COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

	0	4!	Mauling dataile	Marks available AO1 AO2 AO3 Total Maths Pi					
'	Ques	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1.			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1		1		
2.			2-methylbut-1-ene		1		1		
3.			•CH ₂ F and Cl• accept structural formula for fluoromethyl radical		1		1		
4.			CH ₃ H ₃ C—C—CH ₃ Br		1		1		
5.			one of the carbon atoms of the double bond has two atoms the same		1		1		
6.	(a)		the CH(OH) carbon atom is a chiral centre (could be shown on the formula)		1		1		
	(b)		the enantiomers will rotate the plane of polarised light in the opposite direction	1			1		
7.	(a)		it contains the CH₂OH group	1			1		
	(b)		$ \begin{array}{c} H \\ C - CH_3 \\ OH \end{array} $			1	1		

	Quest	tion		Marking details				Marks a	vailable		
'	Quesi	lion		wai king details		AO1	AO2	AO3	Total	Maths	Prac
8.	(a)		silver mirror (1) the aldehyde group act reduces Ag ⁺ to Ag (1)	s as a reducing ager	nt and	2			2		1
	(b)		an aldehyde group is p reduce Ag ⁺ to Ag	resent in the methan	oate group and will			1	1		
9.			Reagent(s)	Functional group identified	Observation						
			sodium carbonate	carboxylic acid	effervescence						
			iron(III) chloride (aq)	phenol	purple colouration						
			bromine (aq)	alkene	bromine decolourised						
			(1) for each correct row	1		3			3		3
					Section A total	7	6	2	15	0	4

Section B

	Ques	tion	Marking details			Marks a	vailable		
	Ques	CIOII	Marking details	AO1	AO2	AO3	Total	Maths	Prac
10.	(a)		angle 1 C-Ĉ-H ~120° (1)						
			angle 2 H–Ĉ–H ~109.5° (1)	2			2		
	(b)		acidified (sodium/potassium) dichromate / H ⁺ , Cr ₂ O ₇ ²⁻ or acidified potassium manganate(VII) / H ⁺ , MnO ₄ ⁻	1			1		1
	(c)	(i)	SeO ₂ +4 Se 0 (1)		1				
			oxidation number becoming less positive is reduction (1)	1			2		
		(ii)	SeO ₂ only oxidises to an aldehyde / SeO ₂ does not produce a carboxylic acid			1	1		
		(iii)	$M_{\rm r}$ CH ₃ CHO 44.04 / 44 $M_{\rm r}$ CHO–CHO 58.0 / 58 (1) moles of ethanal = $\frac{22.0}{44.04}$ = 0.500						
			moles of ethanedial = $\frac{20.0}{58.0}$ = 0.345 (1) (mole ratio is 1:1)					1	
			% yield = $0.345 \times 100 = 69.0$ (1) 0.500 award (3) for correct answer only (cao) error carried forward (ecf) possible		3		3	1	
	(d)	(i)	nucleophilic addition-elimination / condensation	1			1		
		(ii)	the melting temperature cannot be higher than the book value : compound A cannot be propanal or cyclopentanone (1) if impure the compound will melt at a lower temperature than the expected value (1) and over a range of temperatures (1)		3		3		3

Oue	stion	Marking details			Marks a	vailable		
Que.	311011	warking details	AO1	AO2	AO3	Total	Maths	Prac
(e)		test it with I ₂ / NaOH or NaOCI / KI (1)						
		yellow precipitate / solid (1)		2		2		2
(f)		any three for (1) each up to max 3						
		 the temperature / pressure at which the system operates (1) how the ethanal is separated from the other products / catalyst (1) if the use of a heterogenous catalyst is feasible (1) how the catalyst is recovered (1) the nature of the corrosion proof reactor lining (1) accept other sensible answers 			3	3		
		Question 10 total	5	9	4	18	2	6

	Ques	tion		Marking details			Marks a	vailable		
	Ques	lion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
11.	(a)	(i)		chloroethane / bromoethane		1		1		
		(ii)		or in position 2 with respect to methyl group		1		1		
		(iii)		correct value of M_r from the graph (190) (1) correct deduction of ' M_r ' of R group (43.1) (1)		1			1	
				correct formula of R group (CH ₃ CH ₂ CH ₂ / (CH ₃) ₂ CH) (1)			1	3		
		(iv)	I	electrical heating / oil bath (1) to avoid danger of fire / boiling temperature is greater than 100 °C so a water bath cannot be used (1)	2			2		2
			Ш	acid chlorides are hydrolysed by moisture	1			1		1
	(b)	(i)		$\begin{array}{llllllllllllllllllllllllllllllllllll$		2		2		

	Oug	stion		Marking details			Marks a	vailable		
	Que	Suon		Marking details	AO1	AO2	AO3	Total	Maths	Prac
11.	(b)	(ii)		they all act as bases by donating lone pair to H ⁺ (1)	1					
				the more available the lone pair, the stronger the base (1)	1					
				sensible comment on the order e.g. lone pair on nitrogen in phenylamine is delocalised to the ring electron system / ethyl group is electron releasing (1)		1		3		
	(c)	(i)		the phenol needs to be in alkaline solution (1)						
				the temperature needs to be 10 °C or less (1)	2			2		2
		(ii)	I	the yellow dye contains a phenolic OH group and this acidic group is neutralised by aqueous sodium hydroxide (1)						
				giving the (soluble) anion / ~~~ O ⁻ Na ⁺ (1)		2		2		
			II	when the solution becomes acidic, the (soluble) anion is replaced by the OH group to restore the insoluble yellow dye		1		1		
				Question 11 total	7	10	1	18	1	5

Question	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
12. (a)	dipoles shown i.e. $C^{\delta+}$ and $Cl^{\delta-}$ (1)						
	curly arrow shown from OH^- to $C^{\delta+}$ (1)						
	curly arrow from bond to CI (1)						
	products are propan-1-ol and Cl ⁻ (1)	4			4		
(b)	nucleophilic substitution	1			1		
(c)	Indicative content						
	 The concentration of the sodium hydroxide solution in each case needs to be kept constant, otherwise the rate of substitution will be affected by the [OH] present The temperature of each reaction must be kept the same as reaction rate changes markedly with changes in temperature 						
	 The bonding between the carbon and halogen atom in each compound is covalent but each bond is a polar covalent bond Polarisation for the C-Cl bond is the greatest suggesting that 1-chloropropane should react most quickly The C-I bond is the weakest is terms of bond enthalpy suggesting that 1-iodopropane should react most quickly The overriding factor in these reactions is the bond enthalpy 	2	2	2	6		

Question	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	5-6 marks: Each point included; clear understanding of link between observations and conclusion						
	The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout.						
	3-4 marks: Effect of at least one of general factors affecting rate included; reference to bond polarity and bond strength; attempt at comparison of their effect on rate						
	The candidate constructs a coherent account including most of the key elements of the indicative content and little irrelevant material. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.						
	1-2 marks: Reference to one general factor affecting rate; conclusion in terms of bond enthalpy						
	The candidate attempts to link at least two relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary.						
	0 marks: The candidate does not make any attempt or give an answer worthy of credit.						

0	41.00	Moulting dataile			Marks a	vailable		
Ques	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(d)	(i)	sodium / potassium hydroxide in ethanol	1			1		1
	(ii)	elimination / dehydrohalogenation	1			1		
	(iii)	(mass of required product ÷ total mass of reactants) × 100 or (82 ÷ 118.5) × 100 (1) = 69.2 % (1) award (2) for cao ecf possible if error in calculating one of masses		2		2		
	(iv)	Reasons in (a) – carbon is not δ + since electrons from chlorine pulled towards delocalised ring / C—CI bond is strengthened since electrons from chlorine pulled towards delocalised ring (1) Reasons in (d) – there is no suitable hydrogen atom (to allow elimination of HCI) (1)		1	1	2		
		Question 12 total	9	5	3	17	0	1

Question	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Prac	
13.	Mass spectrum M _r is 86 (1) link between mass and identity of any fragment e.g. 43 is CH ₃ CO / C ₃ H ₇ (1)		1	1			
	IR spectrum peak at ~ 1700 cm ⁻¹ due to C=O (1) no O-H peak (1) compound T is a carbonyl compound / aldehyde / ketone (not a carboxylic acid) (1)		1 1	1			
	¹³ C NMR four different carbon environments (1)		1				
	¹ H NMR three different hydrogen environments (1) ratio of peak areas / hydrogen environments is 6:3:1 (1)		1 1				
	any two for (1) each up to max 2						
	 splitting shows → 1 H on C next to C with multiple hydrogen atoms (1) 6 protons on C next to C with 1 proton (1) 3 protons on C next to C with no protons (1) 			2			
	Conclusion compound T is 3-methylbutanone (1)			1	11		
	Question 13 total	0	6	5	11	0	0

	Ques	tion	Marking details			Marks a	vailable		
	Ques	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
14.	(a)	(i)	any alkene molecules produced would react with hydrogen (forming the corresponding alkane)			1	1		
		(ii)	$n = \frac{pV}{RT} = \frac{(101000 \times 0.96)}{8.31 \times 323} $ (1)	1				1	
			n = 36.1 (1)		1			1	
			M = 57.9 (1)		1			1	
			methylpropane / CH ₃ CH(CH ₃)CH ₃ (1)			1	4		
	(b)	(i)	relative peak area α -terpinene = 8 total relative peak area = 64 both required (1)						
			\therefore percentage of α-terpinene = $\frac{8 \times 100}{64}$ = 12.5 (1)			2	2		
		(ii)	total percentage of α -terpinene in the citrus oil $= \frac{95 \times 12.5}{100} = 11.9 \tag{1}$						
			mass of α -terpinene in the citrus oil = $\frac{11.9 \times 3.2}{100}$ = 0.38 g (1) award (2) for cao ecf possible from (ii)		2		2	2	

	Ques	tion	Marking details			Marks a	available		
	Ques	tion	Wai King details	AO1	AO2	AO3	Total	Maths	Prac
14.	(c)	(i)	1,2,3-tribromocyclohexane cannot be a product as addition of bromine / Br ₂ is taking place and the only possible products are 1,2-dibromocyclohexane or 1,2,3,4-tetrabromocyclohexane (1) the percentage of bromine in the tetrabromo-compound is 80.0 and for the dibromo-compound it is 66.7 (1) one conclusion is that not every double bond has been brominated (and the product is a mixture of the dibromo- and tetrabromo- compounds) (1)			3	3		
		(ii)	answers based on any of the following techniques infrared (absorption) spectroscopy (1) look for C = C at 1620-1670 cm ⁻¹ (1) proton NMR spectroscopy (1) look for HC = CH protons at ~4.8 δ (1)	1	1		2		2
			GLC / HPLC (1) compare retention times with standard materials (1) mass spectroscopy (1) look for fragmentation pattern / M ⁺ signals (1)						
			Question 14 total	2	5	7	14	5	2

	Questic	Mayking dataila	Marks available						
	Questic	Marking details	AO1	AO2	AO3	Total	Maths	Prac	
15.	(a)	dehydration / elimination	1			1			
	(b)	(concentrated) sulfuric acid / (concentrated) phosphoric acid	1			1		1	
	(c)	methanol contains a (polar) O ^{δ-} — H ^{δ+} bond (could be shown in a formula) (1) the 'H' of the OH group acts as an electrophile (1) reacting with the alkene to give the 2-methyl-2-propyl carbocation / tertiary carbocation (1) if 1-methoxy-2-methylpropane was the product, then the intermediate carbocation would be the 2-methyl-1-propyl carbocation which is a primary carbocation (1) less stable / not so easily formed as the tertiary		1 1	1				
	(d)	2-methyl-2-propyl carbocation (1) the alcohol can hydrogen bond between its molecules but MTBE cannot (1)			1	5			
		more energy is needed to break these hydrogen bonds therefore a relatively higher boiling temperature (1)		2		2			

Question	Marking dotails	Marks available						
Question	Marking details		AO2	AO3	Total	Maths	Prac	
15. (e)	Indicative content • 2-methylpropan-1-ol / the alcohol is treated with HCl / hydrogen chloride in the presence of (anhydrous) zinc chloride • to give 1-chloro-2-methylpropane / (CH ₃) ₂ CHCH ₂ Cl • this chloro-compound then reacts with potassium cyanide / KCN • giving 3-methylbutanenitrile / (CH ₃) ₂ CHCH ₂ CN • this is then hydrolysed by, for example, aqueous sulfuric acid (to give the carboxylic acid) 5-6 marks: Each step included in the correct order; reagents and intermediate products identified The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions	AO1	2	2	Total 6	Maths	Prac 6	
	and vocabulary are used accurately throughout. 3-4 marks: General description of each stage; reagents/products identified for two stages The candidate constructs a coherent account including most of the key elements of the indicative content and little irrelevant material. Some							

indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary. O marks: The candidate does not make any attempt or give an answer worthy of credit. Question 15 total	4	7	4	15	0	7
1-2 marks: Description or reagents given for one step; one intermediate product identified The candidate attempts to link at least two relevant points from the						

	Question		Marking details	Marks available						
	Ques	lion			AO2	AO3	Total	Maths	Prac	
16.	(a)	(i)	moles of NaOH used = $\frac{1.25 \times 50.00}{1000}$ = 0.0625 (1)							
			moles of HCI used = $\frac{1.00 \times 30.50}{1000}$ = 0.0305 (1)							
			since 1 mol of HCl reacts with 1 mol of NaOH							
			moles of NaOH that reacted with the amide $= 0.0625 - 0.0305 = 0.0320 (1)$							
			since 1 mol of NaOH reacts with 1 mol of the amide							
			moles of the amide present = 0.0320							
			$\therefore M_{\rm r} \text{ of the amide} = \frac{\text{mass}}{\text{moles}} = \frac{2.34}{0.032} = 73.1 (1)$					4		
			ecf possible up to this point but not for incorrect alkyl group							
			${}^{'}M_{r}{}^{'}$ CONH ₂ = 12 + 16 + 2.02 = 44.02							
			${}^{6}M_{r}{}^{6}R = 73.1 - 44.02 = 29.08$ → an alkyl group ∴ $C_{2}H_{5}$							
			formula of the amide is							
			CH₃CH₂C NH₂							
			NH ₂ (1)		5		5		5	
			(.,							

Question	Marking details		Marks available						
Question			AO2	AO3	Total	Maths	Prac		
16. (a) (ii)	 M_r of benzamide is 121 (the value obtained is too high) (1) not all the ammonia had been expelled (1) ∴ more HCl was used to neutralise this ∴ the titration indicated that apparently relative less of the NaOH reacted with the amide ∴ number of moles is apparently less ∴ M_r higher (1) (accept 'some HCl reacted with the ammonia' as a weaker answer for the second point) mass used was lower than the recorded mass (2) 	AO1	1	2	5	matrio	5		
(b)	[incorrect recording of the mass of amide used (1)] add NaHCO ₃ (1) effervescence (1) or universal indicator (1) turns red (1) Question 16 total	2	6	4	2	4	2		

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	7	6	2	15	0	4
10.	5	9	4	18	2	6
11.	7	10	1	18	1	5
12.	9	5	3	17	0	1
13.	0	6	5	11	0	0
14.	2	5	7	14	5	2
15.	4	7	4	15	0	7
16.	2	6	4	12	4	12
Totals	36	54	30	120	12	37