

Maths Questions By Topic:

Ratio, Proportion \& Rates of
 Change

Mark Scheme

Edexcel GCSE (Higher)

\# www.expert-tuition.co.uk
\square online.expert-tuition.co.uk

- enquiries@expert-tuition.co.uk
© The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec
Paper 1 .. Page 1
Paper 2
Page 22
Paper 3
Page 45
Old Spec A (Linear)
Paper 1 Page 68Paper 2Page 89

Question	Answer	Mark	Mark scheme	Additional guidance
\square	Rahim and correct figures	P1 P1 A1 C1	for start to the process to find 20% for Tamara, eg 220000×0.2 oe $(=44000)$ or 30% for Rahim, eg 160000×0.3 oe $(=48000)$ OR for $1-0.2(=0.8)$ or $100-20(=80)$ or $1+0.3(=1.3)$ or $100+30(=130)$ for a complete process to find at least one new value, eg $220000-" 44000 "(=176000)$ or $160000+" 48000 "(=208000)$ OR $220000 \times \text { " } 0.8 "(=176000) \text { or } 160000 \times " 1.3 "(=208000)$ for one correct value, 176000 or 208000 for correct conclusion supported by correct figures eg Rahim, 176000 and 208000	Build up processes are acceptable but must be complete and correct Award 0 marks for a correct answer with no supportive working
\square	33	P1 P1 A1	for relating 24 to 8 parts or (1 part =) $24 \div 8(=3)$ or for $15-7(=8)$ or starts to use a build-up method, eg (8:) $14: 30$ for $15-4(=11)$ and $24 \div 8(=3)$ or $15 \times 3(=45)$ and $4 \times 3(=12)$ or for $12(: 21): 45$ cao	8 parts $=24$

Question	Answer	Mark	Mark scheme	Additional guidance
\square	17.6	P1	for correct trig statement, eg $\sin 30=\frac{h}{6}$	
		P1	for complete process to find h, eg $6 \times \frac{1}{2}(=3)$	
		P1	for correct substitution into the area of a trapezium formula, eg $\frac{1}{2}(a+b) \times " 3 "=66$ or $a+b=44$ or $\frac{1}{2}(2 x+3 x) \times h=66$	
		P1	for complete correct process to find the length of $A B$, eg $\left[\frac{66 \times 2}{3} \div(2+" 3 ")\right] \times 2$	An answer of $\frac{88}{5}$ gets P4 A0
		A1	cao	

T EXPERT
 TUITION

Question	Answer	Mark	Mark scheme	Additional guidance
\square	20	P1 P1 A1	for process to find SP of 24 chocolate bars, eg. $0.50 \times 24(=12)$ oe or for process to find the overall profit eg $(24 \times 0.5)-10(=2)$ or for process to find CP of one chocolate bar, eg. $1000 \div 24(=41.66 \ldots)$ oe (dep) for start to a process to find percentage profit, eg. using $\frac{" 12 "-10}{10}$ or $\frac{\text { " } 12 \text { " }}{10}$ or $\frac{50-441.66 \ldots "}{41.66 \ldots "}$ oe with consistent units cao	Working can be carried out in either pounds or pence.
\square	450	M1 M1 A1	for $18 \div 3(=6)$ for substitution eg. $75=\frac{F}{" 6 "}$ or $75 \times$ " 6 " cao	Ignore units

T EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
\square	6: 15:20	P1 P1 A1	chooses a multiplier to equate the two fractions in terms of b eg $\frac{2}{5} \times \frac{3}{3}\left(=\frac{6}{15}\right)$ or $\frac{3}{4} \times \frac{5}{5}\left(=\frac{15}{20}\right)$ or lists equivalent fractions to $\frac{2}{5}$ up to at least $\frac{6}{15}$, eg. $\frac{2}{5}, \frac{4}{10}, \frac{6}{15}, \ldots \ldots$ or lists equivalent fractions to $\frac{3}{4}$ up to at least $\frac{15}{20}$, eg. $\frac{3}{4}, \frac{6}{8}, \frac{9}{12}, \frac{12}{16}, \frac{15}{20}, \ldots .$. or $(a: b=) 2: 5$ and $(b: c=) 3: 4$ or for $6: 15$ or $15: 20$ seen puts into related terms ready for ratio eg $\frac{2}{5} \times \frac{3}{3}=\frac{6}{15}$ and $\frac{3}{4} \times \frac{5}{5}=\frac{15}{20}$ or for $(a: b=) 6: 15$ and $(b: c=) 15: 20$ or lists equivalent ratios up to a common element for b, eg $a: b=2: 5,4: 10,6: \underline{15}$ and $b: c=3: 4,6: 8,9: 12,12: 16, \underline{15}: 20$ for $6: 15: 20$ oe	Need not be written in ratio form Accept equivalent ratios Accept $a=6, b=15$ and $c=20$
\square	196	P1 P1 A1	for vol $\mathrm{A}=1400 \div 70(=20)$ or for mass $\mathrm{B}=280 \times 30(=8400)$ for density $\mathrm{C}=\frac{1400+\text { " } 8400 "}{" 20 "+30}\left(=\frac{9800}{50}\right)$ or answer with digits 196 cao	An answer of 350 from $70+280$ gets no marks

Question	Answer	Mark	Mark scheme	Additional guidance
8	20	P1 P1 A1	for a statement of proportionality eg $x=k \sqrt{y}$ or 1.44 oe for using $\sqrt{1.44}$ as multiplier eg $\left(x_{2}=\right) k \sqrt{1.44 y}$ or 1.2 oe cao	Must be written in the form of an equation with a constant term, accept $x \propto k \sqrt{y}$
\square	$\frac{27}{56}$	P1 P1 A1	for $\frac{3}{8}$ and $\frac{7}{9}$ OR uses a total of 72 cards and shows a process to find the number of cards with a black shape or the number of cards with a triangle, $\text { eg } 72 \div 8 \times 3(=27) \text { or } 72 \div 9 \times 7(=56)$ for process shown to divide fractions $\frac{3}{8} \div \frac{7}{9}$ or $\frac{3}{8} \times \frac{9}{7}$ OR for $\frac{3}{8} \times \frac{9}{9}\left(=\frac{27}{72}\right)$ and $\frac{7}{9} \times \frac{8}{8}\left(=\frac{56}{72}\right)$ OR uses a total of 72 cards and shows a process to find the number of cards with a black shape and the number of cards with a triangle, $\text { eg } 72 \div 8 \times 3(=27) \text { and } 72 \div 9 \times 7(=56)$ for $\frac{27}{56}$ or any other equivalent fraction	72 or any multiple of 72 Could be seen in a ratio, eg $27: 45$ or $16: 56$ Accept the division shown as $\frac{\frac{3}{8}}{\frac{7}{9}}$ Could be seen in ratios, eg $27: 45$ and $16: 56$ Answer of 27 : 56 gets P2A0

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	21.6 No (supported)	M1 A1 M1 C1	for a method using distance $=$ speed \times time, eg. $72 \times \frac{18}{60}$ or 7.2 km in 6 minutes, so 7.2×3 oe partitioning method for 21.6 oe for a method to convert $20 \mathrm{~m} / \mathrm{s}$ to km / h or $72 \mathrm{~km} / \mathrm{h}$ to m / s, eg. $20 \times \frac{3600}{1000}(=72)$ or $72 \times \frac{1000}{3600}(=20)$ for No since $72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}$ oe	Accept 72×18 Accept methods to convert both speeds to km/s or m / h
13	4	P1 P1 P1 A1	for process to find ratio of corresponding lengths, eg. $\sqrt{4}: \sqrt{9}(=2: 3)$ for process to find ratio of volumes, eg " 2 " ${ }^{3}$: " 3 " ${ }^{3}(=8: 27)$ for " 27 " \div " 8 " (= 3.375) for rounding to give an answer of 4 from correct working	This may be seen by checking their volume, eg. " 8 " $\times 4(=32)$ and " $8 " \times 3(=24)$ An answer of 4 with no supportive working gets no marks

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	600	P1 P1 A1 P1 A1	for starting process to calculate amount of flour eg $60 \div 15(=4)$ or $3 \times 50(=150)$ for complete process eg $\frac{60}{15} \times$ " 150 " cao for process to calculate amount of butter $\text { eg } \frac{60}{15} \times 2 \times 50(=400)$ OR for process to calculate the number of packs of butter needed eg [butter] $\div 250$ cao	4 implied by 200 g of sugar [butter] must be clearly stated or calculated, may be seen in part (a) 2 must not come from incorrect working
■	96	P1 P1 P1 A1	for process to find the ratio of the number of pens of each colour sold, eg $2 \times 7: 5 \times 3: 6 \times 4 \quad(=14: 15: 24)$ for process to find the proportion of green pens sold, $\text { eg } \frac{212}{{ }^{\prime \prime} 144^{\prime \prime+}+155^{\prime+}+24 "} \text { or } \frac{" 24 "}{" 144^{\prime+}+15 "+24 "}$ for a complete process to find the number of green pens sold, $\text { eg } \frac{212}{" 14^{\prime \prime+}+155^{\prime+}+24^{\prime \prime}} \times \text { " } 24 \text { " or } \frac{" 24 \text { " }}{" 14^{\prime \prime+}+155^{\prime+}+24^{\prime \prime}} \times 212$ cao	Does not have to be seen as a ratio but all three needed P3 can be implied by the values 56,60 and 96

Question	Answer	Mark	Mark scheme	Additional guidance
■	$\frac{4}{9}$	P1 P1 A1	for process to find link between volume of Q and volume of P or between volume of R and volume of Q , eg ratio $1.5: 1$ or $\mathrm{Q}=1.5 \mathrm{P}$ or $\mathrm{P}=\frac{2}{3} \mathrm{Q}$ or two values in the ratio $1: 1.5$ such as 100 and 150 for process to find link between volume of R and volume of P eg $1.5^{2}: 1$ or two values in the ratio $1: 2.25$ such as 100 and 225 for $\frac{4}{9}$ oe fraction eg $\frac{100}{225}$	$1.5^{2}\left(=\frac{9}{4}\right)$ is enough for this mark, award P1P1 Accept $P=\frac{4}{9} R$
\square	$h=\frac{120}{\sqrt{t}}$	P1 P1 P1 A1	for setting up a proportional relationship between h and p, eg $h \alpha \frac{1}{p}$ or $h=\frac{k}{p}$ OR a proportional relationship between p and t, eg $p \alpha \sqrt{t}$ or $p=K \sqrt{t}$ for process to substitute at least 2 values, eg $10=\frac{k}{6}(k=60)$ or $6=K \sqrt{144}(K=0.5)$ for full process leading to $h=\frac{" 60 "}{p}$ oe and $p=" 0.5 " \sqrt{t}$ oe $h=\frac{120}{\sqrt{t}} \text { oe eg } h=\frac{120 \sqrt{t}}{t} \text { or } h=\frac{60}{0.5 \sqrt{t}}$	Condone the use of ' α ' instead of ' $=$ ' for the first two P marks Relationship may be implied by substitution Both constants must come from a correct process Formula for h in terms of t Does not need to be in simplest form

Question	Answer	Mark	Mark scheme	Additional guidance
■	No(supported)	P1	for start to process, eg. $2100 \times \frac{40}{100}(=840)$ or $100-40(=60)$	May compare bonus shares of a single salesman or total bonus share for all 7 salesmen.
		P1	for process to find the 7 salesmen's share of bonus, eg $2100-" 840 "(=1260)$ or $2100 \times \frac{" 60 "}{100}(=1260)$	
		P1	for process to find bonus amount each salesman gets $\text { eg " } 1260 " \div 7(=180)$ OR process to find the total bonus for all salesmen if shared equally, eg $\frac{2100}{10} \times 7(=1470)$	
		P1	for process to compare what a single salesman gets under each scheme, eg " 180 " $\times \frac{25}{100}(=45)$ and " $\frac{2100, "}{10}-" 180 "(=30)$ or " 180 " $\times \frac{25}{100}(=45)$ and " $180 "+$ " $45 "(=225)$ oe and $\frac{2100}{10}(=210)$ or (" $\left.\frac{2100}{10} "-" 180 "\right) \div " 180 " \times 100(=16.6 \ldots)$ OR process to compare what all salesmen gets under each scheme, eg " 1260 " $\times \frac{25}{100}(=315)$ and " 1470 " - " 1260 " (= 210) or " 1260 " $\times \frac{25}{100}(=315)$ and " 1260 " + " 315 " $(=1575)$ oe and " 1470 " or (" $1470 "-" 1260 ") \div$ " $1260 " \times 100(=16.6 \ldots)$	
		A1	'No' supported by correct figures, eg 45 and 30, 225 and 210, 315 and 210 or 1575 and 1470 or $16 .(6 \ldots)(\%$ and $25 \%)$	Do not award unless correct figures have been shown to support a statement made that the salesman was not correct.

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	200 statement	M1 A1 C1	for $120 \times 5 \div 3$ oe cao Statement that each tap fills at the same rate or that the rate does not change over time Examples Acceptable responses: Taps are running at the same speed They (clearly referring to taps) all fill the pool with the same volume of water The amount of water is the same in the same time (again referring to taps) Each tap is doing a fifth of the filling That all taps take equal time to fill the pool All taps produce the same amount of water That the water flow stays at the same rate over the whole time. Non acceptable responses It will take more time because there are less taps The less taps used the longer it takes to fill the pool That 1 tap can take up to 24 mins each 3 taps will take longer to fill the pool	Any statement referring to the same amount of water flowing from each tap is acceptable.
(a) (b)	16 to 20 decision with reason	P1 P1 A1 C1	$\begin{aligned} & \text { for using time }=\frac{\text { distance }}{\text { speed }}, \text { eg } \frac{1}{200} \text { or } \frac{1}{213} \\ & \text { or for } 1 \text { hour }=60 \times 60(=3600) \text { seconds } \\ & \text { complete process, eg } \frac{1}{200} \times 60 \times 60 \text { oe or } \frac{1}{213} \times 60 \times 60 \text { oe } \\ & \text { for answer in range } 16 \text { to } 20 \\ & \left(\text { dep on correct use of time }=\frac{\text { distance }}{\text { speed }}\right) \text { for reason related to their } \\ & \text { response to part }(a) \text {, } \\ & \text { eg overestimate as speed rounded down } \\ & \hline \end{aligned}$	Calculation could be done in stages.

Question	Answer	Mark	Mark scheme	Additional guidance
■	20	P1 P1 A1	for start of process, eg $\frac{125}{100}$ oe or $\frac{100}{125}$ oe or $\frac{25}{125}$ for a suitable process to develop a percentage, either 80% or 20% eg. $\frac{100}{125}=\frac{x}{100}$ or $\frac{125-100}{125}=\frac{x}{100}$ or $\frac{p}{1.25 m}=\frac{x p}{m}$ or $\frac{0.25 p}{1.25 m}=\frac{x p}{m}$ cao	Values of amount of cereal and cost may be used, eg. 100 g of cereal costing $£ 10$ An acceptable start of a process would then be: 125 g of cereal costing $£ 10$ using Jack’s idea
■	3:10	P1 P1 P1 A1	process to find ratio of lengths $\mathbf{A}: \mathbf{B}=\sqrt{4}: \sqrt{25}\left(=2: 5\right.$ or $\frac{2}{5}$ or 2,5$)$ for process to find ratio of lengths B:C $=\sqrt[3]{27}: \sqrt[3]{64}\left(=3: 4\right.$ or $\frac{3}{4}$ or 3,4$)$ for process to write as one ratio eg. finding a common multiple of 3 and 5 or $6: 15: 20$ oe cao	Accept working in fractions for the award of process marks but the final answer must be in correct simplified ratio notation

Question	Answer	Mark	Mark scheme	Additional guidance
$2 \square$	140	P1 P1 A1	for beginning to solve the problem eg $50 \div 5 \times 8(=80)$ or $14: 8: 5$ oe or $14: 8$ and $8: 5$ oe (linked) for a full process to solve the problem $\text { eg " } 80 \text { " } \div 4 \times 7 \text { or } \frac{50}{5} \times \text { " } 14 \text { " or } 140: 80: 50$ cao	80 may be seen in the ratio $80: 50$ If 140 clearly identified as houses in working award full marks
■	30	P1	for full process to find the number of bags sold eg $5 \times 1000 \div 250(=20)$ OR for process to find selling price of 1 kg of sweets eg $0.65 \times 4(=2.60)$	This could be by repeated addition Calculations can be in $£$ or pence
		P1	for [number of bags] $\times 0.65$ or " $20 " \times 0.65(=13)$ or " $2.60 " \times 5(=13)$ OR for $10 \div$ " 20 " oe $(=0.50)$ OR for $0.65 \times 4(=2.60)$ and $10 \div 5(=2)$	[number of bags] can only come from $\begin{aligned} & 5 \times 10 \div 250(=0.2) \\ & \text { or } 5 \times 100 \div 250(=2) \\ & \text { or } 5 \div 250(=0.02) \end{aligned}$
		P1	(dep on previous P1) for a process to find the percentage profit eg $(" 13$ " -10$) \div 10 \times 100$ or $(0.65-" 0.50 ") \div " 0.50 " \times 100$ or (" 2.60 " - " 2 ") \div " $2 " \times 100$ OR " 13 " $\div 10 \times 100(=130)$ oe	$3 / 10$ or 0.3 is not enough but should be awarded 2 marks Award P3 for 130(\%)
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
■	216	P1 P1 P1 A1	for process to work with ratio eg $72 \div(3+4+5)(=6)$ or $72 \div 12(=6)$ for process to find length of base or height of triangle eg $3 \times " 6$ " $(=18)$ or $4 \times " 6 "(=24)$ OR process to find area scale factor eg " 6 " \times " 6 " (= 36) complete process to find the area of the triangle eg $1 / 2 \times$ " 18 " \times " 24 " or $1 / 2 \times 3 \times 4 \times$ " 6 " ${ }^{2}$ cao	
-	$y=\frac{100}{9 x^{4}}$	P1 P1 P1 P1 A1	for setting up a correct proportional relationship, $\operatorname{eg} d \alpha x^{2}$ or $d=k x^{2}$ for setting up a second proportional relationship, eg $y \alpha \frac{1}{d^{2}}$ or $y=\frac{K}{d^{2}}$ (dep P1) for a process to find one of the constants of proportionality eg $24=k \times 2^{2}(k=6)$ or $4=K \div 100(K=400)$ full process to find y in terms of x eg $y=\frac{" 400 "}{\left(" 6 " x^{2}\right)^{2}}$ oe $y=\frac{100}{9 x^{4}}$ oe	Condone the use of ' α ' instead of ' $=$ ' for the four P marks Both constants must come from a correct process Expression must have been simplified, but could be given other equivalent ways eg $y=11.111 . . x^{-4}$

Question	Working	Answer	Mark	Notes
$2 \square$		14:21:42	P1 P1 P1 A1	for 2 out of 3 expressions in one letter eg from $x, x+72 x+14$ or see a set of numbers to show interpretation of the relationships, eg $10,17,34$ (dep) for sum of their 3 expressions $=77$ eg $x+x+7+2 x+14=77$ oe or 2 systematic correct trials including addition for a correct process to isolate their term in x or $x=14$ for ratio 14:21:42 oe
■		22.5	P1 P1 P1 P1 A1	for process to find James' speed eg $50 \div 2.5(=20)$ or $50 \div 150\left(=\frac{1}{3}\right)$ for process to find James' time for 15 km eg $15 \div$ " 20 " $(=0.75)$ or $15 \div \frac{1}{3}(=45)$ for process to find Peter's time for 15 km eg " 45 " - $5(=40)$ for process to find Peter's speed eg $15 \div$ " 40 " or $15 \div \frac{" 40 "}{60}$ oe
(a) (b)		120 $\frac{165}{450}$	P1 A1 P1 A1	for $\frac{4 \times 450}{15}$ or $\frac{4}{15}=\frac{x}{450}$ oe cao 5.5 or 6.5 or 165 or $\frac{5 \times 450}{15}(=150)$ and $\frac{6 \times 450}{15}(=180)$ for $\frac{165}{450}$ oe
■	$\begin{aligned} & k y-y=x+k x \\ & y(k-1)=x(1+k) \end{aligned}$	$y=\frac{x(k+1)}{k-1}$	M1 M1 A1	$y+x=k(y-x)$ or $\frac{y+x}{y-x}=k$ oe For isolating x and y on opposite sides eg $k y-y=x+k x$ Completing correct algebraic reasoning to reach conclusion

Question	Working	Answer	Mark	Notes
T		$\frac{7}{3}$	M1 M1 A1	for $y=k \sqrt[3]{x}$ oe or $\frac{7}{6}=\sqrt[3]{8} k$ oe for $k=\frac{7}{6 \times \sqrt[3]{8}}$ oe for $\frac{7}{3}$ oe
[2		2,14.5	$\begin{aligned} & \hline \text { P1 } \\ & \\ & \text { A1 } \\ & \text { P1 } \\ & \text { A1 } \\ & \text { C1 } \end{aligned}$	for scale factor of $\frac{12}{3}$ or $\frac{3}{12}$ or $\frac{15}{12}$ or $\frac{12}{15}$ or $\frac{8}{12}$ or $\frac{12}{8}$ or $\frac{15}{8}$ oe or correctly identifies 2 pairs of corresponding sides for $x=2$ for complete method to find other value for x eg $\frac{15}{8} \times 12-8$ for $x=14.5$ Describes both assumptions for similarity
■		500	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { recognition of } 1.2 \text { or } 120 \% \text { oe eg } 600 \div 1.2 \text { oe or } x \times 1.2=600 \text { oe or } 120 \%=600 \\ & \text { cao } \end{aligned}$
(a) (b)		$y=\frac{9}{x^{2}}$ $\frac{3}{4}$	M1 A1 M1 A1	begins to work with $y=\frac{k}{x^{2}}$ oe e.g. subs of a pair of numbers into $y=\frac{k}{x^{2}}$ or states $k=9$ for $y=\frac{9}{x^{2}}$ Accept $y=9 x^{-2}$ ft (dep on previous M1) subs $y=16$ into proportional formula of the form $y=\frac{k}{x^{2}}$ oe oe

T EXPERT
 TUITION

Question	Working	Answer	Mark	Notes
\square			$\frac{1}{3}$	P1

Г EXPERT
 TUITION

Question	Working	Answer	Notes
(1) (a) (b)		48	P1 start to process eg. $3 \times 80(=240)$ P1 ' $240 ' \div 5$ A1 C1 eg. she may drive a different distance and therefore her average speed could be different
■		28	P1 Process to start to solve problem eg. $\frac{3}{5} \times 40$ or divide any number in the ratio 3:2 P1 Second step in process to solve problem eg. $\frac{2}{5} \times 10$ or find number of males/females under 25 for candidate's chosen number P1 for complete process A1
[150000	M1 $60 \div 100^{2}$ or $900 \div 60$ or $900 \div$ " $00 "$ A1
[No with reason	C1 Starts to formulate reason eg. No with partial explanation or $0.8 \times$ 0.7 or starts to use figures C1 No with full explanation eg. $0.8 \times 0.7=0.56$ so only 44% reduction

T EXPERT
 TUITION

Question	Working	Answer	Notes
-		Given result	M1 For length scale factor eg $\sqrt{\frac{4}{9}}$ or $120: 405$
			M1 $\quad\left(\sqrt{\frac{4}{9}}\right)^{3} \times 405$ or $2^{3}: 3^{3}($ from $120: 405)$
			A1 120 from correct arithmetic or conclusion relating $2^{3}: 3^{3}$ with $2^{2}: 3^{2}$ with correct working

Question	Working	Answer	Notes
T		$4 \mathrm{~m}^{2}$	B1 substitution into formula eg $35=\frac{140}{A}$ oe A1 4 stated C1 (indep) units stated
W (a) (b)		5 10	P1 begins to work with scaling factors (eg 5) or $\div 6$ A1 cao P1 works with 1:2 ratio eg no. red counters is $30 \div 2(=15)$ A1 ft
■		37.5 mph	P1 shows process of finding first distance eg $50 \times 3(=150)$ P1 shows process of finding time for second part eg $150 \div 30(=5 \mathrm{~h})$ P1 shows process of working with av sp. (dist \div time $)(=300 \div(3+5)=300 \div 8)$ C1 conclusion with supporting evidence, correct notation and units eg 37.5 mph
■		D, A, B, C	B2 B2 for all correct (B1 for at least 2 correct)

Question	Working	Answer	Notes
■	$\begin{aligned} & 16 \div 4 \\ & \frac{1 \times 4}{2}=2 \text { or } \frac{1}{2} \times \frac{1}{4}=\frac{1}{8} \\ & \frac{2 \times 4}{2}=4 \text { or } \frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \\ & \frac{1 \times 4}{2}+\frac{2 \times 4}{2}=6 \text { or } \frac{1}{2} \times \frac{1}{4}+\frac{1}{2} \times \frac{1}{2}=\frac{3}{8} \\ & 16-6=10 \text { or } 1-\frac{3}{8}=\frac{5}{8} \end{aligned}$	$\underline{5}$	P1 Using side lengths of 4 P1 Method to find fraction or area for one unshaded triangle P1 Method to complete fraction or area for total unshaded region P1 Method to find total fraction or area for shaded region A1 for $\frac{5}{8}$ oe or 0.625
■	$\begin{aligned} & \frac{90}{2} \times 3=135 \\ & \frac{84}{60} \times 100=140 \end{aligned}$	Combination with reason	P1 Links either $\frac{2}{3}$ with 90 and 60% with 84 P1 Process to find original price of microwave oven eg $\frac{90}{2} \times 3(=135)$ P1 Process to find original price of combination oven eg $\frac{84}{60} \times 100(=140)$ A1 Correct original prices $£ 135$ and $£ 140$ with interpretation of results to conclude that combination oven had greater normal price.
D		9	$\begin{array}{ll} \hline \text { M1 } & \text { Finds constant } 36 \times 1.5(=54) \text { or } \frac{6}{1.5}=4 \\ \text { M1 } & 54 " 6 \text { or } 36 " 4 \\ \text { A1 } & 9 \text { cao } \end{array}$

T EXPERT

Question	Answer	Mark	Mark scheme	Additional guidance
(a) (b)	80 Travel graph	M1 A1 M1 C2 (C1	for a complete method eg $\frac{20}{15} \times 60$ or 20×4 or $20 \div \frac{1}{4}$ cao for method to find distance travelled in last 20 minutes, eg $75 \times \frac{20}{60}(=25)$ for a fully correct travel graph for horizontal straight line from $(1015,20)$ to $(1025,20)$ or for a line of the correct length and gradient to indicate a speed of $75 \mathrm{~km} / \mathrm{h}$ eg a straight line from $(1025,20)$ to $(1045,45))$	Can be implied by a distance of 25 km drawn on the graph
-	1.6	P1 P1 A1	```for \(1.8 \times 80(=144)\) or \(1.2 \times 40(=48)\) or for 192 or for \(80: 40=2: 1\) for (" 144 " + " 48 ") \(\div(80+40)\) or \(192 \div 120\) or for \((1.8 \times 2+1.2) \div 3\) or \(4.8 \div 3\) oe```	
■	344580.48	P1 P1 P1 A1	for a start to the process to find the initial investment eg $344605 \div 1.025$ oe ($=336200$) or for 1.025^{3} (= $1.07689 \ldots$...) for complete process to find original investment, eg $344605 \div 1.025^{3}$ oe ($=319078$ to 320265) for [initial investment] $\times 1.02^{2} \times 1.035$ oe for answer in the range 343587 to 344581	[initial investment] must be clearly what they believe to be that and cannot be 344605

Question	Answer	Mark	Mark scheme	Additional guidance
T	25:36	P1	for $\sqrt[3]{125}(=5)$ and $\sqrt[3]{27}(=3)$ oe OR for correct process to find the radius of A and radius of B (3.10... and $1.86 \ldots$..)	Accept scale factors expressed as fractions or decimals eg 1.66, 1.67, 0.6 or better Ignore units throughout
		P1	for method to find values in ratio of length between A and C eg 5 and $2 \times 3(=6)$ oe or " $3.10 \ldots$ " and " $1.86 \ldots$ " $\times 2(=3.72 \ldots)$ OR 25 and 36 OR for correct process to find SA of A and SA of C (120.(8...)) and (174.(0...))	For both P marks the lengths need not be written as a ratio
		A1	for $25: 36$ oe eg 1: 1.44	

Question	Answer	Mark	Mark scheme	Additional guidance
\square	No (supported)	P1 P1 C1	for $3000 \div(2+3)(=600)$ for " 600 " $\times 2(=1200)$ or " $600 " \times 3(=1800)$ or " 600 " $\div 6(=100)$ or " 600 " $\div 20(=30)$ for " 1200 " $\div 6(=200)$ or " 1800 " $\div 20(=90)$ or " 100 " $\times 2(=200)$ or " $30 " \times 3(=90)$ for " 90 " $\div(" 200 "+$ " 90 ") $\times 100(=31.0 . .$.$) oe$ or " 90 " $\div(" 200 "+$ " $90 ")(=0.31 \ldots)$ or $0.3 \times(" 200 "+" 90 ")(=87)$ oe correct conclusion and fully correct calculations with accurate figure eg No and 87 or No and 31% or No and 0.31	Full method to compare No working, answer only no marks No may be implied by a statement
(a) (b)	$\begin{gathered} 580 \\ 6354.67 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	for method to find value before increase eg $551 \div 0.95$ cao for 6000×1.024 oe $(=6144)$ for " 6144 " $\times 1.017^{2}$ oe for 6354.66 or 6354.67 or 6354.68	$6000 \times 1.024 \times 1.017^{2}$ scores M2 If correct answer is stated then subsequently rounded isw and award 3 marks If correct answer stated and then interest only given as the answer award M2A0

Question	Answer	Mark	Mark scheme	Additional guidance
Ш1 (a)	-0.09	M1	for suitable method to find gradient, eg $27 \div 300$	Any readings from the graph must be reasonable. Condone missing negative for M1
		A1	for answer in the range -0.1 to -0.08 oe	
(b)		C1	for explanation	Can ft explanation linked to incorrect gradient in part (a)
			Acceptable examples volume of petrol used each km litres/km Rate of fuel consumption For every 9 litres you can travel 100 km Not acceptable examples volume \div distance volume of petrol used per distance $\mathrm{km} /$ litre as distance increases volume decreases	

Question	Answer	Mark	Mark scheme	Additional guidance
\square	18	P1 P1 P1 A1	for $240 \div 10(=24)$ or $240 \div 8(=30)$ for $3 \times$ " $24 "(=72)$ or $7 \times$ " 24 " $(=168)$ or $3 \times " 30 "(=90)$ or $5 \times$ " 30 " $(=150)$ for $3 \times$ " 24 " $(=72)$ and $3 \times$ " 30 " $(=90)$ or $7 \times$ " 24 " $(=168)$ and $5 \times$ " 30 " $(=150)$ Cao	Accept $3+7$ for $10,3+5$ for 8
\square	6	M1 M1 A1	for $720 \div 40(=18)$ or $720 \div 30(=24)$ for a complete process eg $(720 \div 30)-(720 \div 40)$ or " 18 " $\times 4 / 3-" 18$ " or " 24 " - " $24 " \times 3 / 4$ cao	

Question	Answer	Mark	Mark scheme	Additional guidance
■	2.2	P1 P1 A1	works out interest for one year, eg 3550×0.026 ($=92.3(0)$) or 3550×1.026 ($=3642.3(0)$) for compound interest calculation, eg 3550×1.026^{2} (= $=3736.9 \ldots$) or for an answer given as $0.0219 \ldots$ or $1.0219 \ldots$ answer in range 2.19 to 2.2	If an answer in the range is seen in working and then incorrectly rounded award full marks
[1] (a) (b)	163 or 164 Statement	P1 P1 A1 C1	uses formula eg $1.2 \times 200-50(=190)$ for complete process, eg May: $1.2 \times$ " 190 " $-50(=178)$ and June: $1.2 \times$ " 178 " - 50 (= 163.6) for 163 or 164 (dep P1) ft statement, eg there won't be any rabbits, fewer rabbits, decrease	

Question	Answer	Mark	Mark scheme	Additional guidance
59	168	P1 P1 P1 A1	for working with ratio to find the amount for C or D eg $1.5 \times 2(=3)$ or $(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}=) 2,7,3,3$ oe OR for suitable expressions linking A with C or D, eg. $\mathrm{A}=x, \mathrm{C}=1.5 x$ for " $2+3+3+7$ " (=15) OR adds 4 suitable expressions, eg. " $x+3.5 x+1.5 x+1.5 x "(=7.5 x)$ for a complete process to find the amount of money eg $360 \div$ " 15 " $\times 7$ OR $360 \div$ " 7.5 " $\times 3.5$ cao	
$\begin{array}{ll} \hline \hline \mathbf{6 0} & \text { (a) } \end{array}$ (b)	$100: 81$ $6: 5$	M1 A1 P1 A1	for a scale factor of 0.9 oe used; OR for $10: 9$ oe OR 81: 100 oe OR 81\% for 100:81 oe for 1.44 oe used as the scale factor or 1.2 oe OR for $144: 100$ oe or $\sqrt{144}: \sqrt{100}$ oe OR 5: 6 oe for $6: 5$ oe	eg. $1: 0.81$, accept $1.23(4 \ldots): 1$ eg $1.2: 1$, accept $1: 0.83(3 \ldots)$

Question	Answer	Mark	Mark scheme	Additional guidance
\square (a)	Ben (supported)	P1	shows how to work interest out for one year eg $2000 \times 0.025(=50)$ or $1600 \times 0.035(=56)$ or 150 or 168 or $2000 \times 1.025(=2050)$ or $1600 \times 1.035(=1656)$	Throughout accept figures ± 1 pence which do not need to be presented in money notation (to 2 dp) or with monetary symbols.
		P1	shows compound interest calculation for one account $\begin{aligned} & \text { eg } 2050 \rightarrow 51.25 \text { or } 2101.25 \rightarrow 52.53 \\ & \text { or } 1656 \rightarrow 57.96 \text { or } 1713.96 \rightarrow 59.99 \\ & \text { eg } 2000 \times 1.025^{3}(=2153.78) \text { or } 1600 \times 1.035^{3}(=1773.95) \end{aligned}$	Award mark for a correct process shown, for which these figures can be taken as implying the process.
		P1	shows complete compound interest calculation for both accounts eg $2000 \times 1.025^{3}(=2153.78)$ and $1600 \times 1.035^{3}(=1773.95)$ OR one interest stated correctly eg 153.78 or 173.95	As above, award mark for both correct processes shown for both accounts, which these figures can be taken as implying the process.
		C1	Ben (shares) supported by 153.78 and 173.95	Accept an answer of "shares".
] (b)	conclusion	C1	conclusion (ft) eg no change, shares now 182.5... Acceptable examples no since shares/Ben now 182.5 Still Ben since $182.5>$ Ali No; he only gets 8.57 more No; he gets 68.56 instead of 59.98 ($3^{\text {rd }} \mathrm{yr}$) No; Ben already gets more interest, he would just get even more Not acceptable examples no shares now 182.5 Still Ben since less than Ali $182.5>153.78$ no; he needs 20.17 more	Conclusion needs to be supported. ft is from part (a); calculations carried out as part of (b) need to be correct for the comparison to be valid.

Question	Answer	Mark	Mark scheme	Additional guidance
D	No(supported)	P1	calculates area of trapezium eg $1 / 2 \times 7 \times(10+16)(=91)$	
		P1	for division by coverage eg $\div 2$ or [area of trapezium] $\div 2(=45.5)$ or process to find coverage per tin eg $5 \times 2(=10)$ for process to find number of tins bought eg $160 \div 16.99=9$ tins	[area of trapezium] needs to be clearly stated if the process of finding the area is not clear
		P1	for division to find the number of for using whole no. of tins to find tins eg $\div 5$ or " $45.5 " \div 5(=9.1)$ or total litres eg $9 \times 5(=45)$ $[$ area of trapezium $] \div$ " $10 "(=9.1)$	
		P1	(dep on at least P2) for a process (dep on at least P2) for a process to multiply a whole number of tins (rounded up) by 16.99 eg " $45 " \times 2(=90)$ to find the total coverage	
		C1	for 'No' supported by correct figures eg 169.9 or 90 and 91	There must be a conclusion ("No" or equivalent wording) including the figure 169.9 and working showing processes followed.

Question	Answer	Mark	Mark scheme	Additional guidance
■	35	P1	use of ratio $2: 3$ and tin quantities to find overall ratio of litres eg 4:3 or 4 tins : 3 tins or 20 litres (Y) \& 30 litres (B)	
		P1	calculates total cost of making paint eg $4 \times 26+3 \times 48$ (50 litres) or $104+144(=248)$	Could be multiples $4 \& 3$ (for an amount which is a multiple of 50 litres). " 248 " is the total cost for making 50 litres
		A1	calculates comparable cost eg 10 litres (1 tin) green paint made as 49.6 or differences (profit) for 1 tin as 17.36 or 5 tins as 86.8 or total comparable costs for 50 litres as 334.8 and 248, for 25 litres as 167.4 and 124 or 1 litres as 33.48 and 24.8	" 248 " $\div 5=49.6$ for 10 litre (1 tin) green paint made Profit on 10 litres is $66.96-49.60=17.36$ Profit on 50 litres is $304.8-248=86.8$ 334.8 comes from 5×66.96 and is the selling price for 50 litres green paint
		P1 A1	for percentage calculation eg $\frac{1736}{4960} \times 100, \frac{" 334.8 "-" 248 "}{" 248 "} \times 100$ cao	

「 EXPERT

教

Question	Answer	Mark	Mark scheme	Additional guidance
■	4:1	P1 P1 M1 M1 A1	for associating algebraic expressions with the correct ratio eg $p-5: q-5(=5: 1)$ or $p+20: q+20(=5: 2)$ for $\frac{p+20}{q+20}=\frac{5}{2}$ or $\frac{p-5}{q-5}=\frac{5}{1}$ oe or $p-5=5(q-5)$ or $2(p+20)=5(q+20)$ oe for a complete method shown to find p or q for a complete method shown to find p and q or two values for p and q that are in the ratio $4: 1$ or an unsimplified ratio $4: 1(\mathrm{eg} 80: 20)$ or an answer of $1: 4$ cao	Award for one of the two simultaneous equations eg $5 q-p=20,5 q-2 p=-60$ oe Award for a simultaneous equation method to eliminate one variable leading to either $p=80$ or $q=20$ Award for a simultaneous equation method to eliminate both variables leading to either $p=80$ and $q=20$
■	3.75	P1 P1 P1 P1 A1	works to find vol of frustum eg $1 / 3 \pi(3.6)^{2} \times 6.4-1 / 3 \pi(1.8)^{2} \times 3.2$ or $86.858 . .-10.857 \ldots \quad(=24.192 \pi$ or $76.00 .$. works to find vol of hemisphere eg $\frac{1}{2} \times \frac{4}{3} \pi \times 3.6^{3} \quad(=31.104 \pi$ or $97.7 \ldots$. mass of frustum as [vol] \times density eg " 76.00 " $\times 2.4$ (=182.4..) or mass of hemisphere as [vol] \times density eg "97.7...." $\times 4.8$ (=469.037...) mean density as total mass \div total volume $\text { eg ("182.4.." + "469.037") } \div(" 76 . . . "+\text { "97.7..") }$ or "651.4..". \div "173.7...." answer in the range 3.7 to 3.8	$781.7 \ldots$ by use of diameter does not get the mark [vol] is their volume which could be ft using the radius, using the diameter, or could be another value as long as it is stated as being the volume, or clearly intended from working. All figures must come from correct method shown.

Question	Answer	Mark	Mark scheme	Additional guidance
D	3:5	P1	for process to find 20% or 120% of the cost, eg $8500 \times 0.2(=1700)$ oe or $8500 \times 1.2(=10200)$ oe	When partitioning all figures quoted must be correct or a full method shown eg $10 \%=8500 \div 10(=850)$ and $20 \%=$ " $850 "+$ " $850 "(=1700)$
		P1	for process to find total cost of payments, eg $12 \times 531.25(=6375)$	
		P1	for complete process to find value of deposit, $\begin{aligned} & \mathrm{eg} " 10200 "-" 6375 "(=3825) \text { or } \\ & 8500-" 6375 "(=2125) \text { and " } 2125 "+" 1700 "(=3825) \end{aligned}$ OR the deposit as a proportion of the total cost, eg $1-\frac{" 6375 "}{" 10200 "}\left(=\frac{3}{8}\right)$	May be seen as a fraction of the total eg $\frac{3825}{10200}\left(=\frac{3}{8}\right)$
		P1	for finding a correct un-simplified ratio, eg " 3825 " : " 6375 " oe or $5: 3$ or $1.6: 1$ or $\frac{5}{3}: 1$	Figures at this stage must be expressed as part of a ratio $\text { eg } 51: 85, \quad \frac{3}{8}: \frac{5}{8}$
		A1	Accept 1: $1 . \dot{6}, \quad 1: \frac{5}{3}$	Ignore consistent units

Question	Answer	Mark	Mark scheme	Additional guidance
■	$\begin{gathered} \text { No } \\ \text { (supported) } \end{gathered}$	P1	For a process to calculate the initial or new pressure, eg $(70+10) \div(20+10)(=2.6$ to 2.7$)$ or $80 \div 30 \quad(=2.6$ to 2.7$)$ or $70 \div 20(=3.5)$	Accept any value in the range 2.6 to 2.7 if unsupported by working
		P1	For a complete process to make a comparison eg. $0.8 \times$ " 3.5 " ($=2.8$) OR $\frac{(" 3.5 "-" 2.6 ")}{" 3.5 "} \times 100(=22$ to 26) OR " 3.5 " $\times 0.2(=0.7)$ and $80 \div 30(=2.6$ to 2.7$)$ OR $\frac{" 2.6 "}{\text { " } 3.5 "}(\times 100)(=0.74$ to 0.78 or 74 to 78$)$	
		A1	for a correct conclusion supported by accurate figures eg 2.8 and $2.6(6 \ldots)$ OR decrease is 24% (or 22% to 26%) OR 0.7 and 2.6 to 2.7 and 3.5 OR 0.7 and 0.9 OR 0.76 (or 0.74 to 0.78) OR 76% (or 74% to 78%)	Allow truncation or rounding of figures
$\square 9$	12 508.7(0)	P1	for start of process to find interest rate for year 1 eg $12336 \div 12000(=1.028)$ or $(12336-12000) \div 12000(=0.028)$ OR forms a suitable equation, eg $12000 \times\left(1+\frac{x}{100}\right)=12336$	Rate of interest $=2.8$, or $x=2.8$ implies P2
		P1	for complete process to find the interest rate for year 1 eg $(" 1.028 "-1) \times 100(=2.8)$ or " $0.028 " \times 100(=2.8)$ OR correct process to solve correct equation $\operatorname{eg}(12336-12000) \div 120(=2.8)$	
		P1	for complete process to find the value at the end of 2 years eg (" 2.8 " $\div 2+100$) $\div 100 \times 12336$	
		A1	accept 12508.7 to 12508.71 or 12509	12509 must come from correct working
■	BDAC	B2	all correct	
		(B1	for at least 2 correct)	

Question	Working	Answer	Mark	Notes
\square	$\begin{aligned} & £ 6-£ 5.64=36 \text { p or } \\ & 50 p-47 p=3 p \end{aligned}$ $6.3829787 \ldots \%$	6.4	P1 P1 A1	for a strategy to compare the same number of bottles e.g. $£ 5.64 \div 12(=47$ or 0.47$)$ or 12×50 p $(=6$ or 600$)$ or 36 or 0.36 or 3 or 0.03 for start of process to find percentage profit e.g. $\frac{" 36 "}{564}$ or $\frac{" 3 "}{447 "}$ or $\frac{" 6 "}{5.64}$ or $\frac{50}{447}$ oe with consistent units for answer in the range 6.3 to 6.4
■		$\frac{1}{11}$	P1 P1 A1	for starting the process, eg by writing down a correct ratio or using a given number of cubes for one relationship, eg 2 B 1 Y or $\mathrm{B}: \mathrm{Y}=2: 1$ or 4 G 1 B or $\mathrm{G}: \mathrm{B}=4: 1$ or $8 \mathrm{G}, 1 \mathrm{Y}$ or $\mathrm{G}: Y=8: 1$ oe or yellow $=2$, blue $=4$, or states 2:1:8 oe in any order (can be algebraic) for complete process to find possible number of each colour or equivalent ratio, eg 8 G 2 B 1 Y or $\mathrm{G}: \mathrm{B}: \mathrm{Y}=8: 2: 1$ oe or yellow $=2$, blue $=4$, green $=16$ oe (can be algebraic) $\frac{1}{11} \text { oe }$
\square		65.60	P1 P1 A1	for start in using inverse proportionality, eg $5 \times 4.5(=22.5)$ or $4.5=\frac{k}{5}$ or $5 \times 4.5 \times 60(=1350)$ or $\frac{5}{3}$ or $\frac{3}{5}$ for process to find number of hours for each cleaner today, eg $\frac{22.5}{3}(=7.5)$ for 65.6(0) (SC B2 for 61.5(0))
$\underset{\sim}{\Gamma} \underset{\text { TUXTION }}{\text { EXPR }}$				

Question	Working	Answer	Mark	Notes
D (a)		58600	M1	for a complete method, eg $50000 \times 1.02^{8}(=58582(.969 \ldots))$ or for finding the increase in value of the company after 8 years, eg $8582(.969 \ldots$...) or 8600
			A1	cao
(b)		4.5	P1	for a process to find multiplier for 6 year period, eg $325 \div 250$ oe ($=1.3$) or $130(\%)$ or for $250000 \times y^{6}=325000$
			P1	for a process to find multiplier for one year, eg ("1.3") ${ }^{\frac{1}{6}}$ or $1.044 \ldots$ or 1.045
			A1	4.4-4.5
■		0.98	B1	cao

T EXPERT

Question	Working	Answer	Mark	Notes
■		Yes(supported)	P1	for process to work out the total number of children, e.g. 117×4 (= 468)
			P1	(dep P1) for process to work out total number of adults or the total number of people, e.g. " 468 " $\times 5 \div 2(=1170)$ or " 468 " $\times 7 \div 2(=1638)$
			A1	for 1170 or 1638
			P1	for process to work out the percentage of theatre full, e.g. $\frac{468 "+" 1170 "}{2600} \times 100(=63)$ or for a process to work out 60% of $2600(=1560)$
			C1	for a correct conclusion supported by correct figures e.g. 63% or 1560 and 1638 OR
			P1	for a process to work out 60% of 2600 , eg. $\frac{60}{100} \times 2600(=1560)$
			P1	(dep P1) for process to work out this total number of children, e.g. " 1560 " $\times 2 \div 7(=445(.7 \ldots))$
			A1	for 445(.7...)
			P1	for process to work out children in the circle, eg. "445(.7...)" 4 ($=111$ to 112)
			C1	for a correct conclusion supported by correct figures e.g. 111 to 112 [Where appropriate accept rounded or truncated values]
			P1	for a process to find the maximum number of children, eg. $2600 \times 2 \div 7(=742(.8 \ldots))$
			P1	for process to work out the total number of children, e.g. $117 \times 4(=468)$
			A1	for 468 and 742(.8...)
			P1	for $\frac{" 468 "}{\text { " } 742(.8 . .) "} \times 100(=63)$ or process to work out 60% of " $742(.8 \ldots)$ " $(=445(.7 \ldots))$
			C1	for a correct conclusion supported by correct figures e.g. 63% or 468 and 445(.7...) [Where appropriate accept rounded or truncated values]

Question	Working	Answer	Mark	Notes
(a) (b)		57.1 explanation	P1 P1 P1 A1 C1	for a process to find time from Liverpool to Manchester, eg. $56 \div 70(=0.8$ (hrs) or 48 (mins)) for a process to find total distance, eg. $56+61(=117)$ or the total time, eg. " $48 "+75(=123)$ or " $0.8 "+\frac{75}{60}(=2.05)$ with consistent units of time (dep P2) for a correct process to find average speed with consistent units of time, eg." 117 " $\div 2.05$ " or " 117 " \div " 123 " for answer in the range 57 to 57.1 for explaining that the time taken for the two parts of the journey must be the same or the distance from Leeds to York is $\frac{3}{4}$ of the distance from Barnsley to Leeds
(a) (b)		3.9 2.05	M1 A1 M1 A1	```for a ratio of \(\frac{8.1}{5.4}(=1.5)\) oe or \(\frac{5.4}{8.1}(=0.66 .\).\() oe\) or \(\frac{2.6}{5.4}(=0.48 .\).\() oe or \frac{5.4}{2.6}(=2.07 .\).\() oe\) cao for \(\frac{5.4}{8.1} \times 6.15\) oe \((=4.1)\) or \(\frac{2.7}{8.1} \times 6.15\) oe or ft "scale factor" from (a) cao```
■		Secure Bank (supported)	P1 P1 C1	for a process to work out the interest after one year e.g. $0.02 \times 25000(=500)$ or $0.043 \times 25000(=1075)$ or for 1.02 or 25500 or 1.043 or 26075 for process to find value of the investment after 3 years or the multiplicative factor for 3 years at one of the banks, e.g. $25000 \times 1.02 \times 1.02 \times 1.02$ oe $(=26530 \ldots)$ or $1.02^{3}(=$ $1.0612 \ldots)$ or $25000 \times 1.043 \times 1.009 \times 1.009$ oe $(=26546 \ldots)$ or $1.043 \times 1.009 \times 1.009(=$ 1.0618.....) [accept total interest of 1530 .. or 1546.. if final values of investment are not found] for Secure Bank from correct figures, eg. 26530.. and 26546 .. or $1530 \ldots$ and $1546 \ldots$ or $1.0612 \ldots$ and $1.0618 \ldots$

Question	Working	Answer	Notes
T		96	P1 a strategy to start to solve the problem eg $18 \div(7-4)(=6)$ P1 \quad for completing the process of solution eg " 6 " $\times(4+5+7)$ A1 \quad cao
T		conclusion (supported)	P1 $30 \div 70(=0.428)$ $26 \div 60(=0.4333 \ldots)$ $30 \div 26(=1.153 \ldots)$ P1 $60 \times " 0.428 \ldots "$ $70 \times " 0.4333 \ldots "$ $60 \times$ "....153 ..." C1 for conclusion linked to 25.7 mins, 30.3 miles or 69.2 mph
$8 \square$		6:2:1	M1 for correct interpretation of any one statement eg. $3: 1 ; 1: 0.5$ A1 accept any equivalent ratio eg. $3: 1: 0.5$
T (a) (b)		1.8\%	P1 for start to process eg. $2000 \times 1.025(=2050)$ P1 for process to use all given information eg " 2050 " $\times m^{2}=2124.46$ or " 2050 " $\times\left(1+\frac{x}{100}\right)^{2}=2124.46$ P1 for process to find their unknown eg $m=\sqrt{\frac{2124.46}{2050}}(=1.01799 \ldots)$ A1 for $1.79 \%-1.8 \%$ M1 $\quad 225 \div 1.125$ oe A1
T		20	M1 Establishing method linked to proportion eg $d=k \div c$ or $25=k \div 280$ M1 (dep) substitution eg $d=7000 \div 350$ or $25 \times 280 \div 350$ oe A1 cao

Question	Working	Answer	Notes
85	$\begin{aligned} & £: 1980 \div 1.34= \\ & 1477.61 \\ & 2250 \div 1.52= \\ & \mathbf{1 4 8 0 . 2 6} \\ & \\ & : 1480 \times 1.34= \\ & 1983.2 \\ & 2250 \div 1.52 \times 1.34 \\ & =1983.55 \\ & \$: 1480 \times 1.52= \\ & 2249.6 \\ & 1980 \div 1.34 \times 1.52 \\ & =\mathbf{2 2 4 5 . 9} \\ & \hline \end{aligned}$	Jardins of Paris supporting evidence	P1 correct process to convert one price to another currecncy, eg $1980 \div 1.34$ P1 for a complete process leading to 3 prices in the same currency C1 for 3 correct and consistent results and a correct comparison made.
(a) (b)		graph 4.5	M1 for method to start to find distance cycled in 36 mins, eg. line drawn of correct gradient or $15 \times \frac{36}{60}$ or 15×36 C1 $\left.\begin{array}{l}\text { for correct graph from } 9.00 \text { am to } 9.36 \mathrm{am} \\ \text { for graph drawn from "(9.36, 9)" to } \\ (10.45, ~ " 9 " ~\end{array}+8\right)$
Ш		8112	M1 for complete method, eg. 7500×1.04^{2} cao

Question	Working	Answer	Notes
Ш		No with supporting evidence	P1 for the start of a correct process, eg. two of $x, 2 x$ and $2 x+7$ oe or a fully correct trial, eg. $5+10+17=32$ P1 (dep on P1) for setting up an equation using 3 algebraic terms, eg. $x+2 x+2 x+7=$ 57 or a correct trial totalling 57 , eg. $10+20+27=57$ for a correct deduction from correct answers, C1 eg. Chris has 20 so it is impossible for all to have 20 since 60 marbles would be needed.
피 (a) (b)		-1.5	$\left.\begin{array}{ll}\text { M1 } & \text { for method to find gradient, eg. } 210 \div 140 \\ \text { A1 } & \text { for correct interpretation of the negative gradient }\end{array}\right]$C1 for explanation, eg. rate of change of depth of water in tank
■		18.3	P1 for a start to the process interpreting the information correctly, eg. $T=k \sqrt{L}$ oe P1 for a correct scale factor of 1.4
IU (a) (b)		$3 \text { to } 4$ 452	C1 for a tangent drawn at $t=6$ B1 for a gradient in the range 3 to 4 or ft "tangent" C1 for splitting the area into 3 strips and a method of finding the area of one shape under the graph, eg. $\frac{1}{2} \times 4 \times 35(=70)$ M1 for complete process to find the area under the graph, eg "70" $+\frac{1}{2} \times 4 \times(35+51)$ $(=172)+\frac{1}{2} \times 4 \times(51+54)(=210)[=452]$ A1 for 452
■		$\begin{gathered} 10169 \text { or } \\ 10171 \end{gathered}$	```P1 for correct use of formula to find number in 2016, eg. 1.05(9500-250) (= 9712.5) for complete iterative process, P1 eg. 2017: \(1.05(" 9712.5 "-250)(=9935.625)\) 2018: 1.05("9935.625"-250) for answer of 10169.90... rounded or truncated to nearest whole number C1```

Question	Working	Answer	Notes
■	$\begin{aligned} & 6: 5=12: 10 \\ & 2: 1=10: 5 \\ & \mathrm{C}: \mathrm{S}: \mathrm{P}=12: 10: 5 \\ & \frac{10}{27} \times 189 \end{aligned}$	70	P1 P1 for strategy to start to solve the problem eg $12: 10$ and $10: 5$ P1 P1 for process to solve the problem eg $\frac{10}{27} \times 189$ A1 A1 cao
Ш1 (a) (b) (c)		18 $5(x-1)$ $9 x-48 \text { shown }$	B1 cao M1 for method to find inverse function A1 for $5(x-1)$ or $5 x-5$ M1 for method to find composite function A1 for working leading to $9 x-48$
(a) (b)(i) (ii)	$1560000 \times(1.052)^{2}$	1730000 2020	$\left.\left.\begin{array}{ll}\text { P1 } & \text { for process to find population in } 2016 \\ \text { P1 } & \text { for complete process to find population in } 2017 \\ \text { A1 } & \text { for } 1725000-1730000\end{array}\right] \begin{array}{ll}\text { P1 } & \text { for process to find when population will exceed } \\ \text { A1 } 000000 \\ \text { for } 2020\end{array}\right]$for correct comment on how assumption will affect the answer, eg if the percentage growth is

Question	Working	Answer	Notes
■		explanation	C1 for a correct evaluation, eg the value of D should be multiplied by 8 , she has used 2×3 instead of 2^{3}
(a) (b) (c)		$1.0-1.3$ limitation	M1 for finding gradient by drawing tangent M1 for method to calculate gradient A1 For $1.0-1.3$
■	$\begin{aligned} & \frac{2 x-1}{x-4}=\frac{16 x+1}{2 x-1} \\ & (2 x-1)^{2}=(16 x+1)(x-4) \\ & 12 x^{2}-59 x-5=0 \\ & \\ & (12 x+1)(x-5)=0 \end{aligned}$	$-\frac{1}{12}, 5$	P1 for process to write as an equation P1 for process to clear the fractions P1 for process to write equation in form $a x^{2}+b x+c=0$ P1 for process to solve the equation A1 cao

Question	Answer	Mark	Mark scheme	Additional guidance
\square	$\begin{aligned} & 12.85 \text { or } 12.86 \\ & \text { or } 13.5(0) \end{aligned}$	P1	for $9+2+1$ (= 12)	Award this mark for sight of 4500, 1000 or 500
		P1	for working out how many lots of 175 g are needed eg $6000 \div$ " 12 " $\times 2 \div 175$ ($=5.71 \ldots$)	Process may lead to 5 or 6 instead of 5.71...
		P1	for a complete process eg " $5.71 \ldots$... $\times 2.25$ (= 12.857...)	" $5.71 . .$. (ft) may be rounded or truncated.eg " 6 "
		A1	for 12.85 or 12.86 or 13.5(0)	

Question	Answer	Mark	Mark scheme	Additional guidance
$\square \square$	260	P1 P1 P1 A1	conversion to common units of capacity eg $2.2 \times 4.54(=9.988)$ or $8 \div 4.54(=1.76 \ldots)$ OR for Company A $2400 \div 4.54(=528.63 \ldots)$ OR $2400 \div 8(=300)$ OR a rate per minute $8 \div[$ time for Company A] (=4.8 ...) oe for a complete process to find the time for company A or company B in minutes. eg in litres Company A $2400 \div$ " $4.8 \ldots$ " $(=500)$ or " $300 " \times[1 \mathrm{~min} 40 \mathrm{sec}](=500)$ or Company B $2400 \div$ " $9.988 "(=240.28 \ldots)$ OR eg in gallons Company A "528.63.." $\div(" 1.76 . . . " \div[1 \mathrm{~min} 40 \mathrm{sec}]) \quad(=500)$ or Company B " $528.63 \ldots " \div 2.2 \quad(=240.28 \ldots)$ for complete processes to find the times for both company A and company B in minutes. Company A eg in litres $2400 \div$ "4.8.." ($=500$) or " $300 " \times[1 \mathrm{~min} 40 \mathrm{sec}](=500)$ or in gallons "528.63.." $\div(" 1.76 . . . " \div[1 \mathrm{~min} 40 \mathrm{sec}]) \quad(=500)$ AND Company B eg in litres $2400 \div$ "9.988" ($=240.28 \ldots$..) or in gallons " $528.63 \ldots$ " $\div 2.2 \quad(=240.28 \ldots)$ for an answer in the range 259 to 260	Results of calculations may be truncated or rounded. [time for Company A] could be 1 min 40 sec or $1.66 \ldots$ or 1.6 or 1.40 etc as long as it is clear it relates to 1 min 40 sec If the answer is given within the range but then rounded incorrectly award full marks.
미 (a) (b)	Graph sketched Graph sketched	C 1 C 1	Sketch Sketch	Accept freehand provided intention is clear

Question \square (a)

Question [(b)

T $\left\lvert\, \begin{aligned} & \text { EXPERT } \\ & \text { TUITION }\end{aligned}\right.$

Question	Answer	Mark	Mark scheme	Additional guidance
\square	8:12:9:1	P1 P1 P1 A1	for $2+3(=5)$ and $9+1(=10)$ OR for assigning a total number of sweets for $\mathrm{F}+\mathrm{G}$ and $\mathrm{O}+\mathrm{J}$ eg $\mathrm{F}+\mathrm{G}=100, \mathrm{O}+\mathrm{J}=50$ for finding correct multiplier for relationship between totals for $\mathrm{F}+\mathrm{G}$ and $\mathrm{O}+\mathrm{J}$ eg $\times 4$ to get from 5,10 to 20,10 OR for working out the number of sweets from their totals for F, G eg 40, 60 or for O, J, eg 45, 5 for $2 \times 4(=8)$ and $3 \times 4(=12)$ OR for ratio in unsimplified form, eg $40: 60: 45: 5$ cao	May be in algebraic form, eg $2 a+3 a(=5 a)$ and $9 a+1 a(=10 a)$ May be in algebraic form, eg $\mathrm{F}+\mathrm{G}=5 a, \mathrm{O}+\mathrm{J}=2.5 a$
\square	0.7 to 1.1	M1 M1 A1	for tangent to the curve drawn at $t=12$ for method to find the gradient of their tangent, eg $28 \div 30$ for answer in the range 0.7 to 1.1 dependent upon tangent drawn	Working may be seen on the diagram Ignore negative signs

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance

\hline \multirow[t]{3}{*}{D} \& \multirow[t]{3}{*}{$$
x=\frac{1}{2} z^{6}
$$} \& M1 \& for setting up an equation eg $x=k y^{2}$ oe or $y=c z^{3}$ oe \& Accept use of proportionality sign, eg $x \propto y^{2}$ or $y \propto z^{3}$ or $x \propto k y^{2}$ or $y \propto c z^{3}$

\hline \& \& M1 \& for eliminating y eg $x=k\left(c z^{3}\right)^{2}$ oe OR \& Accept use of proportionality sign, eg $32 \propto k y^{2}$ and $y \propto c 2^{3}$

\hline \& \& M1

A1 \& for substituting in 32 and 2 to find the constant, eg $32=m 2^{6}$ OR combines equations, eg $32=k c^{2} 2^{6}$ oe \&

\hline
\end{tabular}

Question	Answer	Mark	Mark scheme	Additional guidance
\square	2 hours 45 minutes	P1 P1 A1	for $30 \div 24(=1.25)$ or $12 \div 8(=1.5)$ for finding the sum of their two times eg " 1.25 " + " 1.5 " (= 2.75) or 165 (minutes) cao	May be written in hours and/or minutes or 3 h 15 min or 2 h 75 min
Ш1 (a)	Yes (supported)	P1 P1	for start of process, eg $5 \times 9(=45)$ or $10 \times 14(=140)$ or $5 \times 2(=10(\mathrm{~kg}))$ or $3 \div 2$ (= 1.5 (boxes)) for process using ratio of areas, eg " 140 " $\div 45$ " (= $3.1 \ldots$) or for using ratio of amount of seed eg " 10 " $\div 3(=3.3 \ldots)$ or for finding coverage for 1 kg of grass seed, eg " 45 " $\div 3\left(=15\left(\mathrm{~m}^{2}\right)\right)$	Accept values rounded or truncated to 1 dp in both (a) and (b). Ignore units
		P1	for process to find amount of seed needed, eg " 140 " \div " 45 " $\times 3$ (= 9.3 ...kg) or " 140 " $\div 45$ " \times " 1.5 " $(=4.6 \ldots$ (boxes) $)$ oe or " 15 " $\times 2\left(=30\left(\mathrm{~m}^{2}\right.\right.$ per box $\left.)\right)$ and " 140 " \div " 30 " (= $4.6 \ldots$ (boxes)) or for process to find area that can be seeded, eg " 10 " $\div 3 \times$ " 45 " ($\left.=150\left(\mathrm{~m}^{2}\right)\right)$ or " 140 " \div " 10 " (= $14\left(\mathrm{~m}^{2}\right)$) oe for "Yes" supported by correct figures eg 4.6...(and 5), or 9.3...and 10 or 150 and 140 (or 140 to 148.5) or 15 and 14	Accept 9.4 Accept 4.7
(b)	Yes, (does not have enough) (supported)	C1	for reasoning supported with correct figures, eg does not have enough seed and compares $9(\mathrm{~kg})$ with $9.3 \ldots(\mathrm{~kg})$ or 4.5 (boxes) with $4.6 \ldots$ (boxes) or $135\left(\mathrm{~m}^{2}\right)$ with $140\left(\mathrm{~m}^{2}\right) \mathrm{ft}$ from (a)	Values used in (a) do not need repeating in (b) as long as intention is clear

Question	Answer	Mark	Mark scheme	Additional guidance
Ш1 (a)	3:4	P1	for start of process, eg isolate terms in c, eg $4 c=3 d$ or divide all terms by d, eg $\frac{5 c}{d}+1=\frac{c}{d}+4$	
		A1	for 3 : 4	Accept any equivalent ratio or $c=3, d=4$
(b)	$5: 2$	P1	for start of process: to take all terms to one side eg $6 x^{2}-7 x y-20 y^{2}(=0)$ or divide all terms by y^{2}, eg $\frac{6 x^{2}}{y^{2}}=\frac{7 x y}{y^{2}}+\frac{20 y^{2}}{y^{2}}$ or substitute a value of $x(x>0)$ or a value of $y(y>0)$ into the equation, eg $x=5,150=35 y+20 y^{2}$	
		P1	for second step in process, eg $(2 x-5 y)(3 x+4 y)(=0)$ or $6 p^{2}-7 p-20(=0)\left(\right.$ where $\left.p=\frac{x}{y}\right)$ or $20 y^{2}+35 y-150(=0)$	
		A1	$5: 2$	Accept $x=5, y=2$ or equivalent ratios,eg, $1: \frac{2}{5}$

Question	Answer	Mark	Mark scheme	Additional guidance
\square	37000	B1	cao	
\square	50	P1 A1	for finding the time difference, eg, 1 hr 18 mins or 78 mins oe for correct process to convert minutes to hours, eg $18 \div 60(=0.3)$ or $78 \div 60(=1.3)$ or for a correct process to convert speed in miles per minute to mph eg "0.833.." $\times 60$ for using speed $=$ distance \div time eg, $65 \div$ [time] or $65 \div 78(=0.833$.. $)$ cao SCB2 for $83(.333 \ldots)$ seen as the answer	Allow 1.18 for this mark 118 scores B0 For a conversion of time or speed [time] is what the candidate clearly indicates as time difference
\square	739	P1 P1 P1 A1	process to find the volume of C, eg $\pi \times 3^{2} \times 25(=706.8583471$ or 225π) process to find the volume of A or the volume of B , eg "706.8..." $\times \frac{2}{2+13}(=94.24777961$ or $30 \pi)$ or "706.8 ..." $\times \frac{13}{2+13}(=612.6105675$ or $195 \pi)$ or process to work with density and ratio, $\mathrm{eg}(2 \times 1.21+13 \times 1.02)(=15.68)$ process to find the mass of C, eg " 30π " $\times 1.21(=114.0398133)+$ " $195 \pi " \times 1.02(=624.8627788)$ or " 225π " \times " 15.68 " $\div(2+13)$ for an answer in the range 738.5 to 739	For use of 3.14 Volume of C is 706.5 Volume of A is 94.2 Volume of B is 612.3 Mass of A is 113.982 Mass of B is 624.546 Do not award accuracy mark if the figure is from obvious incorrect working

Question	Answer	Mark	Mark scheme	Additional guidance
Ш1	$\frac{13}{20}$	P1	for finding the fraction who chose either soup $\left(\frac{2}{5}\right.$ oe) or chose prawns ($\frac{3}{5}$ oe) or for process to share any number in the ratio $2: 3$ $\operatorname{eg} 100 \div(2+3) \times 2 \quad(=40)$	Starting number 100 Soup : Prawn 40:60
		P1	for a process that could lead to the proportion who chose lasagne or curry for either starter, eg sharing 40% (soup) in the ratio $5: 3$ or sharing 60% (prawns) in the ratio $1: 5$ or $\frac{2}{5} \times \frac{5}{8}$ or $\frac{2}{5} \times \frac{3}{8}$ or $\frac{3}{5} \times \frac{1}{6}$ or $\frac{3}{5} \times \frac{5}{6}$ or for continuing the process with their starting number to find the number who chose lasagne or curry for either starter	$\begin{array}{ll} \mathrm{L}: \mathrm{C} & \mathrm{~L}: \mathrm{C} \\ 25: 15 & 10: 50 \end{array}$
		P1 A1	for a complete process to find the proportion who chose curry for both starters, $\operatorname{eg}\left(\frac{2}{5} \times \frac{3}{8}\right)+\left(\frac{3}{5} \times \frac{5}{6}\right)$ or to find the number who chose curry for both starter for their starting number $\frac{13}{20}$ or equivalent fraction	$15+50=65 \text { and } \frac{15+50}{100}$

Question	Answer	Mark	Mark scheme	Additional guidance
$\square \square$	$\begin{aligned} & 12272.70 \\ & 12272.71 \text { or } \\ & 12272.72 \end{aligned}$	M1 M1 A1	for evidence of using a correct first step eg $200000 \times 0.015(=3000)$ or $200000 \times 1.015(=203000)$ for evidence of a compound interest method eg $203000 \times 0.015(=3045)$ or $203000 \times 1.015(=206045)$ or $206045 \times 0.015(=3090.675)$ or $206045 \times 1.015(=209135.675)$ or $209135.675 \times 0.015(=3137.035 \ldots)$ $\text { or } 209135.675 \times 1.015(212272.710 \ldots)$ or $200000 \times 1.015^{\mathrm{t}}, t \geq 2$ for $12272.7(0)$ or 12272.71 or 12272.72 SC B2 for $212272.7(0)$ or 212272.71 or 212272.72	values may be rounded or truncated to 2 dp
$\square \square$	10	P1 P1 A1	for a process to start to solve the problem eg $6 \times 9(=54)$ machine days needed or 12 (machine days used in first 3 days) or 42 (machine days needed after first 3 days) or 6 (machine days not used in first 3 days) or $3+4+5$ equivalent to 2 days with 6 machines or has used 48 machine days in first 9 days for " 42 " $\div 6(=7)$ (more days needed) or 3 days -2 (equivalent) days ($=1$) extra day needed to make up for the days not used cao	$\begin{aligned} & \text { eg } 3+4+5(=12) \\ & \text { eg } 6 \times 9-12(=42) \\ & \text { eg } 3+2+1=6 \\ & \text { eg } 12 \div 6=2 \end{aligned}$

Question	Answer	Mark	Mark scheme	Additional guidance
Ш1	1.8	P1 P1 A1	process to find the amount of interest before tax eg $28.80 \div 20 \times 100(=144)$ OR for equation which would lead to $(x=) 0.018,1.8$ or 1.018 eg $0.2 \times 8000 \times x=28.8$ or $\frac{8000(100+\mathrm{x})}{100}=8144$ process to find the interest rate eg $\frac{144 "}{8000}(=0.018)$ or $\frac{8144 "}{8000}(=1.018)$ cao	These numerical expressions may be seen multiplied by 100 , eg $\frac{144}{8000} \times 100$
Ш1	1.01	P1 P1 P1 A1	for $1.09 \times 60\left(=65.4\right.$ or $\left.\frac{327}{5}\right)$ or $0.97 \times 128\left(=124.16\right.$ or $\left.\frac{3104}{25}\right)$ for $1.09 \times 60\left(=65.4\right.$ or $\left.\frac{327}{5}\right)$ and $0.97 \times 128\left(=124.16\right.$ or $\left.\frac{3104}{25}\right)$ or " 65.4 " + " 124.16 " ($=189.56$ or $\frac{4739}{25}$) for a complete process to find the density of antifreeze eg (" $65.4 "+$ " 124.16 ") $\div 188$ or $189.56 \div 188$ or $\frac{4739}{25} \div 188$ for answer in the range 1.00 to 1.01	Note that the volumes may be converted to ml , eg $1.09 \times 60000(=65400)$ Candidates working in ml must use 188,000 If an answer within the range is seen in working but then rounded incorrectly award full marks. Accept 1 for 1.00 Note that the correct value is 1.008

Question	Answer	Mark	Mark scheme	Additional guidance
$\square \square$	260 to 260.5	M1 M1 A1	for $883-245(=638)$ or $883 \div 245$ ($=3.60$..) or $883 \div 245 \times 100(=360(.408 \ldots))$ oe for a complete method to find the percentage increase eg " 638 " $\div 245 \times 100(=260(.408 .)$. or $883 \div 245 \times 100-100(=260(.408$.. $))$ oe Accept answers in the range 260 to 260.5	
$\square \square$	5	M1 A1	$" 2 " \div 40 \times 100$ cao	" 2 " comes from their reading of the height of the 20 to 24 column
(a) (b)	2 mins 48 secs Statement	P1 P1 A1 C1	for an appropriate first step eg $700 \div 475$ ($=1.47$..) or $475 \div$ [time] $(=4.16 . . \mathrm{m} / \mathrm{s})$ or [time] $\div 475(=0.24 \mathrm{~s} / \mathrm{m})$ for a complete method to find the required time eg $700 \div 475 \times$ [time] $(=168)$ or $700 \div(475 \div[$ time $])(=168)$ or [time] $\div 475 \times 700(=168)$ cao eg takes less time Acceptable examples Quicker time Faster time Reduces my answer to part (a) Not acceptable examples It is an underestimate The amount of time could/may increase Laura goes faster	[time] what candidate indicates as time of first race Units are not needed and can be ignored if given Allow calculation in stages and appropriate rounding.

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance \\
\hline \multirow[t]{5}{*}{D]} \& \multirow[t]{5}{*}{8} \& P1 \& process to start the problem eg \(x y=45\) and \(x z=15\) and \(y z=27\) or \(5 \times 9(=45)\) and \(3 \times 9(=27)\) and \(3 \times 5(=15)\) or 3,5 and 9 stated \& \multirow[t]{3}{*}{Maybe seen on diagram} \\
\hline \& \& P1 \& \begin{tabular}{l}
for \(3 \times 5 \times 9(=135)\) \\
or 2 of " 9 " \(\div 2.5(=3.6)\) or " 5 " \(\div 2.5(=2)\) or " 3 " \(\div 2.5(=1.2)\)
\end{tabular} \& \\
\hline \& \& P1 \& for \(2.5^{3}(=15.625)\) or all of " 9 " \(\div 2.5(=3.6)\) and " 5 " \(\div 2.5(=2)\) and " 3 " \(\div 2.5(=1.2)\) \& \\
\hline \& \& P1 \& \begin{tabular}{l}
for a complete process to find the number of cubes possible eg [volume] \(\div\) " \(15.625 " \quad(=8.64)\) \\
or " 3.6 " \(\times\) " 2 " \(\times\) " 1.2 " (=8.64)
\end{tabular} \& \multirow[t]{2}{*}{[Volume] must come from multiplying together what they clearly indicate as the 3 dimensions of the cuboid. The three dimensions cannot be 45 , 27 and 15} \\
\hline \& \& A1 \& cao \& \\
\hline \multirow[t]{2}{*}{Ш1} \& \multirow[t]{2}{*}{\begin{tabular}{|c}
408 \\
Evidence of
\end{tabular}} \& M1 \& for \(1.01 \times 400(=404)\) or 408.04 or 412.08 \& \multirow[t]{2}{*}{\begin{tabular}{l}
412(.08) on the answer line M1A0 \\
\(1.01 \times 400\) may be seen as part of a calculation
\end{tabular}} \\
\hline \& \& A1

M1 \& \&

\hline \multirow[t]{3}{*}{Ш1]} \& \multirow[t]{3}{*}{Evidence of solution} \& M1 \& for constructing an equation eg $y \alpha \frac{1}{x^{3}}$ or eg $y=\frac{k}{x^{3}}$ oe \& \multirow[b]{3}{*}{Must show all steps clearly}

\hline \& \& M1 \& for substituting in the values a and 44 into $y=\frac{k}{x^{3}}$ \&

\hline \& \& C1 \& for a complete method to use the equation, the value of k and $x=2 a$ to show $y=5.5 \mathrm{eg}(2 a)^{3} y=44 a^{3}$ and $y=44 a^{3} \div 8 a^{3}=5.5$ \&

\hline
\end{tabular}

Question	Answer	Mark	Mark scheme	Additional guidance
Ш1]	4.52×10^{3}	M1	for 2.04.... $\times 10^{7} \mathrm{oe}$ eg $2.04 \ldots \times 10^{-5} \div 10^{-12}$ or $20.4 \ldots \times 10^{6}$ or 204(08163.27) or for correct value of $T, 4517$.(53....), not written in standard form, eg 4520 for answer in the range 4.51×10^{3} to 4.52×10^{3} (SC B1 for $6.32 \ldots \times 10^{-1}$)	May be given correct to 3 sig figs or more
	Explanation	M1	for method to find the scale factor or decreased value in T, eg $\sqrt{\frac{1.1}{1.05^{3}}}(=0.97 \ldots \ldots$.$) oe or \sqrt{\frac{5.6 \times 10^{-5} \times 1.1}{\left(1.4 \times 10^{-4} \times 1.05\right)^{3}}}\left(=4.40 \ldots \times 10^{3}\right)$ oe	Award mark for a correct method to calculate the scale factor or the percentage increases in w and d^{3} or the decreased value of T
		C1	(dep M1) for explanation eg value of scale factor less than 1 , so a decrease in T OR compares $4.40 \ldots \times 10^{3}$ with their value of T from (a) provided answer to (a) is greater	This mark may only be awarded if supported by numerical evidence

Question	Answer	Mark	Mark scheme	Additional guidance
$\square \square$	150000	P1 P1 A1	for process to find cost in 2007, eg $162000 \div 0.9(=180000)$ oe for process to find cost in 2003, $\mathrm{eg}[$ cost in 2007] $\div 1.2(=150000)$ oe cao	Award 2 marks for $162000 \div 1.08$ oe
(a) (b) (c)	1.5 Explanation Explanation	M1 A1 C1 C1	for method to find the gradient of the line, eg $\frac{12}{8}$ for 1.5 oe Explanation relating to rate of change of volume with time, eg rate at which the container fills or change in number of litres per second or number of litres added per second Explanation relating to volume (amount) of liquid in the container at the start eg number of litres in the container when $t=0$, amount of liquid in the container to start with	Must see use of scales. Ignore any quantities given. Award the mark for an explanation involving rate.
$\square \square$	6.50	M1 M1 A1	for method to find ratio or scale factor of lengths or volumes eg $\sqrt{3}: 2$ or $1: 1.15(47 \ldots$) or $0.86(60 \ldots): 1$ or $\sqrt{27}: 8$ oe for complete method to find ratio of volumes and use to find required volume eg $10 \div(\text { " } 1.15 \ldots \text {..." })^{3}$ or $10 \times(" 0.86 \ldots \text {.." })^{3}$ for answer in the range 6.49 to 6.53	Scale factors may just be seen as $1.15 \ldots$, $0.86 \ldots$..etc If an answer is given within the range then incorrectly rounded to 3 sig figs, award full marks. Accept 6.5

Question	Working	Answer	Mark	Notes
$\square \square$		New York (supported)	P1 P1 C1	for changing between $£$ and $\$$, eg $1.089 \times 1.46(=1.58(9)$.$) or 2.83 \div 1.46(=1.93(8)$.$) or$ between litres and gallons, eg $1.089 \times 3.785(=4.12(1)$.$) or 2.83 \div 3.785(=0.74(7)$. for a complete process to give values that can be used for comparison, eg "1.938..." $\div 3.785(=0.51(2)$.$) or " 1.589 \ldots .$. "... 3.785 (= $6.01(7)$. or $1.089 \times 3.785=(4.12(1)$.$) and 2.83 \div 1.46(=1.93(8)$. for New York and correct comparative values
$\square \square$		648	M2 [M1 A1	a complete method, eg $12.5 \times 1000 \div 19.3$ for using volume $=$ mass/density, eg $12500 \div 19.3$ (condone inconsistent units or incorrect conversions) may be implied by digits $647 \ldots$ or $648 \ldots$] for answer in range 647 to 648
$\square \square$		15	P1 P1 A1	strategy to start the problem, eg 8:20 and 20:5 process to solve the problem, eg $\frac{5}{33} \times 100$ or $24: 60: 15$ cao
(a) (b)		5 2.4	M1 A1 P1 P1 A1	evaluates $(0.85)^{n}$ or $12500 \times(0.85)^{n}$ for at least one value of n cao for a process to find the amount of interest before tax, eg 79.20 $\div 0.6(=132)$ for a process to find value of R, eg " 132 " $\div 5500 \times 100$ cao
$\square \square$		Shown	M1 M1 A1	for $\sqrt[3]{\frac{8}{27}}\left(=\frac{2}{3}\right)$ or $\sqrt[3]{\frac{27}{8}}\left(=\frac{3}{2}\right)$ or $2: 3$ or $3: 2$ for $\left(\sqrt[3]{\frac{8}{27}}\right)^{2}\left(=\frac{4}{9}\right)$ or $\left(\sqrt[3]{\frac{27}{8}}\right)^{2}\left(=\frac{9}{4}\right)$ or $4: 9$ or $9: 4$ 132 from correct arithmetic

Question	Working	Answer	Mark	Notes
Ш1]		68	P1 P1 P1 P1 A1 P1 P1 P1 P1 A1	for a process to find the number of vanilla cakes, eg $420 \times 2 \div 7$ oe ($=120$) for a process to find the number of banana cakes, eg 420×0.35 oe ($=147$) (dep P1) for a full process to find the number of lemon/chocolate cakes eg 420 - (vanilla cakes) - (banana cakes) (=153) (dep on previous P 1) for a process to find the number of lemon cakes eg " 153 " $\div 9 \times 4$ oe $(=68)$ cao OR for writing two proportions in the same format for combining the proportions of vanilla and banana cakes $\text { eg } 2 / 7+7 / 20(=89 / 140)$ (dep P1) for a full process to find the proportion or number of lemon/chocolate cakes $\text { eg } 1-" 89 / 140 " \quad(=51 / 140)$ (dep on previous P1) for a process to find the number of lemon cakes $\text { eg " } 51 / 140 " \times 420 \div 9 \times 4(=68)$ cao
\square		1.01	P1 P1 P1 A1	fruit syrup $15 \times 1.4(=21)$ or water $280 \times 0.99(=277.2)$ or apple juice $25 \times 1.05(=26.25)$ (dep P1) for complete process to find the total mass e.g. " 277.2 " + " 26.25 " + " 21 " $(=324.45)$ or a weighted density eg $15 \times 1.4 \div 320(=0.065625)$ or $280 \times 0.99 \div 320(=0.86625)$ or $25 \times 1.05 \div 320(=0.08203125)$ (dep P2) for complete process to find the density eg " 324.45 " $\div 320$ (=1.01..) or "0.065625" + "0.86625" + "0.08203125" (= 1.0139..) 1.01 to 1.014
D]		6 (\%)	$\begin{aligned} & \text { P1 } \\ & \text { P1 } \\ & \text { A1 } \end{aligned}$	for y^{5} oe or $8029.35 \div 6000$ for a process to find $1+x$ e.g. $\sqrt[5]{(8029.35 \div 6000)}$ or 1.06 or 1.0599.. $5.99 \text { to } 6$
Ш1]		3:4:11	$\begin{aligned} & \mathrm{P} 1 \\ & \mathrm{P} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Makes a start e.g. by using multipliers e.g. $1+5=6$ and $7+11=18$ and $6 \times 3=18$ or $A B: B D=3: 15$ or $x=3 y$ (appropriate x and y shown) or $\frac{1}{6}=\frac{3}{18}$ Complete process to find ratios e.g. $(7+11) \div(1+5)=3$ and $1 \times$ " 3 ": $7-(" 3 " \times 1): 11$ oe

Question	Working	Answer	Mark	Notes
D (a)		$\begin{gathered} x_{1=-2.64} \\ x_{2}=-2.57392 \\ x_{3=-2.603767255} \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	for substitution of -2.5 into the equation (to get $x_{1}=-2.64$) for substitution of " $x_{1}=-2.64$ " and " $x_{2}=-2.57392$ " to give x_{2} and x_{3} for $x_{1}=-2.64 \mathrm{oe}, x_{2}=-2.57(392)$ and $x_{3}=-2.6(03767255)$ Condone $x_{3}=-2.61$ if $x_{2}=-2.57$ is used in the substitution
(b)		Statements	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \end{aligned}$	Connection between equation and iterative form in (a) e.g. rearrangement Statement e.g. iteration is an estimation of a solution

Question	Working	Answer	Notes
[1] (a)	550×3.5601	1958	$\begin{array}{ll} \text { M1 } & 550 \times 3.5601 \\ \text { A1 } & \end{array}$
(b)	$\begin{aligned} & 210 \div 7 \times 2=30 \times 2 \\ & \text { Or } \\ & 60 \div 2=30 \text { and } 30 \times 7=210 \end{aligned}$	Shown	M1 For correct method to convert cost in UK to lira or vice versa, using Asif's approximation C1 Shown with correct calculations
(c)		Correct evaluation	C1 For an evaluation e.g. It is a sensible start to the method because he can do the calculations without a calculator and 3.5 lira to the $£$ is a good approximation
[1]		Have a water meter (from working with correct figures)	P1 Process to find number of litres eg. $180 \div 1000$ P1 Full process to find cost per day P1 Full process to find total cost of water used per year (accept use of alternative time period for both options) P1 Full process with consistent units for total cost of water A1 Correct decision from correct figures (88.13154 or correct figure for their time period)
W		15, 20, 24	P1 Process to start to find common multiple eg. prime factor decomposition of 6 and 8 or list of at least 3 multiples of all numbers P1 process to find number of packets for at least colour or 120 identified A1
[1] (a)	1000, 1500, 2250,	Correct Argument	M1 Method to find 1st 3 terms C1 Convincing reason e.g. common ratio is 1.5
(b)	$\begin{aligned} & 1000 \times 1.5^{9}=k \times 1000 \times 1.5^{5} \\ & k=\frac{1.5^{9}}{1.5^{5}} \end{aligned}$	5.0625	P1 Process to find the value of k A1
(c)		Correct sketches	C1 Draws both exponential curves intersecting on y axis and clearly labelled

Question	Working	Answer	Notes
(a) (b)	160 tiles 18 packs 176 tiles 20 packs	18 Supported statement	M1 a full method to find the area of the trapezium M1 a full method to calculate both areas in consistent units M1 for the area of the trapezium \div area of a tile (with consistent units) M1 (dep on previous M) for complete method to find the number of packs required A1 P1 finding the number of packs for 10% more tiles or 10% of their number of packs, ft from (a) C1 Statement, eg. increase in packs is 2 more which is more than 10%
(a) (b)		2500 Saver account with support	P1 for use of 1.03 P1 for a full method equivalent to $\div 1.03^{2}$ A1 2500 P1 process to find a comparable total interest figure or to compare investment for a given amount A1 for conclusion with supporting statement or figures seen eg 21.6(65..)>21
[1]	$\begin{aligned} & \sqrt{ }(253.5 \div 6) \\ & 6.5^{3} \times 2=549.25 \\ & 549.25 \div 10=54.925 \end{aligned}$	55	P1 a process to find the scale factor of 6.5 P1 for a full process to find the amount of clay required C1 for stating 55 bags

Question	Working	Answer	Notes
D]		171	P1 for process to find one share P1 for process to find total A1 cao
ШШММа) (b)		1.95 D	M1 method to find one temperature eg $4500 \div 1200$ M1 for complete method A1 cao B1 cao
떼⒜ (b)		36.4	P1 start process eg method to find area of trapezium P1 complete process to find volume of tank P1 process to find time eg volume $\times 1000 \div 300$ P1 process to find 85% of volume or of time A1 for 36.4 or 36 mins 24 secs C1 explanation eg if the average rate was slower it would take more time, if the average rate was faster it would take less time
Шाँ (a) (b)		No with reason 3.15	C1 partial explanation, eg 0.96×0.975 C1 No with full explanation, eg $0.96 \times 0.975=$ 0.936 so only a 6.4% reduction P1 complete process to find value after 2 years eg $(145000-‘ 5800 ') \times 2.5 / 100$ oe or 145000×0.96 $\times 0.975(=135720)$ P1 $(140000-135720$ ' $) \div$ ' 135720 ' $\times 100$ oe A1 for $3.15-3.154$

Question	Working	Answer	Notes
W		1:2.53	P1 for substituting values to find surface gravity of either Earth ($=9.805 .$.$) or Jupiter (=24.796 .)$. P1 for complete process A1 for $1: 2.528$ to 2.53
W		12.2	P1 begins process eg $150 \div 19.3(=7.77 .$.$) or 150 \div 8.9$ $(=16.85 .)$. P1 complete process to find total volume complete process to find the density of the alloy P1 A1 for answer in range 12.1 to 12.2

Question	Working	Answer	Mark	Notes
* प\|2		Yes (supported)	5	M1 for method to calculate profit on one laptop e.g. 400×0.3 oe $(=120)$ or 400×0.15 oe $(=60)$ M1 for method to calculate selling price of one of the two deals e.g. 400×1.3 oe $(=520)$ or 400×1.15 oe $(=460)$ M1 for method to calculate the total selling price of one laptop e.g. $40 \times 400 \times 1.3$ oe $\quad(=20800)$ or $10 \times 400 \times 1.15$ oe $(=4600)$ M1 for total income e.g. "20 800" + " 4600 " C1 for Yes and (£)25 400 or Yes with $£ 400$ more OR M1 for a method for the profit on one laptop e.g. 400×0.3 oe $(=120)$ or 400×0.15 oe $(=60)$ M1 for a method for the total profit for one of the two deals e.g. $40 \times$ " $120 "(=4800$) or $10 \times$ " $60 "(=600)$ M1 for a method for total profit " $4800 "+" 600 "(=5400)$ M1 for a method for target profit e.g. $25000-400 \times 50(=5000)$ C1 for Yes with (£)5400 and (£) 5000 or Yes with $£ 400$ more OR M1 for a method for the profit on one laptop e.g. 400×0.3 oe $(=120)$ or 400×0.15 oe $(=60)$ M1 for a method for the total profit for one of the two deals e.g. $40 \times$ " 120 " oe $(=4800)$ or $10 \times$ " 60 " $(=600)$ M1 for $50 \times 400+$ " 4800 " or $50 \times 400+$ " 600 " M1 for $50 \times 400+" 4800 "+" 600 "(=25400)$ C1 for Yes and (£)25 400 or Yes with $£ 400$ more
(a) (b)		40 100 100 1.44	3 3	M1 for method to find unit weight eg $60 \div 3(=20)$ M1 for complete method to find weight of one of the other ingredients eg " $20 " \times 2(=40)$ or " $20 " \times 5(=100)$ A1 cao M1 for a complete method to work out the weight of nuts needed $\text { eg } 300 \div(3+2+5) \times 3(=90) \text { or } 300 \div(60+" 40 "+" 100 ") \times 60(=90)$ M1 for a complete method to work out the cost eg $(800 \div 500) \times$ " 90 " (= $=144)$ A1 cao

Question	Working	Answer	Mark	Notes
D (a) (b)		4	2 2	M1 for $20 \div 5$ (=4) Allow build up method to 4 lots of $1: 5$ A1 cao M1 for a full method to find the number of red counters needed eg $20 \div 2-" 4 "$ A1 ft from (a)
IU (a) (b)		5 Lines added	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao B1 for a horizontal line from $(5,8)$ to $(6.30,8)$ B1 for a single straight line with the correct gradient and length, down to the time axis eg $(6.30,8)$ to $(8.30,0)$
* ${ }^{\text {[] }}$		Bathroom Mart and correct figures	4	M1 for ${ }_{3}^{1} \times 1500(=500)$ or ${ }_{3}^{2} \times 1500(=1000)$ M2 for a correct method to reduce 1500 by 60% and then by a further 15% eg $1500 \times$ " 0.4 " \times " 0.85 " ($=510$) oe (M1 for method to find 60% or 40% of 1500 e.g. $\frac{60}{100} \times 1500(=900)$ C 1 for 510 and 500 with a correct conclusion.
ए (a) (b)		1.21×10^{4} 4.5	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	M1 for 12.1×1000 (= 12100) oe A1 cao M1 for $4.503 \times 10^{9} \div 10^{6}(=4503)$ oe or for $4.503 \times 10^{9} \div 10^{3}(=4503000)$ oe M1 for $4.503 \times 10^{9} \div 10^{6} \div 10^{3}(=4.503$ with no other digits $)$ A1 for cao

Question	Working	Answer	Mark	Notes
[1]		1.2	3	M1 for $I \propto \frac{1}{d^{2}}$ or $I=\frac{k}{d^{2}}$ or $k=I d^{2}$ or $30=\frac{k}{2^{2}}$ or $k=120$ M1 (dep) for $I=\frac{" 120 "}{10^{2}}$ A1 cao
W]		$32: 45$	5	M1 for a correct expression for surface area of the cylinder $\left(=2 \times \pi \times 3^{2}+6 \pi h\right)$ or surface area of the sphere $\left(=4 \times \pi \times 6^{2}\right)$ M1 (dep) for equating 'surface area of cylinder' and ' $2 \times$ surface area of sphere', $2 \times \pi \times 3^{2}+6 \pi h=2 \times 4 \times \pi \times 6^{2}$ M1 (dep) for a method to isolate h M1 for $\pi \times 3^{2} \times 45^{\prime}$ oe and $\frac{4}{3} \times \pi \times 6^{3}$ oe A1 cao

Question	Working	Answer	Mark	Notes
W		36	3	M1 for correct method to work out 20% of 30% (=6\%) M1 for $30 \%+$ " 6% " Alcao OR M1 for complete and correct method to find amount of money spent on rent eg $800 \times 0.3(=240)$ oe M1 for correct method to find rent next month (288) eg " 240 " $\times 1.2$ (=288) oe or $\frac{288 "}{800} \times 100$ oe or 30×1.2 A1 cao
W		100, 25, 4	4	M1 for $y=\frac{k}{x^{2}}$ oe or $1=\frac{k}{10^{2}}$ M1 for complete method to find k or $y=\frac{100}{x^{2}}$ oe OR (dep on M1) for $k=100$ A1 for one entry correct A1 for other two entries correct

Question		Working	Answer	Mark	Notes
Ш1]			69	4	M1 for finding 15% of $£ 720(=108)$ M1 (dep) for finding total of $£ 720$ plus interest (or 115% etc) (=828) M1 (dep on previous M1) dividing by 12 A1 cao OR M1 finding $720 \div 12(=60)$ M1 (dep) finding 15% of " 60 " (=9) M1 (dep on previous M1) for adding, e.g. $60+9$ A1 cao
Ш1			20	3	M1 for $330 \div 120(=2.75)$ or $200 \div 60(=31 / 3)$ or $450 \div 180(=2.5)$ M1 for $450 \div 180(=2.5)$ AND $8 \times$ " 2.5 " A1 cao OR M1 for $120 \div 8(=15)$ or $60 \div 8(=7.5)$ or $180 \div 8(=22.5)$ M1 for $330 \div(120 \div 8) \quad[=22]$ or $200 \div(60 \div 8) \quad[=26.6$..] or $450 \div(180 \div 8)$ A1 cao OR M1 for multiples of 120:60:180 M1 for multiplication linked to 450 and $8+8+4$ A1 cao

Question		Working				Answer	Mark	Notes
* ${ }^{4} 4$		119 478 597 5 5 20 5 4000 $180+$			$\begin{gathered} \hline \\ \hline \\ 5 \\ 5 \\ 5 \\ 5 \\ \hline 59 \\ \hline 180 \\ \hline 45 \\ \hline 50+ \\ \hline \end{gathered}$	Kirsty’s Plants with correct calculations	5	M1 for complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation or digits 5975 M1 for a complete method to find 120% of $£ 52.50$ A1 for 59.75 and 63(.00) C1 (dep on M2) for correct conclusion for their figures OR M1 for the start of a method to divide $£ 52.50$ by 25 , eg. 2 rem 2 M1 for a complete method to divide $£ 52.50$ by 25 , condone one arithmetic error, or digits 21 M1 for a complete method to find 120% of ' $£ 2.10$ ' A1 for 2.52 C1 (dep on M2) for correct conclusion for their figures OR M1 for a complete method to find 120% of $£ 52.50$ M1 for the start of a method to divide ' 63 ' by 25 , eg. 2 rem 13 M1 for a complete method to divide ' 63 ' by 25 , condone one arithmetic error, or digits 252 A1 for 2.52 C1 (dep on M2) for correct conclusion for their figures
П						54	3	M1 for any correct use of distance, speed, time formulae, eg. $10 \div 40$ ($=0.25$) or 15 min M1 (dep) for a complete method to find speed from G to H, eg. $18 \div(35-" 15 ") \times 60$ oe. A1 cao

Question		Working	Answer	Mark	Notes
- []			900	4	M1 for $0.2 \times 7000(=1400)$ or $1.2 \times 7000(=8400)$ oe M1 for $7000+" 1400 "-3000(=5400)$ oe M1 for "5400" $\div 6$ A1 cao
$\square \square$			25	4	M1 for $600 \div 4$ ($=150$) M1 for $4500 \div$ " 150 " $(=30)$ M1 for $750 \div$ " 30 " A1 for 25 with supporting working OR M1 for $4500 \div 750(=6)$ or $750 \div 4500\left(=\frac{1}{6}\right)$ M1 for $600 \div 4(=150)$ or $600 \div$ " 6 " $(=100)$ or $600 \times " \frac{1}{6} "(=100)$ M1 for " 150 " \div " 6 " or " 100 " $\div 4$ or $150 \times " \frac{1}{6}$ " A1 for 25 with supporting working OR M1 for $4500 \div 750(=6)$ or $750 \div 4500\left(=\frac{1}{6}\right)$ M1 for $\frac{1}{4} \times \frac{1}{6^{\prime \prime}}\left(=\frac{1}{24}\right)$ M1 for ${ }^{24}{ }^{24} " \times 600$ A1 for 25 with supporting working

Question		Working	Answer	Mark	Notes
\square			25.60	4	M1 for a correct method to find $\frac{1}{3}$ of $24(=8)$ or $\frac{2}{3}$ of $24(=16)$ M1 for a correct method to find $60 \%(=7.2)$ or $40 \%(=4.8)$ of 12 or $60 \%(=14.4)$ or $40 \%(=9.6)$ of 24 M1 (dep on at least M1) for a method to find the sum of their discounted adult ticket $+2 \times$ their discounted child ticket A1 25.6(0)
\square			Correct region	3	B1 for full line drawn 1.5 cm from edge of patio and parallel to it B1 for full arc of circle radius 3 cm centre the centre of the pond B 1 ft for shading region to the right of their vertical line and outside the arc of their circle with correct centre

Que	Working	Answer	Mark	Notes
[1]		$\begin{gathered} 90 \\ 450 \\ 225 \\ 1.5 \\ 960 \end{gathered}$	3	M1 for $6 \div 4(=1.5)$ or $4 \div 6(=0.66 .$.$) or \div 4 \times 6$ oe or sight of any one of the correct answers A1 for three correct A1 for all correct
Ш1		164	5	M1 $200 \div(3+2)(=40)$ or an equivalent ratio seen M1 (dep) $3 \times ‘ 40^{\prime}(=120)$ or $2 \times^{\prime} 400^{\prime}(=80)$ or 120: 80 or $80: 120$ M1 a complete method to find 70% of their total number of large letters e.g. $0.7 \times{ }^{\prime} 80$ ' $(=56)$ M1 multiplies their three totals by the correct unit price and adds, e.g. $60(\mathrm{p}) \times$ ' $120^{\prime}+(£) 1 \times$ ' 56 ' $+(£) 1.50 \times$ ' 24 ' A1 164
$\square \square$	$\begin{aligned} & 120 \div 20=6 \\ & 6^{2}=36 \\ & 36 \times 300=10800 \end{aligned}$	10800	3	M1 $120 \div 20(=6)$ oe, can be implied by $120^{2} \div 20^{2}$ M1 ' 6 ' ${ }^{2} \times 300$ A1 cao
Ш1		100	4	M1 $y=k x^{2}$ oe or $36=k \times 3^{2}$ A1 $k=4$ M1 (dep on M1) $(y=) ' 4 ’ \times 5^{2}$ Al cao

	tion	Working	Answer	Mark	Notes
174			24	4	M1 for $0.15 \times 240(=36)$ oe M1 for $\frac{3}{4} \times 240(=180)$ oe M1 (dep on both prev M1) for 240 - " 180 " - " 36 " A1 cao OR M1 for $15(\%)+75(\%)(=90(\%))$ M1 for $100(\%)-" 90(\%) "(=10(\%))$ M1 (dep on both prev M1) for " $\frac{10}{100} " \times 240$ oe A1 cao OR M1 for $0.15+0.75(=0.9)$ oe M1 for " 0.9 " $\times 240(=216)$ oe M1 (dep on both prev M1) for 240 ~ " 216 " A1 cao OR M1 for $0.15+0.75(=0.9)$ oe M1 for $1-" 0.9 "(=0.1)$ oe M1 (dep on both prev M1) for " $0.1 " \times 240$ oe A1 cao

T EXPERT

Question	Working	Answer	Mark	Notes
QWC		$\frac{30}{24} \times 60=75$	Debbie + explanation	

Question		Working	Answer	Mark	Notes
W			$1200 \mathrm{~cm}^{3}$	4	M1 for $10 \times 2 \times 2$ and 15×2 M1 for " 40 " \times " 30 " A1 for 1200 B1 (indep) for cm^{3} OR M1 for 10×15 or 2^{3} or 8 indicated as scale factor M1 for $10 \times 15 \times 2 \times 2 \times 2$ A1 for 1200 B 1 (indep) for cm^{3} SC B2 for $600 \mathrm{~cm}^{3}$ (B1 for 600)

$\tau \underset{\text { EXIITION }}{\text { EXPRT }}$

Question		Working	Answer	Mark	Notes
D]	(a)		8	1	B1 for 8 (.00)
	(b)		550	4	M1 for $600-200(=400)$ M1 for correct method to convert ' $\$ 400$ ' to $£$ M1 (dep on the previous M1) for 800 - ' $\$ 400$ ' in £s A1 for value in the range $540-560$ OR M1 for correct method to convert $\$ 600$ and $\$ 200$ to pounds M1 for ' 375 '-' 125 ' M1 (dep on the previous M1) 800 -' 250 ' A1 for a value in the range 540-560 OR M1 for correct method to convert $£ 800$ to dollars M1 for ' 1280 ' $+200-600$ M1 (dep on the previous M1) for attempt to convert ' $\$ 880$ ' back to $£$ A1 for value in the range $540-560$

Question		Working	Answer	Mark	Notes
W			730	5	M1 for $\frac{5}{100} \times 200(=10)$ oe M1 for $\frac{10}{100} \times 350(=35)$ oe M1 for $6 \times$ ' 10 ' or $4 \times$ ' 35 ' M1 (dep on M1 earned for a correct method for a percentage calculation) for " 60 " + " 140 " +530 A1 cao Or M1 for $6 \times 200(=1200)$ or $4 \times 350(=1400)$ M1 for $\frac{5}{100} \times " 1200 "(=60)$ oe M1 for $\frac{10}{100} \times " 1400 "(=140)$ oe M1 (dep on M1 earned for a correct method for a percentage calculation) for " 60 " + " 140 " +530 A1 cao

「 EXPERT

Question		Working	Answer	Mark	Notes
W			240	4	M1 for 16×2 (= 32 girls) M1 for $16+$ ' 16×2 ' $(=48)$ M1 (dep on the previous M1) for $(16+$ ' 32 ' $) \times 5$ or $\left(16+‘ 32^{\prime}\right) \times(4+1)$ A1 cao OR M1 for $1: 2=3$ parts M1 for 5 schools $\times 3$ parts ($=15$ parts) M1 (dep on the previous M1) for ' 15 ' parts $\times 16$ A1 cao SC B2 for 176 given on the answer line
W			Required region	4	M1 arc radius 5 cm centre C M1 bisector of angle $B A D$ M1 line 3 cm from $D C$ A1 for correct region identified (see overlay)

Question		Working	Answer	Mark	Notes
D		$\begin{aligned} & 180 \times 1.5 \\ & 40 \times 1.5 \\ & 110 \times 1.5 \\ & 30 \times 1.5 \end{aligned}$	$\begin{gathered} \text { Flour }=270 \\ \text { Ginger }=60 \\ \text { Butter }=165 \\ \text { Sugar }=45 \end{gathered}$	3	M1 for $\times 24 \div 16$ oe or $24 / 16$ or 1.5 seen or $180+90(=270)$ or 40 $+20(=60)$ or $110+55(=165)$ or $30+15(=45)$ or sight of any one of the correct answers A2 for all 4 correct answers (A1 for 2 or 3 correct answers)
\square			Region shaded	3	B1 for circle arc of radius 3FP ($\pm 2 \mathrm{~mm}$) centre Burford B1 for circle arc of radius $5 \mathrm{Fm}(\pm 2 \mathrm{~mm})$ centre Hightown B1 for overlapping regions of circle arcs shade
\square		$\begin{aligned} & 180 \div 9 \times 1: 180 \div 9 \times 3: 180 \div 9 \\ & \times 5 \\ & =20: 60: 100 \end{aligned}$ Not enough cement (but enough sand and enough gravel) OR $\begin{aligned} & 1 \times 15: 3 \times 15: 5 \times 15 \\ & =15: 45: 75 \\ & 15+45+75=135(<180) \end{aligned}$ Not enough cement (to make 180 kg of concrete)	No + reason	4	M1 for $180 \div(1+3+5)(=20)$ or 3 multiples of $1: 3: 5$ M1 for $1 \times " 20$ " or $3 \times " 20$ " or $5 \times " 20$ " or 20 seen or 60 seen or 100 seen A1 for $($ Cement $=) 20,($ Sand $=) 60,($ Gravel $)=100$ C1 ft (provided both Ms awarded) for not enough cement oe OR M1 for $(1 \times 15$ and $) 3 \times 15$ and 5×15 or 9×15 or sight of the numbers $15,45,75$ together. M1 for ' 15 ' $+{ }^{\prime} 45$ ' + ' 75 ' A1 for $135(<180)$ C1 ft (provided both Ms awarded) for not enough cement oe
\square	(a) (b)		640 40	2 2	M1 for $80 \times\left(\frac{8}{4}\right)^{3}$ or $80 \div\left(\frac{4}{8}\right)^{3}$ A1 cao M1 for $160 \div\left(\frac{8}{4}\right)^{2}$ or $160 \times\left(\frac{4}{8}\right)^{2}$ or ft their scal e factor from (a) A1 cao

Question		Working	Answer	Mark	Notes
D]	(a)		30	2	M1 for $25 \div 10$ or 2.5 seen or $10 \div 25$ or 0.4 seen or $12+12+6$ oe or a complete method eg. $25 \times 12 \div 10$ oe Al cao
	(b)	$1000 \div 200 \times 12$	60	2	M1 for $500 \div 50$ or $1000 \div 200$ or $500 \div 10$ OR correct scal e factor clearly linked with one ingredient eg. 10 with sugar or 5 with butter or flour or 50 with milk OR answer of 120 or 600 Al cao

Question		Working	Answer	Mark	Notes
W]		$\begin{aligned} & 2.25 \times 60 \div 100=1.35 \\ & 1.35+0.80=2.15 \\ & 1.5 \times 60 \div 100=0.90 \\ & 0.90+1.90=2.80 \end{aligned}$ OR	Railtickets with correct cal culations	4	NB. All work may be done in pence throughout M1 for correct method to find credit card charge for one company eg. $0.0225 \times 60(=1.35)$ oe or $0.015 \times 60(=0.9)$ oe M1 (dep) for correct method to find total additional charge or total price for one company eg. $0.0225 \times 60+0.80$ or $0.015 \times 60+1.90$ or 2.15 or $2.8(0)$ or 62.15 or $62.8(0)$ A1 for 2.15 and $2.8(0)$ or 62.15 and 62.8(0) C1 (dep on M1) for a statement deducing the cheapest company, but figures used for the comparison must al so be stated somewhere, and a clear association with the name of each company OR M1 for correct method to find percentage of ($60+$ booking fee) eg. $0.0225 \times 60.8(=1.368)$ oe or $0.015 \times 61.9(=0.9285)$ M1 (dep) for correct method to find total cost or total additional cost eg. '1.368' $+60.8(=62.168)$ or $' 1.368$ ' $+0.8(=2.168)$ or ' 0.9285 ' $+61.9(=62.8285)$ or $' 0.9285$ ' $+1.9(=2.8285)$ A1 for 62.168 or 62.17 AND 62.8285 or 62.83 OR 2.168 or 2.17 AND 2.8285 or 2.83 C1 (dep on M1) for a statement deducing the cheapest company, but figures used for the comparison must al so be stated somewhere, and a clear association with the name of each company OR

Question	Working	Answer	Mark	Notes
$]_{\text {©RONOXHG }}$	$\begin{aligned} & 2.25-1.5=0.75 \\ & 0.075 \times 60 \div 100=0.45 \\ & 0.80+0.45=1.25 \\ & 1.25<1.90 \end{aligned}$			M1 for correct method to find difference in cost of credit card charge eg. $(2.25-1.5) \times 60 \div 100$ oe or 0.45 seen M1 (dep) for using difference with booking fee or finding difference between booking fees eg. $0.80+$ " 0.45 " $(=1.25)$ or $1.90-$ " 0.45 " (=1.45) or $1.90-0.8(=1.1(0))$ A1 1.25 and 1.9(0) or 0.45 and 1.1(0) C 1 (dep on M 1) for a statement deducing the cheapest company, but figures used for the comparison must al so be stated somewhere, and a clear association with the name of each company QWC: Decision and justification should be clear with working clearly presented and attributable

$\underset{\substack{\square \mathbb{Q W C} \\ \text { iii } \\ \mathrm{FE}}}{ }$	See table at end	Best month and supporting explanation	4	M1 Converts for at least 2 months to a common format (fractions, decimals or \%age) A1 all correct C1 for Council target: No (yes) dep on M1 and consistent with the candidates calculations QWC: Decisions should be stated, following through from working out C1 March with all calculations correct for the 3 months QWC: Decisions should be stated, following through from working out

	Fraction	Decimal	$\%$	kg
Jan	$\frac{1}{10}$	0.1	10%	Not known
Feb	$\frac{1}{8}$	0.125	12.5%	15 kg
Mar	$\frac{13}{100}$	0.13	13%	14.56 kg

| FW |
| :--- | :--- | :--- | :--- | :--- |

T EXPERT

Question	Working	Answer	Mark	Notes
ए1		555	3	M1 for recognising that 1295 is 70% eg $70 \%=1295$ M1 for $10 \%=1295 \div 7(=185)$ or $1 \%=1295 \div 70(=18.5)$ or $1295 \times \frac{3}{7}$ oe or $(1295-185) \div 2$ or $1295 \times \frac{10}{7}$ oe $(=1850)$ A1 cao
[1]	$\begin{aligned} & £: 189 \div 1.39=135.97 \\ & 174 \div 1.27=137.01 \\ & \text { SF: } 115 \times 1.39=159.85 \\ & 174 \div 1.27 \times 1.39=190.44 \\ & €: 115 \times 1.27=146.05 \\ & 189 \div 1.39 \times 1.27=172.68 \end{aligned}$	London with correct comparable figures	3	M1 for method to convert one price to another currency, eg $189 \div 1.39$ M1 for a complete method leading to 3 prices in the same currency or to figures that can be used to compare the 3 prices A1 for London and correct comparable figures (accept rounded or truncated to the nearest unit)
W		23	3	M1 for method to find difference in cost, eg $23 \times 24-425(=127)$ or for $425 \div(23 \times 24)(=0.7699 \ldots)$ or $24-(425 \div 23)(=5.52 \ldots)$ M1 for $\frac{" 127^{\prime \prime}}{4552^{\prime \prime}} \times 100$ oe or or $100-" 0.7699 " \times 100$ or $\frac{" 5.52 "}{24} \times 100$ Alfor answer in range 23-23.01
W		Correct region	3	B1 for perpendicular bisector of the line $A B$ B1 for arc of circle centre B radius 4 cm B1 for shading correct region
*凹		Simple with correct comparable values	4	M1 for a method to calculate 2.15% or 2.3% or 102.15% or 102.3% of 15000 M1 for a complete method to calculate using a compound interest rate of 2.15% for 3 years $\text { eg } 1.0215^{3}(=1.065(89 \ldots)) \text { or } 1.0215^{3} \times 15000(=15988.45)$ M1 for a complete method to calculate using a simple interest rate of 2.3% for 3 years e.g $1+0.023 \times 3(=1.069)$ or $15000+0.069 \times 15000(=16035)$ or 0.023×3 C1 for a correct decision in a statement based on their two accurate comparable values eg 16035,15988 to 15988.50 or 1035 , 988 to 988.50 or $1.065(89 \ldots$...), 1.069 or 6.6\%, 6.9 \%

Question	Working	Answer	Mark	Notes
D]		8.4	3	M1 for using $d=m / v$ e.g. $11.34=74 / V$ or vol. of lead $(=6.5(25 \ldots)$ or vol. of tin (= 17.2(3...) M1 (dep) for a complete method using $200 \div$ "total volume" A1 for answer in range 8.4 to 8.44
Ш1]		3072	3	M1 for $12=\frac{k}{8^{2}}$ or $12 \times 8^{2}(=768)$ oe or $(8 \div 0.5)^{2}(=256)$ M1 (dep) for substituting into $T=\frac{k}{d^{2}}$ e.g $(T=) \frac{" 768^{\prime \prime}}{0.5^{2}}$ oe eg $12 \times 8^{2} \div 0.5^{2}$ oe A1 cao

Question	Working	Answer	Mark	Notes
[1] (a) (b)		$\begin{aligned} & 225: 475 \\ & 175,455 \end{aligned}$	2	M1 for $700 \div 2+125(=475)$ or $700 \div 2-125(=225)$ A1 for $225: 475$ oe, eg 9:19 M1 for $630 \div(5+13)(=35)$ M1 for " 35 " $\times 5(=175)$ or " 35 " $\times 13$ (= 455) A1 cao
*■		Comparison	3	M1 for 23.50×1.34 A1 for 31.49 C1 (dep M1) for 'euros' stated and a comparison ft their " 31.49 " OR M1 for $31 \div 1.34$ A1 for 23.13(43...) C1 (dep M1) for ' $£$ ' stated and a comparison ft their " 23.13 " OR M1 for $31 \div 23.50$ A1 for 1.31(91...) C1 (dep M1) for comparison ft their "1.31(91...)" and explanation linked to conversion rate.

Question		Working	Answer	Mark	Notes
\square	(a) (b)		$4: 3$ 480	2 2	M1 for $720: 540$ oe or for $3: 4$ or $1: \frac{4}{3}$ oe or $\frac{3}{4}: 1$ oe A1 for $4: 3$ or $\frac{4}{3}\left(\right.$ or $1.33 \ldots$) : 1 or $1: \frac{3}{4}$ (or 0.75) M1 for $720 \div 3(=240)$ or scale factor of $\frac{3}{2}$ or $\frac{2}{3}$ oe or $720: 480$ A1 cao
W			42.28	5	M1 for method to find weekly mileage, eg. $18 \times 2 \times 5(=180)$ or weekly car park charge, eg. $3.50 \times 5(=17.50)$ M1 for method to find fuel used in a relevant journey, eg. " 180 " $\div 45.2$ (= 3.9823 gallons) or $18 \div 45.2$ (= 0.39823 gallons $)$ M1 for a correct use of the conversion factor to convert between gallons and litres, eg. " 3.9823 " $\times 4.546(=18.1 \ldots$. litres $)$ or " 0.39823 " $\times 4.546$ ($=1.81 \ldots$. litres) or $1.369 \times 4.546(=6.22 \ldots £ /$ gallon $)$ or $45.2 \div 4.546(=9.94 \ldots$ miles/litre $)$ M1 for a method to find the cost of a relevant journey, eg. "18.1 .." $\times 1.369(=24.78 \ldots)$ or " $1.81 \ldots$ " $\times 1.369(=2.478 \ldots)$ or "3.9823" \times " $6.22 \ldots$..." (= 24.78...) A1 for answer in the range 42.26 to $42.3(0)$ NB candidates could work in litres or in gallons and/or could work in $£$ or p
			Journeys in miles	Fuel used in gallons;	Fuel used in litres, gallons $\times 4.546$ Cost of journey in $£$, litres $\times 1.369$ or gallons $\times 6.22 \ldots$ $1.81 \ldots$ $2.478 \ldots$ $3.62 \ldots$ $4.956 \ldots$ $9.05 \ldots$ $12.39 \ldots$ $25.1 \ldots$ $24.78 \ldots$

Question		Working	Answer	Mark	Notes
\square			No (supported)	4	M1 for a correct method to calculate 77% of 15000 or 0.77 seen eg. 15000×0.77 oe $(=11550)$ or $15000-\frac{23}{100} \times 15000$ oe $(=15000-3450=11550)$ M1 for demonstrating a correct compound interest method over 3 years, eg " 11550 " $\times 0.82(=9471)$ and " 9471 " $\times 0.82(=7766.22)$ or " 11550 " $\times 0.82^{2}$ or $0.77 \times 0.82^{2}(=0.517748)$ A1 for $7766(.22)$ or $0.51(7748)$ or $0.48(2252)$ C 1 ft (dep on M2) for a statement giving the correct decision for their calculated values

Question		Working	Answer	Mark	Notes
Ш1			49	3	M1 for converting cal culations to common units (either system is acceptable) M1 for dividing their total capacity by the refuelling rate A1 48.9-49.1
】5		$\begin{aligned} & 0.65 \times 80=52 \\ & \frac{5}{8} \times 80=50 \\ & 52-50 \\ & \\ & \text { Or } \\ & \frac{5}{8}=0.625 \\ & 0.65-0.625=0.025 \\ & 0.025 \times 80 \end{aligned}$	2	4	M1 for method to cal culate the time Celina sings M1 for method to cal culate the time Zoe sings M1(dep on at least M1) for finding the difference between two times Al cao Or M1 for a conversion to a common representation M1 (dep on M1) for finding the difference in their chosen representation M1 for using their proportional difference multiplied by 80 Al cao
]	(a (b)	9×6	54 Graph completed	2 3	M1 for a method to find the speed e.g $9 \div 10,9 \div 0.16$ Al cao B1 horizontal line from $(30,21)$ to $(45,21)$ M1 for a complete method to show the return journey is 30 mins or $1 / 2$ hour evidenced by the line on the graph or by cal culation A1 Correct line drawn from Luscoe $(x, 21)$ to $(x+30,0)$
\square	(a (b)		76 11.8	3 2	M1 for 89\% = 68 M1 for $68 \div 0.89$ oe A1 for 76-76.41 M1 for $(68-60) \div 68 \times 100$ oe A1for 11.7-12

Que	Working	Answer	Mark	Notes
D]	$\begin{aligned} & \pi 2^{2} \times 2=8 \pi \\ & \pi 2^{2} \times \frac{20}{360} \times 3+\pi 2^{2} \times \frac{340}{360} \times 2 \\ & 8 \pi: \frac{74}{9} \pi: \\ & 72: 74 \end{aligned}$ Or $\begin{aligned} & \frac{20}{360} \times 3+\frac{340}{360} \times 2=\frac{37}{18} \\ & \text { 2: } \frac{37}{18} \\ & 36: 37 \end{aligned}$	36:37	4	M1 method to find rel ative cost of design A e.g. $\pi 2^{2}, k \times \pi 2^{2}$ M1 for a compl ete method to find the relative cost of the watch face for design B e.g. $\pi 2^{2} \times \frac{20}{360} \times \frac{3}{5}+\pi 2^{2} \times \frac{340}{360} \times \frac{2}{5}$ M1 (dep on M1, M1) for the cost of design A: cost of design B Al cao Or M1 for method to find fraction of the sectors in design $B \frac{20}{360}, \frac{340}{360}$ M1 for complete method to find the relative cost of the watch face for design B M1 (dep on M1,M1) for the cost of design A: cost of design B A1 cao

Qu	Working	Answer	Mark	Notes
D]		$\begin{aligned} & 68 \\ & 34 \\ & 51 \end{aligned}$	3	M1 for $153 \div(4+2+3) \quad(=17)$ or for a correct method to scale up to at least 44:22:33 without error M1 (dep M1) for " 17 " $\times 4$ or " 17 " $\times 2$ or " 17 " $\times 3$ or for a complete method to build up to 68:34:51 with at least two of these values correct A1 for $68,34,51$ in any order (If M0,SC B2 for two correct lengths)
-1]		Loci drawn	3	B 1 for line parallel to $B C$ and 3 cm from $B C$ B1 for arc drawn, centre C, with radius 4 cm B1 ft for shading a region below their horizontal line and inside their arc
-	$\begin{aligned} & \text { Volume of } \mathrm{A}=\frac{140}{0.7}=200 \\ & \text { Volume of } \mathrm{B}=\frac{128}{1.6}=80 \\ & \text { Mass of } \mathrm{C}=140+128 \\ & =268 \end{aligned}$ Density of $\mathrm{C}=\frac{268}{280}$	0.957	4	M1 for finding the volume of either liquid A or B or the mass of liquid C M1 for a complete method to find the volume AND mass of liquid C M1 (dep M2) for "total mass" \div " total volume" A1 for 0.957 to 0.96
\square	$3^{2} \times 180$	1620	2	M1 for using a scale factor of $3^{2}(=9)$ A1 cao
-		1.25	3	M1 $100-12(=88)$ or 0.88 or $1.1 \div 88(=0.0125)$ M1 for complete method, eg $1.1 \div 0.88$ A1 cao (SC B2 for 1250 as answer)

Question		Working	Answer	Mark	Notes
Ш1]	(a) (b)		$\begin{aligned} & 360 \\ & 25 \end{aligned}$	2 2	M1 $30 \div 10(=3)$ or $120 \div 10(=12)$ or $120+120+120$ oe A1 cao M1 for $\frac{750}{300}(=2.5)$ oe A1 cao
\square			2.10 euros or $£ 1.81$	3	```M1 for 2.5 < 1.16 (= 2.9) M1 (dep) for 5 - "2.9" (=2.1) A1 for 2.1(0) euros OR M1 for 5 % 1.16 (= 4.31...) M1 (dep) for "4.31" - 2.50 (=1.81) A1 for £1.81```
* प [Decision (No the attendance target was not met)	3	M1 for attempting to find total number of students or 1210 seen M1 for $\frac{{ }^{\prime} 1092^{\prime}}{\prime 1210^{\prime}} \times 100$ oe or $\frac{' 118^{\prime}}{\prime 1210^{\prime}} \times 100$ oe C1 for correct decision with 90.(2479...) or correct decision with 6 and 9.(752...) OR M1 for attempting to find total number of students or 1210 seen M1 for $\frac{94}{100} \times$ ' 1210 ' oe C1 for correct decision with 1137 (.4) and 1092 or correct decision with 72(.6) and 118 OR M1 for a correct \% method for one year, e.g. $\frac{192}{208} \times 100$ or $\frac{94}{100} \times 208$ M1 for a correct \% method for each year C1 for correct decision with 92.(30...), 90.(87...), 89.(31...), 89.(27...), 89.(91...) or 195(.5..), 226.(9...), 246.(2..), 245.(3...), 223.(7...)

Question		Working	Answer	Mark	Notes
*口]		$\begin{aligned} & 1.025^{2}=1.050625 \\ & 1.04 \times 1.015 \\ & \quad=1.0556 \end{aligned}$	Bonus Saver with correct comparable values	4	M1 for a method to calculate 4% or 2.5% of 20000 (= 800 or 20800 or 500 or 20500) M1 for a method to calculate using a compound interest method, eg 1.025^{2} oe or 1.04 followed by 1.015 oe A1 for 1.050625 or 1.0556 or 10556 or 556 or 21112 or 21012.5 or 1112 or 1012.5 C1 for a correct decision in a statement with two correct comparable values. NB all final money values can be rounded or truncated to nearest integer or left unrounded.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline \(\square \square\) \& \& \& 186.20 \& 5 \& \begin{tabular}{l}
M1 for use of consistent units to find volume, \(11 \times 4 \times 0.06\) (\(=2.64\)) or \(1100 \times 400 \times 6(=2640000)\) \\
M1 (dep on vol calculation) for attempt to find number of bags needed, eg " 2.64 " \(\div 0.4(=6.6 \rightarrow 7)\) \\
M1 for the cost of gravel before discount eg " 6.6 " \(\times 38\) or " 7 " \(\times 38\) \\
M1 for attempt to find the total cost after discount" 266 " \(\times 0.7\) oe \\
A1 for 186.2(0) \\
OR \\
M1 for cost of gravel per bag after discount, \(38 \times 0.7(=26.60)\) \\
M1 for use of consistent units to find volume, \(11 \times 4 \times 0.06\) (\(=2.64\)) or \(1100 \times 400 \times 6(=2640000)\) \\
M1 (dep on vol calculation) for attempt to find number of bags needed, eg " 2.64 " \(\div 0.4\) \\
M1 for total cost of gravel after discount " 7 " \(\times\) " 26.6 " \\
A1 for 186.2(0)
\end{tabular} \\
\hline \(\square \square\) \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{lccl}
\& Train \& Pay \& Diff \\
Old \& 200 \& 510 \& 310 \\
New \& 225 \& 535.50 \& 310.50 \\
Diff \& 25 \& 25.50 \& 50 p
\end{tabular} \& \begin{tabular}{l}
\[
209.69 \text { or } 209.70
\] \\
Comparison
\end{tabular} \& 3

3 \& | M1 for $200 \times \frac{3.3}{100}$ oe or 200×1.033 or $6.6(0)$ or $206.6(0)$ M1 (dep) for $(200+$ " 6.6 " $) \times \frac{1.5}{100}$ oe or $200 \times 1.033 \times 1.015$ oe or 3.099 or 3.09 or 3.10 or an answer between 209.69 and 209.7 A1 for 209.69 or 209.7(0) |
| :--- |
| M1 for method to find cost of tickets before increase eg $\frac{225}{1.125}$ $(=200)$ oe or $\frac{225}{112.5} \times 12.5$ oe or pay before increase, $\frac{535.50}{1.05}$ $(=510)$ oe |
| A1 for 25 (train) and 25.5(0) (pay) or 310 and 310.5(0) C 1 (dep on M1) ft for statement comparing rises leading to conclusion based on two comparable amounts eg pay increase greater than train increase |

\hline
\end{tabular}

Question		Working	Answer	Mark	Notes
D]			8	3	M1 for $p=\frac{k}{t}$ oe $(k \neq 1)$ or $12=\frac{k}{4}$ M1 for correct method to find k or $p=\frac{48}{t}$ oe or (dep on M1) for $k=48$ A1 cao OR M1 for $\frac{6}{4}$ oe M1 for $12 \div \frac{6}{4}$ oe A1 cao

Question	Working	Answer	Mark	Notes
(a) (b)		12 36	2 2	M1 for $32 \div 8(=4)$ or $\frac{3}{8} \times 32$ oe A1 for 12 M1 for correct method to find 45% of 80 A1 cao
\square		$£ 26.50$ or HK $\$ 325.95$	3	M1 for $3179.55 \div 12.3(=258.5)$ M1 (dep) for 285-'258.5' A1 for $£ 26.50$ (correctly stated with currency) OR M1 for 285×12.3 (=3505.5) M1 (dep) for '3505.5' - 3179.55 (=325.95) A1 for $\mathrm{HK} \$ 325.95$ (correctly stated with currency)
T]		Merit	3	M1 for $\frac{62}{80} \times 100(=77.5)$ A1 for 77.5% or 78% B1 ft (dep on M1) for 'Merit' OR M1 for calculating a percentage between 70 and 85% of 80 eg $0.7 \times 80(=56)$ or $0.84 \times 80(=67.2)$ or $0.85 \times 80(=68)$ A1 for 56 and $67(.2)$ or 68 or for two appropriate values which can be compared with 62 B1 ft (dep on M1) for 'Merit'

Question	Working	Answer	Mark	Notes
* $\square^{\text {Q }}$	Distance \div speed: $30 \div 70$ (= 0.42-0.43); Distance \div time: $30 \div 26(=1.15 \ldots)$; Speed \times time: $=70 \times 26$ ($=1820 \mathrm{mins}$); mph to $\mathrm{miles} / \mathrm{min}=70 \div 60$ (=1.16-1.17); Minutes to hours is $26 \div$ 60 ($=0.43 \ldots$)	No with correct figure	3	M1 for a calculation which uses the Time \times Speed $=$ Distance relationship OR a conversion of units eg between hours \& minutes or between mph \& miles per min M1 for a calculation involving both of the above C 1 for "no" with a correct calculation, with units, from working: 25.2-25.8 minutes, 30.1-30.8 miles, 69-69.3 mph NB: $70 \div 26 \times 30$ as a single stage calculation gets 0 marks
$\square \square$		116	3	M1 for 80% or 0.8 seen oe or $\frac{464}{0.8}(=580)$ M1 for $\frac{464}{0.8}-464$ A1 cao OR M1 for 80% or 0.8 seen oe M1 for $464 \div 4$ or $464 \div(80 \div 20)$ A1 cao

Question		Working	Answer	Mark	Notes
*2 \square			Not enough mincemeat since $600<700$ OR Only able to make 38 mince pies since insufficient mincemeat	4	M1 for $45 \div 18$ (=2.5) M1 for 2.5 used as factor or di visor A1 for ingredients as 562.5 and 875 and 250 and 700 and 2.5 (accept 2 or 3) OR for availables as 400, 400, 200 240, 2.4 (accept 2 or 3) C1 ft (dep on at least M1) for identifying and stating which ingredient is insufficient for the recipe (with some supportive evidence) OR M1 for a correct method to determine the number of pies one ingredient could produce M1 for a correct method to determine the number of pies all ingredient could produce A1 for 80 and 51 and 90 and 38 and 108 C1 ft (dep on at least M 1) for identifying and stating which ingredient is insufficient for the recipe. (with some supportive evidence)

	tion	Working	Answer	Mark	Notes
D7			$28 \% \text { or } \frac{14}{50}$	4	M1 for $100 \boxtimes \mathrm{BO}(=70)$ or $1-\frac{3}{10}\left(=\frac{7}{10}\right)$ M1 for " 70 " $\div(3+2)(=14)$ or $" \frac{7}{10} " \div(3+2) \quad\left(=\frac{7}{50}\right)$ M1 for " 14 " $\times 2$ or $\frac{7}{50} \times 2$ Al for 28% or $\frac{14}{50}$ oe OR M1 for a correct method to find (100-30)\% of any actual sum of money M1 for " 350 " $\div(3+2) \quad(=70)$ M1 for " 70 " $\times 2$ A1 for 28% or $\frac{14}{50}$ oe OR M1 for starting with two numbers in ratio 3:2, eg 21 and 14 M1 for equating sum of their numbers to 100-30(=70\%), eg ' 21 ' $+‘ 14^{\prime}(=35)$ M1 for scal ing sum of their numbers to 100%, eg ' 35 ' $\div 70 \times 100$ ($=50$) Al for 28% or $\frac{14}{50}$ oe SC: award B3 for oe answers expressed in an incorrect formeg $\frac{2.8}{10}$

T EXPERT

Question		Working	Answer	Mark	Notes
*W			The Friendly Bank	4	M1 for a correct method to find interest for the first year for either bank OR correct method to find the value of investment after one year for either bank OR use of the multiplier 1.04 or 1.05 M1 for a correct full method to find the val ue of the investment (or the val ue of the total interest) at the end of 2 years in either bank A1 for 2100.8(0) and 2110.5(0) (accept 100.8(0) and 110.5(0)) C1 (dep on M1) ft for a correct comparison of their total amounts, identifying the bank from their cal culations OR M1 for either 1.04×1.01 or 1.05×1.005 M1 for 1.04×1.01 and 1.05×1.005 Al for 1.0504 and 1.05525 C1 (dep on M1) ft for a correct comparison of their total multiplying factors identifying the bank from their cal culations
W			1.33	3	$\begin{aligned} & \text { M1 for } 3.4=\frac{k}{5^{2}} \text { oe or } 3.4 \times 5^{2} \quad(=85) \\ & \text { M1 for }{ }^{\prime} 3.4 \times 5^{2 \prime} \div 8^{2} \end{aligned}$ A1 for answer in range 1.32 to 1.33 or $\frac{85}{64}$

| Question | | Working | Answer | Mark |
| :--- | :--- | :--- | :--- | :--- | | No + comparison |
| :--- |
| $* 2 \square$ |

Γ EXPERT

Question		Working	Answer	Mark	Notes
D1			414.96	5	M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method to find the cost of oil required before the discount M1 for a correct method of finding 5% of their cal culated cost M1 (dep on previous M1) for a correct method to find the discounted cost A1 for correct answer of 414.96 or 41496p OR M1 for a correct method of finding 5\% of the cost of 1 litre of oil M1 (dep on previous M1) for a correct method to find the discounted cost of 1 litre of oil M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method to find the discounted cost of the oil required Al for correct answer of 414.96 or 41496p OR M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method of finding 5\% of their cal culated amount of oil M1 (dep on previous M1) for a correct method to find the reduced amount of oil M1 for a correct method to find the cost of the reduced amount of oil A1 for correct answer of 414.96 or 41496p

Question		Working	Answer	Mark	Notes
D**	(a) *(b)		2.5 Yes + evidence	2	M1 for $15 \div 6$ oe Al for 2.5 or $2 \frac{1}{2}$ M1 for a correct method to change 15 miles into kilometres C1(dep M1) for 24 km and statement with correct conclusion [SC: B1 for "Y es" oe and 24 km shown if MO scored] or M1 for a correct method to change 20 kilometres into miles C 1 (dep M1) for 12.5 miles and statement with correct conclusion [SC: B1 for "Y es" oe and 12.5 miles shown if MO scored]

Question		Working	Answer	Mark	Notes
D]	(a)	$154500-150000$ $\frac{4500}{150000} \times 100$ $\begin{aligned} & 154500 \times \frac{4}{100}+154500 \\ & 160680 \times \frac{4}{100}+160680 \end{aligned}$ or 154500×1.04^{2}	3	3	M1 for 154500-150000 or 4500 M1 for $\frac{\prime 154500-150000 \prime}{150000} \times 100$ oe Al cao OR M1 for $\frac{154500}{150000}(\times 100)$ M1 for " $\frac{154500}{150000} \times 100$ " -100 oe A1 cao M1 for $154500 \times \frac{4}{100}$ or 6180 or 12360 or 160680 or 166860 or 1.04×154500 M1 (dep) for ($\left.154500+‘ 6180^{\prime}\right) \times \frac{4}{100}$ or $6427.2(0)$ or ' $160680^{\prime} \times 1.04$ A1 for 167107.2(0) as final answer OR M2 for 154500×1.04^{2} (M1 for 154500×1.04) A1 167107.2(0) as final answer

T EXPERT

Qu	Working	Answer	Mark	Notes
* $\square^{\text {Q }}$	$\begin{aligned} & 3 \times £ 193.86=£ 581.58 \\ & £ 581.58 \times 0.85=£ 494.343 \end{aligned}$	£494.34	5	M1 3×193.86 (=581.58) B1 ft correct discount \% identified or used in working (may be identified in table) M1 '581.58’ \times '0.15' (=87.23(7)) M1 (dep on the previous M1) '581.58' - '87.23(7)' $(=494.34(3) \text { or } 494.35)$ C1 (dep on all method marks) for $£ 494.34$ or $£ 494.35$ identified as final answer with correct money notation OR M1 $3 \times 193.86(=581.58)$ B1 ft correct discount \% identified or used in working (may be identified in table) M2 '581.58' \times '0.85' (= 494.34(3)) (M1 '581.58' \times '1.15' ($=668.81$ (7)) C1 (dep on all method marks) for $£ 494.34$ or $£ 494.35$ identified as final answer with correct money notation NB. Throughout, values may be rounded or truncated to 2 decimal places
】5	$\begin{aligned} & 25 \div 50=0.5 \mathrm{~h}=30 \mathrm{~min} \\ & 25 \div 60=0.416 \mathrm{~h}=25 \mathrm{~min} \end{aligned}$	5	3	M1 for $25 \div 50$ or $\frac{60}{50} \times 25$ or $30(\mathrm{~min})$ or $0.5(\mathrm{~h})$ or $25 \div 60$ or $\frac{60}{60} \times 25$ or $25(\mathrm{~min})$ or $0.41(6)(\mathrm{h})$ or 0.42 (h) $\text { M1(dep) ‘0.5’ -‘ } 0.416 \text { ’or ‘ } 30 \text { - ‘ } 25 \text { ’ }$ Al cao OR M1 for $60 \div 25(=2.4)$ and $60 \div$ " 2.4 " or $50 \div 25(=2) \text { and } 60 \div 2 \text { " }$ M1(dep) '30' - '25’ A1 cao

	Working	Answer	Mark	Notes
D]	$\begin{aligned} & \text { Volume }=\frac{5 \times 12}{2} \times 15 \\ & \text { Mass }=\frac{5 \times 12}{2} \times 15 \times 6.6 \end{aligned}$	2970	3	M1 $\frac{5 \times 12}{2} \times 15(=450)$ M1 (dep on $1^{\text {st }} \mathrm{M} 1$) ' 450×6.6 A1 cao SC: If no marks awarded then award B1 for an answer of 5940
D]	$\begin{aligned} & \frac{64.8-59.3}{64.8} \times 100(=8.487 \ldots) \\ & \text { OR } \\ & \frac{59.3}{64.8} \times 100=91.512 \\ & 100-\text { ' } 91.512 \text { ' }=8.487 \ldots) \end{aligned}$	8.49	3	M1 64.8-59.3 (=5.5) M1 (dep) $\frac{\text { ' } 5.5^{\prime}}{64.8} \times 100$ oe A1 8.48-8.49 OR M1 $\frac{59.3}{64.8} \times 100$ oe($\left.=91.5(12 \ldots)\right)$ M1 (dep) 100-'91.5’ A1 8.48-8.49 OR M1 $\frac{59.3}{64.8}(=0.915(12 \ldots))$ M1 (dep) $100 \times\left(1-{ }^{\prime} 0.915\right.$ ') A1 8.48-8.49

	Working	Answer	Mark	Notes
D]	16 metres: $8 \times 10^{8} \mathrm{~km}$ 16: $8 \times 10^{8} \times 1000$ 16: 8×10^{11} 1: 5×10^{10} OR 2 mto $10^{8} \mathrm{~km}$ 2 m to 100000000000 m 1mto 50000000000 m	1: 5×10^{10}	3	M1 (indep) correct method to convert to consistent units M1 $\frac{\text { ' } 8 \times 10^{8} \text { ' }}{' 16^{\prime}}$ (units may not be consistent) or 5×10^{10} oe or 5×10^{7} oe A1 1: 5×10^{10} or 1: 50000000000 OR M1 (indep) correct method to convert to consistent units M1 $\frac{\text { ' } 16 \text { ' }}{8}$ to ' $10^{8_{1}}$ A1 $1: 5 \times 10^{10}$ or 1: 50000000000

T EXPERT

Qu	Working	Answer	Mark	Notes
Ш1	$\begin{aligned} & (17-2.8) \times 9.5=134.9 \\ & \pi \times(3.8 \div 2)^{2}=11.34 \ldots \\ & 134.9-2 \times 11.34 \ldots=112.21 \\ & 112.21 \div 25=4.488 \end{aligned}$	5	5	M1 for (17-2.8) $\times 9.5(=134.9)$ or $17 \times 9.5-2.8 \times 9.5(=161.5-26.6=134.9)$ M1 for $\pi \times(3.8 \div 2)^{2}(=11.33-11.35)$ M1 (dep on M1) for ' 134.9 ' $2 \times$ ' 11.34 ' A1 for 112-113 C1(dep on at least M1) for 'He needs 5 boxes' ft from candidate's cal culation rounded up to the next integer
\square		Farmshop	4	M1 for $12.5 \div 2.5(=5)$ M1 for ' 5 ' $\times 1.83$ or ' 5 ' $\times 183$ A1 for (£) 9.15 or 915(p) C1 (dep on at least M1) for decision ft working shown OR M1 for $12.5 \div 2.5(=5)$ M1 for $9 \div{ }^{\prime} 5^{\prime}$ or $900 \div{ }^{\prime} 5^{\prime}$ A1 for ($£$)1.8(0) or 180(p) C1 (dep on at least M1) for decision ft working shown OR M1 for $9 \div 12.5(=0.72)$ or $1.83 \div 2.5(=0.732)$ M1 for $9 \div 12.5(=0.72)$ and $1.83 \div 2.5(=0.732)$ A1 for $72(p)$ and 73.(2)(p) or ($£$) 0.72 and ($£$) 0.73 (2) C1 (dep on at least M1) for decision ft working shown OR M1 for $12.5 \div 9$ (=1.388...) M1 for $2.5 \div 1.83$ (=1.366...) A 1 for $1.38 \ldots$ and 1.36... truncated or rounded C1 (dep on at least M1) for decision ft working shown

Question		Working	Answer	Mark	Notes
D			51	3	M1 200×25.82 (=5164) A1 for 5164 or 5160 or 5100 or 5200 or 51.64 or 51.6(0) or 52 A1 for 51 cao OR M1 for $100 \div 25.82(=3.87 \ldots)$ and $200 \div 3.87 \ldots$. $(=51.64)$ A1 for 5164 or 5160 or 5100 or 5200 or 51.64 or 51.6(0) or 52 Al for 51 cao

$\Gamma \underset{\text { EXPIIION }}{\text { EXPR }}$

Question	Working	Answer	Mark	Notes
*口1	$\begin{aligned} & 180 \times 365=65700 \\ & 65700 \div 1000=65.7 \\ & 65.7 \times 91.22=5993.154 \\ & 5993.154 \div 100+28.20=88.13 \ldots \end{aligned}$$D$ U C T 366 65880 6010 88.30 365 65700 5993 88.13 65000 5929 87.49 66000 6020 88.40 364 65520 5976 87.96 360 64800 5911 87.31 336 60480 5517 83.37	Decision (Should havea water meter installed)	5	Per year M1 for $180 \times{ }^{\prime} 365$ ' $=65700$) M1 for ' 65700 ' $\div 1000$ ($=65.7$ or 65 or 66) M1 for '65.7’ $\times 91.22$ (=5993...) A1 for answer in range ($£$) 87 to ($£$)89 C1 (dep on at least $M 1$) for conclusion following from working seen OR (per day) M1 for $107 \div$ ‘365’ (=0.293...) M1 for $180 \div 1000 \times 91.22(=16.4196)$ M1 for $28.2 \div$ ' $3655^{\prime}+{ }^{\prime} 0.164196$ (units must be consistent) A1 for 29-30(p) and 24-24.3(p) oe C1 (dep on at least M1) for conclusion following from working seen OR M1 for (107-28.20) $\div 0.9122(=86.384 .$. M1 for '86.384..' $\times 1000$ ($=86384.5 . .$. M1 for ' 365 ' $\times 180(=65700)$ A1 for 65700 and 86384.5... C1 (dep on at least M 1) for conclusion following from working seen NB : Allow 365 or 366 or $52 \times 7(=364)$ or 12×30 $(=360)$ or $365 \frac{1}{4}$ for number of days

