Surname	Centre Number	Candidate Number
First name(s)		2

GCE A LEVEL

wjec сбас

A420U30-1

O20-A420U30-1

WEDNESDAY, 21 OCTOBER 2020 – MORNING

PHYSICS – A level component 3 Light, Nuclei and Options

2 hours 15 minutes		For Exa	aminer's us	e only
		Question	Maximum Mark	Mark Awarded
		1.	11	
		2.	6	
		3.	11	
DITIONAL MATERIALS		4.	7	
ddition to this examination paper, you will	Section A	5.	16	
uire a calculator and a Data Booklet .		6.	6	
		7.	13	
TRUCTIONS TO CANDIDATES		8.	7	
black ink or black ball-point pen. not use gel pen or correction fluid.		9.	8	
wer all questions.		10.	15	
e your name, centre number and candidate	Section B	Option	20	

ADD

In ad requi

INST

Use Do n

Answ

Write number in the spaces at the top of this page.

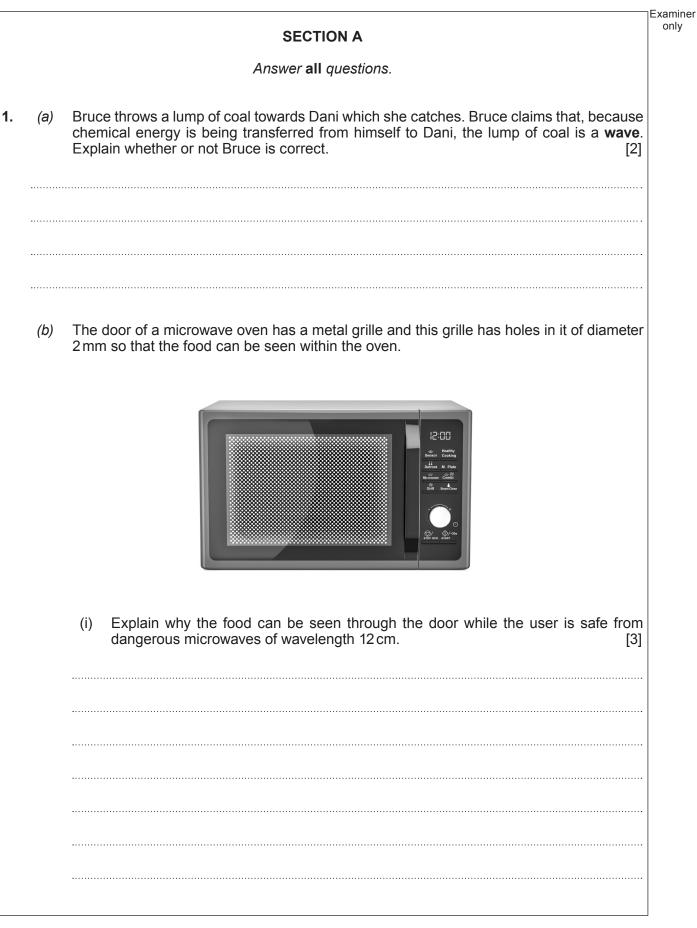
Write your answers in the spaces provided in this booklet. If you run out of space, use the

additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

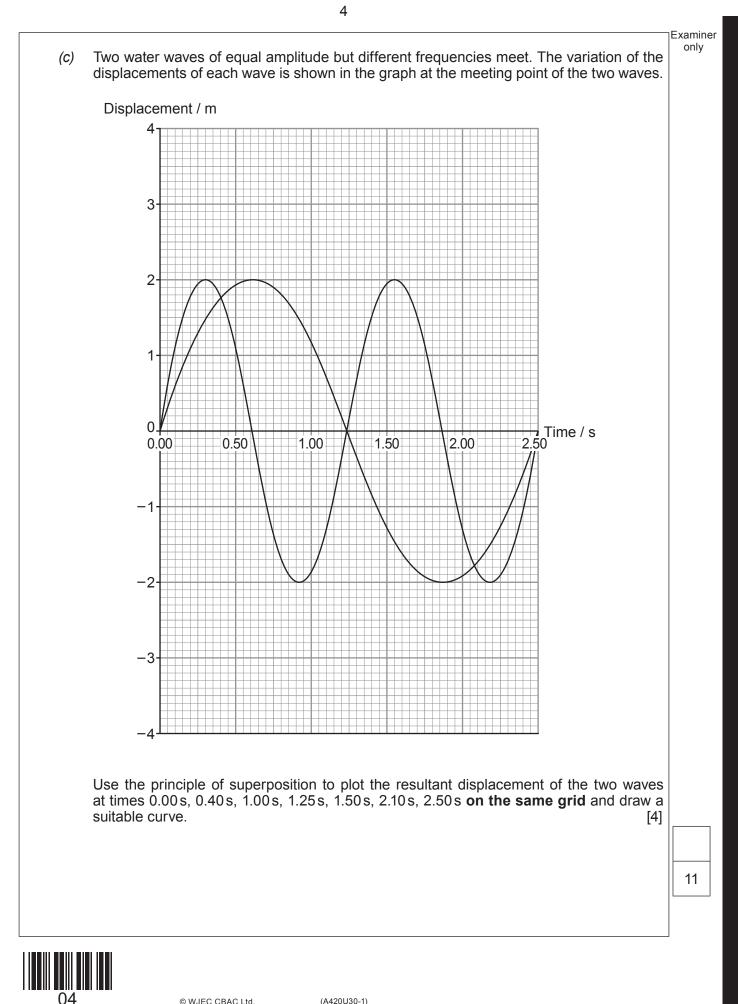
This paper is in 2 sections, **A** and **B**.

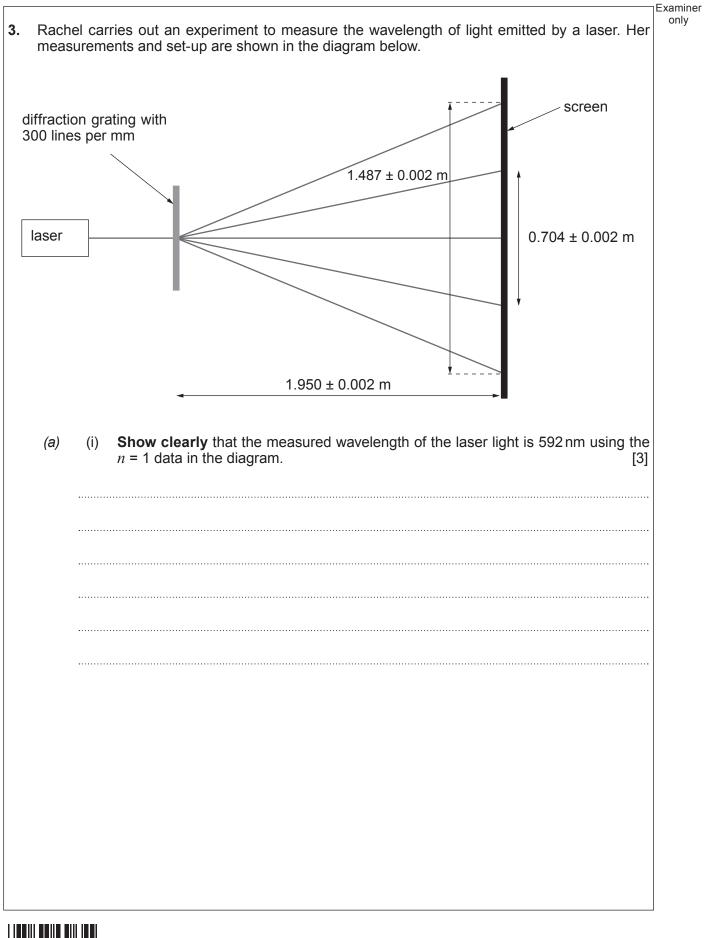
Section A: 100 marks. Answer all questions. You are advised to spend about 1 hour 50 minutes on this section.


Section B: 20 marks; Options. Answer one option only. You are advised to spend about 25 minutes on this section.

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 6.


Total

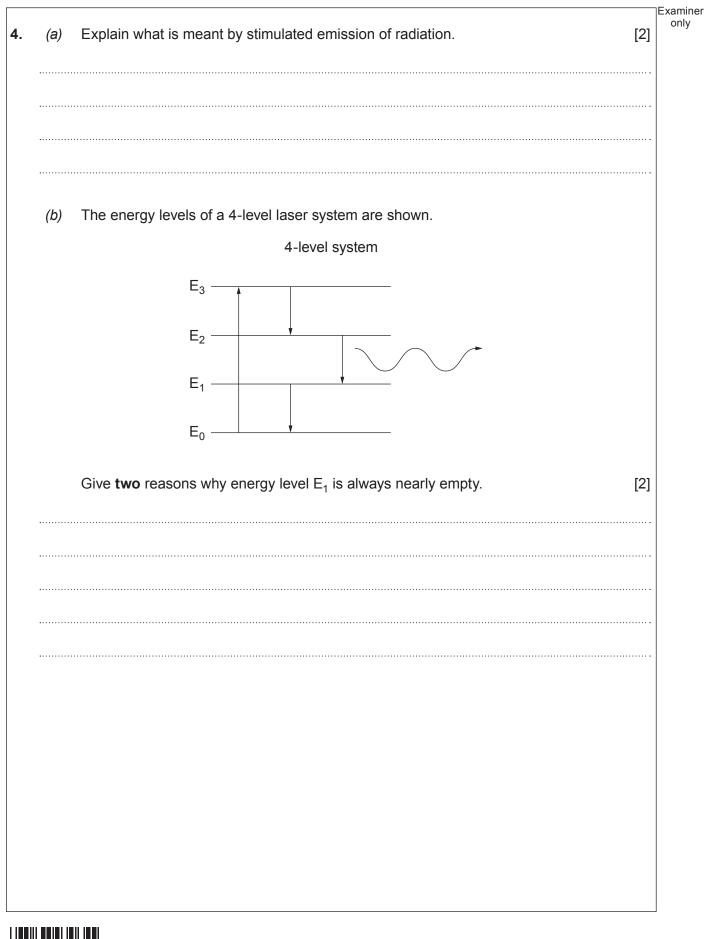

only

	(ii)	State or calculate a typical photon energy of visible light. [1]	Examiner only
	(iii)	Explain whether or not a microwave photon has a greater or smaller energy than a visible photon.	a
			A420U301
			∢
03		© WJEC CBAC Ltd. (A420U30-1) Turn over	

Examiner only 2. Calculate the de Broglie wavelength of an electron accelerated by a pd of 2200 V. (a) [3] _____ Explain how electrons can be used in a laboratory to produce a diffraction pattern and the effect of increasing the pd on the diffraction pattern. [3] (b) A420U301 05 6

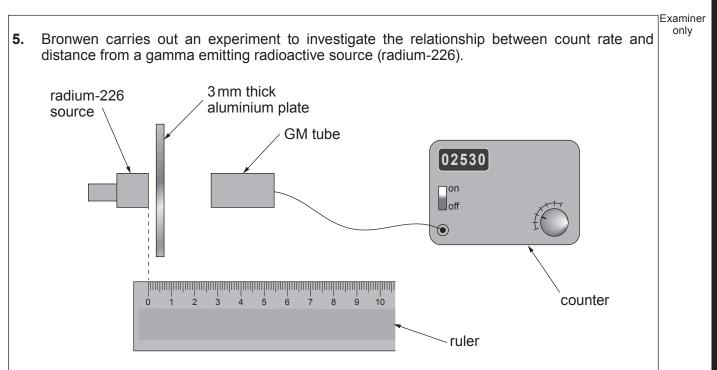
© WJEC CBAC Ltd.

(A420U30-1)

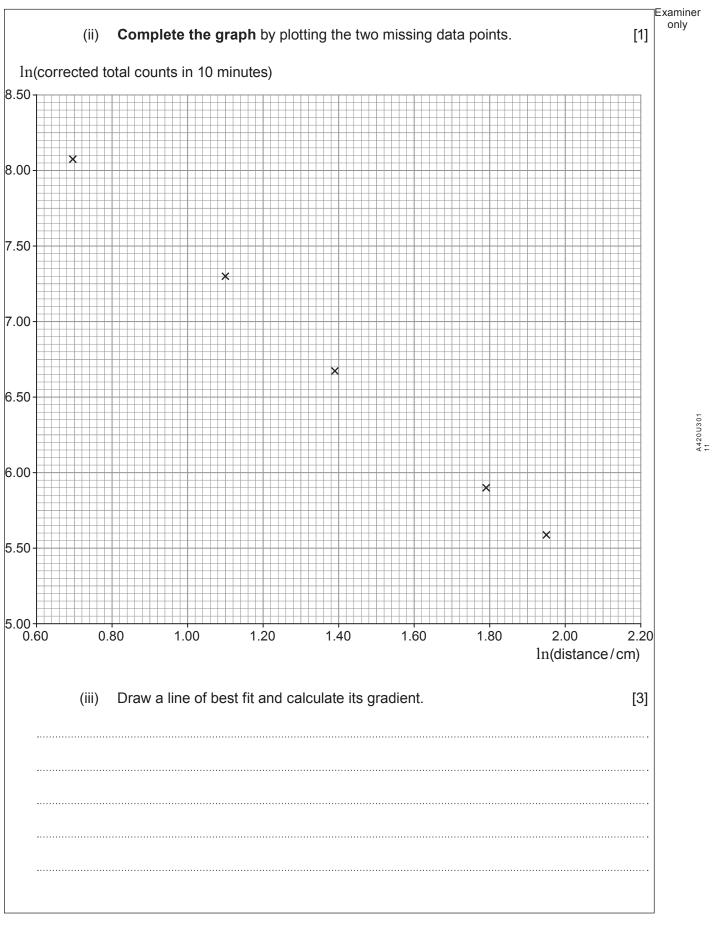

A420U301 07

	(ii)	Show clearly that the $n = 1$ data in the diagram leads to an uncertainty in the wavelength of ± 2 nm. You may assume that the manufacturer's labelling of 300 lines per mm for the diffraction grating is exact and that $\tan \theta \approx \sin \theta \approx \theta$.	[4]	Examiner only
(b)	data	manufacturer of the laser states that its wavelength is exactly 593.5 nm. The n in the diagram lead to a measured laser wavelength of 594 ± 1 nm. Explain whet ot these values and the value from part (a) are all consistent.	= 2 ther [2]	A420U301
(c)	Expl (594	lain why the $n = 1$ data (592 ± 2 nm) lead to a larger uncertainty than the $n = 2$ dat ± 1 nm).	ta [2]	
				11

Turn over.


(A420U30-1)

Examiner only (C) Victoria claims that when the laser system shown below is in equilibrium, the amplifying medium provides only a 0.5% increase in intensity of the beam each time it travels across the cavity. Her research partner, David, insists that the exponential increase in light intensity provided by the amplifying medium means that the beam intensity is increased by a factor of thousands for each pass even when the laser is in equilibrium. Discuss whether Victoria or David is correct. [3] exiting laser beam 99.0% 100% reflecting laser beam amplifying medium reflecting mirror mirror (laser cavity) A420U301 09 7



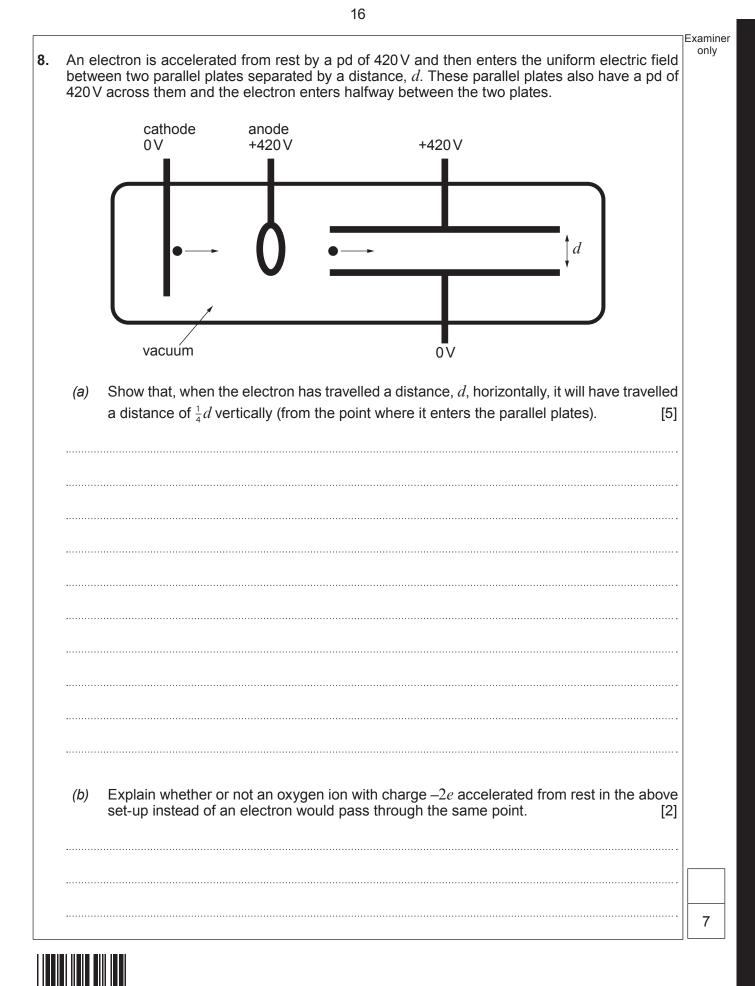
Her results are shown in the table.

Distance/cm	Total counts in 10 minutes	ln(distance/cm)	ln(corrected total counts in 10 minutes) {corrected for background radiation}
2.0	3 466	0.69	8.08
3.0	1 697	1.10	7.28
4.0	1 028	1.39	6.67
5.0	762		
6.0	609	1.79	5.91
7.0	507	1.95	5.59
8.0	447		

(a) (i) The **background radiation is 0.40 counts per second. Complete the table**. [3] *Space for calculations.*

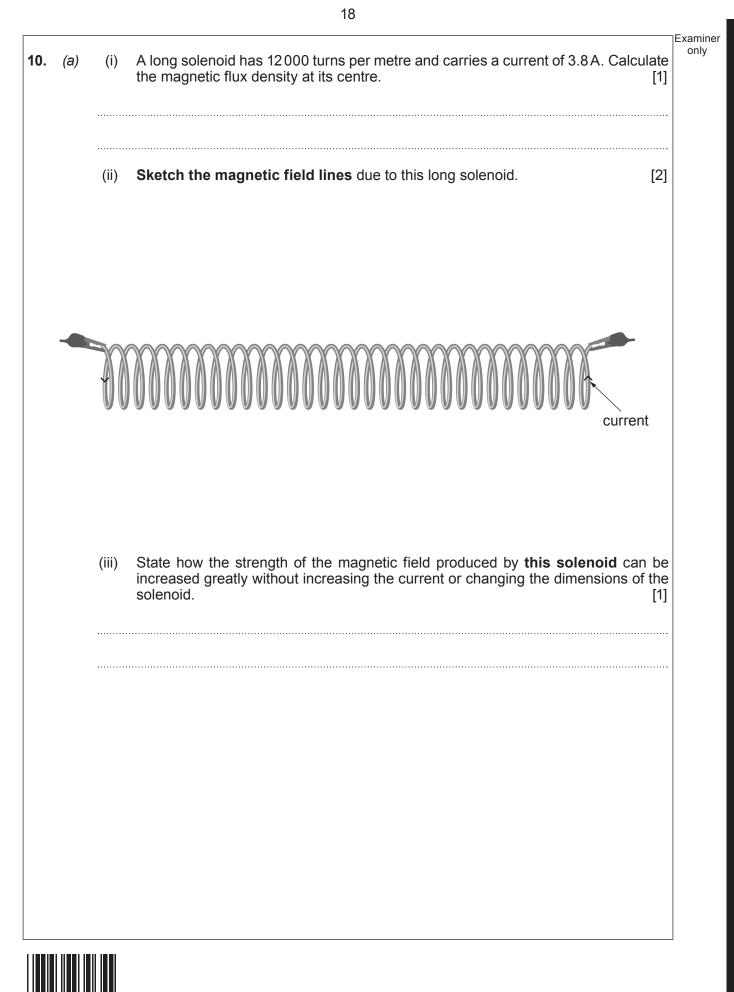
	(iv)	Theory suggests that:
		count rate $\propto \frac{1}{\text{distance}^2}$
		I. Show that the gradient of the graph should be –2. [2]
		II. Explain to what extent the results obtained in this experiment agree with theory. [3]
b)	Radi plate	um-226 also emits other radiation. Suggest a reason for using a 3mm aluminium between the source and the GM tube. [1]
	plate In 18 "blue scier	um-226 also emits other radiation. Suggest a reason for using a 3 mm aluminium between the source and the GM tube. [1] 396, G. Brandes reported that large intensities of high energy X-rays produced a -grey" glow within the eye. This was later confirmed by Willhelm Röntgen and other tists. The mechanism for this "blue-grey" glow is still not fully understood. Discuss thics of reproducing this experiment to understand it better. [3]
b) c)	plate In 18 "blue scier	between the source and the GM tube. [1] 96, G. Brandes reported that large intensities of high energy X-rays produced a -grey" glow within the eye. This was later confirmed by Willhelm Röntgen and other tists. The mechanism for this "blue-grey" glow is still not fully understood. Discuss

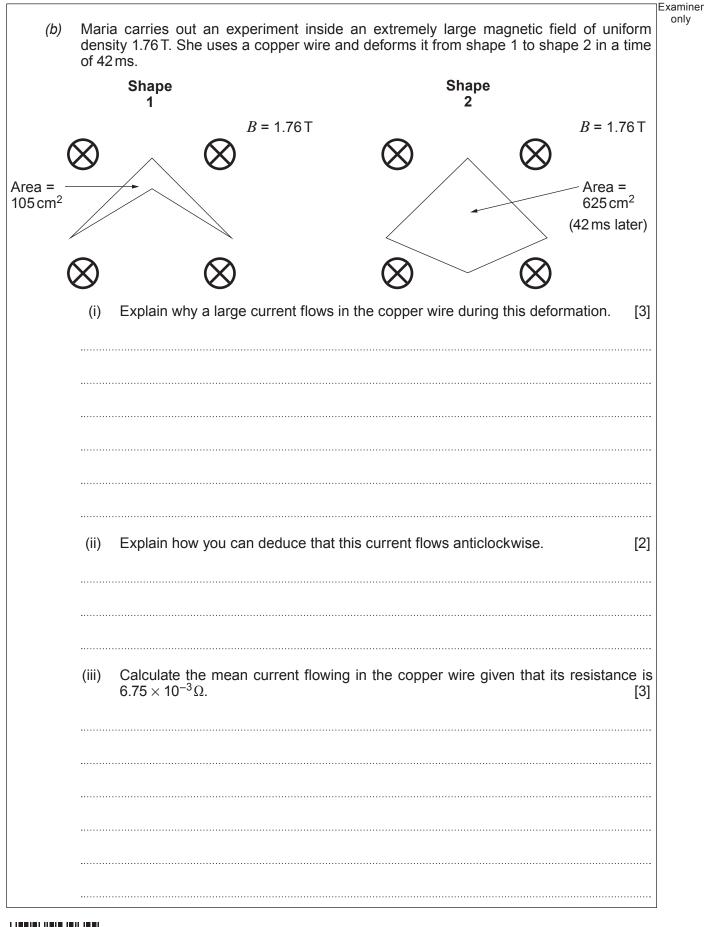
Discuss the make-up	and properties	of the following particles e^- , e^+ , n , \overline{p} ,		Examin only
				6
13 ©				
13 c	WJEC CBAC Ltd.	(A420U30-1)	Turn over.	


Examiner only The bismuth isotope ($^{209}_{83}Bi)$ decays by alpha decay to an isotope of thallium (Tl). Fill in 7. (a) the missing numbers for this decay. [2] $^{209}_{83}\text{Bi} \longrightarrow \text{Tl} + \text{He}$ (b) Determine whether or not a kinetic energy of 3.6 MeV for the alpha particle in the above reaction is consistent with the data in the table below (you may assume that the kinetic energies of the bismuth and thallium nuclei are negligible). [5] Nuclear mass of thallium isotope 204.9300 u Nuclear mass of alpha particle 4.0015 u Binding energy per nucleon of $\frac{209}{83}$ Bi nucleus 7.87 MeV / nucleon Mass of proton, $m_{\rm p}$ 1.0073 u Mass of neutron, $m_{\rm n}$ 1.0087 u Energy equivalent of 1 u 931 MeV

(C)	(i)	The half-life of ${}^{209}_{83}Bi$ is 1.9×10^{19} year. Calculate the activity of 1.00 gram of ${}^{209}_{83}Bi$.	[4]	Examiner only
	·····			
	(ii)	Determine the number of nuclei in 1.00 gram of $^{209}_{83}{\rm Bi}$ which will decay in 5 years	ars. [2]	
				A420U301 15
				13

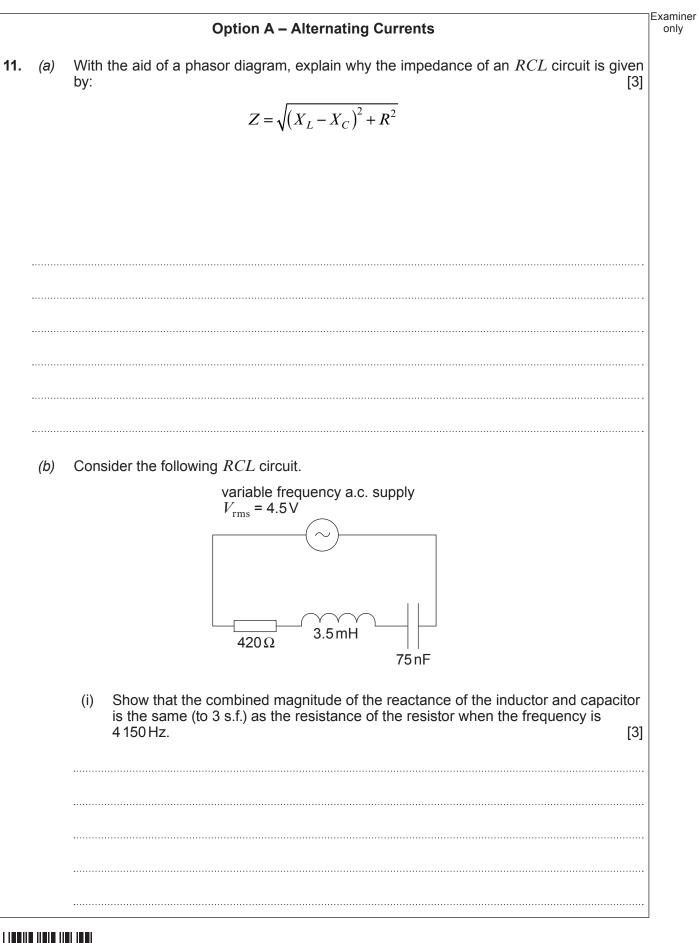
© WJEC CBAC Ltd.



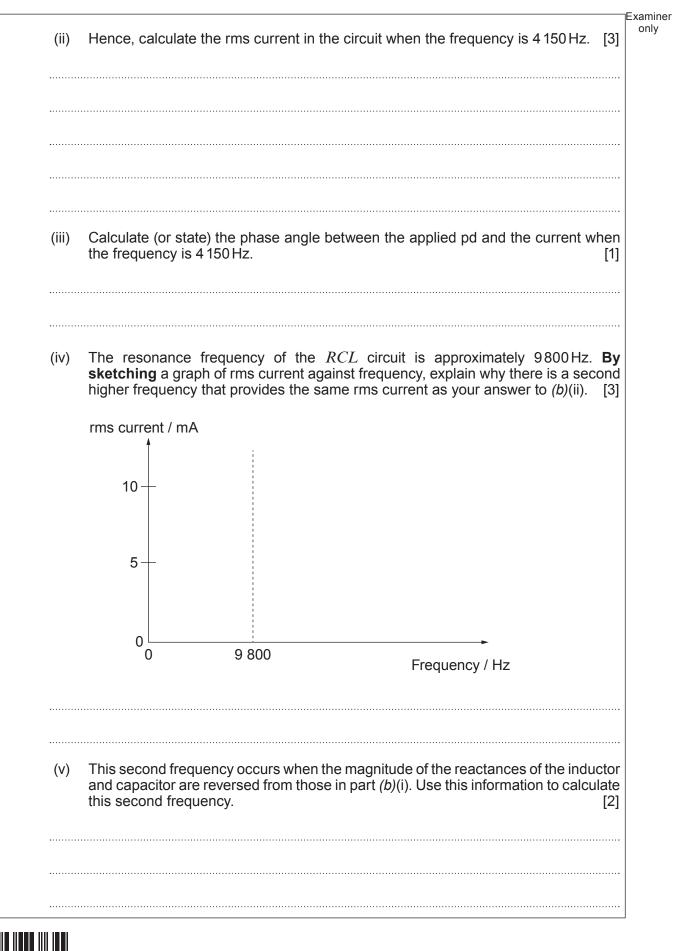

Э.	(a)	A sphere made of caesium is placed in space and illuminated by ultraviolet radiation of photon energy 10.3 eV. The work function of caesium is 2.1 eV. Explain in clear steps, using Einstein's photoelectric equation (and other physics), why the maximum potential attainable by the caesium sphere is +8.2 V. [5]	Examiner only
	······		
			A420U301
	(b)	Hence, calculate the maximum electric field strength around the caesium sphere given that its radius is 6.5 cm. [3]	
			8

Turn over.

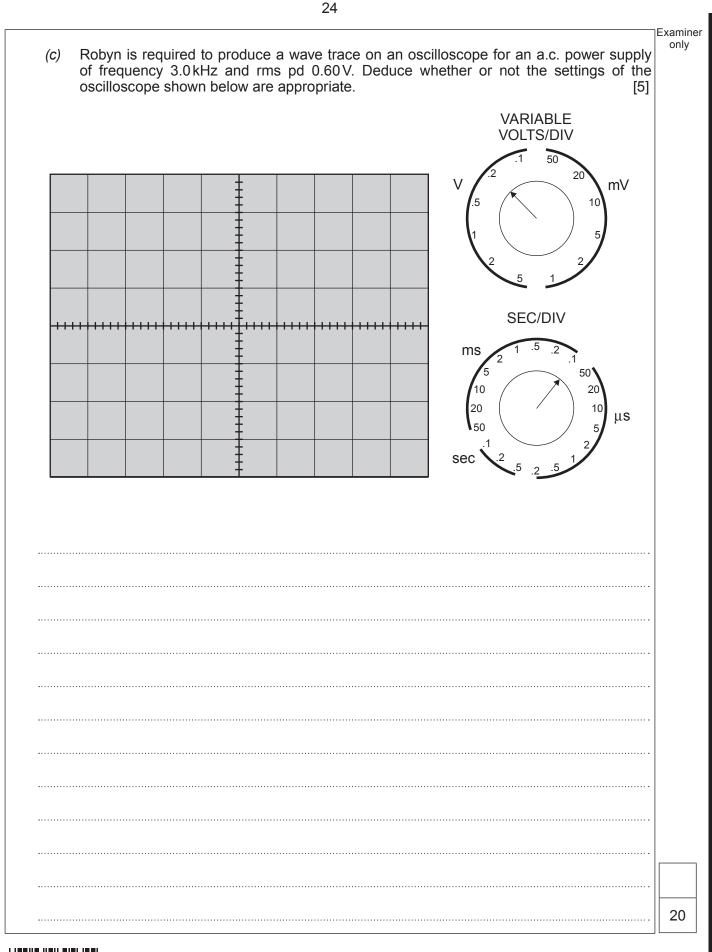
A420U301 17

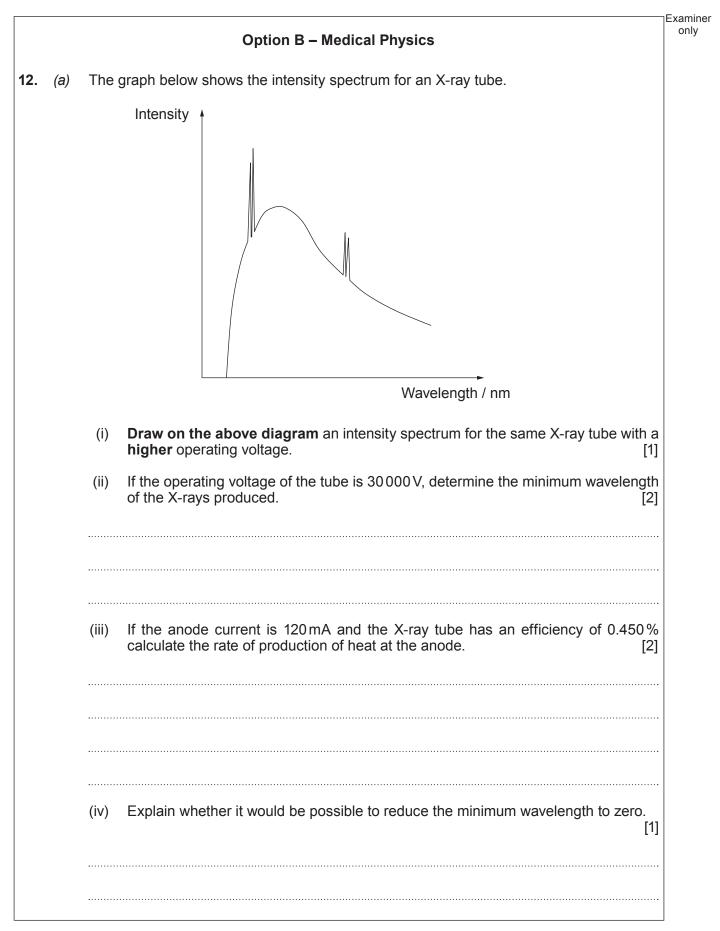


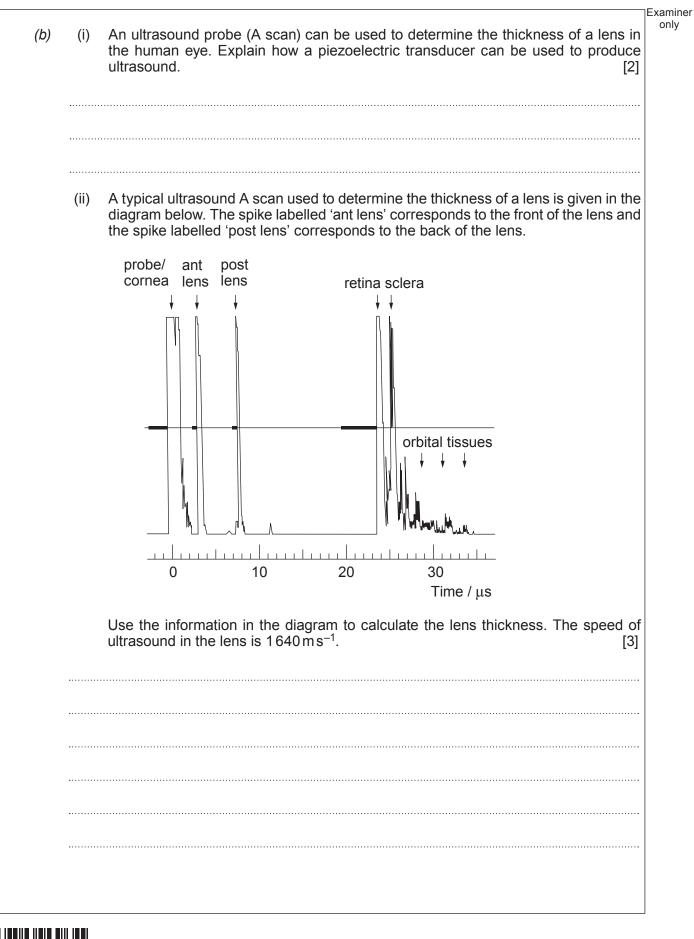
Turn over.


	20	
(iv) Halfw Maria act up corred	vay through the deformation of the copper wire it is in the position shown below. a claims that in this position, a "motor effect" force of approximately 200 N will pwards on the length of copper wire shown. Determine whether or not Maria is cct. [3]	miner nly
	B = 1.76 T	
	\otimes \otimes	
	length 36 cm	
	motion S	
		_
		5

Examiner only **SECTION B: OPTIONAL TOPICS** Option A – Alternating Currents Option B – Medical Physics Option C – The Physics of Sports Option D – Energy and the Environment Answer the question on **one topic only**. Place a tick (\checkmark) in **one** of the boxes above, to show which topic you are answering. You are advised to spend about 25 minutes on this section.






© WJEC CBAC Ltd.

	X-ray ultrasound A scan radioactive tracer CT scan	
	-	dataat
	Justifying the reasons for your answer, state which of the above you would use to the following:	detect
	(i) A cerebral haemorrhage (bleed in the brain).	[3]
	(ii) An underactive thyroid gland.	[2]
(d)	An MRI (magnetic resonance imaging) scanner has a magnetic field that varie 0.80T to 1.40T along its length. Calculate the wavelength of electromagnetic required to scan a slice halfway along its length and state which part of the electrom spectrum they belong to.	waves

			Option C – Physics of Sports	Exar
13.	(a)	(i)	Explain what is meant by the term <i>moment of inertia</i> of an object. [2]	
		 (ii)	Calculate the moment of inertia of a cricket ball which has a rotational kinetic energy of 1.47 J if it is spinning at a rate of 30 revolutions per second. [3]	
	(b)	 	The batsman hits the ball with an initial velocity of $25 \mathrm{m s^{-1}}$ at an angle of 30° to the horizontal. A fielder standing 5.6 m away from the batsman can catch a ball 2.4 m above the ground. Evaluate whether the ball can be caught by the fielder. Assume that air resistance can be ignored and that the ball is hit from ground level. [5]	
			that all resistance can be ignored and that the ball is nit from ground level.	
		3	23 5.6 m	

•••••	
•••••	
•••••	
•••••	
•••••	
(ii)	Explain why a fielder will move his hands in the direction of motion of the cricket ball
	when catching. [2]
••••	
•••••	
(iii)	The coefficient of restitution between the pitch and the ball is 0.37. Determine the
()	bounce height if the ball falls from a height of 2.35 m. [2]
•••••	

Turn over.

(C)		this part of the question, the interactions between the ball and the air need to be taken account.	Examine only
	(i)	Explain why a spinning cricket ball will change direction when moving through the air. Your answer should include the forces acting on the ball during the flight and a diagram may be included. [3]	
	 (ii)	Determine the drag force acting on a cricket ball of radius 3.6 cm during flight if the speed of the ball is 24.3 ms^{-1} and its drag coefficient is 0.76. Density of air = 1.3 kg m^{-3} . [3]	
			20
			-

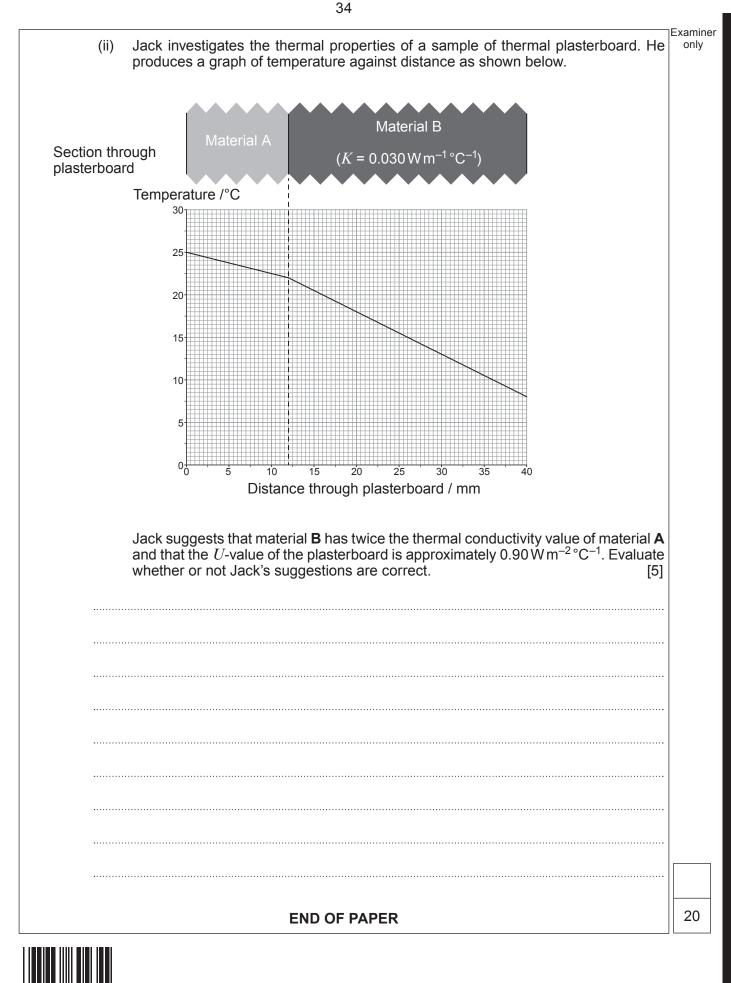
© WJEC CBAC Ltd.

BLANK PAGE

31

PLEASE DO NOT WRITE ON THIS PAGE

Examiner only **Option D – Energy and the Environment** The total power emitted by the Sun is 3.8 \times 10²⁶W. Calculate the intensity of radiation received at the upper atmosphere of planet Earth and state the name given to this value. The distance between the Earth and the Sun is 1.5 \times 10¹¹m. 14. (a) (i) [2] A student models the energy balance of planet Earth without its atmosphere. He (ii) calculates the theoretical power absorbed by the Earth to be 1.2×10^{17} W. Assuming the Earth to be in thermal equilibrium and to behave as a black body, show that the temperature of the Earth for this model is approximately 250K. The radius of the Earth is 6.4×10^6 m. [3] (iii) The actual mean surface temperature of the Earth is 287K. Without calculation, account for this difference in temperature and explain how human activity has further contributed to this. [3]


Examiner State and explain the three conditions that are simultaneously required to produce (b) (i) a sustainable fusion reaction. [3] A fusion test reactor requires a triple product greater than $3.5 \times 10^{28} s Km^{-3}$. The plasma has a volume of $70 m^3$ and contains 2.4×10^{22} particles. If a confinement time of 0.9 seconds is achieved, determine the minimum temperature necessary for (ii) this reaction. [2] (C) (i) A company manufactures thermal plasterboards using a composite of two different materials. One of the materials is known to have a thermal conductivity value of $0.030 Wm^{-1} \circ C^{-1}$. Explain what the statement in italics means. [2]

33

Turn over.

only

© WJEC CBAC Ltd.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1
	······	·
		1

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

