

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Chemistry (8CHO) Paper 02 Core Organic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.

Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 8CH0_02_1606_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
1(a)	B (2,3-dimethylhexane)	(1)

Question Number	Answer	Mark
1(b)	A (3)	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
1(c)	 correct <u>skeletal</u> formulae for heptane and cycloheptane (1) 	Mark independently but max 1 if additional reactants and/or products or more than 1 mole/molecule of hydrogen	(2)
	• formula for hydrogen (1)	+ H ₂	
		Do not allow just structural or displayed formulae for the organic reactant or product, or any combination of formulae, for M1	
		Ignore additional formulae written as working	
		Ignore shape of heptagon, provided it has 7 sides	
		Ignore any conditions, even if incorrect	

Question Number	Answer	Mark
1(d)(i)	D (σ, homolytic)	(1)

Question Number	Acceptable Answers		Additional Guidance	Mark
1(d)(ii)	• $C_2H_6 + CI \rightarrow C_2H_5 + HCI$	(1)	Equations can be in either order	(2)
	• C_2H_5 • + $CI_2 \rightarrow C_2H_5CI$ + CI •	(1)	Allow correct structural / displayed / skeletal formulae	
			Allow dots / circles anywhere on formula	
			Allow 1 mark for two correct steps but using the incorrect alkane / bromine	
			Allow 1 mark if both propagation steps correct but initiation / termination steps also written and not labelled as such or additional incorrect propagation step(s)	
			Ignore state symbols and curly arrows, even if incorrect	
			Penalise missing dots once only	
			Comment:	
			If C ₂ H ₅ ⁺ appears in both equations but equations are otherwise correct, allow 1 as TE	

Question Number	Acceptable Answers	Additional Guidance	Mark
1(d)(iii)	 (two) ethyl/ C₂H₅^(•) radicals react together 	Allow $C_2H_5 + C_2H_5 \rightarrow C_4H_{10}$	(1)
	_	Ignore termination	
	or	Ignore just ((two) radicals react tagether)	
	$C_2H_5 \cdot + C_2H_5 \cdot \rightarrow C_4H_{10}$	Ignore just '(two) radicals react together'	
		Ignore ethane radicals / ethyl groups	
		Do not allow molecules / ions	
		Do not allow incorrect radicals or product	
		Do not allow initiation / propagation / elimination / substitution	

(Total for Question 1 = 8 marks)

Question Number	Answer	Mark
2(a)	D (Z-2-bromo-1-chloroprop-1-ene)	(1)

Question Number	Δηςιννρη	Mark
2(b)(i)	A (electrophilic addition)	(1)

Question Number	Answer	Mark
2(b)(ii)	C	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
2(c)(i)	(yield) decreases / lower yield	Allow less ethanol is produced	(1)
		Ignore equilibrium shifts to the left but do not allow equilibrium shifts to the right	
		Ignore any reference to Le Chatelier's principle	
		Do not allow high temperature favours the exothermic direction	

Question Number	Acceptable Answers	Additional Guidance	Mark
2(c)(ii)	(yield) decreases / lower yield	Allow less ethanol is produced	(1)
		Ignore equilibrium shifts to the left but do not allow equilibrium shifts to the right	
		Ignore any reference to Le Chatelier's principle	
		Ignore fewer collisions	

Question Number	Answer	Mark
2(c)(iii)	$\mathbf{D} \left(\frac{[C_2H_5OH(g)]}{[C_2H_4(g)][H_2O(g)]} \right)$	(1)

(Total for Question 2 = 6 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
3(a)(i)	• ionic equation	Example of equation: $CH_3CH_2CHBrCH_3 + OH^- \rightarrow CH_3CH_2CHOHCH_3 + Br^-$	(1)
		Allow $CH_3CH_2CHBrCH_3 + H_2O \rightarrow CH_3CH_2CHOHCH_3 + H^+ + Br^-$	
		Allow displayed /skeletal formulae or any combination of these formulae provided the correct organic molecules are shown	
		Ignore any working before the final equation, even if not crossed out	
		Ignore equation with molecular formulae	
		Ignore state symbols, even if incorrect	
		Do not allow just an equation with uncancelled K ⁺ ions	

Question Number		Acceptable Ans	wers	Additional Guidance	Mark
3(a)*(ii)	coherent and log and fully-sustain. Marks are award answer is structu. The following tab awarded for indicative marking points seen in answer 6 5-4 3-2 1 0 The following tab.	ed reasoning. ed for indicative coured and shows line ole shows how the	ontent and for how the es of reasoning. marks should be marks should be	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

	Number of marks
	awarded for
	structure of
	answer and
	sustained line of
	reasoning
Answer shows a coherent and	2
logical structure with linkages	2
and fully sustained lines of	
reasoning demonstrated	
throughout.	
Answer is partially structured	1
with some linkages and lines of	
reasoning.	
Answer has no linkages between	0
points and is unstructured.	

In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning.

Comment:

Look for the indicative marking points first, then consider the mark for structure of answer and sustained line of reasoning If there is any incorrect chemistry, deduct marks from the reasoning mark, for example:

If a hydroxide solution is used, deduct 1 mark from reasoning mark
If colours of precipitates are incorrect, deduct 1 mark from reasoning mark

 Indicative content Ethanol – use of ethanol as a solvent (added to each halogenoalkane / liquid in separate containers) 	Allow description of experiment from a labelled diagram
 Fair test – use of equal volumes/amounts / specified volumes/amounts in each tube or 	
warm the tubes in a water bath / specified temperature / room temperature	
 Silver nitrate - silver nitrate (solution) / Ag⁺(aq) to each tube (of halogenoalkane) 	Ignore nitric acid / HNO ₃
Time - find the time taken for a precipitate to form	Allow find how quickly the precipitates form
 Rate - expected trend is 2-iodobutane > 2-bromobutane > 2-chlorobutane or 2-iodobutane is the fastest <u>and</u> 2-chlorobutane is the slowest 	Allow time taken for 2-iodobutane < 2-bromobutane < 2-chlorobutane Allow I ⁻ forms first, CI ⁻ forms last Allow the halogenoalkanes get more reactive from chloro to iodo /'down the group' Allow reverse trends
 Bond enthalpy - bond enthalpy C-I<c-br<c-ci <br="">decreases from C-CI to C-I / C-CI is the strongest and C-I is the weakest /C-X bond strength decreases down the group (of halogens)</c-br<c-ci> 	Allow 'the bond enthalpy decreases down the group' or a comparison of bond enthalpy in 2-iodobutane and 2-chlorobutane Ignore references to bond length / bond
	polarity / electronegativity / effective nuclear charge

Question Number	Acceptable Answers	Additional Guidance	Mark
3(b)(i)	additional curve added with peak to the right and lower	fraction of molecules with energy, E energy	(1)
		Allow curve at start of line Do not allow the additional line to touch or cross the original curve more than once	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(b)(ii)	An explanation that makes reference to the following points: • (higher temperature gives) molecules / particles more (kinetic) energy (and there is a higher collision frequency) (1)	Allow reverse argument for a decrease in temperature Allow collisions have more energy Ignore molecules/particles move faster Do not allow just 'gases/reactants/atoms' once only	(3)
	a single activation energy marked on graph or more molecules / particles /collisions have energy greater than / equal to the activation energy or more molecules / particles / collisions have the activation energy (1)	Allow more molecules have enough energy to overcome the activation energy Do not allow any indication that the activation energy	
	so a greater proportion of the collisions result in a reaction	changes Do not allow any mention that the total area under the curve increases Allow so more collisions are successful Ignore just 'more frequent collisions'	

(Total for Question 3 = 11 marks)

Question Number	Acceptable Answers		Additional Guidance	Mark
4(a)	calculation of no. mol of ethanol	(1)	Example of calculation no. mol of ethanol = 55.2 x 1000 / 46 = 1200	(2)
	calculation of no. molecules of ethanol	(1)	no. molecules ethanol = $1200 \times 6.02 \times 10^{23}$ = 7.224×10^{26}	
			TE on no. of mol of ethanol	
			Correct answer with or without working scores both marks	
			Ignore SF except 1 SF	
			Ignore units	
			Comment: common incorrect answers: 7.224 x 10 ²³ scores 1 (used 55.2 g) 7.224 x 10 ²⁰ scores 1 (used 0.0552 g)	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(b)		$2C(s, graphite) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(I)$	(2)
	balanced equation (1)	Allow C ₂ H ₆ O Do not allow multiples	
	all state symbols (1)	Conditional on all species correct Allow C(s) / C(graphite)	

Question Number	Acceptable Answers		Additional Guidance	Mark
	calculation or working of energy needed to break bonds calculation or working of energy released when bonds made calculation of enthalpy change of combustion with sign	(1) (1) (1)	Example of calculation energy to break bonds = 347 + (5 x 413) + 358 + 464 + (3 x 498) = 4728 (kJ) energy released in making bonds = (4 x 805) + (6 x 464) = 6004 (kJ) enthalpy change of combustion = 4728 - 6004 = -1276 (kJ mol ⁻¹) or energy to break bonds = 347 + (5 x 413) + 358 + (3 x 498) = 4264 (kJ) energy released in making bonds = (4 x 805) + (5 x 464) = 5540 (kJ) enthalpy change of combustion = 4464 - 5540 = -1276 (kJ mol ⁻¹) TE on energies calculated to break and form bonds Correct answer with sign but no working scores 3 Ignore SF except 1SF	Mark (3)
			Ignore missing units but do not allow incorrect units in M3 e.g. kJ mol ⁻	

Question Number		Acceptable Answers		Additional Guidance	Mark
4(c)(ii)	Enthalpy	$C_2H_5OH(I) + 3O_2(g)$ $C_2H_5OH(I) + 3O_2(g)$ $2CO_2(g) + 3H_2O(I)$		M1 is conditional on exothermic or endothermic value calculated in (c)(i) but if no value is calculated, award mark for exothermic reaction only Allow double headed arrows / lines, but penalise arrows pointing in wrong direction once only	(2)
		Reaction pathway		Allow 'products'/ unbalanced formulae / missing state symbols as labels for product line	
	•	ucts to the right of reactants <u>and</u> at a lower alpy <u>and</u> arrow labelled $\Delta_{\text{c}}H$	(1)	Allow $(-)\Delta H/(-)\Delta H_c$ /enthalpy change or value calculated in (c)(i)	
	• curve	ϵ and arrow labelled $E_{\rm a}$	(1)	Allow value calculated for energy needed to break bonds in (c)(i)	
				Ignore any transition state	
				Do not allow straight lines instead of Ea curve	
				If no other marks awarded, allow 1 mark for the correct labelled product line and activation energy curve if both arrows missing	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(c)(iii)	standard enthalpy change of combustion refers to ethanol / water as liquid(s) but bond energies are calculated for gases or change of state data is not included or ethanol / water are not in standard states for bond enthalpy calculation	Ignore bond energies are mean values and the actual values in these compounds/ethanol may be different Ignore any reference to heat loss Ignore any reference to incomplete combustion	(1)

(Total for Question 4 = 10 marks)

Question Number	Acceptable Answers		Additional Guidance	Mark
5(a)	diagram of separating funnel ((1)	Mark independently Allow any shape separating funnel with tap at the bottom (does not need to be labelled), with a narrowing top or vertical sides but do not allow a burette	(2)
	aqueous and organic layers labelled as shown ((1)	Allow stopper/bung in separating funnel 2-chloro-2- methylpropane (layer) aqueous (layer) Allow two layers shown and just one labelled correctly Allow organic layer/ product for top layer / hydrochloric acid for aqueous layer	
			Do not allow 'reactant' for top layer	

Question Number	Acceptable Answers	Additional Guidance	Mark
5(b)	 to react with/ neutralise any (unreacted/ excess hydrochloric) acid (1) 	Mark independently Allow to remove the (hydrochloric) acid Allow to neutralise the organic layer/ solution	(2)
	 to release the carbon dioxide produced or 	Allow to release gases	
	to relieve the build-up of pressure (1)	Ignore just 'pressure builds up'	
		Do not allow incorrect gases e.g. hydrogen	

Question Number		Mark
5(c)	D (sodium sulfate)	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
5(d)(i)	A description that makes reference to the following points:	Allow these changes if shown on the diagram	(3)
	the (bulb of the) thermometer should be opposite the opening to the condenser (1)	Allow thermometer should be higher up / above the liquid / should measure the temperature of the vapour / out of the mixture/liquid	
	the water in and out of the condenser should be reversed (1)	Allow water should enter the bottom (of the condenser)	
	put a vent after the condenser or leave a gap between the condenser and the receiver or	Ignore just 'vent' / the apparatus should not be completely sealed	
	conical flask must be open (1)		
		Ignore references to using a fume cupboard	

Question Number	Acceptable Answers	Additional Guidance	Mark
5(d)(ii)	• 50-52°C	Allow any range between 49 and 53°C, provided it includes 51°C	(1)
		Do not allow just 51°C	

Question Number	Acceptable Answers		Additional Guidance	Mark
5(e)	calculation of moles of alcohol used	(1)	Example of calculation mass of alcohol used = 15.0 x 0.79 = 11.85 (g) moles of alcohol used = 11.85/74.0 = 0.16014	(3)
	 calculation of theoretical volume of 2-chloro-2-methylpropane made or calculation of actual moles of 2-chloro-2-methylpropane or calculation of actual mass of 2-chloro-2-methylpropane calculation of percentage yield 	(1) (1)	theoretical mass of chloro compound = 0.16014 x 92.5 = 14.8125 (g) theoretical volume = 14.8125/0.84 = 17.634 (cm³) or actual moles of chloro compound = 6.9 x 0.84 / 92.5 = 0.062659 or actual mass of chloro compound = 0.062659 x 92.5 = 5.796 (g) % yield = (6.9/17.634) x 100 = 39.1% or = (0.062659/0.16014) x 100 = 39.1% or = (5.796/14.8125) x 100 = 39.1% TE on M1 and M2 Ignore SE except 1 SE	
			Ignore SF except 1 SF Correct answer without working scores 3	

Question Number	Acceptable Answers	Additional Guidance	Mark
5(f)	• curly arrow from C-O bond to O (1)	H ₃ C—CH ₃ Stage 2 H ₃ C—C+CH ₃ + H ₂ O	(2)
	• curly arrow from lone pair on CI ⁻ to C ⁺ (1)	CH ₃ H ₃ C—CH ₃ Stage 3 H ₃ C—CH ₃ Do not allow single-headed arrows Do not allow additional, incorrect arrows	

(Total for Question 5 = 14 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
6(a)	calculation or working of heat evolved during reaction (1)	Example of calculation heat evolved = 50 x 4.18 x 5.4 = 1128.6 J or 1.1286 kJ Ignore any sign	(4)
	 calculation or working of mol Na₂CO₃ used (1) 	mol Na ₂ CO ₃ used = 5.09/106 = 0.04802	
	calculation of enthalpy change of solution	enthalpy of solution = 1.1286/0.04802 = 23.5 TE on heat evolved and mol Na ₂ CO ₃	
	 negative sign and answer to 2 or 3 SF	-23.5/-24 (kJ mol ⁻¹) TE on enthalpy change in M3	
		Correct answer with – sign but no working scores 4 Ignore missing units but penalise incorrect units once only in (a) or (b)	

Question Number		Acceptable Answers	Additional Guidance	Mark
6(b)	•	both arrows in correct direction and Na ₂ CO ₃ (aq) (+ 10H ₂ O(l)) / $2Na^+(aq) + CO_3^{2^-}(aq)$ (+ 10H ₂ O(l)) (1) answer to (a) -53.7 with correct sign (1)	Na ₂ CO ₃ (s) + 10H ₂ O(l) → Na ₂ CO ₃ .10H ₂ O(s) (aq) Na ₂ CO ₃ (aq) Allow aq omitted from arrows Allow both arrows pointing upwards provided labelled as opposite signs Example of calculation -23.5 - 53.7 = -77.2 (kJ mol ⁻¹) TE on answers to (a) but not on incorrect cycle Allow -77200 J mol ⁻¹ Ignore SF except 1SF	(2)
			Ignore missing units but penalise incorrect units	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(c)	 An explanation that makes reference to the following points: enthalpy change of solution will be lower/ less endothermic / less positive (than data book value) (1) 	Allow smaller / requires less energy Allow more exothermic / negative	(2)
	 because anhydrous sodium carbonate releases energy/reacts exothermically with water or because less energy is needed to separate the (fewer) water molecules from the ions (in the crystal structure) (1) 	Conditional on M1 Allow because there is (less water so) more Na ₂ CO ₃ (in the sample) Allow because less energy is needed to break the bonds between water and sodium carbonate	

(Total for Question 6 = 8 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
7(a)	calculation of empirical formula (1)	Example of calculation C : H : O 68.2 13.6 18.2 12 1 16 = 5.68 13.6 1.14 = 5 12 1	(2)
	uses molecular ion to prove molecular formula (1) or	Use of 88 to show molecular formula is $C_5H_{12}O$ e.g. M_r is $(5x12) + (12x1) + 16 = 88$ or states that M_r of empirical formula is 88	
	 calculation of percentage of each element in compound all 3 correct scores (2) any 2 correct scores (1) 	or % C = $\frac{5 \times 12 \times 100}{88}$ = 68.2 88 % H = $\frac{12 \times 1 \times 100}{88}$ = 13.6 88 % O = $\frac{1 \times 16 \times 100}{88}$ = 18.2	
	 calculation of the number of atoms of each element directly all 3 correct scores (2) any 2 correct scores (1) 	88 or C atoms = $68.2 \times 88 = 5$ 100×12 H atoms = $13.6 \times 88 = 12$ 100×1 O atoms = $18.2 \times 88 = 1$ 100×16	

Question Number	Acceptable Answers	Additional Guidance	Mark
7(b)(i)	(X is a) primary/ 1° (alcohol)		(1)

Question Number	Acceptable Answers		Additional Guidance	Mark
7(b)(ii)	н н н н н н н н н н н н н н н н н н н		Allow alcohols in any order	(3)
			Allow CH ₃ / OH	
	н — н		Allow slip of 1 H missing from 1 alcohol / 1 C-C bond missing	
	н—с—с—с—о—н		Ignore names, even if incorrect	
	н н—-ç—-н		Penalise O-H-C- / -C-H-O at end of molecule once only	
	H—C—C—C—O—H H H H H		If no other mark is given, allow (2) for 4 correct skeletal / structural formulae or any combination of these or (1) for 3 correct	
	H—C—H H H H—C—C—C—O—H H—CH		Allow (2) for displayed formulae of pentan-2-ol, pentan-3-ol and 3-methylbutan-2-ol if secondary alcohol in (b)(i), or (1) for any two of those	
	• 4 correct	(3)	If no other mark awarded and if (b)(i)	
	 3 correct 2 correct	(2) (1)	is blank or incorrect, allow (2) for any 4 different alcohols with formula C ₅ H ₁₂ O, (1) for 3 alcohols	

Question Number	Acceptable Answers	Additional Guidance	Mark
7(b)(iii)	• H — C — H — H — C — H	Allow structural formula or any combination of displayed and structural formula Allow + anywhere on structure or outside of a formula in a bracket Do not allow C ₂ H ₅ O ⁺ /C ₂ H ₄ OH ⁺ Do not allow missing charge Allow CH ₃ C ⁺ HOH if secondary alcohol identified in (b)(i)	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
7(b)(iv)	•	Allow any type of identification, including name 3-methylbutan-1-ol	(2)
	н н——ç——н	Ignore incorrect name with correct structure	
	H—C—C—C—C—O—H H H H H		
	(1)		
	 because this is the only 	Conditional on correct identification	
	alcohol with a branched	Ignore missing charge on fragment	
	chain and forms CH ₂ OHCH ₂ +	Allow recognitions the other constant comments of restriction 1 of	
	$/ C_2H_4OH^+ / peak at 45 /$	Allow reasons why the others are not correct e.g. not pentan-1-ol	
	fragment identified in (b)(iii)	as it is not branched and not 2-methylbutan-1-ol or 2,2-dimethylpropan-1-ol as they do not form CH ₂ OHCH ₂ ⁺	
	(1)		
		If secondary alcohol identified in (b)(i):	
		Allow 3-methylbutan-2-ol (1) as it is the only alcohol with a	
		branched chain that forms CH ₃ C+HOH (1)	

(Total for Question 7 = 9 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
8(a)	 potassium dichromate((VI))/K₂Cr₂O₇ and sulfuric acid/H₂SO₄ or sodium dichromate((VI))/Na₂Cr₂O₇ and (dilute) sulfuric acid/H₂SO₄ (1) 	Allow Cr ₂ O ₇ ²⁻ and H ⁺ / acidified (potassium / sodium) dichromate((VI)) If name and formula given, both must be correct	(2)
		Ignore concentration of acid Do not allow hydrochloric acid / HCI / nitric acid / HNO ₃	
	heat/reflux (1)	Conditional on correct reagents or near miss, provided dichromate or (per)manganate((VII)) is mentioned	
		Allow a specified temperature in the range 60 – 150°C	
		Ignore distillation / warm	
		Allow answers written on either dotted line	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(b)(i)	A description that makes reference to the following points:	Ignore heat	(4)
	• Flask - use of a volumetric / graduated flask (1)	Do not allow just 'flask' / conical flask	
	Weighing - weigh the ethanedioic acid (in a weighed container and record the exact mass) (1)	Ignore just 'put 1 /1.0 /1.09 g solid in beaker'	
	Dissolve, transfer and washings – allow these in any order depending on the method used (1)	Distilled / deionised water must be mentioned once in M3 or M4	
		Allow pure water	
	Mark and mix - make up to the mark / 250 cm³ and then mix	Allow any indication of mixing eg swirl / invert the flask	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(b)(ii)	(From) colourless (to) pink	Allow (to) red	(1)
		Do not allow purple / pink/purple	
		Do not allow clear	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(b)(iii)		Correct answer of 2.2582/2.258/2.26/2.3 without working scores 5 Final answer of 2, with working, resulting from a number between	(5)
		2.2 and 2.3, scores 5	
		If no other mark is scored, an answer of just 2 scores 1	
		Example of calculation	
	calculation of moles of NaOH(1)	moles NaOH = $16.2 \times 0.103/1000 = 1.6686 \times 10^{-3}$	
	 calculation of moles of H₂C₂O₄ in 25 cm³ (1) 	moles $H_2C_2O_4$ in 25 cm ³ = 1.6686 x $10^{-3}/2$ = 8.343 x 10^{-4} TE on mole NaOH	
	 calculation of moles of H₂C₂O₄ in 250 cm³ (1) 	moles $H_2C_2O_4$ in 250 cm ³ = 8.343 x 10^{-4} x 10 = 8.343 x 10^{-3} TE on moles $H_2C_2O_4$ in 25 cm ³	
	• calculation of M_r of crystals (1)	$M_{\rm r}$ of crystals = 1.09/8.343 x 10 ⁻³ = 130.648 /130.65 / 130.6 TE on moles $H_2C_2O_4$ in 250 cm ³	
		For first 4 marking points ignore SF except 1 SF	
	• calculation of value of n (1)	130.65 = (2 + (2x12) + (4x16)) + 18n	
		n = 2.2582/ 2.258/2.26/2.3/2 TE on M_r of crystals, provided n is positive	
	Alternative method for M4	mass $H_2C_2O_4 = 8.343 \times 10^{-3} \times 90 = 0.75087$ (g)	
	and M5calculation of moles of H₂O(1)	mass $H_2O = 1.09 - 0.75087 = 0.3391$ (g) moles $H_2O = 0.3391/18 = 0.01884$	
		1110103 1120 = 0.00717 10 = 0.01004	
	• calculation of value of n (1)	mole ratio $H_2C_2O_4$: $H_2O_1 = 1$: 0.01884/8.343 x 10^{-3} = 1: 2.2582/ 2.258/2.26/2.3/2	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(b)(iv)	An explanation that makes reference to the following points:		(2)
	 (damp crystals will have more water so) lower mass / moles / concentration of H₂C₂O₄ (1) 		
	so titre will be lower and the value of n will be higher (1)		

(Total for Question 8 = 14 marks)