷ 12 (= $16\frac{8}{12}$) and 50 ÷ 12 (= $4\frac{2}{12}$)	

Question	Answer	Mark	Mark scheme	Additional guidance
Question	Answer	Mark P1 A1 C1	Mark scheme(dep on P2) for a process to find the number of biscuits, eg "4" × 12 (= 48) or "3.5" × 12 (= 42) or "3" × 12 (= 36) or "5" × 12 (= 60)OR (dep on P2) for (700 – 600) \div 200 × 12 (= 6) or "3" × 12 (= 36)OR (dep on P2) for a process to find the number of biscuits, eg 500 \div "10 $\frac{5}{12}$ " (= 48) or 700 \div "16 $\frac{8}{12}$ " (= 42) or 250 \div "4 $\frac{2}{12}$ " (= 60)cao (dep on P3) for a correct explanation, ft (a) for the critical ingredient identifiedAcceptable examples No, since flour is the critical value No, since flour gives you the least number of batches 	Additional guidance

Question	Answer	Mark	Mark scheme	Additional guidance
6	30	M1	for $80 - 56 (= 24)$ or for $\frac{56}{80} \times 100 (=70)$ or (loss of) $10\% = 80 \div 10 (= 8)$	
		M1	for a complete method, eg "24" ÷ 80 × 100 or 100 – "70" or (80 – 56) ÷ "8" × 10	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
7	Rahim (supported)	P1	for start to the process to find 20% for Tamara, eg 220000 × 0.2 oe (= 44000) qt 30% for Rahim, eg 160000 × 0.3 oe (= 48000) OT''	Build up processes are acceptable but must be complete and correct
		Р1	for $1 - 0.2 (= 0.8)$ qt $100 - 20 (= 80)$ qt '1 + 0.3 (= 1.3) qt $100 + 30 (= 130)$ for a complete process to find at least one new value.	
			eg 220000 – "44000" (= 176 000) qt '160000 + "48000" (= 208000) QT'' 220000 × " 0.8 " (=176000) qt '160000 × " 1.3 " (=208000)	
		A1	for one correct value, 176 000 or 208 000	
		C1	for correct conclusion supported by correct figures eg Rahim, 176 000 and 208 000	Award 0 marks for a correct answer with no supportive working.
8	33	P1 P1	for relating 24 to 8 parts, qt (1 part =) $24 \div 8 (= 3)$ qt 15 - 7 (= 8) qt starts to use a build-up method, eg (8 :) 14 : 30 for (15 - 4) cpf (24 ÷ 8) rt $15 = 12$ (= 45) ref 110 (= 12)	8 parts = 24
		A1	$qt (15 \times 3) = 45$ cao	

Questio	n	Answer	Mark	Mark scheme	Additional guidance
9	(a)	$\frac{3}{7}$	B1	oe	
	(b)	1:2.5	M1	for appropriate method shown eg $30 \div 12 (= 2.5)$ or for a method that involves simplification of $12 : 30$ approaching $1 : n$, eg. $4 : 10$ or $6 : 15$ or $2 : 5$ or for $2.5 : 1$ or $2\frac{1}{2}$: 1	
			A1	for 1 : 2.5 or 1 : $2\frac{1}{2}$ or for $n = 2.5$	Accept a fraction equivalent to $2\frac{1}{2}$, eg. 1 : $\frac{30}{12}$
					2.5 alone gets M1A0
:		Conclusion (supported)	P1	for process to find $1/10$ of 500 eg. 500 ÷ 10 (= 50) or $1 - 0.1$ (= 0.9) oe	
			P1	(dep) for process to reduce 500 by $1/10$ eg. $500 - 50$ " or 500×0.9 " (= 450)	
			P1	for process to calculate 20% of [Monday sale price] eg. "450" $\times \frac{20}{100}$ (= 90) oe	
				or for use of $100 - 20$ (= 80) or $1 - 0.2$ (= 0.8) in relation to [Monday sale price]	
			P1	(dep on P3) for a fully correct process to find the cost of the TV on Tuesday eg. " 450 " – " 90 " (= 360) or " 450 " × " 0.8 " (= 360)	
			C1	for conclusion (Yes) supported by correct figures.	eg Yes, the TV will cost 360 Yes, he will have 40 over left

Question	Answer	Mark	Mark scheme	Additional guidance
;	20	P1	for process to find SP of 24 chocolate bars, eg. 0.50×24 (= 12) oe	
			or for process to find the overall profit eg $(24 \times 0.5) - 10$ (=2)	
			or for process to find CP of one chocolate bar, eg. $1000 \div 24 (= 41.66)$ oe	
		P1	(dep) for start to a process to find percentage profit, eg. using $\frac{"12"-10}{10}$ or $\frac{"12"}{10}$	
			or $\frac{50."41.66"}{"41.66"}$ oe with consistent units	
		A1	cao	
32	450	M1	for 18 ÷ 3(=6)	Ignore units
		M1	for substitution eg. $75 = \frac{F}{"6"}$ or $75 \times "6"$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
33	6 : 15 : 20	P1	chooses a multiplier to equate the two fractions in terms of b eg $\frac{2}{5} \times \frac{3}{3} \left(=\frac{6}{15}\right)$ or $\frac{3}{4} \times \frac{5}{5} \left(=\frac{15}{20}\right)$	
			or lists equivalent fractions to $\frac{2}{5}$ up to at least $\frac{6}{15}$, eg. $\frac{2}{5}$, $\frac{4}{10}$, $\frac{6}{15}$, or lists equivalent fractions to $\frac{3}{4}$ up to at least $\frac{15}{20}$, eg. $\frac{3}{4}$, $\frac{6}{8}$, $\frac{9}{12}$, $\frac{12}{16}$, $\frac{15}{20}$,	
			or $(a:b=)$ 2:5 and $(b:c=)$ 3:4	
			or for 6 : 15 or 15 : 20 seen	
		P1	puts into related terms ready for ratio $eg \frac{2}{5} \times \frac{3}{3} = \frac{6}{15} and \frac{3}{4} \times \frac{5}{5} = \frac{15}{20}$	Need not be written in ratio form
			or for (<i>a</i> : <i>b</i> =) 6 : 15 and (<i>b</i> : <i>c</i> =) 15 : 20	
			or lists equivalent ratios up to a common element for <i>b</i> , eg $a : b = 2 : 5, 4 : 10, 6 : \underline{15}$ and $b : c = 3 : 4, 6 : 8, 9 : 12, 12 : 16, \underline{15} : 20$	
		A1	for 6 : 15 : 20 oe	Accept equivalent ratios Accept $a = 6$. $b = 15$ and $c = 20$

Question	Answer	Mark	Mark scheme	Additional guidance
34	0.15	B1	cao	
35	10	M1	for converting $1\frac{1}{4}$ hours or $\frac{1}{4}$ hour to minutes	Condone absence of units in the working
			eg. $1\frac{1}{4}$ hours = 60 + 15 (= 75) or $\frac{1}{4}$ hour = 15 minutes	
			or for converting 1 hour 25 minutes to minutes eg $60 + 25$ (= 85)	
		Δ1	630	
		AI		
36	2	P1	for a process to find the number of men, eg. $(60 \div 2) \div 3 (= 10)$	
	(supported)	P1	for a process to find the number of children, eg. $60 - "30" - "10" (= 20)$	$60 \div 3 = 20$ scores no marks.
		P1	for a start of a process to find the value of <i>n</i> , eg. ("20" : "10") \div 5 or 20 : 10 = 10 : 5 or "20" \div "10"	Any ratio must come from correct processes to find the number of children and the number of men
		A1	for 2 with supportive working	Award 0 marks for 2 with no correct supportive working
				Award full marks for 2 : 1 given as final answer from correct supportive working

Question		Answer Mark		Mark scheme	Additional guidance	
37	(i)	Distance in the	P1	for a process to draw a bearing of 070°,	Accept a line of any length as long as the	
		range 20 to 23		eg. a line drawn 70° from the North line at P	intention is clear.	
	(ii)	Bearing in the range 317 to 330	P1	for a process to work out the distance PQ , eg. 12×1.5 (= 18)		
			P1	(dep previous P1) for the process to use the given scale eg. "18" \div 4 (= 4.5 cm)	Award P3 for Q shown in the correct place on the diagram. 4.5 scores 2 marks provided there is a link to 12×1.5 (= 18)	
			A1	(dep P3) for distance in the range 20 to 23	Award no marks if no supportive processes	
			A1	(dep P3) for bearing in the range 317 to 330	Award no marks if no supportive processes	
					Award A0A0 if Q is not in the correct place	
38	(a)	6	M1	for stating a similar triangle relationship eg $\frac{AB}{PQ} = \frac{AC}{PR} = \frac{CB}{RQ}$ or equivalent set of similar triangle expressions or for substitution giving a fraction form for a scale factor eg $\frac{10}{15} \left(=\frac{2}{3}\right)$ or $\frac{15}{10} \left(=\frac{3}{2}\right)$ or $\frac{9}{15} \left(=\frac{3}{5}\right)$ or $\frac{15}{9} \left(=\frac{5}{3}\right)$	Accept any equivalent fractions or decimal equivalents given to at least 2 dp truncated or rounded	
			A1	cao		
	(b)	2	P1	for showing understanding of the properties of congruent triangles by finding an unknown length using matching of two sides, eg EG , KG and 6, or HG , FG and 4 or	Can be shown by any complete statements that are unambiguous Can be shown in working using algebraic	
				matching corresponding angles eg <i>HEG</i> with <i>FKG</i> and <i>EHG</i> with <i>KFG</i>	statements, or given by unambiguous marking on the diagram to confirm the relationship.	
			A1	сао		

Question		Answer Mark		Mark scheme	Additional guidance
19		3	B1	cao	
3:		73	B1		
39	(a)	6	M1	for method to find distance, eg $4 \times$ time difference or 30 mins = 2 miles	10.30 am – 9 am may be seen as 1.5(hr) or 1(hr) 30 (min) or 90 (min) or $\frac{3}{2}$ (hr) or $1\frac{1}{2}$ (hr)
			A1	cao	
(b)12 35 pmM1for method to add time using consistent units eg 11 20 or 50 + 75 or 2 hours 5 minsA112 35 pm or 12 35 (h)		for method to add time using consistent units eg 11 20 or 50 + 75 or 2 hours 5 mins			
		12 35 pm or 12 35 (h)	Allow 12 35 but not 12 35 am		
42		10 <i>x</i>	B1	for 10x oe	
43		Accurate figures with supportive	M1	for a correct first step eg $600 \div 30 (= 20)$ or $120 \div 30 (=4)$ or $600 \times 120 (=72\ 000)$ or $30 \times 30 (=900)$	Could work in m or cm
	workingM1for finding an appropriate cost $2.5 \times "20"$ (=50) or 2.5 OR number of tiles required "72 000" \div "900" (=80)"4" \times "20" (=80)		for finding an appropriate cost 2.5 × "20" (=50) or 2.5 × "4" (=10) OR number of tiles required "72 000" ÷ "900" (=80) or "4" × "20" (=80)	Units must be consistent	
				OR number they can afford $220 \div 2.5 (=88)$	
M1 for full method to get figures to compare eg cost to tile whole area eg "80" × 2.5 OR number of tiles they need and number they can afford eg "72 000" ÷ "900" and 220 ÷ 2.5					
			A1	for 200 OR 80 and 88 OR 72 000 and 79 200 OR 132 (cm) OR 660 (cm)	

Question	Answer	Mark	Mark scheme	Additional guidance
44	12.5	P1	starts to process the problem, eg assigns lengths of sides to squares A and B in the ratio 1 : 2 oe and calculates at least one area OR fits 4 of square A into square B OR for ratio of areas of squares eg 1 : 4 oe	May be seen in a diagram
		P1	for process to express relationship between area of shaded triangle and area of square B, eg 1 : 8, $\frac{1}{8}$ OR 0.125	May be seen in a diagram with figure given
		A1	for 12.5 oe	
23 (a)	600	Р1 Р1 А1	for starting process to calculate amount of flour eg 60 ÷ 15 (= 4) or 3 × 50 (= 150) for complete process eg $\frac{60}{15}$ × "150" cao	4 implied by 200g of sugar
(b)	2	P1	for process to calculate amount of butter eg $\frac{60}{15} \times 2 \times 50$ (= 400) OR for process to calculate the number of packs of butter needed eg [butter] ÷ 250	[butter] must be clearly stated or calculated, may be seen in part (a)
		A1	cao	2 must not come from incorrect working

Question	Answer	Mark	Mark scheme	Additional guidance	
46	96	P1	for process to find the ratio of the number of pens of each colour sold, eg $2 \times 7 : 5 \times 3 : 6 \times 4$ (= 14 : 15 : 24)	Does not have to be seen as a ratio but all three needed	
		Р1	for process to find the proportion of green pens sold, eg $\frac{212}{"14"+"15"+"24"}$ or $\frac{"24"}{"14"+"15"+"24"}$		
		P1	for a complete process to find the number of green pens sold, eg $\frac{212}{"14"+"15"+"24"} \times "24"$ or $\frac{"24"}{"14"+"15"+"24"} \times 212$	P3 can be implied by the values 56, 60 and 96	
		A1	cao		

Quest	ion Answer Mark Mark scheme		Additional guidance		
27		60	B1	cao	
48	(a)	10	B1	cao	
	(b)	30	M1	for using the graph to take one correct reading	May be shown on graph
			A1	30 or ft from correct use of graph	
49		4 : 1 : 2	M1	for start to express the statements as a ratio eg 4 : 1, 1 : 4, 1 : 2 or 2 : 1 with clear and correct link to Azmol, Ryan, Kim	Allow any equivalent ratio, integers only May be seen as part of an incorrect answer.
				OR as algebraic expressions, two of $4x$, x and $2x$ eg $4x : x$, $1x : 4x$, $1x : 2x$ or $2x : 1x$ with clear and correct link to Azmol, Ryan, Kim	May be seen as integer multiples of these algebraic expressions. Any letter may be used.
			A1	4 : 1 : 2 oe	Accept 8 : 2 : 4 or equivalent ratios involving integers
			(SCB1	3 integer numbers in correct ratio but no ratio notation, eg 4, 1, 2 or 20, 5, 10)	

Questi	Question Answer Mark		Mark	Mark scheme	Additional guidance	
4:	(a)	420	P1	starts process, eg $300 \div 5 (= 60)$ or $200 \div 2 (= 100)$ OR builds up ratio to at least 300 ml orange juice with one error		
			P1 A1	complete process, eg "60" × 5 + "60" × 2 or 300 : 120 cao	May be seen as " 60 " × 7 " 60 " must come from correct method	
	(b)	explanation	C1	explains that it will have no effect with reason, eg because he only needs 120 ml of lemonade because he has no more orange juice to use		
4;		No and explanation	C1	'No' and explanation with reference to multiplication or division eg No he's incorrect as you would multiply the sides by a number rather than add		
52		Jan's store (supported)	P1process to reduce £5 by 20% (= £4) or increase 400 by 30% (= 520)May work in pence to Accept any correct a processP1process to reduce £5 by 20% (= £4) and increase 400 by 30% (= 520)May work in pence to Accept any correct a process		May work in pence throughout Accept any correct appropriate percentage process	
			P1	(dep P2) process to find comparable values, eg $400 \div "4"$ and "520" $\div 5$	May use f/g or any other comparable values	
			C1	'Jan's store' fully supported by correct comparative values, eg 100 (g/£) and 104 (g/£)	Do not award without correct comparable values and full working.	

Question	Answer	Mark	Mark scheme	Additional guidance
53	No (supported)	ted)	for start to process, eg 2100 × $\frac{40}{100}$ (= 840) or 100 - 40 (= 60)	May compare bonus shares of a single salesman or total bonus share for all 7 salesmen.
		P1	for process to find the 7 salesmen's share of bonus, eg 2100 - "840" (= 1260) or 2100 × $\frac{"60"}{100}$ (= 1260)	
		P1	for process to find bonus amount each salesman gets eg "1260" ÷ 7 (= 180) OR process to find the total bonus for all salesmen if shared equally, eg $\frac{2100}{10} \times 7$ (= 1470)	
		P1	for process to compare what a single salesman gets under each scheme, eg "180" × $\frac{25}{100}$ (= 45) and " $\frac{2100}{10}$ " – "180" (= 30) or "180" × $\frac{25}{100}$ (= 45) and "180" + "45" (= 225) oe and $\frac{2100}{10}$ (= 210) or ($\frac{2100}{10}$ – "180" ÷ "180" × 100 (= 16.6)	
			OR process to compare what all salesmen gets under each scheme, eg "1260" × $\frac{25}{100}$ (= 315) and "1470" – "1260" (= 210) or "1260" × $\frac{25}{100}$ (= 315) and "1260" + "315" (= 1575) oe and "1470" or ("1470" – "1260") ÷ "1260" × 100 (= 16.6)	
		A1	'No' supported by correct figures, eg 45 and 30, 225 and 210, 315 and 210 or 1575 and 1470 or 16.(6)(% and 25%)	Do not award unless correct figures have been shown to support a statement made that the salesman was not correct.

Question	tion Answer Mark Mark scheme		Additional guidance		
54 (a	ı)	200	M1 A1	for $120 \times 5 \div 3$ oe cao	
(b))	statement	Cl	Statement that each tap fills at the same rate or that the rate does not change over time Examples Acceptable responses: Taps are running at the same speed They (clearly referring to taps) all fill the pool with the same volume of water The amount of water is the same in the same time (again referring to taps) Each tap is doing a fifth of the filling That all taps take equal time to fill the pool All taps produce the same amount of water That the water flow stays at the same rate over the whole time. Non acceptable responses It will take more time because there are less taps The less taps used the longer it takes to fill the pool That 1 tap can take up to 24 mins each 3 taps will take longer to fill the pool	Any statement referring to the same amount of water flowing from each tap is acceptable.
55 (a	1)	16 to 20	P1 P1 A1	for using time = $\frac{\text{distance}}{\text{speed}}$, eg $\frac{1}{200}$ or $\frac{1}{213}$ or for 1 hour = 60 × 60 (= 3600) seconds complete process, eg $\frac{1}{200}$ × 60 × 60 oe or $\frac{1}{213}$ × 60 × 60 for answer in range 16 to 20	Calculation could be done in stages.

Question	Answer	Mark	Mark scheme	Additional guidance
36	$\frac{20}{100}$	B1	$\frac{20}{100}$ oe, eg $\frac{2}{10}$ or $\frac{1}{5}$	Ignore any incorrect simplification of $\frac{20}{100}$ oe and award the mark if $\frac{20}{100}$ oe is seen
57	36	M1	for method to find cost of 1 kg, eg $54 \div 3$ (= 18) or $54 \div 3 \times 2$ oe	
		A1	cao	
58	Isabel (supported)	P1 P1 A1 C1	for process to work with $\frac{3}{4}$ eg $1 - \frac{3}{4} \left(=\frac{1}{4}\right)$ oe, eg 25% or $\frac{25}{100}$ or $\frac{3}{4} = 75\%$ or $\frac{75}{100}$ or value of salary (say 1000) × 3 ÷ 4 (= 750) for process to work with ratio 3 : 7 eg $\frac{3}{3+7}$ oe or $\frac{7}{3+7}$ oe or value of salary (say 1000) ÷ (3+7) (= 100) for (28(%)), 25(%) and 30(%) or 72(%), 75(%), 70(%) or 0.28, 0.25, 0.3 or for using value of salary (say 1000) giving 280, 250, 300 or 720, 750, 700 (dep P2) for Isabel or ft their comparative values	"Isabel" alone without supported evidence, gets 0 marks.
59"	46"	O3" C3"	for method to find 15% of 160, eg 160 $\times \frac{15}{100}$ oe (= 24) or 10% = 160 \div 10 (= 16) plus 5% = "16" \div 2 (= 8) (= 24) cao SC B1 for answer of 136 or 184 if M0 scored	When using partitioning methods, the method to find individual %s must be clear including the need to show an intention to sum eg. $10\% = 16 + 5\% = 8$

Question	Answer	Mark	Mark scheme	Additional guidance
5:	1:3	M1	for $\frac{1}{4}:\frac{3}{4}$ oe OR for any correct un-simplified ratio, eg 25 : 75	
		A1	cao SC: B1 for an answer of 3 : 1 or 1 : $\frac{1}{3}$ if M0 scored	Ignore 'units' such as 1 nuts : 3 no nuts 1 : 3 <i>n</i> gets M1A0
5;	140	P1	for beginning to solve the problem eg $50 \div 5 \times 8 \ (= 80)$ or $14 : 8 : 5$ oe or $14 : 8$ and $8 : 5$ oe (linked)	80 may be seen in the ratio 80 : 50
		P1	for a full process to solve the problem	
			eg "80" ÷ 4 × 7 or $\frac{50}{5}$ × "14" or 140 : 80 : 50	
		A1	cao	If 140 clearly identified as houses in working award full marks
62 30		P1	for full process to find the number of bags sold eg $5 \times 1000 \div 250 (= 20)$	This could be by repeated addition
			OR for process to find selling price of 1 kg of sweets eg $0.65 \times 4 (= 2.60)$	Calculations can be in £ or pence
		P1	for [number of bags] \times 0.65 or "20" \times 0.65 (= 13) or "2.60" \times 5 (= 13)	[number of bags] can only come from $5 \times 10 \div 250 (-0.2)$
	OR for $10 \div "20"$ oe (= 0.50)		OR for $10 \div "20"$ oe (= 0.50)	or $5 \times 100 \div 250 (= 0.2)$ or $5 \times 100 \div 250 (= 2)$ or $5 \div 250 (= 0.02)$
			OR for $0.65 \times 4 \ (= 2.60)$ and $10 \div 5 \ (= 2)$	015 . 250 (= 0.02)
		P1	(dep on previous P1) for a process to find the percentage profit eg ("13" – 10) \div 10 × 100 or (0.65 – "0.50") \div "0.50" × 100 or ("2.60" – "2") \div "2" × 100	3/10 or 0.3 is not enough but should be awarded 2 marks
			OR "13" ÷ 10 ×100 (= 130) oe	Award P3 for 130(%)
		A1	cao	

Question	Answer Mark		Mark scheme	Additional guidance
63 (a)	Estimated value	P1	for using a rounded value in a correct process eg $3000 \div 15$ or 15×8 or 20×8	Their rounded value must be used in a calculation
				Rounding may appear after a correct process eg $15.12 \times 8 = 120.96 \approx 100$ followed by eg $3069.25 \div 100$
		P1	for a full process to find the number of days eg " 3000 " \div " 15 " \div " 10 " (= 20) or " 3000 " \div " 15 " \div 8 (= 25)	Accept 3069.25 ÷ 15.12 ÷ 8 oe
		A1	for a correct answer following through their rounded values	
(b)	Explanation	C1	eg less days required or it doesn't affect the answer because I would still round 16.27 down to 15 (or up to 20)	Refers to time taken

Qu	estion	Working	Answer	Mark	Notes
64	(a)		3.65	B1	cao
	(b)		2700	B1	cao
65			4 × 8 rectangle drawn	M1	Draws a rectangle with side lengths in the ratio 2:1 or lists possible dimensions in the ratio 2:1 or gives two numbers which multiply to 32
				A1	for correct diagram on grid
66	(a)	30 ÷ 8	4	P1	for $30 \div 8$ or 3.75 or 3 or counting up 8s towards 30 to at least 3 lots of 8 or $4 \times 8(=32)$ oe
				A1	cao
	(b)		No with reason	C1	No with $32 \div 8$ or ft from (a)
67			45	M1	for a correct first step eg $\frac{9}{7+4+9} \left(=\frac{9}{20}\right)$ or $\frac{100}{7+4+9} \left(=5\right)$ or a full method for one of the other colours
				A1	cao
68	(a)		Explanation	C1	eg States over-estimated for both values
	(b)		182.7(0)	P1	for a process to find 10% of a value stated in the question eg $\frac{10}{100} \times 5.80$ (=0.58) or $\frac{10}{100} \times 35$ (=3.5) oe or 35×5.80 (=203), allow 30×5.80 (=174) or $35 \times$ [reduced price]
				P1	for a process to find 90% of a value stated in the question eg 35 – "3.5" (=31.5) or 0.9×5.80 (=5.22) oe or $\frac{10}{100} \times$ "203" (=20.3) or $\frac{10}{100} \times$ "174" (=17.4) oe
				P1	for a complete process to find actual cost of 35 eg $0.9 \times 5.80 \times 35$ oe
				A1	cao
					SC B2 156.6(0)

Question	Working	Answer	Mai	rk	Notes
69		135	M	1	for $450 \div ``2+3+5''$ (=45) or $\frac{3}{10} \times 450$ (=135) or 5 parts are 225 or 2 parts are 90
					indicated
			A1	1	Cao
6:		180, 210, 375, 3	M	1	for $\frac{24}{16}$ or 1.5 or $\frac{16}{24}$ or 0.5 of any figure in the recipe calculated or amount of any
					ingredient for 1 flapjack or 3 (tablespoons)
			M1	1	for method to scale at least one ingredient in grams eg 120×1.5 or 140×1.5 or 250
					× 1.5
			A 1		for all quantities correct
			AI	L	for an quantities correct
6.		4	M1	for a	a complete method eg $2.80 \times 100 \div (100-30)$ of or $2.80 \div 0.7$ of
0,				or f	for build up method but must show all intermediate steps unless all figures are correct
				eg 2	$2.8 \div 7 = 0.4$ and " 0.40 " × 10 (=4)
				-	
			A1	cao	

Question	Working	Answer	Mark	Notes
72		80	B1	cao
73		126	P1	for working with time, eg $10 - 8(=2)$ or $12 \times 8(=96)$ or $12 \times 10(=120)$
			P1	for working with overtime, eg $12 \div 4(=3)$ or $1.25 \times "2" (=2.5)$ or $0.25 \times "2" (=0.5)$ or $1.25 \times 12(=15)$
			P1	for a complete process, eg $(10 - 8) \times$ overtime rate + 12 × 8 or 12 × 10 + "0.5" × 12
			A1	cao
74		1:10	M1	for $12: (20 \times 6)$ oe or $10: 1$ or 1 with 10 in incorrect notation
			A1	cao
75 (a		1.5 to 2	B1	in the range 1.5 to 2
(b)		7.5 to 12	M1	for scale factor in the range 5 to 6
			A1	(ft) or for answer in the range 7.5 to 12
76		1110	M1	method to find the weight of 1 tin of soup e.g. $1750 \div 5$ (=350)
			M1	method to find the weight of 3 packets of soup e.g. $1490 - (4 \times "350")$ (=90)
			M1	method to find the weight of 3 tins and 2 packets e.g. $3 \times "350" + "90" \div 3 \times 2$
			A1	cao
77		1545	M1	shows a method to find 3% eg 1500×0.03 (=45)
			A1	cao

Question	Working	Answer	Notes
78		7.50	M1 $60 \div 8$
			A1 accept 7.5
79		$\frac{2}{7}$	B1
7:		loss (supported by	P1 process to find total spent eg. 20×7 (=140)
		correct figures)	P1 complete process to find profit from full price oranges eg. $\frac{2}{5} \times 25 \times 20 \times 40 (= 8000)$
			P1 complete process to find profit from reduced price oranges
			eg. $50 \times \left(\frac{3}{5} \times 25 \times 20\right) \div 3 (=5000)$
			P1 complete process to find total income with consistent units
			A1 loss with $\pounds 10$ or $-\pounds 10$ or $\pounds 130$ and $\pounds 140$
7;		75	P1 for start to process eg. linking 20% with 15 or $100 \div 5$ (=20)
			A1
82 (a)		48	P1 start to process eg. 3×80 (=240)
			P1 '240' ÷ 5
			A1
(b)			C1 eg. she may drive a different distance and therefore her average speed could be different

Question	Working	Answer	Notes
83	working	28	P1 Process to start to solve problem eg. $\frac{3}{5} \times 40$ or divide any number in the ratio 3:2 P1 Second step in process to solve problem eg. $\frac{2}{5} \times 10$ or find number of males/females under 25 for candidate's chosen number P1 for complete process
			A1

Question	Working	Answer		Notes
84		5.3(0)	B1	cao
85		195	B1	cao
86		1:3	M1 A1	for stating a ratio eg 28 : 84 oe, or 3:1 cao
87		125	P1 P1 A1	for process to find 7/20 of 500 (=175) or $7/20 + 4/10$ (=3/4) or 40% of 500 for complete process to find the number of children. cao
88" (a)			P1 P1	method to find amount of milk needed, eg $7 \times \frac{3}{4}$ (=5.25) uses appropriate integer from their working to calculate a cost eg 5.25 as 6 pints and 3×2 pints
		2.79	A1	cao
(b)		pay more	C1	deduces he may have to pay more [if he uses more than 0.857 pints a day]
89"		4 m ²	C1	substitution into formula eg $35 = \frac{140}{C}$
			A1 C1	4 stated (indep) units stated

Question	Working	Answer	Notes
8: "		80	B1
8;		5.25 litres	P1for start to process eg. $5 \div 2$ (=2.5)P1for complete process eg. $5000 + 2.5 \times 100$ A1or 5250 ml
92		700	P1for process for total non-fiction books $eg \frac{1}{4} \times 80 \ (=20)$ P1process for total takings for non fiction $eg \ 20 \times \frac{1}{2} \times 10 \ (=100)$ P1process to find total takings "100" + 60 × 10A1700
93	£5	£5	P1for $\frac{25}{100} \times 60$ P1for process to find difference between totals $20 - "15"$ A1cao
94		35	M1 for method to find increase $108 - 80 (= 28)$ M1 for method to find % increase $eg \frac{28}{80} \times 100$ A1 cao

•

.

Question	Working	Answer	Notes
95	16 ÷ 4	5	P1 Using side lengths of 4
	$\frac{\frac{1\times4}{2}}{\frac{2\times4}{2}} = 2 \text{ or } \frac{\frac{1}{2}\times\frac{1}{4}}{\frac{1}{2}\times\frac{1}{4}} = \frac{1}{8}$ $\frac{\frac{2\times4}{2}}{\frac{2}{2}} = 4 \text{ or } \frac{\frac{1}{2}\times\frac{1}{2}}{\frac{1}{2}} = \frac{1}{4}$		P1 Method to find fraction or area for one unshaded triangle
	$\frac{1 \times 4}{2} + \frac{2 \times 4}{2} = 6 \text{ or } \frac{1}{2} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{8}$		P1 Method to complete fraction or area for total unshaded region
	$16 - 6 = 10 \text{ or } 1 - \frac{3}{8} = \frac{5}{8}$		P1 Method to find total fraction or area for shaded region
			A1 for $\frac{5}{8}$ oe or 0.625

Questi	Question Answer		Mark	Mark scheme	Additional guidance
96		$\frac{31}{100}$ oe	B1	for $\frac{31}{100}$ or any equivalent fraction	Ignore any attempt at simplification of $\frac{31}{100}$
97		300	B1	cao	
98		7cm by 4cm rectangle drawn	M1 A1	for a rectangle drawn with one correct dimension or $35 \div 5$ (=7) and $20 \div 5$ (=4) for a fully correct 7cm by 4cm rectangle drawn	Correct calculations/measurements seen the method mark can be awarded even if the drawing is incorrect or not present Accept any orientation of a correct rectangle
99		$\frac{17}{30}$	B1	for $\frac{17}{30}$ or any equivalent fraction	
9:	(a)	15	B1	14 to 16	
	(b)	540	M1	for a complete method, eg $30 \times (36 \div 2)$ or $45 \times (36 \div 3)$ or $60 \times (36 \div 4)$ or ft "hourly rate from (a)" $\times 36$	May be seen using a complete build up method for "45" allow 44 to 46 ft for accuracy
			A1	for 540 or ft (a)	Condone use of mixed rates eg $75 \times 7 + 16 = 541$
9;	(a)	80	M1	for a complete method eg $\frac{20}{15}$ × 60 or 20 × 4 or 20 ÷ $\frac{1}{4}$	
			A1	cao	
	(b)	Travel graph	M1	for method to find distance travelled in last 20 minutes, eg 75 × $\frac{20}{60}$ (= 25)	Can be implied by a distance of 25km drawn on the graph
			C2	for a fully correct travel graph	
			(C1	for horizontal straight line from (10 15, 20) to (10 25, 20) or for a line of the correct length and gradient to indicate a speed of 75km/h eg straight line from (10 25, 20) to (10 45, 45))	

Question	Answer	Mark	Mark scheme	Additional guidance
:2	320 000	M1	for a complete method eg 272 000 ÷ $(\frac{100-15}{100})$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
: 3	25	B1	cao	
: 4	Yes with supporting calculations	M1	for ONE correct time conversion seen or used eg 105 (mins) is 1 (hr) 45 (mins) or 16 45 - 14 30 = 2 hr 15 mins or 14 30 + 1 (hr) + 45(mins)	May be implied by a correct calculation 1 hr = 60 mins is not enough for this mark
		M1	for a full method to make a comparison eg for adding 20 and 105 to 14 30 (=16 35) or for subtracting 20 and 105 from 16 45 (=14 40) or for finding the time differences eg 16 45 – 14 30 (= 2 hr 15 mins) and 105 + 20 (=125 mins) or adding 105 to 14:30 (= 16 15) and 1645 – "16 15" (=30)	Intention to do the correct calculation or calculations is enough for this mark Accept any sensible time notation throughout (pm is not required)
		C1	correct conclusion from the comparison of accurate figure(s) eg Yes and 16 35 or 4.35(pm) 14 40 or 2.40(pm) or for 2 hours 5 minutes and 2 hours 15 minutes oe or for 10 minutes spare or 30 (minutes to get to the bus stop)	Yes may be implied by a statement
:5 (a)	25	B1	for 25, accept answer in range 24 to 26	
(b)	24	M1	for $40 \div 10 \times 6$	
(c)	Comment	A1 C1	cao (dep B1 or M1) ft for comment for their results, eg the two answers are quite close or answer to (b) is less than answer to (a) or the rule gives a smaller answer	

Question	Answer	Mark	Mark scheme	Additional guidance
:6 (a)	5	P1	for finding the number of oranges required eg $8 \div 2 \times 30$ (=120) oe or for finding the number of oranges left from use of at least 2 boxes eg $24 \times 2 - 30$ (=18) or $24 \times 4 - 90$ (=6) or finds the correct amount of juice possible from at least two boxes eg $24 + 24$ is 2 litres or $24 + 24 + 24$ is 4 litres	A build up method with no process shown must use fully correct figures
		P1	for a complete process eg "120" \div 24 (=5) oe or 30 + 30 + 30 (=120) and 24 + 24 + 24 + 24 (=120) or 24 \times 2 - 30 = 18, 18 + 24 = 42, 42 - 30 = 12, 12 + 24 = 36, 36 - 30=6, 6 + 24 = 30	May be seen as a mixture of repeated subtraction and addition
		A1	cao with no arithmetic errors seen SCB1 for an answer of 10 supported by working	This mark cannot be awarded if the supporting work has an arithmetic error An answer only and no working is no marks
(b)	9:2	M1	for a partially simplified correct ratio eg 126 : 28 or any other equivalent ratio or 2 : 9	eg 630:140, 315:70, 63: 14 180:40, 90:20, 45:10, 4.5:1
		A1	cao	
: 7	$\frac{3}{10}$	P1	for a process to find three amounts in the correct proportions, eg R = 1, L = $3 \times 1 = 3$, A = $2 \times 3 = 6$, or R : L : A = $\frac{1}{6}$: 0.5 : 1 oe or L=3R, L= $\frac{A}{2}$ or L=3R, 2L=A	Relationship could be given in algebraic form or in ratio form, using fractional comparison or using their own figures
		A1	for $\frac{3}{10}$ or equivalent fraction	Award P1 for correct answer not given as a fraction

Question	Answer	Mark	Mark scheme	Additional guidance
: 8	1.75	P1	for an initial process eg $1.80 \div 12 (=0.15)$ or $1.80 \div 3 (=0.6)$ for a correct second step eg " 0.15 " $\div 3 (=0.05)$ or " 0.6 " $\times 7 (=4.2)$	Accept $1.8 \div 12 = 15$ (p) They can work in pounds or pence
		D1	or $3 \div "0.15" (=20)$ or $7 \div 3 (=2.3)$ or "0.15" × 7 (=1.05) for finding the price of one per eq "0.05" × 7 (=0.35)	
		PI	or "4.2" \div 12 (=0.35) or 7 \div "20"(=0.35) or "2.3 \times "0.15" (=0.35) or "1.05" \div 3 (=0.35)	
		A1	cao	
:9	No	P1	for $3000 \div (2+3) (= 600)$	
	(supported)	P1	for "600" × 2 (= 1200) or "600" × 3 (= 1800) or "600" ÷ 6 (= 100) or "600" ÷ 20 (= 30)	
		P1	for "1200" ÷ 6 (= 200) or "1800" ÷ 20 (= 90) or "100" × 2 (= 200) or "30" × 3 (= 90)	
		P1	for "90" \div ("200" + "90") \times 100 (= 31.0) oe or "90" \div ("200" + "90") (= 0.31) or 0.3 \times ("200" + "90") (= 87)oe	Full method to compare
		C1	correct conclusion and fully correct calculations with accurate figure eg No and 87 or No and 31% or No and 0.31	No may be implied by a statement No working, answer only no marks

Question	Answer	Mark	Mark scheme	Additional guidance
::	23	B1	cao	
· ;	$\frac{13}{20}$	M1	for 20 – 7 (= 13) or $\frac{7}{20}$ oe or 0.65 or 65%	
		A1	for $\frac{13}{20}$ or equivalent fraction	
;2	80	M1	for converting to cm	Can be done at any stage of the problem eg $19.2 \times 100 \ (=1920)$ or 0.8×100
		M1 A1	for use of scale eg 19.2 ÷ 24 (= 0.8) or 1920 ÷ 24 or [length] ÷ 24 cao	[length] must come from an attempt to change 19.2 metres into cm
;3	243	M1	for 1.8 ÷ 100 × 4500 oe (= 81) or for a complete method eg 4500 ×1.8 × 3 ÷ 100 oe or for 4743 or 4257	Award M1 for 4500 × 1.018 ⁿ
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
;4	40	P1	for a process to find the maximum number of batches for one ingredient, eg 500 \div 175 (= 2.85) or 300 \div 75 (= 4) or 625 \div 250 (= 2.5)	Figures may be truncated or rounded
			OR	
			for a process to find the amount of one ingredient for 1 biscuit, eg 175 \div 16 (= 10.9375) or 75 \div 16 (= 4.6875) or 250 \div 16 (= 15.625)	
			OR	
			for multiples of $175:75:250$, eg $175 \times 2 \ (= 350)$ and $75 \times 2 \ (= 150)$ and $250 \times 2 \ (= 500)$	
		P1	(dep P1) identifies flour as the limiting factor	
			OR for a process to find the maximum number of biscuits for one ingredient, eg butter: "2.85" × 16 or 500 ÷ "10.9" oe (= 45.7) sugar: "4" × 16 or 300 ÷ "4.6" oe (= 64) flour: "2.5" × 16 or 625 ÷ "15.625" oe (= 40)	
		A1	cao	
			SCB2 for answer of 32	
; 3	18	P1	for $240 \div 10 (= 24)$ or $240 \div 8 (= 30)$	Accept 3 + 7 for 10, 3 + 5 for 8
		P1	for 3 × "24" (= 72) or 7 × "24" (= 168) or 3 × "30" (= 90) or 5 × "30" (= 150)	
		P1	for $3 \times ``24'' (= 72)$ and $3 \times ``30'' (= 90)$ or $7 \times ``24'' (= 168)$ and $5 \times ``30'' (= 150)$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
;6	6	M1	for 720 ÷ 40 (= 18) or 720 ÷ 30 (= 24)	
		M1	for a complete process eg $(720 \div 30) - (720 \div 40)$ or "18" × 4/3 – "18" or "24" – "24" × 3/4	
		A1	сао	

Question	Answer	Mark	Mark scheme	Additional guidance
;7	1.756	B1	cao	
; 8	2:1	B1	cao	
;9	3240	P1	for 90 × 60 (= 5400) OR 40 ÷ 100 × 90 (= 36) OR 40 ÷ 100 × 60 (= 24)	
		P1	for a process to work out area that is flowers eg. $40 \div 100 \times ``5400'' (= 2160)$ OR $``36'' \times 60 (= 2160)$ OR $90 \times ``24'' (= 2160)$	
		P1	for a full process to find the area that is grass eg. "5400" – "2160" (=3240)	
		A1	cao	
		P1	ALTERNATIVE for 100 – 40 (= 60)	
		P1	(indep) for 90 × 60 (=5400) OR 90 × 60 ÷ 100 (= 54) or 60 × 60 ÷ 100 (= 36)	
		P1	for a full process to find the area that is grass eg. "60" ÷ 100 × "5400" (=3240) OR "54" × 60 (= 3240) or "36" × 90 (= 3240)	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
;:	180.9	P1 P1	for starting to work with proportion eg. $60 \div 100 (= 0.6)$ or $150 \div 100 (= 1.5)$ OR $100 \div 60 (= 1.66)$ or $100 \div 150 (= 0.66)$ OR $84 \div 100 (= 0.84)$ or $87 \div 100 (= 0.87)$ or $84 \div 10 (= 8.4)$ or $87 \div 10 (= 8.7)$ or $84 \div 2 (= 42)$ or $87 \div 2 (= 43.5)$ OR $100 \div 84 (= 1.19)$ or $100 \div 87 (= 1.14)$ for a complete process to work out the calories in either item eg. " 0.6 " × $84 (= 50.4)$ or " 1.5 " × $87 (= 130.5)$ OR $84 \div$ " 1.66 " (= 50.4) or $87 \div$ " 0.66 " (= 130.5) OR " 0.84 " × $60 (= 50.4)$ or " 0.87 " × $150 (= 130.5)$ or " 8.4 " × $6 (= 50.4)$ or " 43.5 " × $3 (= 130.5)$ or " 42 " × $6 \div 5 (= 50.4)$ or " 43.5 " × $3 (= 130.5)$ OR $60 \div$ " 1.19 " (= 50.4) or $150 \div$ " 1.14 " (= 130.5)	
		P1	(dep on P2) for a complete process to find total number of calories in the breakfast, eg. "50.4" + "130.5"	
		A1	for 180.9 or 181	

Question	Answer	Mark	Mark scheme	Additional guidance
;;	952	P1	for starting to work with parts,	
			eg. $6 \times 60 \div 10 (= 36)$ or $10 \div 6 (= 1.66)$ or $6 \div 10 (= 0.6)$	
			or $13 \times 60 \div 15$ (= 52) or $15 \div 13$ (= 1.15) or $13 \div 15$ (= 0.866)	
			OR for $60 \div 10 \times 12 (= 72)$ or $10 \times 60 \div 15 (= 40)$	
		P1	for a full process to find the number of parts made by machine A	
		11	eg " 36 " × 12 (= 432) or 12 × 60 ÷ "1 66 " (= 432)	
			or $12 \times 60 \times "0.6"$ (= 432)	
			OR "72" \times 6 (= 432)	
		P1	for a full process to find the number of parts made by machine B	
			eg "52" × 10 (= 520) or $10 \times 60 \div$ "1.15" (= 520)	
			or $10 \times 60 \times 0.866 (= 520)$	
			OR "40" \times 13 (= 520)	
		A 1	for 952 or 432 and 520	
		AI	101 952 01 452 and 520	
322	168	P1	for working with ratio to find the amount for C or D	
			eg. 1.5×2 (=3) or (A, B, C, D =) 2, 7, 3, 3 oe	
			OR for suitable expressions linking A with C or D, eg. $A = x$, $C = 1.5x$	
		D1	$f_{0,m}$ "(2 + 2 + 2 + 7") (-15)	
		PI	101 $2+3+3+7$ (=13) OP adds 4 suitable expressions as " $r+35r+15r+15r$ " (=75r)	
			OK adds 4 suitable expressions, eg. $x + 5.5x + 1.5x + 1.5x = (-7.5x)$	
		P1	for a complete process to find the amount of money	
			eg. 360 ÷ "15"× 7	
			\mathbf{OR} 360 ÷ "7.5" × 3.5	
		A1	cao	

Question	Question Answer		Mark	Mark scheme	Additional guidance	
323 ((a)	4.56	B1	cao	Accept trailing zeros, eg 4.560	
((b)	7300	B1	cao	Accept trailing zeros, eg 7300.0	
324		263.2	M1	for using the scale eg 14×18.8 or 14×18		
				or for the digits 2632 or an answer of 263		
			A1	cao		
325		4	M1	for $\frac{30}{100} \times 80$ (=24) oe or for 104		
			M1	(dep) for 28 – "24" or 108 – 104	Numbers in subtraction may be reversed	
			A1	for 4 or –4		
326		2.5	M1	for $(R =) \frac{100I}{PT}$ or $600 \times 5 (= 3000)$ or $75 \times 100 (= 7500)$ or $75 \div 5 (= 15)$ or $75 \div 600 (= 0.125)$		
			M1	for $\frac{75 \times 100}{600 \times 5}$ oe	Calculations may be done in stages.	
				OR $\frac{"15"}{600}$ (= 0.025) or "0.125" ÷ 5 (= 0.025) or 1.025	May work in decimals or in percentages	
			A1	cao		

Question	Answer	Mark	Mark scheme	Additional guidance
327	2 bags of stone	P2 (P1 C1	for a complete process to work out how many bags of each material is required eg $180 \div 25$ (= 7.2 or 8), $375 \div 22.5$ (= 16.6 or 17), $1080 \div 50$ (= 21.6 or 22) or a complete process to work out the total weight of each element that he has eg 25×10 (= 250), 20×22.5 (= 450), 50×20 (= 1000) for a correct start to the process, eg for at least one correct calculation correct conclusion eg 2 bags of stone, with no incorrect working	The correct figures do not need to be seen to award the process marks
328 (a)	explanation	C1	explanation eg should be 1.03, this is 30% (not 3%) Acceptable examples Because 1.3 is 130% He is increasing it by 30% 1.3 means 1.30, not 1.03 He needs to put a 0 in front of the 3 1.3 is the wrong decimal He should multiply by 0.03 3% is 0.03, (not 1.3) His answer should be 154.5 He is meant to increase it by 4.5, not by 45 Not acceptable examples Because he is increasing by 130%, not 3% He needs to find 1% and then times it by 3	
(b)	(150 ×) 0.97 = 145.5	B1	for 0.97 (or $\frac{97}{100}$ or 97%) and 145.5	

Question	estion Answer Mark Mark scheme		Mark scheme	Additional guidance
329 (a)	Ben (supported)	P1	shows how to work interest out for one year eg 2000 × 0.025 (= 50) or 1600 × 0.035 (= 56) or 150 or 168 or 2000×1.025 (= 2050) or 1600 × 1.035 (= 1656)	Throughout accept figures ± 1 pence which do not need to be presented in money notation (to 2dp) or with monetary symbols.
		P1	shows compound interest calculation for one account eg 2050→51.25 or 2101.25→52.53 or 1656→57.96 or 1713.96→59.99 eg 2000×1.025 ³ (= 2153.78) or 1600 × 1.035 ³ (= 1773.95)	Award mark for a correct process shown, for which these figures can be taken as implying the process.
		P1	shows complete compound interest calculation for both accounts eg 2000×1.025^3 (= 2153.78) and 1600×1.035^3 (= 1773.95) OR one interest stated correctly eg 153.78 or 173.95	As above, award mark for both correct processes shown for both accounts, which these figures can be taken as implying the process.
		C1	Ben (shares) supported by 153.78 and 173.95	Accept an answer of "shares".
(b)	conclusion	C1	conclusion (ft) eg no change, shares now 182.5 Acceptable examples no since shares/Ben now 182.5 Still Ben since 182.5 > Ali No; he only gets 8.57 more No; he gets 68.56 instead of 59.98 (3 rd yr) No; Ben already gets more interest, he would just get even more Not acceptable examples no shares now 182.5	Conclusion needs to be supported. ft is from part (a); calculations carried out as part of (b) need to be correct for the comparison to be valid.
			Still Ben since less than Ali 182.5 > 153.78 no: he needs 20 17 more	

Question	Answer	Mark	Mark	scheme	Additional guidance
32:	No (supported)	P1	calculates area of trapezium eg $\frac{1}{2}$ ×	$7 \times (10+16) \ (= 91)$	
		P1	for division by coverage eg $\div 2$ or [area of trapezium] $\div 2$ (= 45.5) or process to find coverage per tin eg 5 × 2 (= 10)	for process to find number of tins bought eg $160 \div 16.99 = 9$ tins	[area of trapezium] needs to be clearly stated if the process of finding the area is not clear
		P1	for division to find the number of tins eg $\div 5$ or "45.5" $\div 5$ (= 9.1) or [area of trapezium] \div "10" (= 9.1)	for using whole no. of tins to find total litres eg 9 \times 5 (= 45)	
		P1	(dep on at least P2) for a process to multiply a whole number of tins (rounded up) by 16.99	(dep on at least P2) for a process to find the total coverage eg "45" × 2 (= 90)	
		C1	for 'No' supported by correct figure	s eg 169.9 or 90 and 91	There must be a conclusion ("No" or equivalent wording) including the figure 169.9 and working showing processes followed.

Quest	Question Answer		Mark	Mark scheme	Additional guidance
12;		8	B1	cao	
332	(a)	350	B1	cao	Accept trailing zeros eg 350.0
	(b)	7.7	B1	cao	Accept trailing zeros eg 7.70
	(c)	320	B1	cao	Accept trailing zeros eg 320.0
333	(a)	62	M1 A1	for distance \div time eg 186 \div 3 or 186 \div (3× 60)(=1.03) cao	May use hours or minutes at this point
	(b)	232	M1 A1	for speed × time eg 58×4 or $58 \times 4 \times 60$ (=13920) cao	May use hours or minutes at this point
334		90	Р1 Р1 А1	for a process to find the number of batches for at least 2 ingredients, eg 900 ÷ 225 (= 4) or 1000 ÷ 110 (= 9.09) or 1000 ÷ 275 (= 3.6) or 225 ÷ 75 (= 3) OR A full method to find the maximum number of biscuits for 1 ingredient eg 900 ÷ 225 × 30 OR Amount required for 1 biscuit for at least 2 ingredients eg 225 ÷ 30 (= 7.5) or 110 ÷ 30 (= 3.6) or 275 ÷ 30 (= 9.1) or 75 ÷ 30 (= 2.5) OR Amount required for 3 batches for at least 2 ingredients eg 225 × 3 (= 675) or 110 × 3 (= 330) or 275 × 3 (=825) or 75 × 3 (= 225) (dep P1) for a complete process to find the maximum number of biscuits after considering at least 3 different ingredients eg "3" × 30 (dep P2) cao from fully correct working	They must use their smallest multiplier after considering at least 3 different ingredients 90 without working award no marks

Questi	ion	Answer	Mark	Mark scheme	Additional guidance
335	335 $3:5$ P1for process to find 20% or 120% of the cost, eg 8500 × 0.2 (= 1700) oe or 8500 × 1.2 (= 10 200) oe		for process to find 20% or 120% of the cost, eg 8500×0.2 (= 1700) oe or 8500×1.2 (= 10 200) oe	When partitioning all figures quoted must be correct or a full method shown eg $10\% = 8500 \div 10$ (=850) and $20\% =$ " 850 " + " 850 " (=1700)	
			P1	for process to find total cost of payments, eg $12 \times 531.25 (= 6375)$	
			P1	for complete process to find value of deposit, eg "10 200" – "6375" (= 3825) or 8500 – "6375" (=2125) and "2125" + "1700" (=3825) OR the deposit as a proportion of the total cost, eg $1 - \frac{"6375"}{"10200"} (=\frac{3}{8})$	May be seen as a fraction of the total eg $\frac{3825}{10200} (=\frac{3}{8})$
			P1	for finding a correct un-simplified ratio, eg "3825" : "6375" oe or 5:3 or 1.6 : 1 or $\frac{5}{3}$: 1	Figures at this stage must be expressed as part of a ratio eg 51:85, $\frac{3}{2}:\frac{5}{2}$
			A1	Accept 1: 1.6, $1:\frac{5}{3}$	Ignore consistent units

Question	Answer	Mark	Mark scheme	Additional guidance
336	No (supported)	P1	For a process to calculate the initial or new pressure, eg $(70+10) \div (20+10)$ (=2.6 to 2.7) or $80 \div 30$ (=2.6 to 2.7) or $70 \div 20$ (=3.5)	Accept any value in the range 2.6 to 2.7 if unsupported by working
		P1	For a complete process to make a comparison eg. $0.8 \times "3.5"$ (=2.8) OR $\frac{("3.5"-"2.6")}{"3.5"} \times 100$ (=22 to 26) OR "3.5" $\times 0.2$ (=0.7) and $80 \div 30$ (=2.6 to 2.7) OR $\frac{"2.6"}{"3.5"}$ ($\times 100$) (=0.74 to 0.78 or 74 to 78) for a correct conclusion supported by accurate figures eg 2.8 and 2.6(6) OR decrease is 24% (or 22% to 26%) OR 0.7 and 2.6 to 2.7 and 3.5 OR 0.7 and 0.9 OR 0.76 (or 0.74 to 0.78) OR 76% (or 74% to 78%)	Allow truncation or rounding of figures

Question	Working	Answer	Mark	Notes
335 (a)		$\frac{33}{60}$	M1 A1	for method to find number of students who did not walk to school eg 15 + 12 + 6 or 60 - 27 (=33) or 0.55 or for $1 - \frac{27}{60}$ for $\frac{33}{60}$ or equivalent fraction
(b)		Pie chart drawn	M1	for method to find the angle for at least one sector eg $\frac{27}{\times 360} = \frac{12}{\times 360} = \frac{6}{\times 360} = 27 \div \frac{60}{\times 12} \div \frac{60}{\times 60} = 6 \div \frac{60}{\times 60} \approx (0.166)$
				$\frac{1}{60} \times 300^{\circ}, \frac{1}{60} \times 300^{\circ}, \frac{1}{60} \times 300^{\circ}, \frac{27}{360} \times \frac{1}{360}^{\circ}, \frac{12}{360} \times \frac{1}{360}^{\circ}, \frac{1}{360} \times \frac{1}{360} \times \frac{1}{360} \times \frac{1}{360}^{\circ}, \frac{1}{360} \times $
			M1	for drawing at least one sector accurately (from 4 sectors) eg 162° or 72° or 36°
			A1	for an accurately drawn pie chart
			B1	(dep on 4 sectors with at least one accurately drawn) for showing labels Walk Car Bicycle
336 (a)		$\frac{3}{7}$	B1	for $\frac{3}{7}$ or equivalent fraction
(b)		3:1	B1	for 3 : 1 or equivalent ratio
339 (a)		2.75	M1	for accurately measuring the distance between Backley and Cremford as $5.3 \text{ cm} - 5.7 \text{ cm}$ oe or their measurement $\times 0.5$ oe
			A1	for answer in the range 2.65 to 2.85
(b)		130	B1	for answer in the range 128 to 132

Question	Working	Answer	Mark	Notes
11:		5:2:10	P1	for process to calculate total for quiz or total of membership fees eg. $13 \times 5 + 35$ (=100), 25×20 (=500)
			P1	for complete process to write (correct) figures as a ratio, eg 250 : 100 : 500 oe in any order (condone inclusion of units or words)
			A1	cao
33;		Shown	M1	for method started to find comparable amounts, eg 17×46 (=782) or 17×0.46 (=7.82) or 17×35 (=595) or $266 \div 35$ (=7.6) or $26600 \div 35$ (=760)
			M1	for complete method to find comparable figures eg 17×46 (=782) or 17×0.46 (=7.82) AND 266 ÷ 35 (=7.6) or 26600 ÷ 35 (=760) eg $17 \times 46 \times 35$ (=27370) or $17 \times 0.46 \times 35$ (=273.7)
			C1	Shows correct comparable figures eg 7.82 and 7.6(0), 782 and 760 OR 273.7(0)
342	£6 - £5.64 = 36p or 50p - 47p = 3p 6.3829787%	6.4	P1 P1 A1	for a strategy to compare the same number of bottles e.g. $\pm 5.64 \div 12$ (= 47 or 0.47) or 12 × 50p (= 6 or 600) or 36 or 0.36 or 3 or 0.03 for start of process to find percentage profit e.g. $\frac{"36"}{564}$ or $\frac{"3"}{"47"}$ or $\frac{"6"}{5.64}$ or $\frac{50}{"47"}$ oe with consistent units for answer in the range 6.3 to 6.4

Question	Working	Answer	Mark	Notes
343	Working	$\frac{1}{11}$	P1 P1 A1	for starting the process, eg by writing down a correct ratio or using a given number of cubes for one relationship, eg 2B 1Y or B:Y = 2:1 or 4G 1B or G:B = 4:1 or 8G, 1Y or G:Y = 8:1 oe or yellow = 2, blue = 4, or states 2:1:8 oe in any order (can be algebraic) for complete process to find possible number of each colour or equivalent ratio, eg 8G 2B 1Y or G:B:Y = 8:2:1 oe or yellow = 2, blue = 4, green = 16 oe (can be algebraic) $\frac{1}{11}$ oe

Question	Working	Answer	Mark	Notes
344		Yes	P1	for process to work out the total number of children, e.g. $117 \times 4 (= 468)$
		(supported)	P1	(dep P1) for process to work out total number of adults or the total number of people, e.g. " 468 " × 5 ÷ 2 (= 1170) or " 468 " × 7 ÷ 2 (= 1638)
			A1	for 1170 or 1638
			P1	for process to work out the percentage of theatre full, e.g. $\frac{"468"+"1170"}{2} \times 100 \ (= 63)$ or for a process to work out 60% of 2600 (= 1560)
			C1	for a correct conclusion supported by correct figures e.g. 63% or 1560 and 1638
			P1	OR for a process to work out 60% of 2600, eq. $\frac{60}{5} \times 2600$ (= 1560)
				$101 \text{ a process to work out 0070 of 2000, eg.}{100} \times 2000 (= 1500)$
			P1	(dep P1) for process to work out total number of children, e.g. "1560" \times 2 \div 7 (= 445(.7)
			A1	for 445(.7)
			P1	for process to work out number of children in the circle, eg. " $445(.7)$ " $\div 4$ (= 111 to 112)
			C1	for a correct conclusion supported by correct figures e.g. 111 to 112
				[Where appropriate, accept rounded or truncated values]

Question	Working	Answer	Mark	Notes
344 cont.				OR
			P1	for a process to find the maximum number of children, eg. $2600 \times 2 \div 7 (= 742(.8))$
			P1	for process to work out the total number of children, e.g. $117 \times 4 (= 468)$
			A1	for 468 and 742(.8)
			P1	for $\frac{"468"}{"742(.8)"} \times 100 \ (= 63)$ or process to work out 60% of "742.8" (= 445(7))
			C1	for a correct conclusion supported by correct figures e.g. 63% or 468 and 445(.7)
				[Where appropriate, accept rounded or truncated values]

Question	Working	Answer	Mark	Notes
345 (a)		57.1	P1	for a process to find time from Liverpool to Manchester, eg. $56 \div 70 (= 0.8 \text{ (hrs) or } 48 \text{ (mins)})$
			P1	for a process to find the total distance, eg 56 + 61 (= 117) or the total time, eg"48" + 75 (= 123) or "0.8" + $\frac{75}{60}$ (= 2.05), with consistent units of time
			P1	(dep P2) for a correct process to find average speed with consistent units of time, eg. "117" ÷ "2.05" or . "117" ÷ "123"
			A1	for answer in the range 57 to 57.1
(b)		explanation	C1	for explaining that the time taken for the two parts of the journey must be the same or the distance from Leeds to York is $\frac{3}{4}$ the distance from Barnsley to York oe
346 (a)		3.9	M1	for a ratio of $\frac{8.1}{5.4}$ (= 1.5) oe or $\frac{5.4}{8.1}$ (= 0.66) oe or $\frac{2.6}{5.4}$ (= 0.48) oe or $\frac{5.4}{2.6}$ (= 2.07) oe
			A1	cao
(b)		2.05	M1	for $\frac{5.4}{8.1} \times 6.15$ (= 4.1) or $\frac{2.7}{8.1} \times 6.15$ oe or ft "scale factor" from (a)
			A1	cao

Question	Working	Answer	Mark	Notes
347		Secure Bank (supported)	P1	for a process to work out the interest after one year e.g. $0.02 \times 25000 (= 500)$ or $0.043 \times 25000 (= 1075)$ or for 1.02 or 25500 or 1.043 or 26075
			Р1	for process to find value of the investment after 3 years or the multiplicative factor for 3 years at one of the banks, e.g. $25000 \times 1.02 \times 1.02 \times 1.02$ oe (= 26530) or 1.02^3 (= 1.0612) or $25000 \times 1.043 \times 1.009 \times 1.009$ oe (= 26546) or $1.043 \times 1.009 \times 1.009$ (= 1.0618) [accept total interest of 1530 or 1546 if final values of investment are not found]
			C1	for Secure Bank from correct figures eg 26530 and 26546or 1530 and 1546 or 1.0612 and 1.0618

Question	Working	Answer	Notes
348		$\frac{53}{64}$	P1 for interpreting information e.g. recognising that the shaded area = $\frac{3}{4} + \left(\frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right)$ or adding in lines to diagram to show 64ths
			Al cao
349 (a)		graph	 C1 introduce a scale for the <i>y</i> axis C1 plots at least 2 points correctly C1 fully correct and complete graph
(b)		15 miles (supported)	 M1 reads off graph eg 20 km = 12-13 miles or 15 miles = 24 km or uses table C1 states 15 miles (24 km) with appropriate evidence
34:	£ per kg: $1.89 \div 2 = 0.945 (94.5);$ $4.30 \div 5 = 0.86 (86);$ $8.46 \div 9 = 0.94 (94)$ kg per £: $2 \div 1.89 = 1.058(2);$ $5 \div 4.30 = 1.162(79);$ $9 \div 8.46 = 1.0638(297)$ Price per 90 kg: $1.89 \times 45 = 85.05;$ $4.30 \times 18 = 77.4(0);$ $8.46 \times 10 = 84.6(0)$	5 kg (supported)	 P1 for a process (for at least two boxes) of division of price by quantity or division of quantity by price or a complete method to find price of same quantity or to find quantity of same price P1 for a complete process to give values that can be used for comparison of all 3 boxes C1 for 5 kg and correct values that can be used for comparison for all 3 boxes and a comparison of their values

Question	Working	Answer	Notes
149		720	 P1 attempt to find the maximum biscuits for one of the ingredients e.g. 5000 ÷ 15 (=33.3) or 2500 ÷ 75 (=33.3) or 3000 ÷ 100 (=-30) or 320 ÷10 (=32) P1 for identifying butter as the limiting factor or 30 × 24 (=720) seen A1
352		96	P1 a strategy to start to solve the problem eg $18 \div (7 - 4) (=6)$
			P1for completing the process of solution eg "6" \times (4 + 5 + 7)A1cao
353		conclusion	P1 $30 \div 70 (=0.428)$ $26 \div 60 (=0.4333)$ $30 \div 26 (=1.153)$
		(supported)	P1 $60 \times "0.428"$ $70 \times "0.4333"$ $60 \times "1.153"$ C1for conclusion linked to 25.7 mins, 30.3 miles or 69.2 mph

Question	Working	Answer		Notes
354		for No with supporting evidence	P1 P1	for correct process to find price in week 1, eg 65×0.8 (= 52) for process to find the price in week 2,
			C1	eg "52" – 10 (= 42) for No with correct supporting evidence
355		butter = 1080 flour = 1575 sugar = 450 mincemeat = 1260	M1 for correct use of a correct scale factor, $72 \div 16$ (= 4.5) on at least one ingred M1 for complete method applied to all ingredients A1 cao	
356		Jardins of Paris	P1 P1 C1	correct process to convert one price to another currency, eg 1980 ÷ 1.34 for a complete process leading to 3 prices in the same currency for 3 correct and consistent results and a correct comparison made.
357" (a)		graph	M1 C1 C1	for method to start to find distance cycled in 36 mins, eg. line drawn of correct gradient or $37"\ddot{O}\frac{36}{60}$ for correct graph from 9.00 am to 9.36 am for graph drawn from "(9.36, 9)" to (10.45, "9" + 8)
(b)		4.5	M1 A1	for 18×0.25 cao
358		8112	M1 A1	for complete method, eg 7500×1.04^2 cao
359		No with supporting evidence	P1 P1 C1	for the start of a correct process, eg two of z, 2z and 2z+7 oe or a fully correct trial, eg. $5 + 10 + 17 = 32$ for setting up an equation in z, eg $z + 2z$ "+ $2z + 7 = 57$ or a correct trial totalling 57, eg $10 + 20 + 27 = 57$ for a correct deduction from their correct answers, eg Chris has 20 so it is impossible for all to have 20 since 60 marbles would be needed.

Question	Working	Answer	Notes
13:		46	M1for process to find value after 1 yearM1for process to find value after 4 yearsA1cao
15;		3р	M1 for method to find gradient of line A1 for 3p oe
362" (a)		10	 P1 for process to find number of people that Ellie can make mousse for using the sugar available P1 for process to find number of people that Ellie can make mousse for using the chocolate available A1 for correct answer with supportive working
(b)		correct explanation	C1 for "can only make mousse for 6 people" oe
363		8	B1 cao
364		3:4	$ \begin{array}{ll} M1 & \text{for } 32 - 8 \ (= 24) \\ M1 & (\text{dep) for "24" : 32} \\ A1 & \text{cao} \end{array} $
365		1.52	M1 for 20 4.55 60 A1 for 1.52 or 1.516()

Question	Answer	Mark	Mark scheme	Additional guidance
166	0.45	B1	cao	
167 (a)	3 hrs 16 mins	P1	$196 - 60 - 60 - 60$ (=16) oe or $196 \div 60$ (= 3.26 or 3.27)	
			or states 3 hours in their answer (with an incorrect number of minutes or minutes left blank)	
		A1	3 hours 16 minutes	
(b)	$\frac{x}{2}$	B1	$\frac{x}{2}$ oe	
168 (a)	50	M1	$[2.5] \times 20 \ (=50)$	[2.5] a number in the range 2.3 to 2.7 or identified as
		A1	for an answer in the range 46 to 54	the distance from blenton to Triby
(b)	60	M1	$5 \times 1200 (=6000)$ or $1200 \div 100 (=12)$ or conversion $5 \div 100 (=0.05)$	
		A1	cao	
369 (a)	40	M1	$2 \div (2+3) \times 100$ (=40) or build up to (and shows) 40:60 oe	
			or for sight of $\frac{2}{5}$ oe or 100 ÷ 5 (=20)	
		A1	cao	
(b)	20:80	M1	100 – 20 (=80) or 80 : 20 oe	
		A1	20 : 80 oe	Accept any equivalent ratio; award full marks if an acceptable ratio is given and then incorrectly simplified.
168	10 000	B1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
36;	12.85 or 12.86	P1	for $9 + 2 + 1$ (=12)	Award this mark for sight of 4500, 1000 or 500
	or 13.5(0)	P1	for working out how many lots of 175g are needed eg $6000 \div "12" \times 2 \div 175$ (=5.71)	Process may lead to 5 or 6 instead of 5.71
		P1	for a complete process eg "5.71" × 2.25 (=12.857)	"5.71" (ft) or a figure rounded or truncated eg "6"
		A1	for 12.85 or 12.86 or 13.5(0)	

Question	Answer	Mark	Mark scheme	Additional guidance
372	260	P1	conversion to common units of capacity eg 2.2 \times 4.54 (= 9.988) or 8 \div 4.54 (= 1.76)	[time for Company A] could be 1 min 40 sec or 1 66 or 1 6 or 1 40 etc as long as it is clear it relates
			OR	to 1 min 40 sec
			for company A	
			2400 ÷ 4.54 (= 528.63)	Results of calculations may be truncated or rounded.
			OR CONTRACTOR	
			$2400 \div 8 (= 300)$	
			a rate per minute $8 \div$ [time for Company A] (= 4.8) oe	
		P1	for a complete process to find the time for one water rate in minutes.	
			Company A $2400 \div ``4.8'' (= 500)$ or $``300'' \times [1 \min 40 \text{ sec}] (= 500)$	
			or Company B 2400 ÷ "9.988" (= 240.28)	
			OR	
			eg in gallons	
			Company A "528.63" \div ("1.76" \div [1 min 40 sec]) (= 500) or Company B "528.63" \div 2.2 (= 240.28)	
		P1	for complete processes to find the times for both company A and	
			company B in minutes.	
			Company A	
			eg in litres $2400 \div ``4.8'' (= 500)$ or $``300'' \times [1 \min 40 \text{ sec}] (= 500)$	
			or in gallons "528.63" ÷ ("1.76" ÷ [1 min 40 sec]) (= 500)	
			AND	
			Company B eq in litres $2400 \div "9.988" (= 240.28)$	
			or in gallons " 528.63 " ÷ 2.2 (= 240.28)	
		A1	for an answer in the range 259 to 260	If the answer is given within the range but then
				rounded incorrectly award full marks.

Question	Answer	Mark	Mark scheme	Additional guidance
173	3	B1	cao	
374	$\frac{40}{100}$	B1	for $\frac{40}{100}$ or any equivalent fraction	
375	$\frac{3}{4}$	M1 A1	for method to find fraction shaded, eg 12 out of 16 squares shaded or unsimplified answer eg $\frac{12}{16}$ or for $1-\frac{1}{4}$ oe or for an answer of $\frac{1}{4}$ cao	May be expressed in a wide variety of ways.
376	258 to 275	M1 M1	for taking a correct reading from the graph that shows conversion of an amount in \$ to £ for a complete method eg attempts to read from the graph at using numbers that sum to 345 and finds the sum of their readings eg $6 \times 50 + 45$	Must be a complete method to get to 345
		Al	for answer in the range 258 to 275	Condone incorrect money notation if the meaning is clear
377" (a)	140	M1 A1	for complete method eg $56 \div 40 \times 100$ cao	May be seen in different ways, eg 2.5×56
(b)	32	M1	for method to find percentage, eg $\frac{18}{56} \times 100 \ (=32.14)$	
		A1	for an answer in the range 32 to 32.2	

Question	Answer	Mark	Mark scheme	Additional guidance
378	2 hours 45 minutes	P1	for $30 \div 24 \ (= 1.25)$ or $12 \div 8 \ (= 1.5)$	May be written in hours and/or minutes
		P1	for finding the sum of their two times eg "1.25" + "1.5" (= 2.75) or 165 (minutes)	or 3 h 15 min or 2 h 75 min
		A1	cao	
379" (a)	Yes (supported)	P1	for start of process, eg $5 \times 9 (= 45)$ or $10 \times 14 (= 140)$ or $5 \times 2 (= 10 (kg))$ or $3 \div 2 (= 1.5 (boxes))$	Accept values rounded or truncated to 1 dp in both (a) and (b). Ignore units
		P1	for process using ratio of areas, eg " 140 " ÷ " 45 " (= 3.1) or for using ratio of amount of seed eg " 10 " ÷ 3 (= 3.3) or for finding coverage for 1 kg of grass seed, eg " 45 " ÷ 3 (=15 (m ²))	
		P1	for process to find amount of seed needed,	Accept 9.4
			eg "140" \div "45" \times 3 (= 9.3kg) or "140" \div "45" \times "1.5" (= 4.6(boxes)) oe or "15" \times 2 (= 30 (m ² per box)) and "140" \div "30" (= 4.6(boxes)) or for process to find area that can be seeded, eg "10" \div 3 \times "45" (= 150 (m ²)) or "140" \div "10" (= 14 (m ²)) oe	Accept 4.7
		C1	for "Yes" supported by correct figures eg 4.6(and 5), or 9.3and 10 or 150 and 140 (or 140 to 148.5) or 15 and 14	
(b)	Yes, (does not have enough) (supported)	C1	for reasoning supported with correct figures, eg does not have enough seed and compares 9 (kg) with $9.3(kg)$ or 4.5 (boxes) with 4.6 (boxes) or 135 (m ²) with 140 (m ²) or 14 (m ²) with 15 (m ²) ft from (a)	Values used in (a) do not need repeating in (b) as long as intention is clear
37:	96	M1	for a complete process to find the volume eg $6 \times 4 \times 10 \div 2$ (= 120)	
		M1	for a complete process, eg $(6 \times 4 \times 10 \div 2) \times 0.8$	
		A1	cao SC B1 for 192	

Question	Answer	Mark	Mark scheme	Additional guidance
35;	4000	B1	cao	
362	3:5	B1	for 3 : 5 or for any other equivalent ratio	
181 (a)	2.5(0)	P1	for $13 \times 7.5(0)$ (=97.5(0)) or 5×20 (=100)	
		P1	for "100" – "97.5(0)"	
		A1	cao	
(b)	96	M1	for $\frac{1}{5} \times 120$ (= 24) oe or $\frac{4}{5} \times 120$ oe	
		A1	cao	
182	6	P1	process to find the weight of small boxes eg 3×450 (=1350)	
		P1	complete process to find the number of large boxes, eg $(5850 - "1350") \div 750$ or $5850 - "1350"$ (=4500) and 6×750 (=4500)	
		A1	cao	Cannot award this mark if 6 comes from a rounded value due to error in calculating

Question	Answer	Mark	Mark scheme	Additional guidance			
185	72	P1	for a correct process to find the number of boys or girls,		PL	SD	Total
			eg boys = 0.55×800 (=440) or girls = 0.45×800 (=360)	Boys	176	264	440
				Girls	72	288	360
			or process to find proportion that are boys having packed lunch,	Total	248	552	800
			$eg 0.55 \times 0.4 (=0.22)$				
		D1	for a correct process to find the total number of school dinners or				
		11	nacked lunches				
			$eg SD = 800 \times 0.69 \ (=552) \text{ or } PL = 800 \times 0.31 \ (=248)$				
			or process to find proportion that are girls having packed lunch,				
			eg 0.31 – "0.22" (=0.09)				
			or process to find the number of boys having school dinner.				
			$eg "440" \times 0.6 (= 264)$				
			or number of boys having packed lunch, eg "440" \times 0.4 (=176)				
		P1	for a correct process to find the number of girls having packed lunches,				
			$eg^{-800^{\circ}} \times 0.31^{\circ} - (440 \times 0.4)$				
			or " 0.45 " × " 800 " – (" 800 " × " 0.69 " – " 440 " × 0.6) or " 0.09 " × 800				
		A 1					
		AI					
386	8	M1	for 158220 – 146500 (=11720) or 158220 ÷ 146500 (=1.08)	0.08 as an a	nswer implie	es M1	
		M1	for complete method				
		1011	101 complete method, eq (158220 146500) \div 146500×100 ce				
			$r = 1.08 \times 100 - 100$				
		A1	cao				
387	37 000	B1	cao				

Question	Answer	Mark	Mark scheme	Additional guidance
388	50	B1	for finding the time difference, eg, 1hr 18 mins or 78 mins oe	Allow 1.18 for this mark 118 scores B0
		Ρ1	for correct process to convert minutes to hours, eg $18 \div 60 \ (=0.3)$ or $78 \div 60 \ (=1.3)$ or for a correct process to convert speed in miles per minute to mph eg " 0.833 " × 60	For a conversion of time or speed
		P1	for using speed = distance \div time eg, $65 \div$ [time] or $65 \div 78$ (=0.833)	[time] is what the candidate clearly indicates as time difference
		A1	cao	
			SCB2 for 83(.333) seen as the answer	

Question	Answer	Mark	Mark scheme	Additional guidance
389	1500	B1	cao	
38:	$\frac{19}{100}$	B1	or any other equivalent fraction.	
36;	16	M1 A1	for a complete method to find 20% of 80 eg 80 × 0.2 oe cao SC B1 for an answer of 64 or 96	
190	$\frac{3}{5}$	M1 M1	for a start in the method eg 35 + 50 + 75 (= 160) or 400 - 35 - 50 - 75 (= 240) or $\frac{160}{400}$ oe for eg $\frac{400 - "160"}{400}$ or $\frac{2}{5}$ or $1 - \frac{160}{400}$	
		A1	or for an unsimplified answer eg $\frac{240^{\circ}}{400}$ oe or as 60% oe cao	
193	$\frac{9}{25}$	M1 A1	for $\frac{n}{6+9+10}$ where <i>n</i> is an integer < 25 for $\frac{9}{25}$	Or equivalent fraction
174	9	M1 A1	for a method to find the scaling factor eg " 10.8 " ÷ " 1.8 " (= 6) or " 1.8 " ÷ 1.5 (=1.2) or 1.5 ÷ " 1.8 " (= 0.833) or a sf given from 5.5 to 6.5 or from 1.06 to 1.4 or from 0.75 to 0.94 eg used with 1.5 accept an answer in the range 8 to 10	Could be shown on the diagram by appropriate working eg 6 steps Allow 10.6 to 11.0 and 1.6 to 2.0 for their measured lengths.

Question	Answer	Mark	Mark scheme	Additional guidance
395	78	P1 P1	for process to find the number of rand, eg 850×18.53 (= 15750.5) OR for process to find number of £, eg $200 \div 18.53$ (= 10.79) (dep P1) for process to find the number of rand notes, eg "15750.5" \div 200 (= 78.7) OR $850 \div$ "10.79" (= 78.7)	
		A1	cao	
396	79.76	P1 P1 P1	process to find number of gallons eg $560 \div 34.5 (=16.23)$ OR finding the miles per litre eg $34.5 \div 4.55 (=7.582)$ process to convert from gallons to litres eg " 16.23 " × $4.55 (=73.855)$ OR to work out the cost per gallon eg $4.55 \times 1.08 (=4.914)$ OR finding the number of litres eg $560 \div$ " 7.582 " (= 73.859) (dep P2) for a complete process to work out the cost using the operations ($560 \div 34.5$) × 4.55×1.08 eg " 73.855 " × $1.08 (=79.763)$ or " 4.914 " × " 16.23 " (= 79.763) or " 73.859 " × $1.08 (=79.763)$	For P marks allow use of truncated/rounded values
		A1	for 79.69 to 79.79	To 2 dp but accept 79.7

Question	Answer	Mark	Mark scheme	Additional guidance
397	12272.70 12272.71 or 12272.72	M1	for evidence of using a correct first step eg 200000 × 0.015 (= 3000) or 200000 × 1.015 (= 203000)	
		M1	for evidence of a compound interest method eg 203000×0.015 (= 3045) or 203000×1.015 (= 206045) or 206045×0.015 (= 3090.675) or 206045×1.015 (= 209135.675) or 209135.675×0.015 (= 3137.035) or 209135.675×1.015 (212272.710) or 200000×1.015^{t} , $t \ge 2$	values may be rounded or truncated to 2 dp
		A1	for 12272.7(0) or 12272.71 or 12272.72	
			SC B2 for 212272.7(0) or 212272.71 or 212272.72	

Questi	on	Answer	Mark	Mark scheme	Additional guidance
398		3	B1	cao	
		100			
397		1.94 m or 194 cm	M1	for 188 or 0.06 or 194 or 1.94	
057					
			A1	1.94 m or 194 cm	Do not accept numerical answers without the correct unit shown
398		Yes with correct figures	P1	begins to work with proportion eg $20 \div 2$ (=10) or $20 \div 5$ (=4) or $2 \cdot 38 \div 2$ (=1 10) or $5 \cdot 60 \div 5$ (=1 12)	Throughout monetary units not required; trailing
				$01 \ 2.58 \ \cdot \ 2(-1.15) \ 01 \ 5.00 \ \cdot \ 5 \ (-1.12)$	Can work in pence throughout
			P1	full process to find the cost of 20 pens or 20 folders	
				eg. $20 \div 2 \times 2.38$ (=23.8) or $20 \div 5 \times 5.60$ (=22.4) or $2.38 \div 2 \times 20$ (=23.8) or $5.60 \div 5 \times 20$ (=22.4)	
			P1	full process to find total price or amount remaining ag "23 8" + "22 4" (=46 2) or $50 - "23 8" - "22 4" (=3 8)$	
				cg 23.0 + 22.4 (-40.2) or 50 - 23.0 - 22.4 (-3.0)	
			C1	Yes with correct figures eg 46.2 or 3.8 (left)	'Yes' might be implied from working eg 46.2<50 or a statement that 3.8 is left, but 46.2 alone must
					written elsewhere).
					Working leading to 46.2 must be shown for this
399	(a)	Trapezium	B1	cao	mark.
			DI		
	(b)	C and D	BI	cao	Accept in either order.
1:2		40	P1	for $100 - 30$ (=70) or $1 - 0.3$ (=0.7) or $1 - \frac{3}{10}$ (= $\frac{7}{10}$)	
				or $28 \div 7 \times 3$ (=12)	
			P1	for a complete process eg $28 \div ("70" \div 10) \times 10$ of	
				or 28 + "12"	
			Δ1	ca0	

Question	Answer	Mark	Mark scheme	Additional guidance
3: 3	30:1	M1	for stating 450 : 15 oe or 450 ÷ 15 (=30) oe or 1 : 30	90:3
		A1	cao	Ignore units throughout.
3:4	260 to 260.5	M1	for $883 - 245$ (=638) or $883 \div 245$ (=3.60) or $883 \div 245 \times 100$ (=360(.408)) oe	
		M1	for a complete method to find the percentage increase eg " 638 " $\div 245 \times 100 (=260(.408))$ or $883 \div 245 \times 100 - 100 (=260(.408))$ oe	
		A1	Accept answers in the range 260 to 260.5	
3:5 (a)	2, -4, 2, 8	B2	all 4 values correct	
		B1	for 2 or 3 correct values)	
(b)	Graph	M1	(dep B1) for at least 5 points plotted correctly ft from part a	
		A1	for a fully correct curve drawn	Accept freehand curves drawn that are not line segments; there must be some attempt to draw the minimum point below $y = -4$.
(c)	-2.6 or 1.6	B1	for 1 correct value, ft a non linear graph	Award for -2.6 or 1.6 or both values but do not award the mark if a correct value is given with an incorrect value. Accept 1.56 or -2.56 Note for ft to be applied the graph may be joined by line segments.
3:6	5	M1	$2" \div 40 \times 100$	"2" comes from their reading of the height of the
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
3:7 (a)	2 mins 48 secs	P1	for an appropriate first step eg $700 \div 475 (=1.47)$ or $475 \div [time] (= 4.16 m/s)$ or $[time] \div 475 (= 0.24 s/m)$	[time] what candidate indicates as time of first race Units are not needed and can be ignored if given
		P1	for a complete process to find the required time eg 700 ÷ 475 × [time] (=168) or 700 ÷ (475 ÷ [time]) (=168) or [time] ÷ 475 ×700 (=168)	Allow calculation in stages and appropriate rounding.
		A1	cao	
(b)	Statement	C1	eg takes less time Acceptable examples Quicker time Faster time Reduces my answer to part (a) Not acceptable examples It is an underestimate The amount of time could/may increase Laura goes faster	

Question	Answer	Mark	Mark scheme	Additional guidance
3:8	30	B1	cao	Accept 30.0
3: 7	24	M1 A1	for a complete method eg $6 \times 2 \times 2$ or sight of 6, 2, 2 ready for calculation, or with the wrong operation cao	Could be seen as two separate calculations SC:B1 for a answer of 1.5 oe
1::	Shows earnings	M1	for a method to start to work out earnings eg 11.2 × 8 (= 89.6) or $20 - 8$ (= 12) or 8.4×12 (= 100.8)	Accept calculations in pence, or £ written in decimal form.
		M1 C1	for a complete method eg $11.2 \times 8 + 8.4 \times (20 - 8)$ or "89.6" + "100.8" or $200 - "89.6" - "100.8"$ (= 9.6) Shows earnings eg 190.4(0) or 9.6(0) with fully correct arithmetic	Conclusion in figures; ignore written conclusion.
1:;	$\frac{40}{560}$ oe	M1 A1	for correct start to method eg 600 - 560 (= 40) or $\frac{600}{560}$ oe (= 1.07(14)) OR correct answer but not a fraction eg 0.07(14) for any equivalent fraction to $\frac{40}{560}$ eg $\frac{1}{14}$	
1;2	69.2	B1 P1 P1 P1 A1	for a correct measurement of either length or width, eg 11.5 (cm) or 5.8 (cm) for process to find actual dimensions, eg [length] × 200 (= 2300) or [width] × 200 (= 1160) (indep) for process to convert to metres [length in cm] \div 100 eg "2300" \div 100 (= 23) or "1160" \div 100 (= 11.6) (indep) for process to find the perimeter, eg "23" × 2 + "11.6" × 2 (= 69.2) or "11.5" × 2 + "5.8" × 2 (= 34.6) for an answer in the range 67.6 to 70.8	Allow measurements 11.3 to 11.7 cm and 5.6 to 6.0 cm NB: could work in mm [length] in the range 11.0 to 12.0 [width] in the range 5.0 to 6.5 NB: could work in mm This mark can be awarded for the conversion of any amount in cm to m (ie not from an area) calculations could be in cm or in m and could be scaled or unscaled figures SC: award 3 marks for an answer in the range 67.6 to 70.8 using measurements outside the above ranges

Question	Answer	Mark	Mark scheme	Additional guidance
3; 3 (a)	10	M1	for a start of method to find Bispah's share,	
			eg 2.50 × 8 (= 20) or $\frac{1}{2} \div \frac{1}{8}$ (= 4)	
		A1	cao	Accept 10.00
(b)	1:3	P1	for a process to find Chan's share, eg "20" – 2.5 – [Bispah's money] (=7.5) or $1 - \frac{1}{8} - \frac{1}{2}$ (= $\frac{3}{8}$)	Accept working in pence, or in £ given as a decimal oe NB: award this mark if the working is seen in part
				(a)
		P1	for a correct ratio	Accept 3:1 (correct answer in reverse order)
			eg 2.5 : "7.5" or $\frac{1}{8}$: " $\frac{3}{8}$ " or 3 : 1 oe	which can also be an equivalent ratio to 5.1
		A1	for 1 : 3 oe eg 5 : 15	Award full marks for 1 : 3 or an equivalent ratio. If an equivalent ratio to 1:3 is shown and then
				simplified incorrectly award full marks.
3;4 (a)	9.6	M1	for a correct ratio,	Decimal equivalents can be truncated or rounded
			eg $\frac{12.6}{84}$ (= 1.5) or $\frac{8.4}{12.6}$ (= 0.66)	Accept equivalent methods to use a sf
			or $\frac{6.4}{8.4}$ (= 0.76) or $\frac{8.4}{6.4}$ (= 1.31) oe	eg $\frac{6.4}{2}$ +'6.4 (kpdicative of 1.5)
		A1	cao	
(b)	10	M1	for $15 \div ``1.5''$ or $15 \times ``0.66''$ or ft their ratio from part (a) oe	Award the method mark for any (equivalent)
		A1	cao	

Question	Working	Answer	Mark	Notes
3; 5 (a)	$5.80 \times 3 + 7.80 =$ 25.20	90p or £0.90	M1	for a correct first step from which a complete method could be developed, eg. $5.8(0) \times 3 (= 17.4(0))$ or $24.3(0) - 7.8(0) (= 16.5(0))$
			M1	for complete method, eg. $7.8(0) + 5.8(0) \times 3 - 24.3(0) (= 0.9(0))$
			A1	for answer in correct notation with correct units, eg. 90p or £0.90 (accept £0.90p and £0.9)
				[SC: B1 for an answer of £2.90]
(b)		8.27pm	M1	for using 60 mins = 1 hour in the conversion of 102 minutes, eg. 1 h 42 mins or 1.42 or 1.7 or $(60 + 42)$ mins or $102 - 60$ or $102 \div 60$ or for an answer of 8.27am or 08.27
			A1	for 8.27(pm) oe
3; 6		30	M1	for $12 \text{ m} = 1.9$ to 2 cm or for a scale factor of 2.25 to 2.75 (comparing length of bus with height of the building) or a complete method using the height of the bus to compare with the height of the building.
			A1	answer in range 27 to 33
3;7	Complete methods $3.60 \div 2.5 \times 3.5$ or $3.60 \div 5 \times 7$	5.04	M1	for a correct first step to find the cost of a unit of weight (eg. 1 kg or 0.5 kg) eg $3.60 \div 2.5$ (= 1.44) or $3.60 \div 5$ (= 0.72) or a complete alternative method
	or $3.5 \div (2.5 \div 3.6)$ or $\frac{3.5}{2.5} \times 3.6$ or $3.6 \div \frac{2.5}{3.5}$		A1	for 5.04 (accept £5.04p)

Question	Working	Answer	Mark	Notes
3; 8		(£6), 18, 24, 27	M1	demonstrates a proportional method to find at least one cost for cotton, eg. $\pounds 6 \div 2 \times 9$ (= (\pounds)27) or a correct entry in the table.
		15, 45, 60, 67.50	M1	demonstrates a proportional method to find at least one cost for silk, eg. $\pounds 6 \div 2 \times 5$ (= (\pounds)15) or a correct entry in the table.
			A1	for a fully correct table (accept 67.5(0))
3;9		New York (supported)	P1	for changing between £ and \$, eg 1.089×1.46 (= 1.58(9.)) or 2.83÷1.46 (= 1.93(8.)) or between litres and gallons, eg 1.089×3.785 (= 4.12(1.)) or 2.83÷3.785 (= 0.74(7.))
			P1	for a complete process to give values that can be used for comparison, eg "1.938" \div 3.785 (= 0.51(2.)) or "1.589"× 3.785 (= 6.01(7.)) or 1.089 × 3.785 = (4.12(1.)) and 2.83 \div 1.46 (= 1.93(8.))
			C1	for New York and correct comparative values.
3;:		648	M2	a complete method, eg $12.5 \times 1000 \div 19.3$
			[M1	for using volume = mass/density, eg 12500 ÷ 19.3 (condone inconsistent units or incorrect conversions) may be implied by digits 647 or 648]
			A1	for answer in range 647 to 648
3;;		15	P1	strategy to start the problem, eg 8:20 and 20:5
			P1	process to solve the problem, eg $\frac{5}{33} \times 100$ or 24:60:15
			A1	cao

Question 3; 9

Landan	$1.089 \times 1.46 = $ \$1.58(9) per litre	\rightarrow	$1.589 \times 3.785 = $ \$6.01(7) per gallon
London	$1.089 \times 3.785 = \text{\pounds}4.12(1)$ per gallon	\rightarrow	$4.121 \times 1.46 = $ \$6.01(7) per gallon
New York	$2.83 \div 1.46 = \pounds 1.93(8)$ per gallon	\rightarrow	$1.938 \div 3.785 = \pounds 0.51(2)$ per litre
	$2.83 \div 3.785 = $ \$0.74(7) per litre	\rightarrow	$0.747 \div 1.46 = \pounds 0.51(2)$ per litre

The table shows the most commonly used approaches. There are of course other approaches that can be used.

Question	Working	Answer	Mark	Notes
422 (a)		1:3	B1	oe
(b)		42	M1	ft 56 \div 4 (= 14) or complete method to find number of grey tiles eg 56 – (56 \div 4),
				$56 \div 4 \times 3 \text{ oe} (= 42)$
			A1	for 42 or ft
423		No	P1	for finding a time difference e.g. length of day (=7 h or 420 min) or adding at least two of
		(supported)		the five times on to 9 am or adding all the room times given (= 5h 55 min or 355 min) or
			D1	adding all five times given (=7 h 10 min or 430 min)
			PI	for a complete process to inform final decision eg finds length of day $(= /h)$ and total of all five times $(= /h)$ and total of
				an rive times $(-7 \text{ fr} 10 \text{ mm})$ or starts at 9am and adds on an rive times to rind rimsning time $(= 4.10 \text{ nm})$
			C1	NO supported by correct values eg 4 10 pm or 7h and 7h 10 min or
			01	420 min and 430 min
424		75	P 1	for $90 \div 6$ (= 15) or for connecting AB and BC by ratio or proportion eq.5 and 1 on the
424		15	11	diagram
			P1	for a complete method to find the length AB eg 90 \div 6 \times 5 (= 75)
			A1	cao
425 (a)	\$ £	2975.79	P1	for process to find total room cost eg 196×14 (= 2744)
	5 2.631		P1	for process to find total wifi cost eg 5×12 (= 60)
	60 31.578		P1	for using exchange rate appropriately (could be used earlier in the question),
	196 103.157			eg "2804" ÷ 1.90 (= (£)1475.789) or 1500×1.90 (= (\$)2850)
	2744 1444.21		P1	for process to find the total cost in \pounds , eg "1475.79()" + 1500
	2804 14/5./89		A 1	or in $\mathfrak{z}, \mathfrak{eg} = 2850 + 2804 \ (= 5654)$
			AI	27/3 10 27/0
			01	
(b)		Statement	CI	Statement about the total price rising
				Way comment that rights will not change but the rest will rise

Question	Working	Answer	Mark	Notes
426		1.01	P1	fruit syrup 15×1.4 (= 21) or water 280×0.99 (= 277.2) or apple juice 25×1.05 (= 26.25)
			P1 P1 A1	(dep P1) for complete process to find the total mass e.g. "277.2" + "26.25" + "21" (= 324.45) or a weighted density eg $15 \times 1.4 \div 320$ (= 0.065625) or $280 \times 0.99 \div 320$ (= 0.86625) or $25 \times 1.05 \div 320$ (= 0.08203125) (dep P2) for complete process to find the density eg "324.45" ÷ 320 (=1.01) or "0.065625" + "0.86625" + "0.08203125" (= 1.0139) 1.01 to 1.014
427		200 000	M1 A1	for recognising that 210 000 = 105% or a full method to find the original price eg 210 000 \div 1.05 oe (= 200 000) cao

Question	Working	Answer	Notes	
428		1230	P1 for start to process eg. 6760 – 3879 – 1241 (=1640)	
			P1 for use of fraction eg. "1640"÷4 or $1 - \frac{1}{4} \left(= \frac{3}{4} \right)$ A1	
429	$2000 \div 5 = 400 2080 - 3 \times 400 = 880 880 \div 4$	400, 220	 B1 for 400 (weight of beans) P1 Process to find total weight of 4 jars of jam P1 Process to find weight of 1 jar of jam A1 	
42:		20	M1 for conversion of km to metres or hours to minutes	
			M1 for conversion of hours to seconds	
			A1 cao	
42; " (a)	550 × 3.5601	1958	M1 550 × 3.5601 A1	
(b)	$210 \div 7 \times 2 = 30 \times 2$	Shown	M1 For correct method to convert cost in UK to lira or vice versa	a,
	Or $60 \div 2 = 30$ and $30 \times 7 = 210$		using Asif's approximation C1 Shown with correct calculations	
(c)		Correct evaluation	C1 For an evaluation e.g. It is a sensible start to the method beca he can do the calculations without a calculator and 3.5 lira to £ is a good approximation	ause o the
232		Have a water meter	P1 Process to find number of litres eg. 180 ÷ 1000	
		(from working with	P1 Full process to find cost per day	
		correct figures)	P1 Full process to find total cost of water used per year (ac	cept
			P1 Full process with consistent units for total cost of water	
			A1 Correct decision from correct figures (88.13154 or corre	ect
			figure for their time period)	

Question	Working	Answer		Notes
233 (a)	$\frac{388-320}{320}$ × 100 =	21.25	M1	For a complete method
			A1	21.25%
(b)	A 388 (million) \div 3200 = £0.12125 million (£121 250) B 57(million) \div 640 =	Company A + evidence	M1 A1	Method to find sales/person for A or B for 2014 £121 250 or £89062.50
	±0.0890625 million (±89062.50)		C1	Company A with £121 250 and £89062.50

Question	Working	Answer	Notes
434		1.75nor 1750 mn	B1 for knowledge of 1 litre is 1000 millilitres P1 for adding their two amounts C1 for 1.75n or 1750 mn(must include units)
435		2	P1 for correct process to find fibre for $400g$ OR to find weight of 1 slice P1 for a complete process to find the fibre per slice A1 cao
436" *c+		3-307	O 3'lhqt'62'∜322 – 62+'qg'qt'307⊰ C3''ecq
*d+		$\frac{3}{4}$	D3
437	5 & ; 'Ö4''? '9 5 :	3;	R3'hqt'72'ö'905: ''"'qt'72'ö'508; '*qt'tgr gcvgf 'cf f kkqp+'' R3'hqt'8'Ö'905: ''- ''508; ''qt'''8,,''Ö'5''- ''3'' C33; ''dqzgu
438	176 tiles 20 packs	Supported statement	P1 finding the number of packs for 10% more tiles or 10% of their number of packs, ft from (a) C1 Statement, eg. increase in packs is 2 more which is more than 10%
439		1.0625	P1 for a complete process to find the density of liquid A, eg $\frac{19}{22} \times 1.1 \ (= 0.95)$ P1 for a complete process to find the mass of liquid C, eg $5 \times 0.95 + 15 \times 1.1$ P1 for a complete process to find the density of liquid C, eg $\frac{21.25}{20}$ A1 cao

Question	Working	Answer		Notes
41:		4.5	B1	cao
43; " (a)		3	P1	start of process eg $8 \times 2 \times 28$ (= 448)
			P1	eg '448' ÷ 200 (= 2.24) or build up method
			A1	cao
(b)		No change with	P1	process to evaluate effect of 2.5g
		reason	C1	explanation that number of jars is unchanged
442		34	M1	for first step in process eg 17×200 (= 3400)
			A1	cao
443		60 litres with	M1	reads from graph, eg $30l = 6.6$ gals or 6 gals =
		evidence	~.	271
			CI	60 litres with sufficient evidence
444		2.70	P1	start of process $1.95 \times 3 (= 5.85)$
			P1	complete process eg $(6.93 - 5.85) \div 0.4$
			AI	cao
445" (a)		20	B1	20 22
		35		$\frac{1}{35}$ be
(h)		3 · 4	M1	15 20
(0)		5.1	A1	cao
		~		
446		Sophie and	P1	process leading to two comparable values eg $75 \pm 15 \times 8$ (= 40) or $56 \pm 100 \times 75$ (=42) or
		values	P1	complete process leading to 3 comparable values
		varaes	C1	correct deduction with correct comparable values
		1		

Question	Working	Answer		Notes
447		171	P1	for process to find one share
			P1	for process to find total
			A1	cao
448" (a)		1.95	M1	method to find one temperature eg $4500 \div 1200$
			M1	for complete method
			A1	cao
(b)		D	B1	cao
249" (a)		36.4	P1	start process eg method to find area of trapezium
			P1	complete process to find volume of tank
			P1	process to find time eg volume \times 1000 \div 300
			P1	process to find 85% of volume or of time
			A1	for 36.4 or 36 mins 24 secs
(b)			CI	explanation eg if the average rate was slower it
				would take more time, if the average rate was
				faster it would take less time

Question	Working	Answer	Mark	Notes
44: " (a)		8	1	B1 7.8 – 8.2
*(b)		No with working	3	M1 for complete method to change 90 gallons to litres e.g. 10 gallons = "45" litres and $9 \times "45" = 405$ (litres) or 9 gallons = "40" litres and $10 \times "40" = 400$ (litres) A1 for answer in range 396 - 414 (litres) or room for 36 - 54(litres) C1 (dep on M1) for conclusion ft their answer. or M1 for complete method to change 450 litres to gallons e.g. 50 litres = "11" gallons and $9 \times "11"$ (= 99 (gallons)) or 45 litres = "10" gallons and "10" × 10 (= 100 (gallons)) A1 for answer in range 99 to 100 (gallons) or room for 9 or 10 (gallons) C1 (dep on M1) for conclusion ft their answer.
44;		485	5	M1 for a method to find weekly basic pay e.g. $7 \times 10 (= 70)$ and " $70^{\circ} \times 5 (= 350)$ M1 for a method to find overtime rate e.g. $10 + 5$ or $1\frac{1}{2} \times 10 (=15)$ M1 for a method to find total overtime pay e.g. $(3 + 2 + 1 + 3) \times "15" (=135)$ M1 for a method to find total pay e.g. " $350" + "135"$ A1 cao or M3 for method to calculate pay per day for 5 days e.g. Mon $70 + 45 (= 115)$, Tues $= 70 + 30 (= 100)$, Wed $= 70$, Thurs $= 70 + 15 (= 85)$, Fri $= 70 + 45 (= 115)$ (M2 for method to calculate pay per day for 3 or 4 days) (M1 for method to calculate pay per day for 1 or 2days except Wednesday) M1 for totalling all five days e.g. " $115" + "100" + "70" + "85" + "115"$ A1 cao or M1 for a method to find overtime hours e.g. $3 + 2 + 1 + 3 (= 9)$ and weekday hours $7 \times 5 (=35)$ M1 for a method to find equivalent time on overtime e.g " $9" + "9" \div 2$ M1 for a method to find total equivalent time e.g. " $13.5" + "35"$ " M1 for a method to find total pay e.g " $48.5" \times 10$ A1 cao SC B2 for answer of 575

Question	Working	Answer	Mark	Notes
*452		Yes	5	M1 for method to calculate profit on one laptop
		(supported)		e.g. 400×0.3 oe (= 120) or 400×0.15 oe (= 60)
				M1 for method to calculate selling price of one laptop
				e.g. 400×1.3 oe (= 520) or 400×1.15 oe (= 460)
				M1 for method to calculate the total selling price in one of the two deals
				$e.g.40 \times 400 \times 1.3$ oe (= 20 800)
				or for $10 \times 400 \times 1.15$ oe (= 4600)
				M1 for total income e.g. "20 800" + "4600"
				C1 for Yes and $(\pounds)25400$ or Yes with $\pounds400$ more
				or
				M1 for a method for the profit on one laptop
				e.g. 400×0.3 oe (= 120) or 400×0.15 oe (= 60)
				M1 for a method for the total profit in one of the two deals
				e.g. $40 \times ``120'' (= 4800)$ or $10 \times ``60'' (= 600)$
				M1 for a method for total profit " 4800 " + " 600 " (= 5400)
				M1 for a method for target profit
				e.g. $25\ 000 - 400 \times 50\ (= 5000)$
				C1 for Yes with (£)5400 and (£)5000 or Yes with £400 more
				or
				M1 for a method for the profit on one laptop
				e.g. 400×0.3 oe (= 120) or 400×0.15 oe (= 60)
				M1 for a method for the total profit for one of the two deals
				e.g. $40 \times (120) = (4800)$ or $10 \times (60) = (600)$
				M1 for $50 \times 400 + 4800$ or $50 \times 400 + 600$ or 4800 or 4800 or 600
				M1 for $50 \times 400 + 4800^{\circ} + 600^{\circ} (= 25400)$
				C1 for Yes and $(\pounds)25\ 400$ or Yes with $\pounds400$ more
253 (a)		40, 100	3	M1 method to find unit weight e.g. $60 \div 3 (= 20)$
				M1 for complete method to find weight of one of the other ingredients e.g "20"
				$\times 2 (= 40)$ or "20" $\times 5 (= 100)$
				A1 cao
(b)		1.44	3	M1 for a complete method to work out the weight of nuts needed
				e.g. $300 \div (3 + 2 + 5) \times 3 (= 90)$
				or $300 \div (60 + "40" + "100") \times 60 \ (= 90)$
				M1 for a complete method to work out the cost
				$eg(800 \div 500) \times "90" (= 144)$
				Al cao

Question	Working	Answer	Mark	Notes
454" (a)		Correct explanation	2	M1 for working out area of triangle (=6) and area of rectangle (=24) or for dividing rectangle into eighths or other comparable areas A1 for explaining that that $24 \div 6$ is 4 or $\frac{2}{8} = \frac{1}{4}$ or that $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ from symmetry of shape
(b)		75	1	B1 cao
455" (a)		1 6	1	B1 cao
(b)		4	2	M1 for 20 ÷ 5 (=4) Allow build up method to 4 lots of 1:5 A1 cao
(c)		6	2	M1 for a full method to find the number of red counters needed eg $20 \div 2 - 4^{\circ}$ A1 ft from (b)
*256		Bathroom Mart and correct figures	4	M1 for $\frac{1}{3} \times 1500 \ (= 500)$ or $\frac{2}{3} \times 1500 \ (= 1000)$ M2 for a correct method to reduce 1500 by 60% and then by a further 15% eg 1500 × "0.4" × 0.85 (= 510) oe (M1 for method to find 60% or 40% of 1500 e.g. $\frac{60}{100} \times 1500 \ (= 900)$ C1 for 510 and 500 with a correct conclusion.

Que	stion	Working	Answer	Mark	Notes
457	(a)	8	42	5	M1 for $300 \times 3 (= 900)$ or $150 \div 3 (= 50)$ M1 (dep) for "900" ÷ 150 (= 6 jars) or $300 \div$ "50" (= 6 jars) M1 for $500 \div 160 (= 4 \text{ boxes})$ M1 for "6" × 4.00 (=24) + "4" × 4.50 (18) A1 cao
	(b)		168	3	M1 for 6 × 30 M1 (dep) for "180" – 12 A1 cao
458	(a)		30	1	B1 cao
	(b)		120	2	M1 for $\frac{15}{100} \times 800$ oe A1 cao

Qu	estion	Working	Answer	Mark	Notes
459	(a)		12	2	M1 for correct first step, eg $37 - 13 (=24)$ or $(37 + 13) \div 2 (=25)$ oe or two weights with a difference of 13 or two weights with a total of 37 A1 cao
	(b)		44 pounds or 20 kg	4	M1 for 30×2.2 (=66) M1 (dep) for $110 - "66"$ (=44) A1 for 44 A1 (dep on first M1) for pounds OR M1 for $110 \div 2.2$ (=50) M1 (dep) for "50" - 30 (=20) A1 for 20 A1 (dep on first M1) for kg
45:			69	4	M1 for finding 15% of £720 (=108) M1 (dep) for finding total of £720 plus interest (=828) or 115% of 720 M1 (dep on previous M1) for dividing by 12 A1 cao OR M1 for finding 720 \div 12 (=60) M1 (dep) for finding 15% of 60 (=9) M1 (dep on previous M1) for adding, eg 60 + 9 (=69) A1 cao
45;			20	3	M1 for $330 \div 120 (=2.75)$ or $200 \div 60 (=3^{-1}/_{3})$ or $450 \div 180 (=2.5)$ M1 for $450 \div 180 (=2.5)$ AND $8 \times 2.5'' (=20)$ A1 cao OR M1 for $120 \div 8 (=15)$ or $60 \div 8 (=7.5)$ or $180 \div 8 (=22.5)$ M1 for $330 \div (120 \div 8) (=22)$ or $200 \div (60 \div 8) (=26.6)$ or $450 \div (180 \div 8) (=20)$ A1 cao OR M1 for multiples of $120:60:180$, eg $240:120:360$ M1 for multiples linked to 450 and $8+8+4$ or scaling 2.5 oe A1 cao

Que	stion	Working	Answer	Mark	Notes
462	(a)		50	1	B1 cao
	(b)		$\frac{3}{8}$	1	B1 cao
	(c)		8 2 squares shaded	1	B1 cao
	(d)		$\frac{2}{8}$ and $\frac{5}{20}$	2	B2 for both correct (B1 for one correct)
*263		$ \begin{array}{c} 1195\\ 4780\\ 5975\\\\ \hline 2 3 9\\ 5 975\\\\ \hline 0 4 0 6 1 8\\ \hline 2 5 9 7 5\\\\ \hline 5 9 7 5\\\\ \hline 2 200 30 9\\ \hline 2 0 000 600 180\\ \hline 5 000 150 45\\ 4000 + 1000 + 600 + 150 + 180 + 45 = 5975\\\\ \end{array} $	Kirsty's Plants with correct calculations	5	M1 for complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation or digits 5975 M1 for a complete method to find 120% of £52.50 A1 for 59.75 and 63(.00) C1 (dep on M2) for correct conclusion for their figures OR M1 for the start of a method to divide £52.50 by 25, eg. 2 rem 2 M1 for a complete method to divide £52.50 by 25, condone one arithmetic error, or digits 21 M1 for a complete method to find 120% of "£2.10" A1 for 2.52 C1 (dep on M2) for correct conclusion for their figures OR M1 for a complete method to find 120% of £52.50 M1 for the start of a method to divide "63" by 25, eg. 2 rem 13 M1 for a complete method to divide "63" by 25, condone one arithmetic error, or digits 252 A1 for 2.52 C1 (dep on M2) for correct conclusion for their figures

Que	stion	Working	Answer	Mark	Notes
464			48	2	M1 for method to find 15% of 320
					Al cao
465			4	3	B1 for 11.8 – 12.2 (cm) or 1180 – 1220 (km)
					M1 for "12" × 100 ÷ 300 oe
					A1 for $3.9 - 4.1$ from correct figures
					or ft from $12^{-1} \times 100 \div 300$ oe
466			25	4	M1 for 600 ÷ 4 (= 150)
					M1 for $4500 \div ``150'' (= 30)$
					A1 for 25 with supporting working
					All for 25 with supporting working
					OR
					M1 for $4500 \div 750 (= 6)$
					M1 for $600 \div 4 (= 150)$ or $600 \div 6'' (= 100)$ M1 for "150" \div "6" or "100" $\div 4$
					A1 for 25 with supporting working
					OR M1 for $4500 \div 750 (= 6)$ or $750 \div 4500 (= \frac{1}{2})$
					$\frac{1}{6} \frac{1}{6} \frac{1}$
					M1 for $\frac{1}{4} \times \frac{1}{6} = \frac{1}{24}$
					M1 for " $\frac{1}{24}$ "×600
					24 A1 for 25 with supporting working
					All for 25 with supporting working

Que	stion	Working	Answer	Mark	Notes
467			25.60	4	M1 for a correct method to find $\frac{1}{3}$ of 24 (=8) or $\frac{2}{3}$ of 24 (=16) M1 for a correct method to find 60% (= 7.2) or 40% (= 4.8) of 12 or 60% (= 14.4) or 40% (= 9.6) of 24 M1 (dep on at least M1) for a method to find the sum of their discounted adult ticket + 2 × their discounted child ticket A1 25.6(0)
*468		$1.18 \div 4 = 0.295$ $(118 \div 4 = 29.5)$ $1.74 \div 6 = 0.29$ $(174 \div 6 = 29)$ $1.18 \div 2 = 0.59$ $1.74 \div 3 = 0.58$ $1.74 \times 4 = 6.96$ $1.18 \times 6 = 7.08$ $1.74 \times 2 = 3.48$ $1.18 \times 3 = 3.54$ $1.18 \div 2 = 1.16$ $4 \div 1.18 = 3.3()$ $6 \div 1.74 = 3.4()$	6 pints	3	M1 for division of price by quantity for both bottles or division of quantity by price for both bottles or a complete method to find the price of the same quantity of milk. A1 for two correct values that could be used for a comparison C1 ft (dep on M1) for comparison of their values with a correct conclusion.
469	(a)		120	2	M1 4 × 30 A1 cao
	*(b)		Tuesday 125 miles > 120 miles 200 km > 192 km	3	M1 for $200 \div 8 \times 5$ or "120" $\div 5 \times 8$ A1 for 125 or 192 or ft from "a" C1 (dep M1) Correct conclusion for their calculated figure with its correct units stated. of "125" <u>miles</u> and "a" miles or " 192" <u>km</u> and 200 km

Que	stion	Working	Answer	Mark	Notes
46:			1.83 m or 183 cm	2	M1 for 178 + 5 or 1.78 + 0.05 or 183 or 1.83 A1 for 1.83 m or 183 cm (units must be correct)
46;	(a) (b)		50	2	M1 for $\frac{6}{8} \times 80$ oe (= 60) or $\frac{1}{8} \times 80$ oe (= 10) (may be seen on gauges eg. 10 by $\frac{1}{8}$ position or 60 by $\frac{6}{8}$ position on either gauge) M1 (dep) for a complete correct method eg."60" – "10" or 5 × "10" A1 for 50 (accept answers in the range 49 - 51) or M1 for $\frac{6}{8} - \frac{1}{8} (= \frac{5}{8})$ M1 (dep) for " $\frac{5}{8}$ "× 80 A1 for 50 (accept answers in the range 49 - 51) M1 for 180 ÷ 15 oe
					Al cao
472			£1.12	3	M1 for use of 1000 g in 1 kg eg. 1000 ÷ 200(=5) ; 200 ÷ 1000(=0.2) oe ; 20% ; 500g costs £2.80 ; 100g costs 56p M1(dep) for a fully correct method eg. 5.60 ÷ "5" (= 1.12) or 56 × 2 A1 £1.12 or 112p

Ques	stion	Working	Answer	Mark	Notes
473			24	4	M1 for 0.15×240 oe (= 36)
					M1 for $\frac{3}{2} \times 240$ or $(= 180)$
					$\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{100}$
					M1 (dep on both prev M1) for 240 – "180" – "36"
					A1 cao
					OR
					$M_{1} = 15(0/) + 75(0/) (-00(0/))$
					M1 for 10(%) + 7(%) (-90(%)) $M1 for 100(%) = (00%)(%) (-10(%))$
					M1 (1 - 1 + 1 - 1) (1) (-10(76))
					M1 (dep on both prev M1) for $\frac{1}{100} \times 240$ oe
					A1 cao
					OD.
					OR
					M1 for $0.15 + 0.75$ oe(= 0.9)
					M1 for " 0.9 " × 240 oe (= 216)
					M1 (dep on both prev M1) for $240 - 216$
					A1 cao
					OR
					M1 for 0.15 ± 0.75 or $(=0.9)$
					M1 for $1 - 0.9$ or $(= 0.1)$
					M1 (dep on both prev M1) for " 0.1 " × 240 = 24
					A1 cao

Qu	estion	Working	Answer	Mark	Notes
*474	(a)		20 45	1	B1
	(b)	Example of figures for comparison 7min 30 sec with 7 min 28 secs 3 mins 43 secs with 3mins 45 secs 224 secs with 225 secs 3mins 44 secs with 3 mins 45 secs	No	3	M1 for doubling Seeta's time or halving Ninal's time or finding the difference between the two times Eg 3 min 45 sec \times 2 or (7m 28s) \div 2 or 7m 28s-3min 45 secs M1 for a complete method to convert their time(s) to common units with the units stated C1 for No and correct figures compared (could be in secs or mins and secs)
475	(a)		32	2	$\begin{array}{ccc} M1 & \text{for} & 4 \times 5 + 12 \text{ oe} \\ A1 & \text{cao} \end{array}$
	(b)		7	3	M1 for $40 - 12$ or 28 seen M1 (dep) for '28' \div 4 A1 cao OR M1 for $12 + 4 + 4 +$ M1 for $12 + 7 \times 4$ oe A1 cao OR M1 for $12 + 4x = 40$ oe M1 for $12 + 4x = 40$ oe M1 for $4x = 40 - 12$ oe A1 cao NOTE: A correct embedded answer scores M2 A0
					OR M1 ft for '32' + 4 or 40-'32' M1 ft for 5 + 1 oe A1 ft Note: Do not follow through from part a an answer of 40

Que	stion	Working	Answer	Mark	Notes
476	(a)		8	1	B1 for 8 (.00)
	(b)		550	4	M1 for $600 - 200 (= 400)$ M1 for correct method to convert '\$400' to £ M1 (dep on the previous M1) for $800 - $ '\$400' in £s A1 for value in the range 540 -560
					OR M1 for correct method to convert \$600 and \$200 to pounds M1 for '375'-'125' M1 (dep on the previous M1) 800 -'250' A1 for a value in the range 540-560
					OR M1 for correct method to convert £800 to dollars M1 for '1280' + 200 – 600 M1 (dep on the previous M1) for attempt to convert '\$880' back to £ A1 for value in the range 540 – 560
477			required region	4	 M1 arc radius 5 cm centre C M1 bisector of angle BAD M1 line 3 cm from DC A1 for correct region identified (see overlay)

Question	Working	Answer	Mark	Notes
478		730	5	M1 for $\frac{5}{100} \times 200$ (= 10) oe M1 for $\frac{10}{100} \times 350$ (= 35) oe M1 for $6 \times 10^{\circ}$ or $4 \times 35^{\circ}$ M1 (dep on M1 earned for a correct method for a percentage calculation) for $60^{\circ} + 140^{\circ} + 530^{\circ}$ A1 cao Or M1 for $6 \times 200(= 1200)$ or $4 \times 350(= 1400)$ M1 for $\frac{5}{100} \times 1200^{\circ} = 60$ oe M1 for $\frac{10}{100} \times 1400^{\circ} = 140$ oe M1 (dep on M1 earned for a correct method for a percentage calculation) for $60^{\circ} + 140^{\circ} + 530^{\circ}$ A1 cao
479		240	4	M1 for 16×2 (= 32 girls) M1 for $16 + '16 \times 2'$ (= 48) M1 (dep on the previous M1) for $(16 + '32') \times 5$ or $(16 + '32') \times (4 + 1)$ A1 cao OR M1 for $1 : 2 = 3$ parts M1 for 5 schools $\times 3$ parts (= 15 parts) M1 (dep on the previous M1) for '15' parts $\times 16$ A1 cao SC B2 for 176 given on the answer line

Qu	estion	Working	Answer	Mark	Notes
47:	(a)		$\frac{3}{5}$	2	B2 cao (B1 for $\frac{9}{15}$ oe) [SC: B1 for an answer of $\frac{2}{5}$]
	(b)		0.9	1	B1 for 0.9 or 0.90 or .9
	(c)		No + reason	1	B1 for no and 0.75 or 80% or $\frac{75}{100}$ and $\frac{80}{100}$
47;	(a)		32	1	B1 cao
	(b)	e.g. $$20 = \pounds 12.50$ $$100 = 5 \times \pounds 12.50 = \pounds 62.50$ $\pounds 62.50 - 60 = \pounds 2.50$	£2.50 OR \$4	3	 M1 for a correct method to convert \$100 to £, e.g. 5× '12.50' (= 62.50) ('12.50' is their reading from the graph at \$20) M1 (dep) for '62.50' - 60 A1 for £2.5(0) (units" o ust be stated) OR M1 for cottect method to convert £60 to \$, e.g. 3×32 (=96) or ft their answer to part (a) M1 (dep) or 100 - '96' A1 for \$4 units must be stated)

Question	Working	Answer	Mark	Notes
482	$\frac{1}{2} \times 60 = 30, 30 \times 5 = 150$ $\frac{1}{3} \times 60 = 20, 20 \times 4 = \text{\pounds}80$ $3 \times 60 = 180$ $180 + 75 - 150 - 80 = \text{\pounds}25$ 10 bags (i.e. 60 - 30 - 20) sold for 25 $25 \div 10 = 2.50$	2.50	4	M1 for $\frac{1}{2} \times 60 \times 5$ (=150) or $\frac{1}{3} \times 60 \times 4$ (=80) M1 (dep on 1st M1) for $3 \times 60 + 75 - `150' - `80'$ oe (=25) M1 (dep on previous M1) for `25'÷($60 - `30' - `20'$) A1 for 2.50 (accept 2.5)
	OR $\frac{1}{2} \times 60 = 30, 30 \times \pounds 2 = \pounds 60 \text{ profit}$ $\frac{1}{3} \times 60 = 20, 20 \times \pounds 1 = \pounds 20 \text{ profit}$ $60 + 20 = \pounds 80$ 80 - 75 = 5 loss on 10 bags (i.e. 60 - 30 - 20) $10 \times \pounds 3 = \pounds 30$ $30 - 5 = \pounds 25$ $\pounds 25 \div 10 = \pounds 2.50$			M1 for $\frac{1}{2} \times 60 \times 2$ (=60) or $\frac{1}{3} \times 60 \times 1$ (=20) M1 (dep on 1st M1) for $(60 - `30' - `20') \times 3 - (`60' + `20' - 75)$ oe (=25) M1 (dep on previous M1) for `25'÷(60 - `30' - `20') A1 for 2.50 (accept 2.5)

Question	Working	Answer	Mar	k Notes
483	e.g. 41 - 21 (=20) $49 - 10 - 20 (=19)$ $16 + 19 = 35$ OR $(100 - 49) - (16 + 21) (=14)$ $14 + 10 (=24)$ $100 - (41 + 24) = 35$ $\boxed{\frac{w \ b \ c}{Boys \ 16 \ 21 \ 14}}$ $\boxed{\frac{Boys \ 16 \ 21 \ 14}{Girls \ 19 \ 20 \ 10}}$	35 51 49 100	4	M1 for $41 - 21 (= 20)$ or M1 for $49 - 10 - 20' (= 19)$ M1 for $16 + 19'$ A1 cao OR M1 for $100 - 49 (=51)$ M1 for $51' - 21 - 16 (= 14)$ and $14' + 10 (= 24)$ M1 for $100 - (41 + 24')$ A1 cao NB working may appear in table or diagram
484	180×1.5 40×1.5 110×1.5 30×1.5	Flour = 270 Ginger = 60 Butter = 165 Sugar = 45	3 N 	M1 for $\times 24 \div 16$ oe or 24/16 or 1.5 seen or 180 + 90 (=270) or 40 +'20 (=60) qt 110 + 55 (=165) or 30 + 15 (=45) or sight of any one" of the correct answers A2 for all 4 correct answers (A1 for 2 or 3 correct answers)
485		Region shaded	3 H H H	 hqt"ekterg"cte"qh"tcf kwu"5eo *2 "40 o +"egpvtg"Dwthqtf " for circle arc of radius 5em (± 2mm) centre Hightown for overlapping regions of circle arcs shade

Question	Working	Answer	Mark	Notes
486*	180÷9×1:180÷9×3:180÷9×5	No + reason	4	M1 for $180 \div (1+3+5)$ (=20) or 3 multiples of 1: 3: 5
	=20:60:100			M1 for $1 \times 20^{\circ}$ or $3 \times 20^{\circ}$ or $5 \times 20^{\circ}$ or 20 seen or 60 seen or
	Not enough cement			100 seen
	(but enough sand and enough			A1 for (Cement=) 20, (Sand=) 60, (Gravel=) 100
	gravel)			C1 ft (provided both Ms awarded) for not enough cement oe
	OR			OR
	1×15:3×15:5×15 =15:45:75 15+45+75=135 (<180) Not enough cement (to make 180kg of concrete)			M1 for $(1 \times 15 \text{ and}) 3 \times 15 \text{ and } 5 \times 15$ or 9×15 or sight of the numbers 15, 45, 75 together. M1 for $(15' + (45' + (75' + (75' + (75' + (135' + $

Question	Working	Answer	Mark	Notes
487*	S: $35 \div 100 \times 40 = 14$ W: $40 \div 8 \times 3 = 15$ OR D: $16 \div 40 (\times 100)$ = 0.4 (40%) W: $3 \div 8 (\times 100)$	Debbie and correct calculations	4	TrocesCompares Marks out of 40 or fractions with denominator of 40M1for $35 \div 100 \times 40$ oeor 14 seen(or 14/40 seen)M1for $40 \div 8 \times 3$ or 15 seen(or 15/40 seen)A1for 14 and 15or $\frac{14}{40}$ and $\frac{15}{40}$ C1(dep on M1) for correct conclusion for their working QWCwith 3 comparable marks:Decision and justification should be clear with working clearlypresented and attributable.OR Decimals (or Percentages)M1for $16 \div 40$ (× 100) oeor0.4(or 40) seenM1for $3 \div 8$ (× 100) oeor0.375(or 37.5) seen
	$= 0.375 (\times 100)$ $= 0.375 (37.5\%)$ OR			 A1 for 0.4 and 0.375 (or 40 and 37.5) C1 (dep on M1) for correct conclusion for their working QWC: with 3 comparable decimals (or percentages: Decision and justification should be clear with working clearly presented and attributable. OR Compares Fractions with denominator other than 40
	D: $\frac{16}{40} = \frac{80}{200}$			M1 for attempt to convert all to fractions with a common denominator other than 40
	S: $\frac{35}{100} = \frac{70}{200}$ W: $\frac{3}{8} = \frac{75}{200}$			M1 for at least 1 correct A1 for $\frac{80}{200}$ and $\frac{70}{200}$ and $\frac{75}{200}$ oe C1 (dep on M1) for correct conclusion for their working QWC
				with 3 comparable fractions: Decision and justification should be clear with working clearly presented and attributable.

Qu	lestion	Working	Answer	Mark	Notes
488	(a)		30	2	M1 for $25 \div 10$ or 2.5 seen or $10 \div 25$ or 0.4 seen or $12+12+6$ oe or a complete method eg. $25 \times 12 \div 10$ oe A1 cao
	(b)	1000 ÷ 200 × 12	60	2	M1 for 500 ÷ 50 or 1000 ÷ 200 or 500 ÷ 10 or correct scale factor clearly linked with one ingredient eg 10 with sugar or 5 with butter or flour or 50 with milk or an answer of 120 or 600 A1 cao

Questi	ion	Working	Answer	Mark	Additional Guidance
267 QWC i, ii, iii		50 shirts at £12 each = £600 Selling Price for profit of 30% = £12 \times 1.3 = £15.60 20 shirts at £15.60 = £312 Reduced selling price = £15.60 \times 0.85 = £13.26 30 shirts at £13.26 = £397.80 £397.80 + £312 \geq £600	Yes, together with appropriately set out working which supports answer	8	B1 for price of 50 shirts M1 for £12 \times 1.3 A1 for £15.60 A1 for 20 shirts = £312 M1 for £15.60 \times 0.85 A1 for £13.26 A1 for 30 shirts = £397.80 C1 Yes stated together with a statement which supports the correct answer QWC: With clear working attributed correctly
		1		<u>L</u>	Total for Question: 8 marks
268. FE	(a)	48 + 37 + 78 + 21 = 184 184 × 40 = 7360 4 × 12 = 48 73.60 + 48	£121.60	4	M1 find the total miles M1 total miles × 40 or \$ 0.4(0) M1 mileage expenses + 4 × 12 or + 5 × 12 A1 cao
	(b)	$2000 \div 50 = 40$ $4000 \div 40 = 100$ OR $2000 \div 0.4 = 50000$ $50000 \# 50 = 100$ OR $0.4 \times 50 = 20$ $2000 \div 20 = 100$	100	3	M1 for sight of 2000 , or 50, or 20000 M1 dep for an attempt to find cost per week or mileage per year A1 100 OR M1 sight of 2000, or 50 M1 dep 0.4 × 50 and 2000 ÷ '20' A1 100
					Total for Question: 7 marks

Question	Working	Answer	Mark	Additional Guidance
269. QWC ii, iii	$\frac{1}{2} = \frac{4}{8}; \frac{1}{4} = \frac{2}{8}$ So $\frac{3}{8}$ is half way OR use of 0.5 and 0.25 to get 0.375 and compare to 0.33 OR $\frac{1}{2} - \frac{1}{3} = \frac{1}{6}$ and $\frac{1}{3} - \frac{1}{4} = \frac{1}{12}$ followed by conclusion OR use of 0.5 and 0.25 and differences of 0.5 - 0.33(3,) and 0.33(3) - 0.25	Coherent and well structured argument with appropriate reason	3	M1 to change both fractions to equivalent fractions M 1(dep on at least one correct equivalent fraction) to find midpoint C1 conclusion following correct work by stating that $\frac{3}{8}$ is not equal to $\frac{1}{3}$ QWC: Decision should be stated with supporting reason given OR M1 use of 0.5 and 0.25 M1 (dep on at least correct decimal one find midpoint) C1 conclusion following correct work and sight of 0.37(5) and 0.33(3) QWC: Decision should be stated with supporting reason given OR M1 for working out differences M1 For a correct method of calculating differences of fractions using equivalent fractions C1 conclusion following from $\frac{1}{6}$ and $\frac{1}{12}$ QWC: Decision should be stated with supporting reason given OR M1 for working out differences M1 for a correct method of calculating differences of fractions using equivalent fractions C1 conclusion following from $\frac{1}{6}$ and $\frac{1}{12}$ QWC: Decision should be stated with supporting reason given OR M1 for working out differences M1 for a correct method of calculating differences of fractions using equivalent fractions C1 conclusion following from $\frac{1}{6}$ and $\frac{1}{12}$ QWC: Decision should be stated with supporting reason given OR M1 use of 0.5 and 0.25 M1(dep on at least one correct decimal) for working out differences C1 for conclusion based on 0.17(or better) and 0.08(23) QWC: Decision should be stated with supporting reason given

Question	Working	Answer	Mark	Notes
*492		Liz is wrong (supported)	4	 M1 for adding the 4 times eg 2 × 1 min + 2 × 45secs (= 3 min 30 sec or 210 sec) M1 for 60 ÷ "3.5" (= 17.14) oe or 200 ÷ 10 (= 20) M1 for complete method leading to comparable figures eg. compares no. trips: 60 ÷ "3.5" (=17.14) and 200÷10 (20) compares no. people: 60÷ "3.5" (=17.14) then ×10 (=171.4) [200 given] compares tot. time needed: 200÷10 (=20) then × "3.5" (=70) [60 min given] compares time per trip 200÷10 (=20) then 60 ÷ "20" (= 3) ["3.5" calculated] C1 for statement that Liz is wrong with correct comparable figures (see above) NB: throughout accept rounding of 17.14 to 17 for all marks, and work in seconds if consistent.
*493		Yes with comparable values	3	M1 for method to change 14 ft 4 in to in eg $14 \times 12 + 4$ (= 172) M1 for method to convert an amount of in to cm eg "172" × 2.54 (= 436.(88) or 437), 4 × 2.54 (=10.16), (12 × 14) × 2.54 (=426.72) C1 for Yes with 4.36-4.37 or with 436.(88) or 437 and 440 OR M1 for method to convert 4.4 m to cm eg 4.4×100 (= 440) M1 for method to convert cm to in eg $440 \div 2.54$ (= 173.22) C1 for Yes with 14 ft 5 in OR M1 for method to convert 4.4 m to cm eg 4.4×100 (= 440) M1 for method to convert 4.4 m to cm eg 4.4×100 (= 440) M1 for method to convert 4.4 m to cm eg 4.4×100 (= 440) C1 for Yes with 14 ft 5 in OR
494		6.29	3	M1 for using $1 \text{kg} = 1000 \text{ g}$, eg $650 \div 1000 (= 0.65)$ M1 complete method, eg " 0.65 " × $9.68 \text{ or } 9.68 \div 1000 \times 650 \text{ or for } 6.292$ A1 for 6.29, accept 6.3(0) SC: B1 for 62.92

Question	Working	Answer	Mark	Notes
495		555	3	M1 for recognising that 1295 is 70% eg 70% = 1295 M1 for 10% = 1295 ÷ 7 (=185) or 1% = 1295 ÷ 70 (=18.5) or 1295 × $\frac{3}{7}$ oe or (1295 – 185) ÷ 2 or 1295× $\frac{10}{7}$ oe (=1850) A1 cao
496	£: $189 \div 1.39 = 135.97$ $174 \div 1.27 = 137.01$ SF: $115 \times 1.39 = 159.85$ $174 \div 1.27 \times 1.39 = 190.44$ €: $115 \times 1.27 = 146.05$ $189 \div 1.39 \times 1.27 = 172.68$	London with correct comparable figures	3	M1 for method to convert one price to another currency, eg 189 ÷ 1.39 M1 for a complete method leading to 3 prices in the same currency or to figures that can be used to compare the 3 prices A1 for London and correct comparable figures. (accept rounded or truncated to the nearest unit)
497		23	3	M1 for method to find difference in cost, eg $23 \times 24 - 425$ (= 127) or for $425 \div (23 \times 24)$ (= 0.7699) or $24 - (425 \div 23)$ (=5.52) M1 for $\frac{"127"}{"552"} \times 100$ oe or $100 - "0.7699" \times 100$ or $\frac{"5.52"}{24} \times 100$ A1 for answer in range $23 - 23.01$

Question	Working	Answer	Mark	Notes
498" (a)		50	2	M1 for 1 kg = 1000g or $1 \div 20$ (=0.05)
				A1 cao
(b)		70	3	M1 for $5000/20$ (=250) or for 250 /100 (= 2.5) or for $5000/2000$ (=2.5)
				$\begin{array}{c} \text{M1 Iol} \ 28 \times \ 2.5 \\ \text{A1 cao} \end{array}$
				Note: calculations may be carried out in kg or in g
499" (a)		61	2	M1 for a complete method eg $7 \times 8 + 5$
				A1 cao
(b)		3	3	M1 for $29 - 5$ (=24) or for $8z + 5 = 29$
				M1 for "24" \div 8 or for 8z = 24
				A1 cao
49: " (a)		66	I	B1 for $65 - 67$
		125	2	M1 for complete method using graph of 50 surge = $f(4)$: $f(4) \times f(4)$
(0)		123	2	N11 for tot complete method using graph eg 50 euros – ± 42 ; 42×3
				A1 101 122 - 120
			l	

Question	Working	Answer	Mark	Notes		
29; " (a)		25	1	B1 cao		
*(b)		yes with correct comparative figures	3	M1 for method to calculate journey time travelling at 30 mph, eg $\frac{20}{30}$ (=0.66) or 40 (mins) M1 (dep) for method to work out arrival time at home, (consistent units), eg 18 10 + "40 mins" (=18 50) C1 for yes with comparison of 40 minutes with 50 minutes or stating arrival time home as 18 50 OR M1 for method to calculate speed in order to get home by 1900 eg $20 \div \frac{50}{60}$ (= 24 mph) M1 (dep) for stating speed as 24 mph C1 for yes with supporting calculations showing speed as 24 mph		

Question	Working	Answer	Mark	Notes
4:2		6 : 5	4	M1 for $\frac{2}{3} \times 165$ oe (= 110) [black counters]
				M1 (dep M1) for $\frac{40}{100}$ × "110" oe (=44) [where 110 is their black counters]
				M1 (dep M2) for (110 – "44") : 55 or 66 : 55 or a reversed ratio
				A1 cao
				OR
				M1 for 2 : 1
				M1 for $2 \times 1 = 0.4^{\circ}$ or 1.2
				M1 (dep M2) for 1.2 : 1
				AI cao
				M1 for correct method to find proportion of black counters left in the bag
				eg $\frac{60}{100} \times \frac{2}{3} \ (= \frac{120}{300})$
				M1 for correct method to find proportion of white counters in the bag ie $\frac{1}{3}$ oe
				M1 (dep M2) for correct method to find ratio after
				$eg "\frac{120}{300}": "\frac{1}{3}"$
				A1 cao

Question	Working	Answer	Mark	Notes
4: 3" (a)		$\frac{7}{10}$	1	B1 cao
(b)		12 squares shaded	1	B1 for 12 squares shaded
(c)		64	3	M1 for $80 \div 5 (= 16)$ M1 (dep) for $80 - ``16"$ or $``16" \times 4$ A1 cao OR M1 for $1 - \frac{1}{5} (= \frac{4}{5})$ M1 (dep) for $``\frac{4}{5}" \times 80$ A1 cao
4:4 (a)		24	3	M1 for using $1 \text{ kg} = 1000 \text{ g}$ M1 for dividing "5.4kg" by 450g or $10 \times 450 + 900 = 5400$ or $10 + 2 = 12$ oe A1 cao NB: Candidates can work in kg and/or g
*(b)		No and explanation	4	M1 for a correct first step eg 90 + 30 (= 120) eg 5.4 × 20 (= 108 or 1h 48 m) M1(dep) for a complete method to get 6 18 pm or 212 pm or 228 or 3h 48m A1 for 618 pm or 212 pm or 228 and 210 or 18 or 3h 48m and 3h 30m C1 ft (dep on M2) for correct decision based on their figures

Question	Working	Answer	Mark	Notes			
4:5 (a)		20.3	2	M1 for $\frac{50}{1.57^2}$ oe A1 for answer in range 20.2 to 20.3			
(b)		68.04	2	M1 for $(m =) 1.8^2 \times 21$ oe A1 cao			
(c)		2.61	3	M2 for a complete method to find 145% of 1.8, eg. $\frac{145}{100} \times 1.80$ oe (M1 for a method to find 45% of 1.8, eg. $\frac{45}{100} \times 1.80$ (= 0.81) or for a multiplication factor of 1.45) A1 cao			
2:6		42.28	5	 M1 for method to find weekly mileage eg. 18 × 2 × 5 (= 180) or weekly car park charge, eg. 3.50 × 5 (= 17.50) M1 for method to find fuel used in a relevant journey eg. 180 ÷ 45.2 (= 3.9823 gallons) or 18 ÷ 45.2 (= 0.39823 gallons) M1 for a correct use of the conversion factor to convert between gallons and litres eg. "3.9823"× 4.546 (= 18.1 litres) or "0.39823" × 4.546 (= 1.81 litres) or 1.369 × 4.546 (= 6.22£/gallon) or 45.2 ÷ 4.546 (= 9.942 miles/litre) M1 for a method to find the cost of a relevant journey eg. "18.1" × 1.369 (= 24.78) or "1.81" × 1.369 (= 2.478) or "3.9823" × "6.22." (= 24.78) A1 for answer in the range 42.26 to 42.3(0) NB candidates could work in litres or in gallons and/or could work in £ or p 			

Table for use in Question 2: 6

Journeys in miles	Fuel used in gallons; miles ÷ 45.2	Fuel used in litres, gallons × 4.546	Cost of journey in £, litres \times 1.369 or gallons \times 6.22
18	0.398	1.81	2.478
36	0.796	3.62	4.956
90	1.991	9.05	12.39
180	3.98	18.1	24.78
252	5.57	25.3	34.69

Que	estion	Working	Answer	Mark	Notes
4: 7	(a)		$\frac{3}{7}$	1	B1 cao
	(b)		2 squares shaded	1	B1 cao
	(c)		150	2	M1 200 \div 4 × 3 or 0.75 × 200 oe A1 cao
	*(d)		Explanation	2	C2 for a full explanation, eg answer given as 4/35 or "He subtracted 3/5 from a fraction less than 1 so the answer must be less than 1" (C1 for a partial explanation, eg use of a suitable common denominator or "He should have used a common denominator")
4:8			3.2 m - 5 m	3	M1 man's height seen as $1.6 \text{ m} - 2 \text{ m}$ oe or $5 \text{ ft} 3 \text{ in} - 6 \text{ ft} 7 \text{ in}$ oe M1 for 2 to $2.5 \times$ 'man's height' A1 for $3.2 \text{ m} - 5 \text{ m}$ oe or $10 \text{ ft} 6 \text{ in} - 16 \text{ ft} 6 \text{ in}$ oe (units needed)
4:9	(a)		2:3	1	B1 cao
	(b)		$\frac{3}{5}$	2	M1 ft for adding the numbers in their ratio to get an acceptable total AND using this as their denominator eg $4 + 6 = 10$ or 2 + 3 = 5 A1ft $\frac{3}{5}$ oe

Que	stion	Working	Answer	Mark	Notes
4::	(a)		15 minutes	2	B1 15 B1 (indep) minutes
	(b)		3 05	2	M1 for intention to add 10 minutes and 55 minutes to 2 o'clock A1 3 05 oe
	*(c)		No with reason	2	M1 for a method to add 75 minutes to '3 05' or to work out the difference between '3 05' and 4 pm or to subtract 75 minutes from 4 pm C1(dep M1) for conclusion based on appropriate working and correct time calculations, ft from (b)
4:;	(a)		12.5	1	B1 cao
	(b)		500	2	M1 for a complete method to find $\frac{5}{6}$ of 600 or 600 ÷ 6 (= 100) A1 cao
*4; 2			65 km is not enough	4	M1 for intention to add the four distances M1 for adding with consistent and correct use of units A1 65(km) oe [can work in other units eg metres] C1 (dep on M2) correct conclusion comparing their figure to 70 with supporting working eg $18.2+14.25+20.5+12.05 = 65$ km or $18+14+20+12 = 64$; $0.2+0.25+0.5+0.05 = 1$; $64+1 = 65$ km
4; 3			4	3	M1 for method to find 6% of 2000 (= 120) M1 (dep) for 480 ÷ '120' or for repeated addition of '120' to 480 A1 cao
2;4			Loci drawn	3	B1 line parallel to <i>BC</i> and 3 cm from <i>BC</i> B1 arc drawn centre <i>C</i> with radius 4 cm B1 ft for shading a region below their horizontal line and inside their arc

Que	stion	Working	Answer	Mark	Notes
4; 5			36	4	M1 for $\frac{3}{5} \times 240$ (= 144) M1 for $\frac{1}{4} \times 240$ (= 60) M1 (dep on M2) for 240 - ('144' + '60') A1 cao OR M1 for $\frac{3}{5} + \frac{1}{4}$ or $\frac{17}{20}$ oe M1 for 1 - ' $\frac{17}{20}$ ' (= $\frac{3}{20}$) or ' $\frac{17}{20}$ ' × 240 (= 204) M1 (dep on M2) for ' $\frac{3}{20}$ ' × 240 or 240 - '204' A1 cao
4;6	(a)		360	2	M1 $30 \div 10 (= 3)$ or $120 \div 10 (=12)$ or $120 + 120 + 120$ oe A1 cao
	(b)		25	2	M1 for $\frac{750}{300}$ (=2.5) oe A1 cao
4; 7			2.10 euros or £1.81	3	M1 for $2.5 \times 1.16 (= 2.9)$ M1 (dep) for $5 - ``2.9" (=2.1)$ A1 for 2.1(0) euros OR M1 for $5 \div 1.16 (= 4.31)$ M1 (dep) for ``4.31" - 2.50 (=1.81) A1 for £1.81

Question	Working	Answer	Mark	Notes
*2; 8		Decision (No the attendance target was not met)	3	M1 for attempting to find total number of students or 1210 seen M1 for $\frac{'1092'}{'1210'} \times 100$ oe or $\frac{'118'}{'1210'} \times 100$ oe C1 for correct decision with 90.(2479) or correct decision with 6 and 9.(752) OR M1 for attempting to find total number of students or 1210 seen M1 for $\frac{94}{100} \times '1210'$ oe C1 for correct decision with 1137 (.4) and 1092 or correct decision with 72(.6) and 118 OR M1 for a correct % method for one year, e.g. $\frac{192}{208} \times 100$ or $\frac{94}{100} \times 208$ M1 for a correct % method for each year C1 for correct decision with 92.(30), 90.(87), 89.(31), 89.(27), 89.(91) or 195(.5), 226.(9), 246.(2), 245.(3), 223.(7)

Qu	Question Working		Answer	Mark	Notes	
4; 9	(a)			C and D	1	B1 cao
	(b)(i)			F	2	B1 cao
	(b)(ii)			2		B1 cao
4;:	(a)			2600	1	B1 for 2600
	*(b)	£100 3700 rand Computer Watch Camera	1300 rand £285 4680 rand 5200 rand 4875 rand	computer, camera	3	M1 for method to convert 3700 rand into £ or for changing one amount in pounds into rand M1 for a complete method to compare total money Simon has with the cost of each item C1 (dep M2) for correct conclusion with correct figures e.g.£383 - £386 or 4950 rand to 5050 rand
4;;				237 600	4	M1 for one multiplication involving two numbers from (1500 or 8 or 60) or 90 000 or 480 or 12 000 given M1 for 1500 × 8 × 60 (= 720 000) M1 for multiplying their number of cans by 330 and dividing by 1000 A1 cao Note these operations can be applied in any order SC B2 if M0 scored for digits 2376

Question	Working	Answer	Mark	Notes
*522		$\frac{2}{3}$	3	M1 for attempting to write at least two fractions expressed with a common denominator with at least one of the two fractions correct A1 for three correct fractions with suitable common denominator C1 (dep M1) for correct conclusion from comparison of their three OR
				M1 for writing at least two of the fractions as decimals ie $\frac{2}{3}$ as
				0.66() or 66(.6)%, $\frac{7}{8}$ as 0.87(5) or 87.(5)%, $\frac{3}{4}$ as 0.75 or 75%
				A1 for three correct decimals or percentages C1 (dep M1) for correct conclusion from comparison of their three OR
				M1 for finding two fractions of the same number
				e.g. $\frac{2}{3}$ of 48 or $\frac{7}{8}$ of 48 (may be implied by shading a fraction of a
				rectangle divided into e.g. 48 parts)
				A1 for three correct values or three correct diagrams with shading C1 (dep M1) for correct conclusion from comparison of their three OR
				M1 for attempting to find the difference between $\frac{3}{4}$ and $\frac{2}{3}$ and
				between $\frac{3}{4}$ and $\frac{7}{8}$ at least one pair of fractions expressed with a
				suitable common denominator and at least one of the two fractions correct
				A1 for $\frac{1}{12}$ and $\frac{1}{8}$ or 0.08(333) and 0.12(5)
				C1 (dep M1) for correct conclusion from comparison of the 2 differences.

Question	Working	Answer	Mark	Notes
*523		Tuesday and Friday	3	M1 for $179 \div 12$ or $162 \div 12$ or $170 \div 12$ or $143 \div 12$ A1 for $14.9(166)$ or 15 and 13.5 or 14 and $14.1(66)$ or 15 and $11.9(16)$ or 12 C1 (dep M1) ft for comparison of their results for all the days with the number of teachers available leading to a correct statement Or M1 for $179 \div 15$ or $162 \div 13$ or $170 \div 14$ or $143 \div 12$ A1 for $11.9(3)$ or 12 and $12.4(6)$ or 13 and $12.1(4)$ or 13 and $11.9(1)$ or 12 C1 (dep M1) ft for comparison of their results for all the days with 12 leading to a correct statement Or M1 for 15×12 or 13×12 or 14×12 or 12×12 A1 for 180 and 156 and 168 and 144 C1 (dep M1) ft for comparison of their results for all the days with the number of students taking part leading to a correct statement

Question	Working	Answer	Mark	Notes
524" (a)		$\frac{5}{9}$	1	B1 for $\frac{5}{9}$ oe
(b)		3 squares shaded	1	B1 for any 3 squares shaded
(c)		80	2	M1 for $120 \div 3 (= 40)$ or $2 \times 120 (= 240)$ or $\frac{2}{3} \times 120$ oe A1 cao
525		1.9 km or 1900 m	3	M1 for 1.25 × 1000 (= 1250) or 650 ÷ 1000 (= 0.65) M1 for "1250" + 650 or 1.25 +"0.65" A1 for for 1.9 km or 1900 m
526	80 litres \approx 18 gallons or 16 gallons \approx 72 litres	A with correct figures	3	M1 for reading from the graph eg. 8 gallons = 36 litres; 20 litres = 4.4 gallons M1 for a complete method to convert either 80 litres into gallons or 16 gallons into litres e.g. 80 litres = " 4.4 " × 4 gallons or 16 gallons = " 36 " × 2 litres A1 for car A with correct figures in range 17.5 –18.5 gallons or 64 – 72 litres
527		7	4	M1 for 1800×36 or 1800×2.54 or 36×2.54 M1 for $1800 \times 36 \times 2.54$ (=164 592) M1 (dep on M1) for a complete method e.g. $1800 \times 36 \times 2.54 \div 100 \div 245$ (= 6.71) A1 for 7 with correct working OR M1 for 245×100 (=24 500) M1 for "24500" $\div 2.54 \div 36$ (=267.93) M1 for $1800 \div "267.93"$ (=6.71) A1 for 7 with correct working
528		6.45	5	M1 for $110 + 12 \times 16.80 (= 311.6)$ M1 for 0.15×359 oe $(= 53.85)$ M1 (dep on previous M1) for $359 - "53.85"$ oe $(= 305.15)$ M1 (dep on M3) for "311.6" - "305.15" A1 for 6.45 from correct working

Question	Working	Answer	Mark	Notes
*529		No with correct figure	3	M1 for a calculation which uses the Time \times Speed = Distance relationship OR a conversion of units eg between hours & minutes or between mph & miles per min
				C1 for "no" with a correct calculation, with units, from working: $25.2 - 25.8$ minutes, $30.1 - 30.8$ miles, $69 - 69.3$ mph
				Distance \div speed: 30 \div 70 (= 0.42 - 0.43); Distance \div time: 30 \div 26 (= 1.15); Speed \times time: = 70 \times 26 (=1820 mins) Mph to miles/min 70 \div 60 (=1.16-1.67); Minutes to hours is 26 \div 60 (= 0.43) NB 70 \div 26 \times 30 as a single stage calculation gets 0 marks

Question	Working	Answer	Mark	Notes
52:		5%	2	(uses percentages) M1 for $30 - 25 (= 5)$ or $25 - 30 (= -5)$ A1 for 5% oe OR (uses decimals) M1 for or $0.3 - 0.25$ or $0.25 - 0.3 (= -0.05)$ A1 for 0.05 OR (uses fractions) M1 for $\frac{30}{100} - \frac{1}{4}$ or $\frac{1}{4} - \frac{30}{100} (= -\frac{5}{100})$ A1 for $\frac{5}{100}$ oe OR (uses trial value, eg 60) M1 for $0.3 \times 60 - 0.25 \times 60 (=3)$ or $0.25 \times 60 - 0.3 \times 60 (= -3)$ A1 for $\frac{3}{60}$ oe
52;		60	3	M1 for $9 \times 14 + 6$ (=132) M1 (dep) for full method to convert '132' from lbs to kg using the graph or for '132'÷2.2 (=60) A1 for 59 – 62 OR M1 for reading off 14 lbs (= 6.2–6.5) and 6 lbs (=2.4–2.9) M1 (dep) for $9 \times '6.4' + '2.75'$ A1 for 59 – 62 [SC B2 for 66]

Que	stion	Working	Answer	Mark	Notes
532	(a)		720	2	M1 for 6×120 or $600 \times 120 \div 100$ oe
					A1 for /20 oe (accept /20.0)
	(b)		£10 or €12	3	M1 for 540÷1.2 (=450) oe, eg 4×100+50 (=450)
					M1(dep) for 460 - '450' (=10)
					A1 for £10 oe (accept £10.0)
					OR
					M1 for 460×1.2 (=552) oe, eg $4 \times 120 + 60 + 12$ (=552)
					M1 (dep) for '552' – 540 (=12)
					A1 for $\in 12$ oe (accept $\in 12.0$)
533	(a)		40	3	M1 for 120×100 (=12 000) or 20×15 (=300)
000					M1 (dep) for '12 000' ÷ '300'
					A1 cao
					OR
					M1 for $120 \div 15 (= 8)$ or $100 \div 20 (= 5)$
					M1 (dep) for '8' × '5'
					Al cao
					OR
					M1 for 120 ÷ 20 (=6) or 100 ÷ 15 (=6.66)
					M1 (dep) for '6'×'6.66' (=40) or '6'×'6' (=36) or '6'×'7' (=42)
					A1 cao
	(b)		10.40	2	M1 for $\frac{20}{10} \times 52$ oe
					100 A1 for 10.4(0)
					[SC B1 for 62.4(0) or 41.6(0)]
					1

Quest	tion	Working	Answer	Mark	Notes
Quest 534	tion (a) (b)	Working	Answer 2.70 2.21	Mark 3	Notes M1 for $2 \times 1.40 + 2.10 + 2.40 (= 7.30)$ M1 (dep) for $10 - `7.30'$ or $2.7(0)$ A1 for 2.70 in correct money notation OR M1 for subtracting at least 2 different correct costs from (£)10 M1 for $10 - 1.40 - 1.40 - 2.10 - 2.40$ A1 for 2.70 in correct money notation [SC B1 for 4.10 in correct money notation] M1 for $2.60 \times 0.15 (= 0.39)$ or $260 \times 0.15 (= 39p)$ M1 (dep) for $2.60 - `0.39'$ or $260 - 39 (= 221p)$ A1 cao OR M1 for $1 - 0.15 (= 0.85)$ or $100 - 15 (= 85)$
					OR M1 for 1 – 0.15 (=0.85) or 100 – 15 (=85) M1 (dep) for 2.60 × 0.85 oe A1 cao

Question	Working	Answer	Mark	Notes
*535		Not enough	4	M1 for $45 \div 18 (= 2.5)$
		mincemeat since		M1 for 2.5 used as factor or divisor
		600<700		A1 for 562.5 and 875 and 250 and 700 and 2.5 (accept 2 or 3) OR for
				availables as 400 and 400 and 200 and 240 and 2.4 (accept 2 or 3)
				C1 ft (dep on at least M1) for identifying and stating which ingredient
				is insufficient for the recipe (with some supportive evidence)
		OR		
		Only able to make 38		OR
		mince pies since		M1 for a correct method to determine the number of pies one
		insufficient		ingredient could produce
		mincemeat		M1 for a correct method to determine the number of pies all
				ingredient could produce
				A1 for 80 and 51 and 90 and 38 and 108
				C1 ft (dep on at least M1) for identifying and stating which ingredient
				is insufficient for the recipe (with some supportive evidence)

Question	Working	Answer	Mark	Notes
Question 536	Working	Answer 28% or $\frac{14}{50}$	Mark 4	Notes M1 for $100 - 30 (=70)$ or $1 - \frac{3}{10} (= \frac{7}{10})$ M1 for $'+70' \div (3+2) (=14)$ or $'\frac{7}{10}' \div (3+2) (=\frac{7}{50})$ M1 for $'14' \times 2$ or $\frac{7}{50} \times 2$ A1 for 28% or $\frac{14}{50}$ oe OR M1 for $'350' \div (3+2) (=70)$ M1 for $'70' \times 2 (=140)$ A1 for 28% or $\frac{14}{50}$ oe OR M1 for '70' $\times 2 (=140)$ A1 for 28% or $\frac{14}{50}$ oe OR
				OR M1 for starting with a two numbers in ratio 3:2, eg 21 and 14 M1 for equating sum of their numbers to $100 - 30$ (=70), eg '21' + '14' (=35) M1 for scaling sum of their numbers to 100% , eg '35'÷70×100 (=50) A1 for 28% or $\frac{14}{50}$ oe [SC award B3 for oe answers expressed in an incorrect form eg $\frac{2.8}{10}$]

Que	QuestionWorkingAnswerMark		Notes		
537			9 squares shaded	1	B1 for any 9 squares shaded oe
*538			Yes + supporting work	4	M1 for adding the weights of all the ingredients (= 96) M1 (dep) for '96' × 8 A1 cao for 768 C1 (dep on M2), ft for a correct conclusion (yes or no) from a comparison of 750 (pots) with their '768' pots; units must be quoted [SC: B1 for 768 seen without working if M0M0 scored] OR M1 for adding the weights of all the ingredients (= 96) M1 for 750 \div 8 A1 cao for 93.75 C1(dep on M2), ft for a correct conclusion (yes or no) from a comparison of their weight of ingredients in one tank full '93.75' kg with '96' kg; units must be quoted [SC: B1 for 93.75 seen without working if M0M0 scored]] OR M1 for adding the weights of all the ingredients (= 96) M1 (dep) for 750 \div '96' A1 cao for 7.8125 C1(dep on M2), ft for a correct conclusion (yes or no) from a comparison of their number of pots, '7.8125' pots with 8 (pots); units must be quoted [SC: B1 for 7.8125 seen without working if M0M0 scored]]
539	(a)		2.5	2	M1 for 10 (cm) or "10" ÷ 4 A1 for 2.45 – 2.55
	(b)		A marked on diagram	2	M1 for a point marked (or line drawn) on a bearing of 038° from either point B or point W, OR for a point marked (or arc drawn) 6 cm from B A1 for the position of Avebury marked (accept without label if not ambiguous)

Qu	estion	Working	Answer	Mark	Notes
53:	(a)	15 ÷ 6	2.5	2	M1 for $15 \div 6$ oe
					A1 for 2.5 or $2\frac{1}{2}$
	*(b)		Yes + evidence	2	M1 for a correct method to change 15 miles into kilometres C1(dep on M1) for 24 km and statement with correct conclusion [SC: B1 for "Yes" oe and 24 km shown if M0 scored]
					OR
					M1 for a correct method to change 20 kilometres into miles C1(dep on M1) for 12.5 miles and statement with correct conclusion [SC: B1 for "Yes" oe and 12.5 miles shown if M0 scored]

Question	Working	Answer	Mark	Notes
53;		414.96	5	M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method to find the cost of oil required before the discount M1 for a correct method of finding 5% of their calculated cost M1 (dep on previous M1) for a correct method to find the discounted cost A1 for correct answer of 414.96 or 41496p OR M1 for a correct method of finding 5% of the cost of 1 litre of oil M1 (dep on previous M1) for a correct method to find the discounted cost of 1 litre of oil M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method to find the discounted cost of the oil required A1 for correct answer of 414.96 or 41496p
				OR M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method of finding 5% of their calculated amount of oil M1 (dep on previous M1) for a correct method to find the reduced amount of oil M1 for a correct method to find the cost of the reduced amount of oil A1 for correct answer of 414.96 or 41496p

Question	Working	Answer	Mark	Notes
542	$180 \times \frac{10}{100} = 18$ or $\frac{20}{180} \times 100 = 11.1$	No	3	M1 for $180 \times \frac{10}{100}$ oe or 180×1.1 oe or $\frac{20}{180} \times 100$ (= 11.1) oe A1 for (£)18 or (£)198 or 11% C1 (dep M1) for comparison of increases or total pay or percentage increases leading to a correct deduction
543	Paint R Us 6 × 2.19 (= 13.14) Deco Mart 9× 1.80 (= 16.20) 16.20 × 0.9 (= 14.58)	Paint R Us	6	Paint R Us M1 for '9 - 3' × 2.19 A1 for 13.14 Deco Mart M2 for $\frac{90}{100}$ × '16.20' oe (M1 for $\frac{10}{100}$ × '16.20' oe) A1 for 14.58 C1 (dep M1) for comparison of cost of 9 tins at Paint R Us with cost of 9 tins at Deco Mart leading to a correct deduction
544	$25 \div 50 = 0.5 h = 30 min$ $25 \div 60 = 0.416 h = 25 min$	5	3	M1 for $25 \div 50$ or $\frac{60}{50} \times 25$ or 30 (min) or $0.5(\text{h})$ or $25 \div 60$ or $\frac{60}{60} \times 25$ or 25 (min) or $0.41(6)(\text{h})$ M1(dep) '0.5' - '0.41(6)'or '30' - '25' A1 cao OR M1 for $60 \div 25 (= 2.4)$ and $60 \div ``2.4''$ or $50 \div 25 (= 2)$ and $60 \div ``2''$ M1(dep) for '30' - '25' A1 cao

Qu	lestion	Working	Answer	Mark	Notes
545	(a)		4.8	1	B1 for answer in range $4.6 - 5$
	(b)		37.5	2	M1 for a valid method eg reading from graph for 6 km then $\times 10$ A1 for answer in range $35 - 40$
					OR M1 for use of conversion factor $60 \times \frac{5}{8}$ oe A1 for answer in range $35 - 40$

Qu	estion	Working	Answer	Mark	Notes
546		$250 - 0.42 \times 250 - 250 \div 5 \times 2$	45	4	42 $250 = (-105)$
		= 250 - 105 - 100			M1 for $\frac{100}{100} \times 250$ de (=105)
		OB			2
					M1 for $-\times 250$ oe (=100)
		$250 \times \left(1 - \left(\frac{42}{4} + \frac{2}{4}\right)\right) =$			M1 for $250 - 105^{\circ} - 100^{\circ}$
		((100 5))			A1 cao
		2509			
		$230 \times \frac{1}{50}$			OR
					M1 for $\frac{42}{42} + \frac{2}{2} \left(-\frac{82}{3}\right) \operatorname{or} \left(-\frac{41}{3}\right)$
		OR			$\int \frac{1}{100} + \frac{1}{5} \left(-\frac{1}{100} \right) \frac{1}{50} \left(-\frac{1}{50} \right)$
		(100-42-40)			82, 1,41,
		$\left[\frac{250 \times \left(\frac{100}{100}\right)^{-1}}{100}\right]^{-1}$			M1 for $1 - \frac{100}{100}$ or $1 - \frac{100}{50}$
		18			9
		$250 \times \frac{1}{100}$			M1 for $\frac{1}{50} \times 250$
		100			A1 cao
		OR			
		(42, 2)			OR
		$\left 250 - 250 \times \left(\frac{100}{100} + \frac{1}{5} \right) \right =$			M1 for $\frac{2}{100} \times 100$ or $\frac{2}{100} - \frac{2 \times 20}{100}$ or 2×20
		41			$\frac{1}{5} = \frac{1}{5} = \frac{1}$
		$250 - 250 \times \frac{41}{50} = 250 - 205$			M1 for 100 - 42 - '40' (= 18)
		30			M1 for '0.18' \times 250
		OB			A1 cao
		(42 40)			
		$\left 250 - 250 \times \left \frac{42}{100} + \frac{40}{100} \right \right =$			
		$250 - 250 \times \frac{82}{250} = 250 - 205$			
		100			(continued overleaf)

Question	Working	Answer	Mark	Notes
546				OR
eqpv0				M1 for $\frac{42}{100} + \frac{2}{5} \left(= \frac{82}{100} \right) \text{ or } \left(= \frac{41}{50} \right)$
				M1 for $\frac{41}{50} \times 250$
				M1 for 250 - '205'
				A1 cao
				OR
				M1 for $\frac{2}{5} \times 100$ or $\frac{2}{5} = \frac{2 \times 20}{5 \times 20}$ or 2×20
				M1 for ' $(42 + '40)'/100 \times 250$
				M1 for 250 - '205'
				A1 cao

Question	Working	Answer	Mark	Notes
547	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	30	3	M1 for $45 \div (5-2)$ M1 for '15'×2 A1 cao for 30 OR M2 for $45 \times \frac{2}{3}$ oe (M1 for $45 \times \frac{1}{3}$) A1 cao for 30 OR M1 for (2, 5); 4, 10; 6, 15; 8, 20 M1 for a completly correct list up to 30, 75 A1 cao (SC If M0 then B1 for 18 given as the answer)

Question	Working	Answer	Mark	Notes
548 (a)		51	3	M1 200 × 25.82 (= 5164) A1 for 5164 or 5200 or 5100 or 51.64 or 51.6(0) or 5160 or 52 A1 for 51
				OR M1 for 100 ÷ 25.82 (3.87) and 200 ÷ '3.87' (=51.64) A1 for 5164 or 5200 or 5100 or 51.64 or 51.6(0) or 5160 or 52 A1 for 51 cao
(b)		15.49	3	M1 for 400 ÷ 25.82 A1 for 15.4918 A1 for £15.49 or £15.50 OR M1 for 4 × '3.87' from (a) A1 15.4918 A1 for £15.49 or £15.50

Question	Working	Answer	Mark	Notes
*549	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Decision (Should have a water meter installed)	5	Per year M1 for $180 \times `365' (=65700)$ M1 for $``65700" \div 1000 (=65.7 \text{ or } 65 \text{ or } 66)$ M1 for $``65.7" \times 91.22 (=5993)$ A1 for answer in range $(\pounds) 87 - (\pounds) 89$ C1(dep on at least M1) for conclusion following from working seen OR (per day) M1 for $107 \div `365' (=0.293)$ M1 for $180 \div 1000 \times 91.22 (=16.4196)$ M1 for $28.2 \div `365' + `0.164196'$ (units must be consistent) A1 for $29 - 30(p)$ and $24 - 24.3(p)$ oe C1(dep on at least M1) for conclusion following from working seen
				OR M1 for (107 – 28.20) ÷ 0.9122 (=86.384) M1 for '86.384'×1000 (=86384.5) M1 for '365' × 180 (=65700) A1 for 65700 and 86384.5 C1(dep on at least M1) for conclusion following from working seen NB : Allow 365 or 366 or 52×7 (=364) or 12 × 30 (=360) or 365¼ for number of days

