EXPERT TUITION

Maths Questions By Topic:

Ratio, Proportion & Rates of Change

Mark Scheme

Edexcel GCSE (Higher)

ر 0207 060 4494

www.expert-tuition.co.uk

online.expert-tuition.co.uk

⊠ enquiries@expert-tuition.co.uk

 ${ig \oslash}~$ The Foundry, 77 Fulham Palace Road, W6 8JA

Table Of Contents

New Spec

Paper 1	Page	1
Paper 2	Page	22
Paper 3	Page	45

Old Spec A (Linear)

Paper	1	Page	68
Paper	2	Page	89

Question	Answer	Mark	Mark scheme	Additional guidance
3	Rahim and	P1	for start to the process to find 20% for Tamara, eg 220000 \times 0.2 oe (= 44000)	Build up processes are acceptable but
	contect liguies		or 30% for Rahim.	must be complete and correct
			eg 160000 × 0.3 oe (= 48000)	
			OR	
			for $1 - 0.2 (= 0.8)$ or $100 - 20 (= 80)$ or $1 + 0.3 (= 1.3)$ or $100 + 30 (= 130)$	
		P1	for a complete process to find at least one new value, eg 220000 – "44000" (= 176 000) or 160000 + "48000" (=208 000) OR 220000 × "0.8" (=176 000) or 160000 × "1.3" (= 208 000)	
		A1	for one correct value, 176000 or 208000	
		C1	for correct conclusion supported by correct figures eg Rahim, 176 000 and 208 000	Award 0 marks for a correct answer with no supportive working
4	33	P1	for relating 24 to 8 parts or $(1 \text{ part} =) 24 \div 8 (= 3)$	8 parts = 24
			or for 15 – 7 (= 8)	
			or starts to use a build-up method, eg (8 :) 14 : 30	
		P1	for 15 – 4 (= 11) and 24 ÷ 8 (= 3)	
			or $15 \times 3 (= 45)$ and $4 \times 3 (= 12)$	
			or for 12 (: 21) : 45	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
5	17.6	P1	for correct trig statement, eg sin $30 = \frac{h}{6}$	
		P1	for complete process to find <i>h</i> , eg $6 \times \frac{1}{2}$ (= 3)	
		P1	for correct substitution into the area of a trapezium formula,	
			eg $\frac{1}{2}(a+b) \times "3" = 66$ or $a+b = 44$	
			or $\frac{1}{2}(2x+3x) \times h = 66$	
		P1	for complete correct process to find the length of <i>AB</i> , $\begin{bmatrix} 66 \times 2 \\ (2 + 2) \end{bmatrix}$, (2)	
			$\operatorname{eg}\left[\frac{3}{3} \div (2 + 3)\right] \times 2$	
		A1	cao	An answer of $\frac{88}{5}$ gets P4 A0

Question	Answer	Mark	Mark scheme	Additional guidance
6	20	P1	for process to find SP of 24 chocolate bars, eg. 0.50×24 (= 12) oe	Working can be carried out in either pounds or pence.
			or for process to find the overall profit eg $(24 \times 0.5) - 10 (= 2)$	Former of Former
			or for process to find CP of one chocolate bar, eg. $1000 \div 24$ (= 41.66) oe	
		P1	(dep) for start to a process to find percentage profit,	
			eg. using $\frac{n_1 2^n - 10}{10}$ or $\frac{n_1 2^n}{10}$	
			or $\frac{50 - "41.66"}{"41.66"}$ oe with consistent units	
		A1	cao	
7	450	M1	for 18 ÷ 3 (=6)	Ignore units
		M1	for substitution eg. $75 = \frac{F}{"6"}$ or $75 \times "6"$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
8	6 : 15 : 20	P1	chooses a multiplier to equate the two fractions in terms of b eg $\frac{2}{5} \times \frac{3}{3} \left(=\frac{6}{15}\right)$ or $\frac{3}{4} \times \frac{5}{5} \left(=\frac{15}{20}\right)$ or lists equivalent fractions to $\frac{2}{5}$ up to at least $\frac{6}{15}$, eg. $\frac{2}{5}$, $\frac{4}{10}$, $\frac{6}{15}$, or lists equivalent fractions to $\frac{3}{4}$ up to at least $\frac{15}{20}$, eg. $\frac{3}{4}$, $\frac{6}{8}$, $\frac{9}{12}$, $\frac{12}{16}$, $\frac{15}{20}$, or $(a:b=) 2:5$ and $(b:c=) 3:4$ or for $6:15$ or $15:20$ seen	
		Р1 А1	puts into related terms ready for ratio eg $\frac{2}{5} \times \frac{3}{3} = \frac{6}{15}$ and $\frac{3}{4} \times \frac{5}{5} = \frac{15}{20}$ or for $(a : b =) 6 : 15$ and $(b : c =) 15 : 20$ or lists equivalent ratios up to a common element for <i>b</i> , eg $a : b = 2 : 5, 4 : 10, 6 : \underline{15}$ and $b : c = 3 : 4, 6 : 8, 9 : 12, 12 : 16, \underline{15} : 20$ for $6 : 15 : 20$ oe	Need not be written in ratio form Accept equivalent ratios Accept $a = 6, b = 15$ and $c = 20$
	10.0	DI		
9	196	PI P1 A1	for vol A = 1400 ÷ 70 (=20) or for mass B = 280 × 30 (=8400) for density C = $\frac{1400 + "8400"}{"20"+30}$ (= $\frac{9800}{50}$) or answer with digits 196 cao	An answer of 350 from 70 + 280 gets no marks

Question	Answer	Mark	Mark scheme	Additional guidance
8	20	P1	for a statement of proportionality eg $x = k\sqrt{y}$	Must be written in the form of an
			or 1.44 oe	equation with a constant term, accept
		DI		$x \propto k \sqrt{y}$
		PI	for using $\sqrt{1.44}$ as multiplier eg (x ₂ =) $k\sqrt{1.44y}$	
			or 1.2 oe	
		A1	сао	
•	$\frac{27}{56}$	P1	for $\frac{3}{8}$ and $\frac{7}{9}$	
			OR	72 or any multiple of 72
			uses a total of 72 cards and shows a process to find the number of cards with a black shape or the number of cards with a triangle,	72 of any multiple of 72
			eg 72 ÷ 8 × 3 (=27) or 72 ÷ 9 × 7 (=56)	Could be seen in a ratio, eg 27 : 45 or 16 : 56
		P1	for process shown to divide fractions $\frac{3}{8} \div \frac{7}{9}$ or $\frac{3}{8} \times \frac{9}{7}$	Accept the division shown as $\frac{\frac{3}{8}}{7}$
			OR for $\frac{3}{8} \times \frac{9}{9} (=\frac{27}{72})$ and $\frac{7}{9} \times \frac{8}{8} (=\frac{56}{72})$	9
			OR	
			uses a total of 72 cards and shows a process to find the number of cards with a black shape and the number of cards with a triangle,	
			eg 72 \div 8 × 3 (=27) and 72 \div 9 × 7 (=56)	Could be seen in ratios, eg 27 : 45 and 16 : 56
		A1	for $\frac{27}{56}$ or any other equivalent fraction	Answer of 27 : 56 gets P2A0

Question	Answer	Mark	Mark scheme	Additional guidance
32	2	P1	for a process to find the number of men, eg. $(60 \div 2) \div 3 (= 10)$	
	(supported)	P1	for a process to find the number of children, eg. $60 - "30" - "10"$ (= 20)	$60 \div 3 = 20$ scores no marks
		P1	for a start of a process to find the value of <i>n</i> , eg. ("20" : "10") \div 5 or 20 : 10 = 10 : 5 or "20" \div "10"	Any ratio must come from correct processes to find the number of children and the number of men
		A1	for 2 with supportive working	Award 0 marks for 2 with no correct supportive working
				Award full marks for 2 : 1 given as a final answer from correct supportive working
33 (i)	Distance in the range 20 to 23	P1	for a process to draw a bearing of 070° , eg. a line drawn 70° from the North line at <i>P</i>	Accept a line of any length as long as the intention is clear.
(ii)	Bearing in the range	P1	for a process to work out the distance PQ , eg. 12×1.5 (= 18)	
	517 10 550	P1	(dep previous P1) for the process to use the given scale, eg. "18" \div 4 (= 4.5 cm)	Award P3 for Q shown in the correct place on the diagram. 4.5 scores 2 marks provided there is a link to 12×1.5 (= 18)
		Al	(dep P3) for distance in the range 20 to 23	Award no marks if no supportive processes
		A1	(dep P3) for bearing in the range 317 to 330	Award no marks if no supportive processes
				Award A0A0 if Q is not in the correct place

Question	Answer	Mark	Mark scheme	Additional guidance
34 (a)	21.6	M1	for a method using distance = speed × time, eg. $72 \times \frac{18}{60}$	Accept 72×18
			or 7.2 km in 6 minutes, so 7.2×3 oe partitioning method	
		A1	for 21.6 oe	
(b)	No	M1	for a method to convert 20 m/s to km/h or 72 km/h to m/s,	Accept methods to convert both speeds to km/s
	(supported)		eg. $20 \times \frac{3600}{1000} (= 72)$ or $72 \times \frac{1000}{3600} (= 20)$	or m/h
		C1	for No since 72 km/h = 20 m/s oe	
13	Δ	P1	for process to find ratio of corresponding lengths	
			eg. $\sqrt{4}$: $\sqrt{9}$ (= 2 : 3)	
		P1	for process to find ratio of volumes, eg " 2 " ³ : " 3 " ³ (= 8 : 27)	
		P1	for "27" ÷ "8" (= 3.375)	This may be seen by checking their volume, $x_1 = \frac{1}{2} 1$
				eg. $8 \times 4 (-32)$ and $8 \times 5 (-24)$
		A1	for rounding to give an answer of 4 from correct working	An answer of 4 with no supportive working gets no marks

Questi	on	Answer	Mark	Mark scheme	Additional guidance
36	(a)	600	P1 P1 A1	for starting process to calculate amount of flour eg 60 ÷ 15 (= 4) or 3 × 50 (= 150) for complete process eg $\frac{60}{15}$ × "150" cao	4 implied by 200g of sugar
	(b)	2	P1	for process to calculate amount of butter eg $\frac{60}{15} \times 2 \times 50$ (= 400) OR for process to calculate the number of packs of butter needed	[butter] must be clearly stated or calculated, may
			A1	eg [butter] ÷ 250 cao	2 must not come from incorrect working
37		96	P1 P1 P1	for process to find the ratio of the number of pens of each colour sold, eg $2 \times 7: 5 \times 3: 6 \times 4$ (= 14 : 15 : 24) for process to find the proportion of green pens sold, eg $\frac{212}{"14"+"15"+"24"}$ or $\frac{"24"}{"14"+"15"+"24"}$ for a complete process to find the number of green pens sold, eg $\frac{212}{"14"+"15"+"24"} \times "24"$ or $\frac{"24"}{"14"+"15"+"24"} \times 212$	Does not have to be seen as a ratio but all three needed P3 can be implied by the values 56, 60 and 96
			A1	$\begin{array}{c} 14+15+24 \\ \text{cao} \\ \end{array}$	

Question	Answer	Mark	Mark scheme	Additional guidance
38	$\frac{4}{9}$	P1	for process to find link between volume of Q and volume of P or between volume of R and volume of Q, eg ratio 1.5 : 1 or Q = 1.5P or P = $\frac{2}{3}$ Q or two values in the ratio 1 : 1.5 such as 100 and 150	
		P1	for process to find link between volume of R and volume of P eg 1.5^2 : 1 or two values in the ratio 1: 2.25 such as 100 and 225	$1.5^2 (=\frac{9}{4})$ is enough for this mark, award P1P1
		A1	for $\frac{4}{9}$ oe fraction eg $\frac{100}{225}$	Accept P = $\frac{4}{9}$ R
39	$h = \frac{120}{\sqrt{t}}$	P1	for setting up a proportional relationship between <i>h</i> and <i>p</i> , eg $h \alpha \frac{1}{p}$ or $h = \frac{k}{p}$ OR a proportional relationship between <i>p</i> and <i>t</i> , eg $p \alpha \sqrt{t}$ or $p = K\sqrt{t}$	Condone the use of 'α' instead of '=' for the first two P marks Relationship may be implied by substitution
		P1	for process to substitute at least 2 values, eg $10 = \frac{k}{6}$ (k = 60) or $6 = K\sqrt{144}$ (K = 0.5)	
		P1	for full process leading to $h = \frac{"60"}{p}$ oe and $p = "0.5"\sqrt{t}$ oe	Both constants must come from a correct process
		A1	$h = \frac{120}{\sqrt{t}}$ oe eg $h = \frac{120\sqrt{t}}{t}$ or $h = \frac{60}{0.5\sqrt{t}}$	Formula for h in terms of t Does not need to be in simplest form

Question	Answer	Mark	Mark scheme	Additional guidance
3:	No (supported)	P1	for start to process, eg. $2100 \times \frac{40}{100} (= 840)$ or $100 - 40 (= 60)$	May compare bonus shares of a single salesman or total bonus share for all 7 salesmen.
		P1	for process to find the 7 salesmen's share of bonus, eg 2100 - "840" (= 1260) or 2100 × $\frac{"60"}{100}$ (= 1260)	
		Р1	for process to find bonus amount each salesman gets eg "1260" \div 7 (= 180) OR process to find the total bonus for all salesmen if shared equally, eg $\frac{2100}{10} \times$ 7 (= 1470)	
		P1	for process to compare what a single salesman gets under each scheme, eg "180" × $\frac{25}{100}$ (= 45) and $\frac{2100}{10}$ - "180" (= 30) or "180" × $\frac{25}{100}$ (= 45) and "180" + "45" (= 225) oe and $\frac{2100}{10}$ (= 210) or ($\frac{2100}{10}$ - "180") ÷ "180" × 100 (= 16.6)	
			OR process to compare what all salesmen gets under each scheme, eg "1260" × $\frac{25}{100}$ (= 315) and "1470" – "1260" (= 210) or "1260" × $\frac{25}{100}$ (= 315) and "1260" + "315" (= 1575) oe and "1470" or ("1470" – "1260") ÷ "1260" × 100 (= 16.6)	
		A1	'No' supported by correct figures, eg 45 and 30, 225 and 210, 315 and 210 or 1575 and 1470 or 16.(6)(% and 25%)	Do not award unless correct figures have been shown to support a statement made that the salesman was not correct.

Question		Answer	Mark	Mark scheme	Additional guidance
3;	(a)	200	M1	for $120 \times 5 \div 3$ oe	
			A1	cao	
	(b)	statement	C1	Statement that each tap fills at the same rate or that the rate does not change over time Examples Acceptable responses: Taps are running at the same speed They (clearly referring to taps) all fill the pool with the same volume of water The amount of water is the same in the same time (again referring to taps) Each tap is doing a fifth of the filling That all taps take equal time to fill the pool All taps produce the same amount of water That the water flow stays at the same rate over the whole time. Non acceptable responses It will take more time because there are less taps The less taps used the longer it takes to fill the pool That 1 tap can take up to 24 mins each 3 taps will take longer to fill the pool	Any statement referring to the same amount of water flowing from each tap is acceptable.
42	(a)	16 to 20	P1 P1	for using time = $\frac{\text{distance}}{\text{speed}}$, eg $\frac{1}{200}$ or $\frac{1}{213}$ or for 1 hour = 60 × 60 (= 3600) seconds	Calculation could be done in stages.
			A1	for answer in range 16 to 20	
	(b)	decision with reason	C1	(dep on correct use of time = $\frac{\text{distance}}{\text{speed}}$) for reason related to their response to part(a), eg overestimate as speed rounded down	

Question	Answer	Mark	Mark scheme	Additional guidance
43	20	P1	for start of process, eg $\frac{125}{100}$ oe or $\frac{100}{125}$ oe or $\frac{25}{125}$	Values of amount of cereal and cost may be used, eg. 100g of cereal costing £10 An acceptable start of a process would then be: 125g of cereal costing £10 using Jack's idea
		P1	for a suitable process to develop a percentage, either 80% or 20% eg. $\frac{100}{125} = \frac{x}{100}$ or $\frac{125-100}{125} = \frac{x}{100}$ or $\frac{p}{1.25m} = \frac{xp}{m}$ or $\frac{0.25p}{1.25m} = \frac{xp}{m}$	
		A1	cao	
44	3 : 10	P1	process to find ratio of lengths $\mathbf{A}:\mathbf{B} = \sqrt{4}:\sqrt{25} \ (= 2:5 \text{ or } \frac{2}{5} \text{ or } 2, 5)$	Accept working in fractions for the award of process marks but the final answer must be in correct simplified ratio notation
		P1	for process to find ratio of lengths B : C = $\sqrt[3]{27}$: $\sqrt[3]{64}$ (= 3:4 or $\frac{3}{4}$ or 3, 4)	
		P1	for process to write as one ratio eg. finding a common multiple of 3 and 5 or 6 : 15 : 20 oe	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
25	140	P1	for beginning to solve the problem eg $50 \div 5 \times 8 (= 80)$ or $14 : 8 : 5$ oe or $14 : 8$ and $8 : 5$ oe (linked)	80 may be seen in the ratio 80 : 50
		P1	for a full process to solve the problem eg "80" ÷ 4 × 7 or $\frac{50}{5}$ × "14" or 140 : 80 : 50	
		A1	cao	If 140 clearly identified as houses in working award full marks
46	30	P1	for full process to find the number of bags sold eg $5 \times 1000 \div 250 (= 20)$	This could be by repeated addition
			OR for process to find selling price of 1 kg of sweets eg $0.65 \times 4 (= 2.60)$	Calculations can be in £ or pence
		P1	for [number of bags] \times 0.65 or "20" \times 0.65 (= 13) or "2.60" \times 5 (= 13)	[number of bags] can only come from $5 \times 10 \div 250 (= 0.2)$
			OR for $10 \div "20"$ oe (= 0.50)	or 5 × 100 ÷ 250 (= 2) or 5 ÷ 250 (= 0.02)
			OR for $0.65 \times 4 \ (= 2.60)$ and $10 \div 5 \ (= 2)$	
		P1	(dep on previous P1) for a process to find the percentage profit eg ("13" – 10) \div 10 × 100 or (0.65 – "0.50") \div "0.50" × 100 or ("2.60" – "2") \div "2" × 100	3/10 or 0.3 is not enough but should be awarded 2 marks
			OR "13" \div 10 ×100 (= 130) oe	Award P3 for 130(%)
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
47	216	P1	for process to work with ratio eg $72 \div (3 + 4 + 5) (= 6)$ or $72 \div 12 (= 6)$	
		P1	for process to find length of base or height of triangle eg $3 \times "6"$ (= 18) or $4 \times "6"$ (= 24)	
			OR process to find area scale factor eg "6" × "6" (= 36)	
		P1	complete process to find the area of the triangle eg $\frac{1}{2} \times (18)^{\circ} \times (24)^{\circ}$ or $\frac{1}{2} \times 3 \times 4 \times (6)^{\circ}$	
		A1	cao	
48	$y = \frac{100}{9x^4}$	P1	for setting up a correct proportional relationship, eg $d \alpha x^2$ or $d = kx^2$	Condone the use of ' α ' instead of '=' for the four P marks
		P1	for setting up a second proportional relationship, eg y $\alpha \frac{1}{d^2}$ or $y = \frac{K}{d^2}$	
		P1	(dep P1) for a process to find one of the constants of proportionality eg $24 = k \times 2^2$ ($k = 6$) or $4 = K \div 100$ ($K = 400$)	
		P1	full process to find y in terms of x eg $y = \frac{"400"}{("6" x^2)^2}$ oe	Both constants must come from a correct process
		A1	$y = \frac{100}{9x^4} \text{ oe}$	Expression must have been simplified, but could be given other equivalent ways eg $y = 11.111x^{-4}$

Question	Working	Answer	Mark	Notes
29		14:21:42	P1	for 2 out of 3 expressions in one letter eg from x , $x+7$ $2x+14$ or see a set of numbers
			D1	to show interpretation of the relationships, eg 10, 17, 34
			PI	(dep) for sum of their 3 expressions = // eg $x + x + 14 = 1/$ oe or 2 systematic
			D1	for a correct process to isolate their term in x or $x=1/4$
			11	for a context process to isolate their term in x or $x = 14$
			A1	for ratio 14:21:42 oe
4:		22.5	P1	for process to find James' speed eg $50 \div 2.5 (=20)$ or $50 \div 150 (=\frac{1}{2})$
			P1	for process to find James' time for 15 km eg $15 \div 20$ " (=0.75) or $15 \div (=45)$
			P1	for process to find Peter's time for 15 km eg "45" – 5 (=40)
			P1	for process to find Peter's speed eg $15 \div "40"$ or $15 \div \frac{"40"}{c_0}$
				- 60
			A1	oe
4; (a)		120	P1	for $\frac{4\times450}{15}$ or $\frac{4}{15} = \frac{x}{450}$ oe
			Δ1	
(b)		165	P1	5.5 or 6.5 or 165 or $\frac{5 \times 450}{100}$ (=150) and $\frac{6 \times 450}{100}$ (=180)
		450		15 (100) and 15 (100)
			A1	for $\frac{165}{2}$ on
				$101 \frac{1}{450} 00$
52		<i>x</i> (<i>k</i> +1)	M1	y + y = h(y - y) or $y + x = h$ or
52		$y = \frac{1}{k-1}$	1,111	$y + x - k(y - x)$ or $\frac{1}{y - x} - k$ de
	ky-y=x+kx		M1	For isolating x and y on opposite sides eg $ky - y = x + kx$
	y(k-1)=x(1+k)			
			A 1	Completing compet electronic recording to reach conclusion
			AI	Completing correct algebraic reasoning to reach conclusion
			A1	Completing correct algebraic reasoning to reach conclusion

Question	Working	Answer	Mark	Notes
53		7/2	M1	for $y = k \sqrt[3]{x}$ oe or $\frac{7}{6} = \sqrt[3]{8} k$ oe
		5	M1	for $k = \frac{7}{6 \times \sqrt[3]{8}}$ oe
			A1	for $\frac{7}{3}$ oe
52		2, 14.5	P1	for scale factor of $\frac{12}{3}$ or $\frac{3}{12}$ or $\frac{15}{12}$ or $\frac{12}{15}$ or $\frac{8}{12}$ or $\frac{12}{8}$ or $\frac{15}{8}$ oe or correctly identifies 2
			A 1	pairs of corresponding sides
			P1	for complete method to find other value for $y = 2^{15} \times 12^{-9}$
			A 1	for complete method to find other value for $x = \frac{14}{8} \times 12 = 8$
			Al C1	for $x = 14.5$ Describes both assumptions for similarity
			CI	Describes both assumptions for similarity
55		500	M1	recognition of 1.2 or 120% oe eg $600 \div 1.2$ oe or $x \times 1.2 = 600$ oe or $120\% = 600$
			A1	cao
56 (a)		$y = \frac{9}{x^2}$	M1	begins to work with $y = \frac{k}{x^2}$ or e.g. subs of a pair of numbers into $y = \frac{k}{x^2}$ or states $k=9$
			A1	for $y = \frac{9}{x^2}$ Accept $y = 9x^{-2}$
(b)		$\frac{3}{4}$	M1	ft (dep on previous M1) subs $y = 16$ into proportional formula of the form $y = \frac{k}{x^2}$ oe
			A1	oe

Question	Working	Answer	Mark	Notes
57		$\frac{1}{3}$	P1	process to solve the problem e.g. $\frac{3}{10} \times \frac{4}{9} \left(=\frac{12}{90} = \frac{2}{15}\right)$ OR finds the number of white circles for their chosen number OR for 9 : 21 (or a multiple of 9 : 21)
			P1	second step of the process e.g. $\frac{7}{10} \times \frac{2}{7} \left(=\frac{14}{70} = \frac{2}{10} = \frac{1}{5}\right)$ OR finds the number of black circles for their chosen number OR for a multiple of 2 : 5 where the ratio parts sum to "21"
			P1	for complete process e.g. $\left\ \frac{2}{15}\right\ + \left\ \frac{1}{5}\right\ \left(=\frac{4}{30} + \frac{6}{30}\right)$ OR finds the total number of circles for their chosen number OR for 3 ratios that could be used to solve the problem eg 9 : 21 with 4 : 5 with 6 : 15
			A1	for $\frac{1}{3}$ oe

Question	Working	Answer	Notes
58 (a) (b)		48	P1 start to process eg. 3 × 80 (=240) P1 '240' ÷ 5 A1 C1 eg. she may drive a different distance and therefore her average speed could be different
59		28	 P1 Process to start to solve problem eg. 3/5 × 40 or divide any number in the ratio 3:2 P1 Second step in process to solve problem eg. 2/5 ×10 or find number of males/females under 25 for candidate's chosen number for complete process A1
5:		150 000	M1 $60 \div 100^2$ or $900 \div 60$ or $900 \div "60"$ A1
5;		No with reason	 C1 Starts to formulate reason eg. No with partial explanation or 0.8 × 0.7 or starts to use figures C1 No with full explanation eg. 0.8 × 0.7 = 0.56 so only 44% reduction

Question	Working	Answer	Notes
62		Given result	M1 For length scale factor eg $\sqrt{\frac{4}{9}}$ or 120 : 405
			M1 $\left(\sqrt{\frac{4}{9}}\right)^3 \times 405 \text{ or } 2^3 : 3^3 \text{ (from 120 : 405)}$
			A1 120 from correct arithmetic or conclusion relating $2^3 : 3^3$ with $2^2 : 3^2$ with correct working

Question	Working	Answer	Notes
63		4 m^2	B1 substitution into formula eg $35 = \frac{140}{A}$ oe
			A1 4 stated
			C1 (indep) units stated
64" (a)		5	P1 begins to work with scaling factors (eg 5) or ÷6
			A1 cao
(b)		10	P1 works with 1:2 ratio eg no. red counters is $30 \div 2$ (=15)
			A1 ft
65		37.5 mph	P1 shows process of finding first distance eg 50×3 (=150)
			P1 shows process of finding time for second part eg $150 \div 30 (=5 \text{ h})$
			P1 shows process of working with av sp. (dist \div time) (= $300 \div (3+5) = 300 \div 8$)
			C1 conclusion with supporting evidence, correct notation and units eg 37.5 mph
66		D, A, B, C	B2 B2 for all correct
			(B1 for at least 2 correct)

Question	Working	Answer		Notes
67	16 ÷ 4	5	P1	Using side lengths of 4
	$\frac{\frac{1\times4}{2}}{\frac{2\times4}{2}} = 2 \text{ or } \frac{\frac{1}{2}\times\frac{1}{4}}{\frac{1}{2}} = \frac{1}{8}$ $\frac{\frac{2\times4}{2}}{\frac{1}{2}} = 4 \text{ or } \frac{1}{2}\times\frac{1}{2} = \frac{1}{4}$	δ	P1	Method to find fraction or area for one unshaded triangle
	$\frac{1 \times 4}{2} + \frac{2 \times 4}{2} = 6 \text{ or } \frac{1}{2} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{8}$		P1	Method to complete fraction or area for total unshaded region
	$16 - 6 = 10 \text{ or } 1 - \frac{3}{8} = \frac{5}{8}$		P1	Method to find total fraction or area for shaded region
			A1	for $\frac{5}{8}$ oe or 0.625
68	$\frac{90}{2} \times 3 = 135$	Combination with reason	P1	Links either $\frac{2}{3}$ with 90 and 60% with 84
	$\frac{84}{60} \times 100 = 140$		P1	Process to find original price of microwave oven eg $\frac{90}{2} \times 3$ (=135)
			P1	Process to find original price of combination oven eg $\frac{84}{60} \times 100$ (=140)
			A1	Correct original prices £135 and £140 with interpretation of results to conclude that combination oven had greater normal price.
69		9	M1	Finds constant 36 \times 1.5 (=54) or $\frac{6}{15}$ =4
			M1	54 " 6 or 36 " 4
			A1	9 cao

Question	Answer	Mark	Mark scheme	Additional guidance
6: (a)	80	M1	for a complete method eg $\frac{20}{15}$ × 60 or 20 × 4 or 20 ÷ $\frac{1}{4}$	
		A1	cao	
(b)	Travel graph	M1	for method to find distance travelled in last 20 minutes, eg 75 × $\frac{20}{60}$ (= 25)	Can be implied by a distance of 25km drawn on the graph
		C2	for a fully correct travel graph	
		(C1	for horizontal straight line from (10 15, 20) to (10 25, 20) or for a line of the correct length and gradient to indicate a speed of 75km/h eg a straight line from (10 25, 20) to (10 45, 45))	
6;	1.6	P1	for 1.8×80 (= 144) or 1.2×40 (= 48) or for 192 or for $80 : 40 = 2 : 1$	
		P1	for ("144" + "48") \div (80 + 40) or 192 \div 120 or for (1.8 × 2 + 1.2) \div 3 or 4.8 \div 3	
		A1	oe	
72	344 580.48	P1	for a start to the process to find the initial investment eg 344 605 \div 1.025 oe (= 336 200) or for 1.025 ³ (= 1.07689)	
		P1	for complete process to find original investment, eg 344 605 \div 1.025 ³ oe (= 319 078 to 320 265)	
	P1 for [initial investment] $\times 1.02^2 \times 1.035$ oe		[initial investment] must be clearly what they	
		A1	for answer in the range 343 587 to 344 581	beneve to be that and cannot be 344603

Question	Answer	Mark	Mark scheme	Additional guidance
73	25 : 36	P1	for $\sqrt[3]{125}$ (= 5) and $\sqrt[3]{27}$ (= 3) oe OR for correct process to find the radius of A and radius of B (3.10 and 1.86)	Accept scale factors expressed as fractions or decimals eg 1.66, 1.67, 0.6 or better Ignore units throughout
		P1	for method to find values in ratio of length between A and C eg 5 and 2×3 (= 6) oe or "3.10" and "1.86" $\times 2$ (=3.72) OR 25 and 36 OR for correct process to find SA of A and SA of C (120.(8)) and (174.(0))	For both P marks the lengths need not be written as a ratio
		A1	for 25 : 36 oe eg 1: 1.44	

Question	Answer	Mark	Mark scheme	Additional guidance
74	No	P1	for $3000 \div (2+3) (= 600)$	
	(supported)	P1	for "600" × 2 (= 1200) or "600" × 3 (= 1800) or "600" ÷ 6 (= 100) or "600" ÷ 20 (= 30)	
		P1	for "1200" ÷ 6 (= 200) or "1800" ÷ 20 (= 90) or "100" × 2 (= 200) or "30" × 3 (= 90)	
		P1	for "90" \div ("200" + "90") \times 100 (= 31.0) oe or "90" \div ("200" + "90") (= 0.31) or $0.3 \times$ ("200" + "90") (= 87)oe	Full method to compare
		C1	correct conclusion and fully correct calculations with accurate figure eg No and 87 or No and 31% or No and 0.31	No working, answer only no marks No may be implied by a statement
75" (a)	580	M1	for method to find value before increase eg $551 \div 0.95$	
		A1	cao	
(b)	6354.67	M1	for 6000×1.024 oe (= 6144)	
		M1	for "6144" $\times 1.017^2$ oe	$6000 \times 1.024 \times 1.017^2$ scores M2
		A1	for 6354.66 or 6354.67 or 6354.68	If correct answer is stated then subsequently rounded isw and award 3 marks If correct answer stated and then interest only given as the answer award M2A0

Question	Answer	Mark	Mark scheme	Additional guidance
76" (a)	-0.09	M1	for suitable method to find gradient, eg 27 ÷ 300	Any readings from the graph must be reasonable.
		A1	for answer in the range -0.1 to -0.08 oe	Condone missing negative for M1
(b)		C1	for explanation	Can ft explanation linked to incorrect gradient in part (a)
			Acceptable examples	
			volume of petrol used each km	
			litres/km	
			Rate of fuel consumption	
			For every 9 litres you can travel 100 km	
			Not acceptable examples	
			volume ÷ distance	
			volume of petrol used per distance	
			km/litre	
			as distance increases volume decreases	

Question	Answer	Mark	Mark scheme	Additional guidance
77	18	P1	for $240 \div 10 (= 24)$ or $240 \div 8 (= 30)$	Accept 3 + 7 for 10, 3 + 5 for 8
		P1	for 3 × "24" (= 72) or 7 × "24" (= 168) or 3 × "30" (= 90) or 5 × "30" (= 150)	
		P1	for 3 × "24" (= 72) and 3 × "30" (= 90) or 7 × "24" (= 168) and 5 × "30" (= 150)	
		A1	Cao	
78	6	M1	for 720 ÷ 40 (= 18) or 720 ÷ 30 (= 24)	
		M1	for a complete process eg $(720 \div 30) - (720 \div 40)$ or "18" × 4/3 – "18" or "24" – "24" × 3/4	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
79	2.2	P1	works out interest for one year, eg 3550 × 0.026 (= 92.3(0)) or 3550 × 1.026 (=3642.3(0))	
		P1	for compound interest calculation, eg 3550×1.026^2 (= 3736.9) or for an answer given as 0.0219 or 1.0219	
		A1	answer in range 2.19 to 2.2	If an answer in the range is seen in working and then incorrectly rounded award full marks
7: " (a)	163 or 164	P1	uses formula eg $1.2 \times 200 - 50$ (= 190)	
		P1	for complete process, eg May: 1.2 × "190" – 50 (= 178) and June: 1.2 × "178" – 50 (= 163.6)	
		A1	for 163 or 164	
(b)	Statement	C1	(dep P1) ft statement, eg there won't be any rabbits, fewer rabbits, decrease	

Question	Answer	Mark	Mark scheme	Additional guidance
59	168	P1	for working with ratio to find the amount for C or D eg 1.5×2 (=3) or (A, B, C, D =) 2, 7, 3, 3 oe OR for suitable expressions linking A with C or D, eg. A = x, C = $1.5x$	
		P1	for "2 + 3 + 3 + 7" (=15) OR adds 4 suitable expressions, eg. " x + 3.5 x + 1.5 x + 1.5 x " (= 7.5 x)	
		P1	for a complete process to find the amount of money eg $360 \div "15" \times 7$ OR $360 \div "7.5" \times 3.5$	
		A1	cao	
60 (a)	100 : 81	M1	for a scale factor of 0.9 oe used; OR for 10 : 9 oe OR 81 : 100 oe OR 81%	
		A1	for 100 : 81 oe	eg. 1 : 0.81, accept 1.23(4) : 1
(b)	6:5	P1	for 1.44 oe used as the scale factor or 1.2 oe OR for 144 : 100 oe or $\sqrt{144}$: $\sqrt{100}$ oe OR 5 : 6 oe	
		A1	for 6 : 5 oe	eg 1.2 : 1, accept 1 : 0.83(3)

Question	Answer	Mark	Mark scheme	Additional guidance
83 (a)	Explanation	C1	For stating the LCM of (4+7) and (5+3) is 88 or there is no smaller multiple of 8 and 11 (than 88)	
(b)	23	Ρ1	for using a scale factor appropriately eg 4 × 8 (=32) or 3 × 11 (=33) or 7 × 8 (=56) or 5 × 11 (=55) or for writing a pair of suitable fractions, eg $\frac{7}{11}$ and $\frac{3}{8}$ or $\frac{4}{11}$ and $\frac{5}{8}$ or $\frac{3}{8}$ and $\frac{4}{11}$	May be seen in a two-way table or probability tree
		Р1	for finding the number of large cubes and red cubes or small and yellow or small and red eg 7 × 8 (=56) and 3 × 11 (=33) or 4 × 8 (=32) and 5 × 11 (=55) or 4 × 8 (=32) and 3 × 11 (=33) OR a suitable fractional equation, eg $\frac{7}{11} - x = \frac{3}{8}$ or $\frac{5}{8} - x = \frac{4}{11}$	May be seen in a two-way table or probability tree
			or $x = 1 - \frac{3}{8} - \frac{4}{11}$ OR a suitable pair of probabilities with a common denominator, eg $\frac{56}{88}$ and $\frac{33}{88}$ or $\frac{32}{88}$ and $\frac{55}{88}$ or $\frac{33}{88}$ and $\frac{32}{88}$	$\frac{23}{88}$ scores P2A0
		Al	cao	

Question	ı	Answer	Mark	Mark scheme	Additional guidance
84	(a)	Ben (supported)	P1	shows how to work interest out for one year eg 2000 × 0.025 (= 50) or 1600 × 0.035 (= 56) or 150 or 168 or 2000×1.025 (= 2050) or 1600 × 1.035 (= 1656)	Throughout accept figures ± 1 pence which do not need to be presented in money notation (to 2dp) or with monetary symbols.
			P1	shows compound interest calculation for one account eg 2050 \rightarrow 51.25 or 2101.25 \rightarrow 52.53 or 1656 \rightarrow 57.96 or 1713.96 \rightarrow 59.99 eg 2000×1.025 ³ (= 2153.78) or 1600 × 1.035 ³ (= 1773.95)	Award mark for a correct process shown, for which these figures can be taken as implying the process.
			P1	shows complete compound interest calculation for both accounts eg 2000×1.025^3 (= 2153.78) and 1600×1.035^3 (= 1773.95) OR one interest stated correctly eg 153.78 or 173.95	As above, award mark for both correct processes shown for both accounts, which these figures can be taken as implying the process.
			C1	Ben (shares) supported by 153.78 and 173.95	Accept an answer of "shares".
84	(b)	conclusion	C1	conclusion (ft) eg no change, shares now 182.5 Acceptable examples no since shares/Ben now 182.5 Still Ben since 182.5 > Ali No; he only gets 8.57 more No; he gets 68.56 instead of 59.98 (3^{rd} yr) No; Ben already gets more interest, he would just get even more Not acceptable examples no shares now 182.5 Still Ben since less than Ali 182.5 > 153.78 no; he needs 20.17 more	Conclusion needs to be supported. ft is from part (a); calculations carried out as part of (b) need to be correct for the comparison to be valid.

Question	Answer	Mark	Mark	scheme	Additional guidance
85	No	P1	calculates area of trapezium eg $\frac{1}{2}$ ×	$7 \times (10+16) \ (=91)$	
	(supported)	P1	for division by coverage eg $\div 2$ or [area of trapezium] $\div 2$ (= 45.5) or process to find coverage per tin eg 5 × 2 (= 10)	for process to find number of tins bought eg $160 \div 16.99 = 9$ tins	[area of trapezium] needs to be clearly stated if the process of finding the area is not clear
		P1	for division to find the number of tins eg $\div 5$ or "45.5" $\div 5$ (= 9.1) or [area of trapezium] \div "10" (= 9.1)	for using whole no. of tins to find total litres eg 9×5 (= 45)	
		P1	(dep on at least P2) for a process to multiply a whole number of tins (rounded up) by 16.99	(dep on at least P2) for a process to find the total coverage eg "45" × 2 (= 90)	
		C1	for 'No' supported by correct figure	s eg 169.9 or 90 and 91	There must be a conclusion ("No" or equivalent wording) including the figure 169.9 and working showing processes followed.

Question	Answer	Mark	Mark scheme	Additional guidance
86	35	P1	use of ratio 2:3 and tin quantities to find overall ratio of litres eg 4:3 or 4 tins : 3 tins or 20 litres (Y) & 30 litres (B)	
		P1	calculates total cost of making paint eg $4 \times 26 + 3 \times 48$ (50 litres) or 104+144 (=248)	Could be multiples 4 & 3 (for an amount which is a multiple of 50 litres). "248" is the total cost for making 50 litres
		A1	calculates comparable cost eg 10 litres (1 tin) green paint made as 49.6 or differences (profit) for 1 tin as 17.36 or 5 tins as 86.8 or total comparable costs for 50 litres as 334.8 and 248,	"248" \div 5 = 49.6 for 10 litre (1 tin) green paint made
			for 25 litres as 167.4 and 124 or 1 litres as 33.48 and 24.8	Profit on 50 litras is $204.8 - 248 - 86.8$
				From on 50 lines is $504.8 - 248 - 80.8$
				price for 50 litres green paint 5×66.96 and is the selling
		P1	for percentage calculation eg $\frac{1736}{4960} \times 100$, $\frac{"334.8" - "248"}{"248"} \times 100$	
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
87	4 : 1	P1	for associating algebraic expressions with the correct ratio eg $p-5: q-5 (= 5: 1)$ or $p+20: q+20 (= 5: 2)$	
		P1	for $\frac{p+20}{q+20} = \frac{5}{2}$ or $\frac{p-5}{q-5} = \frac{5}{1}$ oe or $p-5 = 5(q-5)$ or $2(p+20) = 5$ $(q+20)$ oe	Award for one of the two simultaneous equations eg $5q - p = 20$, $5q - 2p = -60$ oe
		M1	for a complete method shown to find <i>p</i> or <i>q</i>	Award for a simultaneous equation method to eliminate one variable leading to either $p = 80$ or q = 20
		M1	for a complete method shown to find p and q or two values for p and q that are in the ratio 4 : 1 or an unsimplified ratio 4 : 1 (eg 80 : 20) or an answer of 1 : 4	Award for a simultaneous equation method to eliminate both variables leading to either $p = 80$ and $q = 20$
		A1	cao	
88	3.75	P1	works to find vol of frustum eg $1/3\pi(3.6)^2 \times 6.4 - 1/3\pi(1.8)^2 \times 3.2$ or 86.858 10.857 (=24.192 π or 76.00)	
		P1	works to find vol of hemisphere eg $\frac{1}{2} \times \frac{4}{3}\pi \times 3.6^3$ (=31.104 π or 97.7)	781.7 by use of diameter does not get the mark
		P1	mass of frustum as [vol]×density eg "76.00" × 2.4 (=182.4) or mass of hemisphere as [vol]×density eg "97.7"×4.8 (=469.037)	[vol] is their volume which could be ft using the radius, using the diameter, or could be another value as long as it is stated as being the volume, or clearly intended from working.
		P1	mean density as total mass ÷ total volume eg ("182.4" + "469.037") ÷ ("76" + "97.7") or "651.4". ÷ "173.7"	All figures must come from correct method shown.
		A1	answer in the range 3.7 to 3.8	

Question	Answer	Mark	Mark scheme	Additional guidance
89	3 : 5	P1	for process to find 20% or 120% of the cost, eg 8500×0.2 (= 1700) oe or 8500×1.2 (= 10 200) oe	When partitioning all figures quoted must be correct or a full method shown eg $10\% = 8500 \div 10$ (=850) and $20\% =$ " 850 " + " 850 " (=1700)
		P1	for process to find total cost of payments, eg $12 \times 531.25 (= 6375)$	
		P1	for complete process to find value of deposit, eg "10 200" – "6375" (= 3825) or 8500 – "6375" (=2125) and "2125" + "1700" (=3825) OR the deposit as a proportion of the total cost, eg $1 - \frac{"6375"}{"10200"} (=\frac{3}{8})$	May be seen as a fraction of the total eg $\frac{3825}{10200} (=\frac{3}{8})$
		P1	for finding a correct un-simplified ratio, eg "3825" : "6375" oe or 5:3 or 1.6 : 1 or $\frac{5}{3}$: 1	Figures at this stage must be expressed as part of a ratio eg 51:85, $\frac{3}{8}:\frac{5}{8}$
		A1	Accept 1: 1.6, $1:\frac{5}{3}$	Ignore consistent units

Question	Answer	Mark	Mark scheme	Additional guidance
8:	No (supported)	P1	For a process to calculate the initial or new pressure, eg $(70 + 10) \div (20+10)$ (=2.6 to 2.7) or $80 \div 30$ (=2.6 to 2.7) or $70 \div 20$ (=3.5) For a complete process to make a comparison eg. $0.8 \times ``3.5"$ (=2.8) OR $\frac{("3.5"-"2.6")}{"3.5"} \times 100$ (=22 to 26) OR $``3.5" \times 0.2$ (=0.7) and $80 \div 30$ (=2.6 to 2.7) OR $\frac{"2.6"}{"3.5"}$ (× 100) (=0.74 to 0.78 or 74 to 78)	Accept any value in the range 2.6 to 2.7 if unsupported by working
		A1	for a correct conclusion supported by accurate figures eg 2.8 and 2.6(6) OR decrease is 24% (or 22% to 26%) OR 0.7 and 2.6 to 2.7 and 3.5 OR 0.7 and 0.9 OR 0.76 (or 0.74 to 0.78) OR 76% (or 74% to 78%)	Allow truncation or rounding of figures
89	12 508.7(0)	P1 P1	for start of process to find interest rate for year 1 eg 12336 ÷ 12000 (=1.028) or (12336 – 12000) ÷ 12000 (=0.028) OR forms a suitable equation, eg 12000 × $(1 + \frac{x}{100}) = 12336$ for complete process to find the interest rate for year 1 eg ("1.028" – 1) × 100 (=2.8) or "0.028" × 100 (=2.8) OR correct process to solve correct equation eg (12336 – 12000) ÷ 120 (=2.8) for complete process to find the value at the end of 2 years	Rate of interest = 2.8, or $x = 2.8$ implies P2
		A1	eg ("2.8" \div 2 + 100) \div 100 × 12336 accept 12508.7 to 12508.71 or 12509	12509 must come from correct working
92	BDAC	B2 (B1	all correct for at least 2 correct)	

Question	Working	Answer	Mark	Notes
93	$\pounds 6 - \pounds 5.64 = 36p \text{ or}$	6.4	P1	for a strategy to compare the same number of bottles $55(4+12)(-47+2)(-47) = 12 - 50 - (-60) = 2(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2$
	50p - 47p = 3p			e.g. $\pm 5.64 \div 12$ (= 4/ or 0.4/) or $12 \times 50p$ (= 6 or 600) or 36 or 0.36 or 3 or 0.03
			P1	for start of process to find percentage profit e.g. $\frac{"36"}{564}$ or $\frac{"3"}{"47"}$ or $\frac{"6"}{5.64}$ or $\frac{50}{"47"}$ oe with consistent units
	6.3829787%		A1	for answer in the range 6.3 to 6.4
94		$\frac{1}{11}$	P1	for starting the process, eg by writing down a correct ratio or using a given number of cubes for one relationship, eg 2B 1Y or $B:Y = 2:1$ or $4G 1B$
				or $G:B = 4:1$ or $8G$, 1Y or $G:Y = 8:1$ oe
				or yellow = 2, blue = 4, or states $2:1:8$ oe in any order (can be algebraic)
			P1	for complete process to find possible number of each colour or equivalent ratio, eg 8G 2B 1Y or $G:B:Y = 8:2:1$ oe
				or yellow = 2, blue = 4, green = 16 oe (can be algebraic)
			A1	$\frac{1}{11}$ oe
95		65.60	P1	for start in using inverse proportionality, eg. 5 × 4.5 (= 22.5) or $4.5 = \frac{k}{2}$ or
				$\frac{5}{5}$
				$5 \times 4.5 \times 60 \ (= 1350) \ \text{or} \ \frac{3}{3} \ \text{or} \ \frac{3}{5}$
			P1	for process to find number of hours for each cleaner today, eg $\frac{22.5}{3}$ (= 7.5)
			A1	for 65.6(0)
				(SC B2 for 61.5(0))

Question	Working	Answer	Mark	Notes
96 (a)		58600	M1	for a complete method, eg 50000×1.02^8 (= 58582(.969)) or for finding the increase in value of the company after 8 years, eg 8582(.969) or 8600
			A1	cao
(b)		4.5	P1	for a process to find multiplier for 6 year period, eg $325 \div 250$ oe (= 1.3) or $130(\%)$ or for $250000 \times y^6 = 325000$
			P1 A1	for a process to find multiplier for one year, eg $("1.3")^{\frac{1}{6}}$ or 1.044or 1.045 4.4 - 4.5
97		0.98	B1	cao

Question	Working	Answer	Mark	Notes
98		Yes	P1	for process to work out the total number of children, e.g. $117 \times 4 (= 468)$
		(supported)	P1	(dep P1) for process to work out total number of adults or the total number of people, e.g. " 468 " × 5 ÷ 2 (= 1170) or " 468 " × 7÷ 2 (= 1638) for 1170 or 1638
			P1	for process to work out the percentage of theatre full
			C1	e.g. $\frac{"468"+"1170"}{2600} \times 100 \ (= 63)$ or for a process to work out 60% of 2600 (= 1560) for a correct conclusion supported by correct figures e.g. 63% or 1560 and 1638
				OK
			P1	for a process to work out 60% of 2600, eg. $\frac{60}{100} \times 2600$ (= 1560)
			P1	(dep P1) for process to work out this total number of children, e.g. "1560" $\times 2 \div 7 (= 445(.7))$
			A1	for 445(.7)
			P1 C1	for process to work out children in the circle, eg. " $445(.7)$ " ÷ 4 (= 111 to 112) for a correct conclusion supported by correct figures e.g. 111 to 112 [Where appropriate accept rounded or truncated values]
			P1	for a process to find the maximum number of children, eg. $2600 \times 2 \div 7 (= 742(.8))$
			P1	for process to work out the total number of children, e.g. 117×4 (= 468)
			A1	for 468 and 742(.8)
			P1	for $\frac{"468"}{"742(.8)"} \times 100 \ (= 63)$ or process to work out 60% of "742(.8)" (= 445(.7))
			C1	for a correct conclusion supported by correct figures e.g. 63% or 468 and 445(.7)
				[Where appropriate accept rounded or truncated values]

Question	Working	Answer	Mark	Notes
99 (a)		57.1	P1	for a process to find time from Liverpool to Manchester,
			D1	eg. $56 \div 70 (= 0.8 \text{ (hrs) or } 48 \text{ (mins)})$
			F1	for a process to find total distance, eg. $50 + 61(-117)$
				or the total time, eg. $48 + 75 (-123)$ or $0.8 + \frac{-1}{60} (-2.03)$ with consistent units of time
			P1	(dep P2) for a correct process to find average speed with consistent units of time, eg. "117" ÷ "2.05" or "117" ÷ "123"
			A1	for answer in the range 57 to 57.1
(b)		explanation	C1	for explaining that the time taken for the two parts of the journey must be the same
				or the distance from Leeds to York is $\frac{3}{4}$ of the distance from Barnsley to Leeds
9: (a)		3.9	M1	for a ratio of $\frac{8.1}{5.4}$ (=1.5) oe or $\frac{5.4}{8.1}$ (=0.66) oe
				or $\frac{2.6}{5.4}$ (= 0.48) oe or $\frac{5.4}{2.6}$ (= 2.07) oe
			A1	cao
(b)		2.05	M1	for $\frac{5.4}{8.1} \times 6.15$ oe (= 4.1) or $\frac{2.7}{8.1} \times 6.15$ oe or ft "scale factor" from (a)
			A1	cao
			D1	
9;		(supported)	PI	or 0.043×25000 (=1075) or for 1.02 or 25500 or 1.043 or 26075
			P1	for process to find value of the investment after 3 years or the multiplicative factor for 3 years at one of the banks, e.g. $25000 \times 1.02 \times 1.02 \times 1.02$ oe (= 26530) or 1.02^3 (= 1.0612) or $25000 \times 1.043 \times 1.009 \times 1.009$ oe (= 26546) or $1.043 \times 1.009 \times 1.009$ (= 1.0618)
			C1	[accept total interest of 1530 or 1546 if final values of investment are not found] for Secure Bank from correct figures, eg. 26530 and 26546 or 1530 and 1546 or 1.0612 and 1.0618

Question	Working	Answer	Notes			
: 2		96	P1	a strategy to start to	solve the problem eg 18	÷ (7 – 4) (=6)
			P1	for completing the p	process of solution eg "6"	\times (4 + 5 + 7)
			A1	cao		
: 3		conclusion	P1	30 ÷ 70 (=0.428)	26 ÷ 60 (=0.4333)	30 ÷ 26 (=1.153)
		(supported)	P1	60 × "0.428…"	70 ×"0.4333…"	60× "1.153…"
			C1	for conclusion linke	ed to 25.7 mins, 30.3 miles	s or 69.2 mph
84		6:2:1	M1	for correct interpret	ation of any one statemen	t eg. 3 : 1; 1 : 0.5
			A1	A1 accept any equivalent ratio eg. 3 : 1 : 0.5		
:5 (a)		1.8%	P1	for start to process e	eg. 2000 × 1.025 (=2050)	
			P1	for process to use al	l given information eg "2	$050^{\circ} \times m^2 = 2124.46$
				or "2050"× $\left(1 + \frac{x}{10}\right)$	$\left(\frac{c}{00}\right)^2 = 2124.46$	
			P1 for process to find their unknown eg $m = \sqrt{\frac{2124.46}{2050}} (= 1.01799)$			$\frac{2124.46}{2050}$ (= 1.01799)
			A1	for 1.79% – 1.8 %		
(b)		200	M1	M1 225 ÷ 1.125 oe		
			A1			
:6		20	M1	Establishing method	l linked to proportion eg	$d=k\div c \text{ or } 25=k\div 280$
			M1	(dep) substitution eg	$g d = 7000 \div 350 \text{ or } 25 \times 25$	280 ÷ 350 oe
			A1	cao		

Question	Working	Answer		Notes
85	\pounds : 1980 ÷ 1.34 = 1477.61 2250 ÷ 1.52 = 1480.26	Jardins of Paris	P1 P1 C1	correct process to convert one price to another currecncy, eg $1980 \div 1.34$ for a complete process leading to 3 prices in the same currency for 3 correct and consistent results and a correct comparison made.
	: $1480 \times 1.34 =$ 1983.2 $2250 \div 1.52 \times 1.34$ = 1983.55 \$: $1480 \times 1.52 =$ 2249.6 $1980 \div 1.34 \times 1.52$ = 2245.9	supporting evidence	P1 C1	
:8 (a)		graph	M1	for method to start to find distance cycled in 36 mins, eg. line drawn of correct
			C1 C1	gradient or $15 \times \frac{-1}{60}$ or 15×36 for correct graph from 9.00 am to 9.36 am for graph drawn from "(9.36, 9)" to (10.45, "9" + 8)
(b)		4.5	M1 A1	for 18 × 0.250e cao
:9		8112	M1 A1	for complete method, eg. 7500×1.04^2 cao

Question	Working	Answer	Notes		
::		No with	P1 for the start of a correct process, eg. two of x , $2x$ and $2x+7$ oe or a fully correct		
		supporting	trial, eg. $5 + 10 + 17 = 32$		
		evidence	P1 (dep on P1) for setting up an equation using 3 algebraic terms, eg. $x + 2x + 2x + 7 =$		
			5/ or a correct trial totalling 5/, eg. $10 + 20 + 27 = 57$		
			eg Chris has 20 so it is impossible for all to have 20 since 60 marbles would be		
			needed.		
:;" (a)		-1.5	M1 for method to find gradient, eg. $210 \div 140$		
			A1 for correct interpretation of the negative gradient		
(b)			C1 for explanation age rate of change of death of water in tank		
			Ci for explanation, eg. fate of change of depth of water in tank		
;2		18.3	P1 for a start to the process interpreting the information correctly, eg. $T = k\sqrt{L}$ oe		
			P1 for a correct scale factor of 1.4		
			A1 for 18.3 to 18.4		
$\cdot 3"$ (a)		3 to 4	C_1 for a tangent drawn at $t = 6$		
, 5 (a)		5 10 4	C1 for a tangent drawn at $t = 0$ B1 for a gradient in the range 3 to 4 or ft "tangent"		
			bi for a gradient in the range 5 to 4 of it tangent		
(b)		452	C1 for splitting the area into 3 strips and a method of finding the area of one shape		
			under the graph, eg. $\frac{1}{2} \times 4 \times 35$ (= 70)		
			for complete process to find the area under the graph, eg "70" + $\frac{1}{2} \times 4 \times (35 + 51)$		
			$(= 172) + \frac{1}{2} \times 4 \times (51 + 54) (= 210) [= 452]$		
			A1 for 452		
4		101(0	$\mathbf{D}_{1} = \left\{ f_{1}, \dots, f_{n} \} = \left\{ f_{1}, \dots, f_{n} \} = \left\{ f_{n} \} = \left\{ f_{n} \} = \left\{ f_{1} \} = f_{1} \right\} = \left\{ f_{1} \} = \left\{ f_{1} \right\} = \left\{ f_{1} \} = \left\{ f_{1} \} = \left\{ f_{1} \right\} = \left\{ f_{1} \} = \left\{ f_{1} \right\} = \left\{ $		
;4		10169 or 10171	F1 for conflete iterative process		
		101/1	P1 eg. 2017: $1.05("9712.5" - 250)$ (= 9935.625)		
			2018: 1.05("9935.625" – 250)		
			for answer of 10169.90 rounded or truncated to nearest whole number		
			Cl		

Qu	estion	Working	Answer		Notes
;5		6:5 = 12:10 2:1 = 10:5	70	P1	P1 for strategy to start to solve the problem eg 12 : 10 and 10: 5
		C: S: P = 12: 10: 5		P1	P1 for process to solve the problem $eg \frac{10}{10} \times 189$
		$\frac{10}{27} \times 189$		A1	Al cao
;6"	(a)		18	B1	сао
	(b)		5(x-1)	M1 A1	for method to find inverse function for $5(x-1)$ or $5x-5$
	(c)		9 <i>x</i> – 48 shown	M1 A1	for method to find composite function for working leading to $9x - 48$
;7"	(a)	$1560000 \times (1.052)^2$	1730000	P1 P1 A1	for process to find population in 2016 for complete process to find population in 2017 for 1725000 - 1730000
	(b)(i)		2020	P1	for process to find when population will exceed 2 000 000
				A1	for 2020
	(ii)			C1	for correct comment on how assumption will affect the answer, eg if the percentage growth is higher the population may exceed 2 000 000 earlier.

Question	Working	Answer	Notes
; 8		explanation	C1 for a correct evaluation, eg the value of D should be multiplied by 8, she has used 2×3 instead of 2^3
;9" (a)		1.0 - 1.3	M1for finding gradient by drawing tangentM1for method to calculate gradientA1For 1.0 - 1.3
(b)			C1 for acceleration C1 for eg "4 second after the start of the race", "when the speed is 7.6 m/s", "in m/s ² "
(c)		limitation	C1 for comment, eg dependent on accuracy of constructing a tangent
;:	$\frac{2x-1}{x-4} = \frac{16x+1}{2x-1}$ (2x-1) ² = (16x + 1)(x-4) 12x ² - 59x - 5 = 0 (12x + 1)(x - 5) = 0	$-\frac{1}{12}$, 5	P1for process to write as an equationP1for process to clear the fractionsP1for process to write equation in form $ax^2 + bx + c = 0$ P1for process to solve the equationA1cao

Question	Answer	Mark	Mark scheme	Additional guidance
· · ·	12.85 or 12.86	P1	for $9 + 2 + 1 (= 12)$	Award this mark for sight of 4500, 1000 or 500
	or 13.5(0)			
		P1	for working out how many lots of 175g are needed eg $6000 \div ``12'' \times 2 \div 175 (= 5.71)$	Process may lead to 5 or 6 instead of 5.71
		P1	for a complete process eg "5.71" × 2.25 (= 12.857)	"5.71" (ft) may be rounded or truncated.eg "6"
		A1	for 12.85 or 12.86 or 13.5(0)	

Question	Answer	Mark	Mark scheme	Additional guidance
322	260	P1	conversion to common units of capacity eg 2.2×4.54 (= 9.988) or $8 \div 4.54$ (= 1.76)	
			for Company A $2400 \div 4.54 (= 528.63)$ OR	Results of calculations may be truncated or rounded.
			$2400 \div 8 (= 300)$ OR a rate per minute 8 ÷ [time for Company A] (= 4.8) oe	[time for Company A] could be 1 min 40 sec or 1.66 or 1.6 or 1.40 etc as long as it is clear it relates to 1 min 40 sec
		P1	for a complete process to find the time for company A or company B in minutes. eg in litres Company A $2400 \div "4.8"$ (= 500) or "300" × [1 min 40 sec] (= 500) or Company B $2400 \div "9.988"$ (= 240.28) OR eg in gallons Company A "528.63" ÷ ("1.76" ÷ [1 min 40 sec]) (= 500) or Company B "528.63" ÷ 2.2 (= 240.28)	
		Ρ1	for complete processes to find the times for both company A and company B in minutes. Company A eg in litres $2400 \div ``4.8"$ (= 500) or $``300" \times [1 \min 40 \text{ sec}]$ (= 500) or in gallons "528.63" \div ("1.76" \div [1 min 40 sec]) (= 500) AND Company B eg in litres $2400 \div ``9.988"$ (= 240.28) or in gallons "528.63" \div 2.2 (= 240.28)	
		A1	for an answer in the range 259 to 260	If the answer is given within the range but then rounded incorrectly award full marks.
323 (a)	Graph sketched	C1	Sketch	Accept freehand provided intention is clear
(b)	Graph sketched	C1	Sketch	

Question	Answer	Mark	Mark scheme	Additional guidance
324	8:12:9:1	P1	for $2 + 3 (= 5)$ and $9 + 1 (= 10)$	May be in algebraic form, eg $2a + 3a$ (= 5a)
			OR	and $9a + 1a (= 10a)$
			for assigning a total number of sweets for $F + G$ and $O + J$	May be in algebraic form, $F = C = 5\pi$, $C = 1 = 25\pi$
			eg F + G = 100, O + J = 50	eg F + G - 3a, O + J - 2.5a
		P1	for finding correct multiplier for relationship between totals for $F + G$ and $O + J$ eg $\times 4$ to get from 5, 10 to 20, 10	
			OR	
			for working out the number of sweets from their totals for F, G eg 40, 60 or for O, J, eg 45, 5	
		P1	for 2×4 (= 8) and 3×4 (= 12)	
			OR	
			for ratio in unsimplified form, eg 40 : 60 : 45 : 5	
		A1	cao	
325	0.7 to 1.1	M1	for tangent to the curve drawn at $t = 12$	
		M1	for method to find the gradient of their tangent, eg $28 \div 30$	Working may be seen on the diagram
		A1	for answer in the range 0.7 to 1.1 dependent upon tangent drawn	Ignore negative signs

Question	Answer	Mark	Mark scheme	Additional guidance
326	$x = \frac{1}{2}z^6$	M1	for setting up an equation eg $x = ky^2$ oe or $y = cz^3$ oe	Accept use of proportionality sign, eg $x \propto y^2$ or $y \propto z^3$ or $x \propto ky^2$ or $y \propto cz^3$
		M1	for eliminating y eg $x = k(cz^3)^2$ oe OR substitutes values in both equations, eg $32 = ky^2$ and $y = c2^3$	Accept use of proportionality sign, eg $32 \propto ky^2$ and $y \propto c2^3$
		M1	for substituting in 32 and 2 to find the constant, eg $32 = m2^6$ OR combines equations, eg $32 = k c^2 2^6$	
		A1	oe	
327	0.95	P1	for initial use of the formula eg $3610 = kP_n$ or $P_{n+1} = 4000k$ or for $P_{n+2} = k^2 P_n$ or for $3610 = k^2 \times 4000$	Accept <i>n</i> or any integer replacement for <i>n</i>
		P1	for a complete method to find k eg $\sqrt{\frac{3610}{4000}}$ or ± 0.95	This may be seen in steps
		A1	oe	

Questio	on	Answer	Mark	Mark scheme	Additional guidance
328		2 hours 45 minutes	P1	for $30 \div 24$ (= 1.25) or $12 \div 8$ (= 1.5)	May be written in hours and/or minutes
			PI	eg " 1.25 " + " 1.5 " (= 2.75) or 165 (minutes)	or 3 n 15 min or 2 n 75 min
			A1	cao	
329	(a)	Yes (supported)	P1	for start of process, eg $5 \times 9 (= 45)$ or $10 \times 14 (= 140)$ or $5 \times 2 (= 10 (kg))$ or $3 \div 2 (= 1.5 (boxes))$	Accept values rounded or truncated to 1dp in both (a) and (b). Ignore units
			P1	for process using ratio of areas, eg " 140 " ÷ " 45 " (= 3.1) or for using ratio of amount of seed eg " 10 " ÷ 3 (= 3.3) or for finding coverage for 1 kg of grass seed, eg " 45 " ÷ 3 (= 15 (m ²))	
			P1	for process to find amount of seed needed, eg "140" \div "45" \times 3 (= 9.3 kg)	Accept 9.4
				or "140" \div "45" \times "1.5" (= 4.6(boxes)) oe or "15" \times 2 (= 30 (m ² per box)) and "140" \div "30" (= 4.6(boxes)) or for process to find area that can be seeded, eg "10" \div 3 \times "45" (= 150 (m ²)) or "140" \div "10" (= 14 (m ²)) oe	Accept 4.7
			C1	for "Yes" supported by correct figures eg 4.6(and 5), or 9.3and 10 or 150 and 140 (or 140 to 148.5) or 15 and 14	
	(b)	Yes, (does not have enough) (supported)	C1	for reasoning supported with correct figures, eg does not have enough seed and compares 9 (kg) with 9.3(kg) or 4.5 (boxes) with 4.6 (boxes) or 135 (m ²) with 140 (m ²) ft from (a)	Values used in (a) do not need repeating in (b) as long as intention is clear

Question	Answer	Mark	Mark scheme	Additional guidance
32: (a)	3:4	P1	for start of process, eg isolate terms in c, eg $4c = 3d$ or divide all terms by d, eg $\frac{5c}{d} + 1 = \frac{c}{d} + 4$	
		A1	for 3 : 4	Accept any equivalent ratio or $c = 3$, $d = 4$
(b)	5:2	Ρ1	for start of process: to take all terms to one side eg $6x^2 - 7xy - 20y^2 (= 0)$ or divide all terms by y^2 , eg $\frac{6x^2}{y^2} = \frac{7xy}{y^2} + \frac{20y^2}{y^2}$ or substitute a value of $x (x > 0)$ or a value of $y (y > 0)$ into the equation, eg $x = 5$, $150 = 35y + 20y^2$	
		P1	for second step in process, eg $(2x - 5y)(3x + 4y) (= 0)$ or $6p^2 - 7p - 20 (= 0)$ (where $p = \frac{x}{y}$) or $20y^2 + 35y - 150 (= 0)$	
		A1	5:2	Accept $x = 5$, $y = 2$ or equivalent ratios, eg, $1 : \frac{2}{5}$

Question	Answer	Mark	Mark scheme	Additional guidance
32;	37 000	B1	cao	
332	50	B1	for finding the time difference, eg, 1hr 18 mins or 78 mins oe	Allow 1.18 for this mark 118 scores B0
		P1	for correct process to convert minutes to hours, eg $18 \div 60 \ (=0.3)$ or $78 \div 60 \ (=1.3)$ or for a correct process to convert speed in miles per minute to mph eg "0.833" × 60	For a conversion of time or speed
		P1	for using speed = distance \div time eg, $65 \div$ [time] or $65 \div 78$ (=0.833)	[time] is what the candidate clearly indicates as time difference
		A1	cao	
			SCB2 for 83(.333) seen as the answer	
333	739	P1	process to find the volume of C, eg $\pi \times 3^2 \times 25$ (= 706.8583471 or 225 π)	For use of 3.14 Volume of C is 706.5
		P1	process to find the volume of A or the volume of B, eg "706.8" × $\frac{2}{2+13}$ (= 94.24777961 or 30 π) or "706.8" × $\frac{13}{2+13}$ (= 612.6105675 or 195 π) or process to work with density and ratio, eg (2 × 1.21 + 13 × 1.02) (= 15.68)	Volume of A is 94.2 Volume of B is 612.3
		P1	process to find the mass of C, eg " 30π " × 1.21 (= 114.0398133) + " 195π " × 1.02 (= 624.8627788) or " 225π " × " 15.68 " ÷ (2+13)	Mass of A is 113.982 Mass of B is 624.546
		A1	for an answer in the range 738.5 to 739	Do not award accuracy mark if the figure is from obvious incorrect working

Question	Answer	Mark	Mark scheme	Additional guidance
334	$\frac{13}{20}$	P1	for finding the fraction who chose either soup $(\frac{2}{5} \text{ oe})$ or chose prawns $(\frac{3}{5} \text{ oe})$ or for process to share any number in the ratio 2 : 3 eg 100 ÷ (2 + 3) × 2 (=40)	Starting number 100 Soup : Prawn 40:60
		Р1	for a process that could lead to the proportion who chose lasagne or curry for either starter, eg sharing 40% (soup) in the ratio 5 : 3 or sharing 60% (prawns) in the ratio 1 : 5 or $\frac{2}{5} \times \frac{5}{8}$ or $\frac{2}{5} \times \frac{3}{8}$ or $\frac{3}{5} \times \frac{1}{6}$ or $\frac{3}{5} \times \frac{5}{6}$ or for continuing the process with their starting number to find the number who chose lasagne or curry for either starter	L:C L:C 25:15 10:50
		P1	for a complete process to find the proportion who chose curry for both starters, $eg(\frac{2}{5} \times \frac{3}{8}) + (\frac{3}{5} \times \frac{5}{6})$ or to find the number who chose curry for both starter for their starting number	$15 + 50 = 65 \text{ and } \frac{15 + 50}{100}$
		A1	$\frac{13}{20}$ or equivalent fraction	

Question	Answer	Mark	Mark scheme	Additional guidance
335	-7.5	M1	for stating a correct relationship, eg $y = \frac{k}{x^2}$ or $8 = \frac{k}{2.5^2}$	Accept $y \propto \frac{k}{x^2}$ where k may be 1
		A1	for $k = 50$, could be seen in an equation	
		A1	-7.5 oe	
336	3.4	M1	for drawing a suitable tangent at $t = 6$	
		M1	for a full method to find the gradient of the tangent at t=6, eg $20 \div 5.8$	Use of change in <i>y</i> over change in <i>x</i>
		A1	answer in the range 3.05 to 3.7	Answers of $\frac{10}{6}$ oe scores no marks

Question	Answer	Mark	Mark scheme	Additional guidance
337	12272.70 12272.71 or 12272.72	M1	for evidence of using a correct first step eg 200000 × 0.015 (= 3000) or 200000 × 1.015 (= 203000)	
		M1	for evidence of a compound interest method eg 203000 × 0.015 (= 3045) or 203000 × 1.015 (= 206045) or 206045 × 0.015 (= 3090.675) or 206045 × 1.015 (= 209135.675) or 209135.675 × 0.015 (= 3137.035) or 209135.675 × 1.015 (212272.710) or 200000 × 1.015 ^t , $t \ge 2$ for 12272 7(0) or 12272 71 or 12272 72	values may be rounded or truncated to 2 dp
		AI	SC B2 for 212272.7(0) or 212272.71 or 212272.72	
338	10	P1 P1	for a process to start to solve the problem eg $6 \times 9 (= 54)$ machine days needed or 12 (machine days used in first 3 days) or 42 (machine days needed after first 3 days) or 6 (machine days not used in first 3 days) or 3 + 4 + 5 equivalent to 2 days with 6 machines or has used 48 machine days in first 9 days for "42" ÷ 6 (= 7) (more days needed) or 3 days - 2 (equivalent) days (= 1) extra day needed to make up for the days not used	eg $3 + 4 + 5$ (= 12) eg $6 \times 9 - 12$ (= 42) eg $3 + 2 + 1 = 6$ eg $12 \div 6 = 2$
		A1	cao	

Question	Answer	Mark	Mark scheme	Additional guidance
339	1.8	P1	process to find the amount of interest before tax eg 28.80 ÷ 20 × 100 (= 144) OR for equation which would lead to (x =) 0.018, 1.8 or 1.018 eg 0.2 × 8000 × x = 28.8 or $\frac{8000(100+x)}{100}$ = 8144	
		P1	process to find the interest rate eg $\frac{"144"}{8000}$ (= 0.018) or $\frac{"8144"}{8000}$ (= 1.018)	These numerical expressions may be seen multiplied by 100, eg $\frac{144}{8000} \times 100$
		AI	cao	
33:	1.01	P1 P1	for $1.09 \times 60 \ (= 65.4 \text{ or } \frac{327}{5})$ or $0.97 \times 128 \ (= 124.16 \text{ or } \frac{3104}{25})$ for $1.09 \times 60 \ (= 65.4 \text{ or } \frac{327}{5})$ and $0.97 \times 128 \ (= 124.16 \text{ or } \frac{3104}{25})$ or "65.4" + "124.16" $\ (= 189.56 \text{ or } \frac{4739}{25})$	Note that the volumes may be converted to ml, eg $1.09 \times 60000 (= 65400)$
		P1	for a complete process to find the density of antifreeze eg ("65.4" + "124.16") ÷ 188 or 189.56 ÷ 188 or $\frac{4739}{25}$ ÷188	Candidates working in ml must use 188,000
		A1	for answer in the range 1.00 to 1.01	If an answer within the range is seen in working but then rounded incorrectly award full marks. Accept 1 for 1.00 Note that the correct value is 1.008

Question	Answer	Mark	Mark scheme	Additional guidance
33;	260 to 260.5	M1 M1 A1	for $883 - 245$ (=638) or $883 \div 245$ (=3.60) or $883 \div 245 \times 100$ (=360(.408)) oe for a complete method to find the percentage increase eg "638" ÷ 245 × 100 (=260(.408)) or $883 \div 245 \times 100 - 100$ (=260(.408)) oe Accept answers in the range 260 to 260.5	
342	5	M1 A1	"2" ÷ 40 × 100 cao	"2" comes from their reading of the height of the 20 to 24 column
343 (a)	2 mins 48 secs	P1 P1	for an appropriate first step eg $700 \div 475 (=1.47)$ or $475 \div [\text{time}] (= 4.16 \text{ m/s})$ or $[\text{time}] \div 475 (= 0.24 \text{ s/m})$ for a complete method to find the required time eg $700 \div 475 \times [\text{time}] (=168)$ or $700 \div (475 \div [\text{time}]) (=168)$ or $[\text{time}] \div 475 \times 700 (=168)$	[time] what candidate indicates as time of first race Units are not needed and can be ignored if given Allow calculation in stages and appropriate rounding.
(b)	Statement	C1	eg takes less time Acceptable examples Quicker time Faster time Reduces my answer to part (a) Not acceptable examples It is an underestimate The amount of time could/may increase Laura goes faster	

Question	Answer	Mark	Mark scheme	Additional guidance
344	8	P1	process to start the problem	Maybe seen on diagram
			eg xy = 45 and $xz = 15$ and $yz = 27$	
			or $3 - 5 = 3 - 27$ and $3 - 5 = -27$ and $3 - 5 = -15$	
			or 5, 5 and 5 stated	
		P1	for $3 \times 5 \times 9$ (=135) or 2 of "9" ÷ 2.5 (=3.6) or "5" ÷ 2.5 (=2) or "3" ÷ 2.5 (=1.2)	
		P1	for 2.5 ³ (=15.625) or all of "9" ÷ 2.5 (=3.6) and "5" ÷ 2.5 (=2) and "3" ÷ 2.5 (=1.2)	
		P1	for a complete process to find the number of cubes possible eg [volume] \div "15.625" (=8.64) or "3.6" \times "2" \times "1.2" (=8.64)	[Volume] must come from multiplying together what they clearly indicate as the 3 dimensions of the cuboid. The three dimensions cannot be 45, 27 and 15
		A1	cao	
345	408	M1	for 1.01 × 400 (= 404) or 408.04 or 412.08	412(.08) on the answer line M1A0
		Δ1	C20	1.01 × 400 may be seen as part of a calculation
346	Evidence of solution	M1	for constructing an equation eg y $\alpha \frac{1}{x^3}$ or eg $y = \frac{k}{x^3}$ oe	
		M1	for substituting in the values <i>a</i> and 44 into $y = \frac{k}{x^3}$	
		C1	for a complete method to use the equation, the value of k and $x = 2a$ to show $y = 5.5$ eg $(2a)^3y = 44a^3$ and $y = 44a^3 \div 8a^3 = 5.5$	Must show all steps clearly

Question	Answer	Mark	Mark scheme	Additional guidance
347 (a)	4.52×10^{3}	M1	for 2.04× 10^7 oe eg 2.04× $10^{-5} \div 10^{-12}$ or 20.4× 10^6 or 204(08163.27) or for correct value of <i>T</i> , 4517.(53), not written in standard form, eg 4520	May be given correct to 3 sig figs or more
		A1	for answer in the range 4.51×10^3 to 4.52×10^3 (SC B1 for 6.32×10^{-1})	
(b)	Explanation	M1	for method to find the scale factor or decreased value in <i>T</i> , eg $\sqrt{\frac{1.1}{1.05^3}}$ (= 0.97) oe or $\sqrt{\frac{5.6 \times 10^{-5} \times 1.1}{(1.4 \times 10^{-4} \times 1.05)^3}}$ (= 4.40× 10 ³) oe	Award mark for a correct method to calculate the scale factor or the percentage increases in w and d^3 or the decreased value of T
		C1	(dep M1) for explanation eg value of scale factor less than 1, so a decrease in T OR compares 4.40× 10 ³ with their value of T from (a) provided answer to (a) is greater	This mark may only be awarded if supported by numerical evidence

Question		Answer	Mark	Mark scheme	Additional guidance
348		150 000	P1	for process to find cost in 2007, eg 162 000 ÷ 0.9 (= 180 000) oe	
			P1	for process to find cost in 2003, eg [cost in 2007] ÷ 1.2 (= 150 000) oe	Award 2 marks for 162 000 ÷ 1.08 oe
			A1	cao	
349	(a)	1.5	M1	for method to find the gradient of the line, $eg \frac{12}{8}$	Must see use of scales.
			A1	for 1.5 oe	
	(b)	Explanation	C1	Explanation relating to rate of change of volume with time, eg rate at which the container fills or change in number of litres per second or number of litres added per second	Ignore any quantities given. Award the mark for an explanation involving rate.
	(c)	Explanation	C1	Explanation relating to volume (amount) of liquid in the container at the start eg number of litres in the container when $t = 0$, amount of liquid in the container to start with	
34:		6.50	M1	for method to find ratio or scale factor of lengths or volumes eg $\sqrt{3}$: 2 or 1 : 1.15(47) or 0.86(60) : 1 or $\sqrt{27}$: 8 oe	Scale factors may just be seen as 1.15, 0.86etc
			M1	for complete method to find ratio of volumes and use to find required volume eg $10 \div ("1.15")^3$ or $10 \times ("0.86")^3$	
			A1	for answer in the range 6.49 to 6.53	If an answer is given within the range then incorrectly rounded to 3 sig figs, award full marks. Accept 6.5

Question	Working	Answer	Mark	Notes
34;		New York	P1	for changing between £ and \$, eg $1.089 \times 1.46 (= 1.58(9.))$ or $2.83 \div 1.46 (= 1.93(8.))$ or
		(supported)		between litres and gallons, eg $1.089 \times 3.785 (= 4.12(1.))$ or $2.83 \div 3.785 (= 0.74(7.))$
			P1	for a complete process to give values that can be used for comparison,
				eg "1.938" ÷ 3.785 (= 0.51(2.)) or "1.589"× 3.785 (= 6.01(7.))
				or $1.089 \times 3.785 = (4.12(1.))$ and $2.83 \div 1.46 (= 1.93(8.))$
			C1	for New York and correct comparative values
			01	for real fork and correct comparative values
352		648	M2	a complete method, eg $12.5 \times 1000 \div 19.3$
			[M1	for using volume = mass/density, eg 12500 ÷ 19.3 (condone inconsistent units or incorrect
				conversions) may be implied by digits 647 or 648]
			A1	for answer in range 647 to 648
353		15	P1	strategy to start the problem, eg 8:20 and 20:5
			P1	5 $100 ar 24$ (0.15)
				process to solve the problem, eg $\frac{1}{33} \times 100$ of 24.60.13
			A1	cao
354 (a)		5	M1	evaluates $(0.85)^n$ or $12500 \times (0.85)^n$ for at least one value of <i>n</i>
			Δ1	C30
			711	
(b)		2.4	P1	for a process to find the amount of interest before tax, eg $79.20 \div 0.6$ (= 132)
			P1	for a process to find value of <i>R</i> , eg " 132 "÷ 5500×100
			A1	cao
355		Shown	M1	for $\sqrt[3]{\frac{8}{27}} (=\frac{2}{3})$ or $\sqrt[3]{\frac{27}{8}} (=\frac{3}{2})$ or 2 : 3 or 3 : 2
				$\left(\frac{1}{\sqrt{2}} \right)^2 \Lambda \left(\frac{1}{\sqrt{27}} \right)^2 Q$
			M1	for $\left(\sqrt[3]{\frac{6}{27}}\right) \left(=\frac{4}{9}\right)$ or $\left(\sqrt[3]{\frac{27}{8}}\right) \left(=\frac{5}{4}\right)$ or $4:9$ or $9:4$
			A1	132 from correct arithmetic
L		1		

Question	Working	Answer	Mark	Notes
356		68	P1	for a process to find the number of vanilla cakes, eg $420 \times 2 \div 7$ oe (= 120)
			P1	for a process to find the number of banana cakes, eg 420×0.35 oe (= 147)
			P1	(dep P1) for a full process to find the number of lemon/chocolate cakes
				eg 420 – (vanilla cakes) – (banana cakes) (= 153)
			P1	(dep on previous P1) for a process to find the number of lemon cakes
			. 1	$eg (153) \div 9 \times 4 \text{ oe} (= 68)$
			Al	
			D1	OR for writing two proportions in the same format
			PI D1	for combining the proportions of vanille and banana cakes
			I I	$e_{\alpha} 2/7 + 7/20 (= 89/140)$
			P1	(den P1) for a full process to find the proportion or number of lemon/chocolate cakes
			11	$eg 1 - \frac{89}{140}$ (= 51/140)
			P1	(dep on previous P1) for a process to find the number of lemon cakes
				$eg "51/140" \times 420 \div 9 \times 4 (= 68)$
			A1	cao
357		1.01	P1	fruit syrup $15 \times 1.4 (= 21)$ or water $280 \times 0.99 (= 277.2)$ or
				apple juice 25×1.05 (= 26.25)
			P1	(dep P1) for complete process to find the total mass
				e.g. "277.2" + "26.25" + "21" (= 324.45) or a weighted density
				eg $15 \times 1.4 \div 320$ (= 0.065625) or $280 \times 0.99 \div 320$ (= 0.86625) or
			DI	$25 \times 1.05 \div 320 (= 0.08203125)$
			PI	(dep P2) for complete process to find the density eg " 324.45 " \div 320 (=1.01) or
			A 1	0.065625 + 0.86625 + 0.08203125 (= 1.0139)
			AI	1.01 to 1.014
358		6 (%)	P1	for v^5 of $v^5 = 0.00$
550		0 (70)	P1	for a process to find 1+r, e.g. $5/(8029.35 \div 6000)$ or 1.06 or 1.0509
			Al	101 a process to find 1^+x^- e.g. $\sqrt{(0029.53 \div 0000)}$ of 1.00 of 1.0399
359		3:4:11	P1	Makes a start e.g. by using multipliers e.g. $1 + 5 = 6$ and $7 + 11 = 18$ and $6 \times 3 = 18$ or
				$AB:BD = 3:15$ or $x=3y$ (appropriate x and y shown) or $\frac{1}{6} = \frac{3}{18}$
			P1	Complete process to find ratios e.g. $(7 + 11) \div (1 + 5) = 3$ and
				$1 \times "3" : 7 - ("3" \times 1) : 11$
			A1	oe

Question	Working	Answer	Mark	Notes
35: (a)		X1=-2.64	M1	for substitution of -2.5 into the equation (to get $x_1 = -2.64$)
		X2= -2.57392	M1	for substitution of " x_1 = -2.64" and " x_2 = -2.57392" to give x_2 and x_3
		X3=-2.603767255	A1	for $x_1 = -2.64$ oe, $x_2 = -2.57(392)$ and $x_3 = -2.6(03767255)$
				Condone $x_3 = -2.61$ if $x_2 = -2.57$ is used in the substitution
(b)		Statements	C1 C1	Connection between equation and iterative form in (a) e.g. rearrangement Statement e.g. iteration is an estimation of a solution

Question Working Answer	Notes
35;(a) 550×3.5601 1958M1 550×3.5601	
Al	
(b) $210 \div 7 \times 2 = 30 \times 2$ Shown M1 For correct meth	od to convert cost in UK to lira or vice
Or Versa, using Asit	f's approximation
$60 \div 2 = 30$ and $30 \times 7 = 210$ C1 Shown with corr	rect calculations
(a) Correct evaluation C1 For an evaluation	n a g. It is a sansible start to the method
because he can d	to the calculations without a calculator and
3.5 lira to the £ i	s a good approximation
362Have a waterP1Process to find n	umber of litres eg. 180 ÷ 1000
meter P1 Full process to fi	ind cost per day
(from working with P1 Full process to fi	ind total cost of water used per year (accept
Confect figures) use of anemative	h consistent units for total cost of water
A1 Correct decision	from correct figures (88 13154 or correct
figure for their ti	ime period)
363 15, 20, 24 P1 Process to start	to find common multiple eg. prime factor
decomposition o	of 6 and 8 or list of at least 3 multiples of all
P1 process to find n	umber of packets for at least colour or 120
identified	tambér el puèxets for at least colour el 120
A1	
364 (a) 1000, 1500, 2250, Correct Argument M1 Method to find 1	st 3 terms
C1 Convincing rease	on e.g. common ratio is 1.5
(b) $1000 \times 1.5^9 = k \times 1000 \times 1.5^5$ 5.0625 P1 Process to find the function of the function	he value of <i>k</i>
1.5 ⁹	
$k = \frac{1}{1.5^5}$ A1	
(c) Correct sketches C1 Draws both expo	onential curves intersecting on y axis and
clearly labelled	

Que	stion	Working	Answer	Notes
365	(a)	160 tiles 18 packs	18	M1 a full method to find the area of the trapezium M1 a full method to calculate both areas in consistent units M1 for the area of the trapezium ÷ area of a tile (with consistent units)
				M1 (dep on previous M) for complete method to find the number of packs required A1
	(b)	176 tiles 20 packs	Supported statement	P1 finding the number of packs for 10% more tiles or 10% of their number of packs, ft from (a) C1 Statement, eg. increase in packs is 2 more which is more than 10%
366	(a)		2500	P1 for use of 1.03 P1 for a full method equivalent to ÷1.03 ² A1 2500
	(b)		Saver account with support	P1 process to find a comparable total interest figure or to compare investment for a given amount A1 for conclusion with supporting statement or figures seen eg 21.6(65)>21
367		$\sqrt{(253.5 \div 6)} \\ 6.5^3 \times 2 = 549.25 \\ 549.25 \div 10 = 54.925$	55	P1 a process to find the scale factor of 6.5 P1 for a full process to find the amount of clay required C1 for stating 55 bags

Question	Working	Answer		Notes
368		171	P1	for process to find one share
			P1	for process to find total
			A1	cao
369'""(a)		1.95	M1	method to find one temperature eg $4500 \div 1200$
20) (u)			M1	for complete method
			A1	cao
			111	
(b)		D	B1	cao
36: ' "" (a)		36.4	P1	start process eg method to find area of trapezium
			P1	complete process to find volume of tank
			P1	process to find time eg volume \times 1000 \div 300
			P1	process to find 85% of volume or of time
			A1	for 36.4 or 36 mins 24 secs
(b)			C1	explanation eg if the average rate was slower it
			01	would take more time if the average rate was
				faster it would take less time
36; " (a)		No with reason	C1	partial explanation, eg 0.96×0.975
			C1	No with full explanation, eg $0.96 \times 0.975 =$
				0.936 so only a 6.4% reduction
(b)		3.15	P1	complete process to find value after 2 years eg
				$(145000 - 5800) \times 2.5/100$ oe or 145000×0.96
				× 0.975 (= 135720)
			P1	$(140000 - `135720') \div `135720' \times 100$ oe
			A1	for 3.15 – 3.154

Question	Working	Answer	Notes
372		1:2.53	P1 for substituting values to find surface gravity of aither Earth $(= 0.805)$ or lumitor $(= 24.706)$
			either Earth (-9.805) of Jupiter (-24.790)
			P1 for complete process
			A1 for 1 : 2.528 to 2.53
373		12.2	P1 begins process eg 150÷19.3 (= 7.77) or 150÷8.9
			(= 16.85)
			P1 complete process to find total volume
			P1 complete process to find the density of the alloy
			A1 for answer in range 12.1 to 12.2

Question	Working	Answer	Mark	Notes
*372		Yes	5	M1 for method to calculate profit on one laptop
		(supported)		e.g. 400×0.3 oe (= 120) or 400×0.15 oe (= 60)
				M1 for method to calculate selling price of one of the two deals
				e.g. 400×1.3 oe (= 520) or 400×1.15 oe (= 460)
				M1 for method to calculate the total selling price of one laptop
				e.g. $40 \times 400 \times 1.3$ oe (= 20 800)
				or $10 \times 400 \times 1.15$ oe (= 4600)
				M1 for total income e.g. $(20\ 800^{\circ} + (4600^{\circ}))$
				C1 for Yes and (£)25 400 or Yes with £400 more
				OR
				M1 for a method for the profit on one laptop
				e.g. 400×0.3 oe (=120) or 400×0.15 oe (= 60)
				M1 for a method for the total profit for one of the two deals
				e.g. $40 \times (120)^{\circ} (= 4800)$ or $10 \times (60)^{\circ} (= 600)$
				M1 for a method for total profit "4800" + "600" (= 5400)
				M1 for a method for target profit e.g. $25\ 000 - 400 \times 50 \ (= 5000)$
				C1 for Yes with $(\pounds)5400$ and $(\pounds)5000$ or Yes with $\pounds400$ more
				OR
				M1 for a method for the profit on one laptop
				e.g. 400×0.3 oe (= 120) or 400×0.15 oe (= 60)
				M1 for a method for the total profit for one of the two deals
				e.g. $40 \times (120)^{\circ}$ oe (= 4800) or $10 \times (60)^{\circ}$ (= 600)
				M1 for $50 \times 400 + "4800"$ or $50 \times 400 + "600"$
				M1 for $50 \times 400 + "4800" + "600" (= 25400)$
				C1 for Yes and (f) 25 400 or Yes with £400 more
375 (a)		40	3	M1 for method to find unit weight eg $60 \div 3 (= 20)$
		100		M1 for complete method to find weight of one of the other ingredients
				eg "20" \times 2 (= 40) or "20" \times 5 (= 100)
				A1 cao
(h)		1 44	3	M1 for a complete method to work out the weight of nuts needed
		1.11	5	eg $300 \div (3 + 2 + 5) \times 3$ (= 90) or $300 \div (60 + "40" + "100") \times 60$ (= 90)
				M1 for a complete method to work out the cost $eg (800 \div 500) \times "90" (= 144)$
				A1 cao

Que	stion	Working	Answer	Mark	Notes
376	(a)		4	2	M1 for $20 \div 5$ (=4) Allow build up method to 4 lots of 1:5 A1 cao
	(b)		6	2	M1 for a full method to find the number of red counters needed eg $20 \div 2 - ``4"$ A1 ft from (a)
377	(a)		5	1	B1 cao
	(b)		Lines added	2	B1 for a horizontal line from (5, 8) to (6.30, 8) B1 for a single straight line with the correct gradient and length, down to the time axis eg (6.30, 8) to (8.30, 0)
*378			Bathroom Mart and correct figures	4	M1 for $\frac{1}{3} \times 1500 (= 500)$ or $\frac{2}{3} \times 1500 (= 1000)$ M2 for a correct method to reduce 1500 by 60% and then by a further 15% eg 1500 × "0.4" × "0.85" (= 510) oe (M1 for method to find 60% or 40% of 1500 e.g. $\frac{60}{100} \times 1500 (= 900)$ C1 for 510 and 500 with a correct conclusion.
379	(a)		1.21×10^4	2	M1 for 12.1 × 1000 (= 12100) oe A1 cao
	(b)		4.5	3	M1 for $4.503 \times 10^9 \div 10^6$ (= 4503) oe or for $4.503 \times 10^9 \div 10^3$ (= 4503000) oe M1 for $4.503 \times 10^9 \div 10^6 \div 10^3$ (=4.503 with no other digits) A1 for cao

_

Question	Working	Answer	Mark	Notes
37:		1.2	3	M1 for $I \propto \frac{1}{d^2}$ or $I = \frac{k}{d^2}$ or $k = Id^2$ or $30 = \frac{k}{2^2}$ or $k = 120$
				M1 (dep) for $I = \frac{"120"}{10^2}$
				A1 cao
37; "		32:45	5	M1 for a correct expression for surface area of the cylinder $(=2\times\pi\times3^2+6\pi h)$ or surface area of the sphere $(=4\times\pi\times6^2)$ M1 (dep) for equating 'surface area of cylinder' and '2 × surface area of sphere', $2\times\pi\times3^2+6\pi h=2\times4\times\pi\times6^2$ M1 (dep) for a method to isolate h M1 for $\pi\times3^2\times'45$ ' oe and $\frac{4}{3}\times\pi\times6^3$ oe A1 cao

Question	Working	Answer	Mark	Notes
382		36	3	M1 for correct method to work out 20% of 30% (=6%) M1 for 30% + "6%" A1cao
				OR M1 for complete and correct method to find amount of money spent on rent eg 800×0.3 (=240) oe M1 for correct method to find rent next month (288) eg "240" × 1.2 (=288) oe or $\frac{"288"}{800}$ ×100 oe or 30×1.2 A1 cao
383		100, 25, 4	4	M1 for $y = \frac{k}{x^2}$ or $1 = \frac{k}{10^2}$ M1 for complete method to find k or $y = \frac{100}{x^2}$ or OR (dep on M1) for $k = 100$ A1 for one entry correct A1 for other two entries correct

Question	Working	Answer	Mark	Notes
384		69	4	M1 for finding 15% of £720 (=108) M1 (dep) for finding total of £720 plus interest (or 115% etc) (=828) M1 (dep on previous M1) dividing by 12 A1 cao OR M1 finding 720 \div 12 (=60) M1 (dep) finding 15% of "60" (=9) M1 (dep on previous M1) for adding, e.g. 60 + 9 A1 cao
385		20	3	M1 for $330\div120 (=2.75)$ or $200\div60 (=3 1/3)$ or $450\div180 (=2.5)$ M1 for $450\div180 (=2.5)$ AND $8\times$ "2.5" A1 cao OR M1 for $120\div8 (=15)$ or $60\div8 (=7.5)$ or $180\div8 (=22.5)$ M1 for $330\div(120\div8) [=22]$ or $200\div(60\div8) [=26.6]$ or $450\div(180\div8)$ A1 cao OR M1 for multiples of $120:60:180$ M1 for multiplication linked to 450 and $8+8+4$ A1 cao

Ques	stion	Working	Answer	Mark	Notes
*384		1195	Kirsty's Plants with	5	M1 for complete method with relative place value correct.
		4780 +	correct calculations		Condone 1 multiplication error, addition not necessary.
		5975			M1 (dep) for addition of all the appropriate elements of the
		2 2 0			calculation or digits 5975
		2 3 3 3 3 3 3 3 3 3 3			M1 for a complete method to find 120% of ± 52.50
		4 6 1 8 2			A1 for 59.75 and $63(.00)$
		5 1 0 1 5 4 5 5			C1 (dep on M2) for correct conclusion for their figures
		9 7 5			OR
		200 30 9			M1 for the start of a method to divide £52.50 by 25, eg. 2 rem 2
		200 600 180			M1 for a complete method to divide £52.50 by 25, condone one
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			arithmetic error, or digits 21
		4000 + 1000 + 600 + 150 +			M1 for a complete method to find 120% of '£2.10'
		180 + 45 = 5975			A1 for 2.52
					C1 (dep on M2) for correct conclusion for their figures
					OR
					M1 for a complete method to find 120% of £52.50
					M1 for the start of a method to divide '63' by 25, eg. 2 rem 13
					M1 for a complete method to divide '63' by 25, condone one
					arithmetic error, or digits 252
					A1 for 2.52
					C1 (dep on M2) for correct conclusion for their figures
387			54	3	M1 for any correct use of distance, speed, time formulae, eg. $10 \div 40$
					(=0.25) or 15 min
					M1 (dep) for a complete method to find speed from G to H,
					eg.18 \div (35 $-$ "15") × 60 oe.
					Al cao

Question	Working	Answer	Mark	Notes
388		900	4	M1 for 0.2 × 7000 (=1400) or 1.2 × 7000 (=8400) oe M1 for 7000 + "1400" - 3000 (=5400) oe M1 for "5400" ÷ 6 A1 cao
389		25	4	M1 for $600 \div 4$ (=150) M1 for $4500 \div "150"$ (=30) M1 for $750 \div "30"$ A1 for 25 with supporting working OR M1 for $4500 \div 750$ (=6) or $750 \div 4500$ (= $\frac{1}{6}$) M1 for $600 \div 4$ (=150) or $600 \div "6"$ (=100) or $600 \times "\frac{1}{6}"$ (=100) M1 for "150" ÷ "6" or "100" ÷ 4 or $150 \times "\frac{1}{6}"$ A1 for 25 with supporting working OR M1 for $4500 \div 750$ (=6) or $750 \div 4500$ (= $\frac{1}{6}$) M1 for $\frac{1}{4} \times \frac{1}{"6"} \left(= \frac{1}{24} \right)$ M1 for " $\frac{1}{24}$ " × 600 A1 for 25 with supporting working

Question	Working	Answer	Mark	Notes
38:		25.60	4	M1 for a correct method to find $\frac{1}{3}$ of 24 (=8) or $\frac{2}{3}$ of 24 (=16) M1 for a correct method to find 60% (= 7.2) or 40% (= 4.8) of 12 or 60% (=14.4) or 40% (= 9.6) of 24 M1 (dep on at least M1) for a method to find the sum of their discounted adult ticket + 2 × their discounted child ticket A1 25.6(0)
38;		Correct region	3	B1 for full line drawn 1.5 cm from edge of patio and parallel to it B1 for full arc of circle radius 3 cm centre the centre of the pond B1 ft for shading region to the right of their vertical line and outside the arc of their circle with correct centre

Question	Working	Answer	Mark	Notes
392		90 450 225 1.5 960	3	M1 for $6 \div 4 (= 1.5)$ or $4 \div 6 (= 0.66)$ or $\div 4 \times 6$ oe or sight of any one of the correct answers A1 for three correct A1 for all correct
393		164	5	M1 200 ÷ (3+2) (= 40) or an equivalent ratio seen M1 (dep) 3 × '40' (= 120) or 2 × '40' (= 80) or 120: 80 or 80:120 M1 a complete method to find 70% of their total number of large letters e.g. $0.7 \times '80'$ (=56) M1 multiplies their three totals by the correct unit price and adds, e.g. $60(p) \times '120' + (\pounds)1 \times '56' + (\pounds)1.50 \times '24'$ A1 164
394	$120 \div 20 = 66^2 = 3636 \times 300 = 10\ 800$	10 800	3	M1 120 \div 20 (= 6) oe, can be implied by $120^2 \div 20^2$ M1 '6' ² \times 300 A1 cao
395		100	4	M1 $y = kx^{2}$ oe or $36 = k \times 3^{2}$ A1 $k = 4$ M1 (dep on M1) ($y =$) '4'×5 ² A1 cao

Que	estion	Working	Answer	Mark	Notes
174			24	4	M1 for 0.15×240 (= 36) oe
					M1 for $\frac{3}{4} \times 240$ (= 180) oe
					M1 (dep on both prev M1) for $240 - "180" - "36"$
					A1 cao
					OR
					M1 for 15(%) + 75(%) (= 90(%))
					$M1 \text{ for } 100(\%) - 90(\%)^{\circ} (= 10(\%))$
					M1 (dep on both prev M1) for " $\frac{1}{100}$ " × 240 oe
					A1 cao
					OD
					OR
					M1 for $0.15 \pm 0.75(=0.9)$ oe
					M1 for " 0.9 " × 240(= 216) oe
					M1 (dep on both prev M1) for 240 [~] "216"
					A1 cao
					OR
					M1 for 0.15 + 0.75(-0.0) oc
					M1 for $1 - "0.9" (= 0.1)$ oe
					M1 (dep on both prev M1) for " 0.1 " × 240 oe
					A1 cao

Que	stion	Working	Answer	Mark	Notes
*175 QWC		$\frac{30}{24} \times 60 = 75$	Debbie + explanation	4	 M1 for reading 24 (mins) and 30 (km) or a pair of other values for Debbie M1 for correct method to calculate speed eg. 30 ÷ 24 oe A1 for 74 – 76 or for 1.2 – 1.3 and 1.1 C1 (dep on M2) for correct conclusion, eg Debbie is fastest from comparison of "74 – 76" with 66 (kph) or "1.2 – 1.3" and 1.1 (km per minute) OR M1 for using an appropriate pair of values for Ian's speed eg 66 and 60, 33 and 30, 11 and 10 M1 for pair of values plotted on graph A1 for correct line drawn C1 (dep on M2) for Debbie is fastest from comparison of gradients. OR M1 for reading 24 (mins) and 30 (km) or a pair other values for Debbie M1 for Ian's time for same distance or Ian's distance for same time. A1 for a pair of comparable values. C1 (dep on M2) for Debbie is fastest from comparison of comparable values.
*398" QWC			Yes with explanation	3	M1 for bearing $\pm 2^{\circ}$ within overlay M1 for use of scale to show arc within overlay or line drawn from C to ship's course with measurement C1(dep M1) for comparison leading to a suitable conclusion from a correct method
399			£500	3	M1 for 70% = 350 or $\frac{350}{70}$ M1 for $\frac{350}{70} \times 100$ oe A1 cao

Que	stion	Working	Answer	Mark	Notes
39:			1 hour 45 mins	6	M1 for method to find volume of pond,
					eg $\frac{1}{2}(1.3+0.5) \times 2 \times 1 \ (= 1.8)$
					M1 for method to find the volume of water emptied
					in 30 minutes, eg $1 \times 2 \times 0.2$ (= 0.4),
					$100 \times 200 \times 20 (= 400000)$
					A1 for correct rate, eg 0.8 m ³ /hr, 0.4 m ³ in 30 minutes
					M1 for correct method to find total time taken to empty the
					pond,
					eg $1.8^{\circ} \div 0.8^{\circ}$
					M1 for method to find extra time,
					eg 2 ms r 5 minutes - 50 minutes
					A1 for 1.75 hours, $1 - hours$, 1 hour 45 mins or 105 mins
					OR
					M1 for method to find volume of water emptied
					in 30 minutes, eg. $1 \times 2 \times 0.2$ (= 0.4),
					$100 \times 200 \times 20$ (= 400000)
					Min for method to work out rate of water loss a_{π} "0.4" × 2
					$\Delta 1$ for correct rate eg 0.8 m ³ /hr
					M1 for correct method to work out remaining volume of water
					$e_{\alpha} = \frac{1}{(1 + 0.3)} \times 2 \times 1 (= 1.4)$
					$\frac{\text{cg. }}{2} \frac{(1.1 + 0.5) \times 2 \times 1}{(-1.4)}$
					M1 for method to work out time, eg $1.4 \div 0.8$
					A1 for 1.75 hours, $1\frac{2}{4}$ hours, 1 hour 45 mins or 105 mins
					NB working could be in 3D or in 2D and in metres or cm throughout

Que	stion	Working	Answer	Mark	Notes
39;			1200 cm^3	4	M1 for $10 \times 2 \times 2$ and 15×2
					M1 for "40" × "30"
					A1 for 1200
					B1 (indep) for cm ³
					OR
					M1 for 10×15 or 2^3 or 8 indicated as scale factor
					M1 for $10 \times 15 \times 2 \times 2 \times 2$
					A1 for 1200
					B1 (indep) for cm ³
					SC B2 for 600 cm ³ (B1 for 600)

Que	stion	Working	Answer	Mark	Notes
3:2	(a)		8	1	B1 for 8 (.00)
	(b)		550	4	M1 for $600 - 200 (= 400)$ M1 for correct method to convert '\$400' to £ M1 (dep on the previous M1) for $800 - $ '\$400' in £s A1 for value in the range $540 - 560$
					OR M1 for correct method to convert \$600 and \$200 to pounds M1 for '375'-'125' M1 (dep on the previous M1) 800 -'250' A1 for a value in the range 540-560
					OR M1 for correct method to convert £800 to dollars M1 for '1280' + 200 – 600 M1 (dep on the previous M1) for attempt to convert '\$880' back to £ A1 for value in the range 540 – 560

Question	Working	Answer	Mark	Notes
3:3		730	5	M1 for $\frac{5}{100} \times 200$ (= 10) oe M1 for $\frac{10}{100} \times 350$ (= 35) oe M1 for $6 \times 10^{\circ}$ or $4 \times 35^{\circ}$ M1 (dep on M1 earned for a correct method for a percentage calculation) for "60" + "140"+ 530 A1 cao Or M1 for 6×200 (= 1200) or 4×350 (= 1400) M1 for $\frac{5}{100} \times 1200^{\circ}$ (= 60) oe M1 for $\frac{10}{100} \times 1400^{\circ}$ (= 140) oe M1 (dep on M1 earned for a correct method for a percentage calculation) for "60" + "140"+ 530 A1 cao

Question	Working	Answer	Mark	Notes
3:4		240	4	M1 for 16×2 (= 32 girls) M1 for $16 + `16 \times 2`$ (= 48) M1 (dep on the previous M1) for $(16 + `32`) \times 5$ or $(16 + `32`) \times (4 + 1)$ A1 cao OR M1 for 1 : 2 = 3 parts M1 for 5 schools × 3 parts (= 15 parts) M1 (dep on the previous M1) for `15` parts × 16 A1 cao SC B2 for 176 given on the answer line
3:5		Required region	4	M1 arc radius 5 cm centre C M1 bisector of angle BAD M1 line 3 cm from DC A1 for correct region identified (see overlay)

Qu	estion	Working	Answer	Mark	Notes
3: 6		180×1.5 40×1.5 110×1.5 30×1.5	Flour = 270 Ginger = 60 Butter = 165 Sugar = 45 Region shaded	3	M1for $\times 24 \div 16$ oe or $24/16$ or 1.5 seen or $180 + 90$ (=270) or 40 $+ 20$ (=60) or $110 + 55$ (=165) or $30 + 15$ (=45) or sight of any oneof the correct answersA2for all 4 correct answers(A1for 2 or 3 correct answers)
					 B1 for circle arc of radius 5em (± 2mm) centre Hightown B1 for overlapping regions of circle arcs shade
3: 8		180÷9×1:180÷9×3:180÷9 ×5 =20:60:100 Not enough cement (but enough sand and enough gravel) OR 1×15:3×15:5×15 =15:45:75 15+45+75=135 (<180) Not enough cement (to make 180kg of concrete)	No + reason	4	M1 for $180 \div (1+3+5)$ (= 20) or 3 multiples of 1: 3: 5 M1 for $1 \times 20^{\circ}$ or $3 \times 20^{\circ}$ or $5 \times 20^{\circ}$ or 20 seen or 60 seen or 100 seen A1 for (Cement =) 20, (Sand =) 60, (Gravel) = 100 C1 ft (provided both Ms awarded) for not enough cement oe OR M1 for $(1 \times 15 \text{ and}) 3 \times 15 \text{ and } 5 \times 15$ or 9×15 or sight of the numbers 15, 45, 75 together. M1 for $(15^{\circ} + 45^{\circ} + 75^{\circ})$ A1 for 135 (<180) C1 ft (provided both Ms awarded) for not enough cement oe
3:9	(a)		640	2	M1 for $80 \times \left(\frac{8}{4}\right)^3$ or $80 \div \left(\frac{4}{8}\right)^3$ A1 cao
	(b)		40	2	M1 for $160 \div \left(\frac{8}{4}\right)^2$ or $160 \times \left(\frac{4}{8}\right)^2$ or ft their scale factor from (a) A1 cao

Qu	estion	Working	Answer	Mark	Notes
3::	(a)		30	2	M1 for $25 \div 10$ or 2.5 seen or $10 \div 25$ or 0.4 seen or 12 + 12 + 6 oe or a complete method eg. $25 \times 12 \div 10$ oe A1 cao
	(b)	1000 ÷ 200 × 12	60	2	M1 for 500÷50 or 1000÷200 or 500÷10 OR correct scale factor clearly linked with one ingredient eg. 10 with sugar or 5 with butter or flour or 50 with milk OR answer of 120 or 600 A1 cao

Question	Working	Answer	Mark	Notes
3:;	$2.25 \times 60 \div 100 = 1.35$ $1.35 + 0.80 = 2.15$ $1.5 \times 60 \div 100 = 0.90$ $0.90 + 1.90 = 2.80$	Railtickets with correct calculations	4	NB. All work may be done in pence throughout M1 for correct method to find credit card charge for one company eg. $0.0225 \times 60(=1.35)$ oe or $0.015 \times 60 (=0.9)$ oe M1 (dep) for correct method to find total additional charge or total price for one company eg. $0.0225 \times 60 + 0.80$ or $0.015 \times 60 + 1.90$ or 2.15 or $2.8(0)$ or 62.15 or $62.8(0)A1 for 2.15 and 2.8(0) or 62.15 and 62.8(0)C1 (dep on M1) for a statement deducing the cheapestcompany, but figures used for the comparison must also bestated somewhere, and a clear association with the name ofeach companyORM1 for correct method to find percentage of (60+booking fee)eg. 0.0225 \times 60.8(=1.368) oe or 0.015 \times 61.9(=0.9285)M1 (dep) for correct method to find total cost or totaladditional costeg. '1.368' + 60.8(=62.168) or '1.368' + 0.8 (=2.168) or'0.9285' + 61.9 (=62.8285) or '0.9285' + 1.9 (=2.8285)A1 for 62.17 AND 62.8285 or 2.83C1 (dep on M1) for a statement deducing the cheapestcompany, but figures used for the comparison must also bestated somewhere, and a clear association with the name ofeach company$
	OR			OR

Question	Working	Answer	Mark	Notes
3	2.25 - 1.5 = 0.75			M1 for correct method to find difference in cost of credit card
Eanykovof	$0.075 \times 60 \div 100 = 0.45$			charge
Edbabyer	0.80 + 0.45 = 1.25			eg. $(2.25 - 1.5) \times 60 \div 100$ oe or 0.45 seen
	1.25 < 1.90			M1 (dep) for using difference with booking fee or finding
				difference between booking fees
				eg. 0.80 + "0.45"(=1.25) or
				1.90 - 0.45'' (=1.45) or $1.90 - 0.8 (=1.1(0))$
				A1 1.25 and 1.9(0) or 0.45 and 1.1(0)
				C1 (dep on M1) for a statement deducing the cheapest
				company, but figures used for the comparison must also be
				stated somewhere, and a clear association with the name of
				each company
				QWC: Decision and justification should be clear with working
				clearly presented and attributable

3; 2 QWC iii FE	See table at end	Best month and supporting explanation	4	 M1 Converts for at least 2 months to a common format (fractions, decimals or %age) A1 all correct C1 for Council target: No (yes) dep on M1 and consistent with the candidates calculations QWC: Decisions should be stated, following through from working out C1 March with all calculations correct for the 3 months QWC: Decisions should be stated, following out 	
Total for Question: 4 marks					

	Fraction	Decimal	%	kg
Jan	$\frac{1}{10}$	0.1	10%	Not known
Feb	$\frac{1}{8}$	0.125	12.5%	15 kg
Mar	$\frac{13}{100}$	0.13	13%	14.56 kg

3; 3 FE		15400 ÷ 70 × 100 = 22000 22000 × 2÷ 100	440	4	M1 15400 ÷ 70 × 100 oe A1 22000 M1 '22000' × 2 ÷ 100 oe A1 cao	
	Total for Question: 4 marks					

Question	Working	Answer	Mark	Notes
3;4		555	3	M1 for recognising that 1295 is 70% eg $70\% = 1295$
				M1 for 10% = 1295 ÷ 7 (=185) or 1% = 1295 ÷ 70 (=18.5) or 1295 × $\frac{3}{7}$ oe
				or $(1295 - 185) \div 2$ or $1295 \times \frac{10}{7}$ oe (=1850)
				A1 cao
3; 5	£: $189 \div 1.39 = 135.97$ $174 \div 1.27 = 137.01$ SF: $115 \times 1.39 = 159.85$ $174 \div 1.27 \times 1.39 = 190.44$ £: $115 \times 1.27 = 146.05$ $189 \div 1.39 \times 1.27 = 172.68$	London with correct comparable figures	3	M1 for method to convert one price to another currency, eg 189 ÷ 1.39 M1 for a complete method leading to 3 prices in the same currency or to figures that can be used to compare the 3 prices A1 for London and correct comparable figures (accept rounded or truncated to the nearest unit)
3; 6		23	3	M1 for method to find difference in cost, eg $23 \times 24 - 425$ (= 127) or for $425 \div (23 \times 24)$ (= 0.7699) or $24 - (425 \div 23)$ (=5.52) M1 for $\frac{"127"}{"552"} \times 100$ oe or or $100 - "0.7699" \times 100$ or $\frac{"5.52"}{24} \times 100$ A1 for answer in range $23 - 23.01$
3;7		Correct region	3	B1 for perpendicular bisector of the line <i>AB</i> B1 for arc of circle centre <i>B</i> radius 4 cm B1 for shading correct region
*3; 8		Simple with correct comparable values	4	M1 for a method to calculate 2.15% or 2.3% or 102.15% or 102.3% of 15000 M1 for a complete method to calculate using a compound interest rate of 2.15% for 3 years eg 1.0215^3 (=1.065(89)) or $1.0215^3 \times 15000$ (=15988.45) M1 for a complete method to calculate using a simple interest rate of 2.3% for 3 years e.g 1+0.023 × 3(=1.069) or 15000 + 0.069× 15000 (=16035) or 0.023 × 3 C1 for a correct decision in a statement based on their two accurate comparable values eg 16035, 15988 to 15988.50 or 1035, 988 to 988.50 or 1.065(89), 1.069 or 6.6%, 6.9 %

Question	Working	Answer	Mark	Notes
3; 9		8.4	3	M1 for using $d=m/v$ e.g. $11.34 = 74/V$ or vol. of lead (= 6.5(25) or vol. of tin (= 17.2(3) M1 (dep) for a complete method using 200 ÷ "total volume" A1 for answer in range 8.4 to 8.44
3; :		3072	3	M1 for $12 = \frac{k}{8^2}$ or 12×8^2 (= 768) oe or $(8 \div 0.5)^2$ (= 256) M1 (dep) for substituting into $T = \frac{k}{d^2}$ e.g $(T =) \frac{"768"}{0.5^2}$ oe eg $12 \times 8^2 \div 0.5^2$ oe A1 cao

Question	Working	Answer	Mark	Notes
3;; (a)		225 : 475	2	M1 for $700 \div 2 + 125 (= 475)$ or $700 \div 2 - 125 (= 225)$ A1 for 225 : 475 oe, eg 9:19
(b)		175, 455	3	M1 for $630 \div (5 + 13) (= 35)$ M1 for "35" × 5 (= 175) or "35" × 13 (= 455) A1 cao
*422		Comparison	3	M1 for 23.50×1.34 A1 for 31.49 C1 (dep M1) for 'euros' stated and a comparison ft their " 31.49 " OR M1 for $31 \div 1.34$ A1 for $23.13(43)$ C1 (dep M1) for '£' stated and a comparison ft their " 23.13 " OR M1 for $31 \div 23.50$ A1 for $1.31(91)$ C1 (dep M1) for comparison ft their " $1.31(91)$ " and explanation linked to conversion rate.

Que	estion	Working	Answer	Mark	Notes
423	(a)		4:3	2	M1 for 720 : 540 oe or for 3 : 4 or 1 : $\frac{4}{3}$ oe or $\frac{3}{4}$: 1 oe A1 for 4 : 3 or $\frac{4}{3}$ (or 1 .33) : 1 or 1 : $\frac{3}{4}$ (or 0.75)
	(b)		480	2	M1 for 720 ÷ 3 (= 240) or scale factor of $\frac{3}{2}$ or $\frac{2}{3}$ oe or 720 : 480 A1 cao
424			42.28	5	M1 for method to find weekly mileage, eg. $18 \times 2 \times 5$ (= 180) or weekly car park charge, eg. 3.50×5 (= 17.50) M1 for method to find fuel used in a relevant journey, eg. "180" ÷ 45.2 (= 3.9823 gallons) or $18 \div 45.2$ (= 0.39823 gallons) M1 for a correct use of the conversion factor to convert between gallons and litres, eg. "3.9823" × 4.546 (= 18.1 litres) or "0.39823" × 4.546 (= 1.81 litres) or 1.369×4.546 (= 6.22 £/gallon) or $45.2 \div 4.546$ (= 9.94 miles/litre) M1 for a method to find the cost of a relevant journey, eg. "18.1" × 1.369 (= 24.78) or "1.81" × 1.369 (= 2.478) or "3.9823" × "6.22" (= 24.78) A1 for answer in the range 42.26 to 42.3(0) NB candidates could work in litres or in gallons and/or could work in £ or p

Journeys in	Fuel used in	Fuel used in litres,	Cost of journey in £,
miles	gallons;	gallons \times 4.546	litres \times 1.369 or
	miles ÷ 45.2		gallons \times 6.22
18	0.398	1.81	2.478
36	0.796	3.62	4.956
90	1.991	9.05	12.39
180	3.98	18.1	24.78
252	5.57	25.3	34.69

Question	Working	Answer	Mark	Notes
425		No (supported)	4	M1 for a correct method to calculate 77% of 15000 or 0.77 seen eg. 15000×0.77 oe (= 11550) or $15000 - \frac{23}{100} \times 15000$ oe (= $15000 - 3450 = 11550$) M1 for demonstrating a correct compound interest method over 3 years, eg "11550" × 0.82 (=9471) and "9471" × 0.82 (=7766.22) or "11550" × 0.82 ² or 0.77×0.82^2 (=0.517748) A1 for 7766(.22) or 0.51(7748) or 0.48(2252) C1 ft (dep on M2) for a statement giving the correct decision for their calculated values

Que	estion	Working	Answer	Mark	Notes
426			49	3	M1 for converting calculations to common units (either system is acceptable) M1 for dividing their total capacity by the refuelling rate A1 48.9 - 49.1
425		$0.65 \times 80 = 52$ $\frac{5}{8} \times 80 = 50$ 52 - 50 Or $\frac{5}{8} = 0.625$ 0.65 - 0.625 = 0.025 0.025×80	2	4	M1 for method to calculate the time Celina sings M1 for method to calculate the time Zoe sings M1(dep on at least M1) for finding the difference between two times A1 cao Or M1 for a conversion to a common representation M1 (dep on M1) for finding the difference in their chosen representation M1 for using their proportional difference multiplied by 80 A1 cao
428	(a	9×6	54	2	M1 for a method to find the speed e.g $9 \div 10$, $9 \div 0.16$ A1 cao
	(b)		Graph completed	3	B1 horizontal line from (30,21) to (45,21) M1 for a complete method to show the return journey is 30 mins or $\frac{1}{2}$ hour evidenced by the line on the graph or by calculation A1 Correct line drawn from Luscoe (<i>x</i> ,21) to (<i>x</i> + 30,0)
429	(a		76	3	M1 for 89% = 68 M1 for 68 ÷ 0.89 oe A1 for 76 – 76.41
	(b)		11.8	2	M1 for (68 – 60) ÷ 68 × 100 oe A1for 11.7 - 12

Questi	on Working	Answer	Mark	Notes
42:	$\pi 2^{2} \times 2 = 8\pi$ $\pi 2^{2} \times \frac{20}{360} \times 3 + \pi 2^{2} \times \frac{340}{360} \times 2$ $8\pi : \frac{74}{9}\pi:$ $72 : 74$ Or $\frac{20}{360} \times 3 + \frac{340}{360} \times 2 = \frac{37}{18}$ $2: \frac{37}{18}$ $36:37$	36:37	4	M1 method to find relative cost of design A e.g. $\pi 2^2$, $k \times \pi 2^2$ M1 for a complete method to find the relative cost of the watch face for design B e.g. $\pi 2^2 \times \frac{20}{360} \times \frac{3}{5} + \pi 2^2 \times \frac{340}{360} \times \frac{2}{5}$ M1 (dep on M1, M1) for the cost of design A: cost of design B A1 cao Or M1 for method to find fraction of the sectors in design B $\frac{20}{360}, \frac{340}{360}$ M1 for complete method to find the relative cost of the watch face for design B M1 (dep on M1,M1) for the cost of design A: cost of design B A1 cao

Questio	on Working	Answer	Mark	Notes
42;		68 34 51	3	M1 for $153 \div (4 + 2 + 3)$ (=17) or for a correct method to scale up to at least 44:22:33 without error M1 (dep M1) for "17" × 4 or "17" × 2 or "17" × 3 or for a complete method to build up to 68:34:51 with at least two of these values correct A1 for 68, 34, 51 in any order (If M0,SC B2 for two correct lengths)
432		Loci drawn	3	B1 for line parallel to <i>BC</i> and 3 cm from <i>BC</i> B1 for arc drawn, centre <i>C</i> , with radius 4 cm B1 ft for shading a region below their horizontal line and inside their arc
433	Volume of A = $\frac{140}{0.7}$ = 200 Volume of B = $\frac{128}{1.6}$ = 80 Mass of C = 140+128 = 268 Density of C = $\frac{268}{280}$	0.957	4	M1 for finding the volume of either liquid A or B or the mass of liquid C M1 for a complete method to find the volume AND mass of liquid C M1 (dep M2) for "total mass" ÷ " total volume" A1 for 0.957 to 0.96
434	3 ² × 180	1620	2	M1 for using a scale factor of $3^2 (= 9)$ A1 cao
435		1.25	3	M1 100 – 12 (= 88) or 0.88 or $1.1 \div 88$ (= 0.0125) M1 for complete method, eg $1.1 \div 0.88$ A1 cao (SC B2 for 1250 as answer)

Que	stion	Working	Answer Mark		Notes	
436	(a)		360	2	M1 30 ÷ 10 (= 3) or 120 ÷ 10 (=12) or 120 + 120 + 120 oe A1 cao	
	(b)		25	2	M1 for $\frac{750}{300}$ (=2.5) oe A1 cao	
437			2.10 euros or £1.81	3	M1 for $2.5 \times 1.16 (= 2.9)$ M1 (dep) for $5 - "2.9" (=2.1)$ A1 for $2.1(0)$ euros OR M1 for $5 \div 1.16 (= 4.31)$ M1 (dep) for " $4.31" - 2.50 (=1.81)$ A1 for £1.81	
*438			Decision (No the attendance target was not met)	3	M1 for attempting to find total number of students or 1210 seen M1 for $\frac{'1092'}{'1210'} \times 100$ oe or $\frac{'118'}{'1210'} \times 100$ oe C1 for correct decision with 90.(2479) or correct decision with 6 and 9.(752) OR M1 for attempting to find total number of students or 1210 seen M1 for $\frac{94}{100} \times '1210'$ oe C1 for correct decision with 1137 (.4) and 1092 or correct decision with 72(.6) and 118 OR M1 for a correct % method for one year, e.g. $\frac{192}{208} \times 100$ or $\frac{94}{100} \times 208$ M1 for a correct % method for each year C1 for correct decision with 92.(30), 90.(87), 89.(31), 89.(27), 89.(91) or 195(.5), 226.(9), 246.(2), 245.(3), 223.(7)	

Question Working Answer		Answer	Mark	Notes
*439	$\begin{array}{l} 1.025^2 = 1.050625\\ 1.04 \times 1.015\\ = 1.0556 \end{array}$	Bonus Saver with correct comparable values	4	M1 for a method to calculate 4% or 2.5% of 20000 (= 800 or 20800 or 500 or 20500) M1 for a method to calculate using a compound interest method, eg 1.025 ² oe or 1.04 followed by 1.015 oe A1 for 1.050625 or 1.0556 or 10556 or 556 or 21112 or 21012.5 or 1112 or 1012.5 C1 for a correct decision in a statement with two correct comparable values. NB all final money values can be rounded or truncated to nearest integer or left unrounded.

Que	stion	Working	Answer	Mark	Notes
43:			186.20	5	M1 for use of consistent units to find volume, $11 \times 4 \times 0.06$ (=2.64) or $1100 \times 400 \times 6$ (=2640000) M1 (dep on vol calculation) for attempt to find number of bags needed, eg "2.64" $\div 0.4$ (=6.6 \rightarrow 7) M1 for the cost of gravel before discount eg "6.6" \times 38 or "7" \times 38 M1 for attempt to find the total cost after discount"266" $\times 0.7$ oe A1 for 186.2(0) OR M1 for cost of gravel per bag after discount, 38×0.7 (=26.60) M1 for use of consistent units to find volume, $11 \times 4 \times 0.06$ (=2.64) or $1100 \times 400 \times 6$ (=2640000) M1 (dep on vol calculation) for attempt to find number of bags needed, eg "2.64" $\div 0.4$ M1 for total cost of gravel after discount "7" \times "26.6" A1 for 186.2(0)
43;	(a) (b)	Train Pay Diff	209.69 or 209.70 Comparison	3	M1 for $200 \times \frac{3.3}{100}$ oe or 200×1.033 or $6.6(0)$ or $206.6(0)$ M1 (dep) for $(200 + "6.6") \times \frac{1.5}{100}$ oe or $200 \times 1.033 \times 1.015$ oe or 3.099 or 3.09 or 3.10 or an answer between 209.69 and $209.7A1 for 209.69 or 209.7(0)M1 for method to find cost of tickets before increase eg \frac{225}{1.125}$
		Old 200 510 310 New 225 535.50 310.50 Diff 25 25.50 50p			(=200) oe or $\frac{225}{112.5} \times 12.5$ oe or pay before increase, $\frac{535.50}{1.05}$ (=510) oe A1 for 25 (train) and 25.5(0) (pay) or 310 and 310.5(0) C1 (dep on M1) ft for statement comparing rises leading to conclusion based on two comparable amounts eg pay increase greater than train increase

Question	Working	Answer	Mark	Notes
442		8	3	M1 for $p = \frac{k}{t}$ oe $(k \neq 1)$ or $12 = \frac{k}{4}$ M1 for correct method to find k or $p = \frac{48}{t}$ oe or (dep on M1) for k=48 A1 cao OR M1 for $\frac{6}{4}$ oe M1 for $12 \div \frac{6}{4}$ oe A1 cao

Question	Working	Answer	Mark	Notes
443 (a)		12	2	M1 for $32 \div 8$ (=4) or $\frac{3}{8} \times 32$ oe A1 for 12
(b)		36	2	M1 for correct method to find 45% of 80 A1 cao
444		£26.50 or HK\$325.95	3	M1 for 3179.55 ÷ 12.3 (=258.5) M1 (dep) for 285 - '258.5' A1 for £26.50 (correctly stated with currency) OR M1 for 285 × 12.3 (=3505.5) M1 (dep) for '3505.5' - 3179.55 (=325.95) A1 for HK\$325.95 (correctly stated with currency)
445		Merit	3	M1 for $\frac{62}{80} \times 100$ (=77.5) A1 for 77.5% or 78% B1 ft (dep on M1) for 'Merit' OR M1 for calculating a percentage between 70 and 85% of 80 eg 0.7×80 (=56) or 0.84 × 80 (=67.2) or 0.85 × 80 (=68) A1 for 56 and 67(.2) or 68 or for two appropriate values which can be compared with 62 B1 ft (dep on M1) for 'Merit'

Question	Working	Answer	Mark	Notes
*446	Distance \div speed: $30 \div 70$ (= 0.42-0.43); Distance \div time: $30 \div 26$ (=1.15); Speed \times time: = 70×26 (=1820 mins); mph to miles/min = $70 \div 60$ (=1.16-1.17); Minutes to hours is $26 \div 60$ (=0.43)	No with correct figure	3	M1 for a calculation which uses the Time × Speed = Distance relationship OR a conversion of units eg between hours & minutes or between mph & miles per min M1 for a calculation involving both of the above C1 for "no" with a correct calculation, with units, from working: 25.2-25.8 minutes, 30.1-30.8 miles, 69-69.3 mph NB: 70 ÷ 26 × 30 as a single stage calculation gets 0 marks
447		116	3	M1 for 80% or 0.8 seen oe or $\frac{464}{0.8}$ (=580) M1 for $\frac{464}{0.8}$ - 464 A1 cao OR M1 for 80% or 0.8 seen oe M1 for 464 ÷ 4 or 464 ÷ (80÷20) A1 cao

Question	Working	Answer	Mark	Notes
*248		Not enough mincemeat since 600<700	4	M1 for $45 \div 18 (= 2.5)$ M1 for 2.5 used as factor or divisor A1 for ingredients as 562.5 and 875 and 250 and 700 and 2.5 (accept 2 or 3) OR for availables as 400, 400, 200 240, 2.4 (accept 2 or 3) C1 ft (dep on at least M1) for identifying and stating which ingredient is insufficient for the recipe (with some supportive evidence)
		OR Only able to make 38 mince pies since insufficient mincemeat		OR M1 for a correct method to determine the number of pies one ingredient could produce M1 for a correct method to determine the number of pies all ingredient could produce A1 for 80 and 51 and 90 and 38 and 108 C1 ft (dep on at least M1) for identifying and stating which ingredient is insufficient for the recipe. (with some supportive evidence)

Question	n Working	Answer	Mark	Notes
*44:		The Friendly Bank	4	M1 for a correct method to find interest for the first year for either bank OR correct method to find the value of investment after one year for either bank OR use of the multiplier 1.04 or 1.05 M1 for a correct full method to find the value of the investment (or the value of the total interest) at the end of 2 years in either bank A1 for 2100.8(0) and 2110.5(0) (accept 100.8(0) and 110.5(0)) C1 (dep on M1) ft for a correct comparison of <i>their</i> total amounts, identifying the bank from their calculations OR M1 for either 1.04×1.01 or 1.05×1.005 M1 for 1.0504 and 1.05525 C1 (dep on M1) ft for a correct comparison of <i>their</i> total multiplying factors identifying the bank from their calculations
44;		1.33	3	M1 for $3.4 = \frac{k}{5^2}$ oe or 3.4×5^2 (=85) M1 for ' $3.4 \times 5^{2'} \div 8^2$ A1 for answer in range 1.32 to 1.33 or $\frac{85}{64}$

Que	stion	Working	Answer	Mark	Notes
*252			No + comparison	3	M1 for a correct start to the process eg. $\frac{225}{9}$ or $\frac{475}{225}$ or $\frac{20}{9}$ or $\frac{475}{20}$ M1 for completion of a fully correct method that will lead to an appropriate comparison C1 (dep on M2) for a correct statement with conclusion with 500 g or 25g more needed or 19 cakes or 25g and 23.75g SC :If no working then B1 for a correct statement with correct figures and units

Question	Working	Answer	Mark	Notes
453		414.96	5	M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method to find the cost of oil required before the discount M1 for a correct method of finding 5% of their calculated cost M1 (dep on previous M1) for a correct method to find the discounted cost A1 for correct answer of 414.96 or 41496p
				OR
				M1 for a correct method of finding 5% of the cost of 1 litre of oil M1 (dep on previous M1) for a correct method to find the discounted cost of 1 litre of oil M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method to find the discounted cost of the oil required A1 for correct answer of 414.96 or 41496p
				OR
				M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method of finding 5% of their calculated amount of oil M1 (dep on previous M1) for a correct method to find the reduced amount of oil M1 for a correct method to find the cost of the reduced amount of oil A1 for correct answer of 414.96 or 41496p

Que	stion	Working	Answer	Mark	Notes
454*	(a)		2.5	2	M1 for $15 \div 6$ oe
	*(b)		Yes + evidence	2	A1 for 2.5 or $2\frac{-}{2}$ M1 for a correct method to change 15 miles into kilometres C1(dep M1) for 24 km and statement with correct conclusion [SC: B1 for "Yes" oe and 24 km shown if M0 scored] or M1 for a correct method to change 20 kilometres into miles C1(dep M1) for 12.5 miles and statement with correct conclusion [SC: B1 for "Yes" oe and 12.5 miles shown if M0 scored]

Qu	estion	Working	Answer	Mark	Notes
455	(a)	154500 - 150000	3	3	M1 for 154500 – 150000 or 4500
455	(a) (b)	$\frac{4500}{150000} \times 100$ $\frac{4500}{150000} \times 100$ $154500 \times \frac{4}{100} + 154500$	3 167107.20	3	Notes M1 for $154500 - 150000$ or 4500 M1 for $\frac{'154500 - 150000'}{150000} \times 100$ oe A1 cao OR M1 for $\frac{154500}{150000} (\times 100)$ M1 for $\frac{(154500)}{150000} \times 100$ " - 100 oe A1 cao M1 for $154500 \times \frac{4}{100}$ or 6180 or 12360 or 160680 or 166860 or 1.04×154500
		$160680 \times \frac{\frac{100}{4}}{100} + 160680$ or 154500×1.04^{2}			M1 (dep) for $(154500 + `6180') \times \frac{4}{100}$ or $6427.2(0)$ or $`160680' \times 1.04$ A1 for $167107.2(0)$ as final answer OR M2 for 154500×1.04^2 (M1 for 154500×1.04) A1 $167107.2(0)$ as final answer

Question	Working	Answer	Mark	Notes
*456	3×£193.86 = £581.58 £581.58 ×0.85=£494.343	£494.34	5	 M1 3 × 193.86 (= 581.58) B1 ft correct discount % identified or used in working (may be identified in table) M1 '581.58'× '0.15' (=87.23(7)) M1 (dep on the previous M1) '581.58' - '87.23(7)' (= 494.34(3) or 494.35) C1 (dep on all method marks) for £494.34 or £494.35 identified as final answer with correct money notation
				 M1 3×193.86 (= 581.58) B1 ft correct discount % identified or used in working (may be identified in table) M2 '581.58'×'0.85' (= 494.34(3)) (M1 '581.58'×'1.15' (=668.81(7)) C1 (dep on all method marks) for £494.34 or £494.35 identified as final answer with correct money notation NB. Throughout, values may be rounded or truncated to 2 decimal places
455	25 ÷ 50 = 0.5 h = 30 min 25 ÷ 60 = 0.416 h = 25 min	5	3	M1 for $25 \div 50$ or $\frac{60}{50} \times 25$ or 30 (min) or $0.5(\text{h})$ or $25 \div 60$ or $\frac{60}{60} \times 25$ or 25 (min) or $0.41(6)(\text{h})$ or 0.42 (h) M1(dep) '0.5' - '0.416 'or '30' - '25' A1 cao OR M1 for $60 \div 25 (= 2.4)$ and $60 \div "2.4"$ or $50 \div 25 (= 2)$ and $60 \div "2"$ M1(dep) '30' - '25' A1 cao

Question	Working	Answer	Mark	Notes
458	For example	Cheaper in	4	M1 for 1.24 × 3.79 (= 4.6996) or
	UK USA	US		1.24×1.47 (=1.8228)
	\$ per US gal (\$)6.90(8412) [\$3.15]			M1 for 1.47 × '4.6996' or 3.79 × '1.8228'
	£ per litre [£1.24] (£)0.56(53)			A1 for 6.90(8412)
	£ per US gal (£)4.69(96) (£)2.14(28)			C1 (dep on M2) for \$'6.90(8412)' or \$'6.91' and
	\$ per litre (\$)1.82(28) (\$)0.83(11)			reaching a conclusion consistent with their calculation
	Cost in £ per US gal of UK fuel= $\pounds 1.24 \times 3.79$ = $\pounds 4.6996$			OR M1 for 3.15 ÷ 1.47 (=2.1428) or
	Cost in \$ per US gal of UK fuel = $1.47 \times$			$3.15 \div 3.79 (=0.8311)$
	4.6996 = \$6.908412			M1 for '2.14' \div 3.79 or '0.8311' \div 1.47
				A1 for 0. 56(53)
	OR			C1 (dep on M2) for £'0. 56(53)' or '£0.57' and
	Cost in £ of 1 US gal of US fuel = $3.15 \div 1.47$ = £2.14			reaching a conclusion consistent with their calculation
	Cost in £ per litre of US fuel = $\pounds 2.14 \div 3.79$			OR
	=£0, 56(5			M1 $1.24 \times 3.79 (= 4.6996)$
				M1 3.15 ÷ 1.47 (=2.1428)
	OR			A1 4.69(96) and 2.14(28)
	Cost in UK in £ per US gal = $\pounds 1.24 \times 3.79$			C1 (dep on M2) for $\pounds'4.69(96)'$ or $\pounds'4.70'$ AND
	$(= \pounds 4.6996)$			\pounds '2.14(28)' and reaching a conclusion consistent with
	Cost in USA in £ per US gal = $\pounds 3.15 \div 1.47$			their calculation
	(=2.1428)			OR
	OP			M1 for 1.24×1.47 (=1.8228)
	Cost in LIK is $\$$ per litre – f1 24 \times 1.47			M1 for $3.15 \div 3.79 (=0.8311)$
	(-1.8228)			A1 for $1.82(28)$ and $0.83(11)$
	(-1.0220) Cost in USA in \$ per litre - 3.15 : 3.70			C1 (dep on M2) for $\frac{1}{2}(28)'$ and $\frac{0.83(11)}{2}$ and
	(=0.8311)			reaching a conclusion consistent with their calculation
				NB: Throughout values can be rounded or truncated to 1
				or more decimal places. In order to award the
				communication mark, correct currency must be shown
				with the calculated value(s) but these can still be rounded
				or truncated to one or more decimal places as they are
				being used for comparison.

Qu	estion	Working	Answer	Mark	Notes
459		Volume = $\frac{5 \times 12}{2} \times 15$ Mass = $\frac{5 \times 12}{2} \times 15 \times 6.6$	2970	3	M1 $\frac{5 \times 12}{2} \times 15$ (=450) M1 (dep on 1 st M1) '450'× 6.6 A1 cao SC: If no marks awarded then award B1 for an answer of 5940
45:		$\frac{64.8-59.3}{64.8} \times 100 \ (=8.487)$ OR $\frac{59.3}{64.8} \times 100 = 91.512$ $100 - 91.512 = 8.487)$	8.49	3	M1 $64.8 - 59.3 (=5.5)$ M1 $(dep) \frac{'5.5'}{64.8} \times 100$ oe A1 $8.48 - 8.49$ OR M1 $\frac{59.3}{64.8} \times 100$ oe $(= 91.5(12))$ M1 $(dep) 100 - '91.5'$ A1 $8.48 - 8.49$ OR M1 $\frac{59.3}{64.8} (=0.915(12))$ M1 $(dep) 100 \times (1 - '0.915')$ A1 $8.48 - 8.49$

Que	estion	Working	Answer	Mark	Notes
45;		16 metres: 8×10^8 km.	$1:5 \times 10^{10}$	3	M1 (indep) correct method to convert to
		$16: 8 \times 10^{11}$ $16: 8 \times 10^{11}$			consistent units
		$1:5 \times 10^{10}$			M1 $\frac{'8 \times 10^8}{}$ (units may not be consistent) or
		OR			'16' 5×10^{10} oe or 5×10^7 oe
		2 m to 10 ⁸ km 2m to 100 000 000 000m			A1 1: 5×10^{10} or 1: 50 000 000 000
		1m to 50 000 000 000m			OR
					M1 (indep) correct method to convert to consistent units
					M1 $\frac{'16'}{8}$ to '10 ⁸ '
					A1 1: 5×10^{10} or 1: 50 000 000 000

Question	Working	Answer	Mark	Notes
462	$(17 - 2.8) \times 9.5 = 134.9$ $\pi \times (3.8 \div 2)^2 = 11.34$ $134.9 - 2 \times 11.34 = 112.21$ $112.21 \div 25 = 4.488$	5	5	M1 for $(17 - 2.8) \times 9.5$ (=134.9) or $17 \times 9.5 - 2.8 \times 9.5$ (=161.5 - 26.6 = 134.9) M1 for $\pi \times (3.8 \div 2)^2$ (= 11.33 - 11.35) M1 (dep on M1) for '134.9' - 2 × '11.34' A1 for 112 - 113 C1(dep on at least M1) for 'He needs 5 boxes' ft from candidate's calculation rounded up to the next integer
463		Farm shop	4	M1 for $12.5 \div 2.5$ (=5) M1 for $5' \times 1.83$ or $5' \times 183$ A1 for $(\pounds)9.15$ or $915(p)$ C1 (dep on at least M1) for decision ft working shown OR M1 for $12.5 \div 2.5$ (=5) M1 for $9 \div 5'$ or $900 \div 5'$ A1 for $(\pounds)1.8(0)$ or $180(p)$ C1 (dep on at least M1) for decision ft working shown OR M1 for $9 \div 12.5$ (=0.72) or $1.83 \div 2.5$ (=0.732) M1 for $9 \div 12.5$ (=0.72) and $1.83 \div 2.5$ (=0.732) A1 for $72(p)$ and $73.(2)(p)$ or $(\pounds)0.72$ and $(\pounds)0.73(2)$ C1 (dep on at least M1) for decision ft working shown OR M1 for $12.5 \div 9$ (= 1.388) M1 for $2.5 \div 1.83$ (= 1.366) A1 for 1.38 and 1.36 truncated or rounded C1 (dep on at least M1) for decision ft working shown

Question	Working	Answer	Mark	Notes
Question 464	Working	51	Mark 3	NotesM1 200 \times 25.82 (= 5164)A1 for 5164 or 5160 or 5100 or 5200 or 51.64 or51.6(0) or 52A1 for 51 caoORM1 for 100 \div 25.82 (= 3.87) and 200 \div '3.87'(= 51.64)A1 for 5164 or 5160 or 5100 or 5200 or 51.64 or51.6(0) or 52A1 for 51 cao

*465 $180 \times 365 = 65700$ Decision (Should have a 65700 $\div 1000 = 65.7$ 5 Per year $65700 \div 1000 = 65.7$ water meter installed) M1 for $180 \times `365' (= 65700)$ M1 for $^{\circ} 65700' \div 1000 (= 65.7 \text{ or } 65 \text{ or } 66)$ $5993.154 \div 100 + 28.20 = 88.13$ M1 for $`65.7' \times 91.22 (= 5993)$ M1 for $`65.7' \times 91.22 (= 5993)$ A1 for answer in range (£)87 to (£)89 C1 (dep on at least M1) for conclusion following from working seen OR (ner day) OR (ner day)	Question	Working	Answer	Mark	Notes
$\frac{D}{366} = \frac{U}{5580} = \frac{C}{6010} = \frac{T}{88.30}$ $\frac{B}{366} = \frac{65880}{65700} = \frac{6010}{5929} = \frac{88.40}{88.40}$ $\frac{B}{66000} = \frac{6020}{6020} = \frac{88.40}{8600} = \frac{66000}{364} = \frac{65520}{5976} = \frac{87.96}{87.96}$ $\frac{B}{360} = \frac{64800}{5911} = \frac{87.31}{87.31}$ $\frac{B}{336} = \frac{60480}{5912} = \frac{5517}{83.37}$ $\frac{B}{336} = \frac{60480}{5517} = \frac{5517}{83.37}$ $\frac{B}{336} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{1000000} = \frac{1}{10000000000000000000000000000000000$	Question *465	Working $180 \times 365 = 65700$ $65700 \div 1000 = 65.7$ $65.7 \times 91.22 = 5993.154$ $5993.154 \div 100 + 28.20 = 88.13$ $\boxed{D \ U \ C \ T}$ $366 \ 65880 \ 6010 \ 88.30$ $365 \ 65700 \ 5993 \ 88.13$ $65000 \ 5929 \ 87.49$ $66000 \ 6020 \ 88.40$ $364 \ 65520 \ 5976 \ 87.96$ $360 \ 64800 \ 5911 \ 87.31$ $336 \ 60480 \ 5517 \ 83.37$	Answer Decision (Should have a water meter installed)	Mark 5	NotesPer yearM1 for 180 × '365' (= 65700)M1 for '65700' ÷ 1000 (= 65.7 or 65 or 66)M1 for '65.7' × 91.22 (= 5993)A1 for answer in range (£)87 to (£)89C1 (dep on at least M1) for conclusion following fromworking seenOR (per day)M1 for 107 ÷ '365' (= 0.293)M1 for 180 ÷ 1000 × 91.22 (= 16.4196)M1 for 28.2 ÷ '365' + '0.164196' (units must beconsistent)A1 for 29 - 30(p) and 24 - 24.3(p) oeC1 (dep on at least M1) for conclusion following fromworking seenORM1 for (107 - 28.20) ÷ 0.9122 (= 86.384)M1 for '86.384'× 1000 (= 86384.5)M1 for '365' × 180 (= 65700)A1 for 65700 and 86384.5C1 (dep on at least M1) for conclusion following fromworking seenNB : Allow 365 or 366 or 52×7 (=364) or 12 × 30(=360) or 365¼ for number of days

Question	Working	Answer	Mark	Notes
466	$6200 \times 1.025^3 =$	6676.72	3	M2 for 6200×1.025^3 (= 6676.72)
				(M1 for 6200×1.025^n , $n \neq 3$)
	OR			A1 for 6676.72, accept 6676.71 or 6676.73
	$6200 + \frac{2.5}{100} \times 6200 = 6355$ $6355 + \frac{2.5}{100} \times 6355 = 6513.875$ $6513.875 + \frac{2.5}{100} \times 6513.875 =$			OR M1 for 6200×1.025 or for $6200 + \frac{2.5}{100} \times 6200$ oe or for 6355 or 155 or 465 or 6665 M1 (dep) for a complete compound interest method shown for 3 years A1 for 6676.72, accept 6676.71 or 6676.73 [SC B2 for 476.71 or 476.72 or 476.73 seen]

