

GCE A LEVEL MARKING SCHEME

SUMMER 2023

A LEVEL PHYSICS – COMPONENT 3 A420U30-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE A LEVEL PHYSICS

COMPONENT 3 – LIGHT, NUCLEI AND OPTIONS

SUMMER 2023 MARK SCHEME

GENERAL INSTRUCTIONS

The mark scheme should be applied precisely and no departure made from it.

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark (except for the extended response questions).

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

- cao = correct answer only
- ecf = error carried forward
- bod = benefit of doubt

SECTION A

	0		Mauliu a dataila			Marks	available		
	Questi	ion	Marking details	A01	AO2	AO3	Total	Maths	Prac
1	(a)		The [minimum] distance between successive / adjacent (1) points oscillating in phase / equivalent points / compressions / rarefactions / <u>pressure / displacement</u> -peaks or troughs (1) i.e. distance between successive peaks - only 1 mark OR minimum distance between successive / adjacent (1) Wavefronts (1)	2			2		
	(b)	(i)	$\lambda \text{ is the distance travelled in one period (1)}$ And speed = $\frac{\text{distance}}{\text{time}}$ (1) OR Frequency = $\frac{1}{T}$ (1) Distance in 1 s = no. of waves per sec × wavelength (be generous) (1) If they start from $v = f\lambda$ allow 1 mark for frequency = $\frac{1}{T}$ (1)	2			2	1	
		(ii)	Distance travelled = 180 [m] (1) Speed = $\frac{180}{0.51}$ = 350 or 353 [m s ⁻¹] (1) (correct answer implies 1st mark because "calculate") Allow 1 mark for 175 or 176 or 180 [m s ⁻¹]		2		2	1	2
		(iii)	Period = $\frac{7.55}{20}$ OR freq = $\frac{20}{7.55}$ (0.38 s, 2.65 Hz) (1) Substitution into $c = \frac{\lambda}{T}$ OR $c = f\lambda$ (1) ecf on c (don't penalise $c = 330$ or 340 or similar) Correct answer = 133 [m] (1)	1	1		3	2	3

Question	Marking dataila			Marks	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(iv)	Strobe frequency is wrong (1) Appears stationary at half frequency (or multiples of period) (1) So counting and timing method better (must be linked to some good physics) (1) Alternative: Student miscounted accept "human error" (1) Counted half oscillations (1) And the stroboscope is better (must be linked to some good physics) (1) Alternative: 2 marks max bad calibration / systematic error of strobe (1) So counting and timing method better (must be linked to some good physics) (1) Alternative: 2 marks max Because 7.55 \pm 0.1ish or 1.3 \pm 0.1 (1) Hence, timing is better (1)			3	3	1	3
	Question 1 total	5	4	3	12	5	8

	Quest	lion	Marking dataila			Marks	available		
, c	Juest	lion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
2	(a)		A good attempt at any sized diffraction pattern (1) (No marks for double slit pattern) Wavefronts nearly semi-circular centred at the slit and no lines crossing or touching (1) Wavelength remains constant throughout (by eye) (1) Ignore any arrows for wave direction	3			3		
	(b)		Lines or slits cause light to spread (accept diffract) (1) So rays / light can overlap / interfere / cross paths / superpose (1) In general, no mention of slits / lines / equivalent – no marks Exception – diffracted waves spread out allowing them to interfere. This is worth 1 mark. The plural "waves" implies many lines but the answer should have stated this.		2		2		
	(c)	(i)	$\tan \theta = \frac{\left(\frac{357.9}{2}\right)}{250} (1)$ Angle = 35.60° (1) Substitution i.e. $2\lambda = d \sin 35.60$ (1) Applying no. of lines per cm = $\frac{1}{d}$ (1) Correct answer = 4491 OR 4490 OR 4492 [lines per cm] (1) (correct answer implies all previous because "calculate") Allow 4 marks for 6326 ± 1 (lines/cm) (expect 55.06°)	1	1 1 1 1		5	5	5

Question	Merking dataila			Marks	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	Alternative for max 3 marks $\lambda = \frac{ay}{D}$ used (1)Gives $a = 1.8 \times 10^{-6}$ [m] (do not penalise power of 10 errors here) (1)Final lines per cm = 5523 ± 1 (1)Max of 4 marks for: Incorrectly assuming $n = 1$ angle is half of $n = 2$ angle (diff grat MS applies)Expect: Angle = 19.69° Substitution into diffraction grating equation (1)Applying no. of lines per cm = $\frac{1}{d}$ (1)Lines per cm = 5200 ± 1 (1)						
(ii)	Lowers <u>percentage</u> uncertainty (1) in lengths [and final answer] OR since absolute uncertainty is the same / resolution the same (1)			2	2		2
(d)	 Any 3 × (1) from: Accept interference pattern for fringes Fringes are brighter for diff grat (dg) OR converse for double slit Can be carried out without darkness OR converse for ds Fringes are sharper / clearer for dg OR converse for ds Distances can be larger / more precise / accurate OR converse for ds (accept measurements more precise because all measurements are distances) Line spacing of dg more precise / accurate NOT – a more accurate fringe pattern 			3	3		3
	Question 2 total	4	6	5	15	5	10

	•••••					Marks	available		
(Quest	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
3	(a)	(i)	0.940		1		1	1	1
		(ii)	1^{st} conclusion improvements (Helen)Line passes through all error bars (1)Anything good relating to the shape of the curve e.g. gradientdecreases OR maximum refraction angle / critical angle ORstraight / proportional at start because $\sin \theta \approx \theta$ (1)NOT - total internal reflectionAccept curves as expected OR correct / expected shape but notjust "curve" 2^{nd} conclusion improvements (Valentina)LOBF is straight line through origin ACCEPT sin(i) proportional tosin(r) (1)All points close to LOBF OR through all error bars (1)			4	4		4
	(b)		Pair of points taken or gradient attempted (1) Refractive index =1.47-1.50 (1) Allow this mark if they calculate max-min and some part is in this range e.g. 1.45 ± 0.02 Gradient because it incorporates all readings OR similar e.g. using point towards right of LOBF smaller % unc / more precise (1) Accept – gradient gives average of values			3	3	2	3
			Question 3 total	0	1	7	8	3	8

	Question 4 (a) (i) 4 (a) (i) (b) (i) (b) (i) (i) (i) (b) (i) (i) (i)				Marks a	vailable			
(Questi	on	Marking details	AO1	AO2	AO3	Total	Maths	Prac
4	(a)	(i)	Anything in range 1 mm – 1 m unit mark Don't accept >1 mm OR <1 m but accept range within range e.g. $10 \text{ cm} < \lambda < 15 \text{ cm}$	1			1		
		(ii)	Anything in range $10 \text{ nm} - 400 \text{ nm}$ unit mark (penalise only once) Don't accept >10 nm OR <400 nm but accept range within range e.g. $200 \text{ nm} < \lambda < 300 \text{ nm}$	1			1		
	(b)	(i)	The <u>minimum</u> energy (1) To free an electron OR for an electron to escape (1) [surface of metal is in the question]	2			2		
		(ii)	Valid method for converting wavelength to energy i.e. application of $\frac{hc}{\lambda}$ (1) Valid method for converting J to eV i.e. dividing by <i>e</i> (1) OR quoting a few eV e.g. $3 \text{ eV} = 4.8 \times 10^{-19} \text{ [J]}$ Correct eV of microwave and UV quoted (allow ecf) (1) [1.24 µeV-1.24 meV] [3.1 eV-124 eV] OR comparison of both UV and micro with e.g. $4.8 \times 10^{-19} \text{ [J]}$ OR 2 calculations for $E_{k \text{ max}}$	1	1		3		

Questia		Marking dataila			Marks a	vailable		
Questic	חכ	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	(iii)	Use of $E = \frac{hc}{\lambda}$ (9.945 × 10 ⁻¹⁹ J) (1) Conversion from J to eV e.g. 5.1 × <i>e</i> OR $\frac{E}{e}$ (1) Correct use of Einstein's equation e.g. $E_{k max} = 1.785 \times 10^{-19}$ [J] OR 1.12 [eV] (implied by correct final answer) (1) Rearrangement of KE equation e.g. $v^2 = \frac{2KE}{m}$ (1) Final answer = 6.26 × 10 ⁵ [m s ⁻¹] (1) (all previous marks implied by correct answer unless something demonstrably wrong) Award 2 marks for 1.5 × 10 ⁶ [m s ⁻¹]	1	1 1 1 1		5	5	
		Question 4 total	6	6	0	12	5	0

Overstien				Marks a	Marks available							
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac					
5	Indicative content:											
	Method	6			6		6					
	Increase pd gradually											
	Until some value of current e.g. 30 mA OR until light seen											
	Record pd											
	Change LED											
	Repeat process											
	Wavelengths of LEDs known											
	Analysis											
	Electron energy = photon energy											
	$eV = \frac{hc}{\lambda} OR eV = hf$											
	Plot graph of V against $\frac{1}{\lambda}$ OR $\frac{1}{V}$ against λ OR V against f OR eV											
	against $\frac{1}{\lambda}$ OR $\frac{1}{eV}$ against λ OR eV against f											
	Get <i>h</i> from the gradient											
	Correct equation for gradient and h i.e. gradient = $\frac{hc}{e}$ OR $\frac{e}{hc}$ OR $\frac{h}{e}$											
	OR hc OR $\frac{1}{hc}$ OR h											
	Note – many good points are available even when candidates are											
	discussing stopping potentials e.g. eV_s will be similar to the energy supplied to the electron in the LED											
	5-6 marks											
	Comprehensive description of method and analysis											
	There is a sustained line of reasoning which is coherent, relevant,											
	substantiated and logically structured.											

Question	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	 3-4 marks Basic description of comprehension and analysis or comprehensive of one only. There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. 1-2 marks Limited description of one or both or basic description of one only. There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks						
	No attempt made or no response worthy of credit.						
	Question 5 total	6	0	0	6	0	6

	0	Maulting dataila			Marks	available		
	Questio	on Marking details	AO1	AO2	AO3	Total	Maths	Prac
6	(a)	Long lifetime / half-life OR equivalent OR forbidden transitions OR stays longer Don't accept NOT quite stable	1			1		
	(b)	Use of $\lambda = \frac{0.693}{T_{\frac{1}{2}}}$ (1) (gives 288.75) $\frac{5 \times 10^{18}}{288.75}$ seen OR 1.73 × 10 ¹⁶ seen OR 1.7 × 10 ¹⁶ × 289 (1) Explanation that rate of pumping = rate of spontaneous dropping for equilibrium OR activity = pumping rate (1)		3		3	2	
	(c)	[Metastable] linked to population inversion / stimulated emission (1) [Larger population] gives higher output / more stimulated (1) Accept – more probable / easier for stimulated emission to occur Accept – less pumping required Accept – brighter for higher output Population is proportional to half-life (1)	1 1	1		3		
		Question 6 total	3	4	0	7	2	0

~)	(iii) 0.8 = (acce ln 0.8 Use of Expe Final answ (iii) U235 (expe U238 Note: 1.5 × 1 × (Marking dataila	Marks available					
C	luesti	ION	Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(a)	(i)	Nucleon = 207 (1) Proton = 82 (1)		2		2		
		(ii)	$0.8 = e^{-\lambda t}$ OR $0.8 = \frac{1}{2^n}$ (1) correct substitution	1					
			(accept $\frac{0.8}{0.9928}$ instead of 0.8)						
			$\ln 0.8 = -\lambda t \mathbf{OR} \log 0.8 = n \log 0.5 \text{ i.e. taking logs (1)}$ Use of $\lambda = \frac{\ln 2}{T_1} \mathbf{OR}$ no. half-lives = 0.322 (1)		1 1				
			Expect 9.85×10^{-4} million-year ⁻¹ or 3.12×10^{-17} s ⁻¹ or 9.85×10^{-10} yr ⁻¹ Final answer = 227 million-year OR 7.15×10^{15} s or equivalent correct answer unit mark (1)		1		4	4	
		(iii)	U235, 6.4 billion = 9.09 half-lives OR λ obtained for [U235 and] U238 (expect 0.155 billion year ⁻¹ OR 4.91 × 10 ⁻¹⁸ s ⁻¹) (1) U238, 1.43 half-lives OR rearrangement i.e. $N_0 = Ne^{+\lambda t}$ (1) Note: If 0.0018 and 0.37 seen award 1 st 2 marks $1.5 \times \left(\frac{1}{2}\right)^{9.09}$ OR $0.72 \times 2^{9.09} = 392$ OR $0.72e^{+\lambda_1 \times 6.4}$ OR $1.5e^{-\lambda_1 \times 6.4}$ (1) $1 \times \left(\frac{1}{2}\right)^{1.43}$ OR 99.28 × 2 ^{1.43} = 268 OR 99.28 $e^{+\lambda_2 \times 6.4}$ OR $1e^{-\lambda_2 \times 6.4}$ (1) $\frac{392}{268} = 1.46$ so about right etc. (1)			5	5	4	
			Alternative 3: λ obtained for [U235 and] U238 (1) $N_1 = N_0 e^{-\lambda_1 t}$ and $N_2 = 1.5N_0 e^{-\lambda_2 t}$ (1) Dividing and using concentrations i.e. $\frac{N_2}{N_1} = \frac{99.28}{0.72} = \frac{1}{1.5} e^{-\lambda_2 t + \lambda_1 t}$ (1) Taking logs correctly i.e. $-\lambda_2 t + \lambda_1 t = \ln \frac{99.28 \times 1.5}{0.72}$ (1) Correct answer = 6.43 billion (1)						

	Merking details			Marks	available	•	
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac
	Alternative 4 $2\frac{t}{2^{\frac{t}{4.47}}}N_1 = N_0 (1)$ $\frac{t}{2^{\frac{t}{0.704}}N_2} = 1.5N_0 (1)$ Dividing and using concentrations i.e. $2^{\left(\frac{t}{0.704} - \frac{t}{4.47}\right)}\frac{99.28}{0.72} = \frac{1}{1.5} (1)$ Taking logs correctly i.e. $\left(\frac{t}{0.704} - \frac{t}{4.47}\right)\ln 2 = \ln(\frac{0.72}{99.28 \times 1.5})(1)$ Correct answer = 6.43 billion (1)						
(b)	Any 3× valid points (1)Examples of valid points:Alpha highly dangerous if inhaled due to high ionisationUnwise to go against planning officials / councilRadon heavy gas / dense so goes to basementsRadon gas can accumulate / increase concentrationRadon concentration might be greater than 10×Smoking / asbestos is far more dangerousCouncils were advised by experts / scientistsDamp proof course provides protectionEnters through cracks / leaks OR some brief explanation why roomsother than basements might be dangerousOnly allow one of the following as valid number interpretation:Risk of lung cancer is low (0.4%-0.5%)Increase risk is only 0.1% or to 1 in 200Risk of lung cancer increases by 25%Don't accept:Not - Cornwall or similar (10× normal in question)Not - open doors for ventilation (no good in winter)			3	3		
	Question 7 total	1	5	8	14	8	0

	Question	Marking dataila	Marks available AO1 AO2 AO3 Total Maths					
	Question Marking details		AO1	AO2	AO3	Total	Maths	Prac
8	(a)	BN applied once $1+1=1+1+0$ (1) Accept $1+1 = 1 + 1$ Accept uud + uud = uud + uud + ?? LN applied once $0+0=0+0+0$ (1) Accept $0+0=0+0$ Q applied once $1+1=1+1+0$ (1) Accept $1+1=1+1$ Conclusion: neutral pion/ π^0 /uū/dd (1) NOT photon Alternative: BN of X must be 0 (1) LN of X must be 0 (1) Q of X must be 0 (1) Conclusion: neutral pion (1)		4		4		
	(b)	Mass is equivalent to 67.5 MeV ×2 (1) Allow for ×2 seen × 1.6×10^{-19} and $\div 9 \times 10^{16}$ OR $\div 931$ and $\times 1.66 \times 10^{-27}$ (1) Correct answer = 2.41×10^{-28} [kg] (1) Allow 2 marks for 1.2×10^{-28} and 4.8×10^{-28} and 2.41×10^{-34} [kg]		3		3	3	
		Question 8 total	0	7	0	7	3	0

0		Merking details		Marks available							
ູ ູ ູ ູ ູ ູ	uestion	Marking details	AO1	AO2	AO3	Total	Maths	Prac			
9 ((a)	Clockwise (1) Accept clockwise arrow at tangent [Fleming's] LHR (1) Accept Coulomb OR electrostatic attraction (of the positive alpha particle to the negative tube)	1	1		2					
((b)	$\frac{mv^2}{r} = Bqv (1)$ Substitution (1) Answer = 0.04 [T] (1) Award 2 marks for 0.08 [T], 0.02 [T], 0.01 [T] Ignore any further calculation of flux	1	1		3	2				
((c)	$T = \frac{2\pi r}{v} \text{OR} m\omega^2 r = Bqv \text{OR} \omega = \frac{Bq}{m}(1)$ $f = \frac{1}{T} \text{OR} \omega = 2\pi f(1)$ i.e. $f = \frac{v}{2\pi r} \text{OR} f = \frac{Bq}{2\pi m}$ scores first 2 marks Correct answer = $f \times 2 = 606$ k[Hz] (full ecf available on wrong <i>m</i> and <i>q</i> and <i>B</i>) (1) Note: 303 kHz is 2 marks as is 1.2 MHz	1	1		3	3				
((d)	Use of $\frac{1}{2}mv^2$ (needs <i>m</i> or <i>v</i> substitution) (1) Correct conversion to eV i.e. dividing J by <i>e</i> (5.312 MeV) (1) Allow 1 mark for stopping at 8.5×10^{-13} [J] Allow 2 marks for 8.5×10^{-13} [J] = 5.3 M[eV] Allow 2 marks for $\frac{\frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times (1.6 \times 10^{7})^2}{1.6 \times 10^{-19}}$ Allow 2 marks even if calculated elsewhere e.g. in (c) If there is a slip present only allow 1 of 1 st 2 marks If no evidence of dividing by <i>e</i> and answer is 5.3 MeV rather than 5.31 MeV – only allow 1 st mark Explanation of how 4 accelerations and charge of 2 <i>e</i> linked to 8 <i>nV</i> (1) Beware! Not 2 V × 4 Accept $V \times 2e \times 4$ – minimum explanation	1	1		3	2				
		Question 9 total	4	7	0	11	7	0			

~			Meriking dataila	Marks available							
G	Questi	on	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)	Only vertical component cut OR only vertical component producing flux OR horizontal lines not cut OR the area is perpendicular to the vertical component OR normal of area is in perpendicular direction OR horizontal gives flux of zero OR flux due to horizontal doesn't change OR $\theta = 0$ for vertical lines OR $\cos \theta = 1$ for vertical lines OR $\theta = 90$ for horizontal lines OR $\cos \theta = 0$ for horizontal lines Not – current perpendicular to vertical magnetic field Not – motion is perpendicular to vertical magnetic field Not – horizontal component is parallel to motion / current		1		1				
		(ii)	Anticlockwise/ up in slider / down in resistor / down in ammeter etc. OR correct arrow on diagram (1) If up / down / left / right, must specify where Rule explained in sufficient detail (1) e.g. [F]RHR – sufficient OR [F]LHR & applied to electrons in slider OR [F]LHR combined with Lenz's (to reverse) OR right-hand grip rule & opposing / Lenz	1	1		2				
		(iii)	$V = Blv \text{ quoted } \mathbf{OR} \text{ derived } \mathbf{OR} \text{ equivalent (1)}$ $I = \frac{V}{R} \text{ (to obtain 0.6 mV, implied by correct answer) (1)}$ Correct answer = 45 µ[T] (1)		3		3	3			
	(b)		Rhianna wrong, current decreases (1) Because area / flux increases at a decreasing rate OR because rate of cutting decreases [in circuit] (1) OR because <i>l</i> decreases in Blv Accept – because the change in area gets smaller [per unit time] Accept – because $\Delta \Phi$ or ΔBA or ΔBAN etc. decreases Not – because area decreases Not – because current \propto area			2	2				
	+		Question 10 total	1	5	2	8	3	0		

SECTION B

Option	Α-	Alternating	Currents
--------	----	-------------	----------

~)		Marking dataila	Marks available							
Ċ.	Questi	on	Marking details	A01	AO2	AO3	Total	Maths	Prac		
11	(a)	(i)	$X_L = X_C$ at resonance (1) $2\pi f L = \frac{1}{2\pi f C}$ and no mistakes in algebra (1)	1	1		2	1			
		(ii)	Substitution of 100 pF to get f_0 (1) Correct answer = 145 k[Hz] (1)		2		2	1			
		(iii)	$V_L = V_C$ at resonance OR all pd across <i>R</i> at resonance / min <i>Z</i> at resonance / $Z = R$ at resonance (1) $I = \frac{230}{47}$ seen (1)	1	1		2	1			
	(b)	(i)	Phasor diagram with X_C or V_C perpendicular to R or V_R (1) R or V_R leading C or V_C (default is anticlockwise but accept clockwise if stated) (1) V_R or R V_C or X_C Resultant phasor drawn (1) Length of the resultant indicated to be $\sqrt{R^2 + X_C^2}$ OR $\sqrt{V_R^2 + V_C^2} = I\sqrt{R^2 + X_C^2}$ (1)	1	1		4	1			

Question	on Marking details		Marks available							
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac			
(ii)	Substitution of $X_C = \frac{1}{\omega C}$ (1) Squaring seen leading to answer (1)		2		2	2				
(iii)	Intercept = 4.8 (with tolerance of ± 0.1) (1) Hence, $R = 2.2 [\Omega]$ (1) Gradient = $4.5 \times 10^{10} \pm 0.1 \times 10^{10}$ (1) Gradient = $\frac{1}{C^2}$ (1) Final answer $C = 4.7 \times 10^{-6}$ [F] (1)			5	5	4				
(iv)	As <i>f</i> increases, X_C decreases or vice versa (can be implied in answer) (1) Correct explanation of division of pds at low <i>f</i> (i.e. X_C is huge so V_R is negligible) (1) Correct explanation of division of pds at high <i>f</i> (i.e. at high frequency X_C very small so $V_R = V_{supply}$ or $V_C = 0$) (1)	1	1		3					
	Question 11 total	6	9	5	20	10	0			

•			Masking dataila	Marks available							
Q	uesti	on	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
12	(a)	(i)	$V = \frac{7500}{0.25} = 30000[V] \text{ or } 30k[V]$		1		1	1			
		(ii)	Line spectrum and background spectrum labelled (1)	1							
			Use of $\lambda_{\min} = \frac{hc}{eV}$ (1) ecf on <i>V</i> $\lambda_{\min} = 4.14 \times 10^{-11}$ [m] or 0.0414 n[m] (value with correct multiplier) (1)	1	1		3	2			
		(iii)	Same shaped spectrum shifted up & to the left & spikes in same place (1) Method for calculation $\lambda_{\min} = \frac{hc}{eV}$ (1)		3		3	2			
		(iv)	$\lambda_{\min} = 3.09 \times 10^{-11} \text{ [m] or } 30.9 \text{ p[m] ecf (1)}$								
			No; and use of $E = \frac{hc}{\lambda}$ (1) If $\lambda = 0$, <i>E</i> is infinite (1) Accept <i>V</i> is infinite		2		2	2			
	(b)		1 mark for conclusion and reason for each technique e.g. Ultrasound B-scan would be best / simplest / quickest because cheapest and provides moving images (1) MRI good but more expensive (modern MRI produces moving images too) (1) X-rays poor due to bad soft tissue contrast / not moving images (but can diagnose calcification of valves) (1) CT similar to X-ray but higher dosage and better soft tissue contrast / 3D (1) Radioactive tracer - pointless (even if used with gamma camera, resolution far too low) / they don't give moving images (1)			5	5				

Question	Marking dataila	Marks available				!		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac	
(c)	Use of $\frac{\Delta\lambda}{\lambda} = \frac{2\nu\cos\theta}{c}$ (1) Rearrangement: $\nu = \frac{c\Delta\lambda}{2\lambda\cos\theta}$ (1) $\nu = 0.886 \text{ [m s}^{-1}$] (1)	1	1 1		3	3		
(d)	Positron emitter injected/enters body OR positron emitter collects at point of interest/cancer (1) Positron-electron annihilation - gives 2 gamma rays (1) Detected in opposite directions OR detected with gamma cameras OR detected with time delay(s) (1)	3			3			
	Question 12 total	6	9	5	20	10	0	

			Marking details	Marks available							
Q	uestic	on	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
13	(a)		Principle of moments applied (1) Clockwise moments and anticlockwise moments correctly applied i.e. $(95.8 T \times cos24) + (126 \times 38) = (820 \times 22.3)$ (1) T = 154 [N] (1) If $Tsin24 \times 95.8$ or $F \times 95.8$ used correctly – award 2 marks	1	1 1		3	2			
	(b)		Moment of inertia is defined as $I = \sum m_i r_i^2$ (1) Where m_i is the mass and r_i is the distance from the axis of rotation (1) OR torque / angular acceleration 1 mark equation, 1 mark for terms	2			2				
	(c)	(i)	Angular momentum = $I\omega$ (1) Moment of inertia = 8.24×10^{-5} [kg m ²] (1) Angular momentum = 2.59×10^{-3} [kg m ² s ⁻¹] (1)	1	1		3	2			
		(ii)	Rotational kinetic energy $=\frac{1}{2}I\omega^2$ (1) Rotational KE = 1.82 [J] (ecf on moment of inertia) (1) Linear KE = 71.6 [J] – so correct (1)	1	1		3	2			

Question		Merking dataila	Marks available						
		Marking details	AO1	AO2	AO3	Total	Maths	Prac	
(d)	(i)	Horizontal distance = $19 - 8 = 11$ [m] OR distance from batsman calculated to check answer (1) Vertical and horizontal components of velocity correct Vertically $v = 6.26$ [m s ⁻¹]; Horizontally $v = 44.56$ [m s ⁻¹] (1) Use of horizontal velocity to obtain time of flight, assuming 11 m (0.267s) [s] OR using vertical velocity to obtain time of flight through solving quadratic equation in time (0.265 s) (1) Checking vertical distance using time of flight OR checking horizontal distance using time of flight (1) Conclusion – Height is smaller so ball will land more than 8 m from batsman (1)			5	5	4		
	(ii)	Air resistance force shown correctly (opposite to motion) (1) "Lift" force shown correctly (should be 90° to motion) (1)	1	1		2			
	(iii)	Drag has greater effect on horizontal component so lands earlier (no ecf on drag direction) (1) Topspin provides downward force and so lands earlier (ecf on lift direction) (1)		2		2			
		Question 13 total	6	9	5	20	10	0	

	Question			Marking details	Marks available						
					AO1	AO2	AO3	Total	Maths	Prac	
14	(a)	(i)		$\frac{340 - (77 + 23 + 76) = 164 \text{ OR reflected} = 76 + 23 (1)}{\frac{77 + 164}{340} = 0.71 \text{ so correct OR } \frac{99}{340} = 0.29 \text{ and } 1 - 0.29 = 0.71 (1) \text{ [so correct]}}$			2	2	1		
		(ii)		[Greenhouse] gases [in atmosphere] absorb [far] infra-red radiation [and transmits visible and some near UV and IR] (1) [Absorbed infra-red] re-radiated to Earth / Earth's surface warming planet [to a higher temperature than without atmosphere] (1)	2			2			
		(iii)	I	[Increased] volume of transport / electricity production / industrial processes / burning of fossil fuels / agriculture (1) Leading to [increased] greenhouse gas emissions (1) More infra-red radiation absorbed or owtte (1)		3		3			
			II	Ice or snow melt / evaporation / permafrost melt (1) Ice or snow reflect less radiation or more radiation absorbed by what lies beneath / more water vapour in atmosphere / more methane released (1)		2		2			
	(b)			$I \cos \theta = 350 \cos 28 = 309 (1)$ Sub into $I = \frac{P}{A}$ i.e. $309 = \frac{P}{1.9} (1) [P = 587 W]$ Sub into efficiency = $\frac{\text{useful energy [per second] transfer}}{\text{total energy [per second] input}} \times 100\%$ i.e. $\frac{128}{587} \times 100\% (1)$ Answer = 21.8 [%] or 0.218 (1) ecf on vertical component	1	1		4	4		

Option D – Energy and the Environment

0	Question		Marking dataila	Marks available						
Ques	stion		Marking details		AO2	AO3	Total	Maths	Prac	
(c)	(i)		Rate of energy transfer is 1.51 J s ⁻¹ (or W) (1) through an area of 1 m ² for a temperature difference of 1 K [between the inside and outside of the external wall] (1)	2			2			
	(ii)	I	$A = \frac{P}{U\Delta\theta} \text{ with correct } P \text{ and } \Delta\theta \text{ inserted e.g. } \frac{180}{1.51 \times 10} (1)$ 11.9 [m^2] (1) Alternative: $\frac{\Delta P}{\Delta\theta} = [-] 18 (1)$ $A = \frac{18}{U} = 11.9 \text{ [m^2] (1)}$		2		2	2		
		11	Area of wall = 8.2 [m ²] OR P_{doors} = 51 [W] (1) $P_{wall} = 65 - 51 = 14$ [W] (1) $U = \frac{P}{A\Delta\theta} = 0.17$ [W m ⁻² K ⁻¹] (1) [< 0.2 so Charlie is correct] Accept alternative methods using 0.2 [W m ⁻² K ⁻¹] to calculate U_{door} OR $P_{wall+door}$			3	3	3		
			Question 14 total	6	9	5	20	10	0	

A LEVEL COMPONENT 3: LIGHT, NUCLEI AND OPTIONS

SUMMARY OF ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	5	4	3	12	5	8
2	4	6	5	15	5	10
3	0	1	7	8	3	8
4	6	6	0	12	5	0
5	6	0	0	6	0	6
6	3	4	0	7	2	0
7	1	5	8	14	8	0
8	0	7	0	7	3	0
9	4	7	0	11	7	0
10	1	5	2	8	3	0
11	6	9	5	20	10	0
12	6	9	5	20	10	0
13	6	9	5	20	10	0
14	6	9	5	20	10	0
TOTAL	36	54	30	120	51	32

A420U30-1 EDUQAS GCE A Level Physics - Component 3 MS S23/CB