

GCE

Chemistry A

H432/02: Synthesis and analytical techniques

Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations available in RM Assessor

Annotation	Meaning
V	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

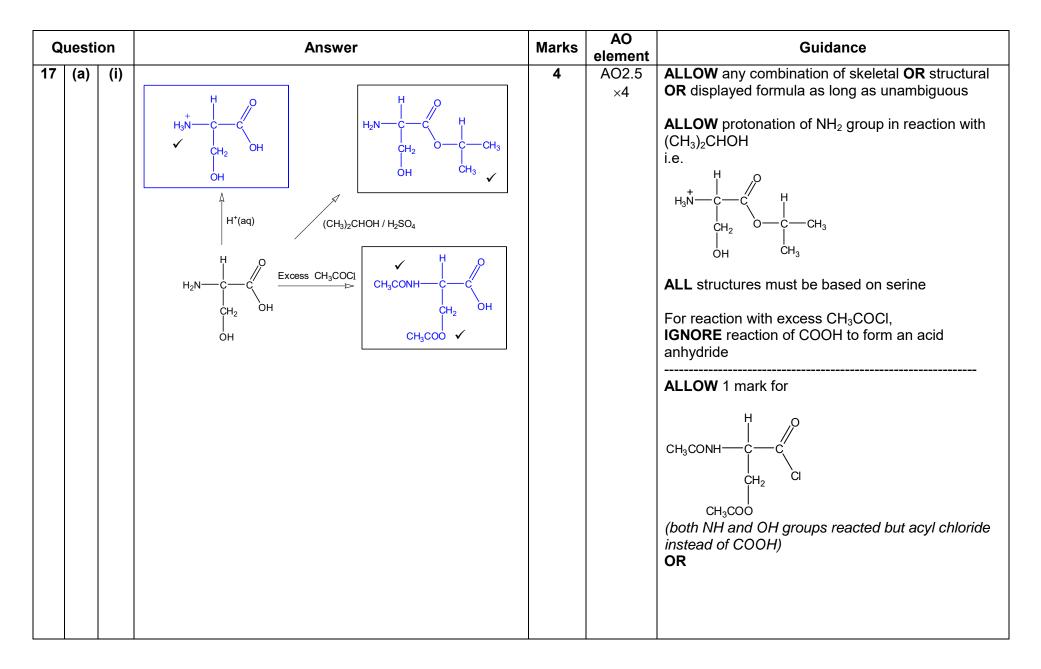
SECTION A

Question	Answer	Marks	AO element	Guidance
1	Α	1	AO1.2	
2	D	1	AO2.1	
3	С	1	AO1.2	
4	С	1	AO1.2	ALLOW E (This is the correct term)
5	D	1	AO2.5	
6	Α	1	AO2.5	
7	В	1	AO1.2	ALLOW 6 (This is the number of chiral centres)
8	С	1	AO1.2	
9	Α	1	AO2.5	
10	В	1	AO2.5	
11	Α	1	AO2.4	
12	С	1	AO2.5	
13	С	1	AO1.2	
14	Α	1	AO1.1	
15	В	1	AO1.2	
	Total	15		

SECTION B

Question	Answer	Marks	AO element	Guidance
16 (a) (i)	ANNOTATE ANSWER WITH TICKS AND CROSSES $H_{3} \leftarrow \bigcirc CHO$ $H_{3} \leftarrow \bigcirc H_{3} \leftarrow \oplus H_{3} \leftarrow$	4	AO1.2 AO1.2	NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must • go to the H atom of H–Br AND • start from, OR be traced back to any point across width of C=C C = C C = C C = C C = C C = C C = C C = C C = C C = C C = C C = C C = C C = C C = C C = C C C C = C

Mark Scheme


Question	Answer	Marks	AO element	Guidance
	Correct carbocation AND curly arrow from Br ⁻ to C ⁺ of carbocation \checkmark DO NOT ALLOW δ + on C of carbocation		AO2.5	IGNORE connectivity of CHO and CH ₃ groups in carbocation and product e.g. ALLOW CHO CHO OR
	$\begin{array}{c c} H_{3}C & CHO & CH_{3} & CHO \\ C & C & H & H_{3}C & CH_{3} & CHO \\ H_{3}C & H & H_{3}C & H & H \\ H_{3}C & H & H & H \\ H$			ALLOW COH for CHO (reaction does not involve this group) 3rd curly arrow must • go to the C+ of carbocation
	Correct product \checkmark $H_3C \longrightarrow C \longrightarrow$		AO2.5	 go to the C+ of carbocation AND start from, OR be traced back to any point across width of lone pair on :Br⁻ OR start from - charge of Br⁻ ion C⁺ Br Br Br Br Br C⁺ Br C
				(Lone pair NOT needed if curly arrow shown from – charge of Br ⁻ ion) IF Br₂ is used instead of HBr contact your Team Leader
(a) (ii)	(major product forms from) most/more stable	2		For carbocation,

Questio	on	Answer	Marks	AO element	Guidance
		intermediate/carbocation ✓ (major product forms from a) tertiary carbocation OR carbocation bonded to more C atoms / more alkyl groups OR carbocation bonded to no H atoms ✓		AO1.1 AO1.2	ALLOW carbonium ion or cation IGNORE descriptions of the major/minor product in terms of Markownikoff's rule e.g. H atom joins to C with most H IGNORE references to stability of the product
					ALLOW ORA, i.e. (minor product forms from) least/less stable intermediate/carbocation ✓ (minor product forms from a) secondary carbocation OR carbocation bonded to fewer C atoms / more alkyl groups OR carbocation bonded to H atoms ✓
(b)	(i)	Tollens' (reagent) ✓	2	AO1.2	ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃

Q	luestic	on	Answer	Marks	AO element	Guidance
			Silver (mirror/precipitate/ppt/solid) with citronellal/the aldehyde ✓		×2	ALLOW black ppt OR grey ppt IGNORE references to acidified dichromate reacting with both compounds
	(b)	(ii)	C ₁₀ H ₁₈ O ✓	1	AO1.2	DO NOT ALLOW C ₁₀ H ₁₇ OH
	(b)	(iii)	Same molecular formula AND Different structural formulae ✓ OR Both (geraniol and citronellal) have the molecular formula C ₁₀ H ₁₈ O AND Different structural formulae ✓	1	AO1.1	 Same formula is not sufficient (no reference to molecular) Different arrangement of atoms is not sufficient (no reference to structure/structural) For structural formulae, ALLOW structure/displayed/skeletal formulae/ functional groups DO NOT ALLOW any reference to spatial/space ALLOW ECF from incorrect molecular formula in (b)(ii)
		(iv)	Same structural formula	1	AO1.1	ALLOW structure/displayed/skeletal formula

Question	Answer	Marks	AO element	Guidance
	AND Different arrangement (of atoms) in space OR different spatial arrangement (of atoms) ✓			DO NOT ALLOW same empirical formula OR same general formula IGNORE same molecular formula Reference to <i>E/Z</i> isomerism or optical isomerism is not sufficient
(v)	Geraniol: (Carbon-carbon) double bond at carbon-2(,3) AND $E \text{ OR } Z \checkmark$ Structure of Z geraniol (E isomer is shown in question) \bigvee OH \checkmark	4	AO1.2 AO2.5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC CHECK diagrams of citronellal and geraniol for annotations that may be worthy of credit DO NOT ALLOW isomerism at C=C at carbon 6(,-7) ALLOW identification of carbon-2(,3) from correct <i>Z</i> geraniol isomer if not stated in text or diagram IGNORE <i>cis</i> OR <i>trans</i> isomerism <i>(none of the substituent groups attached to the C=C are the same)</i> IGNORE geometric ALLOW type of isomerism from <i>E/Z</i> labels, even if incorrectly assigned In geraniol, ALLOW C ₆ H ₁₁ OR R to represent alkenyl chain ALLOW CH ₃ O to represent CH ₂ OH

Question	Answer	Marks	AO element	Guidance
	Citronellal: chiral/asymmetric C at carbon-3 OR carbon-3 is bonded to 4 different groups AND optical isomerism ✓		AO1.2	ALLOW identification of carbon-3 from 3D structure citronellal if not stated in text or diagram
	Two 3D structures of citronellal that are mirror images \checkmark e.g. $\downarrow \downarrow $		AO2.5	IGNORE connectivity of groups around chiral C In citronellal, ALLOW $C_{6}H_{11}$ OR R to represent alkenyl chain ALLOW $C_{2}H_{3}O$ to represent $CH_{2}CHO$ IF structural formula of alkenyl chain is used IGNORE one small slip in one/both isomers e.g.(CH ₃) ₂ CHCH ₂ CH ₂ (<i>missing carbon-7</i>) ALLOW two 3D structures with 2 groups swapped e.g.
	Total	13		Н О

H432/02

Question	Answer	Marks	AO element	Guidance
				$CH_{3}CONH - C - C - C - C - C - C - C - C - C - $
				from α C atom)
				OR
				CH ₃ CONH—C—C CH ₂ OH
				о́н (NH group reacted correctly but rest of serine unchanged)
				OR H O
				NH_2 CH_2 CH_2 CH_3 COO
				(OH group reacted correctly but rest of serine
				unchanged)
(ii)	IF <i>M</i> _r (amino acid) = 131 from titration analysis AWARD	4		

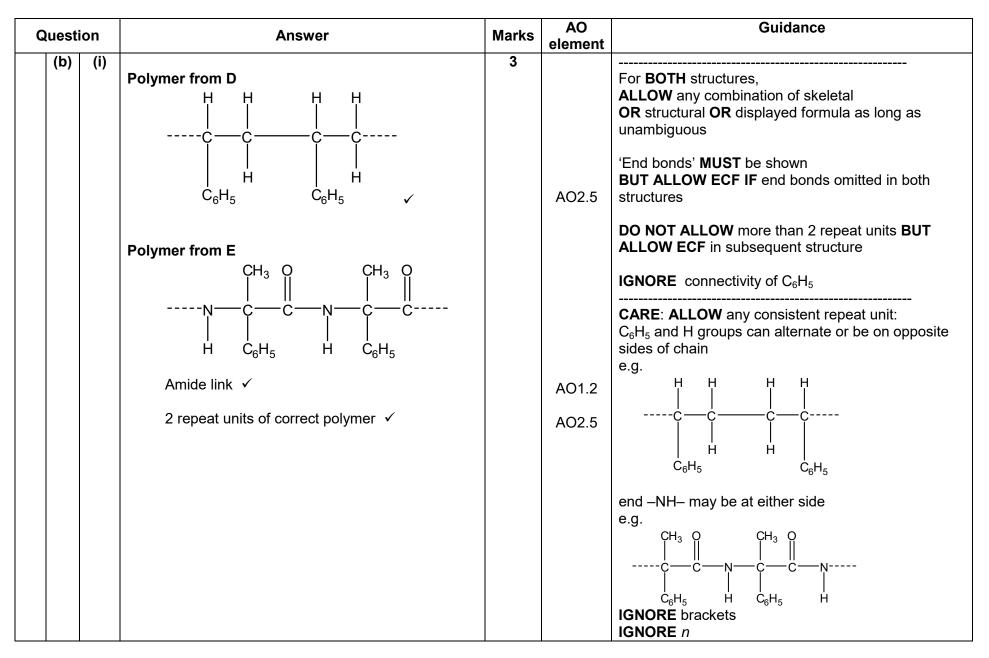
Question	Answer	Marks	AO element	Guidance
	first 3 marks ALLOW 3SF or more throughout IGNORE trailing zeroes, e.g. ALLOW 0.044 for 0.0440			ALLOW alternative approaches
	<i>n</i> (HCl) = $0.150 \times \frac{25.0}{1000}$ OR 3.75×10^{-3} (mol) \checkmark		AO2.8	
	<i>n</i> (amino acid) in 250 cm ³ = $3.75 \times 10^{-3} \times \frac{250.0}{21.30}$ OR 0.0440 (mol) ✓		AO2.8	Calculator: 0.04401408451 ALLOW ECF from incorrect <i>n</i> (HCI)
	$M(\text{amino acid}) = \frac{5.766}{0.0440} = 131 \text{ (g mol}^{-1}) \checkmark$		AO2.8	ALLOW ECF from incorrect <i>n</i> (amino acid)
	Amino acid = $(CH_3)_2CHCH_2CH(NH_2)COOH/leucine$ AND working to show R = 57 to justify choice OR evidence to show M_r leucine = 131 to justify choice \checkmark		AO3.2	ALLOW ECF from incorrect <i>M</i> (amino acid) i.e. ECF for alkyl group closest to calculated <i>M</i> (alkyl group),
				e.g. for <i>M</i> (alkyl group) = 15, ALLOW CH ₃ CH(NH ₂)COOH Note: evidence may be shown with table
(b) (i)	R _f value in range 0.33 – 0.35 ✓	1	AO1.1	ALLOW 2 SF or more. But ignore digits after second sig fig
(ii)	gly(cine) ✓	2	AO2.3 ×2	ALLOW 0.3 for 0.33
	Amino acid matches (leu(cine) and) glycine in Solvent W AND Amino acid matches (ala(nine) and) glycine in Solvent X ✓		~~	ALLOW glycine has the same/similar <i>R</i> _f as the unknown in both solvents/chromatograms
				ALLOW suitable alternatives for <i>R</i> _f e.g. moves same distance
	Total	11		

C	Question		Answer		AO element	Guidance
18	(a)	(i)	ethyl 3-bromopropanoate ✓	1	AO1.2	ALLOW one word: ethyl3-bromopropanoate OR more words, e.g. ethyl 3-bromo propanoate IGNORE lack of hyphens, or addition of commas
		(ii)	$ \begin{array}{c} \begin{array}{c} & & & \\ & &$	5	AO2.5 ×5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW in either order ALLOW any vertical bond to the OH group e.g. ALLOW OR OR OH HO DO NOT ALLOW OH- ALLOW in either order For reaction with OH ⁻ , ALLOW one mark for OR HO OR HO OH

Question	Answer		Marks	AO element	Guidance	
(iii)	hydrolysis ✓			1	AO1.1	IGNORE 'acid' and 'alkaline'' IGNORE nucleophilic substitution
(b)	Proton environment 1 2 3 4 Mark by colum Chemical shift Splitting patter	: all 4 correct 3 correct ✓	ect √ √	4	AO3.1 × 4	ALLOW δ values ± 0.2 ppm, as a range or a value within the range ALLOW integers for δ values e.g. 2 is equivalent to 2.0 ALLOW quadruplet for quartet ALLOW diagrams to show splitting pattern e.g. for triplet for quartet ALLOW splitting patterns shown as numbers i.e. '3' for triplet, '4' for quartet

H432/	02
-------	----

Question	Answer	Marks	AO element	Guidance
(C)	$Br \qquad O \qquad $	1	AO3.1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
(d) (e) (i)*	IF answer on answer line = 24018, AWARD 2 marks IF answer on answer line = 27600, AWARD 1 markRelative mass of 200 molecules = $200 \times 138 = 27600 \checkmark$ M_r of polyester = $27600 - 199 \times 18 = 24018 \checkmark$ Refer to marking instructions on page 4 of mark scheme	2	AO2.2 ×2	ALLOW ECF from incorrect M_r Alternative method based on repeat unit: M_r of 200 repeat units = 200 x 120 = 24000 \checkmark M_r of polymer = 24000 + 1 + 17 = 24018 \checkmark Indicative scientific points may include:

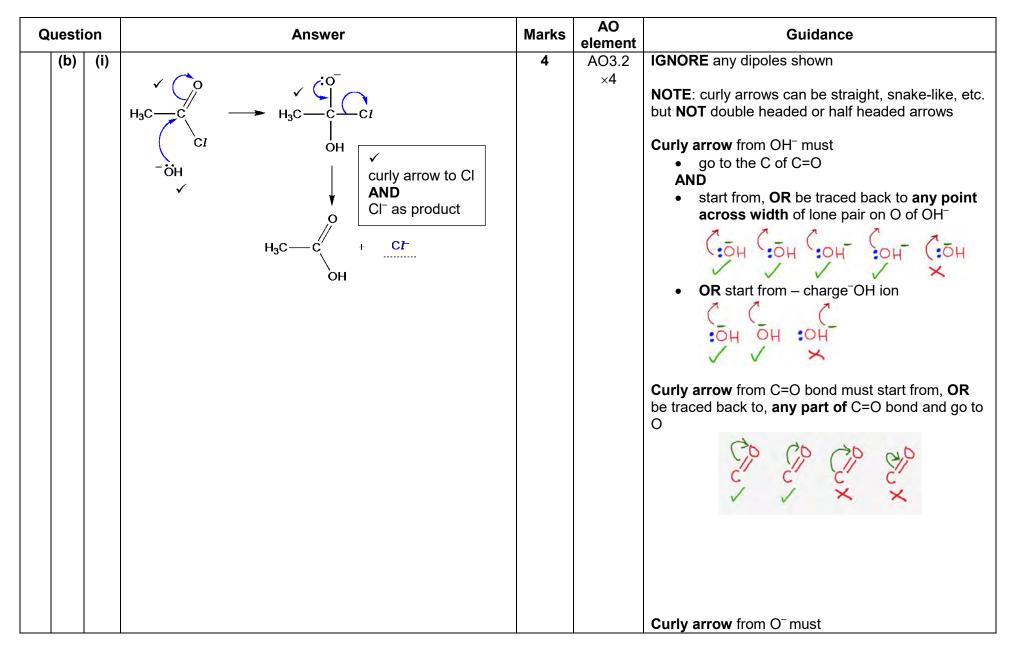

for guidance on marking this question.	Question	n Answer	Marks	AO element	Guidance
Level 3 (5-6 marks) Correct calculation of the mass of $(CH_3)_2CHCHO$. AND Planned synthesis includes oxidation of aldehyde and 		 Level 3 (5-6 marks) Correct calculation of the mass of (CH₃)₂CHCHO. AND Planned synthesis includes oxidation of aldehyde and formation of ester C with most of the reagents and conditions identified and equations are mostly correct. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Calculation of the mass of (CH₃)₂CHCHO is partly correct AND Planned synthesis includes oxidation of aldehyde and formation of ester C with some of the reagents and conditions identified OR Attempts to calculate mass of (CH₃)₂CHCHO but makes little progress AND Planned synthesis includes oxidation of aldehyde and formation of ester C with most of the reagents and conditions identified OR Attempts to calculate mass of (CH₃)₂CHCHO but makes little progress AND Planned synthesis includes oxidation of aldehyde and formation of ester C with most of the reagents and conditions identified and equations for each step are mostly correct There is a line of reasoning presented with some structure. The information presented is relevant and some structure. The information presented is relevant and some structure. The information presented is relevant and some structure. The information presented is relevant and some structure. Seme structure is a line of reasoning presented with some structure. The information presented is relevant and some structure. Seme structure is relevant and some structure. The mathematic presented is relevant and some structure. The mathematic presented is relevant and some structure. The mathemathematic presented is releva		×6	Using moles • $n(ester) = \frac{12.75}{102.0}$ = 0.125 (mol) • $n((CH_3)_2CHCHO) = 0.125 \times \frac{100}{40}$ = 0.3125 (mol) • Mass of (CH_3)_2CHCHO = 72.0 × 0.3125 = 22.5 g Using mass • Theoretical mass of ester = $12.75 \times \frac{100}{40}$ = 31.875 (g) • Theoretical $n((CH_3)_2CHCHO) = \frac{31.875}{102}$ = 0.3125 (mol) • Mass of (CH_3)_2CHCHO = 72.0 × 0.3125 = 22.5 g ALLOW small slip/rounding errors such as errors in Mr e.g. use of 71 instead of 72 for (CH ₃)_2CHCHO

Question	Answer	Marks	AO element	Guidance
	Level 1 (1-2 marks) Calculation of the mass of (CH ₃) ₂ CHCHO is partly correct OR Planned synthesis includes both steps with some of the reagents and conditions identified OR Attempts equations for both steps but these may contain errors OR Describes one step of the synthesis with reagents, conditions and equation mostly correct There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.			Synthesis: reagents and conditions Step 1: Oxidation of aldehyde (CH ₃) ₂ CHCHO • Reagents: Cr ₂ O ₇ ²⁻ /H ⁺ • Conditions: reflux • Equation: (CH ₃) ₂ CHCHO + [O] → (CH ₃) ₂ CHCOOH Step 2: Formation of ester C • Reagents: methylpropanoic acid/(CH ₃) ₂ CHCOOH and methanol/CH ₃ OH • Conditions: acid (catalyst) reflux/heat • Equation: (CH ₃) ₂ CHCOOH + CH ₃ OH → (CH ₃) ₂ CHCOOCH ₃ + H ₂ O IGNORE attempts to form methanol in synthesis
(e) (ii)	2	AO2.7 × 2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

Question	Answer	Marks	AO element	Guidance
	Y (43) = $(CH_3)_2CH^+ \checkmark$ Z (71) $(CH_3)_2CHCO^+ \checkmark$			ALLOW positive charge to be anywhere on the structure
	If '+' charge is missing/incorrect but the structures of both fragments are correct, award one mark			For Y and Z, ALLOW structure of a feasible fragment ion formed from ester C $H_{3}C - C - C - C - C - C - C - C - C - C -$
				Ester C e.g. \mathbf{Y} (43) = CH ₃ OC ⁺ \mathbf{Z} (71) = ⁺ CCOOCH ₃ ALLOW 1 mark if both correct ions are shown but in
				 ALLOW 1 mark for both correct ions if one or both have an 'end bond' ALLOW 1 mark if both ions are shown using correct molecular formulae
	Total	22		

Q	Question		Answer	Marks	AO element	Guidance
19	-	(i)	Similarities Orbital overlap (sideways) overlap of p orbitals \checkmark π bond π bond/system/ring above and below (bonding (C) atoms/ring/plane) \checkmark	3	element AO1.1 × 3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW diagram showing orbital overlap e.g. porbital $c - c - c - c - c - c - c - c - c - c $

Question	Answer	Marks	AO element	Guidance	
	Difference Kekule has: alternating π bonds OR 3 π bonds / localised (π electrons) / overlap in one direction / 2 electrons in π bond AND Delocalised has: π ring (system) / all p orbitals overlap OR (π electrons) spread around ring / overlap in both directions / 6 electrons in π bond /			ALLOW diagram showing π bond in both Kekule AND delocalised models e.g AND $(\operatorname{kekule}$ AND (kekule) Kekule Delocalised π bond labels not required for third mark	
	 Any 2 pieces of evidence from (✓ ✓) Bond length (C-C) bond length is between single (C-C) and double bond (C=C) OR all (C-C) bond lengths are the same Δ<i>H</i> hydrogenation Δ<i>H</i> hydrogenation less (exothermic) than expected Resistance to reaction Benzene is less reactive than alkenes OR bromination of benzene requires a catalyst/halogen carrier OR benzene does not react with/decolourise bromine (at room temperature) OR benzene does not (readily) react by addition 	2	AO1.1 ×2	ALLOW (C–C) bond enthalpy is between single (C– C) and double bond (C=C) OR all (C–C) bond enthalpies are the same IGNORE enthalpy of hydration Benzene is unreactive is not sufficient (<i>no comparison to alkene</i>) For halogen carrier, ALLOW name or formula of suitable catalyst e.g. Fe, AlCl ₃ , FeBr ₃	



Question	Answer	Marks	AO element	Guidance
(ii)	 D Addition / polyalkene AND E: Condensation / polyamide ✓ 	1	AO1.1	DO NOT ALLOW 'additional'
	Formation of electrophile $CH_3COCI + AICI_3 \rightarrow CH_3-C^+=O + AICI_4^- \checkmark$ Mechanism Curly arrow from π -bond to $CH_3C^+=O \checkmark$ $H_3C - C^+ = O$ $H_3C - C^+ = O$	5	AO2.5 AO2.5	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW '+' charge anywhere on CH_3C^+O <i>i.e.</i> CH_3CO^+ NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must • go to the C of C=O AND • start from, OR close to circle of benzene ring $H_2^+ = c^+ = 0$ $H_2^- = c^+ = 0$ $H_2^- = c^+ = 0$ $H_2^- = c^+ = 0$ $H_2^- = c^+ = 0$ $H_2^- = c^+ = 0$ IGNORE curly arrow shown on C=O

Question	Answer	Marks	AO element	Guidance
	Correct intermediate ✓		AO3.1	
	Curly arrow from C–H bond to reform π -ring \checkmark		AO2.5	
	H COCH ₃ (+) (+) (+)			DO NOT ALLOW the following intermediate:
				π -ring should cover approximately 4 of the 6 sides of the benzene ring structure AND the correct orientation, <i>i.e.</i> gap towards C with COCH ₃ ALLOW + sign anywhere inside the 'hexagon' of
	Regeneration of catalyst $H^+ + AlCl_4^- \longrightarrow AlCl_3 + HCl \checkmark$		AO1.2	intermediate curly arrow must start from, OR be traced back to, any part of C-H bond and go inside the 'hexagon' H H H H H H H H K K K K K K K K K K K K K

Question	Answer	Marks	AO element	Guidance
	one mark for each correct structure/reagent $H \rightarrow H \rightarrow$	7	AO2.5 ×7	ALLOW any vertical bond to the OH OR NH ₂ groups e.g. ALLOW OR AND OR H ₂ OR H ₂ N DO NOT ALLOW OH–, OR NH ₂ – but ALLOW ECF for subsequent use in this part For elimination, IGNORE 'concentrated', 'dilute' with acids BUT DO NOT ALLOW H ₂ O/steam/(aq) ALLOW HBr for NaBr/H ₂ SO ₄ For hydrolysis. IGNORE missing (aq) ALLOW HNO ₃ for hydrolysis but DO NOT ALLOW 'HNO ₃ and H ₂ SO ₄ ' ALLOW final 2 stages in opposite order i.e. NH ₃ before acid hydrolysis $VH_3 AND$ ethanol OR excess NH ₃ $H_2N - H_3$
	Total	23		

Q	Question		Answer	Marks	AO element	Guidance
20	(a)	(i)	Movement of an electron pair ✓	1	AO1.1	For electron pair, ALLOW lone pair OR bonding pair OR 2 electrons
	(a)	(ii)	→	2	AO3.1 ×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE any other products
			Correct carbon skeleton ✓ '+' charge on correct carbon skeleton ✓			
	(a)	(iii)	Heterolytic one (bonded) atom/O receives both/2 electrons ✓ Fission Breaking of a covalent bond OR breaking of C-O bond ✓	2	AO1.2 AO1.1	ALLOW 2 electrons go to one (bonded) atom/O IGNORE formation of ions/radicals For O atom, ALLOW species DO NOT ALLOW element OR molecule 'Bond breaking' is not sufficient (no reference to covalent)

H432/02

Question	Answer	Marks	AO element	Guidance
				 go to C=O bond AND start from, OR be traced back to, any point across width of lone pair
				OR start from '' charge of O ⁻ C C C C C C C C C C C C
				Curly arrow from C–Cl bond must start from, OR be traced back to, any part of C–Cl bond and go to Cl C - Cl $C - Cl$ $C - Cl$ $C - Cl$ $C - Cl$
(b) (ii)	(OH [−]) donates an electron pair/lone pair OR (OH [−] acts as a) nucleophile ✓	1	AO1.2	
	Total	10		

Question Answer Marks Guidance Guidance	
21* Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. 6 A01.2 × 2 Austrian × 2 A03.2 × 2 AND Structure is CH ₃ O ₆ H ₄ CH(CH ₃)COOH × 2 A03.2 × 2 AND Structure is CH ₃ O ₆ H ₄ CH(CH ₃)COOH × 2 × 2 × 2 AND Most of the data analysed. × 2 × 2 × 2 There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. • Empirical formula = C ₃ H ₆ O • uses m/z = 164.0 to determine mole C ₁₀ H ₁₂ O ₂ Level 2 (3-4 marks) A viable aromatic structure of C ₁₀ H ₁₂ O ₂ that contains C =O AND most key features consistent with spectral data • COOH group to a use some supported by some evidence. • COOH group • 4 aromatic H atoms • single H atom that would give a que to CH ₃ group that would give a double • CH ₃ group that would give a singlet	22 1 blecular formula as structural OR us consistent with uartet

Mark Scheme

Question	Answer	Marks	AO element	Guidance
	Level 1 (1–2 marks) Correct determination of empirical formula and/or molecular formula. OR Analyses some of the IR and NMR data. OR Analyses most of the NMR data. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			Correct Structure • $CH_3C_6H_4CH(CH_3)COOH$ ALLOW 2-, 3- OR 4- substitution of ring <i>i.e.</i> H_3C
	Total	6		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2019