Surname			Centre Number	Candidate Number
Other Names				2
wjec cbac	GCE AS – NEW B400U20-1 BIOLOGY – AS co Biodiversity and Phy	•	Part o	duqas

TUESDAY, 6 JUNE 2017 - AFTERNOON

1 hour 30 minutes

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	11		
2.	16		
3.	14		
4.	14		
5.	11		
6.	9		
Total	75		

ADDITIONAL MATERIALS

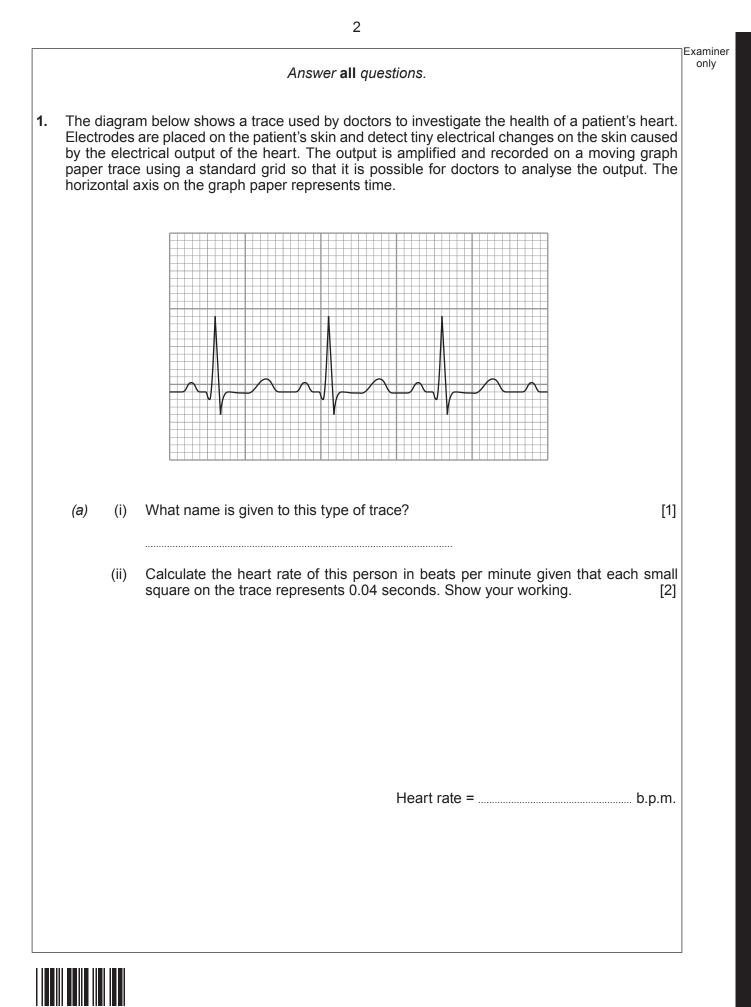
In addition to this examination paper, you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

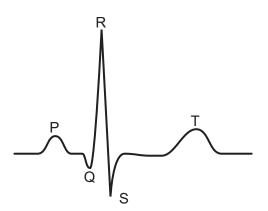
Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.


Write your answers in the spaces provided in this booklet. If you run out of space, use the continuation pages at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question **6**. The quality of written communication will affect the awarding of marks.

(b) The diagram below shows the trace for one cardiac cycle.

(i) In the table below, use letters from the diagram to indicate which sections of the trace correspond to the events of the cardiac cycle. [2]

Cardiac cycle events	Section of trace
Ventricular diastole	
Atrial systole	
Ventricular systole	

(ii) These events in the cardiac cycle are coordinated by specialised tissues in the heart muscle. Describe the role of the following tissues in the cycle.

1.	Sino-atrial node	[2]
II.	Atrio-ventricular node	[2]
III.	Bundle of His and Purkyne (Purkinje) fibres	[2]
•••••		

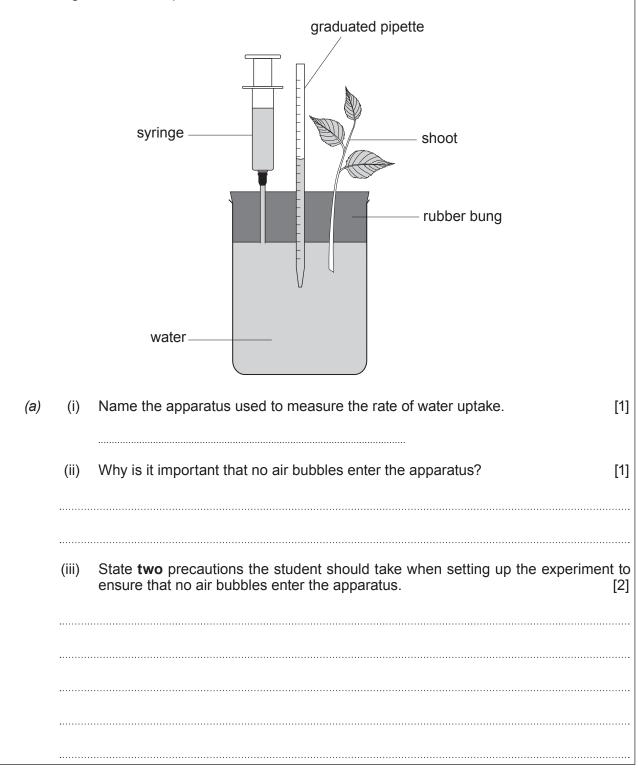
11

B400U201 03

Examiner only

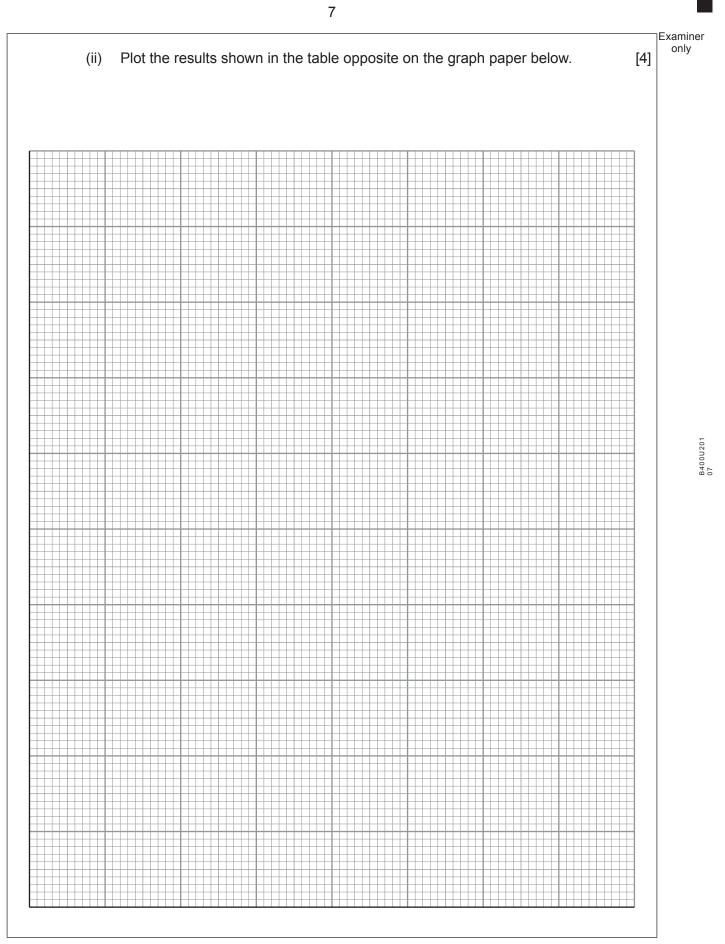
BLANK PAGE

4

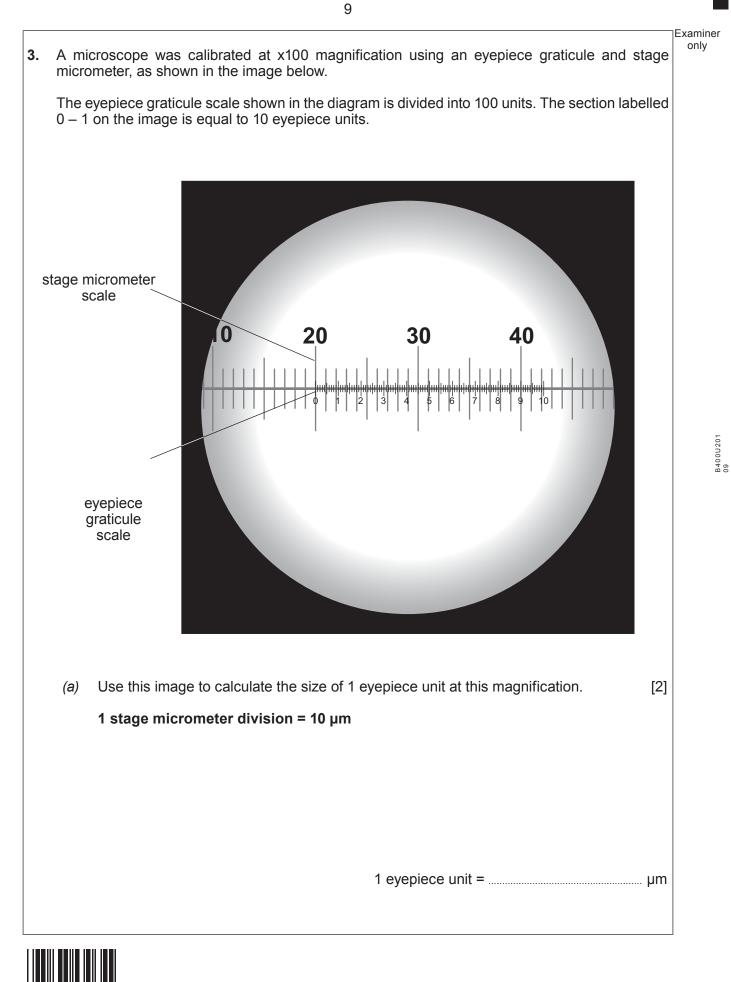

PLEASE DO NOT WRITE ON THIS PAGE

- Examiner only
- 2. A student used the apparatus shown in the diagram below to carry out an investigation into the rate of water uptake by a freshly cut leafy shoot.

With the shoot in place in the apparatus, the level of water in the pipette was recorded every 10 minutes for a total of 40 minutes.


The apparatus was then reset and a transparent polythene bag placed over the leafy shoot. The recordings were then repeated.

o) (i)	investigation.	temperature and light in	,	[3]
	temperature			
	light intensity			
	Readings were tak calculated, as sho	en and the total volume of wn in the table below.	water taken up by the leaf	y shoot was
	Readings were tak calculated, as sho	wn in the table below. Total volume of wate	water taken up by the leaf	y shoot was
	Readings were tak calculated, as show Time /minutes	wn in the table below. Total volume of wate	er taken up by the leafy	y shoot was
	calculated, as sho Time	wn in the table below. Total volume of wate shoe not enclosed in	er taken up by the leafy ot / cm ³ enclosed in	y shoot was
	calculated, as sho Time /minutes	wn in the table below. Total volume of wate show not enclosed in polythene bag	er taken up by the leafy ot/cm ³ enclosed in polythene bag	y shoot was
	calculated, as show Time /minutes 0	wn in the table below. Total volume of wate shoe not enclosed in polythene bag 0	er taken up by the leafy ot/cm ³ enclosed in polythene bag 0	iy shoot was
	calculated, as show Time /minutes 0 10	wn in the table below. Total volume of wate shoe not enclosed in polythene bag 0 2.4	er taken up by the leafy ot/cm ³ enclosed in polythene bag 0 2.2	iy shoot was
	calculated, as show	wn in the table below. Total volume of wate shoe not enclosed in polythene bag 0 2.4 4.1	er taken up by the leafy ot/cm ³ enclosed in polythene bag 0 2.2 2.9	iy shoot was



Turn over.

Examiner only (iii) Describe and explain the results shown. [5] ------16 08

Turn over.

Examiner only A student used the microscope to examine a T.S. slide of duodenum of a mammal and (b) drew a low power plan. Low Power Plan of TS Duodenum. (x10 eyepiece lens, x10 objective) Υ Х **X**¹ <u>Y1</u> Use clear label lines and the letters **A-D** to identify the following structures on the low power plan above. [4] (i) Serosa Α В Mucosa С Circular muscle D Longitudinal muscle

© WJEC CBAC Ltd.

(ii) Using the eyepiece graticule, the height of the villus and the thickness of the gut wall were measured at the points indicated. The student recorded the following measurements. $\mathbf{x} = \mathbf{x}^1 = -20$ epu

 $X - X^{1} = 20 epu$ $Y - Y^{1} = 25 epu$

epu = eye piece unit

(iii)

Use the answer from (a) to calculate the height of the villus marked $X - X^{1}$. [1]

Height of $X - X^1 = \dots \mu m$ Using the measurement lines shown on the diagram, state if the student's low power plan is in proportion to the actual specimen. Explain how you reached your

conclusion. [3]

Examiner only

(C)	pano calle	protease enzyme trypsin is an endopeptidase secreted by the acinar cells of the creas. The enzyme is secreted in an inactive form called trypsinogen. Another enzyme d enterokinase converts the inactive trypsinogen to the active form, trypsin, in the denum.	
	(i)	Explain why the enzyme is secreted in an inactive form. [1]	
	(ii)	The optimum pH of trypsin is in the range 7.8 – 8.7. Explain how this pH is maintained in the duodenum. [3]	
	······		
			14
12		© WJEC CBAC Ltd. (B400U20-1)	

BLANK PAGE

13

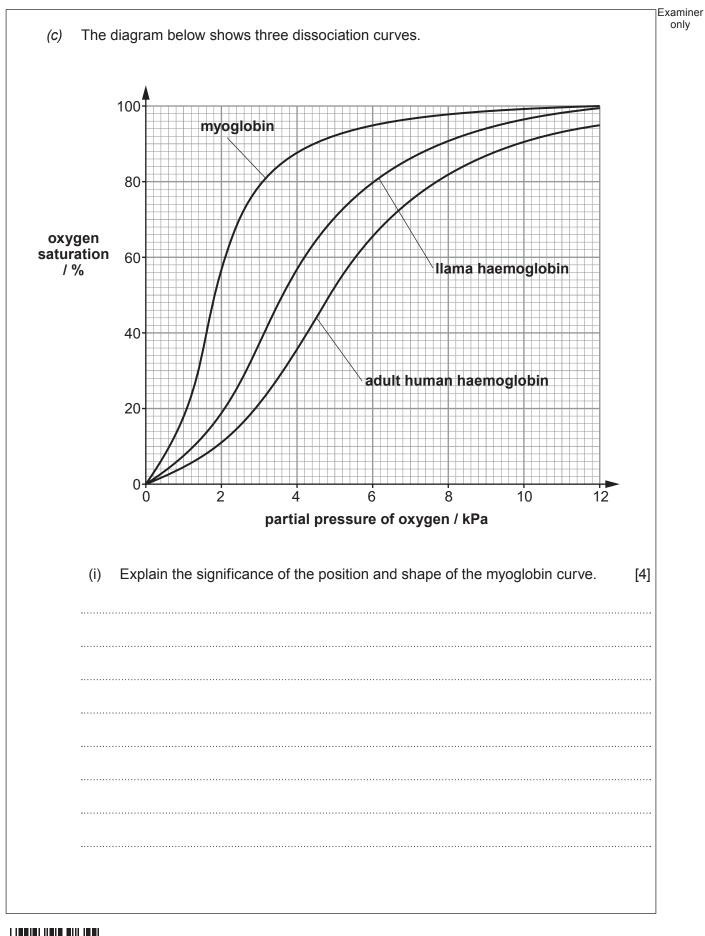
PLEASE DO NOT WRITE ON THIS PAGE

4. Myoglobin is a type of protein that works in a similar way to haemoglobin. It is found inside muscle cells.

The table below shows both the myoglobin concentration and oxygen carrying capacity of skeletal muscle from a variety of terrestrial and marine mammals.

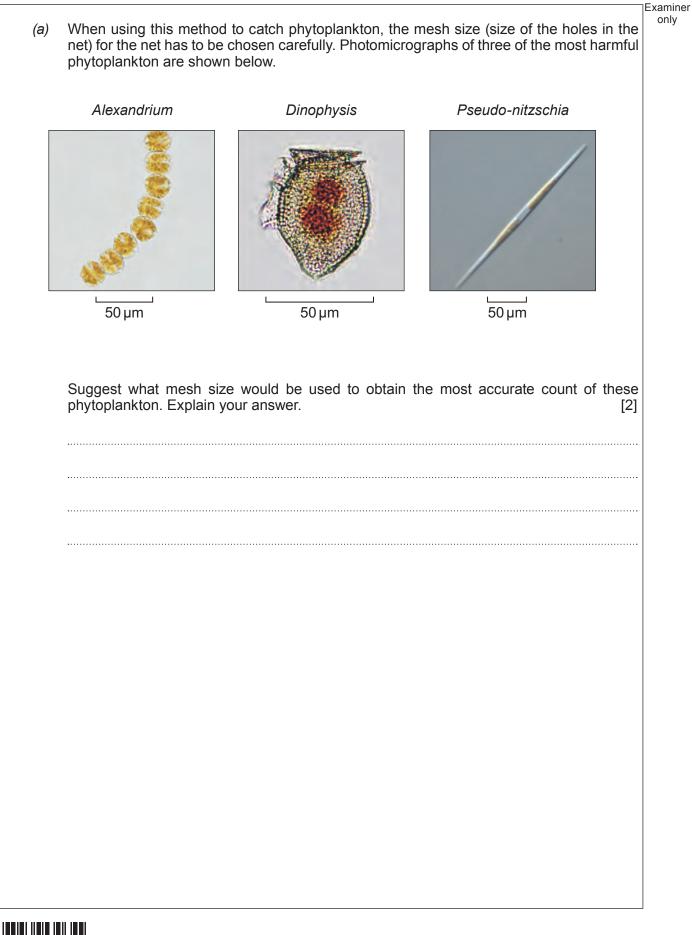
Habitat	Organism	Myoglobin concentration /g kg ⁻¹ muscle	O ₂ carrying capacity /cm ³ kg ^{−1} muscle
	Human	6.0	8.0
Terrestrial	Dog	6.7	9.0
	Rat	3.0	4.0
	Harbour porpoise	41.0	56.0
Marine	Harbour seal	52.1	69.8
	Weddell seal	44.6	59.8

(a) A Harbour seal is a marine mammal which lives and hunts for food (mostly fish) in the sea. It is very well suited to its environment and spends long periods of time under water when hunting.


A Harbour seal has a muscle mass of 60% of its total body mass. Calculate the muscle mass of a 70 kg Harbour seal and use this to calculate the total oxygen carrying capacity of its myoglobin.

Examiner only

Examiner A 70 kg human would have an oxygen carrying capacity of approximately 300 cm³ (ii) only oxygen bound to myoglobin in their skeletal muscle. Using the data in the table, explain the difference in the oxygen carrying capacity of the muscle of these mammals and suggest how this would be an advantage to the seal. [2] All mammals have an organ, known as the spleen, which acts as a reservoir for blood. When the seal swims under water, the spleen contracts forcing more blood into the general circulation as shown in the diagram below. At rest When swimming under water to general to general circulation circulation posterior posterior diaphragm vena cava vena cava blood reservoir spleen portal liver vein Suggest how this adaptation helps the seal stay under water for prolonged periods when (b) hunting its prey. [4]

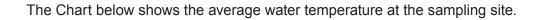

(ii)	Explain the position of the dissociation curve of the llama haemoglobin relative to that of adult human haemoglobin. [2]	Examin only
······		
······		
		14

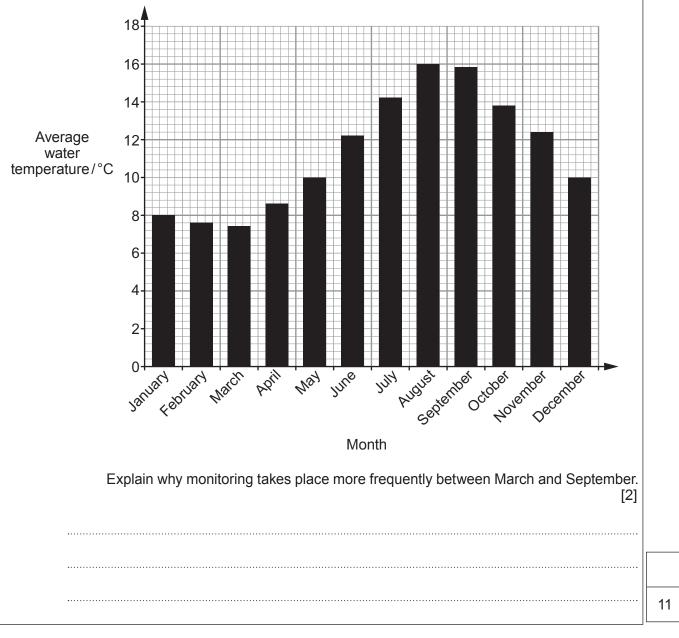
5. Phytoplankton is the term used to describe the microscopic photosynthetic organisms that live in bodies of water, mainly near the surface. They are the main food source of many shellfish and crustaceans. However, some phytoplankton species can produce toxins that accumulate in the tissues and organs of shellfish. If the shellfish are eaten by humans, this can cause a form of food poisoning. Members of European Union states are required to monitor both the presence and distribution of marine phytoplankton which can produce toxins in areas where shellfish are harvested. One possible method for estimating the biodiversity of phytoplankton is to use a net to capture the organisms present in a known volume of water. This is then followed by microscopic examination of the organisms to identify them and estimate population numbers. A diagram of one net used is shown below. buoys to keep the net floating upon towing towing rope PVC cylinder frame

Examiner only

(b) The table below shows the results of monitoring two different sites along a 2km stretch of coastline for potentially harmful phytoplankton. All samples were taken on the same day using the same sampling method.

nhytoplankton	Number of cells at each site / cells dm ⁻³		
phytoplankton	SITE 1	SITE 2	
Pseudo-nitzschia	780	49000	
Alexandrium	530	0	
Dinophysis	650	400	
Prorocentrum lima	0	0	
Prorocentrum cordatum	420	1480	
Lingulodinium polyedrum	0	0	
Protoceratium reticulatum	0	20	

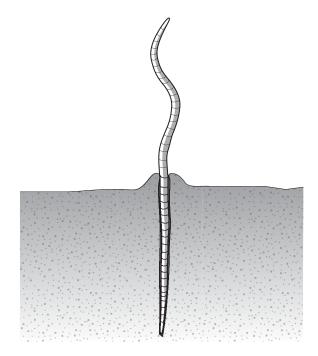

(i) Use the data to state which site has the greatest biodiversity. Explain your answer. [3]
 (ii) Name a statistical test which could be used to compare the biodiversity of the two sites. [1]
 (iii) The two sites sampled showed significant variation in the distribution of phytoplankton. Suggest improvements to the sampling method in order to further investigate biodiversity along the stretch of coastline. [3]



© WJEC CBAC Ltd.

(iv) The data collected from phytoplankton monitoring are used to provide early warnings to the shellfish industry to try to minimise the risk of food poisoning. Phytoplankton levels are monitored at different frequencies throughout the year as shown below:

Time of year	Sampling frequency
March to September	Weekly
October to November	Fortnightly
December to February	Monthly



Examiner only **6.** *Tubifex* worms have a similar structure to earthworms. They are one of the few multi-cellular organisms that can survive in heavily polluted water which has low oxygen levels. Some of their adaptations to these conditions are described below.

Examiner

- Diameter of approximately 3 mm, length up to 45 mm.
- Outer body surface is folded.
- Head and front part of body buried in mud when highly active, less of the body is buried.
- Part of the body exposed to the water moves vigorously.
- Red in colour due to presence of haemoglobin.

Explain how these adaptations enable *Tubifex* worms to survive in water with very low oxygen levels. [9 QER]

Examiner only

Examiner only

Examiner only 9 **END OF PAPER**

BLANK PAGE

26

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

