

GCE

Chemistry A

H432/02: Synthesis and analytical techniques

Advanced GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

1. Annotations available in RM Assessor

Annotation	Meaning
\checkmark	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

1. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	AO element	Guidance
1	Α	1	1.2	
2	В	1	1.1	
3	Α	1	1.1	
4	С	1	2.3	
5	D	1	1.2	
6	D	1	2.1	
7	Α	1	1.1	
8	С	1	2.2	
9	D	1	1.2	
10	С	1	2.5	ALLOW 5
11	Α	1	2.6	
12	Α	1	2.2	
13	Α	1	1.1	
14	В	1	2.3	
15	С	1	1.2	

SECTION B

Q	Question		Answer	Marks	AO element	Guidance
16 (a) (i) 2-bromo-3,3-dimethylbutane ✓		1	1.2	IGNORE lack of hyphens or addition of commas ALLOW 3,3-dimethyl-2-bromobutane DO NOT ALLOW 2-bromo-3-dimethylbutane methy for methyl methly for methyl brom for bromo		
	(b)	(i)	<pre>Stereoisomers Same structural formula AND Different arrangement (of atoms) in space OR different spatial arrangement (of atoms) AND Type: Optical ✓</pre>	1	1.2	ALLOW structure/displayed/skeletal formula DO NOT ALLOW same empirical formula OR same general formula IGNORE same molecular formula IGNORE references to chiral molecules/compounds
		(ii)	One 3D structure with correct groups attached to the chiral C \checkmark Two 3D structures of (CH ₃) ₃ CCHBrCH ₃ that are mirror images AND correct connectivity in both \checkmark Br Br H ₃ C ^{IIIIII} CH ₃ H ₃ C ^{IIIIII} C C(CH ₃) ₃	2	2.5	ALLOW small slip in one of the groups OR use of C ₄ H ₉ 3D structures must have four central bonds with at least two wedges. For bond into paper accept:

H432/02	2
---------	---

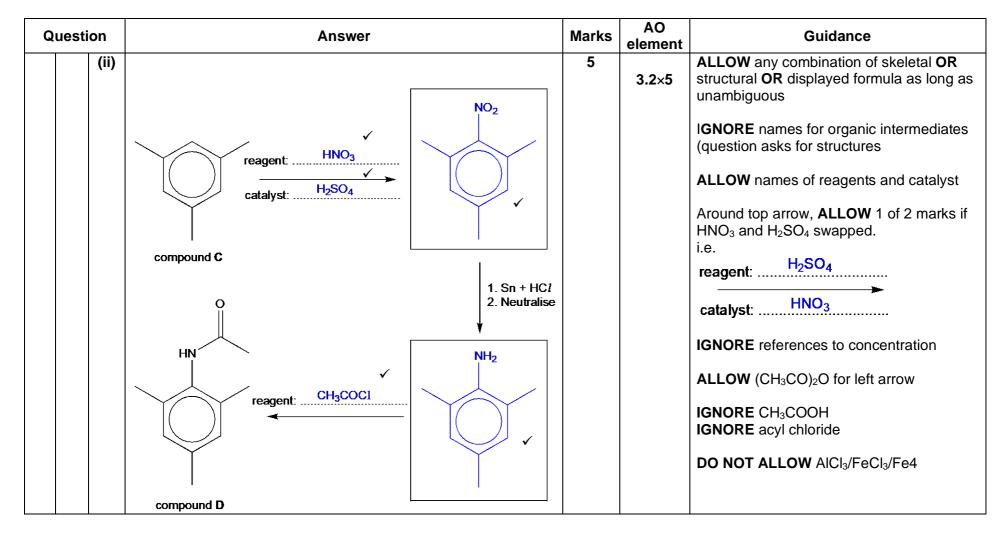
Question	Answer	Marks	AO element	Guidance
				$(CH_3)_3C \xrightarrow{C :::::H_3}H_3C \xrightarrow{H_3}C \xrightarrow{C ::::::H_3}H_3C \xrightarrow{H_3}C$
(C)	Initiation $Br_2 \rightarrow 2Br \bullet \checkmark$ Propagation \checkmark \downarrow $+$ \bullet \downarrow \downarrow \downarrow \downarrow \downarrow \bullet \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \bullet Br_2 Br \downarrow Br	3	1.2 2.5×2	 ALLOW Br₂ → Br• + Br• IGNORE dots for initiation step, i.e. ALLOW Br₂ → Br + Br OR Br₂ → 2Br DOT REQUIRED at correct position on chain. ALLOW 1 mark if both propagation equations are correct by atom but dot(s) missing or on incorrect C in chain ALLOW 1 mark if both propagation equations are correct including position of dot(s) but structures are not shown using skeletal formula ALLOW ECF from incorrect intermediate

Q	uestion	Answer		AO element	Guidance	
	(d)	further substitution/s OR produces different termination products OR More than one termination step OR Mixture of products are formed ✓	2	1.1×2	ALLOW dibromo/multibromo compounds formed OR an example of a further substitution product OR an example of a different termination product ALLOW more than one hydrogen (atom) can be replaced ALLOW radicals react with each other to form other products IGNORE references to separation of products IGNORE references to atom economy or yield	
		substitution at different positions along chain \checkmark			ALLOW a hydrogen (atom) on a different carbon (atom) can be replaced	

H432	/02
------	-----

Question	Answer	Marks AO element		Guidance
17 (a) (i)	Cl Cl Cl Cl Organic product with B Organic product with C	2	2.5×2	
	(ii)Reactivity of B in B electrons are localised OR in B π -bond is localised \checkmark Reactivity of C 		1.1×3	ALLOW labelled diagram to show delocalised system IGNORE charge density IGNORE charge density IGNORE electronegativity IGNORE B is more reactive/reacts more readily (no reference to electrophile) IGNORE references to electron density spread around the π-ring ALLOW chlorine

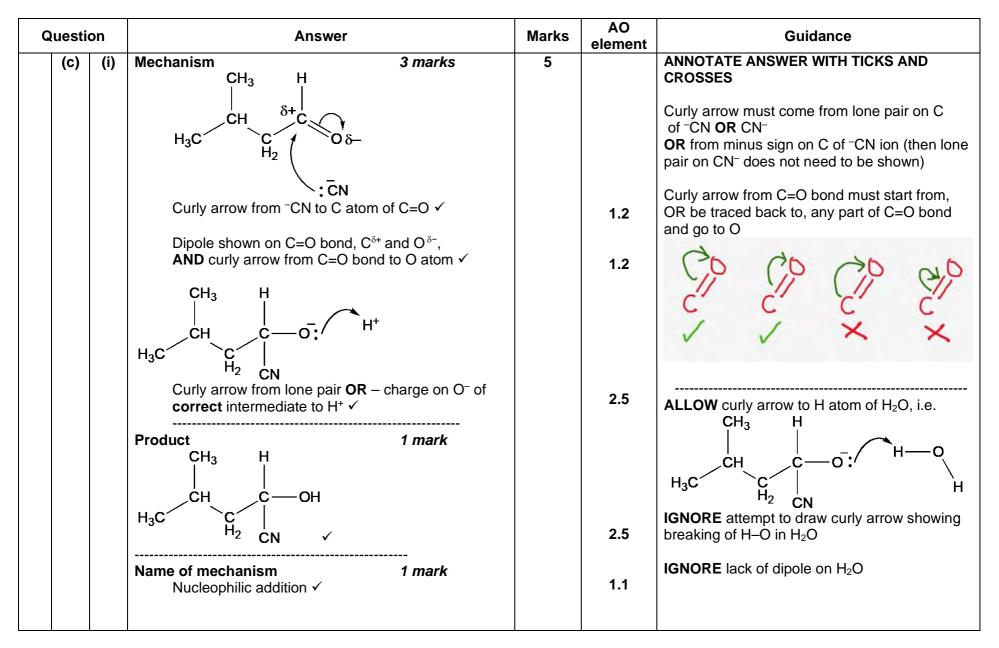
H432/02


November 2020

Question	Answer		AO element	Guidance
(iii)	Generation of electrophile AICI ₃ + CI ₂ \rightarrow AICI ₄ ⁻ + CI ⁺ \checkmark	5	1.2	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW $FeCl_3 + Cl_2 \rightarrow FeCl_4^- + Cl^+$
	Attack of CI ⁺			ALLOW use of Fe NOTE: curly arrows can be straight, snake- like, etc. but NOT double-headed or half- headed arrows
	Curly arrow from π -bond to Cl ⁺ \checkmark		1.2	 1st curly arrow must start from, OR close to, circle of benzene ring
	Intermediate and organic product			DO NOT ALLOW following intermediate:
	Correct intermediate ✓		2.5	
	Curly arrow from C–H bond to reform π -ring \checkmark		1.2	 π-ring must cover 4 of the 6 sides of the benzene ring AND correct orientation, <i>i.e.</i> gap towards C–CI
	Regeneration of catalyst H ⁺ + AlCl ₄ ⁻ \rightarrow AlCl ₃ + HCl \checkmark		1.2	ALLOW + sign anywhere inside the 'hexagon' of the intermediate.

H432/02	2
---------	---

Que	Question			Answer		Marks	Marks AO element	Guidance
								IGNORE partial charges on the chlorine in the intermediate DO NOT ALLOW mark for intermediate if any CH ₃ is missing Curly arrow must start from, OR be traced back to, any part of C-H bond and go inside the 'hexagon' ALLOW use of AlCl ₄ ⁻ in the mechanism ALLOW ECF for regeneration of an incorrect metal chloride catalyst e.g. AgCl ₃
	(b)		$3C_3H_6O \rightarrow C_9H_{12} + 3H_2O$ molecular formulae of H_2O as by-product \checkmark correct balanced equa	C₃H₀O AND C൭H₁	₂ ✓	3	2.6 2.5 2.6	
	(c)	(i)	Number of peaks	Compound C 3 ✓	Compound D 8 ✓	2	3.2	

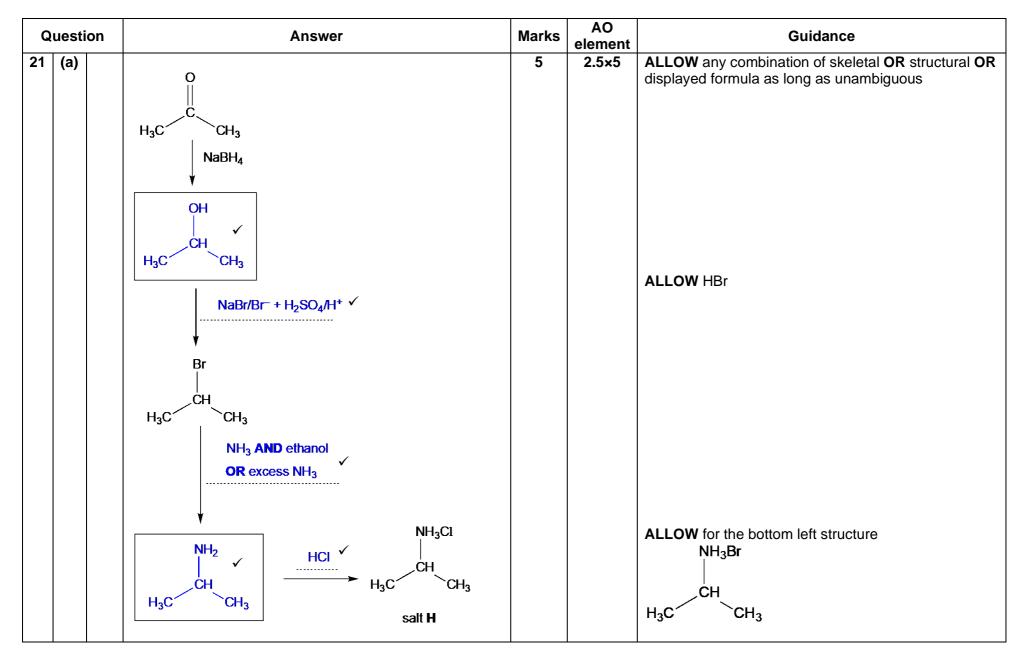

H432/02

(Question		Answer	Marks	AO element	Guidance	
18	(a)	(i)	Reagents $K_2Cr_2O_7$ AND acid AND reflux \checkmark Equation $HO(CH_2)_4OH + 4[O] \rightarrow HOOC(CH_2)_2COOH + 2H_2O$	3	1.1	ALLOW Na ₂ Cr ₂ O ₇ OR Cr ₂ O ₇ ²⁻ ALLOW H ₂ SO ₄ OR HCI OR H ⁺ ALLOW words. e.g. 'acidified dichromate' ALLOW a small slip in formula for dichromate e.g KCr ₂ O ₇ ,	
			[O] AND H₂O ✓		2.5		
			Correctly balanced equation ✓		2.6		
		(ii)	OR OR	2	2.1×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW δ + on H atoms of CH ₂ group ALLOW H-bond for hydrogen bond ALLOW H bond between C=O and H ₂ O, i.e. O—H hydrogen/H bond H δ^+ O C - (CH ₂) ₂ -C HO O—H	

G	Question	Answer	Marks	AO element	Guidance
	(b) (i	$\int_{-\cdots-C} \int_{-(CH_2)_2} \int_{-C} \int_{-(CH_2)_4} \int_{-(CH_2)_4} -O$ Ester link (must be displayed) \checkmark Rest of structure \checkmark	2	1.2 2.5	ALLOW the 'O' or C=O at either end, e.g. O O O $O - C - (CH_2)_2 - C - O - (CH_2)_4 - C$ O O O $- (CH_2)_2 - C - O - (CH_2)_4 - O - C$ IGNORE brackets IGNORE brackets IGNORE n End bonds' MUST be shown (solid or dotted) DO NOT ALLOW more than one repeat unit
	(i	 the ester/ ester bond/ ester group /polyester can be broken down ✓ OR It can be hydrolysed ✓ 	1	3.2	IGNORE references to photodegradable 'Bond breaks' is not sufficient – no reference to ester bond
	(ii		3	1.1	ALLOW alternative approach using PCl₅ or PCl₃
		Structure of diacyl dichloride ✓ Complete balanced equation ✓		1.2 2.6	

Q	Question		Answer	Marks	AO element	Guidance
19	(a)	(i)	(series of organic compounds with the) same functional group OR same/similar chemical properties/reactions ✓ each successive/subsequent member differs by CH ₂ ✓	2	1.1 ×2	IGNORE reference to physical properties IGNORE same general formula DO NOT ALLOW same empirical OR molecular formula Differs by CH ₂ is not sufficient (<i>no successive</i>)
		(ii)	C ₂₄ H ₄₈ O ✓	1	2.1	
	(b)		F/aldehyde AND Tollens' (reagent) AND Silver (mirror/precipitate/ppt/solid) ✓ G/alkene/C=C	4	2.3	IGNORE use of 2,4-DNP with F ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃ ALLOW black ppt OR grey ppt
			AND Bromine/Br₂ AND goes colourless/decolourised ✓		3.3	ALLOW bromine water/ Br ₂ (aq)
			G/ketone AND 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate ✓		3.3	ALLOW errors in spelling for 2,4-DNP ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
			G/ketone AND Tollens' (reagent) AND no silver mirror/no change/no reaction ✓		3.3	 ALLOW ammoniacal silver nitrate OR Ag⁺/NH₃ ALLOW black ppt OR grey ppt ALLOW alterative approach using acidified potassium dichromate for tests with F and/or G, with correct observations, alongside use of 2,4-DNP

Question	Answer	Marks	AO element	Guidance
	Heterolytic One (bonded) atom/O receives both/2 electrons ✓ Fission Breaking of a covalent bond ✓	2	1.2	ALLOW 2 electrons go to one (bonded) atom/O DO NOT ALLOW both pairs of electrons go to O IGNORE formation of ions/radicals For O atom, ALLOW species DO NOT ALLOW element or molecule ALLOW π bond in C=O breaks IGNORE breaking of C=O bond (no reference to only one bond breaking) 'Bond breaking' is not sufficient (<i>no reference to covalent</i>)


Question	Answer	Marks	AO element	Guidance	
Question 20 (a)*	AnswerRefer to marking instructions on page 4 of mark scheme for guidance on marking this question.Level 3 (5-6 marks) A correct calculation of the mass of cyclopentanol AND A detailed description of most purification stepsThere is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.Level 2 (3-4 marks) 	Marks 6		GuidanceIndicative scientific points may include: Calculation of mass of cyclopentanol Using molesusing molesn(cyclopentene) = $\frac{4.00}{68}$ = 0.0588 (mol)n (cyclopentene) = $0.0588 \times \frac{100}{64}$ = 0.0919(mol)Mass of cyclopentanol = 86×0.0919 = 7.90 gUsing massTheoretical mass cyclopentene = $4.00 \times \frac{100}{64}$ = 6.25 gTheoretical mass cyclopentene = $4.00 \times \frac{100}{64}$ = 6.25 gTheoretical mass cyclopentanol = $\frac{6.25}{68}$ = 0.0919 (mol)Mass of cyclopentanol = 86×0.0919 = 7.90 gALLOW for small slip in Mr / rounding errorsExamples of some calculation errors Incorrect inverse ratio:0.0588 $\times \frac{64}{100}$ = 0.0376 (mol)Mass = 86×0.0376 = 3.24 gIgnoring % yield gives: $\frac{4.00}{68}$ = 0.0588 (mol)Mass = 86×0.0588 = 5.06 gPurification• Add a neutralising agent by formula or name e.g.Na ₂ CO ₃	
	 There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit. 			 In separating funnel, organic layer is on top Drying with an anhydrous salt by formula or name, e.g. MgSO₄, Na₂SO₄, CaCl₂ Redistil at approx. 44°C Examples of detail in bold (NOT INCLUSIVE) 	

H432/02	
---------	--

Question		Answer	Marks	AO element	Guidance
(b)		C=C/alkene peak in region 1620-1680 cm ⁻¹ ✓ O–H/alcohol peak in region 3200-3600 cm ⁻¹ ✓	2	3.2×2	LOOK ON THE SPECTRUM for labelled peaks which can be given credit IGNORE references to C-O at 1000cm ⁻¹

H432/02

Mark Scheme

Question	Answer	Marks	AO element	Guidance	
(b) (i)	Ester Amide Amine Carboxylic acid 4 groups correct ✓✓✓ 3 groups correct ✓✓ 2 groups correct ✓	3	1.2×3	IGNORE amino acid ALLOW carboxyl IGNORE attempt to classify amide, e.g. secondary IGNORE formulae (question asks for names) IF > 4 functional groups are shown, • Count 4 groups max but incorrect groups first IGNORE aryl OR alkyl group e.g. benzene, phenyl, aryl, arene, methyl	
(ii)	Methanol 1 mark $H_3C - OH_{\checkmark}$ Amino Acids 3 marks $HOOC + NH_2 + HOOC + NH_3$ $OR + OR + NH_3 + NH_3$ $HOOC + NH_2 + HOOC + NH_3 + NH_3 + NH_3 + NH_3 + NH_3 + OC + O$	4	2.5×4	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW + charge on H of NH ₃ group, i.e.NH ₃ ⁺ If BOTH amino acids are shown with NH ₃ groups (without the + charge) OR as NH ₂ ⁺ groups, award 2 of the 3 marks for the amino acids If BOTH amino acids are shown as correctly balanced salts, e.g NH ₃ Cl, all marks can be awarded.	
	Both amino acids shown with $NH_3^+ \checkmark$				

Question	Answer	Marks	AO element	Guidance
(iii)	FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 22.4 OR 22 OR 23 award 3 marks	3	2.2×3	If there is an alternative answer, apply ECF and look for alternative methods
	n(aspartame) in 1 can = $0.167 / 294 = 5.68 \times 10^{-4} \text{ (mol)} \checkmark$ n(aspartame) limit per day = $1.7 \times 10^{-4} \times 75 = 0.01275$ (mol) \checkmark number of cans = $0.01275 / 5.68 \times 10^{-4} = 22.4 \checkmark$			Alternative methods n(aspartame) in 1 can = $0.167 / 294$ = 5.68×10^{-4} (mol) \checkmark n(aspartame) per kg = $5.68 \times 10^{-4} / 75$ = 7.57×10^{-6} (mol) \checkmark number of cans = $1.7 \times 10^{-4} / 7.57 \times 10^{-6}$ = $22.4\checkmark$ OR n(aspartame) limit per day = $1.7 \times 10^{-4} \times 75$ = 0.01275 (mol) \checkmark mass(aspartame) limit per day = 0.01275×294 = 3.7485 (g) \checkmark number of cans = $3.7485 / 0.167$ = $22.4 \checkmark$

Question		Answer	Marks	AO element	Guidance
22	(a)		2	1.1×2	Example and use required for each mark
		D ₂ O used to identify OH OR NH protons \checkmark			ALLOW for 1 mark, D ₂ O as a solvent
	(b)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.	6	3.1× 4 3.2× 2	Indicative scientific points: Empirical and Molecular Formulae
		Level 3 (5–6 marks) Structure I has a viable chemical structure of C ₆ H ₉ NO ₂ which has the key features consistent with spectral data AND Most of the data analysed			$C : H : N : O$ $= \frac{56.69}{12.0} : \frac{7.09}{1.0} : \frac{11.02}{14.0} : \frac{25.20}{16.0}$ $OR 4.72 : 7.09 : 0.787 : 1.575$ $= 6 : 9 : 1 : 2$ $\bullet \text{Empirical formula} = C_6H_9NO_2$
		There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.			 m/z = 127.0 and empirical formula mass (127) used to determine molecular formula as C₆H₉NO₂
		Level 2 (3–4 marks) Compound I has a viable chemical structure of $C_6H_9NO_2$ with most of the key features consistent with spectral data AND Some of the spectral data analysed.			<u>Structures of compound I</u> н о О н
		There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.			$\begin{array}{c c} NC & -\dot{C} & -\ddot{C} & -\mathbf{O} & -\mathbf{CH}_2CH_3 & -\mathbf{CH}_2- & -\dot{C} & -\mathbf{O} & -\dot{C} & -\mathbf{CN} \\ & & & & & & \\ & & & & & & \\ & & & & $
		Level 1 (1–2 marks) Correct determination of empirical formula and/or molecular formula. OR			$\begin{bmatrix} cH_{3}CH_{2} - 0 - C - C \\ -C - C - C \end{bmatrix} \xrightarrow{C} CH_{3}CH_{2} - C - C - C \\ -CH_{3} \\ OR \\ CH_{3} \\ OR \\ CH_{3} \end{bmatrix}$
		Analyses some of the IR and NMR data. OR Analyses most of the NMR data.			ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

Question	Answer	Marks	AO element	Guidance
	There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			Key features• C =N• C=O in aldehyde, ketone, ester, amide, acid anhydride• CH3 group that would give a doublet• CH3 group that would give a triplet• CH2 group that would give a quartet 1H NMR and IR analysis1H NMR spectrum • $\delta = 4.2$ ppm, quartet, 2HCH2-O• $\delta = 2.9$ ppm, quartet, 1HCO-CH-CH3• $\delta = 1.7$ ppm, doublet, 3HCO-CH-CH3• $\delta = 1.3$ ppm, triplet, 3HCH2-CH3• $\delta = 1.3$ ppm, triplet, 3HCH3-CH2IR spectrum• peak at 1750 (cm ⁻¹) is C=O• peak at 2280 (cm ⁻¹) is C =NALLOW ranges from Data Sheet IGNORE references to C-O peaks

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

