Surname	Centre Number	Candidate Number
Other Names		0

GCSE

C410UB0-1

WEDNESDAY, 12 JUNE 2019 - MORNING

CHEMISTRY – Component 2 Applications in Chemistry

HIGHER TIER

1 hour 15 minutes

	For Examiner's use only				
	Question Maximum Mark Awarded				
Section A	1.	15			
	2.	16			
	3.	11			
Section B	4.	7			
	5.	5			
	6.	6			
	Total	60			

ADDITIONAL MATERIALS

In addition to this examination paper you will need a:

- calculator and ruler;
- Resource Booklet.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

This paper is in two sections.

Section A (15 marks). You are advised to spend about 25 minutes on this section.

Section B (45 marks). You are advised to spend about 50 minutes on this section.

The number of marks is given in brackets at the end of each question or part-question.

Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

SECTION A

Read the article in the Resource Booklet and answer all the questions that follow.

(a)	State	e three reasons for recycling steel.	[3]
•••••			
(b)	(i)	Suggest why some steel car parts may not be directly reused as shown in Figure 1.	[1]
	(ii)		
		Mass = ton	nes
(c)	(i)	the contract of the contract o	UK [1]
		Percentage =	%
	(ii)	Use lines 7-8 to calculate the value of the material sent to landfill in 2017.	[1]
		Value = £ mi	llion
	(b)	(b) (i) (ii)	(b) (i) Suggest why some steel car parts may not be directly reused as shown in Figure 1. (ii) Use information from lines 4-8 to calculate the mass of carbon dioxide produ when one tonne of iron is recycled. Give your answer to three significant figure Mass =

Lines 20-23 provide a method of estimating the mass of stainless steel that was produced 20 years ago.

production 20 years ago = production now
$$\times \frac{35}{100}$$

For example, the mass produced in 2010 was around 35 Mt and that in 1990 was around 12 Mt.

production in 1990 = 35
$$\times \frac{35}{100}$$
 = 12.25 Mt

This is the same value to two significant figures as the graph reading so the method provides a good estimate of stainless steel production in 1990.

Evaluate whether this method is suitable for estimating the production in 1970. [3]

BLANK PAGE

SECTION B

Answer all questions.

2. (a) A teacher asked a group of students to investigate the displacement reaction between aluminium powder and copper(II) sulfate solution.

2AI +
$$3CuSO_4$$
 \longrightarrow $Al_2(SO_4)_3$ + $3Cu$

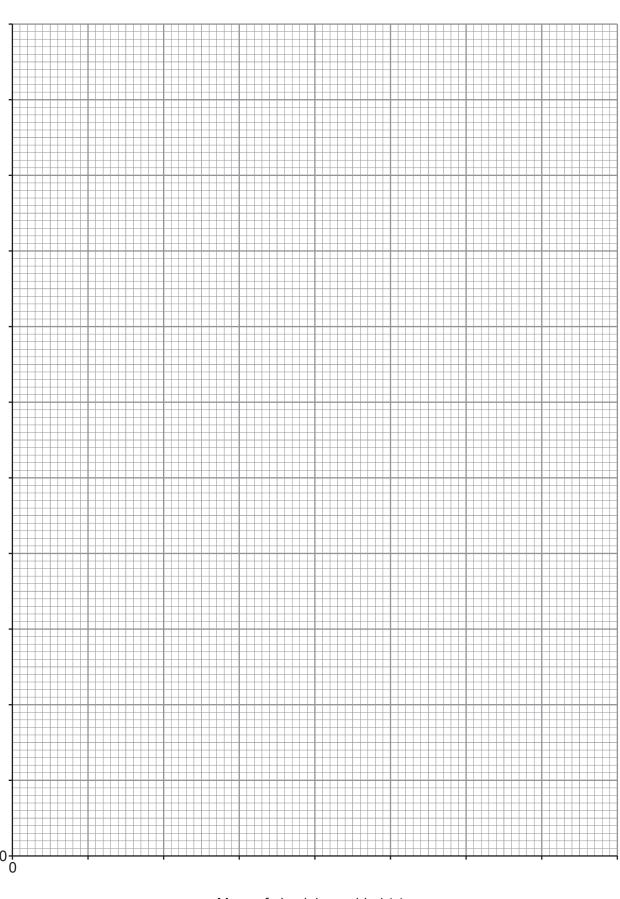
She gave them the following method.

- Add 5.4g of aluminium powder to excess copper(II) sulfate solution in a conical flask.
- Once the reaction is complete, filter off the copper powder that is formed.
- Dry the copper powder and weigh.
- (i) Calculate the maximum mass of copper that would be expected to form from 5.4g of aluminium powder. [2]

$$A_{\rm r}({\rm AI}) = 27$$
 $A_{\rm r}({\rm Cu}) = 63.5$

(ii)	Give one possible reason that would explain the students recording a greater mass of copper than expected. Suggest how this problem could be overcome. [2]
(iii)	It is important to remove all of the copper formed from the conical flask during the filtration stage in order to get an accurate mass.
	State what the students should do to ensure that all of the copper is removed. [1]

Mass of copper =


Turn over.

(b) The table shows the mass of copper formed when different groups of students added different masses of aluminium powder to excess copper(II) sulfate solution.

Group	Mass of aluminium added (g)	Mass of copper formed (g)
1	0.5	1.74
2	1.0	3.45
3	1.5	5.16
4	2.0	6.94
5	2.5	8.70

	(i)	Plot the results from the table on the grid opposite . Draw a suitable line.	[3]
	(ii)	Describe the relationship between the mass of aluminium added and the mass copper formed.	s of [2]
	(iii)	Use your graph to find the mass of copper that would be formed when 3.0 c	 a of
	()	aluminium powder is added to excess copper(II) sulfate solution. Show clearly your graph how you obtained your answer.	
		Mass of copperg	
(c)	woul	ip 2 thought that repeating their experiment was good experimental practice a d improve the accuracy of their result. State whether you agree with group 2. Expl answer.	
•••••			·······•

Mass of aluminium added (g)

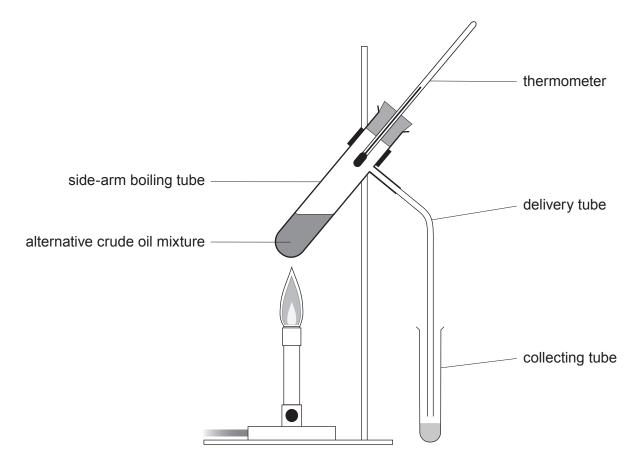
© WJEC CBAC Ltd. (C410UB0-1)

Turn over.

(d) The teacher wanted to show whether or not the method was reproducible. She asked each group to obtain a result using 1.0 g of aluminium. Their results are shown in the table.

Group	Mass of copper formed from 1.0 g of aluminium (g)
1	3.42
2	3.46
3	3.43
4	3.83
5	3.48

Comment on the reproducibility of the method.	[2]
	•••••••••••••••••••••••••••••••••••••••


BLANK PAGE

© WJEC CBAC Ltd. (C410UB0-1) Turn over.

(a)		an and Grace were asked to carr ent in the following compounds.	ry out a series of tests to identify the different ion	ns
		sodium chloride	copper(II) sulfate	
		sodium carbonate	ammonium bromide	
		copper(II) oxide	magnesium oxide	
		lithium iodide	ammonium carbonate	
	(i)	They added hydrochloric acid to	each of the compounds.	
		was added to them. Give the rea	nds that produced bubbles when hydrochloric acason for this observation.	[2]
	(ii)	State the names of the compoun Give the reason for your answer	ds that can be identified using silver nitrate solutio	n. [2]
	(iii)	Name the gas that was produce	ed when sodium hydroxide solution was added d heated. Describe how Grace and Megan wou [to

an and Grace were given a solution that is suspected to either be iron(II) sulfate o
Describe a test that they could carry out to show whether the solution contain iron(II) or iron(III) ions. Include the expected observation for both ions. [3
Describe how they would test for the presence of the sulfate ions in the solution include the expected observation.

4. Lois used the following apparatus to demonstrate the industrial fractional distillation of crude oil in the laboratory.

In her experiment, Lois gently heated $10\,\mathrm{cm}^3$ of an alternative crude oil mixture in a side-arm boiling tube.

She collected the first fraction from the time she started heating the mixture until the temperature on the thermometer reached 100 °C.

Once the temperature had reached 100 °C, she replaced the collecting tube with an empty one. She repeated this until she had collected four fractions over the following temperature ranges.

Fraction 1 room temperature to 100 °C

Fraction 2 100-150 °C

Fraction 3 150-200 °C

Fraction 4 200-250 °C

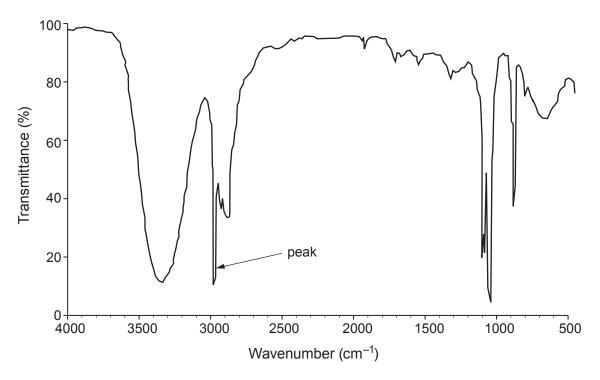
Еха	n	١i	r	16	Э
0	n	ly	/		

(a)	(i)		Give the reason why the bulb of the thermometer should be level with or just below the side-arm throughout the experiment. [1]
			Suggest why a beaker of cold water was placed around the collecting tube when collecting the first fraction.
	(ii)	separa Give c	our collection tubes were unfortunately mixed up whilst carrying out the ation. one way Lois could use the appearance of the fractions to match them to the point range over which they were collected.

(b) Luke was given a sample of an organic compound. He was told that the compound was pentane, pentene or pentanol.

Complete the following flow diagram to give a sequence of tests that Luke could carry out to positively identify his organic compound. [3]

unknown organic compound		
Test 1 add	positive result	the unknown organic compound must be
to the organic compound		
no positive result		
add	positive result	the unknown organic compound must be
to the organic compound		
no positive result		
the unknown organic compound must be		


7

(c) Infrared spectroscopy is commonly used by forensic scientists to identify organic compounds. The technique identifies the different types of bonds present within organic compounds.

An infrared spectrum contains a series of peaks. Each major peak corresponds to a specific type of bond within a molecule. Each one is formed when the molecule absorbs infrared radiation of a specific frequency (or wavenumber). The wavenumber ranges corresponding to various bonds are shown in the table below.

Bond	Wavenumber (cm ⁻¹)		
0—Н	3600-3200		
С—Н	3200-2800		
c=o	1800-1600		
C—O	1250-1000		
c=c	1600-1500		

When tested, Luke's sample gave the following infrared spectrum.

Luke analysed the infrared spectrum and decided that his compound must be pentanol and not pentane or pentene. State how he came to this conclusion. [1]

© WJEC CBAC Ltd. (C410UB0-1) Turn over.

- **5.** A technician at a local chemical plant prepared a sample of sodium hydroxide solution by dissolving sodium hydroxide pellets in 500 cm³ of water. He forgot to record the mass of sodium hydroxide weighed out, therefore he did not know the concentration of the solution.
 - (a) To determine the concentration of the solution, the technician carried out a titration using the sodium hydroxide solution and sulfuric acid solution. The equation for the reaction is given below.

$$H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$$

He found that $16.5\,\mathrm{cm^3}$ of the sodium hydroxide solution was required to completely neutralise $25.0\,\mathrm{cm^3}$ of sulfuric acid of concentration $0.40\,\mathrm{mol/dm^3}$.

Use this information to calculate the concentration of the sodium hydroxide solution in mol/dm³. Give your answer to **two** decimal places. [3]

Concentration =		mol/	dm ³
-----------------	--	------	-----------------

(b) Use the concentration calculated in part (a) to determine the mass of sodium hydroxide pellets that must have been used to make up the original $500 \,\mathrm{cm}^3$ sample of the solution. The relative formula mass, M_r , of sodium hydroxide is 40. [2]

6

6.	Describe and explain the similarities and differences between the reactions taking place during the electrolysis of sodium chloride solution and copper(II) chloride solution.				
	A description of the practical details are not required.	[6 QER]			
•••••					
•••••					
•••••					
•••••					
•••••					

END OF PAPER

© WJEC CBAC Ltd. (C410UB0-1) Turn over.

Additional page.	Examiner only

FORMULAE FOR SOME COMMON IONS

POSITIVE IONS		NEGATIVE IONS		
Name	Formula	Name	Formula	
aluminium	Al ³⁺	bromide	Br ⁻	
ammonium	$\mathrm{NH_4}^+$	carbonate	CO ₃ ²⁻	
barium	Ba ²⁺	chloride	CI ⁻	
calcium	Ca ²⁺	fluoride	F ⁻	
copper(II)	Cu ²⁺	hydroxide	OH ⁻	
hydrogen	H ⁺	iodide	1-	
iron(II)	Fe ²⁺	nitrate	NO ₃	
iron(III)	Fe ³⁺	oxide	O ²⁻	
lithium	Li⁺	sulfate	SO ₄ ²⁻	
magnesium	Mg ²⁺		·	
nickel	Ni ²⁺			
potassium	K ⁺			
silver	Ag^{t}			
sodium	Na ⁺			
zinc	Zn ²⁺			

	7
	9
	2
	4
	က
THE PERIODIC TABLE	Group

			1	1	1	1
Helium	20 Neon	40 Ar Argon 18	84 Kr Krypton 36	Xe Xenon 54	222 Rn Radon 86	
	19 F Fluorine 9	35.5 CI Chlorine	80 Br Bromine 35	127 	At Astatine	
	16 O Oxygen 8	32 S Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Po Polonium 84	
	14 Nitrogen	31 Phosphorus	75 As Arsenic	Sb Antimony 51	209 Bi Bismuth	
	12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead 82	
	11 B Boron 5	27 AI Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81	
			65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80	
			63.5 Cu Copper 29	Ag Ag Silver	Au Gold 79	
			59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
				103 Rh Rhodium 45		
ue]			101 Ru Ruthenium 44		Key
1 Hydrogen			55 Mn Manganese 25	99 Tc Technetium 43	186 Re Rhenium 75	
			52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
			51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
			48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
			Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57	227 Ac Actinium 89
	9 Be Beryllium	24 Mg Magnesium 12	40 Ca Calcium 20	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88

relative atomic mass

© WJEC CBAC Ltd.

(C410UB0-1)

39 **K** Potassium 19

Rb Rubidium 37 133 Cs Caesium 55 Fr Francium 87

Na Sodium