

GCE

Chemistry A

Unit H032/02: Depth in chemistry

Advanced Subsidiary GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument
✓	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error

SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

(Quest	ion		Δ	nswer		Marks	Guidance
1	(a)		A solution of known concentration ✓		1	ALLOW description of concentration		
1	(b)		Releases OH ⁻ ((ions in aquec	us solution) √		1	ALLOW containing OH ⁻ ions IGNORE mention of pH
1	(c)	(i)	Titres recorded either 0 or 5 Correct so Mean titre calco Correct m	e readings (x6 d to two decir ubtractions to culated from nean titre = 26	nal places wit obtain final titu concordant re 5.45 (cm ³) ✓	esults	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW missing zeroes for burette readings i.e. 0.6 for 0.60 27 OR 27.0 for 27.00 ALLOW ECF from incorrect burette readings IF MEAN IS CALCULATED FROM ECF, IT MUST BE FROM CLOSEST TITRES ALLOW ecf from incorrect mean DO NOT ALLOW 26.5 cm³ Question asks for nearest 0.05 cm³
1	(c)	(ii)	$\frac{2 \times 0.05}{26.85} \times 100$	e either 0 or 5 = 0.37(2) (%)			1	ALLOW 0.4 up to full calculation display of 0.372439478 ALLOW ECF FOR CORRECT CALCULATION FROM 1 (c) (i) OR USE OF ANY TITRE

	Quest	ion	Answer	Marks	Guidance
1	(c)	(iii)	Use a (250 cm³) volumetric flask (instead of a beaker) ✓	1	IGNORE graduated flask
1	1 (d)	(i)	FIRST CHECK ANSWER ON ANSWER LINE If answer = 118 (g mol ⁻¹) award 4 marks If answer = 108 (g mol ⁻¹) award 3 marks $n(\text{NaOH})$ = 0.112 × $\frac{25.0}{1000}$ = 0.00280 (mol) \checkmark	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Throughout: IGNORE trailing zeroes in intermediate working, e.g. For n(NaOH) ALLOW 0.0028 for 0.00280
			$n(\mathbf{A})$ in 25.0 cm ³ = $\frac{0.00280}{2}$ = 0.00140 (mol) \checkmark		ALLOW ECF from incorrect n(NaOH)
			$n(\mathbf{A})$ in 250 cm ³ = 0.00140 × $\frac{250.0}{27.30}$ = 0.0128 (mol) \checkmark		ALLOW ECF from incorrect $n(A)$ OR $n(NaOH)$ ALLOW 3 sig fig up to full calculator display correctly rounded (0.012820512)
			Molar mass, $M(\mathbf{A})$ to nearest whole number.		ALLOW ECF from incorrect <i>n</i> (NaOH)
			$= \frac{1.513}{0.0128} = 118 \text{ (g mol}^{-1}) \checkmark$		Possible ECFs for 3 marks 1.513 ÷ (0.00140 × 250/25) = 108 1.513 ÷ 0.00140 = 1081 No ÷2 for n(A) • Molar mass A = 59 (g mol ⁻¹) Using mean titre of 26.45 cm ³ from 1c(i) • Molar mass A = 114 (g mol ⁻¹) Using 27.3 × 0.112 in M1 and then 25.0 in M3 • Molar mass A = 99 (g mol ⁻¹)

	Question		Answer	Marks	Guidance
1	(d)	(ii)	Structure of dicarboxylic acid HOOCCH ₂ CH ₂ COOH OR HOOCCH(CH ₃)COOH ✓ STRUCTURE MUST MATCH <i>M</i> _r from answer to 1 d) i) (within 10 AMU)	1	ALLOW correct structural OR skeletal OR displayed formulae OR a combination ALLOW incorrect connectivity e.g \rightarrow HO ALLOW ECF from incorrect molar mass in (d)(i) but only if $2 \times \text{COOH}$ possible and M_r is a close match to (d) (i) within 10 AMU
			Total	13	

	Question	Ans	wer		Marks	Guidance
2	(a)	Na shown with either 0 or 8 ele AND S shown with 8 electrons with (or vice versa) ✓ Correct charges ✓		crosses	2	ALLOW 2[Na] ⁺ ALLOW [Na] ⁺ ₂ Brackets not required For first mark, if eight electrons are shown around Na, the 'extra' electrons around S must match the symbol chosen for the electrons for Na. IGNORE inner shells Circles not required
2	(b)	Melting point / °C 1180 Type of structure gian Conductivity of solid pool Conductivity of liquid good One mark for each correct co	98 giant good good	s 113 simple poor poor	3	Mark by COLUMN

H032/02 Mark scheme June 2018

	Question		Answer	Marks	Guidance
2	(c)	(i)	$(1s^2) 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^4 \checkmark$	1	ALLOW subscripts
			Look carefully at (1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a mistake		ALLOW in any order i.e. $3d^{10}$ after $4s^2$ or after $4p^4$ ALLOW upper case D, etc and subscripts, e.g $3S_23P^6$
					DO NOT ALLOW [Ar] as shorthand for $1s^22s^22p^63s^23p^6$
2	(c)	(ii)	Gas B H₂Se / Hydrogen selenide / Selenium hydride ✓	2	ALLOW SeH ₂
			Equation Na₂Se + 2HC <i>l</i> → 2NaC <i>l</i> + H₂Se		ALLOW correct multiples
			All formulae and balancing ✓		IGNORE STATE SYMBOLS
					DO NOT ALLOW H ₂ S for gas B
					BUT ALLOW ECF from H₂S for equation: Na₂S +2HCl → 2NaCl + H₂S
			Total	8	

	Questic	n	Answer	Marks	Guidance
3	(a)	(i)	$Br_2 + 2 ^- \rightarrow _2 + 2Br^- \checkmark$	1	ALLOW multiples IGNORE state symbols
		(ii)	lodine has a larger atomic radius ✓ lodine has greater shielding / more shells ✓ lodine has weaker / less nuclear attraction (on electron gained than bromine) ✓	3	ORA ALLOW iodine is larger / bromine is smaller ALLOW electron added to a shell further from the nucleus ALLOW bromine has greater nuclear attraction IGNORE 'gained less easily' for 'weaker attraction'
					IGNORE references to ionisation energy DO NOT ALLOW mention of losing electrons for M3 ALLOW 'pull' for 'attraction' IGNORE just 'greater attraction' OR greater force

	Questic	on	Answer	Marks	Guidance
3	(b)	(i)	Disproportionation Oxidation AND reduction of same element/iodine OR lodine has been oxidised and lodine has been reduced ✓ Oxidation from 0 to +1 in HIO ✓ Reduction from 0 to −1 in HI ✓	3	ALLOW or 2 for iodine IGNORE numbers around equation for oxidation states ALLOW 1- for -1 AND 1+ for +1 NOTE (for iodine/ 2) from 0 only needs to be seen once, does not need to be stated twice ALLOW 1 mark for 3 ox nos correct but no mention of words oxidation/reduction: 0 in 2 AND -1 in H AND +1 in H O ALLOW 1 mark for species missing:
3		(ii)	Chlorine is toxic/poisonous OR forms halogenated hydrocarbons OR forms carcinogens/toxic compounds ✓	1	ALLOW (reacts with hydrocarbons to) form carcinogens/toxic compounds IGNORE • chlorine causes cancer • harmful/dangerous • chlorine causes breathing problems
3	(c)		FIRST CHECK ON ANSWER LINE If answer = (+) 431.5 (kJ mol ⁻¹) award 2 marks If answer = -431.5 (kJ mol ⁻¹) award 1 mark (wrong sign)	2	ALLOW to 3 SF i.e. 432

H032/02 Mark scheme June 2018

Question		Answer		Guidance	
		$+863/2 = (+)431.5 \text{ (kJ mol}^{-1}) \checkmark$		ALLOW 1 mark for (+)247.5 / 248 (wrong expression) i.e. (436+243–184)/2	
(d)	(i)	$Br_2(I) \rightarrow Br_2(g) \checkmark$	1		
	(ii)	Endothermic AND Energy required to overcome induced dipole–dipole forces/London forces ✓	1	Mark independently of 3 (d) (i) ALLOW endo to break intermolecular forces/bonds ALLOW bonds between molecules DO NOT ALLOW van der Waals' forces	
		То	tal 12		

Question	Answer	Marks	Guidance
Question 4 (a) (i)	Answer Answer ANH ₃ (g) + 5O ₂ (g) AH AH AH AND Activation energy correctly labelled / E _a AH AH labelled with product below reactant AND Arrow downwards ✓	Marks 2	Guidance ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE state symbols ALLOW 1 mark for a correctly labelled endothermic diagram E _a ALLOW no arrowhead or arrowheads at both end of E _a line. E _a line must reach maximum (or near to maximum) on curve For E _a , ALLOW AE OR A _E ΔH DO NOT ALLOW –ΔH DO NOT ALLOW double headed arrow on ΔH ALLOW ΔH arrow even with small gap at the top and bottom, i.e. line does not quite reach reactant or product line. ALLOW –905 for ΔH

Question	Answer	Marks	Guidance
(ii)	FIRST CHECK ON ANSWER LINE If answer = 6.79×10^7 (kJ) award 4 marks If answer = 2.72×10^8 (kJ) award 3 marks (no ÷ 4)	4	IGNORE (-) SIGN Throughout: IGNORE trailing zeroes in intermediate working, e.g. For $n(NH_3)$ ALLOW 3×10^5 for 3.00×10^5
	Final answer to 3SF AND standard form = 6.79 × 10 ⁷ (kJ) ✓ standard form AND 3 SF required		Common Errors $1.09 \times 10^9 \text{ (x 4 instead of } \div 4) 3 \text{ marks}$ $2.72 \times 10^8 \text{ (no } \div 4) 3 \text{ marks}$ $6.79 \times 10^1 \text{ (no tonnes } \rightarrow \text{g)} 3 \text{ marks}$
(b)	$(K_c =) \frac{[NO(g)]^4 [H_2O(g)]^6}{[NH_3(g)]^4 [O_2(g)]^5} \checkmark$	1	Square brackets required IGNORE state symbols

Question	Answer	Marks	Guidance
4 (c)	EQUILIBRIUM CONDITIONS Temperature: 1 mark (Forward) reaction is exothermic/ΔH is negative OR (Forward) reaction gives out heat ✓	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	Pressure: 1 mark Left-hand side has fewer (gaseous) moles OR 9 (gaseous) moles form 10 (gaseous) moles ✓ OPTIMUM EQUILIBRIUM CONDITIONS: 1 mark (for maximum yield of NO) Low temperature AND low pressure ✓		ALLOW reverse arguments
	RATE: 1 mark Low temperature/pressure gives a slow rate/slower reaction so high temperatures / higher pressure needed to increase rate OR frequency of collisions ✓		Answer MUST relate temp/pressure to rate / frequency of collisions
	INDUSTRIAL CONDITIONS / OPERATIONAL FACTORS: 1 mark High pressure provides a safety risk OR Higher temperatures increase energy costs / reduce yield / shift equilibrium to left OR (High) pressure is expensive (to generate) / uses a lot of energy ✓		ALLOW Temperature / pressure not too high because yield reduced IGNORE stated temperatures and pressures IGNORE catalyst
	Total	12	

Question	Answer	Marks	Guidance
5 (a) (i)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Correctly labelled diagram of reflux apparatus that works, with no safety problems AND An appreciation of most of the purification steps required to gain a pure sample There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Labelled diagram of apparatus (either reflux or distillation) but with safety/procedural problems OR clear diagram of reflux apparatus without labelling AND Some details of further purification steps There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Diagram of apparatus (reflux OR separation OR distillation) drawn with no labelling OR labelled diagram with significant safety/procedural AND / OR Few or imprecise details about further purification stages There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	6	Indicative scientific points may include: Apparatus set up for reflux: • round-bottom/pear shaped flask • heat source • condenser Detail: water flow in condenser bottom to top; open system. Purification • Use of a separating funnel to separate organic and aqueous layers Detail: Collect lower organic layer density greater • Drying with an anhydrous salt, Detail: e.g. MgSO4, CaCl2, etc. • Redistillation Detail: Collect fraction distilling at 102°C.

Question	Answer	Marks	Guidance
5 (a) (ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 12.6 (g) award 2 marks • $n(1\text{-bromobutane}) = 0.150 \times \frac{61.4}{100} = 0.0921 \text{ (mol)} \checkmark$ • Mass 1-bromobutane = $0.0921 \times 136.9 = 12.6 \text{ (g)} \checkmark$ 3 SF required	2	Common errors: 33.4 (0.150 x 100/61.4 = 0.244 x 136.9) 1 mark ALLOW ECF for incorrect moles or incorrect M _r of 1-bromobutane (provided answer is to 3 SF) DO NOT ALLOW 6.82 (using M _r of butan-1-ol) ALLOW calculation using masses, e.g. • Theoretical = 0.150 × 136.9 = 20.535 (g) ✓ (ALLOW 20.535 rounded back to 20.5) • Actual mass = 20.535 × 61.4/100 = 12.6 (g) ✓ (20.5 also gives 12.6)
(b)	Tangent on graph drawn at approximately $t = 30 \text{ min } (\pm 10 \text{ mins}) \checkmark$ Calculation of rate $= \text{Gradient } (y/x) \text{ of tangent drawn}$ $\text{e.g. } \frac{0.19}{72} = 2.64 \times 10^{-3} / 0.00264 \text{ (mol dm}^{-3}\text{min}^{-1}) \checkmark$	2	DO NOT ALLOW interpolation (taking a direct reading from graph), answer must be derived from taking a gradient ALLOW ecf from incorrectly drawn tangent Tolerance: Readings from y axis should be ± 0.01 mol dm ⁻³ (i.e. within 1 square) Readings from x axis should be ± 5 minutes (i.e. within 0.5 of a square) IGNORE units IGNORE sign
	Total	10	

H032/02 Mark scheme June 2018

(Question		Answer	Marks	
6	(a)		steam AND Acid/H⁺ (catalyst) ✓	1	
	(b)	(i)	1,2-dibromo-1,1-dichloroethane ✓	1	

Question	Answer	Marks	Guidance	
	The standard of the standard	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC For curly arrows, ALLOW straight or snake-like arrows and small gaps (see examples): 1st curly arrow must • go to a Br atom of Br-Br AND • start from, OR be traced back to any point across width of C=C C=CC=CC=CCCCCCCCCCCCCCCCCCCCCCCCC	

	Question		Answer	Marks	Guidance
6	(c)	(i)	H Cl H Cl H Cl H Cl H Cl In Correct polymer with side links and brackets \checkmark	2	 For repeat unit, displayed formula required 'side bonds' required on either side of repeat unit from C atoms ALLOW section containing more than one repeat unit
			Equation balanced with $n \checkmark$ TAKE CARE of 'n' position on both sides of equation.		DO NOT ALLOW ECF from incorrect repeat unit n on LHS at any height to the left of the formula n on RHS must be subscript
	(c)	(ii)	Advantage (1 mark) Energy production / (energy) used to produce electricity ✓ Disadvantage (1 mark) Formation of HCl/products of combustion cause acid rain OR Formation of CO₂/gases that cause global warming / greenhouse gases OR Formation of CO✓	2	ALLOW reduced use of fossil fuels ALLOW less landfill / less harm to wildlife ALLOW chlorine/Cl OR Cl ₂ ALLOW toxic/poisonous waste products
			Total	9	

Question	Answer	Marks	Guidance
Question 7*	Please refer to the marking instructions on page 5 of the mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive description including most of the evidence to justify the correct structure of F (accept cis or trans). There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) The candidate attempts all three scientific points, but explanations are incomplete. OR Explains two scientific points thoroughly with few omissions. AND an attempt at a feasible structure based on deduction from correct molecular formula There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) The correct empirical formula AND a simple description based on at least one of the main scientific points. OR The candidate explains one scientific point thoroughly with few omissions.	Marks 6	Guidance LOOK AT THE SPECTRA for labelled peaks Indicative scientific points may include: $\frac{\text{Empirical formula}}{\text{empirical formula}} \bullet \text{ empirical formula} = C_4H_6O$ $\frac{\text{element}}{C} \frac{\text{M mass}}{68.6} \frac{\text{Ar}}{12} \frac{\text{moles}}{5.72} \frac{\text{ratio}}{4} \frac{\text{M moles}}{12} \frac{\text{moles}}{12.5} \text{mo$
	The candidate explains one scientific point thoroughly with few omissions. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		сну с СН3 Н cis trans (correct structure)
	0 marks No response or no response worthy of credit. Total	6	
I	lotal	ь	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building **Shaftesbury Road** Cambridge **CB2 8EA**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

